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Introduction.

Non linear sigma model were introduced more than 15 wyears
ago to describe the properties of systems with
spontaneously broken symmetry according to the Goldstone
mechanism

This led to the study of models based on coset spaces ,1.e.
the quotient G/fi of a Lie group G by a subgroup H

An important example of this kind is the Heisemberg model
,described by a non linear two dimensional sigma wmodel with
G = O(n) and H = 0(n-1) .

In this tase the model i1s renormalizable and asymptotically
free

In general the asymptotic freedom is a characteristic of
the spaces with negative curvature

This property allows to distinguish the ultraviolet regime
from the infrared one ,making possible a separate analysis
of the ultraviolet region.

The recent developments in string theories ,have led to the
study of two dimensional non linear sigma models defined on
a generic Riemannian manifold

From the point of view of perturbation theory ,space-time
dimension two is particularly relevant ,since the model is
power counting renormalizable

As 1t 1s uwell known ,this means that ,developing the
lagrangian density in powers of the field ,one does not
find any coefficient with negative mass dimension

The main aim of this work is the study of the ultraviolet
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behaviour of a two dimensional sigma model defined on a

Riemannian manifold M

This involues the analysis of the quantum fluctuactions in
(L)

a neighhourhood of a generic assigned point in

Let us consider a chart in M centered 1in a ,space-time

independent ,assigned point wp ,and let +;(x) be the fields

of the model in local coordinates ,where X 1is a Minkowski

space-time point ,or ,by making a Wick rotation ,a point of

the euclidean two dimensional space

We will assume that the guantum fluctuations at the point

X are damped when the point goes to infinity ;i .e

€AM C%J(xl = m

IX1 =S &P

s

and that they never exceed the horder of the chart centered
. (3)

N oW

If one neglects the infrared effects there are no
particular obstructions to this hypothesis

In the ultraviolet region ,indeed ,only thevsmall distance
effects enter in the game ; this involues only the Tlocal
properties of [

Oon the contrary ,the infrared behaviour of the model would
require global informations

This is due to the fact that infrared fluctuations ,being
long distance effects ,would exceed the Dborder of the
considered chart involving the whole manifold

The infrared problem would require a detailed treatment and

would exceed from the main aim of this work
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Chapter one.
The model and its quantization

Let HL bhe the two dimensional space-time and M a
differentiable connectedw dimensional Riemannian manifold
Wwith metric %

The field of the sigma model is a map

gé:/’lz—vl“f

represented in local coordinates by #ﬂ(x).

The action of the model is

I = 1 o P (e b ) (I B (1.1)
2 f s r

where the fields %4 are dimensionless.
The ultraviolet behaviour is governed by the small field
fluctuations;this involues only the local properties of M
et us consider a point on MM and let us study the quantum
ultraviolet fluctuations on a neighbourhood
In this frame ,the fields ${ split as

$x) = £x) + T ex) (e
where the f{ are the coordinates of the reference point on
M, and 7N are the corresponding quantum fluctuations.
In this case the coordinates of the background point f are
space~time dependent

We will assume that the £ space-time dependence 1is weak



;i.e. ,that for each point X in Hz the corresponding point
{ int varies smoothly in a small neighbourhood of wm

The condition

£ m #cx) = M (1.3

X P
implies that the quantum fluctuations are zero at infinity
(1.4)

{fh¢ Ti(x) = ©
X =% P

and that
. (1.58)
€im S(x) = m

X =D £

Formally the quantization of the model is based on the

(zls)
measure
< T(¢)
. +
i 0 A%Tf‘(.xl e (1.64)
A X
where 43“; (x) is the volume element on M

(1.7)

43U;(x) = \[_c\—;:ta(&) @'W‘-Lxl

It is convenient ,in order to have a manifestly covariant
formalism ,to use the geodesic normal coordinatescz‘and to
express the ﬂ{field in terms of the wvector §;tangent to the
geodesic through the points {{;k and {{{+Tﬁk in the point
{{;g;let us furthemore assume that §;is the real quantum

field.

One gets

[
~

. : : d i i A
T = P XTles)s 1. 2L Pl o

n=2 nt

with



. ~ -
re. = (v, -- v, roL ) (=) (1.9)
Jl-‘Jn (4‘ J“-X, Jn"l.’h"
where ¥V indicates that the covariant derivatives is taken
only with respect to the lower indices of the Riemann
N
connection F.

d
For the total field #" one has

q;{: P MI(E) = £+ F{,!_ X"({lg) (1.10)

We have to note that the splitting of the total field
¢; into a classical and quantum part is not linear ;

this does not guarantee the correctness of the usual
background method for the ultraviolet divergences analysis.
With the introduction of the field §{ the quantum measure

becomes

< T(¢)
+

TTTT ®§ﬁ \11{53 (det j(e.5) ) € (1.11)

where(d&tj ) is the Jacobian of the transformation

NS

.

det j(€,§5) = Aet(:\m) (1.1
§J

N
~

By takinag the Fourier transform of the quantum measure one

introduces the functional generator }(fli):

LW L (Ths (453§ )

}H’,I)=€ = CDE g (1.13)



Df = W D ldetg Cdet) (1.14)
A X
Before to go beyond ,it is necessary to spend some words on

the quantum measure ,and particularly on the quantity

[ Vdety  Cdety) (1.15)

[
X
If one writes

Sio) [da -% (ddctg J&tj)
TT‘[EC—% (det;) = € (1.16)

one Sees that the effect of the wvolume element is
equivalent to a further interaction term in the initial
(4}
lagrangian
In general one can see that ,by formulating the model on a
lattice ,such interaction term behaves like a counterterm
for quadratic divergences coming from the initial
o (s)
lagrangian
Then the simplest thing to do is to define the model by
using dimensional regularization ,in which the quadratic

divergences are suppressed

If one uses dimensional regularization

2
d (o) —> 5“(0) = o

and one can ignore the effect due to the volume element
Making reference to the dimensional regularization for the

functional WI(X,T)one gets



W 4,7 GIOE Ea“; ) G
: )
3 . T e

with
1R £ 2+E€ ful]
A% = f 47« (1.18)
The functional W(4£,3I) has only a local meaning : it is

defined in a neighbourhood of the background point <

We will see later a possible way in order to define a more
general functional W ; this will require the introduction
of an infinite set of sources coupled to all pouwers of the

guantum field E"



Chapter two

B.R.S. symmetry

The gsplitting $4z~€4+'ﬂ{ ,with W{= §;+ X; induces 2 symmetry
for the action J (¢} .

This symmetry derives from the possibility of varuving ,in a
neighbourhood of the point { ,the {4 and the guantum

fields Eq in such a way that the total variation of +” is

{4)
zZero
Let us consider ,indeed ,the transforpnation
Sy €2 (x) = v (x) (z.1)
. N 3
3 fx = B 5 e

"' .
where F ) is determined by the requirement for +“ to be

invariant ,1i.e.

Sqdt s dE qh L 38 ™ = o (z.2)
33 it

N
N

From‘(ékgq— §5§)‘)¢“:c>,one gets the condition

By Sﬁ #‘: b it follows that

8\:1 I(_%X:D

(2.4)

One introduces a ghost field Ctx)and an operator 4 defined



by:

447 = ¢
. (zZ.
T2 B gt
) 3 i ¢
y jc¢ = o
The 4 operator can be written as
2 - : ;
4 = Ax(c‘_g_Jf chg) (2
J LR 8§
The ¢° field is a dimensionless classical field

It is easy to verify ,by using (2.3) ,that4 is nilpotent

2 (z.

From 94 %1: o it follows that 4 I(¢)= o .

7)

In order to get the Ward identities associated to the

B.R.S5. symmetry (2.5 and to discuss them at the quantum

level ,we need to add to the 1initial action the source

terms coupled to the wvarious operators introduced by the

symmetry
Bearing in mind that the sources must be coupled only

the operators containing quantum fields ,one has

N

T(e) — T(4)+ Xazx s (4 (

. L i 4 .
However ,since F i C has power counting weight zero
will mix with all other possible dimension zero operators

It is covenient to introduce the action

TR, 5, L) = TCé)+ Kclzx Lo A (z.

oo
St
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where

N " (Z2.10)
Na = 4 A4 d=o 1 - -
/\ﬂo= Eq Loa = La
The set { A % are all the possible dimension zero
functions of  and ¢
If one assigns ghost number ﬂ@{ﬁE = to c

ni({]: “g(E) = 0 to ¢ and f ,then L 's have dimension
two and ghost number nZ(L\z - 4

The sources L are needed ooty o discuss the
renormalizability and will be put equal to zero at the end.

From 3%‘: o and 4%=zo0 ,it follous

4 Z“(_€| §,L'C ) - 0 (z.11)
since 4% = 3 Z ,the equation 4 J = o reads
5L;
(z2.12)
2 g , o
dx ¢ 3Z 4 ¥TZ 32 = o
s SL: 8¢
One defines the operators
z : .
Q - j Ax e E_ (z2.13)
€
z ¢ .
Bx = Xa X SX S & (- )J e J.._..:.
S§’ oLla SLs §§‘
where X 15 the Grassman parity of the functional X
In the 2. case , ﬂ%(2.3= o
(Z2.14)

By - jﬂfx 2 3, 32 5
5§ SLa 3L v g

and



A 2; = Q :i + L j&z J. = °
2

r has the follouwuing properties

The gx operato
eyt xy
Bx j = (‘) B\/ X
(2.16)
x+1+%(¥+5\ 3#£+XL3+%\ -
g, B, 2+ ) g, 8, Y ¥ &) B, Ba X =°
If ,1n addition
n X + R X = 0] (z.17)
2
+hen the operator Dx defined by
De = 6+ B (z.18)
is nilpotent R
(z2.19)

gx@xizo V Y

(2.17) ,s0 Py 15 nilpotent

clearly . gatisfies
Let us consider ,then the functional W (X‘S,L‘c)
LW s, e (2 ganx 5o ) (2.20)
f - + N
3 = ndE ¢
3w
ets the ward identity

Making a B.R.S. transformation one ¢



passing to the functional I

[an(e sr.ar in) <o
3¢ SLy 9 F

The Ward identity (2.22) allows a renormalization analysis
of the model based on the B.R.S. symmetry (Z.3)

Since we have used an invariant regularization scheme for
the B.R.S5. symmetry ,namely the dimensional one which does
not modify the structure of the manifold M ,the
renormalization analysis becomes a stability problenm for

the classical action 21 (see appendix ).

10



Chapter three

Renormalization

fs we said ,the invariance of the regularization scheme
reduces the renormalization analysis to a stability problem

for the classical action 22

This means that if one perturbes the action ;f by a term

£ jil ,where 22‘ is the integral of a local formal
series in the fields ,their derivatives ,the external
sources L;& and the ghost field Q; ,with diasension  two

and ghost number zero ;and if one impose that

4 (2 - e >x") = o0

to the first order in £ ,then the quantity ( Z-¢e3") can
be obtained by redefining the fields and the parameters of
the action ;Z

To the first order in £ one has

1y

O
[N}
N
rt

Dy I .

Jx

]
(g
o1

+ 2Z 3 . E__Z_S (3.3)

2. T(e) + La{(:\/\"ok)

t

where we have omitted a space-time integration

11



By power counting

' [ 3
20 = AL, §) ¢ Lae Ba (3.4
where H has ghost number zero and canonical dimension
two, ) has ghost number n§£B)= 41 and dimension zero

Inserting (2.4) in (3.2)

(3.8)
ﬂg‘l‘ LI_B-’ = 0
SE’
SLag®y 8- 4 8% = o0 3" = &t
3E
E(Q/_\kg)ﬁ{—ﬁgkg:o p=d,--, ¢
3§’

In order to find a solution of (3.5) it is convenient to

huild an operator X = X ({lE,L,C) such that

D, X = (% t)+ Li8a 36

The X operator has ghost number n%(X) = -4

By power counting

X = Lak N (3.7

where ~Qfa are arbitrary functions of f and f with ghost
number ng(ll) =0

Bearing in mind that the set {‘AZ‘({.E)k are all possible
dimension zero functions of { and g it o willd be

possible to write

k

JZ..,L = ;Zo{?; /\Kp

,.\
ol
s}
—

where 2&% are constant

12



One gets

X = Lax Qo\g /\Kg

Imposing that

Dy X = €+ Lax B2

oneg has
C = 8___;[ io? /\1P
3 f”
BZ = 5(4/}\1) %o@ /\;g,‘ }wx‘s(’l/\‘;)

3§’

K
It is easy to verify that the B& in (3.11) are

of
5(ﬂ§k)?>’--:\BK = 0
5
S(QA'.(g)E“‘—;B;:O
5§
For Q one gets
s (8- 2 BT AG) = 0
§¢

This equation tells us that the quantity

( Q - 30{5 E /\’;p )
3§

i{s a function of the total field ¢ ile.

13

(2.9

(3.10)

(2.11)

solutions

(3.12)
(3.13)
(3.14)



LA E) = CLe) v 2op 31 Ag T
3

where i has canonical dimension two and ghost number
ZeTo
Without loss of generality

(3.14)

GOt s 2 Tl ek L)

and

(3.17)

Zl({'E'L'C) = i(%\ ¥ Dy X

one can prove that (3.17) is the most general solution for

(3.2) ; explicitly
N . . K (3.18)
Z = __ZI_ qu(.‘*’)(_csl&C{’\)(,AK‘{’J)—ﬂfsd ka(ﬁ/\ﬁl)
+ %oP g__z-: Aﬂ?
$ §°
The & Zf is obtained from the classical action 22 by

redefining the metric ,the fields and the sources in the

following way

Q° (&) = g (4§ g, (41 & Ty (d) 519>
" i :
Lod.k = Lax + £ ’2@& ka
§D§ = §4 - £ %DF ) Z:(Q‘g' g L ¢) IAQP
8 f°

14



This means that

(3.20)

(€ g, 9. Le)- e Z(%, 5,9, ¢L,¢)

= 2 (£, 17, 47 17), L e ) v 00ER)

One sees that the renormalization involves a redefinition

of the metric tensor %, ,a multiplicative renormalization

of the infinite set of sources { LAJQ ,and a non linegar
(4)

renormalization of the quantum field E

To be precise ,the model needs a mass term to rTegularize

the infrared divergences

In principle one could introduce a B.R.S5. compatible
infrared regularization by adding to the action I ($) a
potential

3 w2 V(é)

where V.(¢) is a scalar dimensionless function of the
total field ¢

such regularization is B.R.S. invariant ,since

4 V’C * ] = b (3.21)

The function Wf(¢] will have also to be renormalized

5
nevertheless since the renormalization will be proportional
to h1l ,by using minimal subtraction ,it will be clearly
distinguishable from the other ultraviolet divergences

In pratical ca]cu]ations(;] one follows a criterion of

minimal disturbance ,1.e. ,one introduces as many infrared

cutoff as necessary for an unambiguous determination of the

15



ultraviolet divergent terms

Typically one considers the term

o g, (€) ff (:
g 00 1

SN
N
N

such a term would produce a soft breaking of the Ward
identities not ruining the ultraviolet analysis

once the correlation functions have been computed one
should take the zero mass l1imit

The existence of this limit is a delicate gquestion , 1t is
sufficient to note that in the case of a coset space this
limit exists only for a restricted class of correlation

(5,8)
functions

16



Chapter four

The functional W {(h) and its properties

In this chapter we discusse the possibility of
introducing a more general functional generator with global
meaning

The analysis of guantum fluctuations in a neighbourhood of
the background point~fcx3 requires essentially the use of
a single chart Ux ,sufficiently big in order to contain

all the ultraviolet effects ( fig 1. 3

¢ fig 1. >

In principle the point £(x) could be a generic point of

ux ;thus we have independently assigned the metric tensor

(3)
3{3(4‘§\ in every point

It is necessary to verify that the local assignement of the
metric tensor corresponds to a unique tensorial field
defined on the whole domain Ux

{2y
e find in Friedan thesis how this condition can be

17



written in terms of a " non linear connection QX
Let us consider a point p in Ux and let 4 be a wvector
in the tangent space of b

One introduces the compatibility operator

Dy o= 3 s (b, 0) 4 (4.1)
IB do!
j. -
The " pon linear connection ™ & - ig such that

N

JDij = [ J)élébb 1 = 0 4.

One can show that 1 f

®:\¥(",’&):O (4.32)

where £ (F,O ) is a scalar function defined 1in a
neighbourhood of b , then 2- is the Tlocal restriction
of a unique glohal function

It is gasy to recognize in the B.R.S. operator

) (4.4)

4 = ( Px el ( 5;7 o (2 %) P
J S¢° S g"

the Q}; operator introduced by Friedan

The equation

1 (£,¢) = o (4.5)

where K is a generic function of ~f and ? ,tells us
that X has a global extension

(+)
lLet us consider now the functional {J (h)

18



(4.4

LW lh) L(I(#)J«X&“x\w(x;%’))
+ . . ®
3 = | TDE e

where k(x;¢) is a two dimensional scalar quantity which ,
for every point X in M. , is a function on M

The introduction of this unconventional source term 1S
equivalent to a sum of an infinite number of terms

containing all the powers of %

Using the splitting %4 = _€4+ F4 + :X{({’§ ) one has
(4.7)
3 _ b A
hid) = hig)y+ 2 L J. - (=) §-- §
n=1 h!
Joawte) = (v wk

$= <

In practice one introduces an infinite set of sources
gcoupled to all powers of the quantum field

However the introduction of k gives a glohbal meaning fto
the functional W (h) , indeed ,being h a function of the

total field + . it will be

7~
EoN
0
R

a2 h(d) = o

The functional W (h) can be renormalized repeating the
standard arguments of chapter three

T
The renormalized UJ (h) can be written

19



(4.9)

v Wk L lTen g g e ) [ W e )
4 . N +*
e = Jl<§§ e
with
(4.10)
Pg‘? ($) = j‘_’ (£, %)= /uf (g, ()~ s (4 )
Y 2 i
o _ £ _
(R0 = o b)) (- foe)
E = E* - 2o S (Teer+ (hid)) /\4?
V 3¢
where g is a generic dimensionless function of +
If in (4.9) one makes the change of wvariables
. " . (4.11)
o £ 2ep B TCH)Y L hedr ) Ay
S %
one gets
(4.12)
S wth) Ca (T )+ (8 )
+‘I — Y ‘V)
o = %l\x®§ Q

One sees that the wave function renormalization cancels out

,being a change of wvariables

20



appendix

(9
Stability ,regularization ,renormalization

In this appendix we want to discuss briefly the main
points of the renormalization of a theory with a given
symmetry

The discussion is divided in three parts , in The first one
we consider the classical stability of the theory ,in  the
second one we examine the invariance of the regularization
scheme to the quantum level ,and in the last part we give
the conditions and we sketch the proof of the

renormalizability of the theory

a)y Stability

Let A be a given classical action ; B <dzn:nds on a set
of parameters i

j contains masses , coupling constants , a set of fields

{.fék and external sources z X; &

According to the power-counting B (Y) 1is the integral of a
polynomial ,with a certain canonical mass dimension ,1ocal
in the sources Y* ,in the fields {7 and their

derivatives ;uhich does not contain constants with negative
dimensions
The canonical dimension of such a polynomial depends on the

dimensions of the space-time in which the model is

21



formulated ,and on the requirement that the action Bly) is
dimensionless
Let us suppose now that A(Y) is symmetric ; 1.e. there

exists an operator g , such that

Zf(ﬁi‘é))z o

Typically j is not linear ; for example
f(aepn) = 39 38
5€° 3¢

where we have omitted a space-time integration

one introduces the lingarized operator

]
far) = 38 3 S8 3
RO R 3~ S¢7
‘ - -
In most of the cases ;f is nilpetent
In general y belongs to a domain D ,called stability
domain , of points such that the classical action 1is
symmetrical for every point in D ;o 1.e.

L(nceyy) = o vV 4yed

et us consider ,for example , a model with an OD(vw) global

symmnetry

A ly) = jcqu £ bl e (31

where the fields -6; are real ,with canonical dimension

one , and transform under an O(w) representation ; and
L , C are constant

In this case 3 = ( E,C, < )

The action A(Y) is invariant under the transformation

22



8{-" = TI“‘E ‘€3 where ‘_I‘.,- = - ‘T:)q

]

are the generators of Dilw)

The operator f ,in this case linear ,reads
f = ¥ T - ‘T;J«Q‘ R
3¢ s <
and
f(awter) = o

If we move from 3 to 3 ,where 2 is defined by

L,_» L“ C-—sc" “6—5 c}.‘—{’

i
with E , < , o' constant ,one has

A(Yy) — A(2)

2

R(2) = jfx 4 gt bt e ' (g g0 )
and

f(ac2r) = o

then j and 3 are both points of D

Let us suppose ,now , that the action B(Y) is perturbed
by a term & Qilﬂ) ,kuhere Qitﬂ] is a local polynomial with
canonical dimension ,and let us impose to the first order

in & that

f(\quj)+e\qic\“\) = 0+ B (g?)

f‘(ﬂun) ﬂiw) = 0

23



The theory is said stable 1f the quantity

(A(yy+ e q (4 )

can be obtained by redefining the initial parameters of the

classical action A (YY) ,i.e.

Bly) + € \qiczg) = ACq)+ OCe%
with

A £

LI R

A £
Yiceversa ,if j = 3*-5 p! belongs to the stability domain

l) ,then
fCacgy) =o

to all order in & ,where
4 o e €
N(G) = Aly)s e (y)y+ 2. & A
2>
. € . . .
with B local and of canonical dimension

24



b) Regularization

At the quantum level ,the action BlYy) is replaced by the

effective action r

<
U A v T° - A(y)
nN=-o
F contains ultraviolet divergences which ,in some way ,

have to be regularized

et A be the ultraviolet cutoff introduced by the
regularization scheme and let rk be the regularized
effective action

The regularization scheme is said invariant if it preserves
at the quantum level the symmetry of the classical action

B(y) ;o 1.e.

f(0) = o v

In the perturbative expansion of r in terms of Feynman
graphs it 1is helpful to analyse the superficial degree of
divergence of the single graphs
Let G be a connected 4 PI graph and let us consider the
family % of all its connected subdiagrams

3 contains G itself

Let 3' be an element of % and u}(gﬂ its superficial

degree of divergence

One has the following convergence theorem

Theorem

If wilgir<o for all 3 € %' ,then the Feynman

integral corresponding to G is absolutely convergent

25



fy useful corollary of the previous theoren is the

following

if G has noO 5uperficia11v divergent cubdiagrams ,LO\3}40

for all gubdiagrams %# G , but is itself 5uperficia1\y

divergent w6y >0 then the divergent part of its

amplitude ig a po\vnomia1 of degree less or equal to w (6]

in the external momenta

Making reference tO the dimensional regularization with

minimal subtraction ,one can gay that the divergent part of
G ,uhen (,o(%)<o Y 34:6 ,19 4 Laurent ceries in &

whose coefficients are po]ynomials in the external momenta

and in the ipternal masses of degret less oOF gqual To

w(g)
By using the convergence theorem ONE can assert that if

n-t

fk ig fFinite uP to the order ﬂ ,then its divergent
part To the order ﬁ“ ig ,making always reference to the
dimensiona] regu]arization , @ Laurent cqeries 10 £ whose
coefficients are given by an integral of a polynomia] ,with
canonical dimension ,Tocal in the fields and their
derivatives

{n some Cases it is not possihle to find an ipvariant
regularization scheme which preserves at the gquantum level
the symmetry of the classical action

ip this cases there could be some anomalous term which
could destroy the equation i)

in this frame the study of such a term i a4 cohomology

problenm for the B.R.S. exterionr derivative associated to

rhe symmetry

26



£) Renormalization

If the theory 1is stable and there exists an invariant
regularization scheme ,then the theory is renormalizable
This means that ,order by order 1in % ,there is a
renormalized action Hz such that ,to the considered order
j(,ﬁl) = 0 ; and whose corresponding functional
ﬁk generates a perturbative series finite wup to tThe
considered order
at every order H: can be obtained from Aly) by
redefining the initial parameters Y
The proof is by induction ,showing that at each order
the counterterms can be reabsorbed by redefining the

initial parameters Y of the action R{Y)

n
A v
= - Z,\av‘ i 11 int
Let j“ i- = BN be a stability point for
the action A ,1.e.
A
-j(ﬂ("lh)) = 0
with
A h* ¥
" LY
Q(‘j\n): Q(‘j)" Zh AA hk>‘ﬂ,
Y=t
v
where YA are local polynomials of canonical dimension
such that the functional UA which corresponds to 9 (g“)

1is finite to the order Y

Being the regularization scheme invariant ,it will be

éf ( Fk ) = 0

to all orders in h

27



fk = s 4 ﬁ:+ - AT ﬁ:'* 2 ﬁe ﬁf

€=n+1
with
M= Aaly)
and
~ i
CLim  TA7 = Linite L £] &w
A= P
>Nt
Let us consider nouw rA
Mt ~ n+l At
o = Thaw # Rg;n
- s - -
where ,by power-counting , Adio is a local polynomial
of canonical dimension
~“+‘ . B -
Indeed, Rdiv can contain only superficial divergences
,hbeing the lower orders finite
Let us consider the restriction of -i ( F}.) to the

N+l
order t 1. e.

fora)
‘h\’\i"
It will be

L(0.)

= O
‘F)““
LTI = e BT B T
ot
N fl( ‘:AZ) ’I.‘;An-(+ L = o

Since
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+

(£ (P T+ R BT — )
ig finite , and being

()

‘h“+l

, 1t follows that
| M4t
2 (acy)) T

is finite
Isolating the divergent term (in dimensional! regularization

is a Laurent series in & ) ,one gets
t = o+l
(o)) LG, =0

From the stability of the action W(4) it foellows that

ntl ntt A n+2
Alu)y - H Ty = ALY ., )+ O(Hh )
with
~ Nt p4
E - h
Toe ] Ja
N
The action B j“+.) generates a perturbative expansion
i
finite to the order t“+
Then we have proved that it is possible ,supposing that it
) n
is true to the order ﬁ ,to reabsorhb the
41 . . . . .
ﬁn counterterm by redefining the initial parameters of
B4y
Since the recurrence hypothesis 1s true to the order

ﬁo ,it will be true to all orders
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