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Introduction

The main argument of this thesis is the study of gravitational instantons [1,2] in the
context of string theory.

They have an intrinsic interest and, in the context of supergravity, may provide a
mechanism for the non perturbative breaking of local supersymmetry [3]. In string theory,
they have to appear as the non trivial four dimensional background for the propagation
of the string; so, the first and in general unresolvable problem to face is the identification
of the Conformal Field Theories corresponding to the geometries under consideration. As
we will argue, the natural context is a N=4 superconformal field theory with c=8.

Significant advances have been recently made in identifying conformal field theories
related with black-hole space-times in unphysical dimensions (D=2) [4,5]. A limit case of
instanton conformal field theory has been discussed in a seminal paper by Callan, Harvey
and Strominger [6]. The great novelly in string theory is the existence of the dilaton and
axion field. In Finstein gravity instantons are not asyptotically flat; the best requirement
we can impose is that they are asymptotically locally euclidean, i.e. , at infinity, they
approach the flat metric of R* only after some finite group quotient. This is why the
Konishi et al. [3] mechanism for supergravity spontaneous brezking is considered somewhat
unphysical. The problem is solved in string theory by the introduction of the new fields in
the effective lagrangian.

We will investigate, in complete generality, the question of modular invariance of the
heterotic superstring, compactified on a Calabi-Yau manifold and with a non trivial four
dimensional background with c¢=6 and N=4, and, in the second part of this thesis, we
will focus on the specific example of the Callan et al. instanton and is realization as a
conformal field theory. ' ,

The knowledge of all the emission vertices in such a theory suggest a more careful
investigation of the possibility to cornpute scattering amplitude and to explore non per-
turbative effects in string theory.

The thesis is organized in six chapter plus two appendices.

Chapter one deals with the possibility of constructing consistent heterotic vacua where
the usual four dimensional flat space is replaced by some new c=6 theory, describing string
propagation on a non trivial four dimensional geometry. In the case of a gravitational
instanton it’s well known that the geometry is that of an HyperKahler manifold and so
for a general argument the associated sigma model supports a N=4 SUSY. The result is
the proposal of a generalized h-map, accordihg to which the propagation on an instanton
background of a heterotic superstring compactified on a Calabi-Yau space is given by the
tensor product of three conformal theories: a ¢ = 6 (4,4)-theory, a ¢ = 9 (2,2)-theory and
the ¢ = 11 right-moving current algebra of SO(6) x Fs'. A general prediction of our
framework is that all particle modesin any instantonic background of this type are classified
by an SU(6) symmetry group. This prediction is absolutely analogous to the prediction
that. in Calabi-Yan comovactifications. massless particles fall into Fs renresentations.



In chapter two we explicitly construct all the vertices of massless string excitations
on this nontrivial background, comparing the result with the corresponding Kaluza-Klein
analysis. In appendix A, the reader will find the complete list of particles, organized in
SU(6) representations. ‘

Having solved the general problem of consistence of our construction and indicated
the modification of the gauge group coming from Calabi-Yau compactification to some non
trivial N=4 background, we will examine a particular example of stringy instanton due to
Callan.These configurations were originally introduced by D’Auria and Regge [7] long time
ago and were more recently rediscovered in string theory by Callan, Harvey and Strominger
(6] and by Rey [8]. Their distinguished feature is asymptotic flatness which is an essential
feature in order to utilize the instanton in any supersymimetry breaking mechanism 3 la
Konishi et al [3]. Indeed, for the instanton to contribute to a scattering amplitude, the
asymptotic states must be the same in flat space and in the instanton background. Such
asymptotic flatness requires an unsoldering of the Lorentz-bundle from the tangent bundle
which is indeed what the axionic and dilatonic fields combined are able to realize.

In chapters 3,4 we will set the general framework and will study the technology for
N=4 supersymmetric sigma-models. We study in depth the relation between (4,4) world-
sheet supersymmetry and the self-duality (respectively antiselfduality) of the curvatures
R(wp £ T), where T is the torsion and wp, is the Riemannian connection. Spaces with this
property correspond, as we show, to a generalization of HyperKihler manifolds and have
the proper geometry to describe axionic-dilatonic instantons.

Unfortunately, the Callan et al. instanton is easily realized as a conformal field theory
only when reduce to SU(2) x R, exactly the case in which asymptotic flatness is lost.
Nevertheless, in chapter 5, we will study it as a toy model and discuss the (4,4)-moduli of
this specific model showing that they are four as for flat space. We will explicitly exhibit
the infinitesimal deformations of the metric and of the torsion, finding apparently that the
SU(2)xR instanton is a point in a 16-dimensional space. In the same way, if one counts the
deformations of the flat space R* one finds that they depend on 16 parameters. However,
although one gets the correct counting of zero-modes, from the geometrical point of view
all the deformations can be reabsorbed by diffeomorphisms (any constant metric can be
diagonalized and rescaled to unity in this way). The same does not hold true if the space
has the topology of a torus, since global diffeomorphisms must respect the foundamental
identifications. In the case of the instanton, as we will see, in general the deformations
are significative; however further study is required to decide if someone (and which one) of
the deformations can be reabsorbed by diffeomorphisms for certain values of the moduli.
The global characterization of this moduli space and the geometric interpretation of the
deformed space is therefore still an outstanding problem.

In chapter 6 we will further elucidate the structure of the Callan et al. solution by
relating it to a different background geometry via a duality transformation. Duality has
been for a long time an efficient method for obtaining new Kahler or HyperKahler manifold
from old one, and, nowadays, it has been realized that it’s also a symmetry of conformal
field theory. This is to say that dual model represents completely different geometry
corresponding to the same conformal field theory. Applying the duality transformation to
the SU(2) x R instanton we will have the surprise to obtain a Kahler geometry describing
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continuation of a black hole.



Chapter 1

Gravitational instantons
and (4,4)-superconformal theories

1.1 The basic idea

We want to investigate the possibility of constructing consistent heterotic string vacua

where the usual ¢ = (6,4) conformal field-theory (CFT) that represents four dimensional
flat space is replaced by some new ¢ = (6,6) theory describing string propagation on a
non-trivial four-dimensional geometry. For many reasons, that will become clear in the
sequel, particularly appealing are the possibilities offered by ¢ = 6 theories possessing
N = 4 world-sheet supersymmetry. We focus on these theories.
The first part of our discussion is somehow heuristic: we use, as a guideline, the analogy
of the scheme we propose with the procedure utilized to compactify string-theory on 6-
dimensional manifolds of SU(3) holonomy [9]. As it is well-known [10], from the abstract
point of view, this operation is represented as the replacement of the ¢ = (9,6) theory,
corresponding to six flat dimensions, by a (9,9)2 2 conformal theory *

Let us briefly review the process of this compactification, in order to proceed in analogy
with it also for the space-time part.

The “initial” situation is that required by critical heterotic string theory [11] in d=10,
namely the vacuum is a CFT of central charges (15,26) that can be realized as

(15,26) = (15,10) & (0, 16) (1.1)

The (15,10) theory is generated by 10 left-moving & 10 right-moving world-sheet bosons,
together with 10 left-moving fermions: it represents the heterotic o-model on flat 10-
dimensional space. The (0,16) theory is that generated by 32 right-moving fermions de-

* From now on we use the notation (cg.ci)n, . np tomecan a CFT of central charges ¢ (¢g) in the left (right
: LR g &

sector, possessing ny, ,np left (right) supersimmetries.



scribing the gauge group Gyquge degrees of freedom, namely those of the Kaé-Moody alge-
bra Ggauge. The choice of Ggquge is determined by the enforcement of modular invariance
and we consider the version of the theory where Ggauge = E§ X Eg. We consider the 10-
dimensional space to be split in a 6-dimensional internal submanifold and a 4-dimensional
space-time manifold. At the level of conformal field-theories this means:

(15,26) = (6,4) @ (9,6) ® (0,16)

The main point of the h-map construction [10] is the possibility of considering heterotic
string vacua where the above situation is modified as follows:

(15,26) = (6,4) & (9,9) @ (0, 13) (1.2)

This is commonly expressed by saying that six of the heterotic fermions have been “eaten
up” by the internal theory (which becomes left-right symmetric); the remaining thirteen
generate the current algebra of E{ x SO(10).

From the Kaluza-Klein viewpoint, one is considering a 10-dimensional manifold with the
following structure:

M10 = Ms X Mgat (13)

The “eating” of six heterotic fermions is due to the 10-dimensional axion Bianchi identity
dH = 0 which (at 1°*order) requires

and is solved by embedding the spin connection into the gauge connection. In this way the
gauge group is broken to the normalizer of the internal manifold holonomy group Hol(M;)

In the particular case of manifolds with SU(3) holonomy (Calabi-Yau manifolds), the
residual gauge group is Fg ® Eg, as it follows from the maximal subgroup embedding:

Eg x SU(3) — Ej (1.5)

Thus Kaluza-Klein analysis shows that the massless fields on M3t are organized in Eg
representations. From the abstract point of view, the case of SU(3) holonomy corresponds
to the particular case of the decomposition (1.2) in which the internal theory has (2,2)-
supersymmetries:

(15,26) = (6,4) @ (9,9)2.2 @ (0,13)

One can show [10] that the U(1) current appearing in the N = 2 algebra and the SO(10)
currents of the heterotic fermions combine, together with suitable spin fields, to yield the
current algebra of Eg, in due agreement with the maximal subgroup embedding:

SO(10) x U(1) — E; (1.6)

Hence the emission vertices of the 4-dim fields are organized in Eg-representations as it is
required by Kaluza-Klein analysis.



The question of consistency of these compactified theories and, in particular, the question
of their (1-loop) modular invariance is better addressed by looking at their construction
from a different viewpoint. Consider a modular-invariant type II superstring vacuum: for
what concernes central charges we have:

(15,15) = (6,6) & (9,9) (1.7)

the (6,6)-theory corresponding to flat 4-dim space and the (9,9)-theory describing some
non-trivial “internal” manifold. One shows that the “h-mapped” heterotic vacuum,
obtained by replacing, in the partition function of (1.7), the subpartition function of
the two right-moving transverse fermions with that of 2 4 24 fermions (generating a
Eg x SO(2 + 8) = E{ x §0(10) current algebra) is also modular invariant.

When the internal theory has N = 2 supersymmetry, the fundamental implication of
modular invariance is the projection onto odd-integer charge states with respect to the
diagonal U(1) group obtained by summing the U(1) of the N = 2 algebra with the SO(2)
generated by the transverse space-time fermions. This is just the rephrasing in the present
context of the GSO projection [10,13].

Let’s now consider an extension of the above described mechanism. We start from the
conformal field-theory describing the heterotic string compactified on a Calabi-Yau mani-
fold,

(15,26) = (6,4) & (9,9)2,2 ® (0,13)

and we let the four-dimensional theory eat four of the heterotic fermions, so that
(15,26) = (6,6) © (9,9)2,2 ® (0,11) (1.8)

The remaining heterotic fermions generate a current algebra Eg x SO(6).
From the geometrical o-model point of view, what we have done is to consider a target
space of the form

MlO :MG X M.L

where Mg is still a manifold of SU(3) holonomy but M is no longer flat space. Condition
(1.4) extends to
0=TrFAF— TI‘R(G) A R(s) - TI‘R(_;) A R(4)

which can be solved by embbeding also the holonomy group Hol(M, ) into the gauge group.
In particular consider the case where Hol(M,y) C SU(2): this happens for gravitational
instantons, whose curvature is either self-dual or antiself-dual. In this situation the gauge
group is broken to SU(6), as it follows from the maximal subgroup embedding:

SU(6) x SU(3) = SU(2) — Es (1.9)

From the abstract viewpoint, this is reproduced if the ¢ = (6,6) theory possesses a (4,4)
supersymmetry:

(15,26) = (6,6)1.1 ®(9,9)2.2 @ (0,11) (1.10)

Indeed the U(1) current of the N = 2 algebra associated with Mg, the SU(2) currents of
the N = 4 algebra associated with M, and the SO(6) currents of the heterotic fermions
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combine together with suitable spin fields to yield the SU(6)-current algebra, according to
the maximal embedding

U(1l) x SU(2) x SO(6) — SU(6) (1.11)

Thus, on this background, the emission vertices for particle-modes (both massive and mass-
less) are organized in SU(6)-representations, as it is requested by Kaluza-Klein analysis.

1.2 The i1ssue of modular invariance

As we already recalled, in the case of compactifications on Calabi-Yau manifolds, that
is by means of a (9,9); . theory, one starts from a type II modular invariant partition
function, corresponding to a CFT:

(157 15) = (67 6) > (979)

The (6, 6) part, corresponding to 4-dimensional flat space, contains the world-sheet bosons
X#, X* and the fermions ¥*,¥* and the complete partition function has the structure:

2= T2, 208 (5) 80 () g

where

i) Z(X*, X*) is the usual partition function for the four free bosons,

ii) Bz(*) are the SO(4)-characters in which we can organize the partition function for the
four free fermions ¥#, 1* ( the index 7 taking the values 0,v,s, 5 , for the scalar, vector
and spinor conjugacy class, respectively),

iii) BE ~2) are the partition functions for the superghosts,

iv) Zlg’z’g) is the partition function for the internal theory which couples to reps (7,%) of
the space-time SO(4) and of the superghosts.

The reason why we have denoted as Blg-z) the superghost partition function becomes
clear from the following considerations. If the superghosts have boundary conditions [Z],

([Z] = [8] , m, {3], [ﬂ) their partition function can be computed to be[12]:

sol@l oy nm) 1
z M”) Tl 2[R (1-13)

which is exactly the reciprocal of the partition function for two free fermions with spin-
structure [(g] *

* This reciprocity holds only at genus g=1. For higher genera it is amended by a phasc factor that amounts
to a correct assignment of spin statistics[12]. In all known constructions if one fixes 1-loop modular invariance
plus spin statistics, higher loop modular invariance is also ensured. We assume that this will go through also in

our construction.



Since the superghosts are forced by world-sheet supersymmetry to have the same spin-
structure as the space-time fermions, dealing with the theory described by eq.(1.12) one
can use the cancellation of the superghost partition function with the partition function
for two fermions. Instead of (1.12) one can simply write

Zior = Z 280 z(x", X*) B (B(2>) (1.14)

that is, one considers only the transverse fermions.

The h-map construction of the associated heterotic theory is based on an isomorphism
between the SO(2n)-characters and those of SO(2n +24) or Ej x SO(2n +8). It works as
follows. The action of the modular transformations S and T on the characters of S O(2n)
in the basis labeled by 0,v,s,5 is given by

B(zn) T(zn)B(zn)

B(zn) S(zn)B(zn) (115)
where L
T(En) — diag(l’1,ezn‘¢,ezn§~)e-—znﬁ
1 1 1 1
gom _ [1 1 -1 -1 (1.16)
- 1 -1 el —elhT
1 —1 —e'iz  einT
The isomorphism is realized by
T(2n) — ]VIT(Zn+24) M
(1.17)

S(Zn) M S(2n+24:)M

where the idempotent matrix M is given by:

0 1
1 0

0

0

-1 0
0 -1

M =

It interchanges the scalar and the vector characters, besides flipping the sign of the spinor
and antispinor characters. The characters of E{ x SO(2m) transform as those of SO(2m -+
16), so that the isomorphism permits also to reach these groups.
Due to (1.17), if one replaces the two right-moving transverse ¥# fermions with 26 heterotic
fermions that generate the gauge group Ej x SO(10), by taking proper account of the
matrix M, the resulting theory has a modular invariant partition function.

In eq.(1.12) we made no explicite use of the cancellation between superghosts and
longitudinal fermions for the following reason. We wanted to enphasize the possibility of
constructing, out of the Z°%9 [‘g] and by means of combinations analogous to those used

8



for the free fermions, new characters labeled by an index i = 0,v,s,3, whose modular
transformations are very similar to those in eq.(1.186).
Indeed, in analogy with the characters of 2n fermions let the superghost characters be:

_ 1 1 1 1
B( 2) — — — B‘l(J_Z) — —
’ z[))  z[]] zl)  2[]]
(1.18)
B-2) _ 1 n 1 ) Bg_z) _ 1 _ 1
zl,)  z[ zl,)  z[]]

Eq.(1.18) is obtained from the definition of the Bgzn) characters [10,13] by the replacement
z[hr —1/z 4], Using the modular transformations of the Z[$](7), already utilized
to obtain eq.(1.16) , we find :

-2 T -2 -2 —2 S -2 -2
B L 1P pY 2, 5o pl=2) (1.19)
where - cx o m
T2 = diag(1,1,e ', e i )e' T2
1 1 1 1
wo_[1 1 1 -1 (1.20)
1 —1 eifs  —e itz
1 -1 —e”ilz  e~inz

Formally, these matrices are obtained from those in eq.(1.16) by setting 2n = —2, which
explains the chosen notation. Moreover it is manifest that we can use the h-map isomor-
phism to substitute the characters of the superghosts with those of 22 heterotic fermions
with gauge group Ey x SO(—2 + 8) = E} x SO(6).

Consider now a modular invariant type II vacuum in which the ¢ = (6,6) part repre-
sents a four-dimensional space with non trivial geometry. The partition function of such a
theory is

Do = > 239 780 B2 (B§‘2)) (1.21a)

Zi(i’G) being the partition function for the (6,6) theory which couples to the characters
(i,’i) of the superghosts.

Although the §0O(4) characters have disappeared from the game, we can still perform the
h-map construction of an associated modular invariant heterotic theory. The result is just
of the form (1.8). If, in addition we choose a space-time with SU(2) holonomy, the result
is of the form (1.10). After h-map the partition function (1.21a) becomes

o= Y, 207 250 B (BIFOOD) (1.210)

1.1



Chapter 2

Zero modes

and vertex operators

The next step in the analysis of the heterotic theory (1.21b) is the construction of
the corresponding vertex operators. This construction summarizes many aspects of the
theory under discussion. Furthermore physical amplitudes are expressed in terms of the
vertex correlators, so that knowledge of the vertices is an essential ingredient to extract
any physical information.

In the construction of the relevant vertices we proceed in analogy with what one does
for the internal dimensions. We relate the counting and the group-theoretical indexing of
the possible conformal operators that possess the correct dimensions and charges to the
counting of zero-modes for the fields appearing in the low-energy effective supergravity,
when this latter is expanded around the particular background, abstractly described by the
CFT under investigation. The procedure is like a Kaluza-Klein compactification to zero
dimensions. On the other hand, in order to gain a more intuitive comprehension of the role
of the operators appearing in the (6,6)s 4 theory, it is instructive to compare the vertices
with those of flat space. To this purpose it is useful to recall that flat four-dimensional
space possesses an [N =4 world-sheet supersymmetry. Hence we can recast the operators
appearing in the vertices in a form suitable of generalization to any (6,6)y.;. As pointed
out, in what follows we try to estabilish a general procedure; yet we choose to illustrate
it in terms of an example, namely using the K3 manifold. The convenience of this choice
is manifest. Indeed we want to proceed in analogy with Calabi-Yau compactifications and
K3 is the unique non-trivial compact Calabi-Yau space in four dimensions. This makes the
analogy closer. Furthermore compactification on K 3-surfaces has been extensively studied
in the past [14] and it is known to be represented by a (6,6)s4 theory, which in some
points of moduli space is even solvable, being given by a tensor product of N = 2 minimal
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models. The knowledge of K3 cohomology, described by the Hodge diamond
120 1 (2.2)

makes the counting of the zero-modes easy yielding non-trivial results that can be compared
with the CFT counting of vertices.

On the contrary, for physical reasons, K3 is not the most appealing possibility. It is
a gravitational instanton, but it is compact. Our goal is to extend the same techniques to
four-dimensional instantons of the effective lagrangian that are asymptotically flat (this
last feature seems to be realizable only with torsion[7]). An instantonic solution with
the desired properties has appeared frequently in the recent literature [6,8], and in later
sections we focus on it. Unfortunately an exact and solvable N=4 SCFT corresponding
to this solution is known only in a particular limit in which the asymptotic flatness is
lost. However the theory remains interesting in its own right as a case study. We may
also stress that one of the results of the present thesis is the explicit deformation of this
solution by means of its moduli that we discuss later on. In this way we are able to extend
the particular background of [6] to a class of solutions depending on certain parameters
whose geometrical interpretation is still an open problem.

2.1 The vertex operators

In order to analyse the vertex-operators for the zero-modes we need the field content

of the effective four-dimensional theory, which is a matter-coupled D=4,N=1 supergravity
arising from compactification on the internal Calabi-Yau manifold. This field content is
described in the next section.
We begin with the Eg charged fields given by the gauge multiplet (gauge bosons and
gauginos, transforming in the 78 representation ), by h?! WZ multiplets transforming in
the 27 and A'! transforming in the 27-representation (these Hodge numbers being those
of the compactified CY space). We consider the zero-modes of these fields in the classical
background provided by a K3 manifold. As already enphasized, we embed the space-time
spin connection into the gauge connection, breaking the gauge group as follows:

E; — SU(6) x SU(2) (2.3)

To investigate the zero-modes we must take into account the branching of the representa-
tions of E; under (2.3).
The adjoint representation is decomposed as

78 = (35,1) + (1,3) +(20,2) (2.4)

Consider the gaugino field. Its index in the adjoint of Es is split accordingly to eq.(2.4);
it also has a spinorial index on K3. Thus the possible cases are :
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« A\ A4 being an index in the adjoint (35) of SU(6), a being the spinorial index. The
zero-modes are in correspondence with the Dolbeaut cohomology H'?. Since the chirality
is given by (—1)7, looking at the Hodge diamond (2.3) we see that there are two zero-modes
both of the same chirality.

« XY X in the adjoint of the SU(2) holonomy group of K3. The zero-modes should be
related to the cohomology groups H"?(EndT’) of Endomorphism-(of the tangent bundle)-
valued antiholomorphic forms. By the explicit realization of K3 as an algebraic surface
one can evaluate the dimension of this cohomology group, case by case.

o A%" a belongs to the 20 of Eg; ¢ in the 2 of SU(2) is the same as a contravariant holo-
morphic index which can be lowered by means of the holomorphic (2,0) form. Because of
the spinorial index, the zero-modes correspond to (1, g) harmonic forms. We can therefore
have just h'''= 20 zero-modes with the opposite chirality with respect to those in the
adjoint of SU(6)

Consider then the gauge bosons. According to the decomposition (2.3) we have:

o A:’ p can be a holomorphic or antiholomorphic index. Since, due to the vanishing of
h' and h%?! the holomorphic SU(6) bundle is trivial, there is no zero-mode of this kind.

o AyY Zero-modes are related to the Dolbeaut cohomology H(EndT).

o A" Again, ¢ behaves as a holomorphic index that can be lowered by the holomorphic
(2,0) form or by the metric according to the necessity to obtain again an antisymmetric
form. Then the zero-modes can be set in corrispondence with (1,1) forms, for both the
type of p. We have thus 2 h''! = 40 zero-modes of this kind.

The 27 of Eg is decomposed as
27 = (15,1) + (6,2) (2.5)

Consider the fermion field belonging to any of the WZ multiplets that transform in the 27
representation (these are the charged fields paired to the complex structure deformations
of the Calabi-Yau manifold). The decomposition (2.5) gives rise to the following cases:

« X' A belonging to the 15 of SU(6), @ the spinorial index. Zero-modes correspond to
the Dolbeaut cohomology H"? so there are two zero-modes of the same chirality

o Xw¥ aisin the 6 of SU(6); z in the 2 of SU(2) is like a holomorphic index; once lowered

(8]

by the (2,0) form the zero-modes are put into correspondence with H''¢ so that there are
h!! = 20 modes, of opposite chirality with respect to the previous ones.

The possibilities for the scalars of these 27 families are:
. -+ for which there is just A"" = 1 zero mode.

0,1

« " Lowering the index, the correspondence is with H”! and so no zero-modes exist
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The 27 of Eg decomposes as
27 = (15,1) + (6,2) (2.6)

For the 27-spinors we have, analogously to the 27-ones, two zero-modes in the 15 and
twenty in the 6, of opposite chiralities; for the 27-scalars, one mode in the 15.

Consider now the fields of the gravitational multiplet

To look for the zero-modes of the graviton field, i.e. of the metric, means to look for the
solutions of the Lichnerowitz equation on K3, which are known to be 58. This numberis of
course determined by the cohomology of K3, and to this purpose a discussion is necessary,
about the separated counting of the metric and torsion zero-modes. It goes as follows.
From the K3 Hodge diamond (2.2) we know that h*" =1 and ' = 20. Let Q;; be the
(2,0)-holomorphic form and let g;j» be the fiducial Ricci flat Kahler metric (z,7 = 1,2)
that, for each Kahler class, is guaranteed to exist by the Calabi-Yau condition ¢i(K3) = 0.

Furthermore let Ui(ﬁ,) be a basis for the (1,1)-forms (a = 0,1.....,19). A variation of the
reference metric which keeps it Ricci-flat is given by:

59ij
Guv > GJuv + 59;1.1/ ; 5guu = 591']'* (27)
6gi*j*

where 6g;;, 6gij» and §g;~;j» are harmonic tensors of the type specified by their indeces.
Hence we can immediately write:

59'5]'* = Cq U(a) (28)

1j*

where ¢, are 20 real coefficients. They parametrize the deformations of the Kahler class.
On the other hand, using the holomorphic 2-form, any harmonic tensor with two antiholo-
morphic indeces ¢;+j» can be written as the following linear combination:
1 &

t'* jx = —Cl* T Qi* U]?* (2.9)

Y RRIIE ’
where raising and lowering of the indeces is performed by means of the fiducial metric
and where d* are constant complex coefficients. Since h?? = 1 it follows that, of the 20
independent linear combinations appearing in (2.9), only one leads to an antisymmetric
t;xj=; all the other combinations produce a symmetric tensor #;+j~. Hence we can choose a
basis of the (1,1)-harmonic forms such that:

J— a
— W Qi* U;:J* p— Si*j" - quviy (CL f— 1, ..... ,19) (211)
The 19 symmetric tensors S7. . provide a basis for the expansion of the antiholomorphic

part of the metric deformation
5gi*j* = da S?xj* (2.12)
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The holomorphic part just is the complex conjugate and it is expanded along the complex
conjugate basis S7; : 8g;; = do 7. The 19 complex coeflicients d, parametrize the
complex structure deformations of the K3 manifold. Summarizing the 58 zero-modes of
the metric emerge from the following counting:

# metric zero — modes = A" + 2 (AMT - 1) (2.13)

This formula is just a consequence of h*Y =1 and it has a meaning also for non-compact
manifolds, like the instanton we consider later in this paper, as a counting of local de-
formatlons For global deformations one has still to check if they can be reabsorbed by
diffeomorphisms.

In string-theory, the metric is not the only background field. We have also the antisym-
metric axion B,,, whose curl Hy,, is identified with the torsion T),,, as we are going
to see while discussing the o-model formulation (see section 4). The zero-modes of the
field B, are counted in a similar way to the case of the metric. From the linearized field
equation around the reference background, one concludes that 6B;j, 6 Bix j« and § B;j- must
be harmonic tensors. Because of the different symmetry of the indices, thls time we have:

5Bij = AQ,jj (2.14)

§Bije = ba Ufh (2.15)

where 4 is a complex parameter and b, are real parameters. Hence we have 22 axion
zero-modes that emerge from the following counting:

# axion zero — modes = A% + 2 N (2.16)

Altogether there are 58 @ 22 = 80 = 4h"! zero modes of the field g,,, + tB,,. In the next
subsection we see that this counting agrees with the counting of N=4 preserving marginal
operators in a (6,6)4 4-theory.

The gravitino zero-modes are the zero-modes of the Rarita-Schwinger operator. Uti-
lizing the standard trick of writing spinors as differential forms we can relate the number
of these modes to the dimensions of the cohomology groups. Let

{I'i, T} =0 ; {Iw,I[j=} =0

{I'i, Tj-} =2 gij- (2.17)

be the Clifford algebra written in a Vxell«adapted basis. A spin 3 2 field ¢, can be written

as follows: ‘ .
Y = (wil + w7 + wijep- TV ) ¢ >

Yir = (wil + w7+ wie e TR ¢ > (2.18)
where the spinor | ( > satisfies the condition:
S| ¢>=T¢>=0 (2.19)
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The field 1, is a zero mode if the coefficients w___ in (2.18) are harmonic tensors. Hence
from w; and w;« we get h''? and h"?! zero-modes respectively. From w;j» and wi«;» we
obtain h''! + h'! zero-modes. Finally 2 h'? zero-modes arise from w;js g« and wicjxj=.
In view of the symmetries of the Hodge diamond the total number of zero-modes for the
gravitino field is given by the formula

# gravitino zero — modes = 2 ' + 4 AP 2.20
g

In the case of K5 the above number is 40.

Finally, for the Es neutral WZ multiplets, the fermion has two zero-modes of the same
chirality (in correspondence with H":?), while the scalar has just the (trivial) zero-mode
corresponding to H%Y.

2.2 The (6,6),, theory and the moduli operators

A fundamental role is played by those fields of the N=4 theory that can be identified
with the abstract (1,1)-forms of the associated manifold [13,sec.VI.10]. The N=4 algebra
contains the stress-energy tensor , four supercurrents and three currents A* that close an
SU(2)1 algebra. In a (4,4)-theory there is a realization of these operators both in the
left and in the right sector. The fields of the theory are organized in representations of

SU(2)L ® SU(2)r. We denote by @ [’}"i}]m’m a primary conformal field with left and right

dimensions h, k and isospins J, J, and with third components m, .
Consider for example the left sector. The SU(2);can be bosonized in terms of a single free
boson 7(z):

1

V2

The spectral flow of the N = 2 theories is extended to a “multiplets of spectral flows”:

A® = —07 ; A = FiVIT (2.21)

" C (hm?
<I>H = ¢imv2r g(h=m) (2.22)

where $(*=™") is a singlet of SU(2) of conformal weight A — m?.

For example a doublet of SU(2) ,¥ Hﬁ] , made of an N = 2 chiral and an antichiral field of
weight 1/2, (note that the charge respect to the U(1) of the N = 2 contained in the N=4
is twice the third component of the isospin) in the NS sector is related by the spectral flow

(2.22) to an SU(2) singlet in the R sector:

@Eg £ eii:ﬁ@[lﬁ (2.23)

We use the convention of giving the same name to fields related by spectral flow, dist-
inghuishing them when necessary by their weight and isospin.
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As explained in [13], the N=4 analogues of the (c,c) and (c,a) fields of weight (,1),
which play the role of “abstract” (1,1)- and (2,1)-forms in the (9,9),» theory, is given by
those primary fields of the (6,6)s 4 CFT that are of the form

L

PRI
\11_4L
2

?

} (2.24)

KNl— -

and correspond to the lowest components in a short representation of the N=4 algebra. In
(2.24) the index A runs on A™?! values. Focusing on the left sector a short representation
is made of the following set of fields

‘I’EZJ ), ‘I’m (=) H[(ﬂ(z)

satisfying the OPEs

e“b@('w)

G (2)¥’(w) = —— treg.

?a(z)@b(w) = %ﬁ%(_ww_) + reg.

G*(2)®(w) = G (2)II(w) =0 (2.25)
Ga(z)@(w) = 2¢4%9 <‘f—_(—u:u)-) + reg.

b
G*(2)I(w) = —26°9 <M> + reg.
z—w

where ga(z),?’(z), a=1,2 denote the supercurrents organized in two SU(2) doublets. The
fields ® and II have dimension 1 and, being the last components of an N=4 representation
(see the last two of the OPEs (2.25)), when added (in suitable combinations of the left
and right sectors) to the Lagrangian they don’t break its N=4 invariance. We call them
the “N=4 moduli”.
As already hinted, the fields \I’A[
described by the (6,6), 4 -theory.

As a first example of (6,6)4 4 theory let’s briefly consider that associated with flat

space. The N=4 algebra (as an illustration we consider the left moving sector) is realized
by the stress-energy tensor

} represent the abstract (1,1)-forms on the manifold

W= Nl
LS EENIE

l
1

T(z) = _%a;wam ot By (2.26)

by the supercurrents

G'(z) = V2" HX

G*(z) =2 (j”%b)# 5x# (2.27)
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and by the SU(2) currents
, T R
Alz) = —gutTh Y =i + S ity (2.28)

The three tensors J v are constant complex structures and satisfy the quaternionic algebra;
the role of their generalizations to any N=4 theory will be discussed at length in section
5. For the moment it suffices to know that they can be explicitely constructed, so that
from their expression (implicitely exhibited in eq.(2.28)) we get

G' = V2 {4°0X! — y*0X? +¢20X® — ¢ '6X"}
G2 — \/é{¢38X1 +‘¢0(9X2 -1/)18)(3 _¢2ax0}
G3 — ﬁ{—¢28X1 +'1,[71(9X2 +¢08X3 “¢38XU}

In the left sector we can find two short representations , given by

1/2 Uy g3 1 . 1 .
0, [1;2] = <$2 1:$1> ; Py [0} = —0X?%—40X' ; I, [0} =—-0X" —-40X?3

/2] [ 4% —iy? _ 1 . 1 s a
\IJZ {1/2:! - (_(,l/)U . Z¢3)> ) @2 [OJ = BX 1,(9X3 N H2 t:ojl = BX + 'LB]&
(2.29)

Two analogous ones exist in the right sector. Multiplying them in all possible ways we

obtain four abstract (1,1)-forms ¥ 4 1/2,1/21 " For instance we can set:
1/2,1/2

fi 1] (1] S
‘I’l i’i (Z,f) - ‘Pl ; (Z) \Pl : (2)
L2772 L2 ] L2z
f1 1] 17 [1]
o | 272 (2,2) = Uil (2) T2| 2| (2)
L2y 2] L2 L2
L, e SR (2.30)
@3 :,i (Z,Z) = lI,2 f (z) ‘I’l f (2)
(352 L7 ] Lz ]
ERE (1] (1]
Uyl 0 (2,2) = U 7| (2) B2 | 7] (2)
L7 2 L7 ] 7]
This number of N = 4-moduli agrees with the Hodge diamond of flat space *
1
2 2
1 4 1 (2.31)
2 2
1

* e refer by this to the Hodge diamond of the flat space compactified to a torus.
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According to (2.31) we have also fwo holomorphic 1-forms and two antiholomorphic ones.
Lo 1

At the level of CFT they are represented by operators of the form U 4 [1’3] and 7%, [0’2],
2 b

0.4
respectively. The index A(A*) runs on 2=h"" ( k"' ) values. The explicit expression of

the two (0,1)-forms can be taken to be
0
- 1[0}(”%{ }( |
(2.32)

] - oom ]

The two (1,0)-forms have an analogous expression with the role of the left and right-moving
sectors interchanged.

Another interesting point is the identification of the spin fields with the spectral flows
of the identity operator and of the lowest component of the short representations (2.30).
This is a very important point because the spin fields appear in the fermion emission
vertices. If we are able to recast these vertices in an abstract (6, 6)4 4 language the extension
from flat space to an instanton background is guaranteed. The gravitino emission vertex,
for instance, that includes the proper gravitino and dilatino vertices, in flat space has the
following expression [13, page 2063]:

ny
~—

| E—

wy
~—t

[CTFSPRE N RS TS 1 [
N N N

—_—
|

Ve (kyz,2) = o797 5, (2)8X (5)e ¥ (571 (3’3{?2 8) (2.33)
N b 6%9(s) ai( NAT sk N(5E) [ 3/8 0
Vou (ky2,2) = 2?17 5% (2)0X(Z)e 1(3/2 0 (2.34)

the two formulae referring to the two possible chiralities. The last operator in the above
formuleis a spectral flow of the identity in the internal theory. In order to convert these
expressions to an abstract N=4 notation we need the interpretation of the operators S, (z)
0X(z) e*¥(53) and §¢(2) 8X(z) e*¥(=),

To this effect we note that 15“(2) = 0 X*(2,Z%) is expressed by linear combinations of the
operators II; [3], I, m, 3, [(1)] and @, [3], the right-sector counterparts of those appearing
in (2.30). It remains to consider the spin fields. The four free fermions can be bosonized
in terms of two free bosons as

YU £ ip® = T e
2otk i (2.35)
v = +cT e

where the signs and the cocycle factor(c* = e¥”1‘1) are arranged to reproduce the anticom-
mutation properties of the fermions. The SU(2) currents of eq.(2.28) can be reexpressed
via eq.(2.35). In particular

AT = 4T eEiF2TFivn
However, we can rephrase all the algebra in terms of the vertex operators eti*i eFi¥z
eliminating the need of preserving anticommutation relations (these operators anticommute
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with themselves and commute with each other). Then the SU(2) currents are simply given
by

A’ = %(5802 ~ 0p1)

(2.36)

AT = oTiv2 Fivn

Comparison with the standard bosonized form (2.21) is immediate. We get:
1
T= “ﬁ(‘#z — 1)

so that the spectral flow of eq.(2.22) is rewritten as

o m " L einlor=en) glh-m?) (2.37)
J

The fields ¥y, ¥, of eq.(2.30), as doublets with respect to the currents (2.36) are given by

elP2 e Pl
Uy = (ei'*“) ; Uy = (e‘i"”-') (2.38)

We can single out the spectral flow and find their Ramond partners:

1/2 eiv? L(o2—e1) i ; 1/4
\?1[ / } - (eim> - (ee““%(¢2”¢1)> e2(vrten) — spectral flow '\Plli / ]

1/2 0
1/2 e iv1 e%(sﬂ'z—s—cl) i (oter) 1/4

Therefore we see that these R fields are just the two spin fields of positive chirality. Indeed,
once the fermions have been bosonized as in eq.(2.35), the spin fields, corresponding to
the weights of the SO(4) spinor (s) and antispinor (5) representations, are expressed as
follows )

+ chirality (srep): S =ezv2ti¥

G2 — ¢—3¥2—3 %1

. . . (2.39)
—chirality (5rep): S’ = e2¥27 7%t

Sé — 6—7‘”:2—*—%,’91

Finally note that the spin fields of negative chirality form a doublet under the SU(2)1 and
are related through spectral flow to the identity operator:

51 1/4 B e%-('\rc?_i:l) _ 10
<52> [1/2} = (e_%(w_;l) = spectral flow -1 0 (2.40)

Comparing these results with equations (2.33,34) we see that, in flat space, the 8 gravitino
zero-modes of positive chirality are given by the left spectral flow of the abstract (1,1)-
forms (2.30), while the 8 zero-modes of negative chirality are given by the left spectral flow
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of the (0,1)-forms (2.32). In both cases, the right-moving part of the operator is SUSY-
transformed to the last multiplet-components. This is in perfect agreement with formula
(2.20) and with the Hodge diamond of flat space (2.31). In the case of the Kj-manifold

only the positive chirality zero-modes are present, since the analogues of the (0,1)-forms
(2.32) do not exist (A*Y = 0).

This general discussion suffices to illustrate the idea of the generalized h-map and of
the use of (6,6)y . theories as a description of gravitational instantons backgrounds. In
Appendix A we give an exhaustive list of the emission vertices for for all particle zero-modes
in a generic (6,6)4 4 case.
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Chapter 3

Rheonomic description
of (1,1) sigma-models

We turn now to the main part of this thesis: a specific example of stringy instanton on
which to test the above general framework. A natural candidate is the following solution
[6,7] of the beta-functions equation for the effective string theory:

ds® = e“”’(alac)2

2k

e 2t = 4+ 5
”

1
® = Hype = ‘é eabcdad@

In any case, although a solution to order O(a’) of the equations of motion is not usually
an all order solution, the N=4 SUSY garanteers the all order exactness of the solution.

In this chapter and the next we will set the general language for supersymmetric
sigma-models.

3.1 The Bosonic ~~model

In corrispondence with a solution of the equations of motion derived from the effective
bosonic lagrangian:

Lejf=e Y (R-4D,2D"® + ...)

that contains the metric G, (i.e. equivalently the vielbeins V*), the three form H and the
dilaton ®, we write the action for the correspondent bosonic o-model utilizing a geometric
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first order formalism:

L[ vemiet —mtem)+HENtetes — 20R® 4+ p, T +p T+
4T Jom (3.1)

. .
+— [ Huvevive

4 J

Once rewritten in the 2"%order formalism, this action takes more familiar form
-1 _ =
5= / dzdz [G, (X)0X*8X" + B, (X)0X"5X"| (3.2)
™ Jom

where ds? = G, dX* ® dX” = V* ® V* is the target space line element and the antisym-
metric tensor B, is such that H = 2dB.

Note that when the action is written as in eq.(3.2) it keeps no tracks of the dilaton which
- contributes only to the classical stress-energy tensor of the model. This contribution is
obtained in a simple way in the 1°*order formulation. In a similar way, when we consider
the supersymmetric extensions of the above model, the contributions of the dilaton to the
supercurrents are also easily retrieved from the 1°*order formulation.

Let’s briefly explain the somewhat unusual notations and the meaning of the quantities
appearing in eq.(3.1)[13,23]. In particular e’ and e~ are the vielbein on the world-sheet
OM, whose geometry is described by the structure equations

det —w@et =77
de” +wPe™ =T~ (3.3)
dw® = p2)

w®) T+ R() are the two-dimensional spin connection, torsion and curvature respectively.
Classical conformal invariance of the model allows the choice of the “special conformal
gauge”:

et =dz ; e” =dz ; w® =R® = (3.4)

0 znd

where z=2z" + 2! and Z=2z" — 2. This is the choice we have used to obtain the order
form of the action (2). More specifically “after variation” we can use eq.(3.4). II%,p+ are
“l*torder fields”: they can be reexpressed in terms of the usual dynamical flelds upon use

of the equations obtained by varying in Hft,pi,w(z).

Varying in II% L=V
Varying in w'?) ©  pi = F20.9 = 20,0V} (3.5)

Varyinginpy: Iy =7_=0

In the present formalism, the general recipe to obtain the components of the stress-energy
tensor is to vary the action with respect to the w.s. vielbiein, defining

_ 1 + -
65 = — /T+5e + T e (3.6)
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and to consider the expansion 7, = T4 re™ + 7T, _e~ (and the analogous one for 7_). The
conformal invariance of the model implies that 7.~ = 7_; = 0 and one defines the usual
holomorphic and antiholomorphic part of the stress-energy tensor to be

T(z)=Ter 3 T(2)=T_ (3.7)

For the model described by the action (4,1) varying, for example, in e, we obtain:

55 = ;. (%) /(V“Hi _TI%TI% e )bt + pydéet
iy

Substituting eqs.(3.5), we obtain:

T(Z) = T++ = -—%VZEV: — 6‘8@ (38)

In view of our specific interest in the instanton configuration of eq.(3.28), let us con-
sider the above o-model in the case where d=4 and the metric, dilaton and axion fields
are chosen as follows:

ds? = e7?%(dz)? Ve =eTen
-2 2k A T (3'9)

g ® =1lo
o2 g\/2k

e

1
@ - Habc = geabcdadQ

The above eq.s correspond to the limit 4 = 0 of (3.28). In this limit the manifold has the
curious and somewhat unwanted topology of R ® SU(2), which is not asymptotically flat.
Asymptotic flatness is instead ensured when A is non vanishing. Yet as we are going to
see at A = 0 the corresponding o-model defines a solvable conformal and superconformal
field-theory. Hence this limit is quite worth to be considered. In (3.9) {e®} is a set of
vielbein for the flat 4-dimensional space, 7 being a radial coordinate and the remaining 3
coordinates being the coordinates of a 3-sphere. Indeed we choose to write the flat metric
as follows

7‘2 . .

dz? = dr® + EQZ ® Q°

where Q' are the Maurer-Cartan forms of SU(2) which satisfy the equations
, RILE
ol = ——= 0/ 0
V2
so that %Qi ® Q' is the metric on the three-sphere of unit radius. The metric of the
configuration (3.9) becomes
2

d . .
ds? = 219;7;— LEQ e O (3.10)
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Redefining the radial coordinate as follows: ¢ = v/2klog (r/v/2k) we obtain:
ds? =dt* + kQ' @ QF (3.11)

(showing that the singularity in (3.10) is a coordinate artifact), while the dilaton is linear
in the coordinate ¢:

t
¢ =— 3.12
5T (3.12)
In correspondence with eq.(3.11) we choose the vielbeins as follows:
VY =dt (3.13)
dVi = —VEQ! '

The only non-zero components of H in the Maurer-Cartan basis { '} turn out to be

1 02 ke
ik = =€k (—VE)P} — = —— & )
Hijr = 5 eiji (—VE)' oo = =3 % (3.13)

(note that, with our choice of Maurer-Cartan forms , \/ieijk are just the structure con-
stants of SU(2) ).

The o-model action corrisponding to the configuration we have described is § = S;+ Swzw
where

2
Sy = — dt (Miet — Hoe )+ O M _ete — \/th(z) +p T T +p T~
4T Jom k
S\VZ\V = -—]; —\/Eﬂi(ﬂi e"' - Hz 6——) + Hi Hi 6+6_ — l-ﬁ f—ﬂﬂz Qj Qk
47 Joaq * B A 34m Jaq V2
(3.14)
Once rewritten in 2"¢order formalism, these two actions take the simpler form
Se=" | dzdz 016t
T Jom
k S T U (3.15)
Swzw = — dzdz 'L Q' _ — —— A VR PERY)
WZW dn o zZaz + 3 4 “ 5

Swzw is the correct expression for the action of the WZW model realized at level &, and
corresponds to a CFT of central charge

3k
CWZW = (3.16)

The field ¢ = —it is a free scalar boson with background charge Q) = —z\/% Indeed from

the action (3.14), using the general recipe provided by eq. (3.8), we obtain the following
stress-energy tensor:

Ty(z) = ——;—(61‘,)2 - %a‘m (3.17)
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which corresponds to a central charge

ce=1+ (3.18)

6

k

This follows from the general formula
c=1-3Q% (3.19)

substituting, the value of the background charge.

As one sees the o-model on the configuration (3.9) is exactly conformal invariant at
the quantum level and leads to a solvable conformal field theory: namely a tensor product
of a Feigin-Fuchs model with a WZW-model (see ref.s [24,25,26] ). This is the reason why
we are particularly interested in this specific instanton that provides a good toy-model.

Actually, in order to discuss superstring theory, we rather need the supersymmetric
version of the just described o-model . Strictly speaking, heterotic string theory would
require a (1,0) supersymmetrization; however, in view of the hA-map, we can go one step
beyond and consider the case of (1,1) local supersymmetry. Therefore we recall now some
essential features of the geometrical formulation of (1,1) supersymmetric o-model [15] and
we include dilaton contributions.

3.2 The (1,1) locally supersymmetric --model

One realizes a classical superconformal invariant theory in terms of fields living on a
super-world-sheet with two fermionic coordinates # and 8 besides the two bosonic ones z
and z. The cotangent basis on the super world-sheet(the “supervielbein”) is given by the
already introduced 1-forms e, e™ and two bidimensional gravitinos (, x.

The structure equations (3.3) are enlarged by the appearence of two fermionic torsion
2-forms:
T° =d¢ — -1—w(2)§
?1 (3.20)
T° =dx + EW(Z)X
The “curvatures” TF,T~,T°,T°, R®®) must satisfy the Bianchi identities obtained by
exterior differentiation of egs.(3.3) and (3.20). This imposes a certain form for their
parametrization, whose most relevant part is:

T = 2¢¢

Z. (3.21)
T~ = —2

ZXX

The superconformal invariance of this construction allows for the choice of a “special
superconformal gauge” where ‘

e+:dz+%€d6 o e‘:dz+%§d9
(=4df ; x = df

(3.22)
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This is the choice we always use in 2"?order formalism (see discussion after eq.(3.4)).

We describe superstring propagation on an arbitrary target manifold M,rge; by means
of an embedding function X*(z,%,6,8) mapping the super world-sheet into Marger. We
consider the quantities defining the geometry of M arget, such as its vielbeins and spin-
connection, as superfield on the super world-sheet, and thus they can be expanded on the
cotangent basis of this latter. In particular we set

Ve =Viet + V% + A% +p'x | (3.23)

Also the torsion and curvature 2-forms of Marge; can be expanded in the various “sectors”
on the super world-sheet. For example, the torsion, defined by:

aVe + 0¥Vl =T = T*VPVe (3.24a)

yields
(3.24b)

...................

(relations that we are always free to use because they are just the “pull-back” of the original
definitions).

The key point are the Bianchi identities of M arge¢ Which become differential equations
for V* as a super-wordlsheet function; that is, they determine the eqs. of motion for
Vi, ve, A%, u® [15]. The B.IL for the torsion of Miarger is VI = ViVe = R*V? or,
explicitly : :

V2VE = RV (3.25.a)
Vye = ReV? (3.25.)
VAT = R\ (3.25.¢)
V2u® = R**pb (3.25.d)

Each of these equations can be analized in its various sectors. In particular the A® field
equation, setting V,A% = 0, constraint compatible with the Bianchi identity:

—%V-X’ = —R* \bpopd (3.26a)
is retrieved in the xx sector of eq.(3.25.c) and the p” field equation
(Vap 42TV = R phaex (3.265)

is retrieved in the (( sector of eq.(3.25d). Bianchi identities for the curvature R’ do not
give any new information.

Next one tries to write down an action defined on super world-sheet from which
both the definitions (3.24) and the field equations follow as variational equations. To this
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purpose one starts writing down the most general geometrical action defined on the super
world-sheet which respects invariance under Weyl rescalings and two-dimensional Lorentz
transformations, with undetermined coefficients; these latter are fixed by comparing the
variational equations with parametrizations (3.24) and field equations.

It turns out that the projections of the variational equations in A% and §u® is sufficient
to fix all the coeflicients. The super world-sheet action takes then the form

1 _
S = ———/ (V* =X —px) (MG et —M%e”) + T4 eTe +2iA* V A%+
471" oM
4 .
+ 2 e/f‘e_ + AV = p" Vi — A" uCx + giTabc/\aAbz\LCe+—
(3.27)
%- a, b, c - ab,c, d_+ -—
— 31Tabc,u, pptxe” +4ARgpeg AN A ppteTe” +
1
—26R® +p T +p T +p,T° + pT° + — / H
471' M

The variation in 6X*#, restricted to the sectors ((, xx, where it really corresponds to a
supersymmetry variation, fixes

Tabc - _3Habc (328)

justifying our assumption that Ty, is completely antisymmetric in its indices.

The action (3.26) is a geometrical one on the super world-sheet, and is therefore invariant
against super-world-sheet diffeomorphisms. Its expression is however uniquely determined
by its “bosonic” section ( = x = 0, due to the fact that the components of the curvatures
along the “fermionic” directions are expressed by egs.(3.24) in terms of those along the
“bosonic” (or “inner”) ones. This property is called “rheonomy”. One can forget, if he
wants to, about the super world-sheet and then the would-be diffeomorphisms in fermionic
directions appear as supersymmetry transformations. For ( = x = 0 the action reduces to

1 —
S = __/ Vo(ILet —M%e™) + MATM% e e + 200" T A%et +
4 oM

+2i,u“$,u,“e_ +4R® AN ufudete + (3.29)
1

~28R® 4 p, Tt +p T~ +— | H
47 M

The above action possesses a global (1,1) supersymmetry that is the remainder of the local
one present when the gravitino fields are switched on. In the next section we recall how, for
suitable target manifolds, this global (1,1) SUSY extends to a global (4,4) supersymmetry.

From the complete form (3.26) of the action, one can derive the super-stress-energy
tensor (i.e. the stress-energy tensor and the supercurrent) extending eq.(3.6) to

55:;—1/T+5e++’]—_5e_+7:5§+7;5x (3.30)
T

Superconformal invariance requires

T+_:T_+:Z_:T_,: O+::T+°:O

1 1 3.31
T,.= 57'.+ ; T o=--T,- (3:31)



The surviving four independent components define the classical holomorphic and antiholo-
morphic parts of stress-energy tensor and supercurrent:

(2) = T—-
(2) = 2v2e~ T,

Ny

T(z) = Tov

‘x ) 3.32
G(z) = 2/2e I T, ( )

-
G

. . . + -
In the action (3.26) or (3.28) two different covariant derivatives appear, V and Vv, con-
structed with the two spin-connections w™*, defined as

— R
woy = wap — LapcV©

3.33
W:-b = W}:‘b + TopcVE = w;b + 2T V" ( )

where w, is the Riemannian connection, i.e. is such that dV*+w® V? = 0. The connection

appearing in eq.(3.23) (the one for which the torsion is 7%) is wap = w_;. These connections
play an important role in the sequel.
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Chapter 4

N=4 sigma-models
and HyperKahler manifolds

In the first part of this Chapter we review the conditions for the existence of additional
global supersymmetries in the (1,1)-locally supersymmetric o-model [19].

In the second part we discuss the specific conditions for (4,4) supersymmetry: they
imply a very particular structure of the target manifold that corresponds to a generalization
with torsion of HyperKahler geometry. This structure implies self-duality and antiself-
duality, respectively, for the two curvatures R(w™) and R(w™) and, as such, it is the
proper geometry for an instanton with torsion.

Finally in the third part we show how to construct the classical supercurrents gener-
ating these additional supersymmetries.

4.1 Complex structures and extended SUSY

To discuss the additional supersymmetries, we formally introduce new fermionic di-
rections of the super world-sheet, adding to the cotangent basis new “gravitinos” (* and
x* so that the parametrization (3.21) is extended to

1 = Lec s o)

-— Z e J€
T" = —i(xerx x")

(4.1)

while the embedding of the extended super world-sheet in M arget is described by expand-
ing the target-space vielbeins as follows:

7a 7a ra— a —r \ b +;v €
V '_—:Y/Jre“L—i—Tf_e + A+ jabAIC + ux + jab,ubx (4.2)
(Note that the new terms do not introduce any new dynamical quantities).
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Consistency with the torsion definition and implementation of the Bianchi Identities leads
< ,
to constraints on the tensors JZE » and therefore to a characterization of Miarget-

The torsion definition (3.24a): vVe = T,,.VV¢ can now be expanded in many sectors
*. Using the sectors

(C: SV VA + TupedXe =0
CCPr Vu(TEN) + VENS 4 2T, AP TEAT = 0 (4.3)
Cxcy : Zv'fgxy + vf(jaybAb) + vz‘/( aszb) + 2Tab0\7bﬁ'k7c%ArAs =90
by looking at terms containing V¢, one finds:
forz =y
jaxbjbﬁ- = —bur ie. (jz)z = -1 (4.4(1,)
forz #£y
{jz)jy}ar:() (4.4b)

It follows that the J® form a representation of the Clifford algebra. From the remaining
terms in these equations, after some manipulations, one gets :
for z = y, the condition that the usual Nijenhuis tensor relative to each J? should vanish:

R T z T R T
Nabn(jz, jx) - ija[b jmn] + jamV[bjmn] =0 (4.5)

and for ¢ # y analogous non-diagonal Nijenhuis conditions [19].

+ ;
From sectors xx, xx*, x*x? the same relations for J¥ are retrieved:
+ o+
(7= =-1 5 {g*,gv}=0
+ o+
NabC(Jxajy)zo

Starting from the sector
z_ Yy . zr T b y z b zyr 3 s __
C X V,(jayb,u )+v0( ab)‘ )+2Tabcjb7-)\ jcys:“ =0

and substituting the relations that follows from the other sectors ¢x%,x¢(x by considering
the terms that contain V,u® we come to the conclusion that the two set of tensors should
cominute: ’

(7%, 7v] =0 (4.7)

Now we can also consider the various sectors of the torsion Bianchi identities. In particular
from eq.(3.25.c) in the sector (*(%:

5 V! + VIVIL® = —R" T TEN N

* From now on we drop in all calculations the superscript — for jl ./ ete.
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looking at the terms involving V] and using the field equation (3.26a) one ends with
Vindgy =0 (4.8)
while the other terms impose the condition:
~ R=J*TRJ"

R = R VeV being the curvature two-form. This coincides with the integrability
condition for eq.(4.8), namely

[R,J%] =0 (4.9)
if

T =—7g° (4.10)
which is just the hermiticity condition expressed in tangent indices.

Considering the sector x*x” of eq.(3.26.d) and analizing terms proportional to V.2 one sees
that the torsion terms are such that the analogue of eq.(4.8) is given by:

+
V% =0 (4.11)

At the same time in order for the other terms to reproduce the integrability condition
+ o+
(R, J*]=0 (4.12)

+
(where R, is the curvature 2-form of the connection w’) the hermiticity condition

ge == (413)

must be verified.

Summarizing: The condition to have (N, N) supersymmetries is the ezistence of two
sets of N —1 complez structures on the target space (whose Nijenhuis tensors vanish), each
set realizing a representation of the Clifford algebra, and the two sets commuting with each
other. One of the two sets, namely jx, must be covariantly constant with respect to the

. + . . .
connection w™, while the other one, 7% is covariantly constant with respect to wt. The
target space metric should be hermitean with respect to all complex structures.

4.2 (4,4) SUSY and generalized HyperKahler Manifolds

Consider the case of exactly 3+3 additional supersymmetries. It is easy to see that if
J' and J? are two complex structures satisfying the above requirements then J3 = J! 72
is another one. Due to the Clifford algebra requirement the set J* closes a quaternionic

algebra:
TJETY = —§%Y 1 FuE g* (4.14)
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The same holds true for j+ T,

In the case of zero torsion, a manifold Mu;ge; With three covariantly constant complex
structures that realize a quaternionic algebra, and respect to which the metric is hermitean
is said to be a HyperKahler manifold. Indeed on Marget there exixt three globally defined
2-forms QF = J5VeV? which are closed: dQ* = 0. The role of these forms is the
generalization of that played for a Kahler space by the Kahler form Q = J,,V2V?.
Choosing a well-adapted basis of vielbeins one can show that the holonomy group
Hol(HKr,) of a HyperKahler space HK,, with dimension 4m is contained in Sp(2m) [20].
In particular a four-dimensional HyperKéahler space has a holonomy group contained in
SU(2) : the curvature 2-form is selfdual or antiselfdual. Note that this is the requirement
a manifold must satisfy in order to be a gravitational instanton.

Let us what happens when we introduce torsion in the game.

Recall that the J% and j+ z complex structures with both indices lowered are antysym-
metric matrices.

In 4-dimensions we can construct a basis for 4 x 4 antisymmetric matrices made by the
following two sets of three constant matrices, respectively named J* and J* (z =1,2,3)*:

Aa,:cb = —(5a0562 - 6b05am + Ezcab)

-azb = (5a06b:z: - 5b06ax - 62:(11))

1 0 7:0'2 . 2 0 1 . 73 __ —'io'z O

J = <7,'0'2 0 ) ’ J" = (——1 0) ! J" = < 0 i02>
(0 = (0 @\ (—ie® 0
J = (0,1 0 ) ; J* = (_0-3 0 ) ! J = ( 0 —i0?

(4.15)

(4.16)
These matrices have the following properties:
. each set J%, J% gives a representation of quaternionic algebra (4.14)
o they are selfdual (resp anti-selfdual):
TH = %eabcdjczd S T [ I
i 1 i o (4.17)
ap = — 3 Cabed Ja < €k Jokzjfj-

o all the jz commute with all the J°=.

On a 4-manifold with (4,4) extended SUSY, we have two sets of complex structures, J*
+ .
and 7%, that are covariantly constant under the connection w™ = W™ —~T and wt = W4T,

+
respectively, different for non-zero torsion, so that 7* and 7% cannot coincide. A priori
the matrices of both these sets can be expanded along the basis given by J*, J*:

J*=s",TJ%+a",J"

. T (4.18)
= a1, + 1,3

* e symbol vanishes on the index 0
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For all the coefficients in the expansion (4.18) there are two possibilities: they can be zero

. + . ..
or, in order for the J® and 7% to satisfy the quaternionic algebra, must be such that

5% ¥ = 67 (4.19)

p-p
TYyz ,z __. _.pqt T ¥y
€V 5% = 15" sY, (4.20)

The same conditions hold for a%,,s% ,,a% . Relations (4.19-20) mean that each of these
3 x 3 matrices is orthogonal, namely they belong to the adjoint representation of SO(3).
We can use a vector notation 57 (5% ) for the rows of the matrix 5% (s%,); if they are non
zero, these vectors constitute an orthonormal basis in three-dimensional space.

Let us then consider the consequences of the fact that all the J* must commute with all

the j+’” Using the expansion (4.18) this means that
5"NSY =0 ; a*ANdl =0 Vz,y (4.21)

(here the symbol A denotes the usual exterior product of three-dimensional vectors). We
can expand the 5% in the basis {5"}:

Suppose now that the 5 are different from zero. Then the condition (4.21), upon use of
eq.(4.20), states that

implying ¢} = 0, that is 5% = 0.
If the a® were non-zero, then an analogous argument would constrain the ¥ to vanish as

+
well; then the 7% would just be zero, which cannot be. The only allowed situation is the
following

J* = Sxyjy 4.22
P (1.22)

. . + . .
that is, the J7 are selfdual while the 7% antiselfdual (or viceversa).
Consider the curvature 2-form R®® relative to the connection w_,. Let R be the matrix of
components R®*. It is an antisymmetric matrix and as such it can be expanded as follows:

R=4,J"+B.J"
It must satisfy the integrability condition (4.9) for the covariant constancy of J7,
[R,J*] =0
Inserting the expansions of R and [J* this means
Apsxy[j'p, JY] = 2epyt44p.sryjt =0

33



The unique solution of this constraint is 4, = 0; this implies that R is antiselfdual.
Repeating an analogous argument for the curvature }+2ab of the connection w:'b we find

that B is selfdual.

Summarizing: a 4-dimensional target manifold Miarger of a (4,4)-supersymmetric o-
model 1s what we name a generalized an HyperKdhler manifold with torsion

DEFINITION: A Generalized HyperKdhler manifold with torsion admits two sets
of mutually commuting complex structures that separately close the quaternionic algebra
(4.14) and that are covariantly constant, one set with respect to the w™ connection, the
other set with respect to the w™ connection.

In 4-dimensions the above definition implies that the curvatures constructed from w™
and w™ are one antiselfdual and the other selfdual (or viceversa). Because of this fact we
can tdentify the concept of {-dimensional generalized HyperKdahler manifolds with torsion
with the concept of azionic gravitational instantons

4.3 The classical supercurrents

Suppose that a (1,1) o-model on a manifold M;arget admits an extended (4,4) su-
persymmetry. The 343 additional supersymmetries are just global ones. The action on
the bosonic world-sheet, namely eq.(3.29) is not modified at all: we just find that it is
invariant against additional transformations. The novelty is.that we can now search for
the complete form of the action on the extended super world-sheet, i.e. the analogue of
eq.(3.27) including terms proportional to (¥ and x*. One should repeat the same steps
needed to fix the form (3.27) taking into account all the possible new terms. Since from
our point of view the only relevance of such an expression would be its use in the deriva-
tion of the classical supercurrents, we will confine ourselves to the terms involved in this
derivation. Let us note that the “dilatonic” terms will be enlarged to

OR®) + py  TF +p T +p.T° + piTy + poTipiTy (4.23)

where (in perfect analogy with eq.(3.20)) T, , T are the fermionic torsion two-forms relative
to the new super world-sheet gravitinos:

1 , . 1
T; =d¢* - Swl¢% 5 T =dy” + oy (4.24)
Variations in the 1%%order fields p’s sets all the torsions to zero. This allows the choice of
an “enlarged” special superconformal gauge (the extension of eq.(3.22)).

Variation in the two-dimensional spin-connection w(?) yields

ps = —20,8VE ; p_=20,8V°
Do = —48,8N"  ;  po=408,Du" (4.25)
X +
pl = —40,(T°N)* 5  pi=40,9(g% )"
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The fermionic torsion terms in (4.23) will contribute to the variation of the action in
the new gravitinos, as it is seen from expression (4.24). After variation we make use of
eqs.(4.25).

The supercurrents are obtained by obvious extensions of egs.(3.30) and following ones. Let

65:;/T+5e++7_6e‘+’I.5<+To5x+Tf5C”‘+7?5xx (4.26)
™

Then superconformal invariance imposes on the 1-forms 7.* and 77 the analogue of con-

ditions (3.31), namely:
1

1
T _ ZT® . T — __T*%
+e 9 e ’ -0 9 o—
All the other components are zero.
Definition (3.32) is enlarged to include also the supercurrents G*:

3iw

G*(z) = V25 TE, 5 GP(2) = —2v2e T, (4.27)

From the action (3.27) we can extract G(z) = G(z) and G'(z) = G(2). For example, to
get G' « T, we vary in 6 and we look for the terms proportional to et; the relevant
terms are :

68 —»i/ 8¢ —AIet — AeViet + L LU 8(peT*) + ... =
47 Jom 3
_ 1 S¢ANVtet — giTabcA“AbAce+ - 13+p.e+ + ...
271' OM + 3 2

where we have integrated by parts the last term after use of the definition (3.20). Using
eq.(4.25) we get

Tou= T = SXVE - ST AN o+ 0, (8,27) (4.28)
so we finally obtain the expression for G = —21/2¢~*¥7,,. In a similar way one obtains
G(3).

To derive the other supercurrents we must analize the possible new terms that contribute
to the relevant variations, and fix their coefficients by comparing the variational equations
with the projections of the equation defining the target torsion (3.24a).

For example to get G¥(z) through the computation of 7.% the relevant terms in the ex-
tended super world-sheet action are (compare with eq.(3.27)):

S :/ (V* =X — (TN — (%™ — )+ 200 VA e + L+ A"V (+
oM

(TN e SiTa A WA £ Tope( TP NN 429

+ 0T + T, + ...
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A priori, besides the term of the form T(J )M\, we could add to eq. (4.29) also two other
kind of terms, namely T(JA)(JA)A and T(JA)(TA)TA). The reason why it suffices
to add only the first term is the vanishing of the Nijenhuis tensor. Indeed the diagonal

. . + .
Nijenhuis tensor constructed from J% or J*, (see eq.(4.5)), upon use of the covariant

constancy condition 6mk7:b =0,0r V7% = 0 can be rewritten as follows:

Nabc(J,J) == 3Trm[a\7rb\7mc] - Ta,bc (430)

(the antisymmetrization in abc is understood). By use of the Nijenhuis condition N,p, = 0
it is easy to show that
T(TA(T X)X oc TAAX

T(TA(TAITA) o T(TA)AN

Hence there is only one coefficient to fix in (4.29), namely n;. To obtain its value, we
consider the equation that follows from varying the action (4.29) in 6A". Focusing on its
("e? sector and comparing with the (*(* sector of the torsion definition (see eq.(4.3)), we
obtain :

ny = 43

Varying now (4.29) in 6(* and searching for 7.7 , in analogy with the procedure utilized
for GV, we get

TP = {%(jm)ﬂngﬁ + %(JH)“V;_‘EF — 20T0pe(T*X)*APAe™ + OpZet + }

77 = {(T"N)VE = 24Tope(T7N) NN + 28(8,8(T°A)%)}
Thus G*(z) = Zﬁe“if’ff, is determined.

In a similar way one can calculate é”(f).

Summarizing: when a (1,1) supersymmetric o-model described by the action (3.27)
admits a global (4,4) supersymmetry, its classical supercurrents have the following ezpres-
ston in terms of the 3+3 complexr structures of Miarget :

G’(z) = v2e7 % {/\‘IVZ‘I — giT,lb(.X"/\bAC + Qa{aﬂ@/\“]}
3 (4.31a)

GJ:(Z) — \/§€_i§ {(jr/\)aI/r:a _ 27;Tabr:(n7r/\)a Ab/\r' + 28 [Bafﬁ(jl)\)"]}

et i 2 . =
G'(2) = V2™ {ﬂ”‘"&“ — 51 Tapept" u’ut + 20 [Ba@u“]}
3 (4.318)

3im

G*(2) = Vae ¥ {( )" V2 = 2Tonel 7 )" + 28 [B,2( 57 )]}
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Chapter 5

The Callan et al. instanton

Equipped with the general results of the previous sections, we now focus on the
DRCHS instanton and we consider the limit 4 — 0, where asymptotic flatness is
lost but superconformal solvability is gained. This limit corresponds to the (1,1) locally
supersymmetric o-model on the background (3.9), that can be advantegeously rewritten as
in eq.s (3.10-3.12), leading to the vielbein (3.13). As already pointed out, the o-model that
emerges from this choice describes the direct product of a supersymmetric Feigin-Fuchs
model with a supersymmetric WZW model of the group SU(2). This theory has a (4,4)
global supersymmetry since it satisfies all the conditions described in the previous sections.
Let us see how this happens.

5.1 The classical ~~model

Using the vierbein (3.13), we can write the Maurer-Cartan equations of the group-

manifold SU(2) x R as follows:

1 /2
dve = i\gfabcvbvc a=1,2,3,0 (5.1)
where the totally antisymmetric structure constants fabe are given by

fUab =0

5.2
fijk = €iji (5:2)

With these notations, an SU(2) x R element in the adjoint representation is given by the
4 x 4 matrix
I'i; 0
Tup = ( oj 1) (5.3)
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the 3 x 3 submatrix I';; being an SU(2) element in its own adjoint representation. As
such the matrix I' has the properties that

r'r=1
2 (5.4)
(FTdF)ab - \/;fabcvc

In 2"?order formalism the action (3.29) for the (1,1)-supersymmetric o-model on a generic
manifold is written as follows:

S=_"= [ dsdz {V,“V;‘ F 2TV LA — 2pt U — 4R“bchaA”,f,ﬁ} +
4T Jom cT ’
. (5.5)
+— | H
4:71' M

For our particular background, as for any other group-manifold, this expression simplifies,
due to the existence of two non-Riemannian spin-connections (the “zero” and the “one”
connection in Cartan terminology [13]) that are proportional to the structure constants
and that parallelize the manifold. These two connections coincide exactly with the w™ and
w™ discussed in the previous section. Indeed, utilizing the expression of the torsion that
follows from eq.(5.1), we find:

w =0
o /92 , (5.6)
wh = \/;fabcvc
so that
R, =R}, =0 (5.7)

The “minus” covariant derivative is just an ordinary derivative, so the fermions A? are just
free left-moving fermions. The p?, instead, are neither free nor right-moving. However we
can rewrite the action in terms of right-moving quantities, using the 1-forms V¢ = I'#tVb,
that provide an alternative set of vielbein for our manifold. They are given (compare with
eq.(3.13)) by:

VO =dt

Vi= —VEQ

where the forms QF are the components, along a Lie-algebra basis, of the right-invariant
form on the group manifold: Q=dgg~'. We expand these right-moving vielbeins on the

(5.8)

superworld-sheet as follows:
Ve =Viet + V% + A%t 4 ate”

Relying on the relation
ﬂ(l — I\ab b, (5'9)
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on the definition of Y+7 and on the properties (5.4) of the adjoint matrix we find that
o a r~a 5~a
—2p* V.pt = —2p"0p

Hence for group-manifolds the action (5.5) can be rewritten in such a way that involves
only free fermions:

-1
- 4:71' oM

S dzdz {VIVE 4+ 200N — 20" 0a° } + —Lﬁ/ FapcVoVEVE  (5.10)
247V k J
On the four-dimensional group-manifold SU(2) x R it is now easy to show that the condi-
tions for (4,4) supersymmetry are matched. Due to the vanishing of the w™ connection,
the set of complex structures J* must be constant, and we can choose them to coincide
with the J% of eqs.(4.15-16): )
JE=JF (5.11)

+ . . .
The complex structures 7%, that commute with the previous set and are covariantly
constant with respect to w™ connection, are given by

7= =TT F*T (5.12)

This easily follows from the properties of the adjoint matrix. Substituting egs.(5.11-6.12)
into the general expression (4.31), we can write down the explicit classical expression of
the supercurrents in the case of the SU(2) x R background.

Before doing this, we find it convenient to reformulate the theory in terms of free fermions

$®*(2),%*(2) that satisfy the standard OPEs:

P (2 (w) = — 2 (5.13)

—52——71)

(and the same for the 1)?(2)). This involves a simple renormalization of the original free
fermions. Indeed from the classical Dirac brackets of the fields A® and the %, that translate
into their quantum OPEs, we have:

. c()‘a.b
a Ab — __’L_
N (N (e) = 2
. ab
~ar=\~br=\ _ _2 6
()(E) = 5 =
Hence it suffices to set:
A = eiﬂ'/-‘.&,(pa : 'L—La — €i37r/41;a, (514)

For the left supercurrents, recalling the form of the dilaton, (eq.(3.12)), which implies that

aaé — 6(1!)

%
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we immediately obtain the following expressions

)= ez s L 2w Vo]

(5.15)
G*(z) = V2 {(jw)“v; + \/%eijk(jw)ww’“ + V/%a(jw)”}

For the right supercurrents, we must, first of all, give their expression in terms of right-
moving quantities. To this purpose it suffices to make use of the properties (5.4) of the
adjoint matrix and of the additional one

fabcrar Fbs Pct = fr.st (516)

corresponding to the invariance of the group structure constants. These properties imply

Mavga — /:-La ; (jz ,U,)QV; — (jxﬁ)avza

z
PR i + ;o NG~
ejpp = e pt @ gt eijr (T ) W pt = e (T°0) 3
+ =N
(7=1)" = (T*R)°

so that, in our case, from eq.(4.31) we obtain, in terms of the fermions

@)= o500 =Rt 10

(5.17)
)= V{1790 = g9y 99 + 2oy |

5.2 Quantization and abstract conformal field-theory

In the case of supersymmetric WZW models [21], the analysis of extended global SUSY
can be also performed in purely algebraic terms; a complex structures is in one-to-one
corrispondence with a Cartan decomposition of the Lie algebra. The group SU(2) x U(1)
(this is our case) has actually three complex structures and so N=4 SUSY follows. We
arrive at this algebraic description by quantizing our theory.

The quantization of the supersymmetric WZW on any group manifold and in partic-
ular on SU(2) x U(1) is straightforward [13,23]. Focusing on the left sector (we write the
formulas for the right sector only when some difference is present) and using the currents
J* such that

Ot = —i/2.J" (5.18a)
. 2.
0 = z—*ki.ﬁ (5.185)
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we find, as result of a standard procedure,

Ti(2)J (w) = g(z fi;)z + ijj_k‘: (5.19a)
T2V (w) = Tz—lw—)z (5.196)

We will use also the notation 7 = (JY, \/W)

The correct quantum expression for the stress-energy tensor includes the Sugawara form

for the level k¥ SU(2) WZW model, and is given by

070 i ¢

T(z)=J"J +k—l—2JJ +\/k———l——§
Comparing this expression to eq.(3.17) we see that at quantum level a shift & — &k + 2 is
necessary in the background charge term. This shift of two unities in the value of k can
be understood in the following way.
The term responsible for the background charge couples to the supersymmetrized version
of the WZW-model at level k. From a purely algebraic point of view it is well known
that a super Kac-Moody algebra of level k corresponds to an ordinary bosonic Kac-Moody
algebra of level & — Cy- (where Cy- is the value of the quadratic Casimir) plus a set of free
fermions having regular OPEs with the Kac-Moody currents. The shift in k is due to this
fact: the relevant value of k for the computation of the background charge is the central
charge of the super Kac-Moody currents:

Jsuper = J" + const. fabe b gpe

and not the central charge of the Kac-Moody currents 7°.
The central charge attribuited to the Feigin-Fuchs boson t is shifted to cpr = 14+6/(k+2),
the only value for which the total central charge sums up to 6, the correct one for a four

8J" + 4" 5yp° (5.20)

dimensional supersymmetric solution:

c:CFF+CIT"ZTT"+Cff:1+k_?_2+k?f2+2=6 (5.21)
where cry-zyw is the ordinary central charge of the bosonic SU(2) WZW at level k and
crs=2 is the contribution of the four free fermions.

In other words we have a (6,6), 4 in agreement with the general set up of section 2. Note
that the dilaton, not necessary to obtain N=4 supersymmetry at the classical level, is
essential at the quantum level to fix the central charge to its correct value.

The quantum expressions of the supercurrents (the classical ones were given in

eq.(5.15-17)) are:

G'(z) = {—m W gL isz}
57 ¢)”} (5.22a)

G”(Z)ZQ{—ZJ“ ¥’ +\/E“'(j W=
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B F=5) (5.22b)
Sz _ a Fz 7b €ijk Zx TN T Tk i
G(z)—Z{ L) L7ab¢ m(j¢)¢¢+m}
Without the dilatonic contributions (the last terms in the above egs.), as already stressed,
N =4 symmetry would be still present, but the supercurrents would not close the standard
algebra; they would rather close the so called N=4 extended algebra [22], based on the
Kac-Moody algebra of SU(2) x SU(2) x U(1). The canonical way to reduce this extended
algebra to the standard one is to add a background charge with a particular value. The
solution we are considering automatically performs this reduction, assigning the needed
background charge to the field ¢.

The supercurrents (5.22) close thus the standard algebra, which requires ¢ to be a multiple
of six:

_c 1 2T (w) 0T (w) e .
T(2)T(w) = 2] + G w) + - w) + reg. (5.23a)

_ 3 G°(w) | 89°(w)

TG (W) = 50— + (o) T (5.23b)

T(2)G" (w) = g (;g—i(z))z + f?_(zg +reg. (5.23¢)

T(2)Ai(w) = (;41(":))2 + fzéi(:z;—!jreg (5.23d).

A(2)G(w) = %W + reg. (5.23¢)

Al(2)G" (w) = —;z((—:ﬁ):%%—b +reg (5.23f).

G2 ()T (w) = géc_(z ia;)a N 4(2)?:5@) N 25abT(w)238£;(w)(a?)“b treg. (5.239)
Ay (w) = SO eANw) (5.23R)

12(z —w)? (z —w)

The same holds for the right sector.
The SU(2); currents of the two sectors are realized entirely in terms of free fermions:

‘41'(2) - ’Qba Aaib,(pb — i(¢0¢’i + %E”]‘l/)“ﬁk)

S o o (5.24)
A A L )

Al(z) = -

NCREC RS VRS

i.e. they have the same expression as for the flat space (see eq.(2.28)), except that, due to
the non-vanishing torsion we are forced to use the two different sets of complex structures
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in the two sectors. The supercurrents G%, G = (G*)*, organized in SU(2) doublets as
dictated by the above OPEs, are given by

-5 (o) o TmmlEete)  ew

for the left sector, and by the same tilded expressions in the right one.
Subsituting the explicit form (4.15-16) of the complex structures into eqgs.(5.22) we get

Gl — 9 }-Jw _ \/~£_+_§(J1¢0 — J2% 4+ T3 + \/—kz-w—ﬁxb%%“ - %} e
Gzzz}:J%&Z—\/——k%(ﬂWJrJzzbo—JWlH\/,%—2 ”"\/?5—2} -
¢ =2 }JW - ST T D) ¢ v \/?;%}

while the G have analogous but slightly different expressions. This algebra was first ob-
tained by Kounnas, Porrati and Rostand [23] and used in this specific framework by Callan,
Harvey and Strominger [6].
The doublets of supercurrents can be written as
0 4 ;3
<¢ +13 ) N

G = [‘iﬁ(j” i) +2\k/—+2 (B"9° — i) + \/g_;a WP+ it

_i\/§(j2+ij1)<_¢2—i§bl > (5.27a)

(90 —ip?)
G =(G)"
and by
G = {z‘x/é(i“ Fi7) 2 gt B0 99 -y 0| (TR )+
AR 4l (;}/’f; @:fl > (5.27b)
G=(0)

The relevant point is that we can easily obtain now the explicit form of the moduli operators
for the conformal field theory we have just described. We need primary fields of dimension
one which are the same time last components of an N=4 representation, namely we have
to find solutions to the OPEs (2.25). Remarkably, in our case the solution of these OPEs
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is very similar in form to the solution (2.29) one obtains in the flat space case. Indeed
consider the SU(2) doublets:

7, 0 i3 _ —Z 2_7: 1
W) = V(LT wat - VR (T ) G

B = oV <—~E££“+—if£§3))  y(z) = eV ( B2 — it )

These operators satisfy eq.s (2.25) with as last components the operators

By (z) = eV ! {ix/i(f +igt) + 2\/—%(1&” +i9?)(4? +z‘¢1)}
I(z) = e"V7! {z‘\/i(f +i5%) + 22'\/?;2_—_2@%3 —Mz)} |
By(z) = eV 7 {—i\/i(j” —i5°) + 22'\/;—%(1#01/)3 - ¢1¢2)}
o) = ¢ V7" {i\/i(jz —1j') + 2\/;%—‘2(1#” —ip?)($* — i¢1)} 7}(_5-29a)

B() =V {z«/i(? T 4 24 g (B0 — 1) wl)}

fiy(2) = ¢~V 77! {iﬁ(? — i) o iy | e (B0 +zzlz/32>}

and

k+2

Ba(z) =V {i\/i(i" +5°) + 21'1/?;2:2(@5”&3 + 1/311!32)}

flo(z) = V7 {W? — i)+ 2 () - u/?l)} (5.295)

Note that, as expected from the purely fermionic form of the currents of SU(2), the
doublets are quite completely expressed in terms of the free fermions, the exponential term
being only needed to cancel some unwanted poles. We stress that, due to the existence of
the background charge, the operator of the F.F. theory

LTV (5.30)
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has conformal dimension zero. Indeed in a F.F. theory with stress-energy tensor T'(z) =
—10t0t — £ Qyx 0%t the vertex operators : exp(iat) : have a conformal weight A, = La(a+

®@ur) and in our case Qpf = ‘i'\/k%tz‘

This factor is the counterpart of the plane-wave factor el appearing in the
flat space case. Also there the exponential factor has conformal weight zero since k? = 0.

ik X(z,2)

Indeed we can say that ky = is the energy component of the four-momentum.

2
i+2
It is fixed to a constant value in terms of the space-like components k. The difference
resides in that k is a continuos variable for flat space, while its analogue is quantized to
fixed values for the SU(2) x R background, namely there is a finite number of zero-mode
operators rather then a continuous infinity as in flat-space. This difference follows from
the different topology of the constant-time slices in the two cases: noncompact R® for
flat-space, compact S? for the case under consideration.

The four fields ®,,II,, a = 1,2 are the moduli of our conformal theory. Combining left
and right fields, we find 16 infinitesimal deformations of our theory that preserve the N=4

superconformal algebra. These combinations are formally the same as the combinations
0,3

(2.29). Moreover it is possible to construct two abstract (0,1)-forms ¥%, [0 7], analogously
%)

to eq.(2.32).

As an abstract (6,6)s 4 -theory the SU(2) x R background has the same Hodge-diamond as
flat space (compare with eq.(2.31)). However since the torsion is different from zero, these
abstract Hodge numbers are not the usual ones of compactified version of the underlying
manifold S x $2, whose Betti numbers

W=1,00=1,0"=0,0=1,0 =1

are obviously incompatible with such an Hodge decomposition.
5.3 Deformations of Mi.,... geometry in the sv(2) xR case

The existence of non-trivial N=4 moduli implies that the geometrical data of the
o-model , namely its metric g,, and torsion (related to the axion B,,) can be deformed in
such a way as to mantain N=4 supersymmetry. In other words the existence of A!"! moduli
implies that the generalized HyperK&hler manifold we have considered is just an element in
a continuous family of generalized HyperKahler manifolds, parametrized by 4 A''! param-
eters. For instance in the case of the K3 manifold the existence of 20 N=4 moduli follows
from the fact that, as an algebraic surface, K3 is described by a homogeneous equation with
19 nontrivial complex coeflicients fixing the complex structure and that, for fixed complex
structure, we still have a one parameter family of deformations for the K&hler class. These
deformations of the metric and of the torsion fill an 80-dimensional moduli space whose
global structure turns out to be My, = S0(4,20)/50(4) x S0(20)/50(4,20;Z). In a
similar way flat space has four N=4 moduli because the constant metrics and constant
torsions fills a space of dimension 16, namely the space of all 4 x 4 matrices (the symmetric
parts is the metric, the antisymmetric part is the axion).

The geometrical interpretation of the moduli and the knowledge of the moduli space is
very important because in the functional integral we are supposed to integrate over all
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geometries. In practice the use of the instanton conformal field theory to calculate physical
amplitudes is the following. Given a scattering process with NV external legs (z = 1,....,N)
there is an expression for the emission vertex of the i-th particle in each conformally
flat background Bk corresponding to a specific (6,6)44: let us name this vertex Ve (7).
At every number of loops in string perturbation theory the true scattering amplitude
is obtained by calculating the correlators for a fixed bakground, by integrating on the
Riemann surface and on its moduli space and then by summing over the backgrounds.
Schematically, if we disregard the Riemann surface integration we can write:

A(1,2,...,N Z < VBir(1) Vpr(2 ) VBk(N) >

The sum on Bk has a discrete and a continuous part. On one side we have to sum over
the various topologies, namely flat space and all the possible instantons. On the other side
at fixed topology we have to integrate on the instanton moduli space.

For the limit case of the SU(2) x R instanton we have discovered from the algebraic
approach that there are four N=4 moduli just as for flat space. Their geometrical inter-
pretation, however, is less clear. In this section we explore the consequences of the N=4
moduli on the geometry of the target space. Namely we calculate the explicit form of
the infinitesimal deformations of the metric and of the torsion due to these moduli. We
show that the deformed space is still generalized HyperKahler as expected: the curvatures
of wt and w™ are no longer zero but still self-dual (respectively antiselfdual) after the
deformation and there exist deformed complex structures fulfilling all the requirements. A
global characterization of this space of metrics and torsions is still an open and interesting -
problem. Let us discuss the infinitesimal deformations obtained by msertmg the moduli
operators in the o-model Lagrangian.

We focus on the bosonic sector which suffices to give us informations about the new
metric, new torsion and new complex structures. The bosonic parts of the moduli, reshift-
ing the background charge to its classical value, are expressed, for the left sector, in terms
of the components of the left-moving vielbeins:

Bi(2) = (V2 +iV2)e VE Bl = (P VE

Mi(z) = —(V2 = iVi)e VE! y(z) = (V2 —iV})e Vi '
and for the right sector, in terms of the right-moving ones:

®1(2) = (V2 +i02)eVE Ba() = (72 -iPeYE

i (2) = (V! +4V2)e Vit o(2) = (V2 — V1 )e~VE '

Now we can construct conformal operators of weights (1,1) to insert into the Lagrangian
combining these (1,0) and (0,1) ones in all possible ways. Hence the most general expres-
sion we can add to the Lagrangian is simply

e_.\/%-t(z,,%)vza A’jab I;'Eb (533)
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M, being a constant matrix. The reality condition for this expression imposes M €
GL(4,R). Thus our deformations depend on 16 real parameters as anticipated from the
abstract counting.

In terms of the components of the undeformed vielbein, which we have chosen to be the
left-moving ones, the term in (5.33) has the form:

e VEVI(MT) o VY (5.34)

T' being the variable SU(2) x R element (point in the manifold) in the adjoint representa-
tion.

It is useful to separate the symmetric and antisymmetric part of the matrix MT' and to
this purpose we introduce the notation

Bap = %e-\/?f(Mr +TTMT.

1

| (5.34)
bay = —-Z-e—\/%f(Mr —TTMTY,

The overall normalization of the new term is of course irrelevant, since M is arbitrary, and
we choose it in such a way that the bosonic part of the deformed g-model action is:
-1

T 4r

1
S / dzdz {VEVE + 2V, R V2 — 2V b Vi) + — / H (5.36)
M 4 M

The torsion deformation (parametrized by the antisymmetric matrix b) can be recast in a

shift of the 3-form H:
—1

1
= dzdz {VOVE + 2VEih,, VY + — 6H 5.3
i ), Vv v sz}+4W/M(H+ ) (5.37)

where § H = dB with B = b, V2V?.
Following [24] it is also convenient to use the combinations:

G, = hap + by = e VE(TTMT )0y = (G, (5.38)
G;b = hgp — bop = e”\/%—t(]\/[l")ab

Relying on the properties of the adjoint matrix (see eq.s(5.4)) simple expressions are ob-
tained for the derivatives of the above matrices:

2
a”‘GI;: = \/;(_5““Gb_c + Gb—r'f”fﬂ)

(5.39)
2
8{1.G2—c - _\/;(60,0 GZ_L + faerj—c)
So far we have identified the deformation of the vielbein (i.e. of the metric):
V= Ve V=V + ha VP (5.40)
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and the components of the new torsion in the old basis which are given (this follows from
the same supersimmetry variation argument as in the undeformed case) as

(T + 6T )ape = —=3(H + 6H )ase (5.41)
Now we must solve the relevant torsion equations for the two non-Riemannian connections

we are interested in, these latter, in the undeformed situation, being given by eq.(5.6) The
two torsion equations are, working at 1°*order in the moduli:

dV'* 4 (w* + ) VY = (T (5.42)
The solutions of eqs.(5.42) are given by
+ +
b3, = —2V Gy, F 4G, Trpe — VoG £ 2G5 Tray (5.43)

Making the covariant derivatives explicit, using eqgs.(5.39) and the undeformed connections,
we finally get

2
5““';}:1;[(; = \/% {26[”'0G?]:c + 5COG[iab] + Girfrb]c + Gyz‘tcfrab} (544)

Next we look for the deformations of the associated curvatures. From the general formula

O0R = V éw we have
) _ _o1 7, .
6Rab = d5wab = (aP 5wab|q + 5 E 6wab|rf7’17‘1)v 14

1 /2 2
SRy = (8w}, , + 5\/;5“’jb;rfrpq + 2\/%]5[‘”'1) by VIV

Using egs.(5.44) and (5.39), after some algebra one ends up with the following results:

(5.45)

2 . . )
SRE = -7 {GEVVI £ G5 e VIVE}

(5.46)
SR, = +eij) 6RT;

We have that the curvature of w™ + 6w™ (which is §R™) is selfdual, while that of w™ + fw™
(which is 6R™)is antiselfdual:

1 "
§RE = 5 €anea SR, (5.47)

Recall that this is a necessary condition for the deformed M arget to have N=4 supersym-
metry, as we discussed in sec.5.

5.4 Deformations of the Complex Structures
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Having singled out the deformations of the vielbein, of the torsion and, consequently,
of the two non-Riemannian connections, our aim is now to find the deformations of the
complex structures corresponding to the insertion of the N=4 moduli in the lagrangian.
Indeed they must exist since N=4 symmetry is mantained.

Any infinitesimal deformation of one of the sets of complex structures must be such that
the quaternionic algebra is preserved:

(T + 8T TV + 6JY) = =6 + &V (T7 + 87 7)

that is
§T*TY + T*6JY = €°¥ 6T 7 (5.48)

The general ansatz solving this requirement is

§J° = J*, Fl+ > M, J? (5.49)

F being a generic (infinitesimal) matrix and M. generic infinitesimal parameters.
We have to impose the “deformed” covariant-constancy conditions, different for the two
sets of complex structures relevant in the left and in the right sector:

S +
VogE + 260w, T8 =0 (5.50)
Inserting the ansatz (5.49) with M.=0 into eq.(5.50) we get
T (VFF = 60¥)u) =0 (5.51)

Note that the deformations of the connections, (see eq.s(5.44)) can also be written as

2 .
bwg, = “%G[tb] - \/;jbeerr
(5.52)
2

— £ - 7T A— T
bwoy = =V Gy + \/‘7; aGarV

where 7% and J* are the two sets of constant complex structures introduced in cap. 4.
(see eq.(4.16)). Therefore if we start from the ansatz (17) with

F% = G[fb] (5.53)

and M.=0, the requirement (5.51) reduces to

+

ESS

, (5.54)
x y - U —
NV G,V =0
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Recall that for our undeformed manifold, 7* = J*. The above equations hold then true
due to the commutations relations (see sec. 5) :

73] =0
. Vz,y (5.55)
(7. 0] =0

Summarizing, we have obtained that the deformations of the left- and right-moving com-
plex structures due to the insertion of the moduli in the original N=4 theory are given
by
+ +
§.7% = [jw , ibJ] (5.56)

where
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Chapter 6
A dual model

To further elucidate the structure of SU(2) x U(1) instanton solution, we will ”iden-
tify” it to an apparently unrelated Kahler geometry, which it’s believed to represent the
same conformal field theory. A powerful method to obtain new Kahler and HyperKahler
manifold from old ones is that to perform a duality transformation [25,26] on the N=2
superfield formulation of the action. Furthermore, it’s interesting to realize that the du-
ality is actually a symmetry of conformal field theory, which generalizes the well known
R — 1/R duality [27].

6.1 An N=2 superfield formulation of the sv)x v(1) in-
stanton.

We first describe a different formulation of the SU(2) x U(1) WZW model in N=2
superfields. We will work in minkowskian N=2 superspace with complex superderivatives
satisfying the algebra

{Di,Di} = +iby, 0r =6 +06, . (6.1)

all other anticommutators vanish.
The general N=2 sigma model without torsion requires a Kahler target manifold and
can be simply realizes in N=2 superspace by the action

, /dzzdzf)dzéﬁ’(@, 3) (6.2)
where K is a Kahler potential for the manifold and ® are complex chiral superfields
D,®=D,®=0 (6.3)
K is defined modulo the gauge transformation §K = A(®) + A(®).
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The reduction to N=1 superfield formalism is realized by defining the Majorana N=1
superderivative D and the generator of the hidden supersymmetry Q

(6.4)
@z\/gw—-m, {5, =0

With this formulation the N=2 formalism cannot describe a manifold with torsion (a
group manifold,for example); the way to introduce in the action WZW terms relies on the
combined use of two different kind of supermultiplets: the chiral (defined above) and the
twisted chiral ones [26]. The latter are defined by the conditions:

DiA=D_A=0 and c.c. (6.5)

Defining the action of the hidden supersymmetry as 6X = i[np%Qq, X| we find
- (6.6)

where v5 = o3.
From the point of view of the N=1 formalism the extended supersymmetry is realized
via the complex structure as

8@ = (n*Du®?)f; (6.7)

In a theory with only chiral superfields the complex structure can be read from eq. (6.6)

If, otherwise, our theory involves only twisted chiral fields, 45 can be into 7 and the theory
is equivalent to one with only chiral fields. The novelty comes when we use both chiral
and twisted chiral fields: the purely bosonic part of the action after usual reduction reads

/ Pr[K,;0°8"9,8" — K,;0" AP, A1
(6.8)

+€ap(KupOa " Oy AP + K, 0, 8" 0y AP)]
The € term has a structure similar to a two-dimensional WZW term.
Using this ideas Rocek et al. [5] had been able to write down an explicitly N=2
superfields action for the SU(2) x U(1) WZW model.
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We parametrize the group by a chiral superfield ® and a twisted chiral one A

(4
P+ AL\ -2 A
where 6 = —%ln(@@ + A./—X).

In these coordinates the metric on the group manifold is

o2 — 3d® + dAdA
T T es+AA

and we find for the Kahler potential

-
1

o

- ¥t d -
K(®,8,A,4) = —/q Zin(1 + ) + In®ind
T
the torsion part of the action can also be read from K as in eq. (6.8).
We already know that SU(2) x U(1) admits N=4 supersymmetry. In this formalism,
the necessary condition for N=4 SUSY is [26]:

Kpp +Ky5 =0

which is easily verified in our case.

At the level of current algebra our model closes the N=4 extended superconformal
algebra [21]. The Callan et al. modelis simply obtained, as before, by adding a background
charge to the U(1) field.

6.2 Duality transformation

We will show that every sigma model with an isometry can be related to a dual
geometry which describes the same conformal field theory. This procedure has a natural
extension to the N=2 supersymmetric case. For our model has a non trivial killing vector
well adapted to be use in this formalism, we will be able to derive the dual geometry [5].

We consider the sigma model action

51_ /dzz[(gw T b )82 Bz’ + B(2)R)] (6.12)
N

where the metric, the torsion and the dilaton field are invariant under the isometry §z# =
ek”. We choose also coordinates (2", z?) such as the isometry acts by translation of z",
le. g, b and @ are independent of z".

In the action

1 _ ~ _
5 [ Polan A+ (gou +b0a) 482 + (g0 + b}

+ (gab + bas) 0z 0z’ + §(04 — §4))

(6.13)
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the lagrange multiplier § forces the gauge fields to be pure gauge A = 92°, 4 = 8z and
we recover the original action. The dual model is obtained by integrating out the gauge
fields A, 4; because of the isometry, #° does not explicitly appear in the coefficients of the
action, so that the integration is purely gaussian. We obtain a new sigma model with the
new metric and torsion
. 1 . boa ga0gos + baobop
00 = —90a — —— > Y9ab = Gab —
goo goo ) goob (6.14)
Bou = golz’l;ab S 9a000b + 0a0Gop
oo goo

The quantum mechanical corrections coming from the measure in the gaussian integration
amount, at one loop, to a simple shift of the dilaton [28]

P — @+ In(goo) (6.15)

The general claim is that the couple of dual model constructed with these prescriptions are
conformally equivalent. The proof of this statement relies on the construction of auxiliary
models with chiral isometries, following a well known example in the recent literature [4]:
two different quotients of SL(2,R) by U(1) subgroups (resulting from the vector and the
axial gauging) give rise to equivalent conformal field theory with manifold related by the
above duality transformation (eq (6.14)) (the cigar and the trumpet black hole). Following
this example, we will construct an arbitrary pair of dual models in d dimension as different
chiral quotients of d+1 dimensional sigma model with a left and a right chiral current:

1 _ ~ — _
S= —/d2 861,86, + 005305 + 2B(2)30R 501 + GRO0RHL"
oy (061,001, rOOR (z)09r 001 R (6.16)
+ Gi‘@ma&?}; + (Gap + Bab)(?:cagwb}
The chiral currents associated with the symmetry
80r = ar(z),60r = ar(z)
are )
JL =066 + BoOg + -=GLox®
2 (6.17)

TR = 06p + BOGL + %G{Eéma
We gauge an axial or a vector subgroup
00r = a,60r = +a
obtaining the gauged action
S+ % /d%[AfR + AJE + %Agu + B)]

54



Integrating out the gauge fields one obtains for the vector gauging

R
Sv+%/d2 [ﬂ8080+ Ge 000z +IG 52250

GEGR i (6.18)
‘2(—1;—)8180'8(12 + (Gab + Bab)amaaiﬂb
and for the axial gauging
1 , 1—B_ . GE GL =
. a 0 a - a a
S‘4+27r/dz[1+B +1+Baam ——-1+B8:1: 00 (6.0
GLGR a ed, b ’
- ——-—-——2(1 m )Bm 02" + (Gap + Bay)02° bz

where

0=0r—0r,0 =0g+6;

The translations in 6,8 are isometries of the two models. It’s easy to verify that S, and
Sy~ are related by the duality transformation (eq.(6.14)). The shift in the dilaton due to
the jacobian in the integration of gauge fields

& — &+ In(1 + B) (6.20)

is also in accordance with eq.(6.15) because

1+ B
1-B

oo =

The approach via chiral quotient produces conformally invariant theory from conformally
invariant ones, so the d+1 dimension model is conformally invariant if and only if the
dual pair are. The dual models are related by reversing the sign of B and GL, i.e. by
the coordinate transformation 67, — —8r. At the level of conformal field theory it simply
amounts to reverse the sign of the left charge of fields under the U(1)r x U(1)g: this is an
isomorphism of conformal field theory.

Thus we conclude that duality is a symmetry of CFT.

We have so concluded that for every bosonic sigma model with an isometry we are able
to construct a new sigma model with a dual geometry which describes the same conformal
field theory.

There exist a simple generalization to the N=2 superfield case. The N=2 quotient is
the trivial copy of the bosonic one. We gauge the isometry, not including the kinetic term
for the gauge field, and integrate out the gauge field by its equation of motion.

We define also the real linear multiplet G and the real twisted linear multiplet H by
the conditions [26]

DyD-G =D.D-C =0, (6.21)
DyD_H=D,D_H=0
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The relation between the two set of multiplets is

G=A+A
S (6.22)
H=®+
We start with an action of the form
/dzzd*eK(A +1) = /dzzd*()K(G) (6.23)

where the isometry corresponds to the imaginary part of A; we can rewrite it in first order
formalism as

f P2d 0K (G) - (n + 7)G] (6.24)

with 7,7 chiral fields.

The variation in the lagrange multiplier  reproduce the original action. The only
subtle point is that 7 is a constrained field; fortunately, the constrain can be solved by
writing 7 in terms of an unconstrained complex superfield

n=1DyD_ v

Therefore, integrating by part,

é‘—S‘ZO'—-) —+D~G=O
n
éf—:o—>1)+1)_c;:o
o7

so G = A+ A, and we recover the original action.
On the other hand , we can eliminate G from the first order action

65 0K _

G =" 8e TN

We can solve for G and obtain the dual action in terms of chiral fields only. The lagrangian
is the Legendre transform of K. Starting with our action with a chiral and a twisted chiral
field and performing the duality transformation on the twisted chiral one, we end with an
action with only chiral fields, i.e. with a Kahler geometry.

6.3 The dual model

We will apply the previous discussion to the case of the SU(2)xU(1) instanton. From
eq. (6.11) we see that the Kahler potential is a function of lnA -+ InA in the twisted chiral
sector

K=KMA+A,0,0) (6.25)
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so the metric has an isometry corresponding to the phase of A.
Defining G = InA + InA the kdhler potential is

G

_ 554 _
K(G,in®,Ind) = —/” (1 +z) + In®lnd (6.26)
T

In first order form the action reads
K(G,%,%)— (n+1)G

with 7,7 chiral superfields. By eliminating the lagrange multiplier, G = x + X, with x
twisted chiral (x = InA) we recover the initial action.
By the G equation of motion

0K _
aG ~ "
we obtain
e = (e ~1)0d (6.27)

and defining e™7 = x
xx—1 dz B B
K=— / - —In(l+4+z)+ In®ln® + Inxx[in®® + In(xx — 1))
T

we finally define ® = In® + Inyx, so we can rewrite in the previous equation
In®Ind + (Iny + Ing)(In® + Ind) = 8¢ — Inxing + (Inxin® + Ingind)

the third term is a gauge transformation and can be eliminated, and the second term can
be rewritten, modulo gauge transformations, as

1
2
The final form of the Kahler potential is

(lnxx)?

XX=1 g _ B 1 _\2 ==, "
K= / Zin(1 + 2) + Ixx(in(xx — 1)) — 5 (Inxx)? + $8(6.28)

This Kahler potential describes the dual theory of the SU(2) x U(1) instanton. The two
theories are equivalent at the level of classical equation of motion, but their geometric
interpretation is very much different: the original model describes a group manifold with
torsion, whereas the dual model describes a Kahler manifold (torsion free).

From the explicit expression of the Kahler potential we can derive the metric of our
manifold: it is clearly the direct product of a torus (i’ part of the potential: a free complex
boson) and the two-dimensional manifold described by the metric

Po— XX (6.29)
xx(xx —1)
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The physical meaning of this metric is manifest after analytic continuation

X = X1+1ixX2 — X1+ X2
X = X1—1X2 = X1 — X2

in the new variables u = 1/x,v = 1/%

s — dudv

T 1 — v

(6.30)

We have again to take into account the shift in the dilaton field due to the integration
measure in the change of variable. We already known that

1
¢ - ¢ - 5171900

Changing variables to A = InA we obtain

_ d®d® + P dad)

2
@ PP + e2M
The isometry reads Ay — A3 + @, so
B 82/\1
Joo = 53 + e2M

and for the dilaton shift

qﬁ — Qb — Al -Jr %ln(@@ + 82)‘1)

with the dual change of variables

-—1+Aﬂ
XX = Y
® =Ind + Iny

we obtain

so finally the shift reads

and in the new variables u,v

6~ ¢~ 5in(1 — ) (6.31)



The combined set of eq. (6.30,31) is well known in the recent literature: modulo a mi-
nus sign in front to the metric this background describes the two-dimensional black hole
discovered by Witten [4], based on the gauging of a U(1) subgroup in the SL(2,R) WZW
model. The wrong sign is related (as more detailed in the appendix B) to the change of
sign in the level k of the WZW model: to be more precise, we are gauging the group SU(2).
The final effect is to obtain again a region of the two-dimensional Schwarzschild black hole.

The nature of our solution is manifest also in the euclidean signature after the change
of variables:

cht sht
X1 = ’ X2 =
senr senr
after which the metric reads ’
d? = (dr)2 + tanzr(dt)z (6.32)

l.e. the euclidean SU(2) version of the black hole (see appendix B).

This example provides a check of the above claim that duality is a symmetry of
conformal field theory: starting with a conformal model we have obtained a new manifest
conformal background, as it’s evident from the WZW interpretation of the final combined
system of metric and dilaton. In other words, we have related the SU(2) x U(1) and
SU(2)/U(1) x U(1)> WZW models. Moreover the form (6.32) of the metric is known to
be exact only in the large 1/k limit in the bosonic case, while it’s exact to all order in k in
the supersymmetric case [29], where it is an exact conformal background at all order.

The last step is the inclusion of the original dilaton field. So far we have worked with
the SU(2) x U(1) model which is not the instanton background proposed by Callan et al.,
still lacking the right background charge to the free U(1) boson.

We find the correspondence

d®d® + dAdA 1
T P e G

so for the dilaton field we find (modulo coefficients)
1 - _
t=—lIlnr = —Eln(@@ +AA) =96

As we have explained the duality transformation does not involve explicitly the dilaton
fields: once we have checked that the dilaton is preserved by the isometry (i.e. is killed by
the killing vector, or, equivalently, is independent from what we called z°) we perform the
above transformation on metric and torsion and shift the dilaton by the factor due to the
measure, regardless of the initial value of the dilaton field.

In our case eq. shows that the dilaton is preserved by the isometry ( the phase change
of A) and all we have to do is the change to the new variables:

t=—=(&+$)(6.33)

DO | =

As we expected, the complete dual model is obtained by adding a background charge to
one of the free fields of the final model.
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This completes the alternative dual description of the Callan et al. instanton back-
ground: after an analytic continuation to Minkowski signature it describes some region of
a black hole geometry. Unfortunately, the final geometry factorizes in two two-dimensional
independent part, so it’s not very interesting as four dimensional background. However,
we know also some deformation of the Callan et al. instanton. Modulo the solution of
some subtle points like the fate of N=4 superconformal symmetry in the dual model (we
have a manifest N=2 lagrangian which should be automatically promoted to N=4 super-
conformal symmetry after the inclusion of the background charge realizes c=6) we should
be able to rewrite the deformation in the new coordinates: we expect to obtained an highly
non trivial mixing of the four dimensions and so a new interesting stringy black hole (?)
solution.
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Appendix A

We list now the vertices that correspond to emission of particle zero-modes for the
various fields appearing in the effective 4-dimensional lagrangian in terms of the conformal
fields of the generic "instantonic” CFTs decribed in sec. 2. The notations used in this list
are essentially all explained in sec.2, for what concernes the space-time operators, that in
the following expressions are distinguished by the square brackets. The W 4, U%. are the
operators correspondent to the (1,0) and (0,1) forms, ® 4,14 (and the starred analogues)
the correspondent “upper components”. 1 is the identity times maybe the dimension zero
operator that plays the same role as e!*¥(#2) in the flat space case, and whose presence
depends on the uncompactified geometry represented by the abstract (6,6)s4.

The operators in the internal theory are labeled by their left and right conformal
weights and U(1) charges. In particular, the (chiral, chiral) and (chiral, antichiral) fields
\I!,:f are lowest components of short N=2 reps. and play the role of abstract (1,1) and (2,1)
forms of the compactifying Calabi-Yau manifold. The internal fields §; are all the possible
primary fields with the specified weights and charges, including more than the ‘Ilki We
refer for more extensive exposition of the notation to [13, sec.VI.10].

The branchings of the SU(6) reps into SO(6) x SU(2) x U(1) which explains how the

SU(6) index of the charged vertices is reconstructed are indicated in the form

Tepstis) = (TePsa(s) > TEPSL(2) s G)

(we omit the U(1) charge ¢ when it is equal to zero). We list the vertices referring to their
interpretation as zero-modes of the various Eg-neutral and Eg-charged fields of the effective
d=4 theory (see sec.2), just to facilitate the comparison with the zero modes counting of
that section; we count them for each field of the effective lagrangian of a certain kind; the
number of these fields depends of course in the usual way from the topological numbers of
the internal CY manifold.
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In the specific case of K3 the abstract (0,1)-forms are not in the spectrum of the
theory (R"'!=0).
Gravitational multiplet:

Graviton

i) |1/2 117 (0 0
e @-4{1/2 o] o o

i y(2) 1/2 11" /0 0
¢ H-*[l/z of 1

4kt zero modes

e [0 (0 0)

%qisg(z) 1/4 i 3/8 0
i HA[O ol T\ =32 0

—;qﬁ‘ag(d * 1/4 1 3/8 0
g @““*[1/2 o|*\3/2 0

coon[I " 8 1] (372 9)

Gravitino

2h1?! zero modes of (4) chirality and 4% zero modes of (-) chirality

Neutral WZ multiplets
SU(6)-singlet scalars

idg(2) |0 0] (1/2 1
‘ 1[0 OJQ< 1 0

One zero mode.
SU(6)-singlet fermions

eéd,”(z)i[l/él 0}“91_(3/8 1)

1/2 0 ~1/2 0 N
ig, (= 1/4 0 3/8 1
62@.3.'1(~)\I;Al: /O O} Qi (1;9 O)

2 zero modes of (-) chirality and A'" of (+) chirality.

E¢ Gauge bosons:
Vertices in the 35 of SU(6), “SU(6)-gauge bosons”

35 :(1571)+(171)+(173)+(4>2ag:3/2)"“(1’27(1: —'3/2)
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0wl 31 (5 5

oot [12 0T () 8) oute)

IO };; g:al (8 g)gi(;)
et |12 1A (8 38 5,
S RTGRART

2h1° zero modes.

J are the currents in the adjoint (15) of SO(6), A the currents of the SU(2) of the
right N=4 algebra, 9¢ is the internal U(1) current expressed in term of a free boson.

SU(6)-singlet scalars
g, () | 1/2 1 0 0
© ﬂ[ 1 o/'\o o

The {); are all the “space-time” fields with the indicated weights and isospins, so they are
more than the ¥4 (see sec.2) and their number should correspond to #End(Txs)
“Scalar” vertices in the 20 of SU(8)

20 = (6,2) + (4,1, = 3/2) + (4,1,§ = —3/2)

e [1/2 1/2rd1 (0 0) 65(3)

1/2 1/2 0 0
ei‘r"’w@m[%; 1é4r1(8 g’g)za(z)
e, 12 ] 3 (8 5 ) 5

2511 zero modes.

The heterotic fermions §p(z) transform in the fundamental of SO(6); £, and T, are the
SO(6) spin fields of the two chiralities.

Es Gauginos:
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Vertices in the 35, “SU(6) gauginos”

ok

is s 1/4 1/41%°
$0(2)
e 1{1/2 1/2J

iga(x)7 [1/4 0] 3/8 0\ ..
e a2 o) Tlsp2 o) TG
%‘¢ag(z)~r1/4 O-G 3/8 0 —
¢ Y2 o] T\ 232 o) 29)
i -[1/4 0]° 3/8 0Y -
2¢ag(z) L
¢ iz o 1<—3/2 o)A(z)
( 3/8 3/8

donon [V 138, 5 )5

Two zero modes of (-) chirality.
%%g(z) 1/4 0 3/8 0 A=
e W4 [ 0 0 1 3/2 0 J(Z)

................................

................................

R of (+) chirality.
SU(6) singlets fermions)

idag(2) ). 1/4 1 3/8 0
i Q{ 0 o]'\32 o

The numbers of these vertices is again related to #End(Tks).
Fermions in the 20 of SU(6)

e%%(z)q,‘{[l/zl 1/2}"‘1(3/8 0>9p(z)

0 1/2 3/2 0
o [ (38 38 me
[0 3 (3 e

h'! zero modes, all of (+) chirality.
27-charged Scalars:
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Scalars in the 15 of SU(6)

- - 1 -
15 = (6,1,q:1)+(4,2,q:——2—)+(1,1,q: —2)

eis9(2) {O O} \I,;: <1/2 1{2) 0p(Z)

0 0 1
(s |0 174" L (1/2 3/8 _
¢ 1[0 2] Vel 1 Z1yp) e

(s [0 0] o4 (172 1
e 1[0 O}Wk(l 9
one zero mode.
scalars in the 6 of SU(6)

.1
6=(1,2,§=1)+(41,7=—3)

: . [0 1/2]° 1/2 1/2
Thgg(2)p* +
° ‘I'A*[o 1/2} ‘Pk<1 1)

g (z)ge |0 /4| o4 (1/2 3/8 -
e T {0 0 v 1 —1/2 2.(Z)

AV zero modes.

27-charged fermions

fermions in the 15

i [ V8 0w (20, 1) oo

REWET {1/4 1/4]1& 11:;:( 3/8  3/8 )20(2)

1/2 1/2 ~1/2 —1/2
ie,(xn3 |1/4 0% [ 3/8 1
¢ 1{1/2 of Yrl_o1/2 9

Two zero modes of (-) chirality.

ity [1/4 o} ot (3/8 1/2> 7o ()

0 0 1/2 1
S (s 1/4 1/4]" 3/8 3/8 \= ,_
° ()‘I’*"[ 0 1/2} ‘I’Zr(l/z —1/2)Ea(z>
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i 1/4 0 3/8 1
5 ag(2) +
¢ Ya { 0 0} v (1/2 —2)

h1' zero modes of (++) chirality.
fermions in the 6

oo, [ Y 2 g (45 )

son [ o (1 1) men

hY! zero modes of (+) chirality.

L. | 1/4 1/2]°% L[ 3/8 1/2
¢ P {1/2 2] Yr 212

/
1
¢ 3/8 3/8\a& ,_
‘I’:<~1//2 —1/2>2“(z)

1/4 1/4

e%q”sy(z)\pz* [1/2 O

2h°1 zero modes of (-) chirality.

27-charged Scalars:
scalars in the 15 of SU(8)

3 i (4 3o

ige ()5 |0 0 _(1/2 1
e 1{0 OJ‘I’k(1 2
one zero mode.

scalars in the 6 of SU(6)

ien(ge [0 17210 _(3/8 1/2
¢ Yo {0 12| Y 1/2 -1
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e1?:0(2) g, {g 1(/)4} oy (%g i’jg) Y (Z)

hY%! zero modes

27-charged fermions:

fermions in the 15

e3bea(2)] “;3 8r‘l’; (_31/;32 1__/12> 0p(Z)

esqssg(z)i{l/él 1/4]“"11,;( 3/8 3/8) £.(2)

1/2 1/2 —1/2 172
oot [14 9] ap (35 1)

Two zero modes of (-) chirality.

P4 (4 1/4 0 - {3/8 1/2\~ ,_
T >\1;A{ / oJ‘I’k (1?2 __/1)913(2)

sona i ] e (1 1)%0

io (e | 1/4 0] - (3/8 1
© ‘I’““{ o o] ¥rl12 2

h1:? zero modes of (+) chirality.
fermions in the 6

e [ 14 2] ar (3 20)

SIHONR [164 164} vy G’g f;g) Sa(?)

h'! zero modes of (+) chirality.

e 30 g, [1/4 1/2}’”’111_( 3/8 1/2)

1/2 1/2 E\-1/2 -1
ig (g | 1/4 1/47% _(3/8 3/8\ &
v, [V T (35 98) 5,5

2h"'! zero modes of (-) chirality.
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Appendix B

We briefly review the construction of the stringy black hole based on the coset
SL(2,R)/U(1) [4].

The conformal field theory describing the black hole is obtained from the WZW
SL(2,R) model by gauging the symmetry

g — hgh

with h in some abelian subgroup H of SL(2,R). We will assume that H is a compact U(1)
subgroup and we will obtain the euclidean version of the black hole. The minkoswkian
version of the black hole can be obtained by taking a U(1) non compact subgroup, while
the dual black hole model [ ] by gauging the symmetry

g — hgh™?t.

We parametrize the group manifold as

L .
—7‘0’]_6%91202

i914(7'282

g=e?
We will take the generator of the abelian subgroup H to be o2, so that the symmetry
correspond to shifting 87 g — 0. r + a. The gauged WZW action reads

Slg, 4] = S[g] + éli / d?z[A(08g + coshrdfr)

T

+ A(80r + coshrOfR) — AA(coshr + 1))

with
k

Slgl = -

/d22(5r51“ — 00.00; — 80RO0R — 2coshr8_9L593)
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with the gauge fixing
0L = —0r

Solving for A via the equations of motion (the WZW topological term is trivial after this
gauge fixing) we finally obtain

S = £ d*z[0rOr + th*rH656)
4

there is also a contribution from the integration measure for the dilaton field: the best way
to compute it is via the one loop 8- function equations [4]

¢ = 2lncoshr + cost.
This is the stringy black hole solution proposed by Witten. Asympotically, it approaches
the liouville version of c=1 string. The black hole interpretation is more manifest after
analytic continuation in Kruskal-like coordinates.

Our solution is simply related to the Witten one by a change of sign in front of the
action, i.e. the change of sign of k; this correspond to gauging SU(2) instead of SL(2,R).
The only change we have to do in our formulas is

T — 17
So our euclidean version of the metric reads
d?s = dr? + tan’rdt?
and after analytic continuation in t

d?s = dr? — tan?rdt?

In kruskal-like coordinates
7 = [nsenr

R
u=-¢e "t
the metric reads dud
wdv
d’s =
1 —uv
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