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1. Introduction

This thesis stems from the context of supersymmetric grand unified theories. In this
introduction I shortly present the contents that will be discussed in the following chapters.

I will also discuss the motivations for this class of models.

1.1. The present knowledge: the Standard Model

The Standard Model (SM) [1] has been successfully tested in the past years, and the
experimental results are so well in accord with the predictions that it is quite a challenge
to build a “beyond the SM” scenario. Let us remember that the SM is a renormalisable
theory, and it is entirely consistent as such; it has lead us to the discovery of neutral
currents, and more recently of the vector bosons responsible for the effective current-
current interactions of quarks and leptons. The Higgs sector is very simple, and we
now know that substantial modifications, e.g. the introduction of an Higgs triplet, are
severely constrained by low energy phenomenology. No flavour changing neutral current
are present at the tree level, and the observed CP violation can be fully described within
the experimentally tested three families scenario. Among the tests still lacking is the
discovery of the top quark, to complete the three family picture, and of the neutral Higgs
boson, the only scalar degree of freedom present in the model, remnant of the electroweak

spontaneous breaking.

1.1.1. The top quark

There is no serious doubt that the top should exist: the bottom weak isospin is today
measured to be —1/2 up to 10% by the forward-backward asymmetry measurements
[2], pointing to the fact that the bottom quark is in fact a member of a doublet; the
BY — B" mixing magnitude requires the presence of the virtual top exchange, unless other
exotic particles contribute; finally the top is needed for the anomaly cancellation. But
more important are the precision electroweak measurements, that require a SM top with
my = 136753 GeV to fit the data [3]. We have also to recall the CDF bound my > 89 GeV
in the SM (and > 55 GeV independently from the model) [4]; the CDF Collaboration at
Fermilab may a,ctuallyAﬁnd the top in the next months, since some candidate events have

already been found. At any rate, the top mass is surely much higher than the mass of



the other observed fermions.

1.1.2. The Higgs particle

What about the standard Higgs boson? The previously recalled electroweak precision
measurements suggest a SM Higgs in the range from 6 to 300 GeV [5]. But these figures
are lo limits, and the error is not on my, but on its logarithm! This means that at
20 accuracy we need only my € [2,1200]GeV; that is, no effective information is today
available from indirect Higgs effects. On the other hand, from experimental direct searches

at LEP we have: my > 59 GeV [6].

From the theoretical point of view, a scalar sector is needed for the spontaneous
breaking of the gauge symmetry, which is the only way we know to have a renormalisable
theory of massive gauge vector bosons. However the presence of fundamental scalars in
the low energy theory gives rise to a theoretical problem, since there is no symmetry that
“protects” the “lightness” of these scalars in the perturbative framework. This leads us

to the so called naturalness problem.

1.1.3. The naturalness problem

G. ’t Hooft [7] argued that the standard model is not natural because of the presence

of quadratic divergencies.

However, in my opinion the naturalness problem in the standard model is a fake
problem unless we assume the existence of finite theory of which the SM is the low energy
remnant. In fact, if we suppose a finite theory exists which describes the physics above
the energy scale A, the standard model beeing just a low energy manifestation of this

theory, we would obtain for the Higgs mass my
mi[ = aA2 + mzﬂre (1.1)

where the first term in the right hand side is the effect of the quadratic divergencies (a ~ 1
in the SM), while the second parameter is given by the fundamental theory; notice that
even if Myq,e is a bare mass, there are no infinities involved, because the theory is finite.

The cutoff A acquires a physical meaning, forcing the scalar masses to be naturally of
O(A) or larger.



What do we know about the Higgs mass in the SM? It cannot be very far from the
Fermi scale (unitarity bounds from longitudinal W-W scattering require my < 1.2 TeV
[8]); s0, if A > 1 TeV, a huge cancellation must occur in the previous mass formula; if
this cancellation is not related to any dynamical reason, to be concrete is not “protected”

by any symmetry of the SM lagrangian, we consider it non-natural, after ’t Hooft.

We may avoid this “problem” by assuming that in the TeV region the standard model
is replaced by a theory which does not ezhibit quadratic divergencies. This is in fact the
feature characterizing the class of low energy softly broken supersymmetric theories that

we discuss in this report.

Actually, if we were to trust this argument we could use it to advocate the nearness

of the supersymmetric scales to the Fermi scale.

The above conclusion assumes that supersymmetry has something to do with nature,
but other possibilties may work as well. A non supersymmetric solution would be for
instance represented by the TeV-scale technicolor models [9], in which there appear no
fundamental scalar and therefore there are no quadratic divergencies. However, it is
very difficult to make this class of model consistent with low energy phenomenology, in
particular because of the potentially large flavour changing neutral current effects related

to the presence of a large effective scalar sector [10].

1.2. Advocating supersymmetry

Supersymmetry by definition relates bosons and fermions, putting them in the same
representation. In the following we will deal with a specific class of supersymmetric la-
grangians models; specifically the supergravity derived models, that offer the possibility
of realistic low energy scenarios. Supersymmetry at our energy scale must be broken.
This is realized in this class of models by explicit breaking terms, parametrized by mas-
sive coeflicients, that however do not change the UV behaviour of the theory, i.e. the
absence of quadratic divergencies (soft breaking). The size of the soft breaking parame-
ters characterizes the scale at which we should expect to find evidence of supersymmetric

particles.

From the phenomenological side, supersymmetry has proven to be a safe way to go
beyond the standard model, at variance with many alternative proposals. For instance,

although the supersymmetric Higgs sector requires at least the presence of two doublets,



there are no flavour changing neutral currents at the tree level, since supersymmetry itself

does not allow more than one Higgs doublet to couple to a given isospin type fermion.

Theoreticallly appealing motivations can be: i) supersymmetry is a step in the di-
rection of unifying particles of different spins; ii) local supersymmetry theories contain
naturally the einsteinian gravity, and the present attempts to quantize gravity seem to
require it. However, one must realize the fact that these motivations do not necessarily
require supersymmetry in the nearby energy scales; only the naturalness argument men-
tioned above can be phenomenologically relevant for our energy scales, and, together with
the apparent success of supersymmetric grand unification (that we are going to study in

great detail), motivates the experimental effort in the search for SUSY signals.

1.3. Grand unified theories

Grand unified theories (GUT) provide us with an unification in some sense orthogonal
to the supersymmetric one: unifying particles with different gauge quantum numbers but

same spin.

The grand unified theories are needed if we want i) to explain in terms of a single, and
more fundamental interaction, the strong and the electroweak interactions, and similarly
i1) to predict the many free parameters of the standard model, instead of determining

them phenomenologically.

GUTs energies will probably never be testable in accelerators, but GUTs may lead to
testable and interesting consequences in the low energy world; for instance the instability

of the proton, whose non-observation at the level of the present experimental sensitivity

has lead to the rejection of the Georgi-Glashow SU(5) GUT [11].

1.3.1.  Gauge hierarchy in grand unified theories

In a non supersymmetric GUT there are usually heavy Higgs scalars (m; ~ M)
which are related to the light Higgs fields (~ Mpermi) by quantum fluctuations, requiring
an unnatural fine-tuning of vacuum expectation values. This scale hierarchy problem is
similar in origin to that for the standard Higgs mass, although it refers to hierarchies
between renormalized parameters. Again, supersymmetry provides us with cancellations

between the radiative contribution of a particle and the contribution of its supersymmetric



partner, that keeps the scale hierarchies natural. Once supersymmetry is introduced, we
have technically “stabilized”, although not explained, the presence of large mass scale

differences in the theory.

1.3.2.  Scaling down to low energies

Once the GUT lagrangian is given, in order to study its phenomenological impli-
cations we have to perform a renormalisation group analysis. The scaling of all the
parameters of the theory to the energy scale that we want to study is needed since we
have to minimize the error that we make by truncating at a given order (usually 1-loop)
the perturbative expansion of our effective lagrangian; in other words the RGE tells us
how to resum and keep under control (by a variation of the value of the renormalized
parameters of the theory) the large logarithms that would otherwise appear at any order

of the perturbative series.

This leads us to investigate the structure of the the renormalisation group equations
for a general softly broken supersymmetric theory and will allow us to study in details

the problem of gauge coupling unification and the spectrum of the low energy theory.

1.4. Layout of the thesis

The present introduction draws the general context of the SUSY GUTs. I discuss
in details in the next chapter the SUSY gauge lagrangians with soft breaking terms. An
effort is done to derive consistently all the various terms of the SUSY lagrangians from
the superfield formulation, following the notations of Appendix A; we use the resulting

lagrangians to illustrate the phenomenological necessity of the soft breaking terms.

In the third chapter I discuss the GUT predictions for the gauge coupling constant
unification, at the 1-loop level. The experimental data both on the proton lifetime and
on the gauge coupling constants allow us to discard the Georgi-Glashow SU(5) model in
its non supersymmetric form. The remarkable success of its SUSY counterpart is proved

to depend critically on the minimality of the Higgs sector.

In the last chapter I quantify and discuss in details the impact of the two-loop re-
finement of the analysis, and the uncertainties due to the presence of threshold effects,
both at the low energy scale (SUSY particles+top) and at the GUT scale. The effect



of supersymmetric particles thresholds is parametrized by physically meaningful effective
thresholds; we discuss finally the interplay between the GUT and the low-energy threshold

effects on the predictions.

In Appendix C, I derive the SUSY renormalisation group equations, in a form valid
for for any lagrangian with soft breaking terms. I apply this formalism to the case of
the minimal SUSY extension of the standard model. I would like to emphasize that
these equations have a wide domain of applicability, not yet fully exploited; in particular
they are needed: 7) for the analysis of the SUSY Higgs sector, which is crucial for grand
unification; 4¢) to scale, from the GUT energies down to the Fermi scale, the predictions
on the Yukawa couplings of a given grand unified model, with the aim to study mass

spectra and CP violation.



2. Supersymmetric lagrangians

Supersymmetry is a symmetry that transforms bosons into fermions, that is, an ex-
tension of the Poincaré group, unificating different representations of this group. The
aims of this chapter are to write down the supersymmetric lagrangians that are renor-
malisable and gauge invariant, to recall briefly the theoretical concepts relevant for our
analysis (we use as a general reference the book of Wess and Bagger [12]), and finally to
discuss the kind of supersymmetric models that are considered in best standing from the
phenomenological point of view: the models with soft breaking of supersymmetry. We
will follow for the lagrangian the conventions of Haber and Kane [13], that are, up to

minor changes, the same conventions used by Wess and Bagger.

2.1. Supermultiplets

We shall present in this section the particle content of a supersymmetric theory,

whose aim is to describe the phenomenology of the low energy world.

Trying to mimic the usual infinitesimal transformation setting for continuous sym-
metries, we see that, if we want to maintain the commuting (anticommuting) character of
the boson (fermion) fields, the parameters of supersymmetric transformations (e and € in
the next formula) are necessarily fermionic in character. These parameter are connected
with fermionic generators, that enlarge the Poincare algebra; the resulting mathematical
structures are called graded Poincaré algebras, or Poincare superalgebras; the associated

transformations are:

bsusy =€ Q+EQ ‘ (2.1)

We can conveniently study the representations of supersymmetry relying on the so called
superspace formalism. In fact the ordinary 4-dimensional coordinates z,, can be regarded
as the coordinates of the coset space obtained from the Poincaré group (thought as a
topological group, that is a group whose elements are in a one-to-one correspondence
with coordinates) once the Minkowsky subgroup is factored out. The space spanned by
the anticommuting coordinates § and 6, and by the usual 4 parameter of the translations
is what we obtain using the same factorization on the Poincare supergroup; this explain

the name superspace.

The functions defined on the superspace carry an obvious SUSY representation, ob-



tained transforming the superspace coordinates; they are called superfields. Once ex-
panded in series of the anticommuting parameters § and 4 these functions are shown to
be equivalent to a finite set of ordinary fields of different spin; these sets are called super-
multiplets. In fact, only the simplest superalgebra, with a minimum number of fermionic
generators, can be relevant for the low energy phenomenology, because only in this case
the supermultiplets can have a chiral structure, needed to describe properly the weak in-
teractions. More specifically only two kind of superfields bear importance for low energy
phenomenology: the vector and the chiral superfields. The vector superfield contains a
Majorana fermion Ay/(z) and a real vector field V,(z), and is obtained from the most

general superfield imposing reality:

[SVRIE

V(w,@,g) = C(z)+ [0é(z) + 5211[(:1:) + 9_20(-—1:/\(&:)) + h.c]+ 60“§Vu(m) +=D(z) (2.2)

(the field X in the previous equation is in fact a Weyl field, but also X is present, and a
Majorana field can be reconstructed). The chiral superfield contains a Weyl fermion ¢(z)

and a charged scalar z(z):

®(z,0) = 2(z) + V2 0y(z) + 0° F(z) (2.3)

Due to the fact that the fields will appear in the generating functional, we have to
represent supersymmetry also off-shell, that is without the constraints of the equations of
motion. This requires the presence of the so called auziliary fields, that is fields that are
needed to represent supersymmetry, but that have no dynamic role (that is they do not
propagate). In particular let us note that the mass dimension of the fields F(z) and D(z)
is two, not the canonical one; for instance in eq. (2.3), if 2(z) is the canonical scalar field
(with mass dimension 1) and v(z) is fermionic (with dimension 3/2) we conclude that
the coordinate # has dimension —1/2, while F(z) has dimension 2. Similar considerations

apply to the auxiliary field D(z) in eq. (2.2).

2.1.1.  Gauge assignments; the “SM” supermultiplets

The gauge transformations must commute with the fermionic generators in any low
energy relevant context; otherwise a local gauge transformation, acting on the fermionic
generators would imply the presence in the theory of local fermionic transformations.
Considering the fact that the anticommutator of two fermionic generators in supersym-
metry yield a translation, that would imply a local translation, i.e. we would be lead

to consider gravity (this second part of the argument can be considered an interesting

8



argument by itself; we will discuss the point at the end of this chapter). This observation
implies that the gauge assignations are given on supermultiplets; that is every ordinary

particle must have a superpartner with the same gauge assignment.

Now let us set the notations. Let us consider the case of the up-quarks. The left

component belong to the superfields
Ur(z,0) = ir(z) + V2 bur(z) + 6° F,, (=) (2.4)

(we have implicitely defined 6 to be a left bispinor). The right component of the up-quark
(with the same charge) cannot be used together with 6§ to form a chiral superfield; it is

instead a component of an antichiral superfield Ug(z, §):
Ur(z,8) = dr(z) + V2 Gup(z) + 6% F,, (z) (2.5)

It is useful to define another superfield U§(z,6) whose fermionic component is the left
bispinor u§(z):
Ui(z,8) = ai(z) + V2 6ui(z) + 6° Fys () (2.6)

and then define its conjugate (see Appendix A) so that
Ui(z,0) = UR(mvé) (2.7)

This relation in components reads:

URr = Uy
T o= @ (2.8)
Fon = Fy

Finally, let us note that one can write
ug = (v)L (2.9)

where in the left-hand-side we have the left-component of the charge-conjugate up-quark
four component spinor, written in the chiral representation of the gamma madtrices, and

the bispinor is seen as a four-spinor with zero right-handed part (with the notations of

Appendix A).

We use the same notations for the down-quarks and for the leptons; the non-standard

particle, following Haber and Kane, have a tilde. I do not use the Haber and Kane notation



for the gauginos, but a simplified notation, well suited for my purposes.

ur,uy -— ur,uf scalar-quark

dr,d; — dr, J‘i scalar-quark

er,ey — €r,€5  scalar-lepton

v, — g scalar-neutrino

H — Hf higgsino (2.10)
H? — H? higgsino

H) — HY higgsino

Hy — Hy higgsino

Va — A gaugino

Notice that all the fermionic fields are left fields.

We need an even number of Higgs superfield doublets with opposite hypercharge: in
fact each higgsino is a fermion and contributes to the anomaly. Morover, we will see in the
following that we need at least two Higgs superfields to build a realistic supersymmetric

lagrangian.

We may notice that the second Higgs doublet H, (a bosonic field) does have the
same gauge numbers as the leptonic doublet L; = (v1,er) (a fermionic field); but the
attempts to reconstruct a supermultiplet using this two doublets of “ordinary” fields were
not successful, firstly because the electroweak breaking would imply a violation of the

lepton number as well.

2.2. Gauge interactions

In this sector of the lagrangian supersymmetry generates, besides the ordinary in-
teractions, every possible “SUSY related” term; e.g. the usual quark-quark-gauge field
interaction term is related to a gaugino-quark-squark interaction, and in the pure gauge

sector appear a gaugino-gaugino-IVB interaction term.

We will refer for our discussion to the superfield formulation, because it allows us to
treat the supermultiplets in a compact way. To generalize the concept of local (gauge) on
matter fields, we have simply to translate “matter field” in “chiral superfield”, and replace
the real functions a?(z) that parametrize the gauge transformation with an analogous set

of chiral superfields.

10



2.2.1. Gauge interactions of matter fields

To find the interaction between matter and gauge fields we have to render invariant
the kinetic term of the chiral superfields; finally we have to expand the supersymmetric
expressions in term of the ordinary fields. I will always work in the Wess-Zumino gauge;
this is a choice of the chiral superfields used as gauge parameters such that the auxiliary
fields C, ¢, M of eq. (2.2) disappear, even if the usual gauge invariance is left. The price to

pay is that neither supersymmetry or generalized gauge invariance are separately present.

The component lagrangian for the fields in eq. (2.3) can be found applying the rules
in Appendix A:

1Duzal* + iva(DY), + FF,
+iv29(2; Aaythy — VYadab2zp) + 92 Dap2s (2.11)

where the index a spans the gauge multiplet. I wrote only one coupling constant and I
have included the group generator in the definition of the gauge superfields; that is in the
vector field, in the gaugino A and in the auxiliary gauge field D (e.g. : Doy = D™ T%).
Let us recall that the field D (like F) is an auxiliary field with mass dimension 2. As
such it can enter a renormalisable lagrangian only quadratically (like F in eq. (2.11)) or
linearly, eventually multiplied by scalars with canonical dimension (like D in the previous
lagrangian). We can form actually an invariant term by picking the D component of a
U(1) vector superfield:

Le=¢ D(z) (2.12)

We can translate eq. (2.11) in 4-component notations by introducing a Majorana
and a Dirac spinor fields Ay;, Up respectively; the only non-obvious part is the gaugino
interaction; using Ay = (A4, A ;) we have:

1 —
2

L+7s

i\/ﬁg(z"j\M Rk ‘IJD - ‘i’D

Arrz) (2.13)

while using A’y = —iA* and the Majorana spinor Xy, = (A, j‘ii) we find:

3 1= = 1+7;
= Vag(s" X 5 U + TN 2) (2.14)

The gaugino interactions of eq. (2.11) provide a contribution to the generalized mass

matrix of the fermions, and mixes the gauginos with the “matter” spinors (higgsinos
included):
Lur = V2(g°2T5)(1ha e + V29 T2 ) ba( ~ie) (2.15)

11



The use of the spinor —iA instead of A itself is due to the fact that, following the conven-

tions of Wess and Bagger —i\ appears in the vector supefield of eq. (2.2).
The vector fields get their mass from the first term in eq. (2.11), namely

Liv = (9°T%2:)(9° 2 T ) Ve Vi (2.16)

2.2.2. Interactions of gauge fields

The derivation of the gauge field lagrangian in this formalism is more tricky, requiring
the use of the covariant derivatives* to bﬁild the supersymmetric and gauge invariant term
W+ W,. Nevertheless the lagrangian that result from the same kind of analysis is quite
obvious to guess; the gauge fields and the gauginos propagate in the usual way, the field

D appears in a covariant fashion:

G2 - D2
- —4_0“ + Z/\a7“(DuA)a + "éﬁ (217)

We can eliminate the auxiliary field D* from the theory by a gaussian functional
integration; doing this way, and using eq. (2.11) and eq. (2.17), the resulting term in the

lagrangian is

D2
Lp = -7& ‘ (2.18)
D* = ¢°z; Tz (2.19)

This is a quartic contribute to the Higgs scalar potential, with a coefficient that is the
square of the coupling constant; this is mostly interesting because in the SM the quartic
terms in the Higgs lagrangian appear with an arbitrary coefficient A. If the term of eq.
(2.12) is present, we are left, up to a constant, with an additional term in the lagrangian:

—£% Dg; remember that to have such a term we need a U(1) factor in the gauge group.

2.3. The SUSY flavour sector

If we focus our attention on the auxiliary field F(z) in eq. (2.3) we understand how to

build other SUSY invariant terms; under a supersymmetry transformation, the variation

*To be honest covariant derivatives are needed also to obtain the chiral superfields by imposing a
SUSY covariant constraint to the most general superfield; they may be viewed as differential operators

connected with right multiplication on the left coset space.

12



of F(z) must include, besides the supersymmetric parameter €, also a total derivative of
the field ¥(z) for dimensional reasons; so we can build invariant actions just taking the
product of chiral superfields, picking the highest dimension component as lagrangian and

integrating the result on the usual 4 space. These terms extends the usual Yukawa sector

in a SUSY fashion.

As for any lagrangian, we need just to insure the global invariance of our SUSY
flavour interactions to obtain also the local invariance, since no derivatives enter this
part of the lagrangian. In general, we must build a polynomial of chiral superfields (the
matter fields, Higgs included), that is a chiral (composite) superfield by itself, called the

superpotential:

F(8) = 1By + 28,8 4 £ D, B2, (2.20)

where I considered only monomials leading to operators in the lagrangian of dimension 4
or less. The superfields ®, are the chiral (commuting) superfields that describe the theory:
they form a reducible representation that contains all the “matter” fields (quarks, leptons,
Higgs) The indices a, b, c identify the field components within this multiplet, e.g. a = H7;

the coefficients f**°, u are symmetric functions by definition.

Using the formulae in Appendix A it is easy to derive the formula for the F-component

of the superpotential:

) 5 1 5
(@) = ..+96 (;Fa@:—gziﬁa%aza&b) f(z)

= .+6 (Z F,f*(z) - % > bt f"b(z)) (2.21)

where I used the notations

fazg_]_c_ fab_ 6f

0z, = 82,0z,

(2.22)
The resulting terms in the lagrangian are, besides Yukawa terms, interactions of scalars:

Ly =F, f*— -;: Yathy F + hec. (2.23)

It is a simple task the elimination of the auxiliary fields F(z) from the total la-
grangian; using eq. (2.23) and eq. (2.11) one obtains F,(z) = —f.(z), and therefore the

contribution to the scalar potential is given by
Lr=—]f"] (2.24)

13



Finally we have the generalized mass term for the chiral fields:

1
Ly = —5 Yoty fab + h.c. (225)

2.3.1. The SM SUSY case

We can give at this point another explanation why we need two Higgs doublets to .
extend the SM in a supersymmetric way. The up and down type of quarks need to be
coupled to two doublets with opposite hypercharge (the coupling is used to give mass
to both up and down quarks respectively’); but we cannot use, as in the SM, one Higgs
and its conjugate, because the conjugation transforms a chiral superfield in a antichiral
superfield (a different representation of the supersymmetry group), that would spoil the

supersymmetric character of the superpotential.

It is easy to build all the possible low energy SUSY invariants with the fundamental
superfields. In components we understand a priori that we can obtain more invariants
than in the SM, because we have an additional Higgs doublets, and also because the stan-
dard spectrum is doubled. Using however the compact superfield notation the welcome

invariants are (an antysimmetric SL(2)-covariant matrix where needed is intended):
H\LE°,H\QD°, H,QU°,H, H, (2.26)

The first three terms are just the superfield extension of the SM Yukawa terms, while
the third is “new” and forbids a trivial global invariance in the Higgs sector. In principle

there are other invariants
L?E¢, HfEc; eangcaDcﬁDCV,LQDC; LH, (2.27)

We see that the first two terms arise like the first term in eq. (2.26) because L and
H, have the same quantum numbers; similarly for the last two terms. The fact is that
these terms lead to lepton and/or baryon number violation at the tree level. The most
economical way to exclude this terms is just to impose a matter parity, under which only
the matter superfields transform (not the Higgs); in fact in all of the unwanted terms the

number of matter fields is odd, while is even in the others.

We can also exclude them using a continuos U(1) symmetry, called R symmetry,

in which the supersymmetric fields (squarks, gauginos, etc.) transform differently from

tSome authors use for this reason the notation H,, H; instead then H,, H,
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their “standard” counterpart. A way to introduce readily this kind of transformations,
that are compatible with the supersymmetric ones, is to consider transformations on the
superfields in which the anticommuting parameters pick a phase, and the component fields

rotate in such a way that the superfield is simply multiplied by a phase.
The superpotential for the SUSY SM reads:
fsar = €. [UF HLTES + T2 HYQIDS + T, HIQIUS + p HY HJ) (2.28)
where I have written the SU(2); indices, and left the SU(3). ones implicit.

With the notations of eq. (2.20) one write:

fazires = Tj €0
f HeQreDs® = Tij €or bas
fH.gQ;ancﬁ = PiLJT‘ €1 ap
IU'H{’,H{ = K €57 (229)

The matrices I' have indices on flavour space and also on colour and isospin-weak space.

2.4. The low energy supergravity model

In the context of model building the main question is simply: do the supersymmetry
models provide us with extensions of the standard model lagrangian that are phenomeno-
logically acceptable? In the low energy world supersymmetry appears to be broken, and
we have therefore to justify how that breaking comes about. I will first discuss how the
SUSY lagrangians written in the previous sections have to be modified in order to be re-
alistic. This will be achieved via the introduction of soft breaking. Spontaneously broken
low energy supergravity is the natural framework in which to implement such scenario. I
will illustrate in details why phenomenology requires soft breaking terms, discussing the
supertrace of the mass matrix in a general SUSY theory, setting also useful notations; at

the end I will briefly mention the theoretical context in which these results arise.

2.4.1. Soft breaking terms

A phenomenological problem one encounters in supersymmetric model building is the

tree level mass sum rule first proved by Ferrara, Girardello and Palumbo [14]. Defining
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the supertrace of the mass matrix to be the sum of the traces of the mass matrices of
spin zero, spin 1/2, spin 1, weighted by the corresponding spin factor 1, —2, 3 respectively
one can prove, using equations (2.25), (2.24), (2.16) that Str(M?) = 0 if supersymmetry
is exact or spontaneously broken; this is obviously a limitation for the model building.
In fact we can say that it is because of that that theorists were lead to consider explicit

breaking of supersymmetry.

The expv]icit breaking that has been considered is in fact not the most general, but the
so called soft breaking, in order not to spoil the cancellation of the quadratic divergencies,
characteristic of the supersymmetric theories. The soft terms have been catalogued by

Girardello and Grisaru [15] and are of the form

mPzz" mPz mPz2® mz®  pd (2.30)
where z is a scalar from a chiral superfield and A is a gaugino, and I used m and p to
emphasize the fact that the couplings are dimensional. We can also notice that this terms
are the lowest dimension component of the monomial of superfield used in the derivation
of the supersymmetric lagrangian; the first comes from the kinetic term ®*® of the chiral
superfields, the last from the kinetic term W? 4+ W? of the vector superfields, the others
from the “flavour” part (cfr. eq. (2.20)). When we consider a realistic model building
an important requisite is to have soft terms that are gauge invariant; with the previous
observation we know that the gauge invariance of the soft terms is assured by the gauge

invariance of the corresponding supersymmetric monomials. We will use:

Loopr = Lax— Viost (2.31)
Lo = +% todaa + hoc. (2.32)
Viost = [1(2) + hc] + mgyz;z (2.33)
n(z) = L%, + —;—]W“bzazb + é—n“‘wz,,z,,gc (2.34)

where I defined the dimensionful couplings in 7 in analogy with the terms in eq. (2.20);
notice also the apparently unconventional sign + in the gaugino mass term (this is due

to the fact that we use conventionaly —i) in the vector superfield; see for instance eq.

(2.15)).

The objection of arbitrariness of this kind of breaking of supersymmetry is in fact
not so severe because soft terms may arise in the flat limit of supergravity theories (for a
review see ref [16]). Spontaneously broken N = 1 supergravity, in its minimal formulation,

allows also to reduce the number of couplings that appear in the previous equations;
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making reference to eq. (2.20) we have:
mgb = m§/25ab Lt = m:;/zCla ]‘/[ub = mg/gB’LLab T]abc = m;;/zAf“bC (2.35)

where mg), is the gravitino mass; this form of the soft breaking terms hold after the flat

limit Mp; — oo is taken.

We are now ready to write the general form of the supersymmetric lagrangian with

soft breaking terms:

1 ,
L=Ly+ Lom +5 [0 Xada — Py £ + he] -V (2.36)

where L, is the pure gauge lagrangian of eq. (2.17), without the D-term; Ly, is the
gauge-matter lagrangian of eq. (2.11), without the terms in which F or D appear; V' is
the scalar potential, including the terms resulting from auxiliary field elimination and the

soft terms. The explicit form of V is written in Appendix C, formula (C.14).

In order to make contact with experiments the parameters in the lagrangian have to
be scaled with a renormalisation group analysis down to the low energy region. This kind
~of analysis has been performed by different authors[17]; I will discuss a very beautiful
and simple method to obtain the 1-loop renormalisation group equations based on the

effective potential in Appendix C.

2.4.2. Mass matrices

Let us set some useful notation: we will distinguish a field from its conjugate with

the position of the representation indices:

“=(@), =), M=, AE=FE) . (23)

in the last example I recalled the notation of eq. (2.22) for the partial derivative of the
superpotential f(z), that I will use widely in the following.

Now we separate out the terms in the lagrangian that give rise to the mass matrices
for the different fields, as follows

Limaas = —;: {Vi-st ve— ¢ Mg+ he] 2003 - 2) (2.38)

I wrote “mass” with quotation marks because I am referring to the generalized mass

matrices, as it is apparent in the next paragraph; the usual mass term and mass matrices
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are obtained simply taking the expectation value of the scalar fields that appear in the

matrices.

For the intermediate vector bosons we use equation (2.16) to write
M} = D**D? + D> DPe (2.39)

Whereas eqs.(2.15), (2.25), (2.32) lead to the following fermionic mass matrix:

B fab \/iDﬁa B T/Ja |
]V[1/2 = ( \/iDab patSaﬁ ) ’ £ = ( —i ) (2-40)

Finally, using eqgs. (2.18), (2.24) and (2.33) we can write the scalar mass matrix as:
]‘/1-2 _ facfcb_*_mga_*_DQach;_l_ngDa fabcfc+77ab+D3Dba (2 41)
o fabcfc + ,qab + Dea Dab fachb + mgb + Dc@laDab + D;‘:bDQ :
where the field Z = (2%, 2,) contains all the scalar fields in the theory.

Notice that the presence of a ¢ term, eq. (2.12), leads to an additional constant

contribute to the scalar mass matrix of the form:

, Da’a 0
511/[5:50‘( S Da,b) (2.42)

where the index o runs over the U(1) generators Y.

In terms of the generalized mass matrices, previously introduced, the supertrace
reads:

Str(M?) = tr(M?) -2 tr(]VIf}z]VII/z) + 3 tr(M}) (2.43)

and can be easily computed to find
Sto(M?) = 2 |€¥ g*'tr(Y™) + tr(m z | o | (2.44)

We can now prove the previously mentioned sum rule; in the case in which the soft
breaking terms m{ and p, and 7 are zero, and the trace of the U(1) generators is zero (it
is the case of the standard model hypercharge, and it is necessary if we want to embed the
group in a simple GUT) also the supertrace of the square of the mass matrix is zero; in this
case it is easy to convince oneself that a realistic spectrum cannot be reproduced, if one
would suppose the ordinary particles and their SUSY partners to be the spectrum of the

theory. It is clear that, in a softly broken supersymmetric theory, the phenomenological
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requests on the SUSY spectrum can be taken into account easily. Let us stress in any
case the fact that this sum rule is valid only at the tree level. The alternative attempts
to use the ¢ terms to evade the phenomenological bound lead to a new U(1) with non
zero trace; and one finds that the condition of absence of anomalies requires an enormous

number of particles [18]; that is why this kind of models are not pursued.

From now on we will limit ourselves with the study of softly broken SUSY models as
derived from spontaneously broken N = 1 supergravity. In this framework, the scale of
soft breaking ms), is related to the scale Mg of spontaneous supergravity breaking, and
to the Planck mass Mp; by a see-saw like formula:
M2

m§/2 = O(l)ﬁ/fpl

(2.45)

As a consequence, if Ms = O(10'' GeV) we obtain mys, = O(1 TeV), providing a
suggestive connection between heaven and earth. For the following we will assume the
flat limit Mp; — oo, my, fixed, that is we will assume that at the grand unified scale
Mcur > 10" GeV local supersymmetry is already broken and we have effectively a global

supersymmetry theory with explicit soft breaking characterized by the TeV scale.
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3. Grand unification

We are going to study the predictions of the minimal group of grand unification,
namely the Georgi SU(5) GUT, for sin’ - and for unification mass (for a review see
[19]). The choice of the group is not very restrictive, if no exotic light particle is present;
in fact in SO(10) and in Eg we would find the same results, modulo GUT threshold effects.
We will see that the SUSY SU(5) model is fairly in agreement with the experimental data,

whereas its non-SUSY counterpart fails.

First we shall discuss the one-loop predictions, then we will investigate two-loop
and threshold effects, which are needed to confront properly the theory with the precise

experimental data that are presently available.

3.1. One-loop analysis

In this section we will discuss the general philosophy of the renormalisation group
analysis of GUT theories; then we will give the formulae for the “one-step-GUT” predic-
tions, we will use these formulae to confront the SUSY with the non-SUSY unifications.
The outcome is that the “SM™ unification, in contrast with the SUSY one, is not success-
ful. At the end we will employ all the available experimental informations on the couplings
to perform a slightly non standard analysis, in which we leave the “one-step-GUT” con-
text, and find a prediction for the scale at which the supersymmetric particle should be
found. This last item can give a useful hint for model building and experiment; the pos-
sibility of a nonstandard spectrum of “light” SUSY Higgs supermultiplets is considered.

Finally we will state our conclusions, stressing the need of the 2-loop improvement.

3.1.1. How a single coupling leads to more couplings

If the physics is described by a simple unification group the gauge interactions are
parameterized by a single coupling constant. If we are studying processes in which the
typical momenta M are larger than Mgy, where Mgyt (Mg for short) is the grand

unification scale, the theory appears in this region symmetrict, and our coupling constant

}This happens when M is larger than the various physical masses.
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runs quietly according to:
= — ln [ —
Mg

ag(M) ~ ac(Mg) 2r ) M > Mg (3.1)

Suppose that we are instead studying the other regime, M < Mg¢, and suppose that a
spontaneous symmetry breaking of the group G down to H = [[; G; has taken place at
a scale ~ Mg. When we write the residual gauge group H as a direct product of G; we
are obviously thinking to the standard model SU(3). x SU(2). x U(1)y. We concentrate
first on the gauge coupling of the simple subgroup G;, that is on the light vector bosons
relative to this subgroup, secondly we split b¢ in its two parts: the first is due to the heavy
particles (with masses of order M), and the second one to the light particles running in
the loops:

be = b + b (3.2)

If the decoupling theorem applies only the second contribution has to be retained; this
is the so called step approzimation for the beta function. The crucial point is that the
splitting of the universal constant bs is i-dependent, and so the low energy physics is

described by many coupling constant (as much as the number of simple subgroups):

1 1 bl M
_ 2 M < M, 3.3
(M)~ ag(Mg) 27 <MG> = Mo (3:3)

Let us change slightly the perspective, and investigate the relation between the cou-
plings above and below the threshold. We can look at eq. (3.1) as the definining equation
for ag(M) even for M < Mg, and we could try to describe also the low energy regime
with this single “effective” coupling constant. Now let us confront it with eq. (3.3). We
simply observe that latter equation is what we would write in a theory without heavy
fields; or better, the equation we would write in the effective theory obtained integrating
out the heavy fields in a generating functional; that is the equation one correctely use in
this regime. We see that the relation between the coupling is

1 1w M
_ S (M .
(M)~ ag(dD) Ton IR <MG) (3:4)

We conclude that if we compute a Green functions of light vector bosons using ag (M)
as the parameter of perturbative expansion, the couplings a;(M) must appear as result
of the resummation of non negligible higher order effects of heavy particles (in fact a
“resubtraction” of the heavy contributes, that appear in eq. (3.1)); that is ag(M) reveals
simply to be not reliable at low perturbative orders in the low energy regime. By the

same argument we can understand that one can interchangeably use o;(M) and ag(M)
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in the region in which higher order effects are small (for instance we can use ag slightly

below the unification mass).

We are allowed to use the step approximation in a momentum dependent renormal-
isation scheme, (as an example see [20]) but the connection between the unified theory
and the low energy one must be studied from the point of view of effective theories if
we are working in a momentum independent renormalisation scheme. The crucial point
is not that the decoupling theorem does not apply, but simply that the concept of de-
coupling, momentum-dependent, does not apply: it is clear in fact that the e poles from
heavy particle exchange are present above and below the threshold; as we have seen, we
have to consider in fact two distinct couplings and two distinct theories. This point of
view has been introduced by S.Weinberg,[21] and will be formalized when discussing the
2-loop running. We will use here the result that approximatively the running coupling
constants of the low energy theory and of the high energy theory meet exactly at the
threshold, so that a posteriori one can naively speak of a single coupling that at the
threshold changes its behaviour, inasmuch one speaks of decoupled degrees of freedom in

the momentum-dependent schemes.

3.1.2. Normalization of the generators

We see a possible manifestation of this grand unified world in the ordinary one: we
can fix the value of the unified coupling constant and of the unification mass M¢; looking
at the crossing point of two standard running coupling constants, and then predict the
third.

But if we want to confront properly the coupling constants of different subgroups
we must be careful about the normalization of the generators in each representation of
the grand unified group; in fact the generators that survive the spontaneous symmetry
breaking are the same as in the unified theory, and the universality of the normalization is
one-to-one with the universality of the charge, because the generators enter the lagrangian

multiplied by the corresponding charges.

Let us recall some group theoretical notions. For a given group G the index T>(G, R)

of a representation is defined according to

Tr(R*(G)R%(G)) = T»(G, R) - §°°. (3.5)
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Summing on a = [ we obtain the relation with the eigenvalue of the Casimir operator:
_ Dim(R)
~ Dim(G)

Notice that we are dealing with compact and simple unification groups; this fact allows us

T»(R)

Cy(R) (3.6)

to use hermitian generators, so that the T3 is a positive coefficient; the price to pay is an 7
in the commutation relations. In the group SU(N) we define T to be equal to 1/2 for the
fundamental representation, and as a consequence we find T5(Adj) = N (= C2(Adj)). Ifa
representation R is the direct sum of some representations R, it follows that T,(R) is just
Yo T2(R*); for instance, considering the hypercharge generator, the representation of the
Higgs doublet H is counted as 2 times the same U(1)y- (one dimensional) representation,
since its SM numbers are (1,2,1/2): To(U(1)y,H) = 1/4 +1/4 = 1/2.

If we restrict ourselves to the SU(5) GUT, knowing that the down-type of antiquarks,
with SM quantum numbers (3,1,1/3) and the leptonic doublet, (1,2, —1/2) form the fun-
damental representation 5, the computation of the T}, for the subgroups SU(3).,SU(2),
U(1)y must give the same result. The generators of the first two subgroup are normal-
ized to 1/2, in accord with the fact that the representation is the fundamental, while the
hypercharge gives: 3-1/9 +2-1/4 = 5/6. This means simply that the generator to be

considered in an SU(5) unification context is not Ys; but

Your = 1/3/5 - Ysar (3.7)

and in the same time we must replace the corresponding charge by

Jour = \/5/3 - gsar (3.8)

In §O(10) and in FEg, larger unification groups, the normalization of the generators is
the same as in SU(5); this means that we would perform the same analysis, if the light

spectrum would stay the same.

3.1.3. One-loop B coefficients

Let us recall that the coefficients b; of eq. (3.3), which determine the running of the

gauge coupling constants at one-loop relative to the groups G, are:

1.7y real scalars (charged: x2)
P=31-TF Dirac fermions (Weyl or Majorana: +2)
b¢ = —11.TC massless IVB (e.g. gluons)
- T3 massive IVB (with its Goldstone boson)
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Since we shall consider supersymmetric theories, it is convenient to list the corre-

sponding coeflicients for supermultiplets:

b =1-TF  chiral superfields
by = —3.T, vector superfields (3.10)

b = —2. T/ massive vector superfields

Notice that the would be Goldstone boson in the SUSY case is a chiral superfield (without
gauge fixing, supersymmetry implies a Goldstone fermion). The indices T are assigned
once we give the spectrum of the theory. It is easy to compute the coefficients relevant
to our analysis using the group theoretical informations given in the previous paragraph;

we list them in the Appendix B.

3.1.4. Formulae for the 1-loop predictions

Let us suppose a great desert picture, that is: the world between My and My is
described completely by the SM or by its minimal SUSY extension. We can apply in this

case the following 1-loop equations for the running of the gauge coupling constants:

11
R S i=1,2,3 (3.11)
Q; agG

On the left-hand side we input the experimental values of the couplings, that is a,(M7),
computed in the M S scheme. It is common use to set t = (1/27)In(M¢/Mz). Then let

us use sin’ 6y (M) |57z — a running quantity by definition — and a, the electromagnetic

coupling constant in place of a;,as:

1 _ 31l-sin’ gy

(=7} 5 [

T o (3.12)
an o

The factor 3/5 is due to the normalization of the U(1)y coupling constant, consistently
with the SU(5) embedding (eq. (3.8)).

Now we can use the three GUT equations, in which sin? 01, a, a3, o and t appear and
two experimental inputs to obtain a prediction for the remaining quantities. A different
approach is to predict an intermediate threshold, for instance the SUSY one, using the

three experimental data as an input; this will be discussed in a following section.

Historically we have to remember that sin? 8};- has been poorly known until the discov-

ery of intermediate vector bosons, therefore older analysis used to present it as a predicted
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quantity. Today the situation is different, and the main experimental uncertainty is on
the strong coupling constant. As a consequence it is worthwhile to use sin? 6y as input,

and quote the prediction for a3. We will call scheme a the first way of proceeding, scheme

b the second one.

From the mathematical point of view, we have to solve the following two linear

systems ;
| Su Lo 3 oo
scheme a : 0 | =11 b -1 t (3.13)
- 1 b; 0 o Oy
gt 1 b 0 o
scheme b : %‘—L b, 0 t (3.14)
0 1 b —1 1
After inverting the two matrices we obtain:
A AT
scheme a : ¢ =7 1 2 -3 0 (3.15)
sin’ Oy by—bs by—b; b — by L
scheme b : t | = b b, 1 -1 0 sy (3.16)
1 b3 —by by —bs by — b 0

where d = 3/5(by — b3) + (b1 — b3), and at the end we can write the 1-loop result as follows:

= a3 - 2kl

scheme a : t = 3z [5;—51‘- - %BZIZJ (3.17)
= = G-t (b
S

scheme b : t = blibg Ei — %#ﬂ} (3.18)
EIZ = blibgé [g(b2 —b3) + d}

We have been quite detailed in this analysis because it will be also useful when computing
the two-loop contributions to the running and the threshold effects as corrections to the
previous framework; this is in fact the case for SUSY SU(5). In fact the couplings cy( M)
are different from the one-loop values by little corrections A;, which can be thought as

modifying the input values in the right hand side of egs. (3.15-3.16). The procedure will
be detailed in the following.
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Notice that the number of families has no influence on the 1-loop prediction of sin? 8-
(or 1/a3), because the number of generations cancels in the differences of the b; — b;. At
the root of this observation there is the fact that the light matter particles fill a complete
SU(5) multiplet, and the contributions to the different b; are, as a consequence, the same.
Even in the prediction of Mg the number of families is irrelevant, but the proton lifetime
depends on this number at the 1-loop level via the unificated coupling. The number of
Higgs doublets is instead relevant, as I will show in the following, just because they do

not form a complete SU(5) multiplet?.

3.2. SM versus SUSY grand unification

It is a simple application of the previous formulae to use the predictions of coupling
unification to establish the running determined by the SM or by its SUSY extension.
Using the b; given in Appendix B we get the following predictions for sin? 8y- (we stay in

scheme a for the purpose of illustration):

S (CR  ER Gt E (3.19)
st lavsr =t [(3+ %) £+ (10— %) 2 |

Notice that the two formulae coincide if ny — oo or ng = 0. The fact that in super-
symmetry we have fermions and scalars in the same supermultiplet implies the stronger

dependence on ng in the SUSY case. Using the experimental inputs[22]:

1 = 1279401
(3.20)
az = 0.124+0.01
eq. (3.19) gives us:
sin? Oy |sar= 0.207,0.211,0.215,...0.232 £ 0.004 for ny = 1,2,3,...8 ( )
3.21

sin2 91;' ISUS)": 0.230,0.252, ..t 0003 for ng = 2,4,

where the errors come from as; recall that the number of Higgs doublets in the minimal
supersymmetric model is two but in any case is an even number. It is clear that the SM
prediction, in which ny = 1 is not in accord with the experimental data, whereas the
SUSY SM with ny = 2 is successfulf.

§1t is not possible to have light Higgs quintuplets because the triplet component mediate proton decay.
1t is curious to notice that the experimental value of sin” 6y has been drifting from ~ 0.23 before

1980, due to tree level analysis of the data, to ~ 0.21 after considering 1-loop electroweak corrections,

value in accord with non SUSY GUT predictions, and finally to the present value, ~ 0.23.
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Also the unification mass in the SM<— SU(5) GUT scheme (at variance with the
SUSY SU(5)) is lower then the experimental bound obtained by the searches of proton

decay;
tlsar = mmmgs o — 8o
1 s (s~ ¥as) (3.22)
tlsusy = 1o [l - &L
184+ny4 | g
numerically
MG ls,\[: 4.8 x 1014,2.1 X 1014,.,.,4.5 X 1013 fOl‘ g = 2,4, ...,8 (3 23)

MG ISUSY: 2.4 x 1016, 1.2 x 1015,... for Mg = 2,4,

This results are obtained using the central values of eq. (3.20). The inclusion of the
error in as can double or halve the prediction on Mg (the exponentiation makes the error
multiplicative in nature), even if the second term in the square brackets is 5 times smaller
then 1/a.

3.2.1. “Prediction” of Msy sy

From the fact that the three coupling constants are experimentally known we can try
to test for an intermediate threshold Mg, that is to consider a possible threshold between
Mz and Mg as an output of our three evolution equations (togheter with the GUT scale
and the GUT unificated coupling). When we will study the running with more detail
(threshold effects and 2-loop effects) we will see that higher order corrections will shed
some light on the physical interpretation of the parameter Ms. For the time being we

will use M as a rough parametrization of the SUSY threshold.

We are studying a two-step-GUT Il; the equation are modified as follows:

L - :):LG‘ + b;t + B, T 1:1,2,3 (324)

g

where ¢ = 1/(27)In(Ms/Mz),T = 1/(27)In(Mg/Ms). Inverting the matrix of the linear
system, in which the three couplings are the known terms, and using the Appendix for
the coefficients (b,=standard model with n, doublets, B,=SUSY SM with ny = n; + n,
doublets) we find:

5m 3 9 6 1 3 1
= Mo (R 2) e (- )
s Z €XPp 11ng — 3n; [\ a2+a3 + 20 10a;  bay 3.25)

I'We can analyze with the same formalism other two-step-GUT, e.g. an extension of the SM in which

the number of heavy Higgs bosons is large.
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S 2 2 4 1 3 1
Me = ]szexp{llnd — 3ny [(“3621 - a; E) T <2a1  10a 5a3>

1 1 1
o 3.26
T ( 6oy | 100 T 15a3)]} (3.26)

A numerical analysis of eq. (3.25) gives us the following result. Within the experimental

errors of the coupling we obtain, in the case ng = 2,n; = 1, Ms in the range between
~ 500 GeV to Ms ~ 0.2GeV which shows a huge instability of the prediction. In any
case the fact to be noticed is the numerical cancellation between the linear combination
of the inverses of the couplings in the first of eq. (3.25); in fact we could a priori expect a
number of order 1/a = 128 instead then the number that we find using the central values,
~ —2. This cancellation is exactly what leads to the successful prediction of eq. (3.21) in
the SUSY case when ny = 2 and n; = 1; it is just a different way to state the agreement
of the SUSY GUT with the experimental data.

The cancellation does not hold in the case ny > 4; for instance if ny = 4 we have
Ms ~ 5-107, very different from the unification and from the weak scales. The conclusion
of this analysis is that the successful prediction in the SUSY SM of sin? 0\i- depends in an
essential way on the minimality of the SUSY Higgs sector.

3.2.2.  Conclusions; the need of the two-loop analysis

We can conclude that it is worth pursuing the SUSY grand unification but not the

non SUSY one, if we suppose a great desert scenario.

The errors in eq. (3.21) are quite large; we could believe that they are large enough
to hide two-loop effects; but we must remember that we can use sin? 6y as an input
parameter, and get in this way a precise prediction for ;. What is the estimate of the
two-loop effect (to be justified a posteriori)? Remembering that the quantity we predict is
sin’ §/c and supposing that the 2-loop corrections to the running do not upset the 1-loop
prediction (we can suppose that they add a number of the order of the unity, small with
respect to the 1-loop prediction, to the right hand sides of egs. (3.17)) we find from eq.
(3.19), in the case ng = 2

1 7«

in®fy = = + —— .
sin” 6y 5+15a3+0(a) (3.27)

this in fact will turn to be an overestimate of a factor ~ 3, but it is an important effect,
confronted with the experimental uncertainty on sin? 6y;-. We find that the two-loop effect

on the GUT scale is even more important, even if a variation of the experimental deter-
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mination of a, leads to a multiplicative uncertainty factor in the prediction ~ e72®s/ s

Mg =2.4-10'°. 20 (3.28)

Finally I should stress that the two-loop context implies not only a numerical im-
provement of our predictions, but also a conceptual improvement; I am here refering to the
one-step approximation used for the threshold effects, and also to the physical meaning
of the parameter Msysy-, that we used implicitly (but, as I will show, also in a deceiving
way) as “the mass at which SUSY begins”; notice that the last issue has been thouroughly

addressed only very recently (see for instance ref. [22]).
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4. Beyond the 1-loop predictions

With the knowledge that the 1-loop SUSY GUT predictions are substantially correct
we are going to consider the running at the two-loop level. We shall also in a sense refine
the step approximation, clarifying its meaning in the momentum independent renormali-
sation schemes. Then we will treat the threshold effects, due both to the SUSY particles
and to the heavy SU(5) particles as corrections to the 1-loop picture.

The unification equations ruling the running, eq. (3.11), are to be changed with the

following equations (recall that ¢t = ;L 1n f‘—f—‘-zi)

1 g7 4 A Alew . ABigh 1 bit i=1,2,3 (4.1)
Q; aG
where we have given a name to the previously mentioned corrections; which will be pre-
cisely defined in the following, and at the end we will use them to extract the predictions
in the very same way we did in the 1-loop context. The coefficients b;, without any other

specification, are SUSY SM coefficients of Appendix B in the rest of the chapter.

4.1. Refining the 1-loop running

First we will consider a consistent approximation for the 2-loop running §;, and dis-
cuss then some renormalisation scheme dependent features that must be taken in account
in a 2-loop SUSY context; we will use this opportunity to discuss the meaning of the step
approximation. Then we will distinguish two parts in the low energy threshold correc-
tions, that is Alw = ASUST 4 APM. The first is the SUSY particles contributions, that
can be considered as a modification of the running, and will be treated introducing a
convenient parametrization of the mass spectrum; the second is the contribution of heavy
SM particles: AP+ AF99% in fact the top mass enter sin? fy- in a peculiar way (in a sense
modifies the input parameters). Finally we will recall briefly the necessary informations
about the SUSY SU(5) Georgi model in order to write the heavy threshold corrections in
this model.
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4.1.1. Two loop renormalisation group equation

The renormalisation group equation (RGE) in a gauge theory take the form

6it) = 4mel(t) | +Z ; ,t>+z (o(t) + (42
)

where the first is the one-loop term, the second is the two-loop term, etc. , and the initial
condition on «;(t) is a;; we call n* order RGE the equation obtained putting all the
(n 4 1)"* terms to zero (the common factor 4 is consistent with the use of ¢ = 3= 1In £
and with the coefficients b; of eq. (3.9) and &;;, listed in Appendix B; we neglect the

Yukawa contributions).

We can develop a systematic approximation procedure by Wntmg this equation in a
different form; namely, we define
- _ Q;0;...Qp o
ij,...k — (4;71')" 1,7,k
o

zi(t) = o)) (4.3)

and we write the renormalisation group equation in an integral form, better suitable to

show the approximation procedure:

t ;
t)=1—4r Z a:i,j,,._k/ [ 1 1 } dr (4.4)
Gk 0

z(1)  2(7)
The first step of the approximation is done retaining z; only:
() =1 — drait (4.5)

that is equivalent to the 1-loop result:

1 1 b;
= — — ot (4.6)
a; '(t) 2w

‘We will assume that the two-loop solution zi(z) (t), in the interval in which we are
interested, is not very different from the one-loop value, and we will justify this hypothesis
a posteriori. Instead, it is not correct to suppose that the one-loop effects are always
small; from the 1-loop we estimate at the grand unification scale zgo ~ 3 and therefore
drzst = O(1).
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The hypothesis of two-loop smallness implies that we can use zi(l)(t) consistently in
the integral of eq. (4.4) to improve the approximation. The approximate two-loop RGE

solution we get reads:

2(t) = (¢ +Z {0) (4.7)

that we readily translate into an expression for the couphngs:

1 1 b,‘ bi]' ay

= — 4.8
a1(2)(t) o, 2w 4mb; nagl)(t) (4.8)

in which the well-known log(log) terms are apparent. Using the fact that b;;/(47b;) = O(1)
(see the Appendix B) or equivalently zij/z; = O(a;) we conclude that the two-loop

corrections are indeed small, and the procedure is consistent.

We could again improve the solution above replacing in the two- loop integral z( ) (t)
with z ( ). But, after some work, one concludes that the additional correction obtained

with this further improvement can be comparable to a three-loop effect.

By comparing eq. (4.1) and eq. (4.8), we can write

B2

4.1.2. Thresholds effects in MS and DR

As we have discussed in the 1-loop context we can invoke the decoupling theorem
in a momentum dependent renormalisation scheme (see ref. [23]), but in a momentum

independent scheme the threshold effects have to be treated in a different manner.

Following S.Weinberg [24] we consider the effective theory that we obtain integrating
out the heavy degrees of freedom of the high energy (more fundamental) lagrangian. This
procedure defines a relation between the coupling constants that we must use above the
mass scale of the heavy degrees of freedom and the coupling constants below this mass
scale; that is defines a boundary condition between two theories that should be considered
different. This boundary condition can be interpreted eventually as the change in the

running of a single coupling constant.

Going into details we can perform a gauge fixing of the fundamental gauge theory that
does not spoil the gauge invariance under the remaining group H = []; G;; this is a slight

modification of the R, gauge fixing for the complete gauge group G, in which the ordinary
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derivative is replaced by the covariant derivative with respect to the group H (the heavy
fields belong to a given representation of the residual group; see the section on high energy
threshold). Using this gauge fixing we see that the effect of the functional integration is
to provide new gauge invariant contributions to the low energy lagrangian (we generate
an invariant effective lagrangian); in particular the term in the bare lagrangian for the

propagation of light gauge fields get modified simply according to:
1

i i 1 i pipw
_Z B BM —_— —Zzi FB[JI/FBIJ (4.,10)

‘Notice that even if the left hand side member is effectively i-independent (it is a term
of the GUT lagrangian) the r.h.s. is i-dependent, because of Z;; this is at the root of
the diversity of the couplings. It is easy to see that concentrating our attention on the
wavefunction renormalisation of the light vector fields we can get a relation between the
GUT bare coupling constant above threshold and the bare couplings below threshold. This
relation can be readily converted in a relation between renormalised couplings, when we
consider that in the region in the nearby of the threshold we can use both the fundamental

and the low energy effective theory.

The result of the analysis can be stated in this way: if g (g9<) the coupling constant
above (below) the My scale

S(M M

where I emphasized that the constant Cy are renormalisation scheme artifacts; for in-
stance if we follow the often used convention Tr(v,7,) = 4g,, in D—dimensions, Cy i
is different from zero only for IVB, and its value is 1/21. Multiplying it by the “massive”

vector coefficient of eq. (3.9) one obtains
. .
SbrvBCIVB = — ¢ T2(1VB) (4.12)

If we are interested to the heavy IVB corresponding to the generator of the coset G/H

we can also use the equation

Ty(IVB) = T5(G) — To(H) = Co(G) — Co( H) (4.13)

We can appreciate explicitly from eq. (4.11) the fact that the couplings in the low
energy effective theory incorporate implicitly a resummation of effects related to the high

energy scales. What prevent us from using the unified coupling in the low energy regime
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is just the unreliability of the truncated perturbative expansion at low scales. The regime
of validity of eq. (4.12) is in fact

2
g>(]l/‘[) 5bX 111 (_]V‘l_._>

Gy )| <1 (4.14)

At each threshold eq. (4.12) tells us how to connect the coupling constant below
threshold with that above threshold. We may however write eq. (4.12) in the suggestive

form
11 1w (&) if M < My (4.15)
a(M)  ofMy) 27| b1y () + by ln (AL) + 8bxCx if M > My

where My < M, Myx. Eq. (4.15) defines a single coupling constant with a discontinuity
at M = My (one can also devise a subtraction procedure to obtain this result [25]). This
framework can be useful, but we must keep in mind that the coupling constants of the
“fundamental” and of the “low energy” effective theories are different objects, and that

eq. (4.12) is just the matching condition between the two theories.

A very important observation is that there is a favourite renormalisation scheme
for supersymmetric theories, the DR scheme. First we regularize dimensionally, keeping
the v matrices and the metric tensor that appear in the Feynman rules in 4 dimensions
(differently from the ’t Hooft-Veltman regularization scheme), while the momenta in the
loops are dimensionally extended [26]; then we subtract only the MS pole from the Green
functions. The reason why this renormalisation procedure is suited for SUSY is that SUSY
is not well defined in 4 — € dimensions (the authors of [27] proved that, at two loop level,
the Ward identities are in effect preserved if DR is used).

The relation between the coupling constant in the MS and in the DR schemes is
[28]:
11 C»(G:)

i - i
VI O5R 127

Notice that, comparing eq. (4.11), eq. (4.12) and eq. (4.13) this means that app(M)

(4.16)

have no constant term in the matching condition. From the point of view of a single
coupling, there are no discontinuities at threshold when we renormalise according to DR
(in passing let me mention that the constant terms of eq. (4.12) — in M35 - arises from

D—dimensional traces of the metric tensor present in the vector bosons vertices).

The standard model coupling constants are usually obtained in the M5 scheme, but

we have to use the DR scheme in the high energy regime, where the theory is supersym-
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metric. This implies that we have to convert the three couplings «;, before reaching the
grand unified scale. The conversion factors AP™ in eq. (4.1) are those eq. (4.16):

C2(Gy)

A?Onv [
! 127

(4.17)

In the following, we will implicitly assume, unless otherwise specified, that the low
energy parameters are defined in M S, whereas the quantities at the GUT scale are given
in the DR scheme.

4.1.3. A7YSY: effctive parametrization of the SUSY thresholds

Let us suppose that the supersymmetric particle masses M,,a = 1,2,...n are above
Mz (that we call now My), and let us treat them by the step approximation; the running
of the coupling constants well above this SUSY threshold will be modified as follows:

15 = a7 (3,) o () + v i (3]
(M)~ (M) - o7 o) o (g ) e 880 (7 (4.18)

where b7" are the B-function coefficients of the unbroken standard model for a;, before

the first supersymmetric threshold; §5¢ is the a-th sparticle contribute; we can refer to eq.
(4.18) as a smooth knee description of the running (notice that we are assigning a given

mass to each interaction eigenstate).

Now let introduce b;, the “total” beta coefficient at the end of the SUSY thresholds:

bi = 67N 4+ 3 6 (4.19)

a=1

ajjm = a,-?;fu) { Z‘%a In (MU) +f§5ba In (ztr[ )]

2 M
_ b1 ( ) §be 1 ( ) 4.20
o (My) "\ Zl M, (4.20)

The threshold corrections are lumped in the last term. We can usefully define an interme-
diate scale M;, depending on the gauge group associated with a;, such to lump in it the

threshold effects (a steep knee equivalent description of the running), that is we define

2r 2« SAI (]VI> (M)
(M)~ () 6" In b; In 7 (4.21)

M; in this way:
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It is quite easy to find, using the previous definitions that

2 2T M; M
- b — b5M) 1 QJ)—hl(~J
w() = aany T In(5p "\
o & M M
- a — ) = — 4.22
CMM@+§¥QM(M) bm(m) (4.22)

That is, comparing eq. (4.20) and eq. (4.22) we see that the phenomenological mass M;
is just a geometric average of the physical masses, weighted with a factor of relevance to

the running:

e a a &b}
Mzgmmf wf = s (4.23)
Notice that we are supposing that 37_, 862 £ 0, that is b7M £ b;; otherwise we can
proceed as follows: go back to the last term of eq. (4.20), the threshold corrections; notice
that it is independent from My; choose M, equal to one physical mass, so that this mass
is “out of the game” and the remaining b¢ have a sum # 0; employ the previous formulae
(4.20), second line, and (4.23), excluding from the sums and from the product the chosen

mass.

In fact this formalism can be employed to describe the effect of every particle thresh-
old on the running. The “effective” masses M, have been recently introduced by P.Langacker
and N.Polonsky[22] to achieve a model independent description of the low energy thresh-

old effects to the unification prediction.
Comparing eq. (4.22) and eq. (4.1)

-1 M;
SUSY _ _pSM :
A; 27r(b, 57" ) In (Mz> (4.24)

This equation has an obvious physical; it accounts for the “SUSY deficit” in the range

between Mz and M;.

4.1.4. Top and Higgs thresholds

In the 1-loop analysis of chapt. 3 we have implicitly considered the top and the Higgs
mass, as well the masses of the supersymmetric particles, at Mz. Now, one may naively
believe that the realistic case m; > M is simply taken into account by subtracting the

top contribution to the running in the range M <+ my, that is (with the definitions of eq.
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(4.1); 5 = 2/3)

AlP _ ? btopl (mt> 4.5
3 n ]VIZ ( ° )

This is correct only for a3 since a; and a, depend on sin 6y, and the value of sin 8-

extracted from experiment depends on the top mass in a nontrivial way.

The value of sin® §y-(Mz) reported in eq. (4.69), together with m, = 138 GeV, is
the outcome of a 2 parameter fit of the experimental data (v — hadron, v, — e~ deep
inelastic scattering, u lifetime, My and My, etc. ; mpo = Mz is assumed) performed by
the authors of ref. ([29]). If the top mass is different from m, = 138 GeV the effect on
sin? 8y is well parametrized by [22]

2
AP~ 196 x 1078 |(24) —1 (4.26)
8 mt

where only the corrections quadratic in the top mass, that are the leading effects, are

considered.

Finally, let us mention that if we use the value of a(My) quoted in eq. (4.67) we
must be aware that it is obtained assuming m; = 138 GeV. As a consequence, we include
the effect of m; # m, on a by writing

1 1 1 4 2 m 8 m
o ek he()-guE) o
a(Mz) - a(Mz) T2 Ao "o 3°\3) " my o My (427)

where 4/3 is the factor for Dirac fermions and 3 is color counting (we can find the same

result using 5/3 by + b, as coefficient of the running).

If we recall the expressions a; and a, in terms of a and sin? ;-

1 _ 3 1—sin? By ’

(3} 5 21

T anton (4.28)
oy @

we readily translate eq. (4.25), eq. (4.26) and eq. (4.27) into the following corrections

terms:

Lrat b =3[ (nm) e - 28]
a;+A§°” P AR = & (lnm)sin® Gy + LAY (4.29)
L AP A = E(nfe)+ & (nz)

The effect of the SM Higgs on the running is negligible, that is A% <« AP, This is
mostly due to the fact that Ai’é’ < A‘s‘;”, but also to the fact that the Higgs carries neither
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color or charge (= AQ‘O = A(’;O = 0). The value of sin? ;- = 0.2324 + 0.0003 assumes
mpo = Mz, but the effect of varying muo up to 1 TeV is within the quoted error.

In conclusion, recalling eq. (4.1) we can write

APV = AV 4 AP (4.30)

4.1.5. Thresholds at the GUT scale

We will confine our discussion to the minimal SU(5) supersymmetric model, the
SUSY extension of the Georgi model, in which the Higgs sector comprehends a chiral
superfield in the 24, needed to break SU(5), and two quintuplets, containing the Higgs
doublets. Our formalism can be simply extended to more complicated Higgs sectors or

groups.

The representations of the grand unification group are obviously representations also
of the remaining group, called the stability group because it leaves the vacuum invariant:
and the mass matrices must be constant along the irreducible subrepresentations because
of the symmetry. Let us analyze closely the adjoint representation, built on the gener-
ators T, This representation decomposes in the unbroken generators, say T, that are
associated with the massless IVB V7, and in the broken generators say T, associated
with the massive IVB VuA. The heavy vector bosons are in a given representation of the
stability group; in fact, thanks to the normalization of the group, eq. (3.5), the structure
constants f*97 are completely antisymmetric, and from the equation f®¢ = 0, which

states that the stability group is a group, we can conclude
[TG,TB] =4, faB‘/T“r =1- (fchTc + faBCTC) =3 faBCTC' (431)
The heavy spectrum of SU(5) can be divided in three groups of particles. The
vector part contains two charged vectors, SU(3). triplets, called X and Y, or collectively

V, with charges +4/3 and +1/3 respectively; they appear in the decomposition of the

adjoint representation:
24 =(3,2,5/6) + (3,2,-5/6) + (8,1,0) + (1,3,0) + (1,1,0) (4.32)

The corresponding scalar fields (chiral superfield in the SUSY case) in the same represen-

tation are the would be Goldstone bosons; the remaining 12 fields are physical, and we
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call them collectively ®. Finally there is a color triplet 7' appearing with the light Higgs
doublet in

5=(3,1,1/3) +(1,2,~1/2) (4.33)

together with the antitriplet T present in 5. Notice that from the fact that 5 is the
fundamental, and 5 x 5 = 24 + 1 we can easily deduce the decomposition of the 24;

similarly for the 15 and the 10, that are the symmetric and the antisymmetric parts of
5 X d.

Now let discuss the coefficients for the running induced by the heavy particles. It is
simple to compute the values of the T;; for these heavy fields; they depend on 7 because

the heavy fields we are considering are not complete SU(5) multiplets.

SU(3). SU(2)L U(1)

Ygut
X,Y, X,V 2 3 5
T,T ' 1 0 2/5
® 3 2 0

Table 1: T5,;;2=1,2,3

We will suppose that inside a given kind of superfield the mass is degenerate; that is,
for instance, that the scalar and the fermionic fields in the triplets have the same mass.

Employing the formulae (1) we find

SU@B).  SU@)L  U(1)

Ygut
X,Y,X',)_" —4 —6 —10
T,T 1 0 2/5

P 3 2 0
Table 2: GUT 6b¢;:=1,2,3,a=V,T,®

The relation between the sum of the heavy contribute and the SUSY standard model
b; is;

b+ > 6b¢ = bg (4.34)
This imply the curious fact that b3 = b in the minimal SU(5) SUSY model.

These coefficients can be again employed, in the step approximation, in the same kind

of analysis performed for the low energy SUSY thresholds. First we should define M(;
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we will identify Mg with the highest of the heavy masses, so that above it the unification

is complete.

We could think to simply make use of eq. (4.24), with the changes Mz — Mg,
M; — M!, bM — b; and b; — bg:

Aboh — L (b — b;)-1In (%) (4.35)
n . ob¢

M = T](M,)* W L (4.36)
c;[:—:[l Za:heavy 5bz

Unfortunately we cannot use eq. (4.36) since 3 _peavy 005 = 0; nonetheless we could use
these formulae excluding for instance the vectors V from the sums, as discussed in the
comment following eq. (4.23). In this case it is probably simpler to use directly the three
masses My, My, M, keeping in mind eq. (4.34); in fact the low energy parameters M]
are to be eventually connected to the soft breaking masses anyhow, while the M, are

directly the fundamental parameters. We then have:

NG SR

a=heavy

1 M,
I Y I W (. 4.37
Al=gr ol “(MG> (4:37)

Let us finally discuss an interesting physical issue related to the triplet and to the
proton lifetime. If its major role would be to mediate proton decay via a tree-level
diagram, in much the same way as the IVB at the GUT scale do, the bound on its
mass from the present bounds on the proton lifetime (rp > 10%' years, [30]) would be
Mr 2 10! GeV (the diagram is suppressed with respect to gauge boson exchange by
the Yukawa couplings of light particles); but the triplet can induce proton decay at the
1-loop level (via dimension five operators) with third-family sparticles running in the
loop and therefore with big Yukawa couplings. While the effective dimension 6 operators
exhibit a quadratic suppression in the mass of the heavy particle exchanged, the one loop
contributions are only linearly suppressed and therefore, depending on the details of the
light SUSY particle spectrum, they may be competitive with the former or even be the
dominant contribution. In the literature the bound My = 3-10'® GeV is sometimes used
[22], but it involves assumptions on the low-energy spectrum, that are sensitively model

dependent.
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4.2. 2-loop SUSY SU(5) predictions

In this part we will show how the results of the previous analysis on the influence
of thresholds and of two-loop effects on the running modify the 1-loop predictions; the
thresholds are a source of uncertainty, while the two-loop terms are to be treated as
corrections terms. We will also specify the meaning of the widely used SUSY threshold
parameter, namely Msysy, and finally give the numerical values of the two-loop SUSY
GUT predictions.

4.2.1. Evaluation of the two-loop corrections

Let us show the way in which the two-loop term 6;, defined in eq. (4.9) can be used
to improve the 1-loop predictions (this part of the analysis had already been performed
by M.B. Einhorn and D.R.T. Jones in 1982 [31]); the procedure we will describe for §;
must be repeated independently for each of the correction terms —A; of eq. (4.1), given
in in eq. (4.17), eq. (4.24) and eq. (4.37), so that the equations (4.42) and (4.43) that we

obtain in the present section hold for A; as well, with the replacement §; — —A,.

In scheme b (see the section 3.1.4: Formulae for the 1-loop predictions) we consider

a linear system

Me=c (4.38)
where the inputs quantities are contained in the vector c:
c= (al—laagl’ﬂ) (4.39)

while the output vector z is

z = (ag',t,a;') (4.40)

In the present case, the modifications in the running can be seen as a change in the input

quantities; we have the equation:
z=M"(c+0)=MT'c+r M4 (4.41)
the last term gives the corrections §z to the predicted quantities.

The formulae we obtain in this case (cfr. with egs. (3.17), (3.18), and recall that
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d = (by — b3) + 3/5 (by — b3)) are:

K (EIE) —-3 (bl + 2b,)85 — b3(8: + %02))
38 = —1 (6 + 26, — %65) (4.42)
| SUI) = L((by — b3)8) + (bs — b1)82 + (b — b)63)
0(z) = =
)80 = = (4.43)
5(%) = su((ba— b0+ (b = b)02 + (b1 — B,)05)

In solving these equations the quantities §; should be treated a little bit differently
from the A;, because of the functional dipendence of §; on the output parameter; that is
eq. (4.41) should read:

z=M"(c+6(z)) (4.44)

We can solve this equation using the following iterative procedure:

Ty = M lc
€1 = A’I..lg(wo)
1 = Iy -+ €1

(4.45)

env1 = M™'6(z,)

Tpr1 = Ty -+ €pq

\

we expect (and find) that the procedure is convergent, since ¢ >> ; (=the two loop effects

are small). This procedure must be used if we consider accurate RGE solutions.

4.2.2. SUSY threshold

We will employ the effective mass parameters M; to describe the modifications on
the running due to the thresholds. We notice that the supersymmetric threshold are due
to scalars and fermions only, so that all the individual masses contribute to the geomet-
ric average M; with non-negative exponents (see eq. (4.23)); therefore the values of the
masses JM; give us some indication about the mass distribution of the supersymmetric
particles. As we will see we may relate M; to the more common (although quite approxi-
mate) parameter Msygy. In this manner we hope to gain some insights on the physical

significance of Mgysy .
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By making the replacements ; — —A,, as given in eq. (4.24), in the last equation
of the systems (4.42) and (4.43) we see that the relevant combination of masses in both

schemes is given by:

1
di — In(M;/M 4.46
>4 5= (/) (4.46)
where (recall that the coeficients b; are the supersymmetric ones)

di = (b —bs)(bi — &™)
dy = (bs—by)(by—b5") (4.47)
ds = (by—bo)(bs — b5")

We may define Msysy by:

Z d; In(M;/Mz) = (Z d;) In(Msysy /Mz) (4.48)
that is equivalent to
Msysy = E(Mi)“ z; = i%; (4.49)
This parameter enters eq. (4.42) and eq. (4.43) in the following way:
) | 1k () w
() = waa () (131)

If we use the coefficients b; in Appendix B, we can see that with 1 light (=standard)
Higgs doublet and 2 heavy (=SUSY) Higgs doublets eq. (4.49) read:
(M)
(M)T5 - (M3)15

this formula implies the striking conclusion that the value of the parameter Ms;; 5y is not

Msysy = (4.52)

necessarily of the same order of most of the mass spectrum. As an example, we can have

Msysy = 10 GeV, although having M, = Mz, My, = 2Mz, M3 = 664 GeV.

We therefore caution the reader against straightforward interpretations of many of

the analysis that have appeared in the last years.

4.2.3. GUT thresholds

Similar conclusions are reached when we use eq. (4.37). Let me show first what kind

of difficulties one encounters when trying to keep a strict analogy with discussion in the
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previous section. Referring to eqs. (4.35) and (4.36) we have:

di = (b2—bs)(bc —b1)
4, = (bs—bi)(be — ba) (4.53)
dy = (b1 —b2)(bg — b3)

However we cannot define

Z d; ln(ﬁ/fl{/Mg) = (Z di) ln(]VISUS)»'_(;UT/Mg) (4.54)

that is equivalent to

! z’ di
Msysy—cur = [J(M])" z;

| =5 (4.55)

because it is simple to show that, in all generality, the sum is zero. If we notice that
the factor ¥;d’ rules the dependence of sin’ ;1 on Mg we realize that the reason is
that sin?@y- is a quantity independent of Mg. This mass scale was defined to be the
largest physical mass, but it can be chosen larger without inconsistencies and this choice

is irrelevant for the value of sin® fy;- that we predict.

Using eq. (4.37) we see that the contribution from the high energy thresholds to the

predictions is:

Efsin"’ Oyy) 11 M
- 1 2";? } >0 85} (b — bs)In( 3 )+eyelic perm] (4.56)
) (a:) — Em a=heavy G

The common term can be recast in the form:

In ( 11 (M;’a)) oy = 6b] (by — b3) + cyclic perm. (4.57)
a=heavy

where the coefficients ¢, sum up to zero because of the independence from M of sin” -

(or of 1/a3) as we have discussed in the previous paragraph. Using Appendix B and the

values of 607 in eq. (2) we give explicitly this common term in the minimal Georgi SU(5)

SUSY model: ;
12 M:
—1 T .

5 (M{"-M(p) (4.58)

The equivalence of the role of the high energy thresholds and of the low energy

thresholds as sources of uncertainty in the predictions of sin® 8- (or az in scheme b)
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in SUSY GUT has been pointed by R.Barbieri and L.Hall [32]; in fact we get from the

previous formulae in scheme a

(01

§(sin? Oyy) = — Sunr 4.
(sin® Oyr-) 50x Ot (4.59)
where
Msysy My
Sinr = —191n ( ) +18ln | ——= 4.60
th A/-[Z ' "/M‘ZMQ ( )
whilst in scheme b we have that the 1-loop prediction ag]) is modified by
1 1 1
= - Sihr 4.61
af) of) 28w " (461

that implies, taking into account eq. (3.18)

28a*
(60sin? 6y- — 12)%x

(5&3 =

6thr (4.62)

This observation is based simply on the fact that the size of the effects are numerically
comparable, and explain why we cannot rely on the prediction of the supersymmetry scale
done in the one-loop context using the experimental informations about the three standard

model coupling constants.

In my opinion we have to wait for further experimental information about the su-
persymmetric parameters; subsequently, that is after having (eventually) quantified the
SUSY threshold effects, we shall be able to obtain informations about the physics at

unification scale using this kind of analysis.

4.2.4. Numerical predictions

Let us conclude this section giving the numerical results in the case of the Georgi
SU(5) SUSY model. The formulae we get collecting the 1-loop and the 2-loop results for

.2
the low-energy parameters sin” 6y and a3 are:

T «

sinffy = 02+ -1-5-&;(1 + daz +éa)
£0.0031 + 5; A (4.63)
@ = T{si"x;—zi'ﬁ(l + oy + Sa)
+0.012 + 2807 A (4.64)

(60 SiIl2 9”' —_ 3)271'
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where in each case the first line stays for the 1-loop results; the first term in the second line

is the effect of the “pure” two-loop term, and the other corrections have been summarized

in A:
Msy sy M
A= 1—19111( 251 ) +18In | —L +H(—’;”—t) (4.65)
v JVI‘Z']VI(I) mt
The unit constant is the effect of the conversion term of eq. (4.17), the rest are threshold

effects; the function H(z) includes the top effects:

H(z)=47.3(z* — 1)+ 7.60In = + 3.89 (4.66)

We assume the top in the range 110 + 160 GeV, that is in the range suggested by the
electroweak precision measurements. Recall that we neglected the logarithmic corrections
to sin® @y in eq. (4.26), since the quadratic corrections are leading. We now see that,
in the range of top masses that we are considering, also the effect of the logarithmic
contributions to a3 and a we considered in eq. (4.29) is irrelevant with respect to the
effect of the quadratic contributions. I believe that a reasonable estimate of the numerical

impact of both logarithms in eq. (4.60) is a factor two, with sign +.

Using the experimental M S input

=127.9 £0.1 4.67
Ot(Mz) ( )
together with (scheme a)
as(Mz) = 0.12 + 0.01 (4.68)
or (scheme b)
sin® fy1-(Mz) = 0.2324 + 0.0003 (4.69)

we conclude with the predictions (in scheme a or scheme b respectively)

sin® 6y = 0.2334 £ 0.0025 + (£0.0016 + 0.0006 + 0.0015) (4.70)
az = 0.125 £ 0.001 + (40.005 =+ 0.002 £ 0.005) (4.71)

where the central value is for m; = 138, Msysy = Mz and no GUT threshold effects;
the first uncertainty reflects the experimental uncertainty on a3 (resp. on sin?4y in
scheme b). Those in brackets are the theoretical uncertainties: low energy thresholds
(sparticles+top) and GUT scale thresholds. The accord with the experimental determi-

nations of sin” 8- (ag respectively) is fairly good and may be interpreted as a success of

SUSY grand unification.
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In scheme a the total theoretical uncertainty, found adding (not in quadrature) the
three bracketed terms, is of the same order of magnitude of the uncertainty due to the ex-
perimental determination of a3. We reach the same conclusions in scheme b from a slightly
different point of view; the uncertainty in the prediction due to experimental uncertainties
is noticeably lower than the theoretical uncertainties, as promised; by converse the exper-
imental determination of a3 is comparable with the theoretical uncertainties. This means

that we need both better experimental inputs (on a3) and theoretical improvements to

have a finer test of the SUSY SU(5) theory.

Let us discuss finally the “trends” of the predictions, after observing that the cen-
tral values predicted are somewhat higher then the central values of the experimentally
measured quantities (even if one must stress again that the predictions of the coupling
constant unification are in good agreement with the present data). The predicted values
of sin? @y in scheme a (or oz in scheme b) decrease if 1) Msysy > Mz, 1) my < 138 GeV/,
iii) My < {/M%Ms. The last relation involves the mass of the Higgs triplet, which may
play a crucial role for proton decay in SUSY GUT, through effective dimension 5 oper-
ators (see the discussion at the end of sect. 4.1), if lighter then 10'® GeV. The second
feature is at present the most interesting one, in view of the possibility of a forthcoming

experimental discovery of the top at CDF (Fermilab).

Concerning the low energy supersymmetric spectrum we may hope that it is not
dramatically larger than the Fermi scale, and that we may be able to detect it at the new
generation of the high-energy colliders. In this case we would be able to test GUT scale
physics, having quantifyied the SUSY thresholds effects. In order to perform a detailed
study of the low energy SUSY spectrum in a given model we need the complete set of
RGE for a SUSY-GUT theory. A convenient way to derive them, which uses the one-loop
effective potential method, is presented in Appendix C. A complete listing of the RGE in

the most general form is given.
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A. Conventions

Invariant antisymmetric tensors in S L(2,0C):

2 —
2 —

Bispinorial representations of Lorentz group (A4,B =1,2 are SL(2,0) indices):

X4 = €4B 'XB
X' = eB.yp
Xi = €ip “XB
= By,
Conjugation on bispinors:
T o= g
X4 = Xj
Scalars in the tensor product:
0y = 6,
by = 8,9
Fierzing:
6468 = —1/2.62
(60)(0¢) = ~1/2-6%-(pg)
Vectors in the tensor product:
Uig = (170).48
Ouag = (1, o)as
a.[,z,—iB — (17 0_)43
&;\B — (1’ G.)AB
Useful relations
vo = 0y
v8 = 6y
Pt = —potip
Conjugation on bilinears:
GipB = @Bg.i
& = 8
90#“[’ = ¢a’#§

—€12

=1

—€p = 1

(A.2)

(A.3)

(A.4)



Gauge transformations (latin indices are gauge indices; € is real):

8 = ilea(+T*)]"°
55 = e T
Covariant derivatives:
Dy =0u+igV,
Gauge lagrangians for the bispinors:
WDY = oD,
WDy = PpFDup

Four component spinors (greek indices are Lorentz indices):

Gamma matrices and bispinors:

Chirality matrix:

Chirality projectors:
Py,

Pp

Relations between some “Weyl” bilinears
Tpy" P
UpP U,
UpPr¥/,

Conjugation matrix:

Majorana spinors:

= (XAv A i)
0 45 O'iB
5_[1:18 OAB

2
14+9°
2

and the “Dirac” bilinears:

= AG"N + xox
= N

= X\

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)



B. Beta function coefficients

We list in this appendix the beta function coefficients relative to the gauge sector
in the SM, in its supersymmetric extension, and some related quantities; the two-loop

coeflicients are taken from ref. [33].

Coeflicients of the SM 1-loop running, assuming N, families and n; light Higgs

doublets (in square brackets the case N, = 3,n; = 1):

by 0 4/3 1/10 41/10
by | =| —22/3 | +N,-| 4/3 | +m-| 1/6 =| —19/6 (B.1)
by ~11 4/3 0 —7

List of b-differences and the factor d (in square brackets the case Ny =3,n =1):

by — by 11/3 1/6 23/6
by—by | =| —11 |+mn-| —1/10 =| —111/10 (B.2)
by — b, 22/3 —-1/15 109/15

3 3

Coeflicients of the SM 2-loop running, assuming N, families and n, light Higgs doublets

(in square brackets the case Ny =3,n; =1):

bir bz b3 0 0 0 19/15 3/5 44/15
bat byy bys | = | 0 —136/3 0 +Ng-| 1/5 49/3 4
by b3y by 0 0 —102 11/30 3/2 76/3
9/50 9/10 0 3.98 2.7 8.8
+ m-| 3/10 13/6 0 =] 09 35/6 12 (B.4)
0 0 0 1.1 45 —26

Coefficients of the SUSY SM 1-loop running, assuming N, families and n, Higgs
doublets; in ny there are light and heavy doublets; nq = n; + n; (in square brackets the

case Ny = 3,nq = 2):

by 0 2 1/10 66,10
by | =| 6 |+N,-| 2 | +3-na-| 1/6 | |= 1 (B.5)
by —9 2 0 -3
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List of b-differences and the factor d (in square brackets the case Ny, =3,n4=2):

by — by 3 1/6 4
by—b | =] =9 | +3-n4-| —1/10 =| —48/5 (B.6)
by — by 6 ~1/15 28/5
3 3
d=(bi=bs)+ (b—bs) == (18+ma) [=60/5] (B.7)

Coeflicients of the SUSY SM 2-loop running, assuming Ny families and n, Higgs
doublets (in square brackets the case N, = 3,ny = 2):

biy by b 0 0 0 38/15 6/5 88/15
byy by b3 | = | 0 —24 0 |+N,-| 2/5 14 8
by bsp b 0 0 —54 22/30 6/2 68/3
9/50 9/10 0 [ [ 7.96 5.4 17.6
+ mg-| 3/10 7/2 0 =] 1.8 25 24 (B.8)
0 0 0 22 9 14

List of coefficients d; of eq. (4.48), in the case Ny=3,n4=2,n =1:

d; 0 25
ds 56

List of coefficients o, of eq. (4.57), in the case N, = 3,n4 = 2 (minimal SUSY SU(5)):

agT 3

12
gy = ‘:5— -2 (BIO)
Op —1
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C. RGE for Softly Broken SUSY Gauge theories

For any renormalisable Yang-Mill theory with scalars, Weyl fermions and gauge vec-
tors (not necessarily supersymmetric) we find, regularizing the theory with a momentum
cutoff A, the following “structure of infinities” in the scalar sector at 1-loop[34] (using the
Landau gauge)
| 1
3272

Vo Str [A* (In A - %) FARM(z) ~ Ln & M) (C.1)

This formula allow us to extract a lot of informations about the dependence of the
bare parameters of the scalar sector on the renormalised parameters, by performing el-
ementary (but for the general case very long) algebraic computations of supertraces of
mass matrices, without computing Feynman diagrams; in fact one lack only the informa-
tions about the wavefunction renormalisation. For the purpose of obtaining 1-loop the
RGEs the best way to use this formula is the following. Consistently with the order of
approximation used we write V. (2g,...gr) = Vo(zB,...g8), in terms of the bare and of
the renormalised quantities respectively. Then we solve for the renormalised parameters

the following equation

V(zk, lps -9R) = V(25, U5, --95) + Vao 25, 15, ...05) (C.2)
We will use an hat () to denote the renormalised quantities.

This method is particularly suited for the supersymmetric case, [35] since many
parameters of the fermionic sector appear also as parameters of the scalar sector (for
instance the Yukawa couplings appear in 4-scalar interactions). In fact, we can obtain
all the SUSY RGE with this method (except for the gaugino masses) just feeding some

information about the field anomalous dimensions.

When applying eq. (C.2) to SUSY theories, the fact that we have the same number
of fermionic and of bosonic degrees of freedom implies that we have no quartic constant
divergencies; that is the 0-point Green function, to be interpreted as a quantum-induced
cosrriological constant, is at most quadratically divergent. The tree level sum-rule of eq.
(2.44) acquires in this context a very interesting meaning: any supersymmetric theory is

free from quadratic divergencies [36] in the field dependent terms.
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C.1. RGE for the Wess-Zumino model

Let us illustrate how the method works for a simple supersymmetric model, the
Wess-Zumino model with N-chiral superfield (no vector superfield). We can compute the
supertrace using the mass matrices of eq. (2.41) and eq. (2.40), in which we set to zero

the gauge and the soft breaking parameters.

Referring to the superpotential f given in eq. (2.20) the result of the computation
is:

Ve = =2k f, X2 f° ' (C.3)

where I used k¥ = In A/3272, and defined the constants X as

X¢ = f"foeg . (C.4)
In this case eq. (C.2) reads,
faf® = fuf* = 2kf*X2f, + O(X?) (C.5)
which is solved by
fa = fa— kX2, + O(X?) (C.6)
that is, neglecting the O(X?) terms
I, = I, — kX",
fap2® = pap2® — kX2 (C.7)
fabcz ¢ = fabczbzc - ngfbcdzczd

At this point one needs some further information to solve without ambiguity for the
renormalised parameters. We can prove, just looking at the relevant Feynman graphs,
that the anomalous dimension of the scalar fields depends on fu. only through X*; more
explicitly

I3

2% = (85 + akX2)2® (C.8)

where a is an unknown constant. With this supplementary information we get from eq.

(C. 7) the following equation for the parameter Lab:

PracZ® = o2t — szubCzc — ak,uabezc (C.9)
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Using the symmetry pap = psq we conclude that @ = 1. The same procedure for fabe allow

us to obtain

by !

la - (53 —_ kX )

Aa = a - k‘Y 56’ — kXb’ a’b!

/-f b ( a ° ,)( ,_b,) Ha'b , (ClO)
fabc = (6(1 - k/‘& )( - ]ﬁ)&b )(5; — k}ig) falblcl

ZA'a = ( a’ —(" ngz) Zﬂl

This equations are known as non-renormalisation of the superpotential, because they
imply the equation ]E(é) = f(2); we see that, in a sense, we have only the (logarithmic)

wavefunction renormalisation.

We get the corresponding RGE deriving with respect to the logarithmic “divergence”
factor —2k, that is with respect to the momentum scale ¢ = @—3\,)—2 In @, (Q appears implic-
itly in the logarithm together with A: In(A/Q))

d 1

G = X (C11)
d 1 CLI fbl

it = XS pan + Xy pay} (C.12)
d ]. ! I3 "Cl

a—t'fabc = §{X§ fa'bc + Xg Hab'c + AC ,u’abc’} (C13)

Notice that we use from now on just renormalised parameters; therefore we do not write

the hats any more.

C.2. RGE in the general case

Let us recall the relevant functions of the scalar fields 2., members of the chiral
supermultiplet ®,, that define a supersymmetric theory with soft breaking (2" = z7)
D (2% 2,) = g"2°T*z,
1 1
f(za) = [%z, + E;Labzazb + -éfabczazbzC
1 T ..
n(z) = L%z, + E.Mabzazb + é-n“b‘z,,z(,zC

In terms of these functions the most general SUSY scalar potential containing also soft

breaking terms is given by (f, = a~a = (f*)"):

4 = VSUS) ( ) + an( )
Vsusr = ffa+ —DQDQ
soft = ngzbzﬂ- (7] + h.C.) (C.14)
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It is good policy in the general case to organize the computation of the supertrace of
M*(z) using the “modularity” of the mass matrices; 7.e. computing separately the effect
of 7) the parameters in the superpotential — as we have done explicitely in the example of
the Wess-Zumino model -, 71) the gauge parameters, 411) the soft breaking parameters and
iv) the “interference” terms (for instance those in which the gauge and the soft breaking
parameters appear). The relevant mass matrices are listed in eq. (2.39), eq. (2.40) and
eq. (2.41). In order to simplify the calculation it is very useful to take advantage also
of the gauge covariance of the various terms in the scalar potential, as in the following

example: 5 of
f aa b aa __
6af(Z) = ‘(;9*;;5a2 = 'é;;Tb 2 = O = faD = 0 (0.15)
Moreover, turning to the solution of eq. (C.2), it is convenient to compute first the
effect of the supersymmetric parameters alone (gauge couplings+parameters in the su-
perpotential), solving for the supersymmetric renormalised parameters and then compute

the effect of the soft breaking parameters:

~

Vsusr(é) = Vsusy — kStr M} (0'16)

SUSY
Vo, (2) = V., — kSt M* —Str M* ) (C.17)

SUSY

Notice that the soft breaking parameters are all massive; therefore they cannot change
the renormalisation of z,, gy, fuse; one can also prove that they cannot change the renor-
malisation of pq; this implies that the previous splitting is correct when solving for these
parameters. On the other hand it is worth mentioning that I, plays only a formal role if
the soft breaking parameters L, and M, are also present. In fact, as one can prove by ex-
panding in components eq. (C.14), I, appears always in the combinations Co = Lo+ papl®,
Cab = Mup+ fapcl® in the the scalar potential. This means that when these parameters are
all present at once the splitting Vs sy — Viosi is somewhat arbitrary. However, since [,, L,
and M, appear linearly in C, and C,, the superposition of the RGE’s that we separately
obtain from eq. (C.16) (— I,) and eq. (C.17) (= La, M) reproduce correctely and
unambiguosly the RGE we would obtain for Cqo and Cgp from eq. (C.2).

Let us finally list the RGE for the general SUSY theory with soft breakings. The
variable ¢ is defined in accord with eq. (C.34).

d 1 .

Gl = XL (C.18)
d 1 a’ ~b! 2

Syl = E{X“ Hab + Xy pab — 89, Cala)pas} (C.19)
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d 1 ’ Y o
L_izfabc = §{JY;1 fa’bc + /X([; fab'c + XC fabc’

—4g2[Ca(a) + Ca(b) + Calc)] fave} (C.20)
%La = —;-{X;"La, + 29aca £y + Am® fopap

+2#abbedA[cd + 277abc]y[bc} (021)
d

1 / '
— My = 5{){; My + X2 My
_8gica(a')]‘/[ab + 16/”06/-"(1920&(0’) +
+2(fabc11{[de + HacTlbde + /-l'bcT]ade)dee} (022)

1 ral ! rc/
E’t""]abc = "2'{Aa Tla'be + X{f Tab'c + JXC TMabc!
492 (2 fabe — Mave)[Cal(a) + Ca(b) + Calc)]

+2(FabjTede + FactTbde + FoeyNade) F/} (C.23)
%m?g = %{X;"ng, + XEm® + 4g, D Tr(T*m?)
+4m® frge £ + 2000an™® — 1692 | pio |* Ca(a)82} (C.24)
d 1 .
9 = 3iT(e)— 3C.(Adj)}g. (C.25)
d “y 2
SiHe = {Tx(a) = 3Ca(Ad))}gapa (C.26)

The last equation represents the gaugino mass renormalisation, and must be obtained with
a different method, for instance computing the relevant Feynman graphs. The Dynkin
index T3(a) is computed for the reducible representation that contains all the scalar fields
of the theory; the eigenvalue of the Casimir operator C,(a) (resp. Co(Adj) is computed
for the representation of the scalar fields z, (resp. for the adjoint representation); the

index «a labels the group.

C.3. RGE in the SUSY SM

The previous set of RGE’s can be applied to the case of the SUSY SM. We will
identify the scalar fields in the SUSY SM using the index a of the multiplet z, in the
following way:

a € {H],H;,L7, E,Q7, U, D"} (C.27)

The field Ef (resp. Uf™; D) is chosen to have charge +1 (resp —2/3;+1/3); see the

T

discussion after eq. (2.4).
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The function f(z) for the SUSY SM is chosen as
forr = enr[T; HYLTES + TP H7QTDS +TY, HIQ[U; + p HY HY| (C.28)
where I have written only the SU(2), indices. The soft terms contained in 7(z) are:
1sar = €. [Tk HYLTE; + TR, H7QT DS +TY; H7Q[U; + By HY HJ] (C.29)

Considering the fact that soft breaking scalar mass terms have to be gauge invariant we

write:
my, (HY )" HY + m}, (Hg)"HF
+ mp(L7) L +m(Q7*) Q7
+ m B ES 4 (UF) US4 m (D) D (C.30)
Notice that the fact that the mass matrices m’¢ of the previous section commute with the
gauge group generators does not implies that they are completely diagonal, since there

are family replicas. I wrote mi i (resp. m{ i, mp;), instead of mi;; to refer to the mass
matrix of the particle with charge —1** (resp. +2/3, —1/3).

By comparison with the notations of the previous section one writes for instance

D
fo'Q;{a D;_:ﬁ - F;] €or 5(113
Bue gy = [ €y (C.31)

The formulae for the terms in 7(z) are completely analogous. Some care is required when

we consider the soft breaking scalar mass mass term; for instance

21 E5 2
{m }Ef = Mgj

{m*}3 = mb, 606 (C.32)

The computation of the matrices Ay is a little more cumbersome; let us give an

“"This point can be formulated more explicitly with the notation of eq. (2.4) and following, that is
restoring the indices L, R: mE is the mass matrix of E, thatis £ > E;m%iER. We choose to identify
Ej as a component of the multiplet {2a}; that is we are working with Ef = Ep; and Epmi,Ep =
(BL) (mE)" B
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example:

Il

~H?
-*XH;’

fire cafrgca

= f;IgL;E;fH{’L;E; + ff{fE;L;foE;L,Tf;{fQ;aDjﬁfoQ{nD;?ﬁ + f;{f'DJ?BQITG fo[)J‘.'aQ{"
= 2furrrpefurire: + 2f;{fQ{aD;ElePQ:_'aD;5

= 2(riEj*€0T)(FiEj€PT) + 2(1‘5*60755)( ijEPTﬁg)

= 2T(TL0R)6s +2 -3 Te(Th D)8

(C.33)

At this point we can apply the results of egs. (C.18-C.26) to the model under
consideration. We list in the following the whole set of the SUSY SM renormalisation

group equations.
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For notational convenience, the scale variable ¢ in the following equations is defined

as

‘= (Z%)

Yukawa couplings I'g, I't;,T'p and p-parameter:

d
P

dt

Gauge coupling constants:

~3(9; + 9i)Tk
+3TTLT,

+Te(TLg + 305 )T
= 1?693 +3g; + }gﬁgf)l“u
+3Tu Dy Ty + ToTh s
+3 (T Ty)Ty

16 7
—(%95+39: + -4i)Tp

3 9
+3I‘DFEPD + FUPLFU

+3Te(T},Tp)T

[—(3g3 + 97)

+ Te(TET g + 3T Ty + 305 T

d

9 = [—9+ 2N,]g}
d 3
792 = [—5+ 2N,]g;
d 0.,
59 = 1+ *3—Ng]93
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(C.34)

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)
(C.40)

(C.41)



Soft breaking parameters I'}, I';1, T' and B.

d
—r4
dt

dt

Gaugino masses:

~3(g; +97)T%
+2-3(gap2 + gim )T
+50ET LTS 4 arirlr,
+Te(TLDg + 375 T
+2Te(rLrg + 3rir)r,
*(}39933 + 395 + %gi’)l“‘ff

16 , 13
+2(—3—g§,u3 + 3922#2 + “é“g%/tl)FU

+5TyT) T3 +4TATS Ty + 20AT] Ty + 11l
+3 Tr(I‘Z;I‘U)I“[}

+2- 3 Te(T} T Ty

~(5h+ 363 + Lg7)T

+2(—1-3§g§#s + 3952 + ggfm)l‘n

+5TpT b3 + 40T}, + orirf s + Tl
+Te(TLT s + 3Te(ThTo)T

+2Te(TLrs + 3 Te(rh 0T

2[3g2 12 + g2

+Te(rirs +30frs +ariray

d

= [—9 + 2N,]g; 1
d 2

ZHe = [—5 + 2N,g]g5 1o
d 0. .

it = [+ 5 Nolgsus
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(C.43)

(C.44)

(C.45)

(C.46)
(C.47)

(C.48)



Soft breaking scalar masses:

d ,
ZmE = 2mj;, Tr(I‘Z—PE—f-H'LI'D)

+2Te(Tfm? L + 3Thm3 Ty + Tpm2D) + 3rpm2 o)
+2Te(TAITS + ariird )

~2(393 [ 2 I +g7 | 1 ) (C.49)
d%qu? = 2m2, 3Tr(T}Ty)
+2 -3 Te(Tfm3 Ty + Tym3 ) + 2. 31e(r2 Tt
~2(3¢; | p2 I> 447 | 1 %) (C.50)
d
—mi = milpT}+ [pThm?
+2(Tpm T} +m? TeTh) + 2(rarih)
—2(3¢5 | pa I” +4f |1 %) -1 (C.51)
da ,
Zmb = 2AmiTLr; + Dfrpmi)
+A(TLm2 Ty + m?, TETg) 4 arifra
=207 [ P 1 (C.52)
d |
™o = mb(TuT] + ToTh) + (TuT] + Tprhyme
+2(I‘Um2UPz* + I‘Drsz% -+ I‘Dm%I‘}; + FDPLTTI,;{J
+2raTal + Tareh
16 1
“2(39:3 | s |* +3g5 | pg |2 +§912 | 7)1 (C.53)
d . . )
gzmi, = Z(mfjrer -+ I‘ZI’Um{J)
+2- (T m3 Ty + m2, Ty + 2. o(ri oy
6, . 16
~205gs lus [+ + 39w )1 (C.54)
d 2

—mp = 2(m%I‘£I‘D + I‘LFDm%)
+2- 2Thm3 Ty +m3, THrp) + 2. 2(mif )

16 . 4 .
~-2(—?;93 s |? + + ggf i P) -1 (C.55)
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