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set of half-integer numbers
set of positive integer numbers
for every

Lie group

Lie algebra

affine Kac-Moody algebra of<3
set of roots of g

set of roots of%‘

Weyl group of 9

set of real roots Of%

weight lattice °f3



1.- INTRODUCTION . \

The aim of this work is to provide an introduction
to the theory of Kac-Moody and Virasoro algebras in
the context of Theoretical physics.

In modern physics, symmetry plays a central role
and group theory is in fact the mathematical formula-
tion of the study of symmetry. Up to now the use of
finite (discrete) groups is well established, and they
are principally applied to crystallography. Also the
continuousinfinite groups with a finite number of pa-
rameters (such as SU(N), SO(N), U(1), ete.) are well
known and have been applied with success in atomic,
nuclear and particle physics. In fact, the gauge --
theories of elementary particles introduces the inter
actions among them by making that the theory (descri-
bed by a Lagrangian density) respect certain kind of
symmetries. ;

It is very usual and some times more easy t0 study
the groups through its associated algebras (Lie groups
and Lie algebras) which are in some sense the infini-
tesimal version of them. To a Lie group described by
N parameters one can associate an N-dimensional ILie
algebra, whose basis vectors ﬁT“} satisfies the rela-
tions

(T2 18] =8 T¢ (1.1)

Oﬂ\)}C =\\)-\') N

where $°®°. are the struéture constants characterizing
the Lie algebra.

In the last 20 years, mathematicians have develo-
ped a new kind of algebras, the Kac-Moody and the asso
ciated Virasoro algebras (1,2, 3, 4, 5,6 ) which are
associated to continous groups with an infinite num-



ber of parameters. These algebras are infinite di-
mensional and have the novelty of having a central
element, that is, an element that commutes with all
the other elements of the algebra. To any finite
dimensional Lie algebra g as (11), the associated
(untwisted)~(*) Kac-Moody algebra‘§ is defined by

[Tm ST\m] L‘qa\‘b —(:ﬁh Km ga\: ‘S‘m,-h
| (1.2)

LTa k=0

Mwmcﬂmth.“m wzdmﬁ)aManez.NMe
that the generators {Tg} form a subalgebra isomorphic
to (1.1).

In the other side, the Virasoro algebra  has ge-
nerators {Lh,c} which satisfie

[\-m)\—‘} (-0 Lpen T 5 wlmz-1) &, -

(1.3)
Llasc]=0

with m,n€Z,

The algebras (1.2), (1.3) are not unrelated struc-
tures, and as we shall see they form the factors of
a semidirect product such that

a a
ELM )T“ 1" -“TM‘\'V\
[L“aKl= © h—ﬂ SC]:O
(%) 1y 211 the work we will only study the untwisted
Kac-Moody algebras which are the ones that have

importance im physics, and so we will refere to
them simply as Kac-Moody algebras.

(1.4)



In chapter 2 we shall-give a review of the theo?y
of the finite-dimensional simply compact ILie algebras
including the theory of roots and Dynkin diagrams
which are used to classify them.

Chapter 3 is the marrow of this work, there we
will study the theory of the Kac-Moody and Virasoro
algebras. We will also generalize the theory of -
roots and Dynkin diagrams to classify them. A short
overview of the unitary representations (which are
the best knmown) is also given.

Chapter 4 concludes the work with two simple ex-
amples of physical theories (the ordinary relativis-
tic string and the massless fermions in 1 + 1 dimen-
sions) which shéw a simple manner, the way in which
Kac-Moody and Virasoro algebras appear in physical
problems.,



2.- PINITE DIMENSIONAL LIE ALGEBRAS .

In this chapter we will give a short review of the
theory of roots, weights and Dynkin diagrams for the
simple and compact finite Lie algebras (%) (7,8,9).

Let us take the lie algebra g associated fo the
simple and compact Lie group G. The generators 0f<3,

{T°} satisfy :
b PY-N
[T, To)= 0 4T o)
0.3\036.:\3...3&1?&3

where £*°° are the structure constants of g which are
assumed to be completely antisymmetric because the al
gebra is simple and compact and then, the T™ can be
chosen {0 obey the ortonormality condition

Te (T5T°) = A& )

where A is a constant that depends on the representa-
tion. We use the condition (2.2) to define a scalar
product on g . If x,y€ g then:

<Iwﬁ>5—\g Te(xy)= x>y (2.3)

where:x:x?T“,§ﬁ=g“T°‘. Note that {x,y) do not de-
rend on the representation, and it is imvariant under
G

(¥ xK‘"J‘M‘") = {x,y) (2.4)
Y I €6

(%¥) While for a general compact Lie group; its ILie
algebra can be splited into the direct sum of gimple
Lie algebras and abelian lLie algebras, so the results
can be extended to it.



which implies that

(I)[%gz]>+<\jb[:&3i]>:o (2.5)
Vz)‘ssz € 3.
A tipical elememt of (6 is given by

%Tmem *
@3‘ e 38@290\ (2.6)

and im a umitary represemtation of (& , the {Tq} are
hermitian

TOC" ;TQ . (2.7)

The standard way of comstructing the algebra g is
by choosing a basis in which there is a maximal set of
commuting hermitian gemerators W" ,

TH,uil=0 A O

The number v of gemerators is called the rank of s
and the abelian subalgebra gemerated by the {H'} ™ is
called a Cartan subal8ebra (CSA). With the CSA, we ex
tend it into a basis for the whole 3 by taking other
generators £ , such that |

KHL-)E&1= <Y (2.9)

L]
L

L’s"'\)ﬁotar

The real non-zero r-dimensional vector X , is called
a root and E‘ the step operator corresponding 1o & .




\\
It can be shown that the roots « are non degenerate
and that the only multiples of a roet < which are . . ..
roots are t ol (7). In fact -o is a root with step
operator E'd = %Y yhich folleows from (2.9). We
denote the set of roots by ® . Then the number of
roots is | 2| = dim q-v .

To complete the comstruction of q it remains to
consider [ E™, ER] for each pair of step opera
tors EY and ©® . From the Jacobi identity, we
have

[ W, LEY EP1]= (4 + A LEL E° (2.10)

So if x+A § & and A+ B £ 0 then Le',ef)=0.
If L+ € B then Y_Ed‘ﬁ ©”) must be proportional
te ©*'R ., And finaly if < +B=0 it is possible to
see, using (2.5) that

<%'H5[E*5{"]>=0 it & - *=0.

o -
so LEL N t ] is proportional to A-H and we fix

the normalization of Y~ such that [ E%, E_*l‘—'}::,fsi
In resumé
P, BYE? 5 4+ pB€3
{EK,EB% .E;‘i;_(tzi if’ L+ =0 (2.11)
0 otherwise

where the constants [ («,3) are antisymmetric im o and
/A and can be easily calculated, nevertheless we will



not give their expression (see for instamce ref.7).
The basis ‘

b Telaai EY < ¢ 3 (2.12)

with the commutation relations (2.8), (2.9) and (2.11)
generates q and is called the "Cartan Weyl" basis (g,
10) . ’

For each root ® it is possible to associate gemnerag
tors

(2.13)

I, , 1 , 2 L (2.142)
[1%’1-]=2X3w [13 311]:?{* . (B
Ii = 1 ol (2.14¢)

{Imszﬁlliémnp\ 13. (?.Téd)

and



| - ; ,}y*‘ .
I+ ,j[- , T =1m | (2.14e)
m= 1,243, ' \

4

2 H
.,,(Z
any unitary representation are integral. In the ad-

joint representation the eigenvalues areéiéﬂ pAED
together with zero v times. Thus

As a comsequence of this, the eigenvalues of in

-—————-2:'23 e 2 Ve, 3. (2.5

From this it follows that the angles between the roots
and the ratios of the lenghts are given by:

/3 for D= 30°,150°
< J2 for B=145°,135°

el

| (2.16)
1581 | for §=4607,120°

\ undetermined for 9= Q\OO

Furthermore, the step operators of the formEf*m“;“eEE
form a set of irreducible tensor operators belonging
to the adjoint representation of the SU(2) subalgebra
generated by (2.13), (5,7) thus, because

% -H R R4 B
{EM 3E}-—;{i— E 3

ql
Eﬁ s has helicityvn3=~§§§ , the step operator
EAT™ with m=-22L2 have opposite helicity -mj, then

L(A=A -L < €8 vaped. ()



The linear opgrat@r V4 makes reflections in the hypér-
plane normal to ¥ , and we have seen that 4 transforms
roots into themselves. The WU's generate a finite
group \J(g\ called the Weyl group of q . Some proper-
ties of ¥ are: '

Vist+ ) = T(a)+ ¥ (B)

linear (2.18a)
U (ma) = m T ()
. 2 2 :
W (&\) = (2.18b)
preserves the lemght of the wvectors,
\ (Q’@x\} = o (2.18¢c)
or in operator form
T =4 . (2.184)

The number of roots in general exceeds the rank r
of g, and it is possible to seleet a basis of roois
{«y} tsty..+sr called of gimple roois (5,7) that ge-
nerates the y-dimensiomal space and have the property
that any root « can be written as:

.
izl
where either n; >0 Y or ny €0 V¢ - In the first case
o is said to be positive (¢>0) and in the second nega-
tive (®<0) (7). Obviously the Weyl group W transforms



a basis of simple roots into another

4; =G; (ko)

) o
and it can be used to gemnerate all the roots, just be-
ginning from the simple ones.

The struecture of g can be characterized by the fo-

llowing matrix(*)

K.‘l N V= lyeeey ¥ (2.21)

called "Cartan matrix" of g . Furthermore, from (2.15)
it happems that Ky € % .
The following properties of X come direcily from
its definition (2.21), the property (2.16) of the
roots, and the fact for simple roots i ,%j, (%<0
(see ref.7 )

Kie = 2 (2.22a)

Li
Kip Kit=041,2,3 L # ] (2.22b)
2 2
1r Xy = %5 (L#]) then
2 o« > =1 (1 #{) then
Kii = -\ and Kijy = 2,5-3 (2.224)

(*) In the rest of this chapter we will not use the
convention of sum under repeated indexes.



G

K is invariant under the transformation (2.20), that
is: o

K= 2 S 0 - Bsleg) -y

W (°<5)2'

(2.221)

>
[ )
«

§

Also it is possible to see that, there are two root
lengths at most (7) so, they are divided imto lomg

and ghort roots. If all the roots have the same length
then g is called gimple laced. An equivalent way of ’
classifing g , due to Dynkin, is by the socalled Dynkin
diagrams (11,12). They are comstructed as follows:

For each simple root there is a dot and they are
joined by Kij Xji lines with an arrow pointing from the
long to the short root, (or without it if they have the
same length). The figure 1 shows the Dynkin diagrams
for all the simple Lie algebras.

Let us now see how finite-dimensional irreducible
representations of q are expressed in the Cartan-Weyl
basis. We take a basis {U*>} of eigenstates of the (CSA
HY, that is: :

R ipy =m0 ) (2.23)

L:“S"‘}Y

and call the y-dimensional vector m of eigenvalues a
weight. While the SU(2) subalgebra (2.13); 2-25H.
must have integral eigenvalmes, s0: ‘

2K, € R Y eSB (2.24)
.><a
and/x a weight -

and the states \w) must form SU(2) multiplets. While
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2 c:zH e () ) = “2%—?— \Scimyy

as follows from the definition of (x . So the weights
of a given representation are mapped into other weight
of the same representation by U« , and so by the whole
Weyl group W (g). The condition (2.24) defines a la-
ttice Q0 (q) called the weight lattice of q -

It is possible to construct a basis for IL(s)con-
gsisting of fundamental weight b“i} which has the pro-
perty

et el S JLA
o (2.25)

where «; is a simple root. They are clearly related
to the simple roots, by:

r
/’LL = jzn K.. °<') (2o26)

where K ' is the inverse of K which exists because
(2.22¢). The weights can then be expressed as

P» = 2 ny M1 n, € b (2.27)

L=

If 20 VYU, the weight is called dominant and it is
possible to map every weight into a unique dominant
weight by the Weyl group (5). Clearly the weight

is dominant, if and omnly if

/.A-O(L}O 12\3...)r. (2-:‘-)?)



(2.29)

which has the property that R£.«%>0 if X720 and AP-%{0 if
«{0 . Now we can define an order among the weight
saying that

/L‘l>/"“a if M >/"z' £ (2'30)

In any finite-dimensional irreducible representa-
tion of g it is possible to find a unique state (7)
Imo) called highest weight state, such that its weight
is the biggest one, in the sense of (2.30). It has
the property that '

£ Lu,y =0 YX70,%€% (231

because, if it were not zero, it would be equal to a
state with weight juo+% which is bigger than .

The space of the irreducible representation will
be generated by the action of lowering operators on
the highest weight state lu,) , that is

(E)" (e ... (E"*"‘W)“'“ 1o ) (.52)

where the /3's are positive roots and ni€ Z ' ulo} i=lj..ym.
Clearly the weight of the state (2.32) is

P:/AO‘Z’ nfL/.’;’L n;€%+ UI[O} (2.33)



Vo

and so all the weights of the representation are ex-
pressed in this way. In the adjoint representation

of g9, the weighis are the roots and the highest we-
ight is called the highest root ¥ . Obviously by -
(2.33), ifx€ &, then VY-« is a sum of positive roots.

Also,because ¥ is dominant,

r

The highest root ¥ plays an important role in the
theory of Kac-Moody algebras, as we will see in the
rext chapter, where we will generalize the concepts
introduced in this one.



3+.- KAC-MOODY AND VIRASORO ALGEBRAS .
i) Groups of Infinite Order.

In recent times the mathematicians have been inter
ested in the study of continuous groups of infinite
order (that is, each element of the group is charac-
terized by an infinite set of‘parameters)(*) and the
infinite-dimensional algebras associated with them.
The Kac-Moody algebras (1, 2, 3, 4 ) and the associated
Virasero algebras are two examples of them; in the -
last years they have been applied to physical problems
(10,13)and in particular to string theories (see for
instance refs. 14, 15). ’

Let us take a Lie group G (**)

with Lie algebra g,
and consider the group 6 consisting in the diffeomor-
phism from the circle S’ to 6. So

N\

G ={¥¢:5—06) (3.1)

S=lze | \z1=1} (5.2)

and the group operation defimed by that on G, so if
¥, (2) &, (2)€G

(*)From now on, we gshall refer fto them gimply as in-
finite dimensional groups.

(**)For the moment we are only supposing that the
group is compact, but it can be non simple.



B0, (2) = 4 (2) - ¥, (2) C(3.3)

Note that by £(2) we are denoting an element of & to
whom there corresponds a set of elements of G obtained
by varing = . & is called the loop group of ¢ . To
calculate the Lie algebra §5 of & , we start from the
Lie algebra q of 6 , with gemerators {Tq} satisfing

[T, 7] = T (5.8)

o
where the structure constants 4Q ¢ are not supposed
to be completely antisymmetric at this stage. The
elements of 6 are expressed as:

- T8
f-=e o=l dimg  (3:5)

where 91 =8, are the parameters of G ; while the ele
ments of & (which can be continously deformed to the
identity) can be expressed by the function 8,(z) in
such a way that:

< T°~80~ (z)

¥(z\=€" | (3.6)

Making a Laurent expansion of 6,(z) we have

+oo “N )
Bo (2) = 2 BQ z" (3.7)

Nz -0



and we can defimne the generators |

n

Q _ ya
T, =T =" | (3.8)

in terms of which

f{z)=€ n= (5.9)

The generators (3.8) of the loop group é;satisfy the
Lie algebra '

b v
[T: 5 T“] = 5 < Tren (3.10)

as follows from (3.4) and (3.8). The algebra (3.1?))13
A *
ge

associated to g (10),and further we will see how it

called the untwisted affime Kac-Moody algebra

admits what is called a central extension. Note that
g\is the group of general gauge transformations. Note
also that the generators T,- form a subalgebra of G,
which is isomorphic to g , and corresponds to the subp
group of’giconsisting in constant maps $'—= G so,
clearly it is isomerphic to G itself. For 6 compact
and the generator (T“} of q hermitian, that is

_'-
. ot a
it happens that N =-T;n (3.12)

(*)From now on we will refear to it simply as affinme
Kac-Moody algebra.



\

as follaws from (3.8) and that, for |z| =1, z* —-24

A representatlon.of go satlsflng (3. 12) will be ca-
lled unitary because then & will be unitary.

Let us now consider another infinite-dimensional
group; that is, the group V of diffeomorphism §'—> §'
with the law of multiplicatiomn defined by the composi-
tion of functions, thus

P, oY, (== Y LY, (). (3.13)

In order to calculate the algebra associated to\V ,
let us comsider a representation of V that acts on the
space of fumctioms f:S'—V where WV is some vector
space. Then

A

PE(z) 2§ (¢ () (5.14)

For P€V near to the identity we have

Plzy = 2 g5 (3.15)
with § (2) =€ (2) and |§ ()1« | . Then
f(z)=z-1Lz¢(2)
and
o . () -
T ()= 2z +1Lzg (2) (3.16)

(*)the that here ¢! means inverse in the sense of
composition of function, thus ve? =1,



Then substituting on (3.14) we obtain

A\ . d
)= $(z) + vz g (2)F f(2).

Doing a Laurent expansion of

LS

+ %0

g(z)= 2 & 2"

na =oe L3}

we can introduce the generators
— nxl A
Ln=-2 &

and then (3.17) becomes

it

Cral=(1-1% &, L) fe.

nz -2

~

The {L“} satisfies the Lie algebra V,

[Lm;Lmjz (m—n) Lm+n’

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

which is the Virasoro algebra (without a central ele-

ment; we will see later how does it appear ).

unitary representation

because §f“ = %“ .

For a

(3.22)



The groups V and G can be related easily to form
the factors of a semidirect producf. Consider a re-
presentation of G that acts om the vector space V', the
$(2) €6 acts on the functioms §:S$'—» V¥ in the usual way
Y(z)$(2) and Y€V acts by (3.14), then we defime the
convined action ofV and @by

(e, %) £(z) =¥ (" (=) § (*7(2) (5.23)

Sinece in this representation the generators of V and6
are represented by (3.8) and (3.9), it follows that
the commutation relation between L"\and'T: are

[Lm ,Thqi\ = -nT:,:Hh . (3.24)

ii) Central Extensions.

One interesting feature of the algebras (3.10) and
(3.21) is that they admit the addition of elements to
the 2lgebra that commute with the initial ones. This
is what is called a central extension of the algebra,
they play an important role in the application of the
Kac-Moody algebras to the gquantum theories, as we will
gee in the next chapter.

Let us consider in general an algebra

[+ ,t° ] = Lt (3.25)

(for the moment we are not supposing that the structu-
re constants 4“2 are totaly antisymmetric). Because of
the Jacobi identity

L

=



[+ Ry ‘h]]*‘h [, €]+ [t [t t] (5.26)

the stucture constants obey the relation

eb

© c c
£7% £°5 465 2% 150 %%, =0 (3.27)

egd

Now we can ask ourselves about the possibility of
adding elements ¥' to the algebra (3.25) such that

[tﬂtbh L‘éqf Eorigt K (3.280)
\( 1=0 (5.28)
[K ) \(3 =0 (5.28¢)

Because (3.28a) needs to satisfie (3.26) we obtain

that the gqﬂ_must satisfie the ecuations

b 3
_{_C\e‘ %e‘c;‘, + ‘F\oe 33&L + _gf-cg %ebi. =0 (3.298.)

ob |

and also % .= "%bQ'L (3.29b)

The space of solutioms of the linear ecuations (3.29)
determines the possible central extenmsions of the al-
gebra. Nevertheless there are some solutions of (3.29)
that can be removed by a redefimition of the t*. If

P — - (3.302)

the §“\ transforms as

s ab c
ﬁm : Q?b . + ¢ . n‘i (3.30D)

v
[V



and it is easy to verify that

£ ¢ me, (3.30¢)

satisfies (3.29) trivially.

Let us now investigate the possible central exten-
sions that the simple compact finite-dimensional Lie
algebra, given by (2.1) admits. While the generators
obey (2.2), the structure constants will obey an ana-
logous relation

(OTS (BTS _ o (ab (3.31)

with € a constant. Multipling (3.29a) by $°9°S ,using
(3.31) and recalling the indexes, we obtain

C_ %O\b :2 °~"‘S gbslt f:- }

using (3.27) and after a little of algebra

l o t
305\0 = g %5].‘ (3.32)

L

which is of the form (3.30c), so all the central ex-
tensions of (2.1) are trivial. The same argument can
be applied to semi-simple compact finite-dimensional
Iie algebras, and for the non-compact case, things can
be arranged to obtain the same result (10). So there
is no central extension for such algebras.

For the Kac-Moody and Virasoro algebras, things are
different and there exist non trivial solutions to{(3.29)k
The algebras with the central element are:

be c oo
LmsT]“HCQ T R SO (3.33a)



o &
o o

N

[L“‘ﬁ““] :‘('“T“)Lmn*%m(m"“\) dmy-n (3.3‘3b)1
[\-“\sjﬂj~] ="n—T:t?n | (3.33c)

Where K and C are the central elements that can be ta-
ken as a congtant in each irreducible representation
of the algebra; and £%%¢ are the antisymmetric struc-
ture constants of a compact and simple Lie algebra.g.
From now on we will demote by § and V the Kac-Moody
and Virasoro algebras (3.33a) and (3.33b) with the
central elements added.

In géneral there is not a method to resolve the
equations (3.29) and often one needs to test and error.

iii) Theory of roots and Dynkin Diagrams of § .

In chapter 2 we have studied the theory of roeoets
and Dynkin diagrams for the simple, compact finite-
dimensional ILie algebras g, now we will generalize it
to classify the affime Kac-Moody algebras § .

In the Cartan Weyl basis, the -algebra g is des-
cribed by the commutation relations (2.8),(2.9) and
(2.11), in this basis the algebra § is

R S I (3.34)

L « ‘
LH X Eol= % E s (3.35)



AN ]
RN

S4B
LB E if oA+ € (3.36a)

fete
Hy

{EMJE} "%— m+n+Km(Sm5_“) A = - (3.36Db)

O otherwise (3.36¢)

[KjEi]z[K)Hi}:O. (3.37)

In a unitary representation the gemerators have the
hermiticity conditions

K =X (3.38)

Now we will try to construct a CSA for 3 We can
start with Ho and K in which the step operators will
be E“ and H', ,

[Hi JEN] = & E, (3.392)
K ,E.] =0, (3.39)
[Hi ,Hi} =0 (3.39¢)
LK ,Hin] =0 (3.394)

Nevertheless the roots (o{,0) are infinitely degenerate
and {3.39c) and (3.39d) show us that we have not a fi-
nite maximal set of commuting elements in the algebra.
In order to take care of these difficulties, we add
another element d to the algebra § which has the co-
mmutation relations



[ d T:] =nle \ (3.40a)

-
Ld, K] =0 (3.40D)
and if (3.38) holds,
o
d = 4 (3.41)
In the Cartan Weyl basis (3.40) has the form
{ L
{ Ci 3 HY\] =M Hh
o A o

[&3“:0

Note that (3.40) and (3.42) are consistent with the
Jacobi identities and in fact 4 can be identified
with -L, of the Virasoro algebra (see (3.33)).

We can now use as a CSA the operators H% , K , 4
with the operator Ei,\*% (n#0) as step operator. So
that

THy B )=ty [KLER =0, (4,E))=nES

and

®

L 3 I v i - T \ ; = vy
{H0>Hni‘o) \K>Hh1'o> L&yﬁ“] nhw
and then

o
E n corresponds to the root AQE (dq0, ‘(\) (3.43a)

and



®

H:\ (w#o0) corresponds to the root ng(o)o)n) (3.43D)

the roots C\=(°<)0; n) ,4€ @ and #€2 are non-degenerated
and are called real roots, while the roots n=(0,0,n),
neaZ-{O} are v-fold degenerated and are called imaginary
roots. Once again the roots can be divided into posi-
tive and negative

(°<>O>M>O if n>0 orn=0 and 420 (3.44)

We can expand the new r+ | -dimemnsional root space by
taking as a basis of simple roots the following

C\’L E(«L’O)O‘) 'L::‘\)...)r (3,453)
(With.{%{} simple roots of g ) and

O =(-Y,0,1) (3.45b)

where ¥ is the highest root of q . Then every root g
of § can be written as:

v
C\:Z n,ag n € Z (5.46)

i=o

with 4 >0 for a>0 and n; <O for a<0,

We now want to define an analogous of the scalar
product (2.3) for the generator of § . Nevertheless
the non trivial representations of § are infinite-di-
mensioenal and so, it is difficult to define a trace
operation. However it is possible to construct such



scalar product, up to a constant, requiring that it
satisfies the invariance property (2.5). First of
all because {To )} forms a subalgebra isomorphic to
q, following (2.2) and (2.3), we take

(TS, Te > = 4

b
taking x:T,: ; 3=K and z=T“ on (2.5) we obtain
(K 4% =0

( K, To=0.

Now taking x:T:\ , LS:'Y:’\ and Z:=d follows
o b
a2 %<0 1t men # O

-
Taking x=_\—‘:, L&:To s zz_\-; and using the last results

(TS T2y = Al 7 S, o

C N
and z=1, follows that Alm=1,

b
. o -

S0

CTo ey = (7

m =N

Finally, taking x=T% ,y=d andz =T: 5
&N =
(4, K>z ans {4, T2Y=0

The only unconstrained product is

{d,d)

and this is due to the fact that the algebra is un-
changed by the transformation 4 —>d+AX, A a cons-
tant, so we can take {d,4) as zero. In resumé we



have:

a b _ abk ¢
(Tw s T 7= 4 o0 -0 (3.47a)

(K ,T0) =0  (3.47b)
(KL, Ky =0 (3.47¢)
(d,72)=0 (‘3.47&)
CdyKy=| (3.47e)
(&, dy=0 (3.472)

The relation (3.47) induces a metric in § . While the ~—
metric on g is euclidian in caracter, that is(T%ﬂf>=é?=

on @ it is Lorentzian as can be seen by considering

the scalar product (3.47) on the hermitian basis

o

o o Q o \
To s e+ Tahd (Mo -To0, 5 (Red)y 1 (k)

\
Nz

All these vectors are ortonormal, and the norm oféE{K-dﬁ
is -1. This will medify the scalar product among the <. .
roots o and the new weights,ﬁ~on § as we are going to

see.
Let us take a basis “)W}AK5FA>§ of eigenstates for
the CSA H,, K ,d4 such that

H;kﬁaﬁmaﬁw >:‘}é\)*>”xmﬂa>
Kol s mg ) = b o o s (5.48)
d i‘/*;/\’kxyf'\d>: My \}*3)*\<>/“d>’3

and call the r+? dimensional vector



BE s pey pg) (3.49)

a weight of & . For the CSA, the products (3.47) are:
!

(HS LWy =68, (i, kY =¢hh L dY=0

(K, K>»=({d,d)=0 (K, dY =1

and so the metric tensor in the weight and root space
is

where 1 is the rxr unitary matrix. The product of two
vectors A and &' is then

A~ Sy

R T TE D R R 2
meanwhile for two real roots a=(%,0,n) and a'=(«',0,n)
= A+ X! (3.51)
whilst the imagimary roots n=(0,0,n) and w'=(0,0,n)

have

nen =0 (3.52a)

and also Ne o=0 . (3.52D)

3\



A
™

Now we can define in a straightfbrward way the Car-

tan matrix of § to be:

La O, ¢ O
R P

i) ol

i

From (3.45) and (3.51), it happems that

(R el

Ei'_.‘ L ,

) % Ly= by 3 ¥
Q 2!‘%!.

0;, o(l v

L L= lqeee g

R=-22 " ~

LO- l*ll L;‘)...j\'

~
so that Kot € O
Fa P

Now, because KoL Ki°=0,1,2,3,4
and ?2;“Q Lt=1,00.0,F we see that

A

Kio = -\ for Ko # O

Y\lc =0 for Koo =0

L)j: G)\}0t¢>rq

(3.53)

(3.54a)
(3.54Db)

(3.54¢)

(3.55)

(3.56a)

(3.56D)

(*)In the rest of this chapter there is no sum over

repeated indexes.



(provided that ¥ is mot a simple root which only ~
happens for SU(2)).

Now we can construct the Dynkin diagrams for § .
They are the same as those for g, with an extra
point added corresponding to the root 0o and joined
by Koi K;o, lines to the other points (which corres-
ponds to the other roots). An arrow pointing from
O, towards a{ is added if X, K;,> 1. Figure 2 shows
the Dynkin diagram for the affime simple Kac-Moody
algebras. The diagram for 2‘=SU(2) is an exceptional
one, because there, the simple roots are q,=(-*,0,1)
and aq,=(%,0,0) so that Ko, Ko =4 (see the remark after
(3.56)), and the fact that a%=of in this case, it is
indicated by the doble arrows in the diagram.

To round out, we note that it is possible to cons-
truct a Weyl group‘gkfor g , it is defined to be ge-
nerated by the reflexions in the hyperplanes, normal
to the real roots, thus:

G () =r -2 o (3.57)

The imaginary rooits cannot be included because they
have zero square (see (3.52)). Note also that

G—Q(y\) = "N (3.58)

with n an imaginary root and that for two real roots

T, ()= (a0 np-z*’:'{f ag) (3.59)

A -
igs a root. So as before, W transforms roots into



Cartan label

M7 R
(o) +

T
s

o
~

Fig. 2

Dynkin diagram

o2 T
O—0-- - -0—0—r—
Pl L r

o

Dynkin Diagrams for untwisted affine
simple Kac-Moody algebras.



themselves. \
To any root o=(L,0,n) of § we can associate the
SU(2) subalgebra generated by

AN
o - Ya- W S nkK
En s F—~ns CJk.:kz = H‘,«l“ ) 3.0

where i;a(Hé,K,d), whieh is isomorphic to (2.14a).
Then, the states of any unitary representation of §
must form SU(2) multiplete of (3.60) and this implies
that Go () mapps weights of § imto themselves.

iv) Highest Weight Representations.

In physical applications of the Kac-lMoody (§) and
Virasoro (V) algebras, the operator -d =L, is usually
associated with a physical quantity such as the ener-
gy or the mass, and then its eigenvalues are bounded
below for physical reasons. Such a kind of represen-
tations are called highest weight. Now we are going

to study them in some detail.

Let us consider the Kac-Moody algebra § . For a
unitary highest weight representation, the vacuum stz
tes bﬁ0> satisfies

d \)10 > = \)&0 7 (3.612)
(see ec.(3.49)) and

Tn 1o ) =0 n»O0 (3.61b)

as follws from (3.,40a). For an irreducible represen-
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tation, the states |X,) form an irreducible represen-
tation of g, so each irreducible highest weight re-
presentation of § is characterized by m, (the highest
weight of 3), the value of K and the maximum value of
d ; that is

"~

Po = (poy Ky roy) (3-62)

characterizes the representation. Another way of
writting the conditions (3.60) is in the Cartan Weyl
basgis, there: ‘

th \j/:o >:O for =030 (3.63a)
and Ey IR, =0 (3.63b)
for nyo

or n=0 and €70

Let us take some weightjizgu,m,pd) belonging to the
irreducible unitary representation of @ characterized
by (3.62) then

:(Z Xy 40 5)*05"/’“4)

where w0 and poq~ Mg 0, and in the last step we
have used (2.33). Then we see that R -~ is a sum
of positive roots and as a consequence, also



e

\

/‘);*o - G'O\ (/C') aed (real) (3.64)

is a sum of positive roots. If we take a0 and ;LiMo
in (3.64) it happens that

2 o\;é:o ¢ Z U{OE (3.65)

now taking a =q, =(-Y,0,1) we obtain that

2 ‘W'f;z‘““ A ug\O}

Then from (2.24), and (2.28) and (2.3%4)

Z X—;éﬂl € ZE* U{O}

l‘)Z

then 2 K e z* u{O} - (3.66a)
\?2

and K ¥ ° Mo 7 O (3.66Db)

This two relations are the conditions that X must sa-
tisfy in order to have g unitary highest weight repre
sentation of § . The equations (3.66) show us essen-
tially that the values of K are gquantised in the high
est weight representations. This two relatiomns are
the necessary (they are also sufficient (5,1¢0)) con-
ditions that K must satisfy in order to have a unita-
ry highest weight representation of % . From (3.66)



\we also see that the representations (3.9) and (3.10)
with K = O are not highest weight, except for the tri
vial one with m,=0 .

Similar things happens for the unitary representa-
tions of the Virasoro algebra (3.33b), there the va-
cuum state |&) is unique in any irreducible highest

weight representation. |18) satisfies the relations
Lo 180 = X\ (3.672)
and L, 145=0 w0 (3.67Dp)

While the representation is unitary, L“ satisfies
Lt =\__n s 80 we have, for wyo that:

T LN = <ot u 1y
= AV Lny Lo VDY
= a2l v S a1
= (2a 065 aln2 =1)4Q10)Y
= (2a%+ 5 n (w>=DN> 12

and then

Zﬁ&*%ﬁﬂ@@4ﬁzo Ya YO

if we take first n =1 and then w large, we obtain:



=0 and C>0

as the necessary condition that X and ¢ must satis-
fie inm order that the representation be highest --
weight. The necessary and sufficient conditions
for the unitary representation to be highest weight

ares
Either

Q>0 and < > | (3.68a)
or

- 1 - 5

c= (wn+2) (M +3)
(3.68Db)
5 .

_ j{m>y — -

and 9= { Yp — (m+2)a ] -\

o+ 2) (v + 3)

where m=O’1,2’ooo; P=1,2,o-0,m+1; ‘3»:'1’2""’ Po
(See ref. (5,16) for the demostration).
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4.- CONCLUSION .

In this work we have reviewed the basical mathe-
matical framework of the theory of Kac-Moody and Vi
rasoro algebras, and some aspects of the representa
tions of them. In particular we have seen in detail
how the unitary representations can be constructed
by means of the theory of weights and roots.

" In recent times several applications of the Kac-
Moody and Virasoro algebras to different problems -
have appeared to be usefull. We will limit to show
in the following how they appear in two physical pro
blems: The ordinary free relativistic string and
the theory of N free massless fermions, in two space
time dimensions.

i) The Free Relativistic String. (14,17,18)

It is described by the Lagrangian density

LT, 0) =% g 4P a0 XMy, Xp (4.1)

where 3%8 is the metric tensor of the internal 71 ,T

=3 =2 = ° i i
spaci,éo_ an’ %_ G and 9 det 3*ﬂ The variation
on XW(v,9) gives

3o (V79 9%F ap XY =0 (4.2)

while the variation on %“ﬁ makes the energy-momentum

tensor to be zero

_ s ) oy oy -
Ty [ K Xt 9y, 8 Ky Xn)20 403

i



from this it follows that
M
=3, X 4
S o n Kn (4.4)
In the conformal gauge

_ P o (4.5)
‘30% =C 1(,3 7o<,,5 1o ~a> |

The equations of motion (4.2) and (4.3) simplify to

'72 _ 7(1!& — O (4.63)
and
,’é (X‘Z + 112) ,;( . x!
1, == =0 (4.6Db)
D{ @ Fy '
f* C X - 7(’ ,1?: (’):2-\-'1'2)

where X=JoX and X' = 3, % . Introducing light-cone
coordinates in the Y , T space, such that, for
V=(V°%V') we have

|+

Vs

il
<1l
S~

<
(o]

[+

——

(4.7a)

T o= (4.7p)

and the scalar product is

441
{



\[’*wﬁ=\/*\,\j_+ \/‘\,\/;r \ (4.7¢)
We obtain for (4.6b) that

(% + x)° 0

Teaz N Ee
Ji'_“_q 0 (7(.'7(>Z

Let us take L, ET+*and.L_EX_._, then
. 2
Le (7, D) =g (xxxy =0 (4.8)

Going to the hamiltonian formulation with Eﬂ\-?y&and
the canonical Poisson braket given by

D, R, (xm} = §(g- 1)
f.8

Oone obtains that (4.8) satisfies the algebra

s

———

(1) QLiW‘)}RB; L) L (1) 4 (57- 1) (4.92)

and (i\_*__(‘ﬂ,\__ ((P)&P.% =0 (4.9b)

By means of the equatiens of motion and the boundary
conditions, one is lead to the Fourier decompositions

Ly (Y mZLe%

(4.10)



r
\where %

i

T T
The algebra (4.9) is then turned into

LLn ) =ieem) U

(4.112)
P-B. m+n

{ﬁm\-i }RB‘-_-_ O (4.11b)

The algebra (4.11a) is the Virasoro algebra (3.33Db)
with C =0. On quantisation L{}ﬂ—-—?{ ) conmutator®="
and due to the normal ordering, one obtains (14,15)

+ ¥
[ U T =G m) By o 1) S (4.12)

where D is the space-time dimension. This is (3.33Db)
with C=D .

ii) N Free Massless Fermions in two Space-Time
Dimensions.

The Lagrangian density of this theory is: (13)

\(f:lz_ I{;'L L a Ve (4.13)

( L is sumed from 1 to N )
We take the { -matrices to be given by



and W st (4.15)

Y+

The equation of motion following from (4.13) are
% ¥ =0 ‘ (4.16)

and from (4.14) and (4.15) we have

<5° i ‘;\\) f. =0

(4.17)
(5 . éa} L{)'*'{, =0
which implies that
Vo= Volesx) 9=V (k-%) (49

The canonical anticommutation relation of the quanti-
gsed theory are

{00, Pey (o} = duy 8 (xm ) (4-192)

and {\ij(ﬂJ\Pt -\(M:o (4.19p)
(% =1).



Let us consider the group 6 gemerated by 1 =i ™M™
where M*are real NxN antisymmetric matrices, which
satisfy

{MO\G) M‘c} - _S:Q‘oc MC (4.20)

Under such a representation G is a subgroup of the
O0(N) symmetry group of the theory, Associated with
the symmetry group 6 there are currents

- O

|
J/* =2‘j—'2'WMq X/MY (4.21)
which satisfy

WIS =0 (4.22)

Expressing in in the hight-cone coordinates (4.7),

we have

— O : t &

—

-0 *
+ = Ji (X ) (4.23)

Because of (4.19) we have

1325 (x), 32 (] =0



P,
i
&

and

(T2 (%), TR = e 67 T ) - )

LY (4.24)
'+L_‘ﬁ% £56 k-

(See ref. (19)). The second term om the right hand
side is called Schwinger Term and the constant Ky is

called the Dynkin index (see ref; (13)) and is given

by
o
t\'(M& Mb :-\<>\ é& ° (4"25)

From now om we will denote J{k(xt) simply as T%(x).
Let un impose periodic boundary conditiom with period

L such that

T+ L) =T7 (1) (4.26)

then we cam express J (X) by its Fourier expansion

I )= 2,32, 2T

(4.27)
297 ¢
where 2 = & L J
Sustituting (4.26) on (4.24) we obtain
—on o _ . chTc K x g‘\b e
[}xn >3n}"t Joan T Srny-n (4.28)
_ KX
K=", .

which is the Kac-Moody algebra (3.%3a) with



The symetric emergy-momentum tensor 'of the theory
(4.13) is givem by

Tvsé(-fr'(w*g y oy yz)\{' (4.29)

1
1S

and it is traceless due to the equations of motion
(4.16). Using light-cone coordinates we obtain

-Tit =-$§ %{+ A Y'+ (4f30)

and T}t =0

Making a Fourier expansion of Y+ (x*) and suppressing
the + subindexes to abbreviate we have

\V.(m——jzi;_ W =" (4.31)

-

where r¢ Z for ¥ (x+L)=¥(x) and r& Z+4 for ¥(x+2)=-%x)
which corresponds to have periodic and antiperiodic
fields which are consistent with(4. 26) Due to (4.19)
we have

{ i > ki } - ét;é“) -S (4.32)

Sustituting (4.31) on (4.30) with the mormal orde-
ring prescription

b( \05 if r{O
:\t’r\"’s": Lz[“"',» \OS]
\—- b by if ¥ >0

bete
2]

vy =0 (4033)



and defining

L(ﬂinf_t = 2 L. = (4.34)

w n
one can find that (see for instance ref. (5,13))

[Lms \‘h’]:(m_“\ \'m+h * % ""‘(‘“‘Z‘\B gm)-ﬂ (4.35)

which is (3.33b) with (=4 N . Further, taking Jo
given by (4.27) one obtains that

[Lmsjf\]:“““zz:+n

(4.36)

which is just (3.33c).

For a more elavorated list of physical applications
of the Kac-Moody algebras, the interested reader can
see references (5,10,13).
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