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INTRODUCTION

This thesis contains a briéf review of some aspects of string theories and their supergrav-
ity effective models. The principal aim has been not that of exposing original contributions,
which are summarized in chapter 5, but of giving a general overview and the principal results
which have been obtained.

The emphasis will be on the corinections between the string and supergravity theories
because this problem arises as soon as one is interested in studying the macroscopic (or
“phenomenological”) predictions of a string theory. The interest will be focused, as much
as possible, not on a particular model and its low—energy predictions, but on the general
properties of an effective theory emerging from a-string model.

In the late '70, theoretical physicists were faced with the problem of constructing a
quantum theory describing the unification of gravity with the other forces. A first step
_in this direction was done with the introduction of supersymmetry. It was found that a
local-supersymmetric theory (supergravity) describes in a consistent way at the classical
level the coupling of gravity with the other forces. The purely geometric, eleven dimensional
supergravity was proposed to be the unification theory; in fact, through a Kaluza-Klein
compactification to four dimensions, both matter and Yang-Mills fields can arise. But many
problems, like the non-renormalizability of the theory, the difficulties in getting in four
dimensions chiral fermions or the spontaneous breaking of supersymmetry, were not solved.

Then, it was realized that some string theories could be good candidates as the “final”
quantum unification theory, the “Theory of Everything”, that is the theory which describes
the unification of all interactions at very high energy. Although steps in the comprehension
of the properties of string theories have been made, there are still big problems which are
not solved, first of all that of the formulation of a string—field theory.

When superstring theories were proposed as unification models, it was immediately
realized that supergravity appears in the classical field limit of the massless modes of a

string theory at the Planck energy scale. In this thesis we will discuss ways of deriving
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such effective theories and some of their features. Thus, although supergravity can be
consistently formulated as a classical theory of gravity, here it will be considered as an
effective theory emerging from the fundamental quantum theory. This means that issues
like renormalizability or supersymmetry breaking must be studied first in string theories.

To construct a string effective theory we cannot proceed as for a standard quantum
field theory because strings are non-local theories and in many models the dimension of
the spacetime (critical dimension) is greater than four. Then, to construct a string effective
theory, one must take a “field~theory” limit and compactify the extra dimensions. In this
way one obtains a classical, four-dimensional supergravity theory which is of a non—standard
type. In fact this theory has an infinite number of higher—derivative terms which come both
from the string non-locality and the massive Kaluza-Klein modes. The computation of the
hosonic and fermionic components of the first higher derivative terms in the four-dimensional
supergravity theory constitutes the original part of this thesis.

The thesis is organized as follows. In the first chapter we outline the essentials of the
above program. First there is a brief introduction to string theories and the concept of
background spacetime as a classical vacuum for a string is introduced. Then it is introduced
the concept of “string effective” theory and its meaning is discussed.

Before entering the details of the construction of a string effective theory, in chapter 2
. the main aspects of the structure of a string theory are recalled. A first quantized string is
a two dimensional quantum conformal theory: the absence of conformal anomalies gives a
constraint (the vanishing of the central charge of the Virasoro algebra) for the construction
of consistent string models and dictates the critical dimension. Some examples of bosonic
and supersymmetric string models are given in 26, 10 and 4 dimensions.

In chapters 3, 4 and 5 we discuss the construction of a D=4 N=1 supergravity as an
effective theory emerging from the D=10, Es ® Es heterotic string on a flat background.

In chapter 3 it is shown how to obtain a.D=10 classical field~theory effective action.
The first method reviewed is the “scattering amplitude” one. It consists in computing the
scattering amplitudes between the massless modes in string theory and then construct the
classical action which reproduces them. The theory constructed in such a way is a non-
standard D=10 N=1 supergravity model. It is made by the standard “Chapline-Manton”
theory plus an infinite number of higher derivative terms; between these terms there are
those necessary to the Green—Schwarz anomaly-cancelling mechanism to work. Then it is

reviewed how the same results can be obtained within the non-linear sigma model approach.

2



It is shown how from the condition of the vanishing of the Weyl anomaly one can obtain the
equations of motion for the massless modes of the string theory and from these reconstruct
the classical effective action.

Chapter 4 deals with the compactification to four dimensions. This is done in a Kaluza-
Klein like way assuming that the D=10 equations of motion have a solution in which the
spacetime is of the form M,y = My ® K¢ where Kg is a compact space. The request of
having one unbroken supersymmetry charge in four dimensions leads to a compactification
on a “Calabi-Yau” manifold; we review the analysis of the spectrum of gauge interactions
and matter fields present in four dimensions is made. The related appropriate truncation
a la Witten of the D=10 N=1 action is discussed in some details. The last issue presented
in this chapter is the relation between the four dimensional, ten dimensional and string
coupling constants, and the phenomenological consequences of these relations.

Chapter 5 is mainly devoted to a review of the author contributions. First it is con-
structed the standard D=4 N=1 supergravity model which is inspired from the considerations
done in the previous chapters. Then it is considered the Lorentz Chern—Simons form which
in ten dimensions plays a great role in the mechanism for the cancellation of the anomalies.
The supersymmetric completion of the Lorentz Chern—Simons form in four dimensions is
explicitly computed, both for the bosonic and fermionic terms. It is given by the Gauss—
. Bonnet combination of the gravitational curvature multiplets. (Really, the supersymmetric
term coming in four dimensions from the D=10 Lorentz Chern—-Simons is the square of the
Weyl curvature multiplet, but to avoid the propagation of ghosts with spin bigger than one,
also the square of the Ricci and scalar curvature multiplets in the Gauss—-Bonnet combina-
tion are introduced. This is possible because these extra terms vanish on-shell.) Knowing
the explicit expression of the super Gauss—Bonnet multiplet, it is possible to construct the
four—dimensional, off-shell effective supergravity lagrangian.

But the higher derivative terms present in this lagrangian create a new problem: the un-
wanted propagation of some auxiliary fields; these modes however decouple in a Minkowski
background. Then, through a study of the scalar potential in a constant background, some
issues, like the value of the cosmological constant and the spontaneous supersyminetry break-
ing patterns, are studied. To conclude this chapter, some more technical considerations on
the contribution of the other higher derivative terms and on the superconformal formulation
of the four—dimensional effective supergravity theories are done.

In the last chapter, a more general approach to the study of the relations between the
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world-sheet and spacetime properties of string theories is presented. Starting directly from
string theories formulated in four dimensions, we discuss the general connections between the
world-sheet and spacetime supersymmetry. Then it is shown how combining informations
coming from the two dimensional conformal field theory and the properties of the D=4
N=1 supergravity, it is possible to formulate two “non-renormalization” theorems for the

superpotential of the effective theory.



CHAPTER 1

Strings and Their Effective Theories

One of the main purposes of the theoretical physics research in the last part of this
century is that of finding a unique the.ory which describes all the known interactions between
the elementary particles, these theories are called “Unified Theories”.

The fundamental forces of nature actually known are: gravity, the weak force, the
electromagnetic force and the nuclear force. The electromagnetic, weak and nuclear forces,
although at low energy scale appear to have different properties, are unified in the sense that
they are all described by one quantum field theory called the ”"Standard Model” [1]. This
theory is based on the gauge group SU(3)® SU(2) ® U(1) and has three independent gauge
~ coupling constants, one for each interaction. Going towards higher energies, the values of
the coupling constants become closer until they should reach the same value at a scale called
Grand Unification Scale. At this scale the three interactions should become an unique force.
Some models, like the SU(5) G.U.T., have been proposed to describe this unification theory,
but all the known ones have some problems, like a too fast proton—decay or the presence of
some light particles which are not observed.

Since the G.U.T. scale can be of order 10'°® GeV, gravitational effects can become im-
portant. Thus, it is necessary to add gravity to the ﬁnjﬁcation theory. But the quantization
of gravity is still an open problem. In ref. [2] it was shown that a quantum theory of a
spin-two particle requires the introduction of an infinite tower of higher spin particles and

1. In any

it is not known how to couple consistently particles with spin bigger than two
case, a consistent quantization of a spin two particle, whenever it will be known, needs the
construction of a lagrangian with infinite terms.

To turn round the problem, one can try to renounce to some hypothesis made in the

1 Some recent attempts were made in ref. [3].



construction of a quantum theory. The starting point of the construction of a string theory
is the renunciation to locality.

The usual quantum mechanics starts from the description of the motion of a material
point in the space evolving with the time. Its position is described by some coordinates in
the space at a fixed time 7, z,(7). Letting the time evolve, the point particle describes a
trajectory in the spacetime.

Consider, instead, a one-dimensional extended object, a “string”, described by z,(0,T)
where T is the time (—oc0 < 7 < +00) and & parametriies the length of the string (conven-

tionally 0 < ¢ < )

S=o =i

Through its motion the string sweeps out a two—dimensional surface called “world-sheet”

=T =W
— T

~ The classical action [4] is obtained requiring that the 2d surface swept out during the string’s
evolution be minimal

§ = [ @R (€)0aX M (€)05X Y (E)grn (L1)
where ¢ = (0,7), @,83,-- are 2d indices, XM (£) are the coordinates of the string in the
D-dimensional spacetime (or background space) and gprn is the metric of the background
space.

The first step towards the construction of a quantum field theory based on a string
instead of a point, is the study of the quantum mechanics or 1°* quantized theory of the
string. A 1°* quantized string theory is nothing else but a 2d quantum field theory described
by the action (1.1) where the 2d quantum fields XM are interpreted as coordinates of the
background space.

The next step should be the construction of the string—field theory, i.e. a quantum

field theory where the coordinates of the spacetime are 2d quantum fields. Up to now we
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know very little of the string—field theories, instead in the last years important results were
obtained in the study of two dimensional quantum field theories.

In the next chapter we will review some of the most interesting features of string theories.
Here we just recall two fundamental facts:

i) The spectrum is composed by an infinite tower of particles of all spins;

ii) The massless spectrum of some superstring models (like heterotic superstring in D=10)
contains spin 2, %, 1, % particles, i.e. describes gravity coupled to Yang-Mills systems
(and, in dimensions lower than 10, also to matter).

Thus, superstring theories can realize at the same time a complete quantum description of
gfavity and its unification with the other forces.

The action (1.1) can be physically interpreted as describing a string moving in a flat
background. In fact it describes the quantum excitations of a graviton around the flat
metric gpry, that is Gyn(X) = guny + hun(X) (usually we will choose the background
metric to be Minkowski gpry = 7arnv), and the quantum oscillations of the other modes
around their zero configuration. An action describing a string moving in a given background
is constructed by multiplying the vertex operators? which creates an excitation in the 2d
quantum field theory, times the associated background configuration,

1
4ra’

S = /dzaZVi(a)Bi(X(a)) (1.2)
where V(o) is the vertex operator for the it® spacetime particle and B;(X (o)) the back-
ground configuration of the spacetime field (for example V9(c) = 9°XM§,Xp and
B,(X (o)) = gun(X(0))). Notice that the background configuration is given a priori, B;(X)
is a fixed function of the spacetime coordinates. Thus, in a arbitrarily given non—flat back-
ground, the string action is a 2d non-linear sigma model. Notice that the background
cannot be chosen completely freely, it must be conformally invariant, as we will see in the
next chapter.

The choice of the background corresponds to the choice of the (classical) vacuum state
of the string theory. The condition of conformal invariance implies that the vacuum state
must be a 2d conformal field theory.

In a flat background the string theory is a 2d quantum conformal field theory of free

fields. This is the case which has been most studied also because there is no general idea of

2 amputated of the momentum term exp(ik - X).



how making' computations in a string theory in an arbitrary background®. Since we don’t
know enough of string-field theory, we cannot say which is/(or could be) the true, stable
string vacuum; all what we can do is to find some “nice” vacua. An example of “nice”
vacuum is the following: a consistent, anomaly—~free string theory is the heterotic string in a
background spacetime which has ten dimensions. A “nice” vacuum is one in which six of the
ten dimensions are compactified, obtaining in this way a four dimensional spacetime string.

Once constructed a string theory, one would obtain some phenomenological predictions
at the experimental energy scale. Since string theories describe gravity, their energy scale
Ms is of the order of the Planck scale Mp;. The simplest way to obtain phenomenological
predictions at the weak scale My from string theories is to construct an “Effective Theory”.

We will first review the definition of “Effective Theory” for a standard quantum field

theory and then explain how it is possible to construct a “String Effective Theory”.

§1.1  String Effective Theories

Consider a quantum field theory with action Sy and fields {¢;}, {m;} defined by the

Feynman path integral

Zlp, 7] = / [Tides)ldr;1e S0 (#i:m3) (1.3)
1,3
Suppose we are able to do the integral over the {m;} fields, the “Effective Theory” for the
{p:} fields emerging from S is defined to be:

e~ SEfs(Pi) = /H[dvrj].e_so((’a"’”j) (1.4)

Physically the Sg;s(¢;) action describes all interactions with external states ¢; and
internal interactions between the {¢;, 7;} fields, although in Sgs¢(y;) the {r;} fields do not
appear anymore (see fig. 1).

In general, Sg;¢(;) is a much more complicated action than So(y;,7;), but up to
now we haven’t done any approximation. In the usual physical situation the {r;} fields

are massive and their masses are much bigger than the physical energy scale. In this case

3 The case of a group-manifold background was studied in ref. [5].
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fig. 1

the {r;} fields are not observed as external (physical) states, so we can integrate them out.
Moreover, the effective interactions between the {¢;} fields coming from the integration of
the {r;} fields are suppressed by powers of Mppy, /My, where M, is the mass scale of the
{n;} fields and Mppy, is the physical energy scale. Being Mppy, < My it is obvious that at
most a few terms of the effective interactions between the {;} fields can give contributions to
the physical phenomena. Thus, the effective action can be expanded in powers of Mppy,/Mx
and the approximation consists in cutting the expansion at the preferred order.
Although the low energy spectrum can be very different from the complete one, the
effective lagrangian of the light modes should have two fundamental properties:
i) it must satisfy all the symmetries which are exact symmetries of the underlying theory;
i) it should reproduce exactly the same anomalies as the fundamental theory ('t Hooft
criterium [6]).
Since the fundamental theory must be anomaly—free, ii) implies that also the effective theory

must be anomaly free.

81.1.1 Superstrings’ Effective Theories

Superstring theories are supersymmetric 2d quantum field theories. In the spirit of
constructing an effective action we would “integrate” the massive modes of the spectrum
because their masses are multiple of the Planck mass.

The main problem is that (super—) string theories are two dimensional field theories but
we need to know the D-dimensional background quantum action to compute the integration

in (1.4) . At the moment this problem is not solved. Then it is not possible to explicitly
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integrate out the massive string modes in (1.4) , neither in an approximated way.

Thus, to construct a string effective theory one has first to obtain a field theory. This
can be achieved computing the amplitudes between the massless modes and constructing
the classical lagrangian which reproduces them?, other methods (like c~model techniques)
can also be used. We will call the process to compute this classical lagrangian the “Field
Theory Limit”.

In the computation of the classical lagrangian two kinds of approximations are done.
The first one refers to the fact that the amplitudes are computed at a finite order in the 2d
perturbation theory. The perturbation expansion in string theory is equivalent to the sum
over the various 2d world-sheet Riemann surfaces of different genus. The usual approxima-
tion is to consider the sphere (g = 0) and the torus (g = 1)°.

In the amplitude approach, the (connected) interaction term in the field—theory effec-
tive lagrangian between n particles (n>1) is obtained directly from the n-point amplitude.
Obviously, it is immpossible to compute all the n—point amplitudes, the second approximation
is done computing just the first few terms.

Notice that if we compute in string theory the scattering amplitudes between massless
modes, in the intermediate states there can propagate both massless and massive modes.
It turns out that the contribution to the effective action of a scattering amplitude can be
- expanded in powers of (7‘14—)", thus each scattering amplitude gives rise to new higher order
vertices between the massless modes. The approximation usually done consists in computing
the 2, 3 and 4-point amplitudes to obtain the classical, field—theory effective lagrangian.

If one adopts the o—model approach to compute the field—theory limit, since the prin-
cipal objects to be computed are the §—functions, the corresponding approximation is done

computing them with perturbation theory up to four loops.

81.1.2 Supergravity as a Superstring Effective Theory

The field-theory effective action obtained following the criteria shown in the previous

paragraphs, must be a supersymmetric theory of gravity coupled to matter, i.e. a Super-

% Since the amplitudes are computed in a 2d quantum field theory, which is the only ambitus where we
can make computations, the background D dimensional action obtained in this way is not a quantum
action.

o-~model techniques are usually applied only to tree level strings, i.e. g = 0 Riemann surfaces.
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gravity t'heoi'y. There are also some good physical reasons to have a supersymmetric theory,
for example supersymimnetry can help to solve the hierarchy problem. Moreover, since up
to now we have only “integrated” the massive modes and taken the field theory limit, the
effective theory should give a proper treatment of gravity starting from the fact that its
energy scale should be the Planck scale, this is actually the case for a supergravity theory.

FiELD THEoRY LIMIT

P10 CUPERLTRINGS > D10 SOPTRGRAVITY
(CHPACTIFI -
CATIow
A% g
D=4 SOPERSTRANGS > D=l SUPERGRAVITY
fig. 2

The D=10 heterotic superstring on a flat background with gauge group EFs ® Es is a
string theory which has a realistic spectrum and is anomaly free. This model will be the
main subject of this thesis. Since the dimension of the background space is ten, taking
the field theory limit one obtains a D=10 N=1 supergravity coupled to an Eg ® Eg super
Yang-Mills theory (see fig. 2). The next problem is to obtain an effective theory in four
dimensions; this is possible with a “Kaluza-Klein” like compactification. Compactifying a
D=10 N=1 chiral supergravity theory one obtains a N=4 D=4 supergravity model (N is
the number of unbroken supersymmetry charges). But in D=4 only the N=1 supergravity
admits chiral fermions so that we must have at most one unbroken supersymmetry after
the compactification. On the other hand, since supersymmetry helps to solve the hierarchy
problem and impose severe constraints on the structure of the theory, it seems natural to

preserve at least one unbroken supersymmetry charge in D=4. Thanks to the higher order
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terms which.guarantee the cancellation of the anomalies in D=10, it is possible to make such
a compactification to a D=4 N=1 supergravity theory.

The fundamental theory (i.e. superstrings) should also furnish a mechanism such that
going to low energies supersymmetry should spontaneously break obtaining the “Standard
Model” at the weak energy scale. Up to now it is not known any reliable mechanism of
supersymmetry breaking (up to consider non-perturbative phenomena).

It is possible to construct other string theories which have a realistic spectrum. Usu-
ally they have a flat four dimensional background space, some of these models are stringy
compactifications on a non—flat background of the D=10 heterotic superstring. Although
D=4 superstrings are more complicated than the D=10 models, it is possible to obtain
some extra informations which are lost making first the field theory limit. For example,
one can study the relation between the spacetime and world-sheet supersymmetry or the
non-renormalization properties of the potential of the effective theory. These issues will be

considered in the last chapter.
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CHAPTER 2

Strings, Superstrings and Conformal Field Theories

§2.1  Strings and Conformal Field Theory

A free bosonic string in a flat Minkowski background is a 2d quantum field theory

described by the action

S=-

1 [»4
y— /dza\/ﬁg P(0)0aX MO X (2.1)

. This action has two important local symmetries, reparametrization invariance and Weyl (or
scale) invariance. A first consequence of Weyl invariance is that the stress energy temsor
is traceless. The quantum theory (defined for example with a path integral formalism [7])
has three gauge invariances, two reparametrizations and the Weyl scaling. We can use these

symmetries to fix a gauge on the 2d metric gop
9op = € Nap (2.2)

After having fixed the gauge, there survives a residual gauge symmetry called “conformal
symmetry” which is given by a combination of the reparametrization and Weyl transforma-
tions. The conformal symmetry guaréntees that the conformal metric factor ¢ cancels out

from the action. It is convenient to use complex notations, deﬁxﬁng

=T -0 (2.3)

ds? = e¥ (d:f2 + drz) = e¥dzdz
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The conservations laws 8;T,, = 0 = 8,Ts imply that T,, (Tsz) is an (anti-) analytic
function of z (Z). An infinitesimal conformal transformation is an (anti-) analytic change of
variables

z — z+ €(2) (2.4)

and is generated by
‘ d
T, = }z{ 22 (2)T,s (2.5)
: c

27

where C is a contour surrounding the origin [8]. The correct gauge fixing procedure requires

the introduction of the Faddeev—Popov ghost—fields ( ¢, ¢, b, b) [9]. Thus, the gauge-fixed

action 1s

1 — : 1 z T —=Z =
S = —-M dzdzazXMazXMr-F oral / (bzzazc + bzz0,¢ )dzdz (2.6)

Thus a bosonic string theory is a 2d quantum conformal field theory. Properties of conformal
field theories are very useful in studying strings. Conformal (or primary) fields are those 2d

fields that under a conformal transformation

z — 2'(2) z — Z'(%) (2.7)

* transform according to
— 0z h az' h 1=t
@(Z, Z) — (E) (E) Q(Z y 2 ) (28)

h + h = d is called the dimension or conformal weight and h — h = s the spin of &. Usually
one considers 6n1y the analytic part of the theory because the classical equations of motion,
OX = 0, admit a solution X = X(z) + X(2)°. In this case h =0 and s = d.

The energy momentum tensor is

T(z) = Trmatter + Tghosts = —% ((0.X) =21 b(2)0.c(2) 1 — 1 8:b(2) - c(2) : (2.9)

and the infinitesimal conformal transformations are defined by

8§.2(z) = [Te, 2(2)llat equal time (2.10)

6 The background index M for the conformal theory is an enumerating index of the fields; when it is not
necessary we will not write it.
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This correlaﬁon function can be computed using the Wick theorem or the functional integra-
tion. We refer to the literature for the technical details [8]. The most important properties
of a conformal field theory are encoded in the operator product expansion of the fields with
the stress energy tensor:
T(2)8(2) = — % B(z) + ——8,8(z) + --- (2.11)
(z' — z)? z'—z

c/2 2

T(2")T(2) (z — z)* + (z' — z)?

il

1

where d is the conformal weight of & and c is a number called the central charge of the
Virasoro algebra. The Virasoro algebra is the algebra obeyed by the fourier components of

the stress energy tensor. The fourier analysis of a general tensor field of dimension d is

dz .,
_ e n+4d-1 _ —n—d
5, = f S 18(2) B(z) = n;:oo 8,2 (2.12)
The stress energy tensor has dimension d = 2 so that T'(z) = if_ o Inz™™? and the
Virasoro algebra is
c
[Lny Lm]=(n—m)Lptm + En(n + 1)(n — 1)émtn,0 (2.13)

The central charge c is an additive constant and for one massless free scalar field (d = 1)
has the value ¢ = 1. The conformal central charge of the (b, c) system is ¢ = —26.

Looking at (2.13) , one important thing must be noted: the quantum conformal algebra
is different from the classical one unless ¢ = 0. This means that we are in presence of an
anomaly. In fact we can expect that an anomaly can break the scale invariance, in field
theory this usually happens and is called trace anomaly. Although in some cases the trace
anomaly is well accepted, in this case the conformal symmetry is a true local symmetry of the
theory and we need to cancel the anomaly (i.e. ¢ = 0). Polyakov has explicitly shown that
if ¢ + 0 the partition function is not any more invariant under a conformal transformation.

In our approach to conformal theories there is another reason why ¢ must be zero, the
B.R.S.T. charge is not nihilpotent unless ¢ = 0 (which means exactly that the quantum
theory is conforinally invariant only if ¢ = 0). The B.R.S.T. charge [10] is a hermitean

operator which commutes with the hamiltonian, raises the ghost number by one unit and
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annihilates all ghosts—free, gauge invariant states. Following ref. [10], the B.R.S.T. charge

for the analytic sector of the bosonic string is

QBRrs = y{ '_‘JBRS (2.14)

JBRS = C; <TX(Z) + %T(b’c)(z)> + ga%z

(the last term is a total derivative so in correlation function can be dropped, but ensures
that Jgps is a conformal field and the conservation of Qprs on a curved world surface).

The B.R.S.T. charge acts on the fields as

[@BRs,0(2) f“JBRS(w )0(z) (2.15)
[Q@BRs, X (2)] = 0, X (2)

{Q@Brs,c*} = c*0.c”

{@BRs,b::} =T(z2)

It is easy to check that (Qpgrs)? = 0 if and only if ¢ = 0.

Thus, a necessary condition to be satisfied in string theory is the vanishing of the
central charge. This can be achieved easily, it is sufficient to notice that the central charge
is additive so that the total central charge of the action (2.6) is ¢ = D — 26 which implies
D = 26. Then the quantization of a string theory induces a constraint on the dimensionality
of the spacetime (we will see that this constraint is not so strong as it appears now).

In the same way one can study the case of a 2d supersymmetric conformal field theory
in a flat background. It is sufficient to introduce the superfields for the scalar and ghost
fields, X(6,0) = X + 8¢ +kw+ 00F, B=p3+6b, C =c+ 6.

The total supersynumnetric action is

S = 47}‘1 /dzdzo(b‘XDX+(350+ h.c.)) (2.16)
The B.R.S.T. charge is
QBrs = — fm/de C(TX+ VAL C>) + 4D (C(DC)B) := (2.17)

az ) (b,e,B,7) . (X, ) | Lp(bieBy) .
o o (1543 ) o (0 e
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where T'(z, 6) =Tp+ 0Tp.

It is convenient to define ¢™@tter = 2(X.¥) 5o that the contribution to the central
charge of a chiral superfield (of a N=1 2d supersymmetry) is ¢ = 1 (ie. ¢ = %, this is
obvious because a scalar field has ¢ = 1 and a fermion ¢ = %). Since (&) 4 (B = —15 or

2(beB1) = 10, the vanishing of the central charge implies that ™™ = 410.

Let us consider now the case of a string in a non—flat background. By definition it is a
2d quantum field theory with local reparametrization and Weyl invariances. We can always
choose the conformal ‘gauge and introduce the conformai ghosts (b, ¢). Thus a string theory is
a 2d conformal field theory, this implies that the background must be conformal. As before,
the conformal invariance is guaranteed by the nihilpotence of the B.R.S.T. charge which is
equivalent to the vanishing of the central charge of the Virasoro algebra; as we know, the
conformal ghosts have central charge ¢ = —26. We can also construct supersymmetric string
theories. The superconformal gauge fixing of the local supersymmetry implies the presence

of the superconformal ghosts (3, v) which have central charge ¢ = +11.

The first requirement in the construction of a string theory is that the central charge
vanishes. It is easy to compute the central charge for a 2d free field (i.e. in the case of a
string in a flat background), but things are much more complicated for interacting 2d fields
(i.e. strings on a non—flat background). We can fulfill the requirement of vanishing central
" charge by summing conformal theories such that Y., c’ = ¢™a#e" = 426 (or € = +10 if
supersymmetric). Thanks to the possibility of factorizing the string, we can choose different
theories on the right and left sectors, up to the fact of preserving unitarity and modular
invariance. We can also choose to have supersymmetry only in one sector, these models are
called “heterotic”.

Let us make some examples of string theories.

i) The simplest string theories are the non-supersymmetric ones on a flat background.
The bosonic string theory described by the action (2.6) must have 26 coordinate fields to
satisfy ¢ = 0, thus the dimension of the spacetime is D=26. Other model can be constructed
introducing 2d fermion fields, however one must be careful to construct a model where all
anomalies cancel. In any case the central charge of the “matter” system must be 26. An

example is the case in which there are 10 coordinate fields XM and 32 fermions AL

ii) A supersymmetric string on a flat background is described by the action (2.16) .
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Since ¢ = 10, the dimension of the spacetime is D=10.

iii) The D=10, Es ® Eg heterotic superstring in a flat background is a supersymmetric
string of type ii) in the right sector and a non—supersymmetric string of type i) in the left
one. The dimensionality of the spacetime is D=10 and follows from the vanishing of the
central charge in the right sector. In the left sector there are 10 coordinate fields, thus one
has to add a ¢ = 16 system. This is obtained for example introducing a system of 32 free

fermions A’; the action in this case is

Suy = 27%{ / @2z (05X M0, X o — pMOspas — NN+ (2.18)

+ghosts (b, ¢, £, 7, b, E)]

Obviously this system has (0,1) supersymmetry by construction.

iv) D=4 string models can be constructed summing a D=4 string on a flat background
and a compact conformal theory as internal space chosen in such a way to get the vanishing
of the central charge. The D=4 string can be of the types described in points i), ii), or
iii). Some interesting examples of D=4 heterotic superstring were considered by Gepner
[11]. He takes as internal space any solvable conformal field theory with N=2 world-sheet
" supersymmetry’. Solvable conformal field theories are models in which all correlation and
partition functions can be computed exactly. Moreover, one needs also the theory to be
modular invariant, this is possible if the left and right conformal structure are identical.
The heterotic string theories in D=4 constructed by Gepner are given by the free D=4
coordinates sector, a ¢ = 9 conformal theory both on the left (superstring-like) and right
(non—supersymetric) sector (this is done to achieve modular invariance) and a system of free

bosons in the right sector with ¢ = 13 moving on the maximal torus of a rank-13 Lie group.

v) A more explicit example of a D=4 heterotic string can be constructed as the sum
of a D=4 string on a flat background and a D=6 string on a non-flat (interacting) compact
background. One starts from the flat heterotic string (2.18) and compactifies six coordinates
X™ on a Calabi—Yau like manifold K¢®. This means to divide the action in a D=4 part and

a D=6 one, and to consider the D=6 part in a Calabi-Yau like background (thus obtaining

7 As we will see in the last chapter, N=2 world-sheet supersymmetry is necessary to have N=1 spacetime
supersymmetry.
8 See chapter 4 for a detailed description of the Calabi~Yau like compactification and the related issues.
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a 2d non—liﬁear sigma model on Kg). The model can be constructed as follows.

Consider the Es @ Es D=10 heterotic superstring (2.18) , the 32 fermions AT transform in
the (16,1)®(1,16) representation of the SO(16)® SO(16) subgroup of Es ® Eg. We can pick
an S0O(6) subgroup of SO(16)®@ SO(16) such that the fields At for i=T,...,32 are singlets and
A 1=1,....6 transform in the vector representation of SO(6). Under an SU(3) subgroup of
50(6) these fields transform as (3 @ 3), let us denote them by AT, AT, (This division of the
fields is done following the ideas of the Calabi-Yau compactification (see chapter 4) where
the relevant gauge group in the compact space is SU (3))

Since under the compactification the D=10 Lorentz group splits in SO(10) ~ SO(4)®50(6),
iﬁ an analogous way we can split the coordinate fields (X M M) in D=4 coordinates and
fields in the six dimensional space Kg (for details see ref. [12]). Once splitted in this way
the action (2.18) , we can introduce in the six dimensional part the background fields. The

explicit expression of this model is
S =S4+ Sint (2.19)
1 - in \i
Sy = H/dzz [BEX“Bqu — PHOzZp, — A0 A+

ghosts (b, ¢, ,B, 7, b, ©)]

Sint = ey | 42 [amn(X)0X 8. X + £ By (X,n) 9 X "3 X"+
— 2™ 0% + P (W (Xm) — H™M( X)) A0z X P+
—2 ("0 + A (X )(T*)5n 0, X ™ATAT) + F (Xp)AP(T )5 A 9™ "]
where m,n,p=5,...,10, g is the Calabi-Yau metric, B the antisymmetric tensor with field

strength H and A% the SU(3) gauge fields with field strength F. The free part of the
action, Sy, is an heterotic string theory in a ﬂé,t four dimensional spacetime with central
charge ¢ = —9 (€= —6) in the right sector and ¢ = —9 in the left sector. Thus ;. should
describe a conformal field theory with central charge ¢ = +9 on both the left and right
sectors. The 2d sigma model S;y,; is a conformal interacting theory, fhus one should verify
that the central charge, which for the free theory is correctly ¢ = +9, do not change because
of the interactions. Although not a general proof has been given, it has heen verified to
four-loop order in the sigma model perturbation theory that on a Calabi~Yau manifold the

central charge is ¢ = +9 [13].

In the following chapters we will mainly study the effective theories obtained from the
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D=10 heterotic string on a flat background (iii)). In the last chapter we will consider a D=4
heterotic superstring obtained from the D=10 one by sigma model compactification on a

Calabi-Yau manifold, as in example v).

§2.2  Vertex Operators and String Spectrum

The Hilbert space of a string theory on a flat background can be easily constructed
acting on the vacuum with the creation operators obtained from the Fourier analysis of the
fields. The vacuum state turns out not to be the state with minimun energy. The state of
minimum energy |{1) is created actiné on the vacuum with a ghost oscillator (in the bosonic
case) and has negative energy, thus |[Q2) describes a tachyon. Moreover the ground-state has
a non zero ghost charge. This is a consequence of the fact that the ghost number current
J, = bc is anomalous.

The string states can be constructed applying to the ground-state some composite
operators called Vertex operators, |¢) = V(z)|Q2). B.R.S.T. invariance of the physical states
implies that the vertex operators must be conformal primary fields of dimension 1. For

~ example, the following operators are vertex operators for the D=26 bosonic string

Mo, Xpre® X (MNY X 300, X e X, (MOZXpe®X, .- (2.20)

We are working in the RNS formalism in which the 2d Lorentz group is linearly realized.
The operators that we have introduced up to now are bosonic or fermionic operators from
a two dhnensidnal point of view, but on the spacetime they are all bosons. This means that
we can construct only bosonic spacetime states. Notice however that half of these states
from a 2d point of view are fermions; hence there is a conflict of statistics because these
states obey a Bose—Einstein statistics on the spacetime and a Fermi-Dirac statistics on the
world-sheet.

To construct spacetime spinor states one introduces the spin—fields 5.°. The spin-field
S is antiperiodic on circles around the origin, which means that it has a square-root branch
point in the origin. It can be constructed using the bosonized version of the 2d fermion fields

(ghosts included). The spin field is singular on the world-sheet but transforms in the spinor

9 Tor a detailed description of the spin-fields see refs. {14, 8, 15].
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representation of the spacetime Lorentz group. Acting on the vacuum with the spin field
we can construct spacetime spinor states. As for the spacetime bosons, these states are
spacetime fermions but on the world-sheet they can be both fermions or bosons.

It is possible to make a consistent truncation of the spectrum, called “G.5.0.” pro-
jection, which preserve only the states with the correct quantum statistics. It is done by
means of a quantum operator which is odd both for spacetime and world—sheet spinors,
even otherwise; it is in some sense a generalization of the v; operator in D=4 quantum field
theory. Requiring that a physical state has eigenvalue +1 of the G.5.0. projection operator,
or equivalently that a physical vertex operator satisfies QgsoV @ 5}90 =V, only the states
with consistent statistics survive.

The effect of the G.S.0. projection on the spectrum of the supersymmetric string is that
of eliminate the tachyon state, in this way the lightest physical states are the massless ones.
Moreover the massless states are a vector and a spinor which, on shell in ten dimensions,
have the same number of degrees of freedom. This is not an accident because the physical
spectrum, after the G.S.0. projection, is supersymmetric in spacetime. It is easy, in fact, to
define a spinor operator which plays the role of an on—shell spacetime supersymmetry charge

Qa ~f dz Salz) (2.21)

27i

Let us analyze in some more details the spectrum of the D=10 heterotic string. The
D=10 heterotic string can be thought as the direct product of a superstring and a bosonic
string in which part of the fields are fermionized. The condition of B.R.5.T. invariance
implies that the direct product of the states must be taken between states with the same
mass. Let us suppose that the 32 A\l fermions of the non-supersymmetric sector transform
in the fundamental representation of SO(32) (/= index in the fundamental representation of
50(32)). Because the G.S.0. projection keeps as the lowest physical state of the superstring
sector the massless states, thanks to the constraint on the masses of the left and right sectors,
the bosonic tachyon is cancelled from the physical spectrum. The massless states of the
non-supersymmetric sector are given by an SO(10) vector constructed with 8, XM, |M),
and another bosonic state, Lorentz singlet, which transforms in the antisymmetric second-
rank-tensor representation of SO(32), |, J) (which indeed is the adjoint representation of
S0(32)). This state is constructed by the product A A7 which explains the antisymmetry
of the indices. Notice that, through the equal mass constraint, the G.5.0. projection acts
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alse on the non—supersymimetric sector eliminating not only the tachyonic state but also the
states created with an odd number of Al which have wrong statistics and mass.

Thus, the ground—-massless states of the heterotic string are

(IM) @ la)) @ (IN) & |1, 7)) = (2.22)
(M)®|N) © [m)@|N)e(IM)®|L,J) & |a)®|L,J))

Obviously the spectrum is completely spacetime supefsymmetric and is composed by the
D=10 super Yang-Mills multiplet of SO(32) (|M)®|I,J) = A{"f are the gauge vectors, |a)®
|I,J) = xL7 are the gauge fermions) and the D=10 supergravity multiplet (the symmetric
part of |[M)®| NN ) is the metric tensor garyv, the trace part is the dilaton D, the antisymmetric
part is the antismmetric tensor Byy and |a) ® |N) the related fermions).

The most common heterotic string is the one in which the 32 fermions A! are divided in
two groups of 16 each transforming in the fundamental representation of an SO(16)®SO(16)
subgroup of SO(32). It turns out that the massless vector bosons are 496 states and generate
a Es ® Eg gauge symmetry. The explicit construction of the extra conserved currents of
Eg ® Ej is a little tricky and we will not review it.

Since Lg is the string equivalent of the hamiltonian of the theory, knowing the prop-
- agator (~ 1/Lg) and the vertex operators for the emission of the physical particles, it is
not difficult, in principle, to compute the scattering amplitudes between the string physical

states!?. For example, the scattering between N particles described by

L1 [

has a tree scattering amplitude which schematically is

(GO - Vi—oTViy_1|Viv) (2.23)

where V7 is the vertex emission operator for the I*? particle and II is the string propagator.

120 Ope must be careful to use the opportune vertex operators to compensate the ghost charge of the
vacuum.
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CHAPTER 3

The 10-D Field Theory Limit

In the first chapter we have already discussed the meaning of a low energy effective
action. The energy scale of string theories (Ms) should be of the order of the Planck scale
(Mp) because string theories realize a fully consistent quantum approach to gravity. As
already discussed, the massive particles have masses proportional to the string scale, thus
in the low energy limit only the massless modes are considered. The string effective theory
for the massless modes looks terribly complicated because of the appearance of an infinite
number of higher derivative interactions. Following the two criteria given in the first chapter
and the approximations there explained, we will now review how one can construct a field—
* theory string effective theory.

The first observation is that the massless modes of the D=10 heterotic superstring
correspond exactly to the field content of the N=1 D=10 super Yang-Mills coupled to
supergravity theory, which we will call “Chapline~-Manton” theory!! [16]. Once fixed the
gauge group to be Eg ® Es, there is no room for arbitrariness in this theory.

The coupling constants of the Chapﬁne—Ménton lagrangian are the gravitational con-
stant ko and the gauge coupling constant g;o and in the next paragraph we will show how
they are related to the string parameters. First, we have to discuss which are the string
parameters. Until now we have introduced only one string parameter, the Regge slope o
(or its inverse T, the string tension). It has dimensions M ~? and in the previous chapter
has been fixed to o' = %

Just on dimensional ground, being o' the only dimensionful parameter, we can reintro-

duce o' in the mass formula obtaining m? « % from which Mg x (a')“% (for definiteness,

11 Notice that we are not saying that the Chapline~Manton theory is the field theory limit of the heterotic
string, but only a good point from which start with.
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M can be thought to be the mass of the first excited state). The direct relation between Ms
and the Planck scale will be seen after the compactification to 4d, because is k4 which is di-
rectly related to Mp. Thus the effect of integrating the massive modes is that of introducing
an infinite set of terms in powers of «'.

As it is defined, string theory has a natural perturbation expansion where the loop
diagrams are higher genus world-sheet Riemannian manifolds but does not have a free
dimensionless parameter to be interpreted as the string coupling constant [17]. This follows
from the fact that the coupling constant which measures the strength of the interaction
between strings can be absorbed into a redefinition of the massless dilaton field (trace part
of the spacetime metric). Thus, the dilaton expectation value plays the role of the string
coupling constant [18].

A hint to this fact can be given within the Polyakov functional integral approach to the

string. Consider the 2d action in presence of background fields; for a bosonic closed string
= / o (VTR D(X) + /71°20u X 0, X" 0 (X) + ...) (3.1)

The partition function is

z2=3 /d’y Jldx]e= S X ] (3.2)

loops

Making a constant shift of the dilaton field D(X) — D(X) + a and remembering that
aL/aﬂa\/’R2 = Z29(1-1) . (3.3)
dra' TR = '

(L is the number of genus or string loops) one obtains

2= Y ei—‘7<L—1>/[dﬂ[dX]...;S[%X,---]

L=Loops

Zgz(L 1)/d7 [d}(] 5[7;X1] (34)

I

where g,; = €*/* is the string coupling constant. In the following we will ridefine the dilaton
field so that it has zero expectation value.

This argument can seem to be quite arbitrary because a priori it is not evident that
a shift of the dilaton field is allowed. This is justified by the fact (as noted in ref. [19])
that string amplitudes have a well defined (loop dependent) scaling property under the
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rescaling of the dilaton vertex. This property, which will be important in the construction
of the D=4 effective lagrangian, is also shared by the Chapline-Manton lagrangian. The

Chapline-Manton lagrangian is

1 1 1 1 (0ud\® 3K :
1pOM Rlo _ tr(F2 ) — —— < ) - A0 gt o p + fermions 3.5
e 2k, 4930 (Farw) ko \ ¢ 8gf0?  MNT (39)

(k1o has dimensions (length)‘_4, gio (length)™3) Hprnyp is the field strength of Byy and ¢
is the dilaton field. With a suitable Weyl rescaling of the metric gpry, it becomes

2
LR~ Lir(F) +2 (202) = Ik ] (36)

1 om 1
e[' T2

T2 4 p)

which obviously scales as LM — A"2LO9M when ¢ — A¢ (in the previous formula under
gun — tigun, ¥ — tip and ¢ — t2¢, LOM — t~8LCM) This scaling property can be
seen to correspond to the scaling property of the tree string amplitude. Notice that this
scaling law is not a quantum symmetry because at quantum level the normalization of the
action is not at all irrelevant.

Thus, g,; is the (dimensionless) string coupling constant. g, should appear in each
vertex operator because it creates a particle state which interacts with the string; moreover
each loop contributes to a scattering amplitude with gff’ ~2, then for a generic scattering

amplitude of M particles at the L loop of string holds

AL(M) = g7+ M Ty (M) (3.7)
This indeed is the explicit result already obtained from dual models long time ago [20].
String theory has thus an infinite set of (classical) vacua labelled by the expectation
value of the dilaton field. Quantum mechanically this vacuum degeneracy should be removed
leaving a well defined ground state, so that the expectation value of the dilaton would be
dynamically (non—pertubatively) determined. In what follows, mainly tree string loop level
will be considered, in this ambitus we will see that the scaling property of the dilaton field
will have far reaching consequences.
Before entering the details of the computation of the “field-theory limit”, we want to
recall some important facts on D=10 supergravity theories. The D=10 N=1 supergravity
formulated by the authors of ref. [16] which we generically call “Chapline-Manton” the-

ory (3.5), is a classical, standard (i.e. with terms containing u p to two derivatives) local
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supersymmetric and local gauge invariant action. In view of a possible quantization, it
is meaningful to ask if this theory is anomaly—free. The theory described by the action
(3.5) suffers both from Yang-Mills and gravitational anomalies. Green and Schwarz discov-
ered how one has to modify this action to cancel the anomalies. First one must redefine
the field strength of B, H. In the Chapline-Manton lagrangian (3.5) the field strength of
B is H = dB — w3y where w3y is the Yang-Mills Chern-Simons three form; it becomes
H = db — w3y + w3, where way, is the Lorentz Chern——Simons three form. At the same time
the field B must transform under a local Lorentz transformation.

The introduction of the Lorentz Chern—Simons form is of fundamental importance. First
because it is an higher derivative term and then the action is not any more a “standard”
one. Second because it is a bosonic term. The problem of its supersymmetrization in
D=10 is very difficult and it has been not completely solved up to now. We know that the
supersymmetrization of ws;, exists and requires the introduction of an infinite number of
higher derivative terms [21]. The situation is completely different in four dimensions where,
as we will see in chapter 5, it is possible to explicitly compute the supersymmetrization of

the Lorentz Chern—Simons form.

§3.1 Effective Action from Scattering Amplitudes

Our aim is to construct a (classical) field theory that is an effective action for the mass-
less modes of the D=10, flat background, Eg ® Fg heterotic string'?.The simplest approach
to this problerﬁ [22] is that of computing the string scattering amplitudes of the massless
particles and then construct the effective classical lagrangian which reproduces the S-matrix.
This can be done in a “perturbative” fashion. One first constructs the effective lagrangian
Ljpe that describes the massless free particles of the theory; one then adds the cubic terms
which describe their three—point couplings, as given by the string vertices, thus obtaining
L3pt (effective lagrangian up to three-point interactions).

Eventually one considers the four—point scattering amplitudes. Unitarity guarantees
that the massless poles will be those generated by the tree graphs of Ls,:; In fact the

amplitude can be divided in two parts: the first one is made by the massless pole contribution

12 We are considering only the case of the tree string loop now.
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and the other given by the rest. Simbolically

Ay~ x4 () (3.8)

f(k?) has no singularities for small external momenta and is due to the massive particle
exchange. One can easily convince himself of this fact considering the contribution to the
scattering amplitude of a graph with a massless particle as intermediate state and one with
a massive parficle. Thus, f(k?) can be expanded in a power series of k. Each term in
this expansion can be reproduced by some local vertex, Vy,:, which starts out quartic in
the massless fields; from these objects one can easily compute L4p:. This procedure can
be repeated for the hjgher—order—poir}t scattering amplitudes, thereby yielding, in principle,
the effective lagrangian to all orders.

The effective lagrangian so constructed will not be unique since a redefinition of the
fields will not affect the scattering amplitudes. In fact, if L[¢;] yields the S-matrix for
particles described by fields ¢; and the transformation ¢; — ¢}(¢#;) is non singular, then
the lagrangian L'[@}] = L[¢}(¢:)] gives the same S—-matrix. L' gives the same equations of

L - . 8¢l
motion since the extrema of £ and L' coincide as long as the Jacobian g3+ ¢ is non singular

0L[¢]  OL'[¢'()] L' 09
56 = 06 " 236, 5 (3:9)

£3.1.1 Two—Point Effective Action

The bosonic massless modes of the heterotic string are the graviton multiplet ¢ =
(habs Bmn, D, ...) and the Yang Mills fields AL with field strength FL_. The field strength
of the antisymmetric field By, is Hape = 0jcBap) = OcBap + GaBeb + OpBeo. Let’s start
considering the two point amph'tudés between these fields !3; since they are the propagators

- of the fields, L, is nothing else but the part of the lagrangian containing the kinetic terms!*

1 1 e-——2CD 1 ECD
ﬁczm =_———R-— Hopnp H™™ = —(VmD)(V™D) — F,{mF,{m (3.10)

2
2k, 6
13 see (22,20, 23].
14 We are using here a rather different normalization of the fields but at the end of the paragraph by
means of a field redefinition we will go back to the usual normalization.
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Notice that this lagrangian contains also three-point couplings (they must be there, other-
wise gauge invariance would be lost). For example the three-point on-shell expansion of
Vv—gR is

—%R}w = —kyo (R*°h?0a0phca + 20%hap 07> heq) (3.11)

where Imn = Mmn + 2k10hmn-

$3.1.2 Three—Point Effective Action

All the possible three-point amplitudes can be computed using the vertex operators

([22, 20, 23]); using short-hands notations the result is

Aggg = gst { (k281 k2 )tr (0207 ) + (k30,603 01 k3 )+ (3.12)

+(k1 0367 01 ks) + i(kzﬂl kg)(kg&gggkl)} + cyclic permutations

1 R
Arag = —50s {tr(a1d - 2)(k1aki) +
+tr( A2 A5)(k2akiOsch + kavkifacq)}

Apsaa = —goe {tr ([ATY, AT ]AT) k1n + cyclic permutations}

where 6, is the polarization tensor of an element of the gravitational multiplet ¢ =
(haby Bmn, D); the symmetric traceless part of 8,; refers to the graviton g,;, the antisym-
metric to By,, and the trace part to the dilaton D.

The three point—amplitude contain two— and four—derivatives terms!®. The two deriva-
tives terms must be invariant under the symmetries of the theory and this implies that they
must have the same expression of the two—derivative terms already present in £;,:. In other
.words, they renormalize £;,; and from the two-derivative terms of the three—point ampli-
tudes we can compute the relations between the coupling constant kqg, ¢, g10 and the string
coupling constant g,; and o'.

In fact, consider the three gravitons scattering whose amplitude Appp is obtained choos-
ing 0,5 = hap (symmetric and traceless). This contribution can be obtained from the la-
grangian

. A
Linn = — 59t (AR, 0pheq + 20%hap 07 P - hey) T (3.13)

15 Remeber that k «— 18.
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Comparing this lagrangian with (3.11) one immediately obtains

2k10 = gse(22')? (3.14)

(remember that [a'] = m~? and o' = }).

In the same way from the BBD term and the hAA amplitude one obtains

c = \/gklil (315)

—3
gst = g10(22') 772

from which follows the famous relation

k 2 !

( 1”)2 =< (3.16)
(g10) 2

There is one important exception to the two—point rule we have just stated. From the AAB

amplitude one obtains a term which cannot be eliminated by field redefinitions and is not

included in £3,;. The inclusion of this term [23] leads to a redefinition of H g as

k
Habe = OjcBat) — _;‘9 (Q3y)ape (3.17)

(Vay)ape = tr (AieFar) — &2 AiaApAcy )

Indeed it is well known that to couple super Yang—Mills to supergravity in D=10 is neces-
sary to modify in this way the Hgy. tensor, obtaining the Chapline-Manton lagrangian (to
maintain covariance we must also require that B,,, transforms under gauge transformations
as B — B + %‘LTT(A A A)). Thus the Chapline-Manton theory can be considered to be a
first approximation of the field theory limit of the heterotic string.

Consider now the four—derivative terms in the three—point amplitude; they can be writ-

ten as

A?;gg = got [(k26: ky)(ka820% ky) + (kaBzks) (k10267 ka)+ (3.18)
+(k1O3ky ) (k20,07 k3)]

As shown in [22], the hBB amplitude leads to another field redefinition of H,p.

!

(4
4 —

klO
Hape = a[cBab} - T (Q?’y)abc 8kyo

(3L )ape (3.19)
) ,
(Qs1)ape = tr <W[cRab} - gw[awwwcn)
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The introduction of the Lorentz Chern-Simons form 131, and the modification of the trans-
formation law of B under gauge and Lorentz transformations in B — B + %ﬂtr(A AA) -

E—;ﬂtr(w A ), is what is needed for the Green—Schwarz. anomaly-cancelling mechanism to

work [24].
The hhh and the hhD contribution to A‘é‘Zg are generated by the following term in the
lagrangian
o k1D
——¢e~ V3 RapeaR¥ 3.20
16k%, bed ™ (8:20)

Terms quadratic in the Riemann tensor are dangerous because they modify the graviton
propagator and can lead to the propagation of negative norm states (ghosts) [25]. To avoid
this we can use the arbitrariness of making a field redefinition to construct the Gauss-Bonnet
combination of the curvature tensor. In fact the R, R and R? terms can be generated by a
field redefinition of Ly, the resulting Gauss—-Bonnet combination Rapeq ROV —4R R+ R?
is a total divergence so that any correction to the graviton propagator vanishes explicitly
[25]. It is not known if these terms appear in the supersymmetrization of the Lorentz
Chern-Simons form and if it is possible to introduce them freely also in the supersymmetric
theory.

Finally the hBB contribution of A‘;gg to the effective lagrangian produces terms of the

form RH? or (VH)2.

Thus, the three—point effective action is

L, L g el wee vy v
:/——j 3pt — —Zk%O - 6 abe - E(vc )(Vc )+ (321)
e~*10D/V2 a'e~k10D/VZ
_ T anan abe abed _ “ ab 2
~—‘ 3 7( )+ 16(k10)? (R bed B 4R L,RY + R )+
a'e—3k10D/V2 :
+ ————— (V*H**VHaap + Vo H*V  Hoeq) +

8
+ terms generated by field redefinitions

We can regain the standard supergravity notations defining

1 1 [8.6\°
— k0 D/V2 which implies — - VCDZ:—_( < )
? ‘ P 2( ) (k10)* \ ¢
so that
1 1 1 be 8.6\> 1 .
\/§£3pt 2k%OR 6¢2 HabcH k%o ( d) ) - 8¢T7‘(anF )+ (322)



al

+— RabcdRabcd _ 4RabRab + RZ +
16k2yg | )

1
- é%g (VEH"Y  Haap + Vo HV® Hyed) +

+ terms generated by field redefinitions

L Frny Qay — +Qay, B— 22B and H — ¥y
g10 910 970 910

(which means F = dA + [A, A], Qsy = Tr(FA - %A?’) and H = %[dB — Qay + Q3r]) we

Now rescaling A,, — Ei—oAm, Fon —

obtain exactly the usual Chapline—-Manton lagrangian (3.5) plus the Lorentz Chern-Simons
form and other corrections.
Notice that eliminating o' through a'/2 = (ky0/g10)* we obtain
1 o
e Tr(Fpp F™) 4+ —
8¢9y ( ) 16k} ¢
1

= ——— [Tr(FunF™) — (RabcaR**** — 4RapR*® + R?))
8dgio

(RabcdRade _ 4RabRab 4 RZ) — (323)

This is exactly the same combination of gauge and gravitational tensors as the one we will
find in D=4 as a consequence of the supersymmetrization of the Lorentz Chern-Simons

form.

83.1.3 Four-Point Effective Action

What has been done for the three—point scattering amplitude can be repeated for the
four—scattering amplitude and any higher N—point amplitude. An explicit expression for
Lyp: is given in ref. [22]. Most of the new four— (and higher derivative) terms seem to
make part of the supersymmetrization of the Lorentz Chern—Simons form. However, there
is at least one term which hardly can belong‘ to the supersymmetrization of the Lorentz

Chern-Simons form; it is

C 3 abcde mnpgrsuv D 5 > 5
32'(1"62! e3k10D/\/2_t bed fght Pa Rabmchdquefrnghuv (324)
10

where ¢(3) is the (-Riemann function, tspcde fgn is a combinatorial factor, Ropmn = Rabmn +
kloe‘k”‘D/‘/EV[aHb]mn — ——\%klon[[:'vb]V"]D and 7 is a combination of the polarization

tensors.
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This tei'm should not belong to the supersymmetrization of the Lorentz Chern—Simons
because it does not seem possible to generate the (—Riemann function by supersymimetry
unless this supersymmetrization has some free parameters which can be chosen to be ((3). It
is more probable that at the four scattering amplitude level an entire set of new terms, related
by supersymmetry and having ((3) as numerical coefficient, appears in the massless-modes

field—theory effective lagrangian of the heterotic superstring.

§3.1.4 One-Loop String Amplitudes

The scattering amplitudes have been computed (although still not completely) also at
one-loop (i.e. on the torus) [26]. '];‘he one loop corrections to the two— and three-point
functions vanish as well as the low order terms in the four-point functions. This means that
the Chapline-Manton supergravity action (3.5) (i.e. the part of the effective action with at
most two—derivative terms) is not renormalized by one-loop string corrections.

Instead the fourth-order terms in the field curvatures get renormalized by the one-loop
string amplitudes. These corrections are of phenomenological significance for compacti-
fications schemes, as they modify the classical equations that should be satisfied by any
~ proposed manifold of compactification. Notice, however, that these are higher order correc-
tions (starting from O(a'?)) and they will not modify the lowest order “Calabi-Yau” like

compactifications (see chapter 4).

§3.2 Effective Action from Sigma Model

The string propagation in a flat Minkowski background is described by the action

1
So = ——— [ d*oVhh P8, XM X Nnprn (3.25)

4ral

where nprny is the Minkowski metric in the spacetime which we usually didn’t displayed.
We have already said that the propagation of a string in an arbitrary background (for the

gravitational part) is given by

. .
S = —m/dZU\/Eh“ﬁaaXMBgXNgMN(X) (3.26)
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where gas N('X ) is the spacetime metric tensor of the background which is an arbitrary given
function of X. The action (3.26) to describe a string theory must be quantum conformally
invariant, this gives a constraint on the acceptable backgrounds.

A generalization of this theory is to consider gy n(X) as a undetermined function of
X. We can argue that in this case the action (3.26) describes the dynamics of the string
graviton. In fact, suppose that gyn(X) = nunv + fun(X), where farn(X) is treated as a
perturbation. Consider the world-sheet path integral of the action (3.26)

Z= /[dXMHdhaﬁ]e_s = (3.27)

1
= / [dXM][dhag]e“S”‘(l-i— yr— / d2oVhR* PO XM XN farn(X) +

1, 1 .
+§[M / dzd\/’_lhaﬁaaXMaﬁXNfMN(.X)]z + .. )

- / [dX pr][dhaple™S7e”

where

V(X,h)= 23-7 d2ovVhh*PO, X M5 XN frrn(X) (3.28)

T

V (X, h) is the vertex operator for the emission of a graviton of wave function farn(X)!®. The
insertion of eV in the usual path integral (which leads to (3.27) ) describes the interaction
~ of the string with a coherent state of gravitons. Also in this case action (3.26) must be
quantum conformally invariant. This condition now translates in an equation that gan(X)
must satisfy. This equation can be interpreted as the spacetime equation of motion of the

graviton!”. We will now study in more detail this issue.

§3.2.1  The Bosonic 2d Non-Linear Sigma Model

The massless states of the bosonic closed string are the graviton, the antisymmetric
tensor and the dilaton. It is easy to construct the background action for the graviton and
the antisymmetric tensor

1
4o

: / o [VRRP0XMOX N gaan(X) + e%000 XM 85X N Bary (X)) (3.29)

18 Until now we have considered gravitons whose wave function is a plane wave, but there is no reason
not to consider instead a wave function which is a general superposition of plane waves.
17 These considerations apply equally to all the other string modes.
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where ¢*? ié the antisymmetric 2d tensor.

The introduction of the dilaton is a bit more complicated. One way is to consider
(3.29) as a 2d non-linear sigma model [27]. Let us assume that this theory is renormalizable.
The vertex operators are simply those composite operators whose anomalous dimension, in
the sense of the renormalization group, is two [28]. As usual the renormalization will mix the
operators of the same naive dimension. String theories are necessarily defined on a curved
world-sheet so that the two-dimensional curvature is not zero and can contribute to form
a composite operator. In our case the graviton and the antisymmetric tensor vertices are
operators of naive dimension two, to complete them we must add the identity operator times
the 2d curvature which also has naive dimension two. Using again the prescription given to
construct the non-linear sigma model, the identity vertex becomes a scalar field F(X) (in
2d a scalar field has dimension zero). Then the renormalization group forces us to add to

the action the term

1
4ral

Sait = —

/dzoa’\/l_zR(z)(a)F(X) (3.30)

(In the same way one can introduce massive vertex operators considering composite operators
of naive dimension four and anomalous dimension two. Roughly speaking, one can think
that the difference (naive dimension) - (anomalous dimension=2) is proportional to the mass
~ of the state described by the vertex operator.)

F(X) is the dilaton background field. Notice that S4;; is a renormalizable action which
(on dimensional ground) is of the first order in a'. o' plays the role of the coupling constant
of the non-linear sigma model, so that Sg; is in fact a one-loop term in the non-linear
sigma model perturbation theory. Moreover, S it is not Weyl invariant (i.e. invariant under
a local rescaling of the 2d metric A%® — A(0)h*P) but is needed to cancel the one loop
anomaly. In fact in this theory Weyl invariance is explicitly broken by Sz; and implicitly
by anomalies, so we can ask that the two contributes cancel one each other.

If we want this non-linear sigma model to describe the dynamic of the massless modes
of the string, it must have the same symmetries of a string theory; in particular it must be
conformally invariant. We start considering the Weyl invariance and we will show that it is
sufficient to guarantee the full quantum conformal invariance.

The Weyl anomaly or anomaly of the trace of the energy momentum tensor was com-

puted in [29], it is
ara'VRTE = VRhPO, X M5 XV B, (X) + %P8, X M8 XV BE o (X)+ (3.31)
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+a'VRRY BP(X)

where

Bin(X) = Biyn(X) + Vv
Birn(X) = Birn(X) + Hignvr + Vi Wiy
BP(X)=p"(X)+ MV yuD(X)

B (X), BB x(X) and BP(X) are the three beta functions and vm, Wy are some functions
constructed from the D-dimensional Riemann tensor Rynpg, the field strength of the
By field Hynvp , O D and their derivatives and which can be calculated perturbatively
[29, 30]. It has been noticed that both the beta functions and the vy, Wi functions are
renormalization scheme depeﬁdent but the combination occurring in the B functions depends
only on the subtraction prescription and not on the nature of the background or of the wave
function renormalization. Further, the dependence of the B functions on the subtraction
scheme can be absorbed into a redefinition of the spacetime fields.

If BP and BY vanish [27, 31], then the trace free parts of the energy momentum tensor,

T,. and T; >, generate a Virasoro algebra

[Tz Tww] = =(Tez + Tww)d'(z — w) + -ilicé'"(z - w) (3.32)

N |

(and the same for the anti-analytic sector). The central charge, ¢, in this algebra is identically
equal to the function BP (from the Bianchi identities follows that the covariant derivative
of BP on the two dimensional manifold is zero, which means that BP is a €—number on M
and the equation ¢ = BP is consistent). Then the vanishing of the Weyl anomaly guarantees
that the 2d non-linear sigma model is conformal invariant.

At the lowest order the B functions are

BL (X)) = - [RMN(X) — Hupo(X)BEO(X) + vaND(X)} L0(a?)  (3.33)

BEn(X)=—a [-VPHunp(X) + Hyn(X)VpD(X)] + 0(a”)

ot

BP(X)= (D -26)-a' [~%V2D(X) + —;—(VD(X))Z +

-

_%HMNP(X)HMNP(X)] + 0(a'?)
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where H M&p = %8{ mMByp) and in BP the —26 comes from the reparametrization ghosts
contribution. The vanishing of the B functions can be interpreted as the equations of motion
for the background fields. So, in this indirect way, one can construct the field theory effective
action for the massless modes of the string. In fact the B = 0 equations can be obtained

from the following classical lagrangian in 26 dimensions

1 1

—Lyw =P |R~ —(Hynp) + (VD 2} 3.34
N S(Hawe)? +(VD) (3:34)
which indeed corresponds (up to the normalization of the fields) to the bosonic part of the
lagrangian previously obtained. Also this lagrangian, coming from the equations of motion,
is fixed up to the redefinitions of the fields which don’t change the equations of motion. It is
exactly the same situation found in the S—matrix approach to the effective action. In fact it
has been suggested [22] that the equations of motion obtained from the S—matrix lagrangian
and the B functions should coincide up to a field redefinition, which means that there should
exists a “metric” K;;(¢) in the field space such that
5£S—mat

7y (3.35)

Bi(¢) = Ki;(9)

Although a general proof of this relation has not been given, this equation is certainly true
- to low orders in perturbation theory where it is possible a direct construction of the K. ij
metric. |

An important fact that we should stress, is the relation between the B functions and

the g functions. At the lowest order it is
Biin =By — 'V VND (3.36)
Biyn = Barw — o' HirnVpD
1
BY = p¥ - So!(VD)’
(at higher orders these relations become more complicated).

The beta functions appear as coefficients of the global scale anomaly (A*? — AR®P, A

independent of o)
47ra'/d2m/ﬁ o /dza [\/i{haﬁaaxf‘fa,axf"ggm(x)+ (3.37)
+£°P0, X M0 XN BB v (X) + o' VAR P (X )]
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It seems that for the bosonic non-linear sigma model the vanishing of the beta functions does
not imply that the model is conformal invariant but only that it is globally scale invariant.
On the other hand it has been shown that at two loop order, using field redefinitions and

integration by parts, the effective action can he written as

Supr = [ X5 PO [V ) Bl (X) - 28P(X)] 4 0(@T) = (338)
_ %/d”x\/ge‘m’” [gMN(X)ﬂgm(X)_f 26P(X)] + 0(a)
Moreover Tseytlin, generalizing the C~theorem of Zamolodchikov [31], has argued [32] that
the effective action should have this form to all orders in perturbation theory. It is not
clear if up to field redefinitions and terms vanishing on shell, the zeros of the beta functions
coincide with those of the B functions so that the 2d non-linear sigma model at the fixed
point of the beta functions actually are conformally invariant. The form (3.38) of the action
indeed suggests that this is the case.
All these facts hold on the basis of two conjectures:
i) the 2d non-linear sigma model is renormalizable
ii) the condition of Weyl invariance of the 2d non-linear sigma model is equivalent to the

tree level Bose string equations of motion.

§3.2.2 B.R.S. Invariance in the 2d Non-Linear Sigma Model

There is another way of introducing the dilaton in the sigma model action which phys-
ically is more clear. As it was done for the graviton and the antisymmetric tensor, one can
start from the dilaton vertex operator. The dilaton vertex operator is the unique vertex

which depends on the ghosts. In fact [33]

Vp(z,2) = /dzz [BZXMBEXM + %az (&(2)b(z)) + %az (c(z)b(z))] etk X (3.39)

- / iz [BZXMBZXM - %azﬂb-c)(z) - %azj<b»c>(z)] ik X

where J(*¢)(z) = b(z)c(z) is the anomalous (b, ¢) ghost number current. Using the anomalous
equation of conservation of the ghost number current, one can obtain the coupling of the

dilaton to the scalar curvature R(?). On the other side, from equation (3.39), one can
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construct a coupling of the dilaton field to the ghost number current. The sigma model
action is [34]

1 .
S=— [ &z [gun(X)0.XM0: XN + Bun (X)X MO X NP4 (3.40)

T drwa!

+28(2)05¢(z) + 25(2)0.7(2) + %azD(X)J“vc)(z) + g—azD(X)f(b'C)(z)]

This action is actually B.R.S.T. invariant. Thus, one can compute Qprs and impose
(@Brs)? = 0. Qprs is a 2d B.R.S.T. charge and its nihilpotence is equivalent to the van-
ishing of the central charge. The central charge is not a number but it is a function of the
background fields, so that from the nihilpotence condition of the B.R.S. charge one obtains
the equations of motion of the background fields. The explicit computation of (@B RS)Z =0
(or of the O.P.E. of the energy tensc;r with itself) can be done using 2d non-linear sigma
model perturbation techniques. The computation is done in an easier way observing that
the action (3.40) , its B.R.S.T. transformations and the B.R.S.T. charge can be obtained
with the substitution ¢ — €¢*P/3¢, b — e~4P/3}p from the same quantities obtained from the

action

§= 1 [ [0, XM, X  gpn(X) + e 0 X M5 XN Bryn(X)+ (3.41)

T 47wo!

+2b(2)8z¢(2) + 25(2)0.2(2)]

But the transformation which relates the action (3.41) to the action (3.40) is generated by
the ghost number current which is anomalous; then making this transformation one must
be very careful about this anomaly. Since the energy momentum tensor of action (3.41) is
very simple (it does not have exponential coupling of the dilaton), one can try to use it to
compute (Qp 1{5)2 = 0. But in the transformation from the energy momentum tensor of
action (3.40) to that of action (3.41) there is also an anomalous contribution to the energy

momentum tensor from the ghost number current so that the equivalent expression is
1.2 1
Taction(3.40) ~ Taction(3.41) + EazD(X) =T (342)

Using this expression of the energy momentum tensor, one can easily compute (Qgrs)? =0
or the Virasoro algebra of T'. At the first loop order one finds some equations of motion
for the background fields which are exactly those obtained imposing the vanishing of the B
functions. Thus the vanishing of the B functions or the (Q srs)? = 0 condition give rise to

the same effective action.
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§3.2.3 The Supersymmetric Non-Linear Sigma Model

Using superspace background field methods, in ref.[35] the graviton beta function for
the supersymmetric 2d non-linear sigma model was computed up to four loops. As in
the bosonic case [30] the one-loop contribution is just the Ricci tensor, but the two and
three loops contributions to the 49 function vanish (in‘ the bosonic case at two—loop there
is an Rypo RRII\J,QR term). So up to three-loop the type II superstring has as gravitational
background a Ricci flat space (solution of the graviton equation of motion). We will see the
consequences of this fact on the possibilities of compactification to four dimensions from ten
dimensions. But at four-loop arises the ((3)(Rynpg)* term which we have already met
considering the four point scattering amplitude results. So at four loop a Ricci flat space is
not anymore a solution of the graviton equation of motion.

For the heterotic superstring only a few results are known up to two loops [27]. The
main features are the modification of the Bpsy field strength Hpsyp with the introduction
of the Lorentz and Yang-Mills Chern-Simons forms and the presence (at two-loop order)
in the graviton beta function of the term Rprpo RRJI\D,QR — trFi; (remember that the term
- quadratic in the Ricci tensor and scalar curvature can be introduced by field redefinitions).
These terms should lead to the same effective action found by the scattering amplitude
method.

These results were obtained considering a string theory at tree level. It is not known
how higher string loop contributions can modify the situation. Moreover the sigma model
approach seems to be technically more difficult than the scattering amplitude one to compute
the effective theory; it is also plagued with some serious problems, like the inclusion of the
spacetime fermion fields'®, and the explicit expression of the Weyl anomaly in the case of
supersymmetric sigma models is not known, although the approach proposed in ref. [34]
with the B.R.S. charge gives an independent way for obtaining the same results.

We end summarizing the known results for the field theory effective action of the het-
erotic superstring.

The effective action is constructed from the tree string contributions (strings propa-

18 Probably, within the Green-Schwarz formulation of the superstring it will be possible to include also
the background fermion fields.
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gating on avgenus zero Riemann surface). It is a classical action expanded in powers of a
dimensionful parameter o', it is a local supersymmetric (supergravity) action with N=1 in
D=10 and Eg @ Eg as Yang-Mills gauge group. Anomalies are cancelled by means of the
Green—Schwarz mechanism.

Up to a'? the effective action contains also terms quartic in the Riemann tensor besides

all those of the Chapline-Manton Green—Schwarz N=1 D=10 supergravity theory.

§3.2.4 Sigma Model Perturbation Theory

In this paragraph we will recall some features of the 2d non-linear sigma model theory

which will be useful in future. In a 2d quantum field theory the action for a bosonic field is

I= / 4?08, X (0)05X (o) h™P (3.43)

Thus in d=2 a scalar field is dimensionless!®.

A string theory is a D=2 quantum field theory where the 2d quantum fields X s are
also the coordinates of a background D~dimensional space; then X ; has dimension ~1. To
have a dimensionless 2d action for X s one has to introduce the Regge slope o' which has

mass dimension +2. Then

1 [+ 4
Istrings = / d’am—,aaXM(a)aﬁXN(a)h AR MV (3.44)

The background string action for the graviton is just a 2d sigma model where

gun(X(0))/4wa’ is the 2d coupling constant

fog. = / dz"%%ﬂaﬁma)%xxv(a)wﬁ (3.45)

and o', since it plays the role of %, is the 2d loop—counting parameter.
The 2d sigma model quantum theory must be considered as a perturbation around a

classical solution of the equations of motion X9,(c) such that

Xar(0) = X34(0) + Enr(0) (3.46)

19 The metric tensor is always dimensionless.
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where £ M(O'.) are the quantum fields?®. Thus one can expand the action in a Taylor series
in powers of £37(0). We do not review these techniques which are rather complicated and
require the introduction of a normal-coordinates expansion [36], but we just give a simple
example. Expand in orthonormal coordinates the action and make £pr(0o) dimensionless as

any good 2d quantum field by £y(0) — V2ra'éy (o), one obtains

Ipg. = / d*ov/hhP (%gMN (X%(0))0abn(0)0pEn(a)+ (3.47)

—é(?‘n’a')RMNPQ(XO(U))fM(U)fN(U)Ba-EP(‘T)aﬁEQ(‘7) + )

The 2d sigma model action is then expressed as an expansion in powers of a'.
Thus o' plays a triple role in the 2d sigma model: it appears in the coupling constant,
it is the loop—counting parameter and the massive modes (i.e. higher derivatives) expansion

parameter.

20 D. Friedan has shown [36] that the choice of X3, is arbitrary, since changing X9, is equivalent to make
a field redefinition on the 2d quantum theory.
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CHAPTER 4

Compactifications to Four Dimensions

In the previous chapter we have seen that a N=1 D=10 non-standard supergravity is
the effective field theory for the massless modes of the heterotic superstring. We want now to
construct a four dimensional theory. This can be done looking for solutions of the equations
of motion of the D=10 supergravity in which 6 of the 10 dimensions are compactified. It
is not known why the theory should choose this solution of its equations of motion, but
it is already of great importance the fact that the theory admits such a solution. In this
case, being the space Mg = My ® K¢ where Kg is compact, one can in principle solve the
equations of motion on Kg so to obtain the equations of motion for the four dimensional
" fields. As we will see in details, this procedure gives rise to a D=4 spectrum composed by
some massless modes and an infinite tower of massive modes. The D=4 massive modes have
masses of the order of 1/r where r is the radius of K¢ (Mg, ~ 1/r). As usual the D=4

effective theory is constructed only with the massless modes.

In principle, one should be able to take care also of the effective interactions due to the
K¢ (or Kaluza—Klein) massive modes in the construction of the D=4 effective action. In this
sense the D=4 effective action should appear as a series expansion in powers of r; moreover

we already know that there is a power expansion in the string loops and in o'.

In the following, as we have done until now, we will consider just the tree string loop
and first order in o' contributions and we will study the D=4 massless spectrum and its
symmetries. These informations are sufficient to specify the D=4 effective supergravity
theory (up to two derivative terms, which means neglecting the massive modes and o'

contributions) as we will discuss in the next chapter.
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§4.1  “Calabi Yau” like compactifications

We are interested in studying a solution of the equations of motion of the D=10 super-
gravity theory emerging as an effective theory from superstring with the following properties
(37, 38]

a) the equation of motion for.the D=10 graviton gpsny has a solution in which the vacuum
spacetime is of the form‘M4 ® K¢ where M, is a maximally symmetric space and Kg

a compact space. We will call the coordinates of My z, (1 = 1,...,4), of K¢ ym

(m=5,...,10) andprm ey (M =1,...,10).

b) there exists one (unbroken) local supersymmetry acting on the D=4 fields on Mj.
c) the gauge group and fermion spéctrum should be realistic.
The consequence of the c) condition is to consider Eg ® Eg as the D=10 gauge group.

The most important and far reaching condition is b), so we will study first its consequences.

§4.1.1 Unbroken Supersymmetry in D=4

, An unbroken supersymmetry @ is simply a conserved supercharge that annihilates the
vacuum state |(2), this is equivalent to say that for all operators U, (|{Q, U}|Q2) = 0. This
certainly holds if U is a bosonic operator, if instead U is fermionic {Q,U} = §oU so that
the condition for an unbroken supersymmetry is (Q|éo(€)U|Q) = 02! for any fermion field
U. Obviously to have an unbroken supersymmetry in D=4 we must start with an unbroken

supersymmetry in D=10. ‘
The D=10 fermi ﬁeldé are the gravitino ¢y, the dilatino A and the gauginos X*. Their

supersymmetry variations are

1 3k
bo(m)vm = EDMT] + 3291;2(]5

1
) X% = —
. a(m) 4g10v/®
k
= — ——E—I—Q——"I‘MNPT)HA{NP + (fermi)2

1
) A= ———(T-0¢)n+
q(n) \/§¢( é)n 8\/_ng
H =dB — wsym + w3L

(r VPQ _ 95};’,1“1"?) nHypo + (fermi)? (4.1)

I‘MNFJ?INn + (ferm.i)2

21 Notice that at the classical (tree) level, as the one we have to consider, 6gU and <6Q U) coincide.
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These transformations laws are at the lowest order in o except for the presence of the
Lorentz Chern—Simons form wsr. The inclusion of this term will play an important role in
the discussion.

To simplify the study one assumes that (H) = (d¢) = 0, the generalization for the
arbitrary case will be considered later. The important point is that the solution we will find
of (oU) = 0 will turn out to be a solution of the equations of motion of the D=10 theory
at the first order in '.

The simplifying hypothesis implies that (§o\) = 0 is identically satisfied. Then it

remains to study

(8 (m)¥n) = (Dan) =0 (4.2)
(Bo(mx™) = (TMY Frnn) = 0
dH =trRANR — %TTF/\F

The Bianchi identities for the field strength of the antisymmetric tensor field Byy are
consistent with the position (H) = 0 because it means that trR A R and TrF A F are
in the same cohomology class (or that trR A R — é—lb-TrF A F is in the zero cohomology
class). Notice moreover that the By field, due to its gauge invariance under Bypy —
" Byn + OmAN — OnAp, can appear in the lagrangian essentially only through its field

strength Hynp.

84.1.2 The Calabi-Yau Space

The Killing equation (Dpsn) = 0 has a strong integrability condition ([Dps, Dnln) = 0
or

Runpol P90 =0 (4.3)

where Rpnvpg is the Riemann tensor. Consider now this equation on My, which is a
maximally symmetric space, in this case R,,,, = %(gupgw — Juo9uvp) from which R = 0;
this means that the space My, as solution of the equations of motion of the graviton, must
be the flat Minkowski space. On the Minkowski background the equation D, 7(z,, ym) = 0

implies that 7 is independent of the four uncompactified coordinates. Then Dy = 0
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reduces to the statement that on Kg it exists a covariantly constant spinor field (Killing

spinor). Before studying the consequences of this, let us recall some general facts.

Let ®(X) be a field on Mg, on My ® Kg its decomposition is taken (symbolically)
to be #(X) = >, ®;(2¢,) ® 2i(ym). The Lorentz group SO(10) of M;p decomposes, going
to My ® K¢, in SO(4) ® SO(6), accordingly the Lorentz representation (spin) of the field
must be decomposed in the product of those on M, and on Kg. For example, the spinor
irreducible representation of SO(10) is the 16 which under SO(10) — SO(6)®.50(4) becomes
16 = (4,2) ® (4,2'). Considering the dependence of a épinor X on z, (i.e. on My), X is a
Majorana spinor (in the 2@ 2’ of SO(4)) with an external index in the 4 of SU(4) ~ SO(6);
on the other side, as spinor on Kg, X is the sum of a spinor of positive chirality and one with

negative chirality with an external index in the 2 of SO(4).

The next important concept which is useful is the holonomy group??. As in any gauge
theory, a covariantly constant field n always returns to its original value upon parallel trans-
port around a contractible closed curve. Thus, K¢ admits a covariantly constant spinor only
if its holonomy group leaves 7 invariant, Un = 7. The holonomy group is then a subgroup
of §50(6) ~ SU(4) under which the decomposition of the spinor representation of SU(4)
has a singlet. The spinor representations of SU(4) are the 4 (positive chirality) and the 4
(negative chirality). Assume that 7 is a positive chirality spinor, then SU(4) D SU(3) and
" 4=3@1. Then given H = SU(3) there exists a spinor which is invariant under the action
of the holonomy group.

A compact manifold Kg whose holonomy group is precisely SU(3) (and not a subgroup)
admits exactly one covariantly constant spinor field n of positive chirality. The complex
conjugate 7 of (7 belongs to 4 of SU(4)) is then the unique covariantly constant spinor
field of negative chirality. Looking at these two spinor fields from the D=4 point of view,
remembering that the 16 of SO(10) decomposes in SO(4) ® SU(4) as (2,4) @ (2,4) and
under 50(4)® SU(3) as (2,1) @ (2',1)?3, they form a single real four component Majorana
spinor of S50(4) (the 2' is the complex conjugate of the 2 since the 16 we started vﬁth is
a real representation). Then if we choose a compact manifold K¢ of SU(3) holonomy, the

resulting D=4 theory has exactly (on-shell) one unbroken local supersymmetry.

By means of 77, we can construct other covariantly constant tensors which specify the

22 For a definjtion see ref. [39
23 Really SO(4) ~ SU(2) ® SU(2) and 2 = (2,1), 2' =(1,2).
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characteristics of the K manifold. They are

Kahler form Ki; =7qlm
Complex structure J: = g* Ky
Holomorphic volume form Wik = nTT; k7

The existence of these covariantly constant tensors implies that K¢ is a complex, Kahlerian,
SU(3) holonomy and Ricci flat manifold?4. These manifolds are called Calabi-Yau manifolds
since their existence was first conjectured by E. Calabi and then proven by S. T. Yau [40].
Although these manifolds are known to exist, none of their metrics is known explicitly. Then
it is impossible to integrate explicitly on Kg, all we can do is to study general properties of

these manifolds.

§4.1.3 The Embedding of the Spin—Connection in the Gauge Group
The third equation of (4.2) projected on K¢ becomes

1
ﬁTrF ANF—-trRANR=0 (4.4)

‘ (T'r is the trace on the adjoint representation, tr on the vector representation). We expect
that it could be satisfied only in a trivial way, i.e. there should be some relation between R
and F. For example, discarding for the moment the fact that w is in the vector representation
and the factor Z in (4.4) , if the gauge group on Kjg is SU(3), since we can think of w as
an SU(3) gauge field with R as field strength, imposing the identification w,, = A,, the
equation (4.4) is trivially satisfied.

In the case at hand thé gauge group is Fg® Eg. Then we can make an ansatz: a solution
of the equation of motion breaks the gauge group to its maximal subgroup (SU(3) ® Es)® Es,
the SU(3) charged gauge fields develop on Kg an expectation value related to that of w,
then the unbroken gauge group in D=4 is Eg ® Es. The adjoint representation of Eg ® Eg is
the 248 @ 248, the second Eg doesn’t contribute to (4.4) and we limit ourselves to study the
first one. The vector representation 10 of SO(10) on SU(2) ® SU(2) ® SU(3) decomposes
as

10=(2,2,1)®(1,1,3)® (1,1,3) (4.5)

2% Ricci flatness is a trivial consequence of SU(N) holonomy.
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The (2,2, 1) part describes a vector on M, and a singlet on Kg, i.e. w,. The (1,1,3)®(1,1,3)
part describes the K¢ spin connection w,,. Then on Kg the spin connection is in the 3@ 3
representation of SU(3). In the same way one can decompose the Lorentz index of A%, —
AL @ Ag,.

From the ansatz Eg — SU(3) ® Eg the 248 of Eg decomposes as

248 = (3,27) @ (3,27) @ (8,1) ® (1, 78) (4.6)
The (1, 78) part represents the gauge fields in the adjoint of Eg and singlet under SU(3) and
are the gauge fields corresponding to the unbroken symmetries. The (3,27)® (3,27) © (8,1)
are the SU(3) charged géuge fields. Since on K¢ we are not interested in Fg, we identify the
27 copies of 3 and 3, leaving 27 copies of SU(3) gauge fields transforming in the 3 @ 3. It
easy to show that the trace of the square of an SU(3) generator in the adjoint representation
(which occurs in TrF A F fof the (8,1)) is three times the value of the same trace in the
3 ® 3. The total result is that we have 30 copies of the irF A F where the gauge field is in
the vector representation of SU(3).
“Embedding the spin connection in the gauge group”, which means identifying the spin
connection with the SU(3) gauge field, we can satisfy (trivially) the equation (4.4) .
Summarizing, the effect of the ansatz which solves the (4.4) equation, is that of breaking
' the gauge group to Fg® Es. To obtain this result the inclusion of the Lorentz Chern-Simons
form was crucial. In fact, the same analysis carried on for the pure Chapline-Manton theory
leads to the conclusion that F,,, vanishes [41]. This implies that there aren’t non—trivial
gauge compactifications, fact which precludes the possibility of having chiral fermions in

D=4.

84.1.4 The Four Dimensional Spectrum

Let consider a ten dimensional field ®(Xj37). We can think of it also as a field on
My ® K¢ and @ = ®(2,, ym). In four dimension & is an infinite set of fields parametrized
by ym where y,, is a point in the K¢ space, ® = &, (z,). In particular, consider a Dirac

spinor field (2 ) in D=10, it obeys the following equation of motion

0 = iT™ Dyrip(z 1) _ (4.7)
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This equation can be rewritten as

4 10
0=13» T:Dp(zn)+iy TiDig(en) (4.8)
{ i=5

i=1

Now we have to look for a solution of this equation on My ® Kg. We know that the spinor

representation 16 decomposes as (2,4) @ (2',4) so that we can make the following ansatz

¢a10(mM) ~ ¢a4,as($u’ym) ~ Z ¢;4($u) ® ¢is(ym) (4.9)

In the same way we can decompose the gamma matrices as

Tif ~ (T4 ® L,I®TY,) (4.10)

To solve the equation (4.8) by separation of variables the two differential operators must
commute, but in (4.8) rather they anticommute. This problem can be solved multiplying

the equation (4.8) by T4) = 4T',I';T3T'y (T(%) is the chirality operator), then
0=1 (104 + IDK) P10 (4-11)

where .{774 = 2;.1:1 TiD;, jZ‘)K = 2225 IiD; and T'pr = T8)T . It is important to note that
T; and T, obey, respectively, the proper anticommutation relations of gamma matrices of
.M,; and Kﬁ.

Now one can introduce a complete set of normalized solutions of the eigenvalue problem
iDgdi(Ym) = Xi¢i(ym) (4.12)
so that the Dirac equation for the four dimensional spinor field becomes

0= (ii)4 + A,-) bi(e,) (4.13)

Thus, each 1); is observed in D=4 as a fermion of mass A;. The masses A; turn out to be
of order 1/r where 7 is the “radius” of the compact space K¢ [42] (this terminology comes
from the seven—sphere Kaluza—Klein techniques).

Now we should compute the interaction terms emerging from the integration of the

massive Kaluza-Klein modes. We are not able to do this computation in details. What
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we can do is to compute the spectrum of the massless modes and to study some properties
of these fields. We know also that the effective D=4 theory which describes the massless
degrees of freedom, besides the standard (i.e. not higher order) terms, contains also two
series of higher orders interaction terms: one is an expansion in a', the other comes from
the compactification and depends on r.

The important fact that we have learned is that the D=4 spectrum of the massless
modes is given by the zero modes of the kinetic operators on Kg?°.

The study of the zero modes of the Dirac and Laﬁlacian operator is easily done using
algebraic geometry techniques. Without entering in any detail, we will just state the principal
outcomings [37].

On K¢ one can define the de Rham cohomology groups HP(Kg) whose dimensions b7
are called the Betti numbers. It turns out that a p—antisymmetric tensor B in D=10 gives
rise to p—n forms on K¢ (and a n—forms on M,) for all n < max(4,p); moreover the number
of zero modes of B on Ky is given by 677"

Since Ky is also a complex, Kahlerian manifold, one can define the Dolbeault cohomol-
ogy groups H(P9(K4)?, the dimensions of these groups are the Hodge numbers h{(P:9) which

are related to the Betti numbers by

r= Y A9 (4.14)

pta=n

On a SU(d)-holonomy, Kéhlerian manifold of real dimension 2d it is possible to show that
chiral spinors are in one-to—one correspondence with (0,q) forms, i.e. a spinor field is the
same as a collection of (0,q) forms, q=0,...,d. Moreover, the number of zero modes of a (0,q)
form on Kg is exactly h(®9),

For K¢, which is an SU(3)-holonomy Kahler manifold, it holds

h(00) = p(3:8) = p(0:3) = p(3.0) — 1 (4.15)
h(O,l) — h(O,Z) — h(llo) — h(zvo) =0
h(l,l) — h(2v2) h(lvz) — h(zvl)

=1 b2 = KD

25 Obviously, the considerations that we have done for the fermions can be extended to the other fields.
36 H{7'9)(Kg) is the cohomology group of the p~holomorphic and q-antiholomorphic forms.
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The glﬁino fields?”™ X have a spinor index a and a gauge index z in the adjoint repre-
sentation of Fg (we are not considering the second Fg). Under Eg O SU(3) ® Eg we know
that 248 = (3,27) @ (3,27) @ (8,1) ® (1, 78). On K, the.Fg indices are enumerating indices
of the fermions, while the SU(3) are gauge indices.

The SU(3) singlet modes are equivalent to (0,q) forms on K§g without gauge indices.
Since A(®1) = 0, A(®®) = 1 = A(®?®) each SU(3) singlet has precisely one zero mode of
positive chirality and one of negative chirality. These modes give rise in D=4 to 78 Majorana
fermions in the adjoint representation of Fg, i.e. the gluino Eg fields in D=4.

Modes that transform in the 3 of SU(3), ¢f, are equivalent to (0,1) forms with an

holomorphic index ¢g on a vector bundle on Kg. Since the spin connection is embedded in

the gauge group, we can equivalently relate ¢ to a (2,1) form on K Jal‘amg = wa,,ag,a3¢§3~
Thus, from the (3,27) part one obtains in D=4 h(*>!) massless modes in the 27 of Eg and
the nunber of left-handed massless 27-families in D=4 is Ny7 = h(?1), In the same way the
fields in the 3 can be related to (1,1) forms on Kg, so that the number of massless left—handed
27 families in D=4 is Ngw = (1D The number of generations is Ngen = |Np7 — N3zl =
|21 — R(LD] = Lx(Kg) (X is the Euler characteristic of Kg).

Finally, consider the modes which transform in the adjoint of SU(3). These modes are
E¢ singlets, so they do not carry any currently known gauge interaction. However they can
. play an important role in phenomenology. There is not a general formula to compute their
number.

We will consider now the gravitational sector; for simplicity we will study the compact-
ification of the bosonic D=10 modes ®, garn, Byrn. First of all, notice that the equations
that determine the structure of Kg do not fix it completely, i.e. the solution of the equations
introduces some integration constants ¢; (usually called moduli); these integration constants
(moduli) will always manifest themselves in the effective D=4 theory as massless spin zero
particles.

The D=10 graviton gpv gives rise to three sets of fields under compactification,
Guvy Gum,> gmn. The only massless mode which comes from g,, is the D=4 graviton. The
massless modes coming from g, are gauge bosons in D=4. It can be proven that they are
related to the continuous symmetries of Kg. However, a manifold whose holonomy is SU(3)

never has continuous symmetries, then from g,,, does not come any massless mode.

The massless modes of ¢,,, on K represent the degeneracy of the vacuum state and

27 By supersymmetry it is sufficient to study just the bosonic or the fermionic part of the spectrum.
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are in corréspondencé with the moduli of Ks. Expanding ¢m. = g%, + Amn where g°
is a Ricci flat background and h is a metric disturbance, the equation for h is Ah = 0
where A is a certain differential operator (Lichnerowicz Laplacian). In the case of SU(3)
holonomy, the independent components of this equation are h_; and h;;. Zero modes of
h_; are complex and gives rise to complex scalar fields in D=4. If the spin connection is
embedded in the gauge group, these massless scalars are in one-to—-one correspondence with
the massless matter fermions (in the 27 and 27) obtained from the Yang-Mills sector; since
supersymmetry is unbroken, these fields pair up to form the matter supermultiplets. The
zero modes of h_; are harmonic (1,1) forms. They correspond to the moduli of Kg; harmonic
(1,1) forms are naturally real fields so that to fill out a complex supermultiplet they must
have pseudoscalar partners; as we will see, these partners are provided by Bysn. Since these
fields correspond to the integration constants of K, their value on K is not fixed (remember
that ¢(zar) ~ X, (di(z.) ® ¢%(ym)) but in this case ¢} (ym) = ¢° are constants). Then
the corresponding D=4 massless fields must satisfy a well defined scaling property because
the (classical) theory should be invariant under a change of the moduli?®. This scaling law
will be very important in the construction of the D=4 effective theory.

The By field can be seen as a 2-form in D=10, then it gives rise to 0, 1 and 2 forms on
K¢ which are B,,, Bum, Bmn. Since 0 =1, B,,, describes one pseudoscalar massless mode
. in D=4 which pairs up with the dilaton ® to make the first component of a complex multiplet
called §. This supermultiplet has some interesting properties. It satisfies a scaling law since
the dilaton has this property both in string theories and in the D=10 effective supergravity
theory. Moreover, B has a gauge invariant field strength which is H = dB — wsyp + way.
In the D=10 lagrangian there is the term % (H, H),, which under compactification becomes
% (H,H),. But in D=4 an antisymmetric 3—form field strength has only one on-shell degree
of freedom??, so that y, = £, Hypy- Substituting one of the two H with y, we obtain the
equation of motion for y, dy = 0. This gives y = da for some pseudoscalar field «. Since

dH =trRA R —trF A F, from the definition of y we get

Oa=trRAR—trFAF (4.16)

This is the standard coupling of an axion, a; then a, which is the massless pseudoscalar

degree of freedom described by B,,,, satisfies a Peccei-Quinn symmetry, o — a + constant.

28 In a classical theory the normalization of the lagrangian is not important, so in D=4 this scaling law
appears as ¢y — Ay, L — A% L.
2% We will see in detail this fact in the next chapter.
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Since for an SU(3) holonomy manifold b! = 0, there are not massless modes coming
from Bym. :

Consider now B,,. For an SU(3) holonomy manifold 4 = A(1") 4 A(2:0) L p(0:2) byt
h(2:0) = p(0:2) = 0, so that there are (') harmonic (1,1) forms that give rise to pseudo-
real massless scalars in four dimensions. These modes pair up with the h ; fields to form
h(t1) complex chiral supermultiplets T{4) in D=4. As for S, the real part of T() satisfies a
scaling law which follows from the moduli, and the pseudo-real part satisfies a Peccei-Quinn
symmetry and can have an axion coupling which come from the higher order terms needed

to cancel the anomalies in D=10:

AS = / B AtrF* AtrF? (4.17)
M

At this point, up to specify A1) and A(21) and the number of Es singlet matter fields,

we have completely determined the D=4 massless spectrum.

§4.1.5 Higher Order Corrections

In the study of the supersymimetry transformations of the spinor fields in the last section
we considered the equations to the lowest order in o' except that for the Lorentz Chern—
Simons form. As we know, there is an infinite number of corrections to these equations of
higher order in a'. Moreover we considered a solution of these equations in which (H) =0 =
(d®). The Calabi—Yau metric is a solution of the gravity equation of motion on the compact
space K¢ and also all the other fields satisfy their equations of motion at the lowest order
in a'.

From the 4—point scattering amplitude or equivalently from the the 4-loop sigma-~model
beta function, comes a term which modifies the Einstein equation such that they do not
admit anymore a Ricci flat metric as a solution.

Thus, the Calabi-Yau compactification must be seen as a first order approximation
of the to—all-orders solution of the equation of motion. Since the expression of the fields
that we have found in the last paragraph, with H = 0 = d®, are a solution of the lowest
order equations of motion, we can think to compute‘the to-all-order solutions perturbatively

starting from it. On K it exists a natural parameter that we can use in the perturbative
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expansion; it is the “radius” of K, 6, 7. One can expand in powers of 1/73? the ten dimensional
equations, treating spacetime derivatives and gauge fields as being of order 1/r.

To the lowest order the Calabi-Yau solution is a solution of the equations of motion, but
at order 1/7* there begins to be corrections. For example at 1/r* order, the equations are
compatible with having H of order 1/r® and not any more zero. In the same way one must
modify the Ricci flat Kahler metric adding non Ricci flat terms. In ref.[43] it was shown
that there always exists a Kahler metric which satisfies these new equations and which is

constructed perturbatively starting from the Ricci flat one.

§4.2 Dimensional Reductions: a General Truncation

It is possible to do some dimensional reductions from the D=10 supergravity to the D=4
one so to obtain results very similar to those which one would reach making a Calabi-Yau
compactification. They main tool is to keep in D=4 only those modes which are invariant
under some symmetries, this would correspond to say that on the chosen K¢ space only the
invariant modes are zero modes and give rise to massless particles in D=4.

The simplest choice of K¢ is the six dimensional torus Tg, but if K¢ = T the resulting
D=4 supergravity has four unbroken supersymmetries. To obtain a N=1 theory we have
to do something similar to have an SU(3) holonomy group. On K¢ there are two SU(3)
groups, one is embedded in the Lorentz group SO(6) ~ SU(4) D SU(3)r and the other
in the gauge group, G O SU(3)g. Let SU(3)p be the direct sum of these two groups,
SU(3)p = SU(3)L ® SU(3)g and Z; the center of SU(3)p. A choice of Kg which leads to
a N=1 D=4 supergravity is the orbifolds K¢ = Ts/Z3 [44].

Here, we are not interested in the study of the orbifold compactification but of the
(consistent) truncation which represents the contribution of the untwisted modes on the
orbifold.

After having decomposed the D=10 Lorentz representations in the products of the 4
and 6 dimensional ones, one keeps only the modes which are singlets under Z3. Since the
theory is supersymmetric, it is sufficient to consider the bosonic modes. The D=4 modes,

coming from the ten dimensional gravity sector garny, By, €, which are singlets under Z;

30 More precisely, the dimensionless expanding parameter is «'/r?.
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are

Guv, Buu ~ Huup ~D, @,9.5 B3 (418)

137 iy

g 1s the D=4 graviton, (D, ®) give rise to the bosonic part of the axion—dilaton multiplet.
(D, ®) are present in every compactification (this is related to the fact that ° = 1 for
a Calabi-Yau manifold), for that reason they form the so called “universal sector”. The
scalar fields in a D=4 N=1 supérgravity theory are coordinates of a Kidhler manifold, for the

universal sector the Kahler manifold is

SU(1,1)

The fields coming instead from ( 95 B i;) are model dependent; as we have seen their number
is given hy A(1'1). For Ts/Zs, R(L1) = 36 =9 untwisted + 27 twisted states. The 9 untwisted
states come directly from (gig, Bi3)§ since they transform under SU(3)p as 1 @ 8, they
describe in D=4 N=1 supergi'avity the Kahler manifold

SU(3,3)
SU(3)® SU(3)® U(1)

(4.20)

It is possible to do explicitly a truncation of the Chapline-Manton lagrangian obtaining
the D=4 supergravity theory which describes these modes. Since D=4 N=1 supergravity
s completely fixed up to two functions of the scalar fields (in the next chapter we will
give more details about that), this means that from the truncation is possible to obtain
the expressions of these two functions [19]. In fact, if S is the complex field arising from
(D, ®) and T; those coming from (g3, B;3), the Kahler potential turns out to be J =
—log(S + §) —log(det(T;5 + T 3))-

This truncation can be realized starting froin compactifying on Tg and then taking the
Z3 invariant modes. Thus, the N=1 theory can be obtained with a truncation from the N=4
one. But in N=4 supergravity the manifold of vthe scalar fields is restricted to be

50(6,n) SU(1,1) -
SO(6)® S0(n) ©  U(1)

(4.21)

in our case n = 6. Looking for a Z3 invariant submanifold one finds exactly the Kahler
manifold of the N=1 supergravity model previously stated.
The explicit procedure for the truncation is the following [19,45]: we start from the

D=10 Chapline-Manton lagrangian and we write down the N=4 D=4 theory that contains
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all of the frdgments of the D=10 fields. We obtain this action by imposing 8(z,, ym) = 0(z,)
where @ is a generic component of a generic field. The integration over the y coordinates is
then carried out giving the Tg volume that appears as a factor renormalizing the coupling
constants and some of the wave functions. Then, to get the N=1 theory, we cancel from the
action all the pieces containing at least one field that is not a singlet under the action of Z;.
This prescription provides an approximation to the full effective action, because the effect
of the massive Klauza-Klein fields is not taken into account and the resulting action does
not contain higher derivative terms.

Consider now the D=10 gauge sector; from A§, one obtains in D=4 the gauge fields of
SU(3)® Es @ Es, Afj. The decomposition of the fields with the Lorentz index tangent to
Kg is ‘

A2 — o8 g 0 g oM™ g oY 4+ hec. (4.22)

The diagonal Z; singlet are the complex fields

C{™®  with ae27 of Es, ne3 of SU(3)g, ie3 of SU(3)L (4.23)

They give rise to 9 families in the 27 of Eg which are triplets under the SU(3) part of the
gauge group.

This model, containing chiral fermions in the 3 of SU(3) gauge group, is anomalous.
The additional chiral fermions needed to cancel the anomaly come from the twisted sector
of the orbifold compactification. In fact [46], from the twisted sector come 27 copies of
fields in the (3,1) of SU(3) ® E¢ which cancel the anomaly, and also 27 copies of singlets
under SU(3) transforming as 27 under Eg. This is consistent with the fact that for Tg/Z;
RID = 36, A2 =0,

Taking in account the gravitational, matter and gauge sectors, the D=4 supergravity

lagrangian is specified by the following functions of the scalar fields

1
g =J(z,z) - log Z]g[ (4.24)

Y .M. coupling function  fop(2z) = Séap a,B e SU(3)® Eg ® Eg

where
Kahler potential J(z,Z) = —log($S + S) - log det(T; + Tf} B 20{"’“6?0)
superpotential g(z) = dabcemnlsi"‘kC{"“C;}th
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and £,n is the antisymmetric tensor of SU(3) and dgp. the symmetric tensor of the 27 of

Egs. The maximal 9 family Kahler manifold defined by this Kahler potential is

SU(L,1) SU(3,3 + 3n)
7)) 2 SU(3)®SU(3+3n) e U(l)

n =27 (4.25)

From this model it is possible to obtain other models with a lower number of fami-
lies considering conpactifications on Ts/Zg, Ts/Z12 or Ts/SU(3)p. Compactifications on
Ts/SU(3)p gives rise to the ﬁn’m’mal one-family model first obtained in ref. [19]. In this
case only the singlets under SU(3)p survive, then Tz ~ IT; since detll = 3, the Kahler

potential becomes

J(z,%Z) = —log(8 + §) — 3log(T + T — 2C°C") (4.26)
9(2) = dapeCoCPC°  fap(z) = Sbap
This is exactly the result of ref.[19]. In this case the D=4 gauge group is Eg @ Fs.
In the following we will mainly consider the one—family model as a toy model to study

the properties of the D=4 N=1 effective supergravity theories.

§4.3 Four dimensional Coupling Constants

In the D=4 N=1 standard supergravity theory, as in the D=10 case, there are two
independent coupling constants, besides those appearing in the three arbitrary functions.
They are the gravitational k4 and gauge g4 coupling constants. k4 is related to the Planck
mass by Mp; ~ 1/ks.

With very simple arguments, mainly on dimensional ground, one can find the relations
between the string, the D=10 and the D=4 coupling constants.

Strings have one dimensionful parameter o' which has dimension -2, and a dimensionless
one, the string coupling constant which is the same as the vacuum expectation value of the
dilaton field. Since the D=10 gauge coupling g;o has dimension -3 and the gravitational

coupling k;p has dimension —4, it follows

g10 ~ p(a')? k1o ~ p(a)? (4.27)
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and

(4.28)

(this is the result that we have already obtained by explicit computation of the field theory
limit in the previous chapter).

The D=10 coupling constants are related to the D=4 ones by

g4 ~ g10/VV ka ~ k1o /VV (4.29)

where V is the volume of the internal compact space Kg. This relation can be easily under-
stood from the fact that 5% = 0 and that the unique zero form on Kj is a constant. Then,
for example, going from ten to four dimensions the graviton gprn(X) gives rise to the D=4

graviton ¢, (2., Ym) =~ gu(z,) - ( constant on Kg). It follows that [45]

1
/dwx (—WR“")) — /d‘*x (-2—,:2—}1(”) -V (4.30)
10 10

which means k%, /V ~ k3.
Since the D=4 coupling constants are related to the D=10 ones by the same factor vV,
it follows that o' is determined by the four dimensional Newton’s constant and Yang-Mills

coupling as in ten dimensions, i.e.

k]
o' ~ o (4.31)

In terms of the string mass scale M, ~ 1/\/5’— and the Planck scale Mp; ~ 1/k4, this relation

takes the form
M,
Mp

~ g1 (4.32)

If the gauge group is to correspond to a physical gauge group in four dimensions, then the
- gauge coupling g4 should be taken roughly of order unity, so the string scale is necessarily
of order of the Planck mass Mp;. M, generally characterizes the scale at which intrinsically
stringy effects become directly observable. The relation (4.32) thus constitutes one of the
fundamental obstacles to finding observable consequences of a string theory.

In a lower—dimensional theory that does not correspond to a compactification of some
higher dimensional theory (for example coming from D=4 superstrings), we might imagine

a different relation emerging between the gauge and gravitational coupling g4 and k4. It has
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been shownv[47] that for spacetime gauge symmetries that are realized as affine Kac~-Moody
algebras on the world-sheet this does not happen; generically it turns out that M,/Mp; > g4.

Since during the compactification the gauge group is broken to a Grand Unification
group®! | the G.U.T. scale coincides with the energy scale of the compact space Mgyr = Mg
(Mg = 1/r ~ V~%). Using again the relations between the string and field theory coupling
constants one finds [48]

(94)% ~ (g22)* - (Z")S | (4.33)

Thus, if the Kaluza-Klein scale is just one order of magnitude below the string scale, it will
be make the four dimensional coupling unphysically small (less than 10~%) unless the string
coupling is very large (but in this case all our discussion is not valid). This implies that for

a weakly coupled string, reasonable phenomenology can be obtained only for

Mgyt = Mg ~ M, (4.34)

Moreover, the scale at which spontaneous soft supersymmetry breaking occurs should
have a value comparable with the weak scale, i.e. Mw<SMssp. This leads to a “Grand
Desert” scenario, that is nothing interesting happens between 10'8GeV, which is the energy
scale of gravity, string and G.U.T., and 102GeV, which is the weak and supersymmetry
* breaking scale. Obviously, this situation is not happiling from a phenomenological point of
view.

Although lots of different models have been proposed (see for example [48]), the main

patterns that we have discussed here are very difficult to avoid.

31 We have seen just the case in which FEg is broken to FEg, but on K¢ one can break Fg by means of
Wilson lines to more common G.U. groups.
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CHAPTER 5

Four Dimensional Effective Supergravity Theories

In this chapter, making use of all the informations obtained previously, we will construct
the N=1 D=4 effective supergravity theory which emerges from the heterotic superstring.
We will start considering the standard, not higher derivative supergravity theory. This
corresponds to consider the D=10 Chapline-Manton theory and to neglect the contributions
of the string and Calabi~Yau massive modes. Then we will study how the higher order terms

can modify the theory.

First we recall the structure of the not-higher—derivative (which means with at most
two—derivative terms in the lagrangian) N=1 supergravity. The lagrangian is completely
" fixed up to the choice of the gauge group and of two functions of the scalars fields, G(z, 2)
and the Yang-Mills coupling functions fag(z). It is usually convenient to introduce the
kéhler potential J(z,Z) and the superpotential g(z) defined by ¢ = J — log }|g|. Using
complex notations for the bosonic fields of the scalar multiplets, the superpotential and the
Yang-Mills coupling function turn out to be analytic functions. The bosonic part of the

lagrangian is [49]

lg — 0 (3 i g'g"—lkg”) + ﬁg@e_‘f—l (g”'T"‘jz-) (g'kTmz) + (5.1)
- B = £9; 9 af i 3 L ~l .

SmfapFy, FP,

1 . . 1
~ SR +0{'D,zDH2 — i—?ﬁefaﬁF“ FB 42

uvt py 4

where 2; are the scalar matter fields, T the generators of the gauge group and g4 the gauge
coupling constant. Then it is sufficient to determine the G, ¢ andvfa@ functions to get the

expression of the D=4 string effective supergravity action.
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§5.1 Symmetry Considerations and the General Structure of D=4 Supergrav-

ity

The relevant gauge group in D=4 is Fg and the matter fields transform in the 27 of it
except for some fields which are singlets. From the Calabi-Yau compactification we expect
X(Kg)/2 families of fields in the 27 of Eg. Moreover there are (D) singlets fields coming
from the gravitational D=10 sector. We will call generically z; all the scalar bosonic fields,
where z; = § is the axion-dilaton field, z;1; = T; (i=1,...,r) are the fields coming from
(gi;, Bi;), Zirr+1 = C; (i=1,...) are the matter fields.

The scalar fields must satisfy some symmetries and scaling rules besides the gauge
symmetries, as we have seen in the previous chapters. Imposing these constraints we will be
able to almost fix the expression of the lagrangian. The relevant symmetries are [50]

i) “axion-type” synunetrieé. Under a shift of $m.5 and SmT; the action should be invari-
ant

ii) “scale invariance”. The fact that the dilaton vacuum expectation value is the string
coupling constant implies a scaling law in the string scattering amplitudes. This scaling

law is a natural property also of the D=10 supergravity lagrangian and in D=4 becomes
Juw — t1 90 (5.2)
S —t*S
T—T
L —t'L

iii) “rescaling property”. A similar scaling law follows from the fact that the moduli of the

D=6 compact space are not fixed in the compactification, thus
S —srtS (5.3)
T —s r2T
C — ricC
L—r73L

The requirement that the N=1 D=4 supergravity lagrangian satisfies these symmetries

almost fixes the three functions J, g and f,3. For example, consider the terms

eRefos S FE + eSmfopFS FP (5.4)

pus py puvt opy
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to satisfy the symmetries it must be Ref,s — tir~1/2Ref, 3 which implies
fap = Sbap (5.5)

For definiteness, we will consider in the following the case in which there is only one T field,
this means only one family because A(11) = 1 and A(21) = 0. The superpotential and the

Kahler potential are

J = —log(§ + ) — 3log(T + T) + F (\/Ti = \/i _f) (5.6)
g =9(Ci)

where F is an arbitrary function which depends on the details of the compactification. Since

g comes from the trilinear part of the D=10 Chern-Simons term and is a homogeneous

analytic function, it must be a polynomial of degree 3 in the fields. This means

g = d;;xC'CICk (5.7)

The structure of (5.5) , (5.6) and (5.7) is consistent with the explicit truncations, for example

the Witten minimal model [19] is given by

F = —3log <1 _ 9 UiC ) (5.8)

T+T
This is the expression of the D=4 supergravity theory coming from the string-tree level
amplitudes of the heterotic superstring neglecting the contributions of the string and com-
pactification massive modes.

In the same way one can consider the case of the string on a n-genus Riemann surface

(n-loop quantum correction). The classical D=4 lagrangian should scale as

ﬁn—loop - t4(n‘1)rn—%£n—loop (5.9)
which would imply a loop parameter ~ T'S~!. The corresponding functions are®?
— - T+T C; C;
J=—log(S+35) - 3log(T +T) + F; | ——=, _ _ (5.10)
S+S8 \/T+T JT+T

fap = [§ = e(aT + C,T")| bap

32 From the explicit one string loop computations it seems that f,3 does not receive corrections, so that
to all orders fog = Sé.p-
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where ¢ is a small parameter and a and b are arbitrary constants. The superpotential ¢
doesn’t change.

Notice that f,g could receive only a one string loop contribution which mainly says
that T' could have an axionic coupling. We have already seen that this term could come only
from the D=10 anomaly cancelling terms and is a one loop effect (however see footnote 32).

It may seem wrong to consider the higher string loop contribution before considering
the effects of the terms emerging from the massive modes contribution already at tree level.
Because of the technical difficulties, we will consider séparately the two corrections to the
minimal standard supergravity effective action. In the rest of this chapter we will study the
string tree level, massless and massive modes’ contributions to the effective action. In the
next chapter we will reanalyse within the contest of a more general approach the possible

contributions of the string loops to the standard (not higher derivative) D=4 effective theory.

§5.2  Higher Derivative Terms Emerging from the D=10 Lorentz Chern-

Simons Form

Between the infinite number of terms which come from the o' expansion in the D=10
effective theory, there is one of particular importance, the Chern—-Simons form. This term
plays a great role in the cancellation of the anomalies of the D=10 supergravity theory
and in the compactification to four dimensions. For these reasons, we start considering its
contributions to the D=4 effective action and then we will try to generalize the results to
the other higher order terms.

The Lorentz Chern—Simons form appears in the D=10 lagrangian through the redefini-
tion of the field strength of By, H = dB — w3y + war. As we have already noticed, the
D=10 lagrangian is not anymore supersymmetric when the Lorentz Chern-Simons form is
introduced in H. We want to stress that, contrary to the case of D=10 where the supersym-
metrization of the Lorentz Chern—-Simons term is not known and requires the introduction
of an infinite number of terms [21],the four dimensions the knowledge of the off-shell tensor
calculus easily permits to compute the supersymmetrization of wsy. Thus we can start from
the lowest order in o' and consider just the H? term in the lagrangian, after the compacti-

fication of this term we will reconstruct in D=4 its supersymmetry partners.
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The cohtribution in D=4 coming from wz; through H? can be easily found. Con-
sider (Hpnp)? with Lorentz indices tangent to My, (Hp,,)?. The field B in the effective
lagrangian couples through the field strength H. H is invariant under the gauge transfor-
mation B — B + dA — dyw3yn + dywsr. In D=4 this gauge invariance reduces the number
of degrees of freedom of B, from 6 to 1. (We know already that B, coupled to the dila-
ton gives rise in D=4 to the axion-dilaton multiplet, now we verify it explicitly.) We can
show this by means of a duality transformation. In the D=4 action the term H? appears
Iﬁultiplied by a field C which essentially is the dilaton related to the radius of Kg, C' H?.
We can introduce an auxiliary one form field f and a lagrange multiplier a and rewrite in

an equivalent way the same lagrangian

CH? — C#? + a(d*f + FF — RR) (5.11)

Remembering that dH = FI::’_— RR, the equation of motion for a says that f = H*, so that
eliminating the lagrange multiplier @ we obtain the equation we started with. On the other
hand, we can integrate by parts ad*f and then make the gaussian integral over f. In this

way the effective action becomes [51]

%aﬂaaﬂa +a(FF - RR) (5.12)

Thus, a describes the unique physical component of B, which previously we called SmS.
"~ Notice that we have reobtained the axion coupling aFF and the expression of the f.p
function of the previous paragraph. But from the term —aRR = —SmSRR we know also
which is the D=4 expression for the Lorentz Chern—Simons term and how it couples to the
matter fields, it has the same axionic coupling as FF.

This term, being a higher derivative term, is not present in the lagrangian considered in
the last paragraph; since we want to construct a D=4 supersymmetric theory, we must look
for the supersymmetric completion of RE. In D=4 there exists a very simnple supersymmetric
completion of RR which does not requires an infinite number of terms. Before studying this,

it is better if we recall some general features of the N=1 D=4 supergravity.

§5.2.1 Minimal Formulations and Auxiliary Fields of N=1 D=4 Supergravity

The supersymmetry transformations close on the physical fields only on-shell; one must

introduce some auxiliary fields in the supersymmetric multiplets to gain the off-shell closure
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of the algebra. In fact, usually there are less off-shell bosonic degrees of freedom than
fermionic ones. For example the gravity multiplet (ef, 1,) has 10 bosonic and 16 fermionic
off-shell degrees of freedom; since by supersymmetry they must be equal in number, one has
to introduce 6 auxiliary bosonic degrees of freedom. There are two minimal choices (which
means without introducing coupled bosonic—fermionic auxiliary fields), the “Old” and the
“New” minimal ones. In the “Old” minimal formulation the auxiliary fields are a complex
scalar u and a vector A,; in the “New” minimal, an antisymmetric tensor a,, and a U(1)
gauge field B,. In the not-higher derivative theories the auxiliary fields do not propagate
and have linear equations of motion. In this case the two formulations are equivalent (up to
the U (1)-R~ symmetry always present in the “New” minimal formulation and which is not
requested, but permitted, in the “Old” minimal one) and through a Legendre transformation

one can pass from one to the other®?.

Notice that having an off-shell formulation it is easy to add to a lagrangian a new term;
it is sufficient that this term be off-shell supersymmetric. Obviously the equation of motion

of the auxiliary fields are modified by this new term.

Of the two minimal formulations, the better known and widely used is the “Old” mini-
mal one. Thus we have added the D=4 Lorentz Chern-Simons term within this formulation.
Since the auxiliary fields will play an important role in the following, notice that it exists
| a formulation of D=4 N=1 supergravity independent of them, the conformal supergravity.
The conformal group contains as a subgroup the Poincaré group; then, once constructed a
superconformal theory, one has to break the extra symmetries to get the Poincaré theory,
this can be done imposing a gauge fixing. Doing that automatically the auxiliary field arise.
So the different formulations of the Poincare supergravity can be seen to emerge from dif-
ferent gauge fixing of the superconformal theory. On the other side, conformal supergravity
requires the introduction of a non—physical matter multiplet, called “compensator”. It can
be a chiral, linear or general vector multiplet and it gives the possibility of making the gauge

fixing without changing the physical contents of the theory34.

Since the higher—order terms coming from the string should depend on the formulation,

superstrings should specify also which kind of compensator and which gauge fixing is realized.

33 Al the models we will consider have this U(1)-R-symmetry
3% In other words, it “compensates” for the extra symmetries of the superconformal group.

64



§5.3 D=4 Supersymmetric Completion of the Lorentz Chern-Simons Form

We must look for a multiplet which contains RE. The gravitational Bianchi identities

(in the “Old” minimal formulation) can be solved in terms of three basic multiplets

Weyl curvature W, (5.13)
Scalar curvature R
Ricci curvature E,.

which contain the related Poincaré tensor. From these, three chiral multiplets quadratic in

the curvature can be constructed’

W ,WHYP (gravitational analogue of W, Wg,,) (5.14)
S(EpuBH*)
RT(R)

where ¥ denotes the operation of projecting a vector multiplet in a chiral one and T is
. the kinetic operator. In ref. [52] we have explicitly computed the bosonic and fermionic
components of the three gravitational multiplets. We will give their expression in the next
paragraph. Since RR appears in W, 5, W>P7, the supersymmetrization of Sm.S (Fﬁ' — RR)
is

(#(5) (asWEuWEas — WnoW™?)] (5.15)
where fop = f:6ap and [ ]r is the F-density action for a chiral multiplet. As we have already
observed, as long as tree-level S—matrix elements for massless particles are concerned, the
coefficients of R? and wa are completely arbitrary, only the square of the Weyl tensor Wﬁu oo
being fixed by the on—shell amplitudes. Thus, we have the freedom to add to (5.15) a linear
combination of B(EqsE*%) and RT(R). In general a theory containing terms quadratic in
the gravitational curvatures propagates — besides the usual massless states — massive particles
of spin < 2. It results that, whereas the new massive particles with spin < % are physically
acceptable positive norm states, the ones with spin > 1 are bound to be “Poltergeists” (i.e.

negative norm states). Of course superstring should be poltergeists—free. There is only one
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combination®® which is poltergeists—free, it is the Gauss-Bonnet combination of curvatures

RuupoRuupa - 4R/,WRIW + R2 (5.16)

The Gauss-Bonnet theorem states that (5.16) is a total derivative proportional to the density
of the Euler characteristic of M. As we have seen, this term enters the lagrangian with a
field dependent coefficient which is given by the axion-dilaton S (otherwise it would drop
from the lagrangian). |

The Gauss—Bonnet combination of the curvature multiplets is [53,52]

(Wag)? = RT(R)+ S(E.E®) + %WWPW’“"’ (5.17)
The super-Gauss—Bonnet theorem states that
8_1 2 1 2 2 | p
93272 Re {(WGB) ]F = 3972 V9 [(Rnupv) - 4Ru) + R ] (5.18)
+ a total derivative of a globally defined, local 3—form
8 1 1 Duvpc
e U e

+ a total derivative of a globally defined, local 3—form

In this way, the real part of the super—-Gauss—Bonnet combination is a natural representative
of the Euler class and the imaginary part of the Pontryagin class.
Then, we assume that the supersymmetric completion of the Lorentz Chern—Simons

form in D=4 ié

[£(9) (8apWEaWEag — (Wan)?)] (5.19)
The complete lagrangian is

L= 3182 + [o(2)]p ~ [7(5) (5upWinWEns ~ Wen)?)] (5.20)

where J = 3log(—%/3).

35 Actually one can add aR? to the Gauss-Bonnet combination, but « # 0 requires the propagation of
an additional scalar which doesn’t come from strings.
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§5.3.1 Propagation of the Auxiliary Fields

Although thanks to the super-Gauss-Bonnet combination, there aren’t gravitational
negative norm states, the analysis must be supplemented with a study of the auxiliary fields
sector. As we have explicitly computed (see ref. [52]), the equations of motion of the auxiliary
fields get drastically modified by the Gauss—Bonnet terfns; they become a coupled system of
non-linear, differential equations (this is a general feature of higher derivative supergravity).
In fact most of the new massive degrees of freedom are just auxiliary fields which get pro-
moted to physical propagating ones. Moreover, if the quadratic terms in the gravitational
curvatures form the poltergeists—free Gauss-Bonnet combination, also the auxiliary fields do
not propagate at the linearized level around a supersymmetric background.

Since in higher derivative supergravity the auxiliary field equations are not longer linear,
in general there are more than one solution even for translational invariant backgrounds. In
the situation of interest here, the auxiliary field equations have two solutions in a constant
background. The “non-perturbative” one (which is not continuously connected with the
standard result when we let the higher derivative terms vanish) can be seen as a “vacuum”
- in which the auxiliary fields get non trivial v.e.v., then breaking supersymmetry, and become
propagating with a finite mass of order 1 Planck mass units. However, since they are
poltérgeists, this solution cannot be taken too seriously, but it is just a spurious effect due
to the fact that our lagrangian is not a good approximation to the real string dynamics at
Planck energies.

This discﬁssion becomes non trivial when one considers the fields in a non-
supersymmetric background. In ref. [52] we studied in details the kinetic matrix of the
gravitational auxiliary fields in the case of the Witten minimal model. We found that
there is a whole propagating poltergeist multiplet. But these states get an infinite mass in a
Minkowski background so that they decouple when we perturbe around a flat vacuum. Thus,
the new terms in the auxiliary fields equations amount just to new derivative couplings for
the standard physical fields.

Similarly, no ghost states appear perturbatively in the gravitational sector, when ex-
panding around a flat space, since the quadratic piece of the Riemann terms just cancel

because of the Gauss-Bonnet theorem.
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§56.4  Scalar Potential and Spontaneous Superylnmetry Breaking

One interesting issue is the study of the vacuum configuration of this supergravity
model. This can be done examining the scalar potential for the physical fields, i.e. after
having eliminated the auxiliary fields through their equations of motion. From the analysis of
the scalar potential and of the vacuum configurations, one can discuss the possible symmetry
breakings, both of supersymmetry and of the gauge group.

We will first consider the standard (i.e. not higher-derivative) case and then we will
show which are the modifications, chh come through the elimination of the auxiliary fields,

in the case with the Lorentz Chern—Simons form.

§5.4.1 The Scalar Potential of the Standard Effective Theory

Let F = F (C’iﬁi/(T + T)), then the scalar potential of the standard theory in the

notation of the first paragraph can be written as
e ., T+T|ag” A& . 9 )2
= = = F'W 4 C' W 5.21
(S+ﬁ@+T)P!+.P ac:| t (” * (5-21)

afF! 0C;

! 2
T ( ‘f._) d*d°
(S+S)\T+T

where

d* = Cy(T*)iC7

A= (F'):-3F"

a=3+uF

,B — .7'-I+‘U,.7‘—”
C;C"

U = —
T+T

Since JJ’-’i (2,7 = 5,T,C;) provides the kinetic lagrangian of the chiral scalars and fermions,

it has to be positive definite; this implies
B>0
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F'>o0
T+T>0

For AA > 0, the scalar potential is positive definite with a global minimum at g = 0, ;9—%7g =0
which is supersymmetric (V' = 0). When A > 0 is not satisfied, the potential is not positive;
however it has an extremum at ¢ = 0 = 5—‘2,—‘_9 which is a supersymmetric minimum with
vanishing cosmological constant. So in any case, it exists a minimum with zero cosmological

constant and unbroken supersymmetry.

Notice that the critical case, A = 0, corresponds to the Witten minimal model

F = —3log(1 — 2u) (5.22)

This study can be repeated also in the general case when string loops contributions are taken
into account. In this case, all what can be said is that the origin, where g = 0 = 'a%? g,1s a
local supersymmetric minimum with vanishing cosmological constant and with flat valleys

in the § and T directions.

Thus, in this approximation string theories don’t provide a tool for supersymmetry
breaking. Also if we consider the string loop corrections to the not-higher order D=4
supergravity effective theory, supersymmetry remains unbroken. The only possibility is
to impose that supersymmetry is broken by nonperturbative phenomena, for example by
gaugino condensation in the hidden sector or by a non vanishing vacuum expectation value
of the field strength of the antisymmetric tensor By in the compact directions. For the
simplest expressions of the F function and A > 0, it turns out [50] that the goldstino field is
the superpartner of the T field; in the T direction the potential is flat and in the 5 direction
it has a minimum giving a mass to the . field. Moreover the scalar potential has a vanishing
minimum where (5 + §> and (T + T) do not vanish but (C;) = 0. Therefore we conclude
that for alarge class of F functions the relevant features of the Kéhler potential are preserved,
i.e. we get supersymmetry breaking with vanishing cosmological constant, absence of soft—
breaking terms in the observable sector and existence of flat directions which imply that the

gauge group remains unbroken.
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§5.4.2 Scalar Potential of The Higher Derivative Theory

In the higher derivative case we limit ourselves to discuss the Witten minimal model.
In a constant background3® we were able to solve the equation of motion of the auxiliary
fields and to compute the scalar potential of the physical fields. We have considered the
solution of the equations of motion of the auxiliary fields connected to the standard one, in
this case the scalar potential is®" [52]
v 9+ 56 1) (5.23)
1+ 3Ah? '

1
:/—:2__—} 1 + -2——7—A+ 4(S+§)ﬂ2} sin 9

_3_
2

N 2 .
1 + —4—}\ + 5(5 + 5),32>
= —arcsm 3

1+—a+gw+5m>

:—exp —3log( T+T——2C’C)+log|g]]

27
2 1 aJ _9__ |g1‘
= S+S(g ’) +24(5+5) 5 g2

G =J +1log|§|? = —3log (—?)

= —log(5+5) - 3log(T + T — 20,C") + log |§|?

1, . —a
§=g+5(5 + BN

where

0<9<

N |y

0<h<

The potential is positive semi—definite, then as in the standard case the cosmological constant
vanishes. At the minimum $? = 0 and |§| = 0 which implies (C;) = 0; thus the gauge
group is unbroken. Moreover, if there are not gauge fermions condensates (<3\—z)\%> = 0)
supersymmetry is unbroken, otherwise supersymmetry is broken. The Goldstone fermion is

again the superpartner of the T field since (6xT) = —L ((§ + 5)*/2) - <X;/\%> EL.

3¢ By supersymmetry it must be Minkowski or anti-de-Sitter.
. A . Ta
37 We add also the possible contribution of gluino condensates Ay, AT
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Thus the higher order gravitational corrections do not change the vacuum configuration;
in particular the cosmological constant remains exactly zero. Classically, supersymmetry is
unbroken but it can be broken by the same quantum effects as suggested in the framework
of the standard theory, that is by gluino condensation. In this last case too, the vacuum

energy vanishes even when the higher derivative corrections are taken in account.

§5.5  Higher Derivative Supergravity

5

§5.5.1 The “Non-Renormalization” of the Vacuum

The fact that the vacuum is not “renormalized” by the addition of the Gauss~Bonnet in-
teractions (though the potential and the auxiliary field equations are dramatically modified)

is just an explicit example of a general situation.

The addition of higher derivative terms to the standard supergravity theory can spoil the
basic geometric properties of N=1 D=4 supergravity. One of them is the Kahlerian structure

- which in the standard (i.e. not higher—derivative) theory is a consequence of supersymmetry.

The Kahler structure of the D=4 N=1 supergravity is roughly the fact that the kinetic
metric of the scalar fields gi,;(z,f)ayzi(?“f; can be written as the second derivative of a
function ®(z,%) called Kahler potential g, 5(z,%) = 0:0;%(2,%). Obviously this metric is
invariant under the Kahler transformation &(z,%) — #(z,%) + A(z) + A(Z). Because of su-
persymmetry this invariance extends to a super—Kahler invariance, where ® and A are chiral
multiplets. One can study [54] which restrictions the super-Kahler invariance imposes on
the possible higher curvature terms (of all orders). The main properties which the higher
derivative terms must have to satisfy the super-Kahler invariance, are certain scaling prop-
erties among the Kahler potential and polynomials in the Lorentz and Yang-Mills curvatures
of a given degree.

Interesting, these scaling properties, in the case of superstrings, turn out to be a con-
sequence of the global scale covariance of the two dimensional action under a shift of the
dilaton ¢ — ¢+ c. Thus, it seems that the dilaton scaling law, which is exact order by order

in string perturbation theory, guarantees that the D=4 N=1 effective theory is super~Kahler
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invariant.
One can also study the full scalar potential of a higher order N=1 D=4 supergravity the-
ory. This is possible because the scalar potential can be written in a model-independent

form as follows [55]

V(z,%) = 2C¥(2,2)2{(2,2)Cs(2,2) - 3M?*(z2) (5.24)

where C!, Z% and M are defined by
doxi = CY(2,2)es
So¥ur = TmuM(2,2)eL
Lkr = -%zgy’ax, +he.

5

and the Einstein and Rarita-Schwinger terms in the lagrangian have canonical form and there
are no mixed spin -;-~spin % kinetic terms3®. Since this expression of the scalar potential is
model independent, it applies equally to the standard case and to the higher derivative one.
Let Cyp, ZO_'; and My be the expression of the functions in the standard case, it has been
proven that the C', M and Z functions have a formal power series expansion in the variables
Cor, 2y} and My. Suppose that there exists a configuration for which Cor = My = 0 (this is
mainly the condition of unbroken supersymmetry and gauge group), then the overall scalar

" potential turns out to be

V(Z,E) = Vo(Z,E) + 6V(Co, Mg, Zo) (525)

with 6V (Cy, Mo, Zg) at least cubic in Cy and M. It follows that %‘—:— =0,V = 0is still

8%V
8z 9zP

in the standard theory. This is so because Z{ = Z,] when Cp = My = 0.

solved by Cy = My = 0. Moreover since = 0, all the particle masses are the same as

Applying these results to the superstring in the case of unbroken supersymmetry, it
follows that the flat directions of the potential, the gauge symmetry breaking patterns and
the particles masses computed in the naive approximation remain exact to all orders in a'; in
a word, the vacuum is not renormalized even if higher curvature corrections are considered.
In the case of spontaneously broken supersymmetry, nothing can be said in general.

Thus, though the higher order terms dramatically modify the theory, the general fea-
tures of the D=4 effective supergravity theory are completely described by its standard

formulation.

38 These terms can always be removed by an appropriate redefinition of the gravitino field.
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85.5.2 The Off-Shell Structure of the Theory

The results discussed until now were obtained in the ambitus of the “Old” minimal
formulation of N=1 D=4 supergravity. Although the minimal formulations for the not-
higher derivative supergravity theories are equivalent®®, when one considers higher derivative
supergravity the situation can change. |

In fact, in this case the equivalence should be understood in a broad sense. Consider
for example a lagrangian in the “New” minimal formulation made by the standard one plus
a quadratic combination of the gravitational multiplets. After the appropriate Legendre
transformation, one obtains an “Old” minimal lagrangian but, a priori, with a different
quadratic combination of the gravitational multiplets. Starting with the Gauss-Bonnet
combination in the “New” minimal, one could end with a different combination in the “Old”
minimal.

Thus it is interesting to reformulate supergravity as much as possible in a way indepen-
dent from the gravitational auxiliary fields, and to see if strings say something about the
off—shell structure of supergravity. Up to now a partial answer has been given to both these
- problems.

The conformal formulation of supergravity, besides the fact to be technically more
simple, it is also independent from the choice of the gravitational auxiliary fields. In this
formulation the gravitational auxiliary fields appear only after the gauge—fixing choice which
breaks the superconformal group to the super—Poincare. To have the possibility of making
the gauge choice without changing the matter content of the theory, an extra (matter)
multiplet called compensator is introduced; the gauge fixing can be realized fixing the value
of the components of the compensator or of every other multiplet. Not all the component of
the multiplet chosen to break the superconformal algebra are fixed; the components which are
not constrained become part of the auxiliary fields of the super—Poincaré gravity multiplet.
Thus a different gauge choice leads to different (but physically equivalent) formulations of
Poincare supergravity.

Superstring should tell us not only which is the gauge fixing to be chosen, but also if

39 Only if the “Old” minimal formulation has the U(1)~R-symmetry characteristic of the “New” minimal
one.
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the compensator is a chiral, linear or vector multiplet.

We must also study how the Poincaré gravitational curvature multiplets are described
in conformal supergravity. Two of the three gravitational curvature multiplets appear in
conformal supergravity as matter multiplets [56], and precisely they are build out of the
multiplet on which the gauge is fixed, so that after the gauge—fixing they reduce to purely
gravitational multiplets. Thus, from the knowledge of the gravitational curvature multiplets
one should be able to find on which multiplet the gauge is fixed in superstring effective
theories. |

From the structure of the gravitational vertices in heterotic superstring one can argue
that the gravitational curvature multiplets satisfy some Bianchi identities which are those
obtained constructing the curvatures and then fixing the gauge on a linear multiplet?®. These

superconformal Bianchi identities are [56]
DPw, = DOW, =0 (5.26)
DY Weapy = DO, 5y =0
pWew, = B w
DB, 5, = Z(—iD(L) VB — %ngwﬁ)

1 —

DDeg = —2VV_&
D4R, = —2W,

where D(£) js the L-associated superconformal covariant derivative defined in ref. [57]. In
ref. [56] we have computed the explicit expressions of the gravitational curvature multiplets
which satisfy the Bianchi identities (5.26) and are constructed from L.
The square of the Weyl curvature is '
Waps W0 =+ | Ras(Q) PrR ool @), (5.27)
(2% S (MY) - 3iRap(A)) PrRab(Q),

1

3 WaE (M)W (M%) — Lo eI W (M WEg* (Meg)+

AR (Q) PR (S) ~ 2 Ras(A)Ras(A) + 2 Ran(4) Ras(4)

40 These Bianchi identities can be called “New” minimal Bianchi identities since the gauge group is fixed
on a linear multiplet.
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where:

WEe (M°?) = Weyl tensor of RE:(M*P)
= REUM™) + L16maRns(4) = s Frna(A)+
— Sna Rnb(A4) + 8 Rrma(A)]

1
ab(A) EabcdRcd(A-)

Rap(Q), Rap(A), RZ(MaP), RSZ*(S) are the improved gauge curvature associated to the
Q, A, M?®, S generators of the superconformal algebra (for the explicit expressions of these

curvatures see ref [58]). -

The components of the "scalar” ‘curvature multiplet are

Wa = _%[(Pﬂn)a, iPpg 55 ((PRE™ )50 N + (006 PRC ™ )50 Pas), (PRIP)a] (5.28)

n= ——EC+ (13 PCivs)A — 4irs A(AN)
N = 202(1) .C)? —EDC%—E%;;( a)? + (Niys IDL)

~ 2(Rirs 5 BA) ~ 6(N)(WN)

i e 1 .
Pap = Da[ 7 By — i(Aivs 1)) + EDbC] —(a e b)
€ = charge conjugation matrix
_ s
2C

Bisa four-component-spinor index and the components of the linear multiplet are

L= (C’ C; 0,0, B, —lDC, "DC)
The Einstein curvature multiplet is
Em= [Cm,c,m,HE KE BE AE DE) (5.29)

where
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1 3 .
CE = “C_,Bm - '2'(/\7'757771’\)

1 2 . 3 - 3 ,
CE = 175—(Dmc - 7m'wC) + ~Bmz75’\ - §5¢C7mA - G(I\A)7m’\ e 2—6,'-$7m7475)‘
< 1 <. 1
HE = (Az75/\) —D,C + (A D) + (A'ymElDC) — (M) 5 Bnm
' - 1
KE = 3(M%Dm0 Z(A"’S D) + (Avmﬁ?-znc) + (103 5 B

BE =35 D C(}‘7n7p7m’\) 2(’\711 mC)+3(’\7m Dn¢)+

Q=

1 1 ;
_ 2(,\7n7m—7im) emanD B, CDmDnC _ EBm(mw,,AH

+3 CZB mBn + —— c 3 p.cpacy’ smn CZDCGB,,+9(AA)(,\,\)5M+
1

+ CDC(Smn - 402

— 2iRmn(A) + 2(Rmn(Q)N)

1 18 7'75 7‘757m . 6 .
ZDmC — = PCymA+ LD — 2 BivsA
c C CﬂC’y + — C mC — c — I CB s A+

- 1 . 1 - 1 1

+ (/\st\)[—EDmg + m—M] (/\Z7s7p/\)[—27p50mc + 2‘/p7m510c‘+
1, 5 3 o1

+ 37"1 pc‘smp] C mz75 pC/\—{- EDmCVYS‘é,”ﬁ/\‘i'

3175 1 3 1
$0$7m/\+ C'BcDmC—' Cﬁ‘ymcvlpc_ 261Ba7m61DaC+

+ sz B2+ EB e DC ED CllDCA — S (DPymAt

C
1
+ PO L DG + L POIn I Sisrm CDacpau—ucme

-1
2 2 .
——=(DaC)*bmn — m4C’2 (Ba) 0mn — 3(A—0$z'ys/\)6m,,+

AE = (QX)[18)2

- EDmlDCA + [(Ras(@)A) — iRas(A)1aT67mA — —5 D BA+

C
; ) ; 21
+-——"’*’Daﬂbvavmm+wsvnAan(A)+z7nAan(A)— ”5 D P(+

c
+3157m1011>c+ EPDn
DE-—EB (AA)(AA)+—-—1—(B V2B, — = B,.(Nivs BA)+
m= T 2C3 m T g
9 . ,
+ (,2(0 CY(NiysymA) + —50—33,,1(136‘6)2
3 9 - 1 5
+ 'C_,?;'DmC(BaDaC)_ EDmC(/\Z‘)’s“—.DC/\) 2( .D CD Bm+
3 - .
—C—D +CD.B, —(szsvaA)zscdma C,D By — f, abcmTB Dy B+
+3(/\ M) DmC ~ 6(/\7m aC) DC - 6(AN)(A [ m¢ = Tm P+
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+3(REPOZDn) + 5 Bm(RLPE) ~ (N2 PDC 1D

B 4_é'7(ﬁi757m11’4) + 4—2'_5(D0Ci757mDaC) - _672—(0"'431.75IDC)Jr

1 - 1
- '—DBm + (’\[777150!7 - 7b6am]6DanC) ()‘7m7a7b [Dtlv Db]C)+

C

+ [“25pm6ab + 35am6pb - 6bm6ap](x’i757p)\)5
3 1 1 1 ~
+ [—§6bm6ac + '2'6am6bc + §6ab6cm]cB C-DbD C C-BaRam(A)+
3

1 . jp—y -
+ 55 DaCRam(4) = S(R5(S)ivs7A) + 2i(Ai757aA) Ram(A)+

—27—(<Ram(Q)ivs_A)EDac + (Rarn( @A) 5 Ba — 3 (Ram(@) 5 Da)

C’
DDy C+

The next step is to identify the multiplet L between those present in the lagrangian.

There are two possibilities:

i} L is the compensator

ii) L is a matter field.
At a first sight it seems that the second choice is not possible in the stringy case because there
aren’t linear multiplets; instead there is a linear multiplet, it is the axion~dilaton multiplet.
~ Indeed we have defined the S field by means of a dualization of H,,,,, but in supergravity the
- dual of a chiral multiplet is a linear multiplet so that, naturally, the axion—dilaton multiplet
is the only one linear multiplet in a string effective supergravity theory.

From considerations on string field theories, W. Siegel [59] has argued that the com-
pensator is a chiral multiplet, so that only the second possibility is left. In this case, if
we construct the gravitational curvatures with the axion—dilaton multiplet and then we fix
the gauge on if , the physical degrees of freedom of this multiplet flow into the compensator
components. Now, to recast the Poincaré supergravity theory so obtained in the canonical
form, we would have to do some non trivial field redefinitions.

The important fact is that this theory, in which all matter multiplets are chiral, is in
the “New” minimal formulation, i.e. the auxiliary fields of the gravity multiplet are a vector
B, and an antisymmetric tensor a,,. Moreover, the U(1)-R-symmetry is present because
it is related to the axion-dilaton stringy scaling law, and the “New” minimal formulation
describes this symmetry in a more natural way. Thus, it seems that string theories prefer
the “New” minimal formulation of N=1 D=4 supergravity.

These considerations must be handled with caution because just a few of them have
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been checked explicitly*!. It is still possible that the true “off-shell” structure of the effective
supergravity theory emerging from superstrings is much more complicated and still not

discovered.

41 gee for example refs. [56,59].
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CHAPTER 6

Relations Between World—Sheet and Spacetime
Properties of String Theories

In this chapter we want to introduce a more general approach to the study of the
background properties of string theories. The main idea is to find the relations between the
conformal properties of the two dimensional theory and the symmetries and invariances of
the spacetime modes. We consider D=4 superstrings with N=1 supersymmetry constructed,
as explained in chapter two, in such a way that the total central charge is zero, unitarity and
modular invariance are preserved [11,60,61]. These models can be thought to be the direct
product of a free (heterotic) superstring theory on a D=4 flat Minkowski background times
a compact [61], ¢ = 9 internal conformal field theory.

These conformal theories, with at least (0,1) superconformal invariance, are classical
vacuum states for the heterotic superstring; the desirable phenomenological properties should
be formulated as constraints on the two dimensional superconformal field theories. The
most interesting results have been obtained using arguments based on the properties of the
effective lagrangians [62,63,64]. The effective theory of the heterotic superstring is a N=1
D=4 supergra\}ity theory with some peculiar properties. It is interesting to discover how
these properties are realized in the 2d conformal theory; notice that spacetime arguments
apply oniy to the massless modes of the string while the conformal ones to the whole string
theory. In this way one should be able to promote the “perturbative” effective results to
“non-perturbative” ones, i.e. one should discover the “true” classical vacuum of the string

theory.
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§6.1  Spacetime and World-Sheet Supersymmetry

We have already stressed the importance of preserving one spacetime supersymmetry
in a classical superstring ground-state. It is of great interest to have a simple criterion for
checking whether a 2d conformal field theory has this property. A necessary and sufficient
criterion is the existence of a N=2 supersymmetry current algebra on the world-sheet, plus
a charge quantization condition on the U(1) current contained in this algebra [61,12].

The heterotic string is given by\ the product of a supersymmetric string on the right
sector and a non-supersymmetric string on the left one. The supersymmetry charges are
constructed only from the right sector, then we will consider only the superconformal part
of the heterotic string.

Witten and Hull [65] showed that in any spacetime supersymmetric classical vacuum of
a D=4 heterotic string described by a non-linear sigma model, the local N=1 superconfor-
mal invariance of the two dimensional (world-sheet) field theory extends to a global N=2
superconformal invariance.

We will not prove that (0,2) world-sheet supersymmetry ensures the existence of N=1
spacetime supersymmetry (see refs. [12,61]), but we now review the construction of the
conserved spacetime supersymmetry charge.

The construction is independent of the details of the theory, it is sufficient to have an
heterotic string which, on the right sector, is made by a D=4 N=1 superstring theory plus
an N=2 superconformal theory with ¢ = 6. All what is needed to know of the internal sector
is the N=2 superconformal algebra.

The N=2 superconformal algebra is [66]

Loy L] = (m — 1) Dynsn + i—?(m3 Y | (6.1)
. 1 .

[Lm,Gi] = (§m~ n) tn

[Lm:Tn] = —nTmin

[T, Tn] = CMbm,—n

[T, Gi] = 696G,
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[Gin’ Gz!] = 26iij+n + ‘I:Eij(m - n)Tm+n +c (mz - %) 6ij6m,—n

where the Virasoro generators L,, are the Fourier coefficients of the traceless stress energy
tensor, T,, are the coefficients of the U/(1) current algebra J(z) = 3. Tmmz™™7!, and G%,
(i=1,2) are the coefficients of the fermionic partner fields Gi(z) = 3, Gi z=™=% which
complete the N=2 super stress—energy tensor (¢ = ¢/3 = ¢/2).

The next requirement is that the U(1) current J(z) can be expressed as J(z) =
i\/gazH(z), where H(z) is a canonically normalized free scalar field, i.e. H(z)H(w) =
—log(z — w) (this requirement is equivalent to a charge quantization condition on the U(1)
current).

Now define X(z) = eiV3H/2 and ?Jf(z) = e~iV3H/2 the N=1 spacetime supersymmetry

currents are
L VE(2) = e7?/285,3(z) (6.2)
VE(z) = e ?/2545(2)

where e~%/2 is a spin field for the (3, v) superconformal ghosts system, S, and S, are the
spin fields for the (free) world-sheet fermions ¥# with four dimensional Minkowsky indices.

Then, the spacetime supersymmetry charges are
Qu = fdzva(z) (6.3)
Qs = fdzvd(z).

Following the same line of reasoning , it has been shown [61] that N=2 spacetime
supersymmetry implies N=4 world-sheet supersymmetry and the internal algebra splits into
a piece with ¢ = 4 (and N=4 superconformal invériance), and a piece with ¢ = 2 constructed
from two free dimension—% superfields. N=4 spacetime supersymmetry requires that the

entire ¢ = 6 be represented by six free superﬁelds.

§6.2 Non—Renormalization Theorems

Since it is very difficult to obtain informations about the background properties of a

string theory studying directly its microscopic, 2d conformal field theory, and, as we have
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seen in the last chapter, on the other side the semiclassical effective theory approach is very
powerful, one can study the properties of the background effective actions and try to relate
them to the 2d theory. In a second time, one should obtain the same results only in the 2d
conformal field theory ambitus.

The generalization from the background to the world—sheet is not so obvious (besides
the technical difficulties) because the results stated with the effective theory formalism are
true only for the massless modes of the string and in a perturbative contest. Instead the
results obtained in a microscopic 2d approach should be true in the whole string theory
(consider for example the case of the spacetime supersymmetry discussed in the previous
paragraph).

We consider now a N=1 D=4 supergravity theory obtained as the effective the-
ory of a D=4 superstring model constructed as a (0,2) supersymmetry, sigma-model-
compactification conformal theory (see for example (2.19) ). A priori, the D=4 supergravity
theory contains an infinite number of higher derivative terms coming from the string loop
contributions, the o' expansion and the integration of the massive modes on the compact,
six—dimensional space.

But, as we have argued in the last chapter, these higher derivative terms should not
modify the general properties of the standard supergravity theory. Thus one can start
. considering the standard supergravity formulation, i.e. the effective field theory for the
string massless modes at zero string-loop, at the lowest order in the expansion in o' and
in the sigma model perturbation theory. The sigma model coupling constant is 1 /7 (ris
the “radius” of the compact Ky manifold), we assume that r is large and we look for (0,2)
superconformal sigma models in an expansion in 1/r. We can try, then, to compute the
exact supergraﬁty effective theory perturbatively in these three parameters.

Let us first consider the sigma model perturbation theory. The Calabi—Yau solution is
a solution at the leading order for every r. In fact, we have seen that r shows up in D=4 as
a massless scalar whose vacuum expectation value describes the size of the compact space;

we have called this field ReT'. Its vertex operator in the NSR formalism is

Vi(k) = / Pog(X)BXT[0X° +ilk - ¥)pi] ™Y + i o i (6.4)

where 7, i = 1,...,3, X labels the six compact dimensions, y labels the four non—-compact

dimensions and ’s are the ten right moving NRS fermions. The supersymmetry partner
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of r is a massless pseudoscalar b which originates from Bpsy, previously we have called it

SmT. Its vertex operator is

Vi(k) = / dob(X)DXT [0X° 1 i(k- )] eV — i er T (6.5)

These two fields form the first component of the chiral superfield ', T = r 4 ib. Since
the (1,1) form b is closed, atbzero momentum the b vertex operator is a total derivative.
However, since this form is not exact, this term does not always vanish. It vanishes whenever
the world—sheet is mapped to a topologically trivial two—surface in the compact space. All
configurations in the sigma model perturbation theory are topologically trivial and therefore
the zero momentum mode of b decouples from all correlation functions to all orders in sigma
model perturbation theory. Hence, we have obtained from the properties of the conformal
theory the result that the four dimensional effective lagrangian is invariant under the Peccei-
Quinn symmetry b — b + const. [64].

This symmetry guarantees that only derivatives of the b field appear in the effective
lagrangian. Therefore the spacetime superpotential g is independent of b = SmT. Since the
superpotential is an analytic function of the superfields, it is also independent of the whole
superfield T'.

The fact that g is independent of T' means that it does not depend on r. But r is
' the coupling constant of the sigma model (and the Peccei-Quinn symmetry is true to all
orders in the sigma-model perturbation theory), therefore g is given by the leading order
result. In other words, since g is independent of the sigma-model coupling constant, it is
not renormalized by the sigma-model loops. This is the first non-renormalization theorem
[62,64,62].

The spacetime superpotential plays an impbrtant role in supersymmetric theories and
the fact that it is not renormalized has many important consequences:

i) if supersymmetry is unbroken at the Ieading order, it is unbroken to all orders in this
expansion (up to the presence of Fayet-Iliopulos D-terms);
ii) the cosmological constant is zero to all orders;
iii) the states which are massless at the classical level remain massless to all orders. This
includes both the gauge bosons and matter fields. Clearly, the low—energy gauge group

cannot be broken by radiative corrections.

These results are true for the massless modes of the string if one assumes that the field
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theory effective lagrangian is given by a N=1 D=4 standard supergravity. We assume
that the higher order terms do not give corrections to these results.

The last expansion is in the string loops. Also in this case a non-renormalization
theorem for the spacetime superpotential can be formulated. The proof is very similar to
the previous one [67,62] but applied to the axion-dilaton multiplet. In fact, the real part
of S is the dilaton, and we know that it plays the role of the string coupling constant.
The axion a ~ B, is the imaginary part of 5. Since the axion exactly decouples at zero
momentum, it satisfies a Peccei-Quinn symmetry to all orders in string perturbation theory.
This means that the superpotential g does not depend on § and then is not renormalized in
string perturbation theory.

This non-renormalization theor‘em obviously has the same consequences on the cos-
mological constant, supersymmetry, masses and gauge group as the previous one. It is
worth to notice that both these two Peccei-Quinn symmetries can be broken by world-sheet
non perturbative phenomena. Consider for example the case of the first theorem. Non-
perturbatively the world-sheet can be mapped in a topologically non-trivial two-surface
in the compact space. Then the b field does not decouple at zero momentum and the
Peccei-Quinn symmetry is explicitly broken [64,68]. Holomorphic world-sheet istantons do
renormalize the superpotential and lead to a dependence of g on T of the form g = e—const.T
. [64,62]. Such a superpotential can trigger spontaneous supersymmetry breaking and desta-
bilize the vacuum. In ref. [52] we showed that the consequences for the effective supergravity
theory of the holomorphic istantons renormalization of the superpotential are quite the same
as assuming the existence of a gluino condensate.

The next steps in the study of the properties of the string background structures should
be of obtaining these results directly with the two dimensional conformal theory approach.

Some work in this direction has already been made, see for example ref. [61,69,70].
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