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INTRODUCTION

The main purpose of this work is to present some recent results on the existence of
periodic solutions of second order conservative systems in the case of singular potentials.

The classical example of a singular potential is the Keplerian potential F(x) = % As 1s

well known, Newton solved the associated equation of motion:

. 1 x
I{\ — e s
( / "X = ]X]Z Ixl

in the early 17th century, and found that, for every period, (K) has a continuum of periodic
solutions which do not pass through the origin -in fact every solution of (K) with negative
energy 1s periodic.

From the point of view of modern functional analysis, the main reason of our interest in
the Kepler problem lies in its strong degeneracy. As we shall see, the counter part to the
existence of many periodic solutions, is their instability under small perturbations of the
potential.

Most of this thesis is devoted to the study of dynamical systems with Keplerian type
potentials. We shall also discuss the case of forces with other kind of singularity: in particular
the repulsive electrostatic force between two charges of the same sign and the case of a

dynamical system constrained in a potential well.

Our objective is to discuss the existence of solutions of the fixed period problem:

(-x = V. F(x,t) xe RN
(P) {x(t+T) = x(1)
Lx(ﬁt)e Q, VteR,

where Fe C](QXFH;FR) is T-periodic in t, —RNis open and F(x,t)—%ec as x—9dQ.

The variational approach to this problem consists in looking for critical points of the
associated functional



Ir(x) xl dt - T jF(x tT)dt

xeA={yeH/yel, ¥ic[0,1]},

where H is a suitable function space and A is open in H. We shall choose H in such a way that
Ire C'(A:R) and that each possible critical point of Iy in A is a solution, in the classical sense,
of the problem

[-x = TZVXF(X,TQ xe RN
(P" {x(t+ 1) = x(1)
x(he Q. V teR.

In this setting, up to the rescaling of the period. finding critical points of Iy is in fact
equivalent to solving (P).
Finally we will look for critical points of It by means of topological variational methods

as the Mountain Pass Lemma, Rabinowitz's Saddle Point Theorem and suitable variants.

Chapter 1, Chapter 2 and Chapter 3 are devoted to the study of problem (P) when

F = F(x) behaves like %near the origin, for some o > 1.
x|

More precisely, in Chapter 1 we apply the methods of classical mechanics to the
discussion of the equation

-x = VF(x)

1

when F(x) =
Ixi*

First we show an important difference between the case o = 2 and thecase | <o <2.In
the first case all periodic solutions are circular with constant angular speed, and every other
solution either passes through the origin or it is unbounded. In the case 1 < o < 2 if the system
has negative energy then every solution is bounded, hence periodic or quasi-periodic; moreover
a solution passes through the origin only if the angular momentum is zero.

Thus we will refer to the first case as the strong force case, while the second will be called

the weak force case.




Finally, the case of Keplerian potential (o = 1) is shown to have some analogies with the
resonance case (i.e. F(x) = Mx[z). In fact they are the only two cases for which every bounded

solution is periodic.

In Chapter 2 problem (P) is examined from a variational point of view. There we consider
potentials F such that lim F(x) =0 and limF(x) = -oce.

[Xl—e0 x—0
First a suitable min-max method is introduced in order to overcome a lack of compactness
due to the vanishing at infinity of the potential. As a first application we obtain the existence of

solutions of (P) when, roughly speaking, F(x) behaves like —_—15 (o¢ = 2) near the origin
Ixl

(Strong force condition). Hence in the strong force case, the solutions of (P) seem to have a
very good stability property under perturbations not involving the behaviour near the origin.
The situation is different for the weak force case: one can still obtain an existence result

for potentials F such that ;Z-io—t <Fx) < -—-% (I £ <2), under a suitable assumpion on %, but,
Ix] I

when o = 1, this assumption leads to a = b. So this method does not allow us to treat

. L=l . . . .
perturbations of the potential 7 and, as is shown in Chapter 3, the reason for this failure is not

a weakness of the method, but an actual instability of the periodic solutions of the Kepler
problem under perturbations.

Finally, if the potential F is even ( i.e. F(-x,t) = F(x,0), V x, V t), the existence of
solutions of (P) is proved by a minimizing argument. Moreover, since the evennes of the
potential allows the introduction of some simmetry constraints on the function space, one can
treat in this way even perturbations of the Keplerian potential.

o]

In Chapter 3 we show the existence of a sequence of potentials (F,), such that

1

- -€ . . .
T(; SF,x < ; . with both €, £',—1 as n—ee, and such that every possible sequence (x
i Il

Ix W

of solutions of the fixed period problem

(X = VE,(x)
{x(t+T) = x(t)
x(t) %0, VteR,

has Lr}(xn)——>+oo. This fact shows a strong limitation of the variational approach to Keplerian-

like problems.



Chapter 4 is devoted to the study of problem (P) in the presence of other kinds of
singulariues.
First we discuss problem (P) when the potential F has a singularity at the origin of

repulsive type: i.e. lim F(x) = +eo. We show there that in this case there are no solutions of (P)
x—0

unless F becomes attractive at infinity.

Finally we treat the problem of a dynamical system constrained in a bounded set with an
inward directed force, going to infinity on the boundary. We show that this problem is just a
limiting case of the so called superquadratic case and we prove the existence of solutions of (P)

by a truncation argument.

Preliminaires.

Throughout this thesis H' = H([0,11/{0,1}:R") denotes the Sobolev space of all L
functions which derivatives -in the sense of distributions- are regular and belong to L2, with
periodic boundary constraints.

i provided with the inner product

1 1
xy)=[ xy+[xy
0 0

is an Hilbert space, and we shall denote by H'! its dual. We shall often split H'in the

orthogonal sum:

H'=E, ® Ey,
1
where Ey = RN is the space of constant functions, and Ej = { xe H'/ Jx =0}.
0

We recall that H' is compactly embedded in c® and in every LP. Moreover c?is
embedded in H™".

We shall denote by -("): H'SH! the (unique) selfadjoint extention on H' of the operator
-g—é-: c*=c, by Wirtinger inequality -("") is an isomorphism between Ej and H.
t
Let I: H'—R: we shall write Ie Cl(Hl;FR) if T is Frechet differentiable in each point of Hl,
I'(x)e H'l(for every xe Hl) and its derivative I'' H'—H™ is continuous.

We remark that if I: HIHFH has the form



1!, , 1
LT(x) =—2-0f IxI"dt - T gF(x,tT)dt,

its Frechet derivative is given by

I%(x) = -X - T2VE(x,tT).

Finally we recall that, if Fe C!and x is a critical point of It (i.e. I]:(x) = (), then xe c?
and it satisfies -x = TZVF(X,IT) pointwise.



1 - CENTRAL FORCES,

1.1 - POTENTIALS OF FORM STRONG FORCES AND WEAK

o
Ixl

FORCES.

In this section we are going to investigate on the existence of periodic solutions which do
not cross the origin of the system

(1.1) X=VFx), xeRY
where F(x) = —— and then
Ix1¢
(1.2) | VE(x) = o L
- ’ I‘dOH—Z

First, let us remark that, since F has a radial symmetry, each solution of every Cauchy
problem

-x = VF(x)
x(0) = X
x(0)=x

lies on the plane spanned by (xo,,{ o)- Hence we can restrict our discussion to planar systems

of (1.1) type. Throughout this chapter we will refer to a system of planar coordinates (p,8) of
2

R~ In thlse coordinate system (1.1) becomes

(04

o+1

Y
(1.4) 200 +pB=0

(L) (13 p=pb-




By a direct integration of (1.3) and (1.4) we obtain the two first integrals:

(1.5) 0’6 =B
2
B
1.2 1 1
(1.6) _z—p 53 -—=E
p- p”

We observe that the first order system is not actually equivalent to the second order one (1.1").
However, if (p(t),8(t))e CZ(FR, FRZ) solves the first order system and p does not vanish
identically then (p,0) solves (1.1".

From (1.3) and (1.6) we get

() =2p"+2pp =

B2 B?.
2
=4E - 2——2-+—4—+ 2—- =
04 ~ a
p P P p
and then
. |
(1.7) (p) =2(2E + (2 - o).
| P

A direct consequence of (7) is the following

Proposition 1.1. The following conditions are necessary for the boundness of the
solutions of (1) which do not cross the origin:

1) ifa>2, E>0
i) if oo =2, E=0
i) ifoe <2, E <0.

Proof. Let us prove, for example i). If E < 0, then (p(t)% < 0 for every t; morever, if p

is bounded (p(t) < R) then (7) implies (pz) <2(2 - oa)-—lg < 0. Reversing the time (if it is
R

necessary) we can assume {)(O) <0, getting in this way that the solution has to reach the origin

in a finite interval of time.#



Of course (1) always admits some periodic solutions: the circular ones. Indeed the
periodic functions (p =R, 8 = —“—TEQ solve (1) if and only if R*" = o (—2%5)2.
Next problem will be to investigate on the existence of non circular periodic solutions of (1.1).
The following Proposition 1.1.2 and Proposition 1.1.3 show a remarkable difference between

the case o = 2 (which will be called strong force case) and o < 2.

Proposition 1.1.2. If o 2 2 the only periodic solutions of (1) are the circular ones.

Every other solution either crosses the origin or is unbounded.

Proof.
Case o = 2). Let (p,0) be a bounded solution: then from Proposition 1 , E = 0 and hence, from
(1.7, (pl) = (; therefore p is constant and, from (1.5) so is é, that is (p,0) is a circular
solution.

Case o> 2). We can assume E > 0 because of Proposition 1.1. Hence, a necessary condition
for the boundness of the solution is that

and this leads to the compatibility condition

22

. a-2 _2 -2
2E<t—)B (-&—)

Let (p.,p_) be the unique pair of solutons of

E-%———2-+—1—=0
i [0
P P
p_ < p,;then, forevery teM we have
BZ

1
p(te { p/E-%——2+———a—20 J={plpsp tulp/pzp. )
Pp



o -2 :
a) p. < p,; then, since pfx <=g—< pjt_, from (1.7) we obtain that, for every t,

(p(0) <20E+(2- oc)——l-a—) <0
p

if phe{p/p<p }
and

(P®D 220E+(2- >0
P

if p(t)e {p/p=p/s(.+) )

so in the first case the solution has to cross the origin, while in the second one the solution is

unbounded.
)
b) p* = oc2E —=p; then either

o -2
p(H)* = —E for every te R
or
o -2
p(H)* = —E > for every te B
in fact, the unique solution of the Cauchy problem
. 1
(P) =2QE+(Q- 0)—).

P

-

(x -
PO ==
p2(0)=0

: . o -2 : . . .
is the constant solution p(t)oET .Then if the solution is not circular we can conclude as in

the case a).B
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Proposition 1.1.3. [f <2 then E <0is a necessary and sufficient condition for the
boundness of the solutions. Moreover, a noncircular solution is periodic if and only if it
satisfies

where (p,p_ ) is the unique pair of distinct solutions of

Proof. If o < 2 and E < 0, the condition for the solvability of (1.6) is that

2-0

2 2-072
B <(X(—::2—E—)

Of course, every solution has

1
pe{p/E-5—5+——20)={p/p <p<p, ]

hence every solution is bounded.
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Moreover, let us consider an interval [t _,t 4 such that f)(t_) = ;S(t+) =0andp(t)=p,p (t+)

= p,.: then the angle descibed by the solution in the interval of time [t_,t, ] is given by

2.1. THE KEPLER LAWS

As everyone knows, when Kepler wanted to descibe the motion of the planets around the
Sun, he formulated his famous three laws:

1) The planets revolve in elliptic orbits, the Sun occupying one of the two foci,

2) The radius joining the Sun to the planet sweeps our equal areas in equal interval of time.

3) The square of the periods of revolution are as the cubes of the mean distances of the
planets from the Sun.

1) and 2) were formulated for the first time in 1609 (Astronomia Nova), and 3) in 1619
(Harmonica Mundi).

We assume that the Sun lies at the origin of an euclidean system of coordinates in R ~,
and that the position x of the planet satisfies the differential equation



2.1) X=a

. . . 3
where a does not depend on the planet. Denoting by X the usual exterior productin R ~, we
have from (2.1) that

xXx =0

and that

d . N a . ve a - a .
a{(XXX)XX + T)-(-l-] = (XXX)XX + RS —l-)-(-lz(x'x)x =0

3
Therefore there are two constant vectors B, P € ~ such that

(2.2) B = xXx

° X
23 = BXx + g —

morever,since the system (2.1) 1s conservative, we have the energy integral

1

2 a
—Z-le -H——-E.

We remark thatif B=0,thenP=a I%I" so the trajectory lies on a straight line, while, if P=0,

(2.3) gives

g X
BXx+a—==

and then, by multiplying both sides by x, and setting B*= IBIZ,We get

2
-B=-a Ix|

therefore the motion is circular and periodic, since x solves the equation

3
a

-X = —X.
6
B

Hence let us assume that P # 0 and B = 0; if 6 is the angle between x and P we get from (2.3),
by multiplying both sides by x,
x-P=-B"+a lxl



and therefore
(2.4) (a - IPlcos®) Ixl = B>,

We remark that (2.4) is the equation of a conic section in polar coordinates; by an easy
computation we find that
2 2 2
PI"=a" + 2EB";

hence three cases are possible:
1) E > O: therefore |P! > a and the trajectory lies on an hyperbola.

ii) E = O: therefore IP| = a and the trajectory lies on a parabola.

iii) E < 0 : then IP! < a and the trajectory lies on an ellipse with semiaxsis (_—;?E-,\/—%J.

Therefore, since from Proposition 1.1.2 x is bounded iff E < 0, 1) is proved.

Moreover,by definition, %B is the areal speed,and it is constant. Hence, if T is the period and A

the area of the ellipse we have

1
A= 5 BT,
and, since
2B
(-2E)V-2E
we obtain
(32 = —
2T (-2E)3

1.3 - THE CASE oo = 1 AS A RESONANCE CASE.

The results contained in Section 2 show that the case o = 1 possesses some interesting
properties: first of all every periodic solution, as function of the angle 6, has period exactly 2m;
secondwise the period of a solution as function of the time, depends only on the energy.



14

Indeed, from (1.3) and (1.5) we obtain

d2
1,_1 1
3D )=
e~ p p B

It is well known that the general solution of (3.1) is

1
B2

= Rcos(0 - 6)

o |~

and it has period exactly 2.

The reason of the correspondance between the period and the energy is a bit more
complicated: in fact a change of variables in the phase space (p,b) is needed in order to obtain
some linear equation.

We set

. . 1 _ .o
(32) 0(p.$) = cost2Epp)ZEp — =) - sin(2EppIPP
(3.3) W(p.p) = sin(ZEpp)(VZEp - <==) + cos(VZEppIpp:

an easy computation shows that

~ (2B)°

Jac(¢,y)l = ——5—p

that is, the change of variables is admissible whenever p = 0.
Let (p,0) be a solution of (1) which does not cross the origin: by derivating (3.2) and (3.3),
since p satisfies (1.7), we obtain that (¢,y) satisfies the linear system

b=~/ (2B v
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Y= (2E) 9.

Therefore (0,\) has period exactly
T= 27

~ (2B)°

and so is the period of p, because of the injectivity of the change of variables (3.2),(3.3).1

1.4 - A MINIMIZING PROPERTY OF KEPLERIAN ORBITS.
Assume that x solves

(4.1) X =

x()#0, Vite [to,tl]

As we have seen in Section 1.1 and in Section 1.2, if E < 0 and B # O, then x is the

restriction to [t 0ot 1] of a T-periodic function which does not cross the origin and such that

-3
T=2x (—ZE)2 . Moreover, from (1.7), since xe C2,

T

d2

T

0= | —xP=20ET + [,

d 2 Ixl
t 0

and therefore
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T 1
(4.2) j%: BT = (457>,
0
T 1
) 1 3
(4.3) %Jlxl = ET=5 (41>,
0

On the other side, if B = 0, (1.6) and (1.7) show that every extension of x satisfying
(1.4) whenever x(t) # 0, has to cross the origin and it is unbounded if E 2 0. Therefore we will
assume that E <0 and that x(t,) = x(t,) = 0, x(t) # 0, V te(t,,t ).

Taking in to account that x satisfies (1.6) and (1.7) in (tO ,t 1), we have

t 3
| =]
ty -t = J'—dp = 2m(-2E).
p
Lo

-3
Therefore x is periodic with period T = 21(-2E)? . We remark that x is continuous, but it
is not differentiable in zero; nevertheless, since from (1.6)

S = kP’ = KQE + ) =

N

t

2
=2EIxI” + 2Ix],

that is lxl2 is differentiable in zero, by integrating (1.7) we get that (4.2) and (4.3) still hold
even if x crosses the origin.

Now let us consider the action integral
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1 1
L Par + T (Ed
[(x)=7 |xl"dt A T
4]
0

defined on the set

T
xeX = { yeH ([0.T)/{0,T};RY/ fri'r< oo ,
0

and let us consider the two sets

# = { xe L/ x(t) # 0, Yte [0,T] and x is not homotopic to a constant
map in FRz\{O} }

on{er/x(O)=x(T)=O}.

As a consequence of the above discussion we have the following

THEOREM 1.4.1.

1
inf 100 = inf 100 =3 (4nT)
xeI™* xe Xy -

I»—-

[PS)

. . 3.2 : _
Moreover, if xe '*UX satisfies IT(X> = 5 (4nT) ,then (4.2) and (4.3) hold.

Proof. Indeed if xe I'* minimizes I, since I' * is open in
H 1([O,T]/{O,T};H%Q), and Ipe Cl(I“*,FR), then by standard arguments one prove that x
satisfies (4.1) and therefore, from (4.2) and (4.3) we obtain the thesis.

On the other hand, if xe XO, for every interval [tO, t1] such that x(t) # 0, V
te[ty,.t,], since x minimizes the problem



bt t

. 1 -2 1
inf (3 |5+ [gr ¥ =x(tp) ¥ =¥t )

Lo

to

then x solves (4.1), therefore x satisfies (4.2) and (4.3).1

18
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2 - EXISTENCE THEOREMS

The contents of this chapter have been taken from some recent papers: in particular from
[8] and [33] for Section 2.1 ( see also [2] for a different approach). For Section 2.2 we refer to
[2] and [32] for the strong force case, and to [20], [25], [26] and [27] for the weak force case

(see [13] for the fixed energy problem). Finally, for Secton 2.3 we refer to [3] and [3].

2.1 - A MINIMAX METHOD FOR SINGULAR POTENTIALS OF
ATTRACTIVE TYPE.

The purpose of this section is to find a minimax argument which allows us to treat in a

variational way conservative problems of type

{&:vﬂm
x(t+T) =x(t)

when the potential F behaves in some sense like = We are interested on solutions which do
IxI

not cross the set where F is singular: namely the noncollision solutions.
Assume that F satisfies:

F1) Fe CT(R ™(0})xR:R ], N>2
Fooi+T) = FGon) , VxeR T \(0),Vie R

F2) F(x,t) <0 , Vxe R "\{0},Vie R
lim F(x,t) =0 (uniformly)
[X|—00

lim YF(x)=0 (uniformly)

[xl—oe
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F3) imF(x,t) = -o0

x—0

Our goal is to find solutions of the problem

[-X = VF(x)
(P) {x(t+T) = x(©)
lx(t) # 0.

Consider the open set
A={xeH (0,11/{0,1}) x(t) 0, Vte[0,1]}:

every solution of (P) correspond, after the rescaling of the period, to a critical point of the
functional

1
1

11,2 2
x)== |IxI"dt - T™ [F(x,tT)dt
L&®=3 J

0
xe A.

Because of the regularity assumption F1) on F, I.€ CQ(A;H:’. ).
Anyway we remark that, if we consider IT:H1([0,1]/{0,1})—)FRU{+°°}, IT is

sequentially weakly lower semicontinuous.

Bv F2), IT has a lower bound in A: indeed

inf IT = (),

xe A

but of course it does not attain its infimum since F is always strictly less than zero.

However, if one consider



X, = { xe H '([0,11/{0,1}) \A such that [ (x) < +eo },

(possibly Xo empty), and
c. = inf L(x),
0 xex IT
0
LT has some compactness property at any level ¢, 0 <¢ < Sy More precisely we have

Proposition 2.1.1. Asswme F1), F2) and F3) hold. Then ¢, >0 and, for every c,

0

O<c< c, every Palais-Smale sequence at level ¢ in A possesses a subsequence converging

to some limit in A.

Proof. Tt follows straightforward from F3) that ¢ > 0.Let O0<c<c,and let(x,),be

0
a Palais-Smale sequence at level ¢ in A, that is

(1.1) x,€ A

(1.2) I,T(xn) =c,—¢C

(1.3) X, - TVE(x,,{T) = h,—0 in H'.
We write

1
Xy Wy +Gn.6n= J-xn and w,=x,+&;
0

b
&

since (1.2) together with F2) implies that (f(n)nis bounded in L”, up to a subsequence (w,),
converges weakly in H 1([0,1}/{0,1}) and strongly in C0 to some w. Therefore (-}in)n
converges weakly in H o -w.

. . . 0
We claim that (x,),, is bounded in the C norm. Indeed assume the contrary: then denoting by

M), = max Ix, (Dl
e R



(my), = min Ix,(t)l,
te

the unboundness of (x,), implies

(1.4) lim mp= +oo;
Ixl—>e0

in fact from (1.2)
1

¢, > -é— X Fdt > -12-(Mn-mn)2.

Therefore
1
(1.5) lim [F(x,,tT)dt=0
1'1——)000
and
(1.6) lim VF(x,,t) =0 (uniformly).
II—»o0

Since Cois embedded in H™ , and since (1.6) holds, (1.3 ) becomes

(1.7) lim (- x,) =0 strongly in H'1,

n—yeo

that is -w = 0 and w,—0 strongly in H '([0,11/{0,11]).

Therefore

p—

(1.8) lim = |Ix,/*dt =

n—eo

1

which, together with (1.5) leads to ¢ =0.
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(9%}

Hence (x,), is bounded in C9. Therefore, up to a subsequence it converges weakly in
H\o( \s\up6( 1))([0,11/{0,1}) and strongly in H-! to ve A. Since C01is embedded in H', (1.3)
says that (—'in)n converges strongly in H-! and then (x,), converges strongly in
H '([0,11/(0,1}).8

In order to obtain some strictly positive critical levels we introduce the following classes.
Consider the (N - 2)-dimensional sphere

SV2o (xeR M xi=1)
(SO = {0}): we denote by I the set of all the continuous functions from N2 o A, that is
(1.9) Iy=1{m SN2A, vy continuous }.

L

Identifying O and 1 and the interval [0,1] with Sl, we can associate with each ye I a function
(1.10) Y5V 2 st R TN(0): (30— Y00).

Up to this correspondance we can define

(1.1D) F; = { ye Iysuch that:{ is not homotopic to a constant

map inFRN\{O}}

Proposition 2.1.2.

x
i) I'N;t@forevery N22.

K
i) Ty is invariant under homotopies in A.
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Proof.
ii) is obvious. Let un prove 1). Indeed sN2« $*can be identified with the boundary of an open
set QR N and we can assume Oe Q. Then deg(£2,idIQ2,0) = 1, that is id:SN 2 s's N2y st
is not homotopic to a constant map in R N\{0}.]

Now a minimax level of IT can be defined as

(1.12) c= inf SURJ 1.
* _ T
vely (S %)

Proposition 2.1.3. Assume F1), F2), F3) hold and that ¢ <cy. Then ¢ > 0.

£
Proof. If not there exists a sequence (Y,), in I'y such that

(1.13) r}l_r,ll Su%_z)IT = 0.
n (5
Let 1
| Y (x) = J v, (x)dt,

0
since (1.13) together with F2) implies

1

lim J*{'n(x)lzdt = 0 (uniformly for xe SN‘Z),

n—seo
0
we have
(1.14) lim Hyn(x) - \yn(x)llw =0
n—eo

and therefore, for n large vy, is homotopic to y_ as functions from s H 1([O,.l]/ {0,1]).
Moreover (1.13) implies that



1
lim | F(y,(x),tT)dt =0 uniformly in x

n—yo0

and, from (1.14) it follows that

lim hy (x)] = o,

n—eo

Hence, for n large,
N-2 N
v, S T=RUN0]).
. . ) N X - . N-2 .
and so, y, is homotopic to a constant map in R~ \{0}, that is, as function from S~ into A,

*
voe Iy .
Therefore, from (1.11),

lim SUp\J_qd(’Yn OA) =0

n—e e S

and then, from the lower semicontinuity of IT

0= lim su I.2c¢c,,
I—>ee ( %'2) T O
thatiscy = 0.1

Before proving the main theorem of this section, let us recall the general minimax
principle.

MINIMAX PRINCIPLE. Consider a szuncn’onal defined on an Hilbert space and

let M be the flow defined by the evolution problem



26

f I _ o) 2 min (LIw I
| do 9T
| N(x,0) = x

where  is a cut-off function y(t) 2 0, w(t) > 0if t > a. Ler Abe a class of compact subsets
of H, invariant under the flow 1, that is N(A,0)e A,V Ae A,V c=0.If

c=inf sup IT(X) <a
Aed xeA

then, for every sequence (A,),in Asuch that

lim sup Lr(x) =C
n

n—ee XE A

there is a sequence of points (X), such that

d(x ,A )—0

I(x )—c

VI(x )—0.

THEOREM 2.1.1. Assume F1), F2), F3) and ¢ < Cy- Then (P) has at least one

solution.

Proof. We apply the minimax principle with H =H 1([0,1]/{0,1 Dw() =1VteR ,
IT. The main problem is that IT is defined only on an open set of the space H 1([O, 117{0,1}).
Anyway, let us take € > 0 such that ¢ + & <¢,, and consider

Iy ={ve F&/ (S;JI\II)_Z)ITSC+8 }.
Y



From the lower semicontinuity of I, we have that

inf, mijgI ?d("-/(x),aA) > 0.,

vely x€S -

hence 1:; is invariant under the flow 1M ,since IT"n is decreasing. So we can apply the
Minimax Principle obtaining a Palais-Smale sequence in A; finally, from Proposition 2.1.3.,
since ¢ < ¢, this sequence admits a subsequence converging to some limit in A, and this limit
is a critical point of L. at level c.4

2.2. SOME APPLICATIONS: STRONG FORCES AND WEAK FORCES

Throughout this section we will assume the hypotesis F1),F2), and F3) of Section 2.1.

We remark that, in order to apply Theorem 2.1.1, some assumptions on the behaviour of
the potential F near O are required.

For example the Keplerian potential -1/Ixl does not satisfy the hypotesis ¢ < ¢ (actually
¢ = ¢, ) .As we will see in the next chapter this fact implies the instability of the solutions
under some kinds of perturbations of the potential.

The first assumption in order to get ¢ < ¢, was introduced by Gordon, who called it

= oo,

strong force condition and implies ¢,

If F(x) = -1/IxI” the strong force condition is satisfied if and only if ot > 2.

Some weaker assumptions, introduced latter by Degiovanni, Giannoni and Marino, allow
to apply Theorem 2.1.1. to potentials which behave like -1/ixI*with 1 < o < 2, but of course,

in the case o = 1 this method apply only if the potential is exactly the gravitational one.

On the other hand, in the case of even potentials also the case o = 1 presents some
stability properties, because of the symmetry constraints that one can introduce.



THEOREM 2.2.1. (Strong force case). Assume that F satisfies F1), F2), F3) of
Theorem 2.1.1. and moreover that there exists a neighborhood W of 0 in Rand a function
Ue COOWN\{0);R ) such thar

[(2.1) mU(x) = +oo
(SF) 4 x—0
l2.2) Fx,0) 219U ¥V xe W, VieR .

Then one has ¢, = +oo, and (P) has at least one noncollision solution.

0

Proof. Let xedA; we claim that

1
- [F(x,tT)dt = +eo.
0

Since x cannot vanish identically, there exists t such that x(to) = 0, x(to)e W. Let
t, = sup {t >t0/x(s) #0V se [to,t] 1
(we can assume x([t 0 ’t1]) W), and let
1

u= Jlﬁd"’dt > 0.

0

Then (2.2) implies:

t1—5

U(x(t, - d)) - Ux (ty) = jv U(x(s)) -x(s) ds <

)
ty- 4o
) L . L
< { ﬁvU(x(s))r ds}? { Jlxlz(s) ds}2 <

)
)



t1-5 .
<u {- [F(x(s),s) ds}2 .

)

Therefore from (2.2) IT(X) = +oo and hence ¢, = +eo. Finally we get the existence of a

0
solution applying Theorem 2.1.1.%

. . . . 1 -
As we have point out before, in the case of potentials F(x) = =, the strong force
IxI

condition implies o = 2. Nevertheless we will show that, when o> 1, ¢y<+eo, butc<cy
still holds.

Let us introduce the following notations: for 1 < o <2 we set

2.3) 8, (o, T = inf ( J[%@)z - 77 Ldr, e HYI0.11/(0.1):R ), 720 )
v
0
(2.4) 8, (0, T) = min(27R” + Ly
R>0 R®

2.5 8, (c) = 8§ (00,1)
(2.6) 8, () = 8 (e, 1)

§ o) 22
(2.7) D(o) = { }

6, (o)

Proposition 2.2.1.

o+2

i) 8 (oaT)=a 2 6,(cT)
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o+2

i) 8 (aT) =a? 8, (0T

iii) ®(1) = 1.

Proof.

1

i) By the change of variables ¥ = a®*2 1], we have that

1

inf { [{%@2 - aT e, ye B0, 10,115 ), 72 0} =
Y

=a® inf Jf%(ﬁf -1, ye B0, 1/(0,115R ), v2 0 ).
n ‘
0

ii) By the direct computation of q (oc,aTz) we find that

o+2 a

0, ™) = E3-@r) 2 ()

2
(27:)3; the direct computation of 91 (1) shows

B[ L2

iii) As we have seen in Section 1.4, %(1) =
that 81(1) = 60(1)]

Proposition 2.2.2

i) 6,T) = c,



1
. Ly
i) 8 (a, T = inf { —J(Y) T rldt} e Hy([0,1/{0,1);R ), v2 0 )

N
)

0

) @)y > 1V o> 1.

Proof.

i) The inequality < is obvious. On the other hand, for every xe X;, we have

1 1
J(aqflxl)z < |
0

0
proving the other inequality.

ii) Let pe Hy([0,11/{0,1}:R ), p = 0 such that

{(p) Oj Loy -

1 o
= inf { ;J@)‘- T j—dt} e Hy([011/{0,11:R ), ¥2 0 )
- Y

O]

0

then p(t) > 0, ¥ te (0,1), pe C((0,1);R ) and satisfies

1

() = oT( fl—)“‘l =
Pp



Hence p is the unique solution of the problem

. 21

..’Y::’t _E-
v

-1

¥z =0

v0)=v(1)=0

1

for 1:2= ocTz( J‘-I—)OH . Therefore, from Theorem 1.4.1, we have
0 p
1
1 -2 1 2 =
5 J(p) = 5 (@2n1)’
0
1 2
© Lo ),
G P
which give
1 1 B}
1{,-2 .2 1 2
'Z-f(l)) -T {G{-;dt} =8 (e, T).
0

iii) It is a straightforward consequence of the strict convexity of the function f(s) = s* when

o>14

THEOREM 2.2.2.Assume F1), F2), F3) hold and moreover that, for some

1<a<?2,



(O3]
I

(2.8) 2 R < =2
Ix| xI®
(2.9) 1< b <ad(w).

Then ¢ < cyand there exists at least one solution of (P).

Proof. Setting

1
1

I%(I\) =%‘ ]7'([2 dt - T?' "—%—dt
- x1*
0 0
. !
P =5 ke - T [—2dt,
- xI*
0 0

1
we have I3(x) < L.(x) < L}}(x) for every x such that J L

- dt < +eo. Therefore, from
x|

0
Proposition 2.2.2. 1), we have

2

(2.10) ¢y 2 B, (@aT) = a2 8 (o, T

Now, let Rb such that

8,(c,bTH = 2n°R 2 + bT =

o
Rb
2Tit

and Jet Xy = Rb e in some 2-dimensional space of R N We obtain from (2.9) and (2.10)

that

2
2.11) L(x,) <Dix,) =6 (c,bT) = b*+2 6 (,T) <
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2 G 2

< qo+2 8, (LT = a2 8, (e, T) = c,,.

6, (o)

. N-2. N-1 . .
Let us consider the sphere S “in R as the union of the two semispheres

SN2 (xes"?/xy,20)
Sl_\l'zz [ xe sh2 /%1 SO0 )

one has Sf’zmsl_v’z = 5™, We call P the projection (it is actually a homeomorphism) from Sf'z
into the unit ball B™ 2R ™
p:sh*BN?

A :(xl,..,x

N3 N-3. D N-3
and we observe that P: S ~—S ~ is the identity on S ”,

1 N-1
a

. ~ N-2
We define the function h:S™ = xS — 8 S

[(P)AS 1L - IP(x)I% cos 2mtAf 1 - IP(x)I” sin2nt)

| ifxest?

(2.12) h(x) = {
| (x,0)
L ifxe SN2,

h is a continuous function having deg(SN'szI, H,O) = 1. Therefore, taking the corresponding
- *

h: SN 2—->A, we have he FN .

Moreover, from (2.10), (2.11), and (2.12)

sup, , [(Ryh(x) < sup | Il%(Rbh(x)) =

xe S xe S

=R, x,) = 6, (LbT) < ¢,



thatisc SCO.

Now, if ¢ < ¢, we can apply Theorem 2.1.1. getting a noncollision solution. Cn the

0 N
other hand, if ¢ = ¢, it follows that there exists xe$' ~ such that Y1.(R |h(x)) = 0. Indeed

it follows from the Minimax Principle that if

inf 191 (RhGO)I > 0,

XeS

then, for some ¢ >0

su%_zl T(n(Rbh(x),G)) <c

xe S

- *
in contradiction with the definition of ¢, since for every ce R, n(Rbh(SN 2),6)6 FN B

Remark 2.2.1. In the autonomous case, since T can be arbitrarily choosen, we obtain
the existence of a solution of (P) for every T > 0; indeed both the strong force assumption (SF)
and assumptions (2.8)-(2.9) do not involve the period but only the behaviour of the two
functions

0, (x) = teng F(x,0)

Q)2 x) = tzlﬁg F(x,t).

When F depends explicitly on the time, for the same reason we obtain the existence of
noncollision kT-periodic solutions of (P) for every integerk = 1.3

Remark 2.2.2. In the autonomous case, if x. is the critical point of I. found by
Theorem 2.2.3, then

Im llx. Il =0.
T—0 T e

Indeed, we have



1
. 4

. 2 Y 2 —
x oI < Tp(xp) < 8, (0bT) = T*+2 § (a,b),

I =

which gives

h'm% k. 1*=01
T—=0

Remark 2.2.3. If (x,) is the sequence of critical points of I, found by Theorem

2.2.3, then

lim llxkllm = +oo,
k300

In factlet M, = max Ix (t)l: we have
te [0,1]

4 1

ko+29 (c,bT) = B (L,bk’T?) = - szz(JF(xk,tkT) >

> akT? [—— s ar?-

o o
Ix kl M «
0
that is
aT 2o
M% 2 — ko+2,
< 9,(c,bT)

Therefore im M = +oo B

k—eo



Remark 2.2.4. If N =2, we have

¢ = inf {Lr(x) / xe A and x is not homotopic to a constant

function in R 2\{0} ).

Hence, in the autonomous case, for every T fixed, the solution found by Theorem 2.2.2. or by
Theorem 2.2.3. has T as its minimal period. Indeed, if not, its minimal period has to be T/k for
somek>2. LetxeH 1([(),1]/ {0,1}) be the solution after the rescaling of the period: then x has

minimal period 1/k . Consider
y(© =x(vk), [0,1]

since x is not homotopic to a constant function infR 2\{O}, so is y; moreover, since k = 2,

1

L) =IT<X>+<k%-1>% Kdt <c

0

and this contradicts the definition of ¢. ¥

We end this section with the discussion of the case when F is even. Let us assume F1),

F2),F3) and moreover

Fd) F(-x,0) = F(x.), Vxe R "\[0), Vte R .

The eveness of F implies that the space of the functions symmetric with respect to the origin
(2.13) o= (xe H N(0,1/(0,1) / x(t +5) = (0, V teR )

is invariant under the flow 1; therefore the critical points of I in AmH® are critical

T lAr\HS
points of I, in A.
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We consider
(2.14) A =HnA
(2.15) X5 = { xe H\ A®such that - (jF(x,t) < too )
and
(2.16) ¢y = inf,L(x).

xeXO

We remark that I, has a strictly positive lower bound in AS; indeed let x € A% from its
symmetry we have
1

2.17) kP dt =AM,

where

M= max Ix(t)l,
te [0,1]

and hence

S .
¢ = inf SI T(x) >

XeE A
1

> inf {4M°- T [F(x,p)dt}) > 0.
XEAS 0

Now we are going to investigate on the existence of a minimum of L. in AS

THEOREM 2.2.3. Assume that F1), F2), F3) and F4) hold and moreover that there

exists xe ASsuch that IT(x) < cg . Then there exists at least one solution of (P) in AS .
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Proof. In factif ¢’ = c?) and xe ASis such that IT(X) = C(S) , then x is a minimum of

. . S . e e s . S
[;in A> On the other hand, if ¢® < ¢, » taking a minimizing sequence (X)qin A7, from
Proposition 2.2.1 we can find a subsequence converging to some limit y and from the lower

. _ . S S
semicontinuity of I, since S<e o> We can conclude that ye A” .8

. . S . .

A first assumption that one can make in order to get c<e o Is the strong force condition
(SF) obtaining in this way the analogue of THeorem 2.2.2. for solution simmetric with respect
to the origin.

More interesting is the fact that one can apply Theorem 2.2.3. to obtain noncollision
periodic solutions for even perturbations of the Keplerian potential. More precisely we can state:

THEOREM 2.2.4. Assume F1), F2), F3), F4) and moreover that

(2.18) 4

- <-Fxt) £ =
Ix1 Ixl

(2.19) a<b<a2®(a).

Then there exists at least one csolution of (P) in AS .

Proof. In fact from (2.18), (2.19) and Proposition 2.2.1, one has:

TZ
S — inf {IT(X), Xe X(s) } =4 inf {IT(x), xe XO} = 460(a.aT) =
2

200 2

)
=20+2 90428 (0, T") < ¢y,

- R eth

Hence, for Xy b

, we have I.(x,) < cz as in (2.11). Finally we apply Theorem

2.2.3. to end the proof.#
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Remark 2.2.5. In the even autonomous case, since the critical level is found by a
minimization argument, the corresponding solutions have minimal period exactly T. (see
Remark 2.2.1. and Remark 2.2.4.).8

2.3 - OTHER PERTURBATIONS OF KEPLERIAN TYPE POTENTIALS.

The assumptions for the existence of solutions of (P) that we have seen in the previous
section, impliy some strong restrictions on the way that the potential goes to -oo at 0.
However,we can get the existence of noncollision solutions under another kind of hypothesis
which do not involve the behaviour of the potential near zero, but far from it.

We assume
0o N
F1) Fe C«(R \{0};R)
F2) lim F(x) = -0
x—0
F3) There exists an open set £, strictly starshaped with respect to the origin,
such that
F(x) =b=max F(x), V xe Q.
xeR!
F4) limsup F(x) =B < b.
Ixl—ee

According with the notation of Section 2.1. we consider

X, = xeH 1([0,11/{0,1}) \A such that LX) <+ },

but, since we are concerned only with autonomous potentials, and we are looking for the

existence of long periodic solutions of (P), we set

c O(T) = inf IT(X).

xeXO

We remark that assumption F4) leads to a good compactness property of L, that is
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Proposition 2.3.1. For every
3.1) ¢ <min { ¢ (T),-BT" )

and for every Palais-Smale sequence al level ¢ in A, there exists a subsequence converging to

some limit in A.

Proof. Let (x,), be the Palais-Smale sequence at level ¢ in A: that is

(3.2) XA, Vn
(3.3) IT(xn) =c,—C
(3.4) X, = TVE(x,) + h,, h,—0 in H-L.

Since F is bounded from above by b, (x,), is bounded in the L? norm. Hence, if (x,), is
bounded in CY we end the proof by standard arguments (see for example Proposition 2.1.1.).
Assuming by the contrary that (x,), is unbounded in C%, we have from the boundness of
(x.)qin L that

Iim min Ix ()] = +eo
n—e te R

and therefore F4) leads to

1
(3.5) lim T [ Fopar = TB;
0

N—eo

using (3.2), (3.3) and (3.5) we get

. 2
lim L (x,) 2 - T'B

n—ee

which contradicts (3.1).8

Proposition 2.3.2. Assume that F1), F2) and F3) hold. Then there is a Tyand a ¢>
0 such that, for every T 2’[‘0 s
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(3.6) ¢ (T) 2 cT - bT".

Proof. Without any restriction we can prove Proposition 2.3.1 for a nondecreasing ¢(Ixl)

such that  F(x) < o(Ixl) tor every x, ©(s) £ b, and Iim @(s) = -oo.

s—0
We write W(s) = @(s) - b and we have:
. 1
(3.7) c(T)=int { %J@)z- ™ Jotndt 12 HYOV(0.1):R ). 720 ) -

0

1
. 1
= inf | %J('v)z T Jude Y H(OAY(0.1):R ), 720 - 6T

0

Let pe Hy([0,11/{0,1};R ), p= 0 such that

1
1
c (D) = %J(bf - T G[w(p)dt -bT?,

0
For € > 0 fixed, if Ip(t)l < & for every te [0,1] we have
2 2
C O(T) = -y(e)T - bT",
since Y < 0 and it is nondecreasing. On the other side, if
maxIp(t)l =€

te R

we consider



A =(e[01]/y(pm) <- &)

and we have

c (D25 J ®°-T" [w(pydt-bT 2

A
£
A
2 £ 2
€ e
2 2 2 2
> on°—+ Te A 1-bT°2 inf (21 —+Teu - bT" ) =
1Al ¢ >0 1!
=T -bT>¥

THEOREM 2.3.1. Assume F1),F2),F3) and F4) hold. Then there exists a T0> 0
such that, for every T 2T, (P) has at least one solution.

Proof. Let g be the radial diffeomorphism between the unit sphere in R Mind 20Q; namely
g s a0 X—> (X)X

with 0 < ox) € a, e Cl(San). We take he I’; as is defined in (2.12), that is

[ PEx)A/ 1 - IP(X)I2 cos 27tt,'\/ 1- IP(X)I2 sin2mt)

| ifxesh?

h(x)(D) = 3
| (x,0)
| ifxesN?,

- £
and we define f = goh, f: SN 2——>A; we have fe I’y since g is a diffeomorphism with g(0) = 0.
Moreover, for every xe s we have



44

d.
)] < 2m sup,  [19ay)l + la(y)l] = M.

ve §

Therefore
. 2 2 N-2
I (fx) SM - bT", V xe8

and hence, by Proposition 2.3.2, we get that, for T large enough,

c(h = inf sug_2 IT < cO(T).
vely (s )
Since moreover by Proposition 2.3.1,since b > B, for T large 1, satisfies the Palais-Smale

compactness condition at level ¢(T), we can end the proof as in Theorem 2.1.1.§
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3 - ON THE INSTABILITY OF THE MINIMA IN THE KEPLERIAN CASE,

In this chapter we will show that the periodic solutions of the system

0.1 X = VE(x)

when F is the Keplerian potential -1/Ix| are not stable under some kinds of perturbations. This result
has been obtained in a joint paper with Capozzi and Solimini [18].

As we have seen in Section 1.4, the T-periodic solutions of the Kepler problem are the
minima of the action integral on the space of H! function with periodic boundary conditions. We
are going to show here that one can make an arbitrary small perturbation of the potental -1/Ixl
which implies that the only minimum of the action integral has to cross the origin, and moreover
that the action integral evaluated on each possible T-periodic solution has to be very far from the
minimum.

More precisely let us give the following

Definition 1. We suppose that V is given by

M(8
0.2) vix)= 2O

where (p, 0) are the polar coordinates of x € R2and M is a continuous function defined in the
following way. Let us consider the partition of R2 induced by two straight lines forming an angle
of amplitude 21, 0 <2 < m, and let v = w - 2. We denote the sectors of amplitude 2y (resp. v)
by I and I, (resp. I, and 1, ) and we set M(0) = M_inI_and M(0) =M_inI , where M_, M_are
positive constants such that M_ < M_. In the sectors I, and I, M varies in a regular and monotonic
way between M_ and M,. Throughout this paper a potential of this kind will be called N-tvpe
potential.

We shall prove the following theorems:

Theorem 3.1. [f V is a N-type potential there are no periodic solutions of (1) with angular
speed of constant sign if v is sufficiently small.

Theorem 3.2. For every fixed T >0 there exists a sequence of N-type potentials (V)



46

such that the corresponding sequence (M) converges uniformly to one and such that every

sequence (x,) of T-periodic solutions of

0.3) -X=9V_(x)

(if there any exists) converge uniformly to zero. Moreover the associated sequence of the energies

(E,) converges to —ee.

Observe that in polar coordinates the energy integral has the form

(0.4) o+ p%- 2 2 op
p
We set (X denotes the usual exterior product in R3) :

) B=xxx

. i@P:Bx&+5fx
0.5) ) p
i) B* = B-B

x*P
iv) cos@ =

p IPI

Observe that B and P are not constant along the trajectories if the potential V is dependent on 6,

and
]‘3 - >< ®e
0.6) v B
i) P=B X ;(
By (0.5.1) we have that
©0.7) B=p’6j

and by (0.6.1), (0.1), (1.3) we get
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o 1 dM .
(0.8) B——i; TJ
where
. x><:7(
J= X
Ixx x|

From (0.5) it follows that IP1? = M? + 2EBZ, and then

. M /M 2EB?
0.9) —=— - 050
P B B~
is always true.
From (0.51) and (0.8) we get
dB* _ dM
0.10 - =2p —
(0.10) 5 P 3
and from (0.6)
p
0.11) 'EI%H . 1 sz'_
dt M2 +2EB% 6 P
From (0.4) and (0.9) it follows that
B* M
0.12 — <p <"
(0-12) ™M P E
and
d 2M 132 2M
(0.13) laé-logpl=f?B—l E+-— < L p5
p P B

In the sequel we shall use the subscripts with the same meaning for M (cf. introduction).
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3.1 . Proof of Theorem 3.1.
In order to prove the theorem, we initially prove the following lemma:

Lemma 3.1.1.. For any couple of fixed constants a > 1 and C > O,we have that

1.1 CBE
(1.1) p<a—1\-/—[—

holds in the whole sector 1, provided that

loga

) v<
‘/ZaC

(1.2)

BZ

i) p6)<C—=

where ©, is the value of O at the border between 1_ andl, .
Proof. Indeed by (1.2.ii) if © = 6, the inequality (1.1) holds for every a > 1. Let

B2

6, =sup (8>6,/Y0e[06,6"], pB)<aC —h-/i}

and assume by contradiction that 8, — 6, <v. From (0.13) and (15.1) (observe that by (0.10) it can

be obtained that M/B? is monotonically decreasing as M is increasing), we get:

92 62
p(6,) M B2 2M
— < ex (J — dO ) < ex j aC— —— db

Sexp(,‘/2aC v)<a

and this contradicts the definition of 92. |
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Lemma 3.1.2.. Assume that

(1.3) v < loga [ 1—cosu
a 2

and,setting

M-i-
= T\Z:

(1.4) 23 AB s 2 LT OO

1 —cosp

2 2
where 0c=-————————12-——-———3 -1
a(1+cosy) 2~ ( 1+ cosi)

Then whenever the trajectory leaves the sector I_ with

2

1 B~

1.5 QR —
(13) p"l—cosu M

then it reches the next sector 1,_forming an angle M with -P such thar M < L.

Proof. Since (1.3) and (1.5) hold, we can apply Lemma 3.1.1. with C =a (1 - cosp )1
and we get

in the whole I

Of course, two cases are possible: either

2
B2
a) p(6) <1
1+cosp M,

for every 0 in L, and in this case the claim is obviously true; or

2
1 B,

(1+cosp) M,

b) there exists 6 in I, suchthat p ) >

In this case it follows from Lemma 3.1.1. that for every 0 in I
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2
1 B 2
p(6) > ts l B
a(l+cosp) M = a(l+cosu) M
From (0.10) we get
2 2
d B~ _, dM S 2 B™ dM
B P Te “a(licosn) M db
and hence
B- M M )
L > = & =l = —— -1
g2 M. A where A M “ a(1+cosw)
Since (1.4) holds, we get
2 2
B+ S B~ 1 +cosp 22
M, ~ M_ T-cosu
By definition of 1 and from the above inequality it follows that
1 M M_ 1-cosu 1
— <a(l+cosn)— < _—cos 2 (1+cosn)
p B2 B2 1+cosp a
N _
and then, from (1.5)
1 + cosu
1 +cosn ~

thatism<u. B

Proof of Theorem 3.1.

Consider first the sector 1. Since M is constant we are moving along an arc of the ellipse
defined by



[ M+ 2EB?
e COSO

B

1
p

Tl E

where ¢ is the angle between x and the Lenz vector P (see (0.5.1)), and B? = BZ%(6) (defined in
(0.5.ii1)) is constant in I_. Remark that P gives the direction of the axe of the ellipse. We can fix the
time direction in order to have ¢ = i when we are leaving I_. Then (1.5) holds at the border of I_
and I;; from Lemma 3.1.2. it follows that when the trajectory reaches I, tha angle 1 between -P
and x is larger than (L.

Therefore when we leave I, the angle 1" between x and -P is larger than L.

Now, crossing I,, we reach another time I_. If at the entrance point (1.5) holds, we could
change the time versus and, by repeating the same arguments with I, at the place of I;, we should
getinto I with M '< [, which is absurde.

Now we are moving in I_ on the arc of the ellipse defined by

M /M+2EB’
e COSO

1
-5' 1. 1 2

where p' = Ixlin I_ and B'_ is the new constant analogous to B_ as defined in (0.6). We claim that
B'. < B._. Indeed assume the contrary. From the above discussion and Lemma 3.1.1. we have

2
B

(1.6) pr> L > i
a l-cosp M

in the whole L.

Assume first that

2 2
B, . E__ 1+costk o

_1\_/'f;_ M_ 1-cospu ¢

holds: if there exists 9 in I, such that

2

B

a
"ML =
p(e)"l—cosu M

from Lemma3.1.1. (observe that B'. = B_) we have



(9}
[\

2 2
) < a2 B_ < a2 l-cosyu 1 B,
P l-cosp M_ ~ 1-cosp 1+cosp 2

j—
lm
+ oW

in the whole L,, and then also in the border of I, in contradiction with the above discussion. So we
can assume that p' > p . Moreover (0.9) implies that

6, +v M,
Bi-B?zJ 2p(e>ci1—16VI de =f 2p (6 (M))dM
8 M_
1
M+
2 .2 ,
B+-B_= 2p" (O (M))dM
M_
and hence B_>B'..
So we can assume that
B> g’

+ —
-IVI:<_1\7T__ 1-cosp

1+cosp 2

from (1.6) and the above inequality we get

@>L1 L2
P a3 l+cosp M,

which leads to a contradiction ( by using (0.9) and (1.5)).

This discussion ends the proof: it shows that every time the trajectory turns around the origin

and get another time I_ the correnspondent B2_ decreases. Since the trajectory is compact , B2_ must
get zero in a finite number of rounds. &

Remark 3.1.1.

Since in the conditions (1.2), (1.3) and (1.4) a can be taken arbitrarily close to 1, Lemma

3.1.1. and Theorem 3.1 are always true if one take a sequence of N-type potentials V_, such that
M, converges to 1 and v converges to 0.



3.2 - Proof of Theorem 3.2.

Theorem 2.1 says that all possible T-periodic solutions of (1) with N-type potential must
have at least one bounce if v is sufficiently small. Of course the number of bounces is even and it is
easy to see that the trajectory can bounce only while it is leaving I, (so we can suppose that it
happens for example in I,).

We are going to prove now that the bounce is possible only if p is sufficiently large. Indeed

in order to prove this fact we need the following

Lemma 3.2.1. For every L > 0, for suitable values of A and Vv (namely Ae¥/?
sufficiently close to 1), the condition

>LB2
P =

(2.1)

at the border of 1, and L, is necessary to have a bounce.

Proof. Assume by contradiction that
(2.2) P < —

holds at the border of I, and I,. Let 0, be the value of 8 at the border of I, and I, and let

NB*(9)

6 = Sup{e'/v 95[61,6'] 5 P(9)<———-—2M(e)

}

it follows from (0.13) that

5 ; 5
d logB”~ d logM
f a0 de<NJ. T
0, 8,
and then
B*(0,)
U <N
B*(9)

Remark thatin I; M is decreasing, therefore
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Using the above inequalities we get

_ M(9) S a
20 (8) ——— = o 2L8) M(8) p(B )<

B%8)  p(8) BYj)

5y M8 )
, P (9) f‘ pr<91)sszLp(9>s
p(8) B6) p(9)
ZGNV/ZKNL.

We will choose v so small and A so close to 1 in such a way the inequality

N
N>2L(2re'?)

admits a solution N. In such a case the estimate (2.2) should hold true in the whole I, and the
bounce could not happen.i

Lemma 3.2.2. For every ne N we can define a N-type potential V., such that every
solution of (0.3) has to turn at least n times around the origin between two bounces.

Proof.Let us observe that if there exists k<1 such that

M+ 2EB% < k> M

then it follows from (0.9) that
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1 B*
PET% ™
Then condition (2.1) implies
5 5 142
(2.3) M+ 2EB°> (1-7) M

Now assume that we are in I_just after the bounce. Repeating the above reasoning with the
time versus inverted, we conclude that (2.3) is satisfied in I, and (2.1) must hold on the border of

I, and I,. Therefore, (see (0.9)) on the border of I, and Il, the angle ¢ between x and P satisfies
1
(2.4) cosg = ( 1—-1—).

Since we will fix L very large, ¢ will be very small: we suppose that ¢ < 2u/m (m is a
suitably large natural number which will be fixed in the following). Therefore, when we leave the
sector I getting I,, the angle between x and -P is very small (remember that, as v is very small,

2u 1s very close to 7). So we can suppose without any restriction that

)
_LB’
P =

on the border of I . and L.

From (0.11) it follows that

2.5) :{_P_H p 1 amd 1

Two cases are possible:

a) if
(2.6) M+ 2EB? 2%1\42
and
LB?
2.7) p <
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from (2.4) and (0.9) we get
d PI_1aM [

TP M e

and then
I_P_+.-i I< 2 3 o
1P| 2L logh

where P, P_are the values of P in I, and I_ rispectively. We will choose A so close to 1 in order to
make the angle between P_and P_less than 2u/m. Also v is supposed to be less than 2u/m. Then
when we reach I_ the angle 1 between x and - P_must be less than 6u/m, and when we leave it,
the angle ¢ between x and P_ has to be less than §p/m.

Now we are crossing another time I;: if (2.6) and (2.7) hold in the whole I, by the above

estimates we conclude that, reaching I_, the angle ¢ between x and P is less than 12y/m. If (2.5)

+7
holds but (2.6) is false in some point of I, then we apply Lemma 3.1.1. (we can always assume

that condition (1.2) holds with C =L) and we get

1 LB*
p>——

a M
on the whole I,. Therefore at the border of I, and I, the angle ¢ between x and P is less than
2u/m.
Hence we can say that, under condition (2.6), whenever the trajectory describes a full 2%
angle around the origin, the vector P/IP! describes an angle less than 12u/m. Since condition (2.4)
is necessary in order to have a bounce, the vector P/IP! has to describe an angle of amplitude at least
T — 41t/m before the next bounce. Setting m = 12n we can conclude that the trajectory must turn at

least n times around the origin between the two bounces.

b)There exists some 0, such that
(2.8) M ©)+ 2EB0)) < = M ®,)
/T = A e T

From (0.9) we get

(2.9) —log— =2(p - —. — —logM.
de de
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We claim that the inequality

2
(2.10) MZ(8) + 2EB%(0) < % M2(6)

is satisfied in the whole I,.
Indeed assume the contrary: from (0.8) it follows that

_B® | __a B*()
M®) | fT-a M@®

1p(®)

holds for every 6 € [ 8,,0,]; moreover (2.9) and the above inequality imply:

9] 2]
B7(8,) B7(0.)

7\2 >\ > oS !
M (®,) M(®,) —2E

(1-1)

where

—2a

L

-

Since a > 1 we can fix A so close to 1 in order to have

"\{:

@1 1—az<x/(1—1)
Lt @ _I': t .
that is
2 & o
M*(®,)+ 2EB7(®,) > = M'(®,)

in contradiction with the definition of 8,.

Therefore we can say that under condition (2.11), if (2.8) holds then (2.10) is true in the
next sector of amplitude v. Since a is arbitrary we will think a = b?® < L - 1. By repeating this
arguments we get that the trajectory has to describe at least n full 21 angles around the origin before

the condition (2.3) (which is necessary in order to have the next bounce) can be again satisfied.l

End of the proof of Theorem 3.2.

Now we can prove the theorem. Given T > 0, for any ne N we can fix (by the above

arguments) A_ and v, in such a way that every possible T-periodic solution of the problem must
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turn around the origin at least n times.We are going to give an estimate on the "period” to describe a
2w angle around the origin.

Observe that by the definition of N-type potential and by the choice of A and v, (v, is close
to 0 and,as Kn is close to 1, M, is close to M_) we can deduce that the path described around the
origin is "like-ellipse”.

Let us go back to Lemma 3.2.2; if case b) holds, the trajectory describes a full 2w angle

aruond the origin in a time T_ wich satisfies ( from (0.12) and (2.10)):

2n n i, n 2 n
2 B™ 1 M™ 3201
c=flde= P—dez-" ._dezj[u—i—— — 46
. 8 4 2B L 2F 2
0 b 4M 5 4M
3/2

where C_ converges to 1 when n goes to infinity.
If case a) holds we can say that P_lies in I, almost n-2 times the path crosses I,.This means

that
) 372
T, 2 Cv)rn (-2E n)

and C(v) converges to las v goes to 0.

Finally, since the period T is larger than nt_, the sequence (T ) must converge to 0 and
hence the sequences of the energies (E,) converges to -eo. From (0.12) this fact implies that the
possibly sequence of T-periodic solutions converge uniformly to 0. |
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4 - OTHER SINGULAR POTENTIALS,

In this chapter we collect the results contained in some recent papers. For the case of
repulsive forces we refer to [24] and [47], and for the results of Section 4.2, we refer to [4] and
[121.

4.1 - REPULSIVE FORCES.

We consider the autonomous problem

X = VF(x)
(P1) x(t+T) =x(t)
x(t) =0

or the forced one

-x = VFX) + h(0) h(t+ T) = h()
(P2) x(t + T) = x(b).
x(t) =0

where F has a singularity in zero of repulsive type. More precisely we will consider the

following assumptions:

F1) Fe CIR™\(0};R )
F?.) hmF(x) = +4co
x—0
E3) ‘ There exists ¢, ¢, such that VF(x) -x £¢clxl + ¢,
F4) m VF(X) = +eo.
|X|—>00

As one can expect, when the force -VF(x) is "everywhere repulsive” the autonomous

problem (P1) has no periodic solution. More precisely if we assume
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F3) limsup 7 F(x) l%< 0

x—0 !
F6) Je >0, such that , V xyi%fy’ﬁ% <g= VFx)y<0,
we have

THEOREM 4.1.1. Assume that F5), F6) hold. Then there exists h such that for

T
every he C]([O,T]/{O,T}) with lIlhl] < hyand [h =0, (P2) has no solution.
0

Anyway we can get solutions of (P2) for every forcing term with nonzero mean:

THEOREM 4.1.2. Assume that F1), F2) and F3) hold. Then for every
he C Y([0,TY/{0,T}) such thar

(1.1) [h=0,
0

(P2) has at least one solution.

On the other hand, if the potential F becomes attractive far away from zero, we can obtain
the existence of solutions of (P1) or of (P2) for every forcing terms. More precisely we can
state

THEOREM 4.1.3. Assume thar F1), F2), F3) hold and assume moreover

E7) IR >0suchthat vV yeR Iyl > R, F(y) <N = lim F(x)
and F(y) < N if lyl = R. =

Then for every he C 1([O,T]/ {0,T}) (P2) has at least one solution.

Proof of Theorem 4.1.1.. Assume by the contrary that there is a sequence
(h),e CX[0,T}/{0,T}) such that
T

(1.2) U[hn =0



(1.3) lim lh Il =0

n—eo

and (P2) with h = h_ has a solution x .
Let t_ be a point ot maximum for Ix_|. We have

. ) .o
k (eI + xn(tn)-xn(tn) <0
and hence, since x_ solves (P2)
. 2
-[h (t) + VE(x (t D] -x(t) < -x (1Ol < 0.

Therefore
x (t)

(1.4) VE(x,(t,) - ———2-h (t).
Ix (1)

If Ix (t)lis bounded, up to a subsequence we obtain
lim x_(t) = Xy
n—yoco

and, since from (1.3) and F5) Xg # 0, (1.4) leads to

X9
VF(xy) - —20
!xol

which contradicts F6).
So we have

lim x_(t ) = +ee.

n—see

Moreover, since x_ solves (P2), F6) implies that

61



T
- T T T

(1.5) Jlgns% J‘[VF(XH) +h ] x,< J‘h xS k(e thn!.

0 0
0

From (1.5) and Holder inequality we find that the diameter d of the orbit x_ satisfies

d, < T,\/ 11 Ix (1)

and therefore

x () x (t)
. =0

limsup sup | - | =
n—ee te R Ix (O Ix (t )l
Hence, for n large we have

TE(x, (1) -x,(t,) <0, V te[0,T],

and then, from the above inequalitity and (1.2) we get

T
. T
x (t) [-X, = x,(t,) J’WF(xn) +h, 1=
0
0
T
x (1) - |VE(x) <0,
J

T

that is -'x.n # 0, which contradicts the fact that x_ is T-periodic.1

As usual we will find the solutions of (P1) or (P2), up to the the rescaling of the period,
as critical points of the functional
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1
11,:2 2 1
Ir(x) =-2—Jlxl dt - T Of[F(x)dt + x-h(tT) dt

0

xeH 1([0,11/{0,1};#3 )

Proposition 4.1.1. Assume F1) and F3) and consider

U = ( xe H }([0,11/{0,1}:RY) / min Ix(0)1 = 1)

= inf L (x)

C
0 xeU

then Cy > oo

Proof. See Appendix A.
Proposition 4.1.2. (A priori estimate) Assume F1), F2), F4) and that
limsup F(x) = M.
x—0

Then one can find a constant Y such that, if M >, every solution x of (P2) has Ix()I= A,V
te [0,T], where A=sup{ p/Fx)=2M,V IxI <p }.

Proof. See Appendix A.

Proof of Theorem 4.1.2. Let us consider a sequence (@,) of smooth real functions
such that

Q4 (s) =s Vs<k

0@ ()1 Vel
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P(s)=0 Vszk
and we set
(F(y) iflyl>1
F(y) = 3

o (F@y) iflyl< L.

It is easy to see that, for large k, F, satisfies the assumptions of Proposition 4.1.2, therefore,

for the a priori estimate, the solutions of (P2), ( that is (P2) with F replaced by F,) are

actually solutions of (P2). We consider the action integral corresponding to the problem (P2), :

1
1

1
() = | Ik dt - TZJ[Fk(x)dt +x-h(T)] dt,
0

and we observe that, for k sufficiently large, there exists a constant Xy Ix 1! < 1 such that

k
Ir(x,) < ¢

1
Moreover, since from F3) F grows sublinearly, and [h(tT) # 0, we can fix a constant X5,
0

Ile > 1 such that
k
Ip(x,) = Ip(x,) <cg.
Now we consider that Mountain Pass class:
T = { 1:(0,1]-H '([0,1/{0,1};R") continuous /
10 =x,, (1) = x,, )

we have I};(x 1),Iln}(x 2) < Cq Moreover, since for every yel, if
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s =inf({ se[0,1] /3 te[0,1], ly(s)()I < 1}

obviously Y(s)e U, we obtain that

c=inf sup Ll;(y(s)) 2cg.
veT 0<s<1

Now we can find a critical point of Lllf by the application of Rabinowitz's Mountain Pass
Theorem, provided that 11; satisfies the Palais-Smale condition at level c.
Indeed let (x, ) , be a Palais-Smale sequence at level ¢, that is

(1.7) S(x,)—c¢

(1.8) X =TWF(x,) + Th + h_, with h_—0 in H'1
From F4) thare exists d > 0 such that

(1.9) IF ()l <d(1 +lyD), ¥V yeR".

Let

M _ = max Ix_(t)l,
T e ¢

from (1.7) and (1.9) we obtain

1

I =

" 1
Jlx F<c+ T + M) + M_T? [h(T)|
0

0

and therefore, if m = min Ix_(t)l, we have
te [0,1]

(1.10) M, -m)* <d,(1+M).
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Hence, assuming that (M)  is unbounded, it follows from (1.10) that m_—+eo, and then,

in view of F4)

(1.1D lim VF(x_) = 0 uniformly.

n—>ee

Taking the duality product of (1.8) with the constant function 1 we get from (1.11) that
1

n—>e0

lim J[xn + T’h(tT)]) = 0

which contradicts (1.1). °

So we can assume that (x ) o 1s bounded in the Conorm, and we end the proof in a
standard way ( see for example Proposition 2.1.1)H

Proof of THEOREM 4.1.3. We make a perturbation of (P2) with small constants

and, applying Teorem 4.1.2, we find a sequence (x_)  of solutions of
. D) ) 1
(1.12) X, =TVE(x,) + ThtT) + h_, x_eH *([0,1/{0,1};RY).

As in the proof of the Palais-Smale condition (see Proposition 2.1.1), in order to obtain a
converging subsequence we only need to prove that (x ) _is bounded in the C° norm.
So we assume that M| = max Ix_(t)l—-+ec and we consider the two opposite cases:
te [0,1]

a)  limsup F(x) < +eo. Then we can assume from F7) that

[xl—>e0
(1.13) limsup F(x) = 0 =supF(x)
[X|~3e0 IxI=1
and
(1.14) Fly) <1liflyl=1.
First we claim that
1.2} 2
(1.15) Cy>- Q—T Ojlg(tT)I

where g is the primitive of h of mean value zero. Indeed we can find 6 > 0 such that
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1<lyl<1+3=F(y)<-d

Let xe U and let T be the time that x has to stay in the anulus { y /1 <lyl <1+ }: by Holder
inequality,

where I.LZ = é— J'b'dz .

Hence, from (1.13) and (1.14) we get
3

1 6
(1.16) [F(x(®) < - —
0 H
Moreover, by the definition of g,
1 ! 1 .!'_
(1.17) Tlofh(t'r) -xl=|fg(tT) i!Su[J!g(tT)ﬁz;
0
therefore
1 1 63
(1.18) ¢4 2 inf( %112- Tp [Jlg(tT)ﬁz +T—) >
p>0 i
1 1 T2 1
> inf{ op?- T [J!g(mﬁﬁ - TJ[g(tT)!z
w0 <

From F3) and the unboundness of the sequence in C%, by Holder inequality we find that, up to
a subsequence,

lim min Ix (D) = +eo,
n—ee te [0,1]

and then from F4)

(1.19) lim VF(x_) = 0 uniformly

n—ee
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and finally, since from (1.19) and (1.13),

1

lim J[ X, + Th(tT)] =0

n—eo

0

we obtain that (}.(n ), converges to -Tg(tT) in L? Therefore

(1.20) Co S lp(xy) =
1 . 1 . T2 1
= I Pde - T f[F(xn) + hex ]dt — -TJIg(tT) P<e, .
0
0

b) Iim F(x) = +eo. Then, if (x,) , is unbounded in C% we find from (1.20) that

IXl—00

Cy Sr}iglwIT(xn) = ~oco fi

4.2 - DYNAMICAL SYSTEMS IN A POTENTIAL WELL

Let QciR be a bounded set strictly starshaped with respect to the origin. We consider a
potential F:Q—R which satisfies the following assumptions:

F1) Fe CTQiR)

F2) 0 = min F(x)
xeQ

E3) lim F(x) = +eo

x—0Q
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F4) Jo>2,3€e>0suchthat V xeQ, d(x.0Q) < g,
VE(x) -x 2 aF(x).

Our goal is to find solutions of the problem

-x = VE(x)
P x(t+T) =x(t)
x(DeQ, V te [0,T]

for T > 0 given.
The purpose of this section is to show that this problem is just a limiting case of the
superquadratic one. As usual we will find the solutions of (P) as critical points of the functional

1

1],:2 2}
X)== |IxI"dt - T™ [F(x)d
LF(*{) 2[){ t Oj(x)t

0

xe { yeH '([0,11/{0,1}RY / y(De Q, ¥ te[0,1] 1,

up to the rescaling of the period.
Since we are going to find critical points of L by a truncation argument, let us recall

THEOREM 4.2.1 (Potential superquadratic at infinty). Assume that G
satisfies:

F5) GectRR)
F6) G(0) = minNG(x)
, xe R
F7) Jo>2,IKeR such that, V xe B

VG(x)-x 2 aGkx) - K.

Then for every T > 0 problem
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F4) da>2,3de>0suchthat V xeQ, dx.0Q) <&,
VE(x) - x 2 aF((x).

Our goal is to find solutions of the problem

-X = VF(x)
P x(t+T) =x(t)
x()e Q, V te[0,T]

for T > 0 given.
The purpose of this section is to show that this problem is just a limiting case of the
superquadratic one. As usual we will find the solutions of (P) as critical points of the functional

1
1
1{,-2 2
x)== |IxI"dt - T [F(x)dt

0

xe [ yeH 1([0,11/{0,1}RY / y(0e Q, ¥ e [0,1] },

1p to the rescaling of the period.
Since we are going to find critical points of 1, by a truncation argument, let us recall

THEOREM 4.2.1 (Potential superquadratic at infinty). Assume that G
satisfies:

F5) Ge CTR R )
F6) G() = minNG(x)
xe R
F7) J0,>2,3KeR such that, V xeR ™,

VG(x) -x 2 aGx) - K.

Thén for every T > 0 problem
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F4) : doa>2,3e>0such that V d(x.0Q) <&,
VE(X) -x 2 aF(x).

Our goal is to find solutions of the problem
-X = VE(x)

(7 x(t = T) = x(1)
x(1e Q, V te [0,T]

o T>0 given.
The purpose of this - ‘ion is to show that this »lem 1s just a limiting case of the
-perquadraic one. As usuu- e will find the solutions - - as critical points of the functional

1
1

ki dt - T [E(x)dt
0

L\)l s

Lo

xe  CH'(OIV0URY /7yt .V ie[0,1] ],

ap to the rescaling of the pe:
Since we are going to i critical points of I, by at.  ation argument, let us recall

THECREM 4.2.1 otential superquadrat at infinty). Assume that G
satisfies:

135 GeC “R)
Fo6) GO minN G(x)
<R
F7) 3o 3IKeR such that, V xeR ™,

VGt 2 oG((x) - K.

Then for every T > 0 proble:
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(P Jx = VG(x)
lx(t + T) = x(v
has at least one solution.
Proof. See Appendix B.
The main result of this section is the following

THEOREM 4.2.2. Assume that F1), F2), F3), and F4) hold. Then, for every T > 0
fixed, problem (P) has at least one solution.

Before proving Theorem 4.2.2, we need some a priori estimate on the solution found by

applying Theorem 4.2.1.

Proposition 4.2.1. Under the assumptions of Theorem 4.2.1, for every ce R , there

exists a constant a, depending on ¢, such that if x is a critical point of

1
11,:2 2 !
JT(x) =§-Jlxl dt - T7 OjG(x)dt

0

xe H 1([0,11/{0,1 ;R

with JT(x) =c, then G(x(1)) <a, V te[0,1].

Proof. If x is a critical point of L atlevel ¢ we have

1 1
[ IxI- T [Gx) =c
0 0

Do) —

(2.1)
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2.2) % = TYG(x).

Multiplying both sides of (2.2) by x and integrating we get

1
A 12 1.2 o ok K 2
(2.3) "2-0}- IxI" = ET OfVG(X) 'XZ"Q‘T JG(X) -5 1

and by substituting (2.3) in (2.1) we obtain

1

(2.4) 0IG(X) <c,
and

1,
2.5) IEGEES

Moreover, from (2.2) x satisfies the energy integral:

(2.6) %b’dz + T'G(x) = E:

integrating (2.6), we find from (2.4) and (2.5) that E < %— c, + Tzc 5 Therefore, (2.6)
implies that G(x) Sa="T" (5 ¢, + T’ ,).

Proof of Theorem 4.2.2. Let f: R —R be the function homogeneus of degree one
such that 0Q = { xe RN / f(x) = 1 }, and let us fix m > 0, such that
(xeR"/£x) =1-1 ) xe R/ d(x,dQ) <& } where & is defined in F4). Let G: RN>R be
defined as

G(x) =F®x) iffx)<1-1m
07 (1x

G(x) = F( ) iff(x)=21-m.
(1_n)a f(X)

From F4), G satisfies the assumptions of Theorem 4.2.1. Therefore we can find a critical
level ¢ and a critical point at level ¢ for the functional J . From Proposition 4.2.1 we have an a
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priori estimate on HG(x)I]x. Hence, taking a smaller n (if necessary) we can conclude that

x(HeQ, V te[0,1].0

Remark 4.2.1. If the potential F is convex, one can prove the existence of solutions of

(P) having T as their minimal period, for every T < ZTE , where ® is the largest eigenvalue of
®

V2F(O) (T arbitrary if w = 0). This fact can be proved by the use of the Ekeland-Hofer index

theory (see[19] and[27]), as it is shown in [4].

APPENDIX A. Proof of Propositions 4.1.1, 4.1.2.

Proposition 4.1.1. By F4) there exists ¢ = 0 such that

FI<c(l+1yh ,Viyl21;

1

. . . 2 -2
moreover, if xe U we find that, setting W~ = |IxI",

max Ix(H)l <1+ 1.
te [0,1]

Therefore

1
(A.1) L(x) 2 % w?- T2 + 1) - T + W( D =
0
1

> inf | ?1):“2 - eTA2 + ) - TXL + W([IhET)) } > -oo.B
n>0 0

Proposition 4.1.2. Let x be a critical point of Lp such that I.(x) = ¢,. We set
A=sup{0>0/Vy,lylISc=Fy)=2M)

m= max Ix(t)l.
te [0,1]
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First we assume that m < A; then we have

that is

(A.2)

then

(A.3)

1
c, < IT(x)— T I{VF(X) -x + h(tT) -x - 2F(x)} <

<Lr¥e, + me, +m<ﬂh<tT>l) ™,

1
¢, + [hD

m = min(c,A).

We remark that if F' satisfies F3) with the same ( c,,c 2) and has F'(x) 2 M, V x| <A,
then every solution of (P') with F = F' at level larger than c, satisfies the above estimate on

the C° norm.

0

From F4) we can find a constant ¢, such that

(A.4)

3

F(y) 2 -c,(1 +lyD, ¥ yeR™\(0},

and a constant ¢ ,(a0) such that

(A.5)

Let us assume that

then

(A.6)

E(y) <c,(1 +1yh, Yy, lylza.

min Ix(H)l < 1:
te [0,1]

1

Ix(DI < 1 + f Xl, V te[0,1].
0
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Moreover is t is such that Ix(to)l =M, we obtain from (A.4), (A.5), (A.6) that

(A7) X(t)” < (VF(x(tg) + h(Tty)) -x(tg) < ¢, + (¢, + Il x(t)l <

1

<c, +(c,+ |1h|3>°)(1+0ﬁ5d).

From the energy estimate

t
(A.8) SO = Tk ) - Fx(ty) + Fx(®) - [ h(eD) %,

%

and from A.4), A.5), A.6) and A.7) we deduce that, if £ = max lf((t)l,
te [0,1]

(A.9) %\gzs 1i[c1 + (e, + Nl )(1+8)] +
1
+c (2 + E) + c, ()2 + E) + &Oflh(tT)l.
Therefore, & < K(c1 ,€ 5,C 4,C 4) and, by substituting in (A.8) we find

, 1
Fx(t) < %-K‘ + K[Ih(tT)l + c,(1 +K).
0

1
If we assume that M > y=-21-K2 + KJIh('D)l + c,(1 +K) , we get that
0
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min Ix(t)l = min (1,1).8
e [0,1]

APPENDIX B. Proof of Theorem 4.2.1.

First we remark that F6) implies that G has s superquadratic growth at infinity: namely

Lim _____G(x) =+

Ixl—eo |x]

Let o be the greatest eigenvalue of V2G(O) (possibly @ = 0) and let the period T be fixed with

2

Vo

T< (T arbitrary if @ = 0). We consider the functional

1
112 2 !
JT(x) =-2-J'le dt - T OjG(t)dt

0

xeE = HL([0,11/{0,1}:RY .

which critical points correspond to the solutions of (P2) after the rescaling of the period. Let

E , be the subspace of E of zero mean functions, and E be the space of constant functions.

We have:

E=E,® E,

and

(B.1) J;x) <0, V xe Ey
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(B.2) JT(X) >0, V xe EO, ”X”E =p
(B.3) im J (%) = -o° in every finite dimentional subspace of E.
lIxll—eo

In fact, (B1) simply follows from F6), (B.3) follows from the superquadratic growth of G at

infinity. Let us prove (B.2): for xe EO we have
1
Ip() 2 5 (4n*- 0T Jlxlz+ o(ix > 0

if lIxll; is small enough.

Now let ¢ be any fixed function in E, llpll; = 1, and let Ey.q = span {E;¢}. From

(B.1) and (B.3), we can find a R > 0 such that

(B.4) () <0, VxeE , lxll; 2 R.

N+1°

We consider the surface Sin E defined by S =S, US ,US ;, where

N+1° 3’

S, ={xeE /Il <R}

82={y=x+t(p/erN, HXHE=R,OStSR}

S;={y=x+Ro/xeEy, lIxll; <R}

From (B.4) we have that

(B.5) I <0, V xeS.

Moreover, (B.2) imples that
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(B.6) J; >0, V xe Sy = {xe E, / llxllE =p }.

Since S links with S, we can apply Rabinowitz's Saddle Point Theorem getting a critical

point of the functional J, provided that the Palais-Smale condition is fulfilled.

Indeed let (x,) , be a Palais-Smale sequence at any level ¢, that is

B.7 Jo(xy) = ¢ —c
(B.8) X, =TVG(x,) +h_, h —0inHL.

From (B.8) and (F7) we get
1 1

(B.9) [ 1%l =T fVG(xn) cx_ +h (x)=
0 10
ZocTZGJ.G(xn) KT h(x) .

By substituting (B.9) in (B.7) we obtain
a-2 ; 1 1
-2 2 2
Cp2 T OJ.G(XH) KT 5 (x,) .

Therefore
1
(B.10) JG(XH) Sc, +h(x,)
and
1 -
(B.11) Ojlxn! Sec,-h(x).

Now assuming that (x_) _ is unbounded in the C° norm, (B.11) implies that, up to a

subsequence, im min Ix_(t)| = +eo.
n—eo te [0,1]
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By substituting in (B.10) we find a contradiction, because of the superquadraticity of G at
infinity.
So we can assume that (x) is bounded in C°, and therefore, up to a subsequence, it

converges weakly in H 1([0,1]/ {0,1}) and strongly in CO to some limit w. From (B.8) and the
compact embedding of C%in H-1, we deduce the strong convergence of (x,) - B
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