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Fools had ne’er less grace in a year;
For wise men are grown foppish,

And know not how their wits to wear,
Their manners are so apish.

shakespeare, King Lear 1.iv
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Chapter 1

Introduction

Gravity, as described by general relativity, is by far the most peculiar among
the known fundamental interactions. This status of things has its deepest
origin in the geometrization lying at the basis of Einstein’s theory, which
makes it the most elegant and formally perfect of all the viable theoretical
physical constructions. In this visual, gravity is not described by some
object (e.g. a field) defined on spacetime, but rather it is spacetime itself:
the concept of gravitational field is then reduced to that of curvature, and
the role of the field equations is to relate the geometry of spacetime to its
matter content.

A particularly striking consequence of this theory, which heavily relies
on its geometrical character, is the prediction of the existence of "regions”
to which the theory itself cannot be applied. More precisely, theorems have
been proved [1,2] asserting that a sufficiently general and causally well
behaving spacetime, whose energy content satisfies a positivity condition,
and in which a convergence criterion is satisfied, must admit a singularity,
defined in terms of incompleteness of causal geodesics; since these curves
represent the world lines of classical free-falling particles, it follows that,
in the framework of general relativity, there is a large variety of realistic
situations in which particles (and observers) reach the boundary of space-
time in a finite proper time. The implications of such a result are quite
intriguing: in fact, if one believes that singularities do really exist, then
he/she will have serious problems in the specification of boundary condi-
tions; alternatively, it is possible to look at singularity theorems as at a
reductio ad absurdum of some hypothesis underlying their proof: then they
can be used as evidence for the breakdown of the energy condition or for
the replacement of general relativity by another theory of spacetime struc-
ture. Unfortunately, very little significant work has been done in either of
these research areas, and the physical nature and meaning of singularities
are still mysterious, despite a conspicuous amount of technical advances in



their study.

It is a widespread conviction that the problems raised by the singu-
larity theorems could be solved by taking into account an element which is
absent from general relativity: the quantum principle. The common opin-
ion about the practical achievement of this purpose is that it will emerge as
a byproduct of an even more ambitious realization, namely of a quantum
theory of gravity. After forty years of efforts made by considerable physi-
cists in all the world, such a theory does not exist yet in a satisfactory form;
it seems therefore a reasonable proposal to forget, for the moment, the ex-
treme requirements underlying it, and to search for a weaker way to insert
the quantum principle in a gravitational theory. It is good to stress, at this
point of the discussion, that the idea that gravity and quantum mechan-
ics should, somehow, cohabit, is more a consequence of the philosophical
belief known as ”unity of physics” than of some experimental result: both
classical gravity and quantum mechanics have been successfully tested sep-
arately, but there is complete lack of experiments devoted to investigate
their reciprocal relations. This shows how much a wildly speculative terri-
tory is the one we are now going to explore.

There are three levels at which the quantum principle can be intro-
duced into general relativity, which lead to theories that can be classified as
quantum theory in curved spacetime, semiclassical gravity, and quantun
gravity; we shall now briefly analyse the status of these three classes of
theories.

We have already said something about quantum gravity [3,4,5]: there
have been many technical advances, but very little conceptual understand-
ing; the huge number of competing theories is contrasted by the lack of
strong physical principles as heuristic guide in the choice between them.
For these reasons, we prefer not to work formally on some quantum theory
of gravity, but rather to try to understand, gradually, the implications of
quantum mechanics on the structure of spacetime [6], and, in particular, to
which extent is gravity forced to be quantized.

Quantum theory in curved spacetime [7] is the study of quantum mat-
ter in a fixed background gravitational field; trivial {(from the point of view
of gravity!) examples of these theories are QED and QCD in Minkowski
spacetime. The research in this sector has produced most interesting re-
sults (particle creation in dynamical universes; Hawking effect; connection
between black holes physics and thermodynamics; criticism to the concept
of particle}; however, this kind of approach is clearly suitable for the anal-
ysis of specific effects, but not for the formulation of a fundamental theory:
there is in fact no prescription about the back reaction of quantum matter
on the spacetime, which is supposed fixed a prior:.



As a nice example of investigation in this frame of ideas, we shall
briefly mention to the possibility of enlarging our understanding of space-
time singularities by using quantum matter as a probe. The key idea of
all the discussion can be quickly expressed as follows: while singularity
theorems are proved in terms of incompleteness of causal geodesics, these
latter represent physical particles only in a classical approximation; even
in Minkowski spacetime a particle can be approximately represented by a
curve only for a finite part of its existence, because wavepackets spread.
How much does then a geodesic represent a physical particle near, say,
a collapse or cosmological singularity? and which is the meaning of the
"mathematically defined” singularities in terms of the behaviour of parti-
cles in its neighbourhood? The relevance of these questions suggests that
the analysis of a quantum field, rather than that of causal geodesics, could
be suitable for a classification of singularities which displays their physical
properties.

It is important to remark that, near curvature singularities, vacuum
polarization effects will become not negligible, and their backreaction on
the metric will probably have to be taken into account: an analysis based
on quantum theory in curved spacetime can therefore shed light on the
problems and clarify some concept, but does not provide the framework
for the formulation of a consistent theory. We are then led to tackle the
controversial problem of how does quantum matter act as source of gravity,
namely how to construct a semiclassical theory.

In semiclassical gravity, the gravitational field is treated classically
again, by means of general relativity, but the backreaction of quantum mat-
ter on the geometry is taken into account by semiclassical field equations.
These latter represent, to our mind, the crux of the theory: the problems
arising when a classical system is coupled to a quantum one are in fact
deeply intertwined with the chosen interpretation of the quantum theoreti-
cal formalism, which is itself a still open foundational subject. Let us try to
explain this point with a simple example, constructed out of the theory on
which almost all the results obtained so far in semiclassical gravity {mainly
in the study of black holes evaporation and of inflationary cosmology) are
based: the field equations are chosen to be [8,9,10]

G, | -
Gy =~ (BT} (L1)

where T, and |} are, respectively, the stress-energy-momentum tensor

operator and the (normalized to unity) state vector of quantum matter.
In this context, we can imagine a situation in which a particle has

the same probability 1/2 to be in two disjoint regions of space, far from



each other; moreover, let us suppose that the weak field limmit holds, so that
(1.1) become
Vi = dnGmlyp|? (1.2)

where 1(z) is the Schrédinger wave function and m is the mass of the
particle: then, according to (1.2}, the gravitational field should be the
one produced by two particles with mass m/2, placed in the two regions.
Performing a measurement into one of these regions, the particle will be
found or not, changing abruptely the right hand side of (1.2): near the
region where the particle is now known to be present the field will be
increased to the one generated by a mass m, while at a distance d from
it, it will be the same as before for a time d/e; moreover, there are no
masses out of the region. Such a situation is not allowed by the weak Held
equation (1.2) (nor by (1.1)), as can be immediately seen from its integral
formulation.

We think this paradox to be particularly instructive, because it shows
clearly the need to achieve physical understanding and insight in the sub-
ject, rather than to rely on a purely formal treatment, which can hardly
deal with conceptual problems; moreover, it provides a simple example of
the kind of difficulties arising when the nonlocal features of quantum theory
and the typically relativistic requirements of causality are considered at the
same time.

Which of the hypothesis underlying the reasoning in the previous
thought experiment have to be changed in order to remove inconsistencies?
It seems that the paradoxical result has its deep origin in the requirement
for the field to have a classical behaviour even when coupled to a quantum
particle: an obvious solution could then be to abandon the idea of a classical
field, admitting a weakly semiclassical approximation, where the field is
allowed to have quantum features, but only those which are induced by the
source. Unfortunately, it will be shown that this approximation holds only
for linear field equations, which seems too much a strong requirement from
the physical point of view.

We are therefore led to explore the opposite scenario, where the field is
supposed to behave classically, while matter is allowed to exhibit a nonstan-
dard quantum behaviour; the coupling between matter and field provides in
fact an interaction between a quantum and a classical system, which could
be considered as a measurement on some observables of the former, with
consequent state vector reduction. The previous paradox would then be
solved because the position measurements performed by the experimenters
occur only after the wavepacket has already been reduced by the continuous
interaction with classical gravity: this "spontaneous localization” effect can
also be introduced, phenomenologically, as a correction in the Schrodinger
equation, and it is worth to be noted that models including it have already



been suggested and studied [11,12] in some detail.

There is another problem in a theory based on equations like (1.1),
which is also related to the interpretation of quantum theory. Usually the
state vector |¢) is not supposed to describe a single system, but rather an
ensemble of identically prepared systems: then the right hand side of (1.1)
must be intended as an average over such an ensemble. On the contrary, the
left hand side is referred to a well precise spacetime, so that it seems that
equations {1.1) make no sense at all! There are possible solutions to this
puzzle: in a weakly semiclassical context, for example, the left hand side is
related to an ensemble of spacetimes, ton, so there is no more interpretative
inconsistence; however, if gravity is considered as truly classical, then we
need to confront us with the uneasy task of formulating a quantum theory
of individual systems. Theories of this kind are, for example, those based
on hidden variables [13,14], in which a particle is supposed to have, at each
time, well defined values of position and momentum: in such theories it
is reasonably easy to construct physically meaningful source terms for the
field equations. Unfortunately, it has been proven experimentally [15] that
any viable hidden variables theory must have a nonlocal character {16,17],
and it is very difficult to incorporate this feature into a relativistic context.

As a natural consequence of this discussion, we shall divide the present
thesis into two parts, one concerning with conceptual and interpretative
aspects of quantum physics, the other devoted to study how does quantum
matter act as source of gravity. We want o warn here that, even if Chapter
2 is organized in a "mathematical” style, this has been done only In order
to gain in clearness, and there is no claim of formal rigour.

We shall use spacetime metrics with signature +2; in tensors, the
indices a, b, ¢, ... run from 0 to 3, while i, 7, k, ... run from 1 to 3. Other
notations will be defined in due place.



Part 1

Conceptual Aspects of
Quantum Theory
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In this part we shall critically review the foundations of standard
quantum theory. It is particularly important, according to the general
philosophy underlying this work, to distinguish, when speaking about a
physical theory, between the mathematical formalism and its interpreta-
tion; in the particular case of quantum mechanics, these two aspects are
so difficult to relate each other, that the character of the resulting theory
has some features resembling schizophrenia. For this reason, we shall split
the material into two part: Chapter 2 is devoted to a brief summary of the
basic axioms, also for the purpose of establishing our "technical language”,
while in Chapter 3 it will be discussed the problem of connecting the math-
ematical concepts to the world of experience. About the formalism, we
make a distinction between kinematics and dynamics: by kinematics we
shall mean all the paraphernalia needed for the description of states and
observables, while dynamics will be related to time evolution.

In Chapter 4 we shall explore the compatibility between quantum the-
ory and relativity. The general formalism of the former gives to the concept
of time a very peculiar role, thus entering in conflict with the relativistic
requirements of covariance: the only way to retain the quantum dynami-
cal law is therefore to write it with respect to a reference system, i.e. a
congruence of future directed timelike worldlines, for which time is a well
defined concept. Unfortunately, in so doing, observers belonging fo differ-
ent systems give essentially different descriptions of physical phenomena,
and concepts like that of particle become ill-defined. The main root of
these difficulties has to be identified, to our mind, in the nonlocal features
of quantum theory, and we believe that an acceptable solution to the prob-
lem could be found only after a thorough understanding of these unusual
properties.



Chapter 2

The Mathematical Formalism

a) Kinematics

The mathematical framework of quantum theory is devoted to the
description of the concepts [18,19] of state and gbservable. The physical
context in which these ideas are meaningful will be discussed in the next
chapter: here we want only to associate them to some mathematical objects
which are precisely defined. The main concept on which all the following
definitions rely is that of a Hilbert space [20,21] H.

Definition 2.1 A state is represented by a linear operator * p: H — H
such that:

i) p is self-adjoint;

i) p is nonnegalive definite (i.e. {¢|p|¥) > 0, Y|4y €H );

) trp = 1.

Proposition 2.2 There ezists an orthonormal basis {|n)} of H, in which
p 1s diagonal: .

5= puln)inl. (2.1)
For the eigenvalues p,, p, € [0,1] and

> ope=1 | (2.2)

Proof. Trivial, remembering the properties of self-adjoint operators. O
Definition {2.1) provides us with the most general notion of state in

quantum theory; it will prove useful in the following, however, to distinguish

a class of particular states, known as pure cases: they can be characterized

! Density, or statistical, operator.



by adding to the properties in Definition (2.1) the requirement that p be a
projection operator, namely that

7 =5 (2.3)

Proposition 2.3 In the basis of Proposition(2.2), p is a projection opera-

tor iff
5 = ln)nl, (2.4)

for some n.
Proof. If (2.3) is applied to (2.1}, we get
pi = Pn, Vn,

which gives either p, = 0 or p, = 1. By (2.2) it is clear that there must
exist one, and only one, n such that p, = 1, from which (2.4) follows. The
converse is trivial. O

It is now clear that a pure case can be described not only by the
statistical operator jp, but also by the normalized vector |n) €H; this cor-
respondence, however, is not one to one, because § is not altered under the
replacement of |n) by ¢'*|n), with o« €R. Bearing in mind this arbitrariness,
we can give the following

Definition 2.4 A pure stale is associated to e unit vector of H.Vectors
differing by a phase factor define the same pure state.

Remark 2.5 Of course, a pure state can be defined also specifying that j
is a projection operator. The cases for which (2.3) does not hold are called
mized stafes or mizvtures.

Remark 2.6 Iiis important to notice that to a pure state it is assocrated a
state vector of H, but the converse is not always true: there are unit vectors
of H that cannot be associated to any physical state: they are excluded by
the so called superselection rules.

Definition 2.7 An observable is represented by a linear self-adjoint oper-

ator in H. If A denotes an observable, then is associated operator will be
written as A.
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Another concept, here introduced as primitive, and whose physical
meaning will be clarified in the next chapter, is that of measurement of an
observable on a given state.

If |@n,7) is an eigenvector of A, in the sense that

Alan, ) = tnlan,r), (2.5)

where r represents a degeneracy index, we can construct ! an orthonormal
basis {la,,r}}:
<G.n,1"|ﬂ'.m,3> "":‘Snmérs- (26)

Then the projection operator
Pla,) = lan, ) {an, 7|, (2.7)

which projects on the subspace of H corresponding to the eigenvalue a,,
can be constructed for each n, and A can be decomposed as

A=Y a,P(a,). (2.8)

Now it i1s possible to state two most important assumptions of quan-
tum theory:

Axiom 2.8 The only possible results of the measurement of an observable
A are the eigenvalues {a,} of the operator A.

Axiom 2.9 If the observable 4 is measured on a state described by the
density operator p, then the probability that a, be the outcome of the mea-
surement 13

p(an) = tr(5P(a,)). (2.9)

Remark 2.10 The previous azioms are well posed. In fact, it is well known
that the eigenvalues of a self-adjoint operator are real, so they are suitable
to represent outcomes of measurements. Moreover, p(a,) defined by (2.9)
satisfies all the requirements for a probability:

i) p(an) ERT ;

in fact, working in the basis of Proposition(2.2),

ples) = Y (ilpP(an)li) = 3. (ilpli) (51 Plan)]s) =

- Z;pk(i|k)(k|j)(j|l5(an)|i) =

= 3 melk|P(an)|k) > 0;

1Since A is self-adjoint, eigenvectors corresponding to different eigenvalues are mutually
orthogonal,

11



) Taplan) =1
in fact

Y plan) = 3 tr(pP(an)) = tr(p 3 Plan)) = trp = 1

i) plan) <1
follows from i) and ii).

Proposition 2.11 The average value of the measurements of A on a stale
described by p is

(4) = tr(pA). (2.10)

Proof. By (2.9) and the definition of average value,
(A)y =) a.p(an) = Zantr(ﬁp(an)).

Using the basis {|a,,r)} in evaluating the trace, and remembering (2.7)
and (2.6), we have

(4) = 3 tnlam,7[pP(an)lam,7) = 3 an(tn, rlplan,r) =

nmr nr

= z<amr|f5“n|amr)'

nr

Using now (2.5), we get (2.10). O

Proposition 2.12 If 4 is measured on a pure state described by |1), then
(2.8) and (2.10) become, respectively:

pla,) = Z |(am,r|¢r>|2 : (2.11)

(4) = (p]ALb). (2.12)

Proof. The proof of (2.11) is trivial. To prove (2.12) it is sufficient to
remember the spectral representation of the identity operator

i= ZP(CLn) =3 |an, ) (2,7 (2.13)

nr



Remark 2.13 Equation (2.9) can be writien also in the interesting form
plan) = (P (an)). (2.14)

The probability p(a,), in the sense of statistical frequency, can then be con-
sidered as the average of an observable P{a,) to which the self-adjoint op-
erator P(a,) is associated; it must be noticed that the possible results of
a measurement of P(a,) are I or 0, corresponding to the result a, of the
measurement of A or to any other result.

Until now, our discussion has been conducted only for operators with
a discrete spectrum: however, in the future we shall deal with such ob-
servables like position, whose spectrum is generally a continuous one, so
an extension of the formalism should be necessary. Since this turns out
to be technically nontrivial, but has no relevance in the treatment of the
conceptual problems we are interested in, we shall not include it here, re-
membering that it is thoroughly examined in ref. 24 and 25.

It is useful to consider the case in which H is the direct product [21] of
other two Hilbert spaces Hy and H,, i.e. H=H;®H,. If 4 is an operator on
H representing an observable, and j represents a state, equation (2.9) will
certainly hold again; an interesting problem is, however, how to extract out
of g the informations characterizing the states associated to, say, Hy: this
can be done by introducing the concept of partial trace as in the following

Definition 2.14 Let A be a linear operator on H. The “tracing over H,”
operation !

trad =Y (na| Alny) (2.15)
produces a new operator on H;.

Proposition 2.15 Let A, be an operator on H; representing an observable
Ay, and let § be a density operator on H. Then, if al is an eigenvalue of
A1, the probability that a measurement of A, give the result a® is

p(ay) = tri(p1Pi(al)), (2.16)
where )
Pi(g‘]::n) EZ'G}.L,T)(G,LT‘L (217)
and
151 = iT‘z ﬁ (2-18)

!Equation (2.15) can be properly understood thinkmg to A as expanded in its spectral
decontposition.

13



Proof. If A, is an arbitrary operator in H;, representing an observable 4,,
we have

P(arlz) = Z P(a‘rlnam = Ztr(ﬁp(aﬁ,ai‘)),

b2t

1

where p(al,a?,) is the probability that a simultaneous ! measurement of

n? m
Ay and A4, gives the results al and a2, and P{al,d2,} is the operator which
projects in the subspace of the eigenvectors corresponding to al, and a2 :

P(ai:am) Zlam ®|a'ml )( : 15|:

= Pl(ﬂ.n)®Pz(a.m). (219)
Now, using the obvious relation
tr = try otr,, (2.20)

and the cyclic property of the trace, we obtain:
pla,) = 2 pP(a}, al, )—ZL‘T Oy G )P) =
= an (trs(Py(ar) ® Py(al,)p)) =
= Tm (Py(al)ira(1y ® Py(al)p)) = tro(Pulal )irep) =

— f.,.l(pl( 2)6r) = tri(p Pi(al)).

The meaning of Proposition (2.15) is that, if j describes a state in
H,®Hs,, the corresponding state in, say, H;, can be consistently described
by p1, obtained by tracing j over H,. Since j; verifies i)- 41)-iit) of Defini-
tion (2.1}, it can be identified as a statistical operator.

b) Dynamics

The results of the measurements of an observable change as time
passes; this can be expressed by saying that the probability p(a,)is actually
a function of time, p(a,.,t). By equation (2.9} it is evident that either 3,
or p(an), or both of them must be function of time, too; the dynamical
problem in quantum theory is therefore to determine this dependence. The
most important general property of time evolution is formulated in the
following

lAl and A, can be certainly measured simultaneously, bemg associated to the operators
Al ® 1, and 1, @ A, of H, which commute.

14



Axiom 2.16 Time evolution is represented as

3 (1) = U(t,t0)p (t0)U (1, o), (2.21)
where U(t,tg) s a unitary linear operator on H such that ﬁ(t,t) =1.

Remark 2.17 Unitarity of the iransformation (2.21) is needed in order to
guaraniee that properties ¢)-ii)-iii) of Definition (2.1) are preserved by time
evolution, that is, that 5(t) is a density operator if 5 () is. Linearity is a
central requirernent in the ordinary quantum theory, which has been fested
experimentally to a high degree of precision [22]: however, theoretical inves-
tigations about deviations from the linear evolution are currently pursued

[23].

Axiom (2.16) represents time evolution in the Schréodinger picture,
where the state is supposed to evolve, but observables are not. Since all
what can be measured experimentally is only the statistical frequency of
a result, p(a,), equation (2.9) suggests, as an alternative, to consider the
state fixed, allowing observables to evolve: this is formally expressed by

P(anst) = (5 (£)P(an, to)) = tr(U(t, to)p (1)U (t, 1) B(an, to)) =
= (5 (1)U (1, t0) Plan, )T (1, 10)) = tr(p(t0) Plan, 1)),

where

Plan,t) = U, 1) Plan, 1)U (¢, o). (2.22)

Being P(a,,t) constructed from the eigenvectors {}a,,7,1)} of the operator
associated to the observable A like in (2.7), we see that (2.22) involves a
time evolution of these eigenvectors as

(any ™ 2) = U (2, t0) an, T, to), (2.23)
which, by (2.5_), implies a time evolution of A:

A(t) = U(t,10)T A(t0)0 (¢, 10). (2.24)

The scheme of time evolution expressed in (2.23) and (2.24), where observ-
ables and their eigenstates evolve in time, but the state do not, takes the
name of Heisenberg picture.

Proposition 2.18 For a pure case, the Schridinger evolution (2.21) be-
comes simply

|t) = U{¢, t0)to). (2.25)

15



There is now clear evidence for a first problem of compatibility be-
tween quantum theory and relativity: when dynamics is taken into account,
a particular time enters in the description, and this sounds as a highly non-
covariant feature of the theory.

There are, apparently, two possible ways to solve this problem. One
relies on the idea that the spacetime coordinates must appear all together,
on the same footings’, in the fundamental equations; this has been, histor-
ically, the first attempt to formulate a relativistic quantum theory, but it
has shown to be essentially unsuccessful [24]. Alternatively, it is possible to
think that the time ¢ in the dynamical equations is referred to a particular
reference frame, that is, to a congruence [25] of future directed timelike
curves with a normalized tangent vector, each of those represents an ob-
server: quantum theory would involve therefore the concept of observer in
its very basic formulation. This last approach is the one currently used in
studies of quantum mechanics on a fixed background spacetime [7,26], and
it has led to remarkable results [27,28,29]; nevertheless, there are still seri-
ous problems, both in the formalism 7] and in its interpretation {30,31,32].
We shall return to this topic in Chapter 4 of the present thesis.

X Coming back to the general formulation of quantum theory, we expect
U(t,ta) to depend on the details of the specific system: considered. The
unitarity of [7(%, {y) allows, however, to write

U(t, to) = exp (10 (£, 20)), (2.26)

with Q(t,tg) a self-adjoint linear operator on H such that Q(¢,1) = 0;
moreover, let us give the following, obviously well posed,

Definition 2.19 The hamiltonian is the self-adjoint linear operator on H

~ d haul f] Lrd
.H(f.) = —H%}' ) (t ,t)ltlzlt, (22[)

where h is Planck’s constant.

Proposition 2.20 The evolution equations (2.21), (2.24) and (2.25) are
solutions of the following differential equations:

0 (70s), 5 1) (2.28)
m%ﬁﬂ = —[H(1), A(2)]; (2.29)
dy
ih=t = H()lt). (2.30)

! Apart from obvious differences due to the metric of spacetime.

16



Proof. Equations (2.26) and (2.27), together with the conditions U(t,#) =
iand Q(z,t) = 0, allow to write

(1 +¢,4) = exp (— %ﬂ(t)) —i- %‘:ﬁ*(t) F. (2.31)

By definition of derivative, and using (2.31), our new equations follow triv-

ially from (2.21), (2.24) and (2.25). O

A general survey of the mathematical formalism of quantum theory
cannot go much further, because the next step, that is, the specification
of H (#), requires the detailed knowledge of the system under study. Qur
present treatment, however, is sufficient to undertake an extensive discus-
sion about the interpretation problems, which will be examined in the next
chapter.

17



Chapter 3

The Interpretation

a) The Statistical Interpretation

The time has come to establish a correspondence between the formal-
ism developed so far and what is generally understood as physical reality,
that is, the properties of the external world which can be explored by oh-
jective experiments.

The main interpretative problem to solve concerns the concept of
state; since this is formalized, in Definition (2.1), by a density operator, we
can ask, more precisely: "what does actually a density operator describe?”.
Intuitively, the answer would be that it describes the state of a physical
system, about which information can be obtained by means of measure-
ments of some quantities {which have been called observables in Chapter
2). _

As reasonable as this statement could seem, it nevertheless contains
an element which is responsible for several difficulties when a more detailed
study is performed: the idea that standard quantum theoretical formalism
be suitable to describe a single physical system. It is commeonly believed
this to be possible, provide a deterministic behaviour be replaced by an
intrinsically probabilistic (or, more technically, "stochastic”) one: this be-
cause the fundamental laws of chapter 2 do not establish a unique corre-
spondence between a state and the results of possible measurements on it:
(2.9) gives only the probability of an outcome, and differs therefore drasti-
cally from the classical laws which are characterized by unique predictions,
once the initial conditions (i.e. the state} are completely specified.

The flaw of this argument can be easily discovered by noticing that
the predictions of quantum formalism cannot be tested on a single sys-
tem: equation (2.9) can be checked only if many systems to which it corre-
sponds the same p are available. The strategy for an experimental control
of quantum theoretical results is then to prepare a big number of identi-

18



cal systems all in the same state, which is supposed to be described by a
statistical operator g, and to test (2.9) according to the frequentistic inter-
pretation of probability. It becomes then pretty clear that p fully describes
the behaviour of an ensemble of similarly prepared systems, but not of an
individual one; this leads to the obvious conclusion that quantum mechan-
ics is a theory of ensembles: in fact its predictions cannot be tested on a
single system, whicl the formalism is thus inadequate to describe.

The argument against an interpretation in terms of individuals relies
therefore on the fact that there are features of a state (i.e. of a density
operator p) which cannot at all be detected by any conceivable experiment
performed on a single system. A typical example is provided by the phe-
nomenon of interference, which we shall now treat in some detail because
of its relevance to the understanding of the concept of classical behaviour.

The most straightforward approach to the analysis of interference
effects consists in the study of the difference between a pure case and a
mixture; let us suppose, to fix ideas, that a state is described by the vector

) =3 plan)?lan), (3.1)

where |a,) represent eigenstates of an observable 4; from |3} it can be
constructed the statistical operator

p=10)¥] =3 p(a.)"*p(am)"?|an) (aml. (3.2)

The problem is now how to distinguish between the state described by g
and the one described by

p' =2 p(an)lan){anl, (3.3)

which differs by g in that it does not contain off-diagonal elements: a
simple series of measurements of A is certainly not suitable for this purpose,
because

tr(pP(an)) = tr(5' P(an)) = p(an), (3.4)
so that p’ reproduces all the features of the pure state (3.1) that can be
tested measuring A; however, §' represents a mixture, because

p" =2 plan)lan){an| # 5"
Let then B be another observable, with spectrum {b,/}; now,

tr(pP(bw)) = r(p'Plbw)) +

+ ;p(anf”p(am)”z(anlﬁ(bnjnam), (3.5)
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and, if (a.n|f3(bnr)|am) # 0 for some m,n,n’, it is possible to discriminate
between (3.2) and (3.3) with measurements of B, the difference arising just
from the off-diagonal terms in (3.2): since these involve different eigen-
states of A, they are said to exhibit interference effects. While in the state
represented by (3.3) we have

tT(ﬁfp(bﬂ’)) = TP a‘n nlpb )la Z| n’lﬂn | p(an)._
= Zp(bn;,an)p(an), (3.6)

which can be realized supposing that, during each measurement of B, the
system is in a well defined state |a,} with probability p(a,.), this is not con-
ceivable for the state (3.2), where different eigenstates |a,) are considered
at the same time.

In the statistical interpretation {18,189} of quantum theory, therefore,
(3.2) and (3.3) describe ensembles of differently prepared systems; more
precisely, (3.3) describes an ensemble E' of systems, a fraction p(a,) of
which has been prepared according to the state |a,}?, but this partition
cannot be performed at all for (3.2), which describes an ensemble E of
systems all prepared according to |1/). In other words, a mixture is an en-
semble admitting subensembles which are pure cases; this can be expressed,
schematically, as in Figure (3.1) and Figure (3.2). _

It is useful to notice that the statistical character of the outcomes
of measurements has two essentially different origins; in the situation de-
scribed by g', there is nothing intrinsically quantum in the probabilistic
distribution, which derives simply by the fact that the measurements are
performed on systems which have been prepared in different ways. In the
case of (3.2), however, this is not true, and the uncertainty in the results
is quantum in character: interference represents therefore the way to dis-
criminate between quantum and classical behavmurs an issue to which we
shall soon return.

We want here to stress on the fact that in the statistical interpreta-
tion it is meaningless to speak about the state of a system, this concept
being referred only to ensembles: such expressions like "the system is in
a superposition state” lose therefore any significance, and the idea of su-
perposition means only that the ensemble cannot be split in subensembles
of the type occurring in E’ of Figure {3.2). This appears then a very rea-
sonable and economic solution to one aspect of the state vector reduction
problem?, which we shall now treat in some detail.

R
or each n.

*Particular cases of which are the famous "measurement problem” and "Schrédinget’s
cat paradox” [33].



Figure 3.1: Pure case : |t} describes the ensemble E of identically prepared

systems.
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Figure 3.2: Mixture ; s’ describes the ensemble E' of nonidentically

prepared systems, a fraction p(a.) of which are in the subensemble E,

described by |a,).
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Let us consider a system composed of a microobject m and a macro-
scopic one (e.g. a measuring device) M; moreover, let M be coupled to m in
such a way that an observable Ay of M is triggered by an observable 4, of
m as follows: if %) is an eigenvector of the operator 15 ® Ay, corresponding
to the eigenvalue al™), it is also an eigenvector of Apyr ® 1., with eigenvalue
a™) (if M has to act as a measuring device of 4,, on m, for example, part of
the spectra of 4,, and Ajpr must be putted in a one-to-one correspondence,
in order that the knowledge of al*) (e.g. the position of a pointer) could
be uniquely related to the value of a{™), thus obtaining a realization of the
intuitive notion of measurement of 4, by M).

This kind of situation creates the following problem: if we start with
an initial state

[to) = a™, af™), (3.7)

where |a!™) al™)}) €Hpy®H,, are common eigenvectors of Iy @ A, and
Ay ®1,, corresponding, respectively, to the eigenvalues a{™ and o!*), and
we leave it to evolve in time assuming that quantum theory, supposed to
be universal and complete, holds both for m and M, we get at time ¢ the

Schrodinger evolved state

1) = 3 cq (t)]a™D, 0™y, (3.8)
23
The tricky point is that {3.8) represents again a pure state, so it displays
P g P
both superposition and interference also in Hjs, as can be easily seen from
the associated density operator

FE) =100 = 3 Jea (@) 1™, al™) (@l al™)] 4
+ 3 e () ear () 1D, @™y (@) 0t (3.9)

but it is well known to be characteristic of macroscopic objects (and in
particular of measuring devices and cats!} that they have well defined
values of their observables, and exhibit no interference phenomena at all,
so that the statistical operator at time ¢ would rather be expected to be

A1) =3 lea () [at™), al™)) (al™), o™, (3.10)

which corresponds to a mixture and cannot therefore result from (3.7) under
Schrodinger evolution, that preserves the condition of equation (2.3). In or-
der to get rid of this paradox, it has been suggested [20] to replace equation
(2.21) with the "projection postulate” (or "state vector reduction”)

B(t) — (1)
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whenever a "measurement” is performed; this proposal, however, raises
more problems than it solves: in fact, which criterion has to be applied
in order to decide that a physical process is a measurement? and, what
happens to a system which is continuously observed [33,34]7

It is important to remark that there are two aspects of this paradox,
both of interpretative nature, though the second is more technical:

(1) how can a macroscopic object, whose observables have always well
defined values, be in a superposition state?

(2) why is interference never observed in macroscopic systems?

For what concerns (1), as for the problems related to the state vector
reduction, it must be said that the incongruence is present only if a state
vector is supposed to describe a single system: in the statistical interpre-
tation, there is no meaning to the statement that "an individual is in a
superposition state”, the concept of superposition being applicable only to
ensembles.

In trying to solve (2), we need again to rely on the statistical inter-
pretation, but the arguments involved are a little more subtle. First of all,
let us simplify the problem by considering only a macroscopic system M,
to which a Hilbert space H is associated; in order to observe the typically
quantum phenomenon of interference, we need to prepare in the same way
an ensemble E of copies of M, which is described by the vector of H

%) =D ealn) = 2 & fealln), (3.11)

where {|n}} is an orthonormal basis of H. By its very definition, how-
ever, a macrosystem has a huge number of degrees of freedom, so that the
preparation of many of its copies in the same way, leads to actually differ-
ent ensembles, and a practically realizable experiment requires therefore to
treat with a mixture rather than with a pure state. To formulate better
this concept, let us suppose that M is constituted of N elementary (i.e.
with very few degrees of freedom) subsystems S, so that H=@Y,K H.. A
member of an orthonormal basis in H will then be

N
) =) @ @lnw )y =@ I )is (3.12)

i=1
and a state vector of H will have the form (3.11), where each coeflicient
¢, C is associated to a well precise set of vectors {|n1}1,..., |nx )}, the
index n standing for the set {n,,...,ny}. Our idea is now that the ”coarse-
graining inability” in preparing systems with a large number of degrees of
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freedom makes the phases o, uncontrollable [35]; more precisely, we shall
show that if the states deseribed by the vectors

Zei”‘" len] |7) (3.13)

and

> ™ eal In) (3.14)

describe ensembles of M obtained as results of the same macroscopic prepa-
ration process, then the experiments must deal with the mixture described

by
> leal? ) (nl. (3.15)

In other words, the origin of the classical behaviour (i.e. of the lack of inter-
ference) in complex systems has to be identified in the ”"thermodynamical”
difficulty of preparing them in the same microscopic way.

To show this, let E be an ensemble of M such that E={),E,, where
E, are pure cases composed of a fraction p, of copies of M in E, with
Pu = P < 1%, described by

]

) = 32 fealin) : (3.16)

physically, each E,, represents an ensemble for a microstate (in the thermo-
dynamical, not quantum, sense!), and the coarse-graining of the preparation
process does not allow to decide to produce an element of E, rather than
of E, (this is why p, = p.s). E will then be a mixture described by the
density operator

p =2 pulu)pl; (3.17)
but, by (3.16),

i) {1}

)l = 32 et ) Jea|lew| [n) (m,

80 [} Utl)

5= lealienl [n) (m] 3 py el o
I

nm

(3.18)

Now, for randomly distributed phases a{*), and remembering the condition
Py X 1,

icr[f”—c!i,’:' —
Zp#e( " ) ~ 6nm H (3.19)
u

1All the microstates are equally probable, and there are many macroscopically indis-
tinguishable microstates.



which, substituted into (3.18), gives
5 Y leal )l (3.20)
which is the result we claimed before.

Tt must be pointed out that the statistical interpretation is central to
this solution of problem (2}: in fact, our result is that, because of coarse-
graining reasons, every practically realizable ensemble for a macrosystem
will be described by (3.20) and not by (3.13); the flaw in the argument
about (3.9) and (3.10) was therefore the hypothesis underlying (3.7), that
it is possible to assume a pure state to describe the behaviour of an ensem-
ble for mUM: even if conceivable in principle, such a situation is practically
unrealisable.

b) Alternative Theories

Standard quantum theory, as we have presented it, does not deal
with predictions about single systems, but only about ensentbles; this re-
striction, even if it is not relevant for what concerns laboratory experiments
ol microphysics, becomes highly unsatisfactory when the theory, supposed
to be universal, is applied to bigger and bigger systems, whose ensembles
are more and more difficult to prepare: a complete failure of its predictive
power is reached if we pretend to apply it to the biggest existing system -
the universe - only one copy of which is available, making thus impossible
any test of frequentistic character. If we do not want to give up the task
of treating the universe in terms of fundamental physics, we need therefore
to change quantum theory, in its interpretation or, even more deeply, in its
mathematical formalism.

An alternative theory which retains all the formalism developed in
Chapter 2 is the one based on the relative state® interpretation [18,36,37,38],
which we shall now sketch very briefly, since it is extensively discussed in
the literature. The main hypothesis is that there is a one-to-one corre-
spondence between quantum formalism and physical reality, in the sense
that a state vector fully describes an individual. Let us now consider the
system mUM treated at page 23, whose state vector evolves from [ta) of
(3.7) to 1) in (3.8): if we combine the experimental fact that macrosys-
tems always have well defined values of their observables (so that, in the
case of (3.8), the compound system mUM can only be found in one of the
states |al™) al™)) with the previously stated hypothesis (which implies

LOr "many-worlds”.
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that all the states |a*) a/™ ) present in (3.8) must have a counterpart in
the real world), we are led to the conclusion that the Schrédinger evolu-
tion from (3.7) to (3.8) involves a splitting of the initial system mUM in
several mutually noninteracting copies of it, each one corresponding to a
well defined state |a!™),al™) ). The most attractive features of this theory
are certainly its capability to treat with the entire universe and an econ-
omy in the axioms: it can be proved [18,36l, in fact, that the probabilistic
interpretation of the coefficients ¢, in (3.8) is a consequence of the theory,
without requiring an axiom like (2.9). It seems therefore that the relative
state interpretation, providing by itself, through the process of splitting, a
representation of the ensembles of systems which are used in the statistical
interpretation, constitutes an extension of this latter, reducing to it in the
limit of laboratory situations. Since, in this thesis, we shall not deal with
quantum cosmology, we shall continue to rely on the statistical interpreta-
tion, whose pragmatic nature allows to avoid some tricky problems involved
with the many-worlds idea [18].

An interpretation of quantum theory which makes reference to indi-
viduals, necessarily has to deal with the riddle of state vector reduction;
in order to apply the theory to single systems, there have been suggestions
[11,39] about some changes to bring to the formalism. The starting point
is to introduce nonlinearity in the evolution equation, in such a way as to
produce the collapse of the state vector; in ref. [11,12] this has been done
by adjusting the nonlinear term so that, for simple systems, the reduction
effects are negligible (as they should be, on the basis of experience), while
increasing the number of degrees of freedom they become more and more
important, until they lead to a complete "measurement collapse” when a
macroscopic system is involved. Other models of dynamical reduction have
been investigated [39,40], and it has also been suggested [41,42] that these
violations of quantum mechanics have their origin in the coupling with
gravity; all these theories share the feature of considering the state vector
as a real entity, and not only as a mathematical tool.

Once the statistical character of standard quantum theory has been
recognized, the most straightforward generalization toward a theory of in-
dividuals is probably the hidden variables approach. In fact, if the out-
comes of experiments on equally prepared systems are predictable only in
their statistical distribution, it is natural to think that the behaviour of
individuals is determined by some "hidden” variables, whose values are not
controllable during the preparation process. An interesting example of such
theories is Bohm’s [13,14], in which a particle is supposed to have, at each
time, well defined values of position and momentum, and to obey classical
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laws of motion, but under the action of an additional "quantum potential”

ﬁ2 v2P1/2

" om Pz/z ’

Q(x,t) = (3.21)

where m is the mass of the particle and p(x,t) satisfies the continuity
equation

dp .
o TV (pv) =0, (3.22)

with v the particle’s velocity. In order that the theory be able to reproduce
the results of quantum mechanics, it is easy to see that p(x,t) must be
interpreted as density of probability that the particle be found at time £
“in the point x: p(x,t) is therefore a quantity which refers to an ensemble
of particles, whose position is not exactly known because of its dependence
from hidden parameters?; but then it is hard to understand how such a
function, expressing the behaviour of the ensemble, can enter in the deter-
mination of the motion of a single particle through (3.21). This objection
[21] is certainly one of the most serious to the viability of Bohm’s theory,
and it is still under debate {43]. Other problems which any theory based on
hidden variables must face with, are those related to the nonlocal features
of quantum mechanics; however, since these aspects are treated extensively
in the literature [14,17,18,44], and they do not play a crucial role in our
next discussion, we shall not concern with them in this thesis.

1The position of the particle at an initial time tn.
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Chapter 4

Quantum Theory and
Relativity

As we have already pointed out after equation (2.25), the formalism of
quantum theory is not manifestly covariant, since it singles out a partic-
ular time: the Hilbert space of states and the algebra of observables are
specified at one instant of time, and the dynamical equations make these
objects to evolve along all the history of the system under study. It has
been suggested, in order to reconcile this state of affairs with a relativistic
treatment, that quantum theory requires the concept of observer to be in-
troduced from the beginning, and that ¢ in (2.21) is nothing but the proper
time of this observer; we now want to investigate this idea in more detail.

First of all, we must ask for the class of spacetimes which allow the
introduction of a global notion of time; the answer is straightforwardly given
in the literature [1,2], and indicates that we need to restrict ourselves to a
globally hyperbolic spacetime (M, g), which admits Cauchy hypersurfaces.
Let therefore ¥ be such an hypersurface, with future directed normal vector
u such that

Ugu® = —1; (4.1)

let us choose a congruence of observers v whose tangent vector on X coin-
cides with-u (Figure (4.1)), and such that the reference frame so constructed
is proper time synchronizable [45] (the existence of such frames follows from
the global hyperbolicity of (M, g), which guarantees the existence of a global
function 7 such that u® = —V*r is a future directed timelike vector field).
Let us choose, moreover, the origin of the proper time 7 of these observers
so that v(79) € T, Vv ; at a time 7 # 75, & will be evolved, along the
~ curves, to another Cauchy hypersurface %' = {7 (7)}, orthogonal to the
observers and representing thus their transverse space.

Now it is possible to construct a quantum theory referred to the
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Figure 4.1:

observers 7y, where the states are related to systems on one hypersurface
of the foliation {X}, and the dynamics is described by a unitary operator
U, (7,70 ) such that U,(r,7) =1 and

dir, (1,70 ) 1 -
——s =~ H, (7 4.2
dT HHU( )UU(T?TD)‘} ( )

according to (2.26) and (2.27), where H, (7) is the hamiltonian of the sys-
tem on the hypersurface /. It is easy to verily that the analogous of
equations (2.28), (2.30) and (2.29) are, respectively:

it e (7 (), () (4.3)
md‘;;u) = H, (7)|r5u) ; (4.4)
w2 g (o), () (4.5)

where the first two equations hold in the Schrédinger picture (hence with
A, (t) = A, (7)) while the third holds in the Heisenberg picture (with
5u(r) = pu(r0) ot Iriu) = [r0;u)).

A particular case occurs when the system under study is a quantum
field, and the observables A are therefore the intensity of the field com-
ponents, satisfying a system of field equations (for example, Klein-Gordon
equation for a scalar fleld, or Maxwell equations for the electromagnetic
field}; the operators associated to A will then be functions of the spacetime
point @ € M, and the derivative d/dr will be replaced by the derivative
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along u, L. If, in the Schrodinger picture, L, AS (=) = 0 (that is, if 4 does
not depend explicitly on the u-time), then (4.5) becomes

ih Ly A (v) = —[H, (7(=)), A7 (2)] (4.6)
where fiuH (x} is the field in Heisenberg picture:

AT (z) = U(r(z), 7o) 45 (2) U (r(2), 70). (4.7)

This method of extending the formalism of Chapter 2 to the case of a
more general reference frame in a curved spacetime is quite straightforward
and naive, but has led to important theoretical results [7,27,28,29]; never-
theless, it appears somewhat artificial and not sufficiently general, since it
relies on some hypothesis, such as the global hyperbolicity, which are not
necessarily satisfied in a generic spacetime (and, moreover, whose validity
is very difficult to test in our own universel}). For this and other reasons,
it has been recently suggested by Hartle [46], to consider the Hilbert space
formulation of quantum theory only as a particular case of the more gen-
eral sum-over-histories formulation, which is an extension of Feynman’s
celebrated path integral formalism [47]. In this scheme, the fundamental
element is no more the intuitive concept of state, but rather that of history
H of a system; the theory asks therefore directly for probabilities of mea-
surement’s results, without involving all the machinery of Hilbert spaces
and so on.

To be more explicit, we need to distinguish between conditions C,
which are the observables fixed by the experimental design, and observations
O, which are the possible results of the experiments; the all theory relies
then on the following

Axiom 4.1 The probability that it will be observed O under conditions C
13 '

p(010) = 2L~ (43)

uhere p(0,C) = |9(0,C)]*, (4.9)

o ®(0,0)=3"3[H], ' (4.10)
with )

B[H] = exp (%—S[H]) : (4.11)

in (4.11) § is the action funciional for the system, and the sum in (4.10)
is over all the histories H compatible with the prescribed O and C.
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What is remarkable in this formulation, is that it reproduces all the re-
sults of the theory developed in Chapter 2, without giving any special role
to the concept of time; this makes it particularly suitable for the analysis
of quantum mechanical effects in a relativistic context. Moreover, it has
been proved {46] that the sum-over-histories approach allows a Schrédinger-
Heisenberg formulation on a hypersurface if this latter satisfies some con-
ditions: since this is, in general, not guaranteed, we are led to conclude
that the sum-over-histories method could well be applied in situations in
which the one based on equations (4.4) and (4.5) cannot, thus preserving
the predictability of quantum theory. It should be remembered, however,
that these conclusions, having been tested only on a rather limited vari-
ety of cases, must still be considered quite speculative: we can therefore
conclude that, at the present time, a satisfactory, covariant formulation of
quantum theory does not exist.
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Part 11

Quantum Matter as Source of
Gravity
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The very fundamental structure of every geometrical theory of gravity
can be epitomized in the relation

geometry —— matter.

In Einstein’s theory [1,2], the left hand side corresponds to the well known
tensor® ;

Gab = Rab - 5 gubR b

where R, is the Ricci curvature tensor and R = ¢g*®R,, is the scalar cur-
vature; the properties of classical matter are represented, in the right hand
side, by the stress-energy-momentum tensor Tg;. The problem of writing
the field equations (or their equivalent) when quantum behaviour is allowed
is, as we have already mentioned in the Introduction, an extraordinarily dif-
ficult one, and it is still open.

In this part, we shall critically analize the problems which arise when
the quantum behaviour is introduced in an Einstein-like theory of gravity:
this is different from what it has been done in Chapter 4, because now it
is the dynamical part of gravity -the field equations- that is examined; of
course, the difficulties already met, related to a covariant formulation of
quantum theory, will combine (certainly in a nonlinear way!) to the new
one.

Chapter 5 deals mainly with a critical review of the most pregnant
physical argnments which have been advanced in favour of the quantization
of the gravitational field: our conclusion is that they are mainly inconclu-
sive, being based on theoretical prejudices rather than on experimental
evidence. Therefore, we support the less ambitious semiclassical program,
where the spacetime geometry is treated classically, while matter is quan-
tum: even in a fully quantum theory of gravity, in fact, it is possible to
envisage situations in which this is a fairly good approximation. In this
context, the main problem one must deal with is, essentially, the one con-
cerning the choice of the right hand side in the field equations. The physical
structure of the generally accepted source term (see equations (1.1)) is inves-
tigated in Chapter 6, while Chapter 7 is devoted to a detailed discussion of
the conceptual consistence of the resulting theory. The rather disappointing
result we obiain is that a semiclassical theory requires, for its formulation,
such foundational changes in quantum mechanics, that it is more conve-
nient to face the problem of quantization of the field; on these grounds, a
weakly semiclassical approach is suggested, showing how it allows, for lin-
ear situations, to recover the expected field equations without running into

inconsistences. Further improvements of this idea are discussed, finally, in
Chapter 8.

1We do not care, here, about the possible presence of a cosmological constant, which
is of no relevance to our later discussion.
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Chapter 5

Is It Necessary to Quantize
Gravity?

Classical general relativity [1,2], as discussed in the Introduction, replaces
the concept of gravitational field by that of riemannian curvature in the
spacetime manifold, described by a tensor R%, whose contractions R, =
R¢, and R = g°° R, satisfy the Einstein equations

1
Rab - —2' gml,R = ETab ) (5.1)

where £ = 87G/c? is a constant of nature and the stress-energy-momentum
tensor T, can be obtained from a classical action 5,, for matter by func-
tional derivation with respect to the metric g*:

1 65,

Vg 8g®®
The great amount of efforts devoted to the construction of a quantum ver-
sion of this theory, has led to only few remarkable results {3], and the lack of
a general, reliable theoretical framework, induces o think that probably it
is wrong to try to extrapolate our current methods of investigation to such
an exotic field, and that a critical analysis of the foundations of modern
physics must precede any further theoretical study [6]. For these reasons,
we shall not take as granted the need to create a quantum theory of gravity,
but rather we shall try to review the motivations for its construction, trying
to maintain an objective attitude, in which only the experimental results
are considered unquestionable.

T = (5.2)

Let us first ask for the motivations of essentially theoretical nature:
the most serious of all is, in our opinion, the use of quantum gravity as a
remedy to cure the disease of other field theories [48,49]. It is well known, in
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fact, that quantum theories of matter fields lead to ultraviolet divergences
when treated in a classical background spacetime; now, it happens that,
in a quantum theory of gravity, the one-loop contributions from gravitons
would be comparable to the vacuum polarization effects of matter, leaving
tlhius the possibility for a mutual cancellation.

There are other, more vague arguments in favour of quantum gravity;
one of the most remarkable results of the study of quantum theory in curved
spacetime is Hawking’s discovery [27] that to a black hole can be associ-
ated a physically meaningful temperature and entropy, making therefore
possible a well posed study of black holes’ thermodynamics. These quanti-
ties are intrinsically quantum in their definition, as it is evident from their
expressions for, e.g., a Schwarzschild black hole of mass M:

hed 1
- STkG M’ (53)
kG, |
5= TG e (5.4)
C

where k is Boltzmann constant. The appearance of Planck constant % in
(5.3) and (5.4) emphasizes their quantum origin, which has been clarified
by Bekenstein {50] on the ground of the equality between entropy increase
and information loss, occurring during the collapse process of a matter con-
figuration to a black hole. The key of his argument is that, accordingly to
relativistic quantum theories, a particle cannot be localized more precisely
than within its Compton length A = f/mc [24]: in order to fit into the hole
during collapse, therefore, A must be smaller than the Schwarzschild radius,
and this imposes a lower imit on the mass m of the particle; consequently,
the number of possible configurations that can give origin to a black hole of
given mass M, is limited by quantum nature of matter, which allows thus
to speak meaningfully of the quantities (5.3) and (5.4).

The thermodynamics of black holes has proved to be so rich, simple
and physically interesting [51,52], that it is natural to ask about the possi-
bility that it has a more fundamental meaning, in which the entropy (5.4)
corresponds to "internal microstates” of the hole. It has also been sug-
gested [53] that the transformation of pure states into mixtures associated
to the process of black hole radiation, provides evidence for the crucial role
of gravity in the puzzle of state vector reduction. Personally, we believe
these arguments, though attractive, too vague and cloudy to compel us
to undertake a task like that of the construction of a quantum theory of
gravity.

Another context where quantun gravity is often invoked as a cure,
is that of spacetime singularities, which we have quickly described in the
Introduction: however, even here the attitude is to use handwaving argu-
ments, based on a theory which does not yet exist, to guess what such
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a theory could do in order to remove pathologies of the existing models.
Until now, these studies have given a negligible contribution both to the
understanding of singularities and to the formulation of quantum gravity:
therefore, we cannot consider them differently from what they are, that is,
only intuitive guesses.

. We remain, thus, only with the argument related to the role of gravity
in the cancellation of divergences occurring in field theories; this seems a
more strong and rigorous reason to accept the quantization of the gravi-
tational field, but it is more fair to admit that, on experiinental grounds,
it looks very speculative, too. The formalism of quantum field theories,
in fact, is guite messy and inelegant; the complexity of the mathematical
machinery employed in the derivation of experimentally testable results,
should make us open to the possibility that another formalism could exist,
which leads to nearly the same numerical conclusions, without running into
the techmical problems of cancellation of infinities. That such alternative
approaches are possible, in the sense that the currently available experi-
mental data do not uniquely fix the theory, can be understood thinking to
the case of electrodynamics, where the amount of data is extremely high,
with respect to the situation for other imteractions, because of the possi-
bility to perform significant experiments at low energies. It is astonishing
that most of these results can be understood and theoretically predicted
by a very simple semiclassical model [54], and that a semiclassical non-
linear theory can reproduce all the observed details, like those related to
the anomalous magnetic moment of the electron [55], which are commonly
believed to provide unquestionable evidence for the quantization of the
electromagnetic field. These examples make us very suspicious about the
validity of the previously advanced argument for quantization of gravity,
and, in general, of all the arguments based on the internal consistency of
theories which are, experimentally, very ill-founded.

On the other side, there are no experiments which could be used as
evidence, even indirect, in favour or against quantum gravity; however,
if the problem has to be tackled (and it should be, being a fundamental
one), it is necessary to rely on some leading principle. The lack of ex-
perimental data suggests therefore to try to involve the very fundamental
principles of physics in the discussion, through the use of some gedanken
experiments. There is a statement by Unruh [56] which we believe worth
to be quoted here: "[Gedanken experiments] serve not to test nature but
rather to present the a priori prejudices of the theorist in their simplest
physical guise. They highlight the beliefs and prejudices the theorist has
about the physical world - beliefs which could well be proven wrong by
true experiments, but which seem necessary to limit the infinite range of



possible theories in the absence of experiment.”

Unruh itself suggests a gedanken experiment to support the view that
the gravitational field should be quantized: the experimental setup consists
of a neutron star of mass oscillating in its fundamental quadrupole mode,
with consequent emission of gravitational radiation; this would damp both
amplitude Q and momentum P of the vibration in a time of the order of
a second, with consequent decay to zero of the commutator [Q, P]. Such a
conclusion seems to be in contrast with the principles of quantum theory,
and the natural conclusion of the argument would be therefore that gravity
should be quantized, in order to provide an additional force which, taking
into a,ccount vacuum fuctuations of gravity itself, restores (@, P] to the
value ik # 0. This argument, which could be also used to prove that
the electromagnetic field must be quantized, seems, at first sight, very
convincing; however, a deeper analysis shows that it could well be inexact,
so that it is not so compelling as it looks, after all.

In fact, it is reasonable to accept that, if we allow the existence of a
physical system which is not quantum and which can interact with other,
quantumn, systems, then quantum theory has cartamly to suffer of some
changes [57]; therefore, it should not be a surprise that (@, P is found to
he damped to zero by such an interaction: the only thing we must be sure
about, is that such a damping cannot be observed in laboratory systems,
which are the only one over which such experiments have been performed.
The results of the gedanken experiment cannot be used as a proof of the
need for the gravitational field to be guantized, since such an experiment
has never been carried on for a neutron star: they only prove that a classi-
cal field is not compatible with a theory in which [@Q, 15] = th forever. It is
easy to check, with a rough calculation, that for the electron in an hydro-
gen atom, the gravitational damping time is of the order of 10% seconds,
which is about 10%? times the life of the universe accordingly to standard
cosmology! There is no doubt that such small deviations from quantum
theory would be practically impossible to detect.

Another interesting attempt to establish the quantum nature of grav-
ity by means of a gedanken experiment, is due to Eppley and Hannah [58].
They consider the scattering of classical gravitational wave packets by a
quantum particle prepared in a state with spatial localization Awz; such
scattering can take place in two, mutually exclusive, possible ways. Either
it produces a wave function collapse, and it can be considered as a position
measurement (scattering by a pointlike object), or it does not produce any
collapse at all (scattering by an extended object). In the first case, it is easy
to realize that, using gravitational wave packets of sufficiently small width
and little amplitude {there is no lower limit to these quantities, because
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gravity is supposed to behave classically), and starting with a particle with
well defined momentum (i.e. with a great value of Az), we are allowed,
detecting the position of classical waves after scattering, to infer both the
values of position and momentum for the particle, thus violating the un-
certainty principle. I, in the other case, scattering does not collapse the
state vector, then it provides a way for observing the wave function without
reduction: it is shown in [58] that this leads to a violation of causality, in
the sense that signals can be transmitted at a speed larger than ¢. Eppley
and Hannah conclude therefore that the assumption that gravity is classi-
cal violates very fundamental principles of physics, and that semiclassical
theories must be rejected.

In our opinion, this thought experiment proves nothing else than the
inconsistency of the interpretations of quantum theory which suppose a
state vector to describe a single system. In the statistical interpretation, as
we know from Chapter 3, the wave function has no meaning for a single par-
ticle, and there is thus no question about the occurrence of collapse; more-
over, it must be pointed out that the uncertainty relation AzAp, > /2 is
also meaningful only for measurements performed on an ensemble. There-
fore it is possible to conclude, remembering the quotation from Unruh, that
the thought experiment due to Eppley and Hannah only displays their prej-
udices in favour of one interpretation of quantum mechanics. Let us remind,
as a side remark, that the statistical interpretation is probably the most
pragmatic and moderate of all, since it does not introduce in the theory
any arbitrary or metaphysical element; moreover, it solves easily problems
which, in other interpretations, lead to insurmountable paradoxes.

We believe this situation not to be limited to the few examples dis-
cussed here, but to be much more general: it is very difficult to devise a
gedanken experiment which, involving only features of the present theories
which have already been tested experimentally, could prove in a convincing
way something about a field so far from standard physics as this is. We
prefer therefore another line of attack, trying to analyze explicitly theories
which could be considered as alternative to quantum gravity; the rest of
our thesis is devoted to the study of one of them.
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Chapter 6

The Semiclassical Einstein
Equations

As we have discussed in Chapter 5, there is no evidence, neither of exper-
imental nor of theoretical nature, for the quantization of gravity: all the
thought experiments so far devised in order to show that the presence of
a classical gravitational field would lead to some changes in quantum the-
ory, cannot be used as arguments in favour of quantum gravity, since the
deviations they predict are so difficult to measure that they could well be
present, but have never been detected until now.

This ”conservative” attitude in favour of the construction of a theory
where gravity is not quantized receives further encouragement when, more
pragmatically, the order of magnitude of the scale at which quantum gravity
effects should become important is computed: the result turns out to be
the ridiculously small Planck length

1/2
lp= (g??) ~1.6-107% cm, (6.1)

C

which, compared to the ordinary (atomic, nuclear, or even of particles)
scales of quantum systems, induces to think that a regime is conceivable
which plays an intermediate role between the "rigid” scheme of quantum
theory in a fixed background spacetime and the still unknown full quan-
tum gravity. It is possible, in fact, to envisage experimental situations in
which the gravitational field is generated by matter behaving quantum me-
chanically, but it is measured averaging over regions whose typical size is
much greater than lp; in such conditions it is therefore meaningful, even if
a quantum theory of gravitation is available, to ask for the formulation of
a consistent semiclassical treatment, where classical gravity is coupled to
quantum matter.
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Despite of the theoretical and practical interest of such a program,
there has been an extremely little amount of work about 1it, and the only
concrete theory investigated so far is the one constructed from the field
equations [8,9]

Gas (z) = m(th|Tas () [3) (6.2)

where £ € M is a point of spacetime, |1/) represents the state of quantum
matter, and Ty is its stress-energy-momentum tensor operator. It is easy
to understand that the (6.2) reduce, in the limit of macroscopic systems, to
the ordinary Einstein equations (5.1): in fact the statistical dispersion of

T, around the average value (1{T,|+) will become negligible, thus allow-
ing the stress-energy-momentum features of matter to be treated classically.

Equations (6.2) have some intriguing consequences, both of concep-
tual and technical nature. First of all, it should be clear that their solution
is not an easy task at all: not only Th (z) will contain explicitly (as usual in
general relativity) the metric tensor gu (x), but also |4} can be completely
characterized only once the entire spacetime structure is known; the Hilbert
space formulation of quantum theory, in fact, strongly relies on the global
properties of M, as it has been discussed in Chapter 4. This fact implies
also that, in the context of (6.2), the superposition principle of quantum
theory is violated [10,59], since different |1p} are compatible with different
spacetimes. :

It must be pointed out that a straightforward calculation of (1,[1|Tabi1,b)
for quantum matter fields will give, in general, a divergent expression: the
right hand side of (6.2) is therefore the result of complex regularization
techuniques {7]. This aspect of the problem is complicated further if the the-
ory based on (6.2) isnot regarded as exact, but only as an approximation to
quantum gravity, along the line of thought we have explained commmenting
(6.1): in this case the one-loop corrections due to gravitons will produce
effects comparable with those of the matter fields, so they also have to be
considered in the computation of {3|Tu|®).

An interesting analysis, which we shall pursue in some detail, concerns
the physical structure of the source term in (6.2): this can be studied by
exploring the newtonian limit for the case of a single particle; the semiclas-
sical gravity problem can be therefore formulated, in this approximation,
as follows:

Problem: We know that the particle, through Poisson equation, be-
haves as the source of a gravitalional field. Bul how can an ezpression
for the source term be extracted only from the knowledge of the probability
density for the particle’s position?
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The approach based on equation (6.2) tries to solve this problem with
the following

Hypothesis: The field is not generated by a point mass, but by a
mass density (1|a (x,t)[¥) ,where fi(xX,t) is ¢ mass density operator'.

In order to study the consequences of this hypothesis, we need to
specify [i(x,?); let therefore |y,?) be an eigenstate of position, such that

2(8)ly,t) =vyly,t), (6.3)
where Z({) is the position operator of the particle: we require
E(x )y, ) =m&(x—y)ly, 1), (6.4)

with m the particle’s mass. Equation (6.4} can be justified by noticing that
very narrow wavepackets peaked on y approximate the classical concept of
point particle located in y, to which a classical mass density

p(x,t) =m&(x~y)
is associated; in fact, (6.3) and {6.4) together imply the symbolical relation
p(x,t) =m&(x1—2(1) . (6.5)

The state vector |1) can be expressed as

/.da y’,fhb ly'.' /dayd’ y? )Iy: ) (66)

finding

peoB) = [dydln)a eyt =
= m(x,f)x t>, | (6.7)

and

(1 Gest)) = (13 G D)) = el (e, ) (63)
We can therefore conclude that, in the semiclassical approach, a nonrela-
tivistic particle is treated as a spread mass with density m|y (x, t)|°.

There is an immediate objection which could be raised against (6.8):
in the theory of the Schrodinger field, energy density has the expression

hz
211

]

-V, (6.9)

1We are working lere in the Heisenberg picture.
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which differs totally from (6.8). However, it is easy to realize that (6.9) cor-
responds only to kinetic energy which, in our approximation, is negligible
with respect to (6.8): the reason why only (6.9) is generally written in the
Schrodinger hamiltonian, is that the volume integral of (6.8) gives simply
m, which does not contribute to the dynamics of the particle.

The term (6.9), representing kinetic energy, is of order v?, where v
is the particle’s speed: it can therefore be neglected also in the weak field
approximation, which retains terms of order v and generalizes thus the
newtonian limit, allowing ”gravomagnetic” effects to be treated. In this
approximation, Einstein’s theory reduces to a form which closely resembles
Maxwell’s one [2], and energy current has to be taken into account as source -
of gravity, while material stresses are still negligible. The current term can
be found by noticing that, classically,

. 1
J=pv = —Hp,

m

so we are led to construct some operator like & (x,t)p(t); let us then analyze
the combined actions of i (x,1) and p(t). Since

[ (x,8),B(1)] # 0,

neither g (x,#)p(t) nor p(¢)it (x,%) are self-adjoint, but their sum is; let us
therefore define

J(xat) = L

(5 (x5 )B() + DA (x,1)) (6.10)

What interest us about the operator (6.10) is, according to (6.2}, its expec-
tation value, which is calculated in the following

Proposition 6.1 If ¥(x,t) is the Schrodinger wave function of the state
[4), then

Il

(W] j(x, 1)) =
_ %wx,tr V(1) | (6.11)

(30, 1))

where

aVi=aVg-Vapj.
Proof : Remembering (6.4} and the similar relation

p(H)|k, t) = kk,1) ,‘ (6.12)

43



and writing the completeness relations for {|y,t}} and {|k,1}},

~

[ vy o= [ Pelknle =1, (6.13)
we get easily, remembering that

1 -k-x

(X,t“(,t) = WEI oo (6.14)
FO BN = s [ @Rk (et bt) s (619)
Is(t)ﬁ(x,f)w):m—mfd%ke EE e 1) [k, 8 (6.16)

From (6.15) and (6.16), equation (6.10) becomes
3 1 3 ikx —ikx _
i(x, 1) = Wfd kk (6 |, 1) (k, £f + e ik,ﬂ(x’ﬂ) =
h 3 ikx ik -
_ Wfd k(Ve = 1, 1) (k, 8] —V e Ik,t)(x,tj) (6.17)

Taking now the expectation value of (6.17) in the state |}, and noticing
that

(m (@rh)2 [ e () = ix, ) (6.18)

we easily obtain equation (6.11). ©

Summarizing these results, we see that, for a nonrelativistic quantum
particle, the right hand side of {6.2) must reduce, in the weak field limit,
to the source terms

(1 (3, 1)) = map(x, 1) (x, £) (6.19)
and 5
(3, 0)) = -9, 1) b, 1) (6.20)
It is very interesting to notice that, writing
P(x,1) = [(x, )] eF T2 (6.21)
(6.20) becomes
(1) = (o (x, 1) = VS(x 1), (6.22)
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which, defining

vix,t) = — VS(x,1), (6.23)

1
m
becomes at the end

(3, 2)) = {p (%)) v(x, 1) - (6.24)

Let us notice that, assuming Schrédinger equation® to hold, (p) and v
satisfy the continuity equation

9
ot

For what concerns its action as source of gravity, therefore, our quan-
tum particle acts as a fluid whose density and velocity are given, respec-
tively, by equations (6.19) and (6.23); this is a nice result, but we can
do even better, remembering that the stress-energy-momentum tensor not
only represents the energy density and current of matter, but also its stress
content. Surprisingly enough, a stress tensor p;; can be extracted out of
the wave function v by the use of Schrédinger equation: this tensor is of
no use in the weak field limit of semiclassical field equations (6.2}, but it
gives an insight on the kind of source terms one must expect in the fully
relativistic theory.

+ V- (( ) )=0. (6.25)

Buristically, a stress tensor should act on the fluid characterized by
(p) and v in such a way as to make possible to write down an Euler equation

dv; _ (p)
{12 P —0;pi; — :QV ) (6.26)
where p 3
Zﬁhg‘é}“.‘-’_v.v, . ' (62()

and V is a real potential energy, which can also depend on 1 (see previous
footnote). Introducing (6.21) into Schrodinger equation, and making use
of (6.25), we find

as 1 . R V|
2 (VS = — —V; 2
5 + (VS) p——— Vi (6.28)
applying now (6.27) to (6.23), and using (6.28) and (6.19), we get
dv 1d a8 1
& T ma T (at B V) )

!Even with nonlinear corrections of the form V1], with V4] real.
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h? V2| 1
- —=VV=
Zmzv ( | m
1 K

=~ (VRIVI = IV V) — 9V (629

Requiring (6.26) to be satisfied, we are led to write

O = A (OB - [$108,5,]) =
I @ - B =
b (wasal) (6.0
and finally 1
pij = "%(#)a'aj In{n) + Ci; (6.31)

where 9;C;; = 0: from now on, we shall take Cy; = 0.

We have thus obtained the noticeable result that the system of equa-
tions (6.25), (6.26) and (6.31) is equivalent to the Schrodinger equation,
once a correspondence between (p) and v on one side and % on the other
is established through equations (6.19), (6,21) and (6.23). It is therefore
possible to think to a quantum particle with spin zero as an irrotational’
perturbation [60] in a fluid whose pressure is defined by (6.31})!

This conclusion is very exciting, but we should be careful about it:
it cannot be taken seriously unless we show that p;; acts as a true physical
pressure, because we are interested in p;; as source of gravity. In order
to decide about this, we shall now work out a specific simple example,
calculating p;; on the wall of a rectangular box of sides a, b, ¢, containing
a particle. Inserting the wave function [61]

5 | . :
¥(z,y,z) =/ ——sin T o sin 71-ﬂzy sin o2z \ (6.32)
, abc a b c

which corresponds to an eigenstate of energy with eigenvalue

E:Lﬁ'(ﬂ+ﬁ+ﬂ_§)’ niEN+,

2m \ a? b? c?

1t is easy to see that, treating in the same way a particle with spin, the perturbation
is no more irrotational.
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into (6.31), we find p;; to be diagonal; with

Ar?h? ™ L, T
n?sin? —y sin? ———éi:-: , (6.33)

P = b

ma3be
and similar results for pss and ps3. This means that pressure along the i-th
direction does not depend on z;: on a face normal to z; (e.g. the box wall}
it is maximum in the centre, and becomes zero at the edges; the mean value

of p1; on such a face is
252
7 he

{(p1) = n . (6.34)

ma3be
The striking point is that (6.34) agrees completely with the result of the
standard, physically meaningful, way to calculate pressure [61, page 67!

Another specific example which is worth to be analyzed is that of a
free particle with gaussian wavepacket centered in x = 0 at time #,:

[ (x, to)|* = (213;1)3 exp (—2};2) , (6.35)

where R gives a measure of the gaussian’s width. We know that Schrodinger
theory with ¥V = 0 predicts the packet to spread in such a way that it
doubles its width in a time

mR?
tSch.r ~ T .

In our "fluiddynamical model”, it is straightforward to compute

hz
Pi; = m(#)éi;‘ = pby; (6.36)

then, there will be a "dynamical” spread of the perturbation, according to
(6.26) which becomes now '

(#)i—: = "ﬁgv(#) : (6.37)
A rough order of magnitude estimate gives to the acceleration the value
52
miR?’

so the perturbation will increase its size, in time ¢, by

h'l
m2R?

tz;
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requiring this length to be equal to R we obtain the dynamical time {4, of
spreading
tdyn ~ tSchr' .

the spreading of wavepackets can be therefore considered as a pressure ef-
fect!

It is interesting to write, from (6.36),

p= (%)H(#)cz, (6.38)

where A = i/mc is the Compton length of the particle and ¢ is the speed
of light: then, by noticing that, when R < A/2, it is p > (u)c?, we are led
to two conclusions:

i) for very localized particles, quantum stress is important as source
of gravity; :

i) in the relativistic case, the "causality” requirement p < (p)c?
should lead to B > MA/2, which means that particles cannot be localized
with a precision greater than ~ A.

It turns out that ) is a general property of relativistic gquantum
theory [24 |, and this supports the idea that the quantum stress p;; plays
a physically significant role in the field equations (6.2). As a result of our
analysis, we can therefore state that in the weak field limit, for v < ¢, the
source term (1|Ths|4) has the structure

( (p)e*  (p)wie ) ,

(p)vic pij + (p)viv;

where the term {p)v;v; has been added to p;; in the spatial part, as usual,
in order to guarantee that the complete 4-tensor is divergenceless. It must
be remarked that the three kinds of terms present in the previous ma-
trix are of different order in v, so their contributions as sources of gravity
are comparable only for a relativistic particle, whose treatment is beyond
the approximations performed here, and requires therefore a more detailed
analysis {62].
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Chapter 7

Criticism of the Semuiclassical
Einstein Equations

The analysis of the equations (6.2), which we have started in the previous
chapter, could be pursued further, generalizing it to the fully relativistic
case {62] and exploring the mathematical structure of the semiclassical prob-
lem [10]. Before starting to carry on such a sophisticated program, however,
we believe it is necessary to be sure that it is physically well posed, that is,
that it does not lead to conceptual inconsistences: for this reason, we shall
devote this chapter to the physical understanding of (6.2).

As mentioned in Chapter 6, a technical difficulty of the semiclassical
approach is nonlinearity: usually, the origin of this feature is identified in
the structure of Einstein equations, but we want to stress here that there is
another, more subtle, source of nonlinearity, which has to be ascribed to the
fact that, in (6.2), the particle is treated as an extended object. In order
to investigate this point, we need to complete (6.2) by adding to them the
quantum mechanical evolution equation which, in the Schrodinger picture,
is given by (4.4); however, we need some care in specifying the hamiltonian
H,(), because it will depend on the spacetime metric gu5, which, by (6.2),
will be a functional of [¢): therefore, l::Tu(*r) will be a functional of |}, too,
and this will lead to a right hand side of (4.4) which is nonlinear in |4).
It is easy to see how this nonlinearity is increased by, but not due to, the
nonlinearity of Einstein equations; this can be realized, again, by studying
the newtonian limit for a single particle, when equations {(6.2) and (4.4)
assume the form: '

V2V = dnGmipi? | (7.1)
L O R, T
thar = —%—V P+ V] . (7.2)
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Equation (7.2) looks quite strange, since it contains a self-interaction term
for the particle; the physical origin of this unusual "correction” can be un-
derstood thinking to the i¥-wave as propagating in a field created by the
particle through (7.1): the potential energy will be therefore a functional
V[#] of the wave function, which, in turn, will act on the behaviour of
the wave function itself. It should be clear that (7.2) is really the correct
newtonian limit for the dynamical evolution of |41); in fact, in the relativis-

tic formulation (4.4), the hamiltonian H, is not only function of 7, but
also of gus, which embodies the concept of gravitational potential: the self-
mteraction of quantum matter, mediated by the classical field, is therefore
present also at this level, and has to be considered seriously in a theory
based on (6.2). It is interesting to notice that the same problem arises in a
semiclassical theory of electromagnetism, but since, in general, e* » Gm?,
the nonlinear effects should be much more relevant than what they are for
gravity, and it would be interesting to have some specific result which could
be compared with experimental data, in order to check the validity of an

ansatz like (7.1) [63L.

There is another peculiar feature of a semiclassical system like that
described by equations (6.2) and (4.4}, which has been recently analyzed
by Boucher and Traschen [64], and which can be shortly summarized by
saying that (6.2) and (4.4) do not allow to the gravitational field to "feel”
the quantum fluctuations of matter: in fact, being gravity coupled to the
expectation value of T, its behaviour will be driven by (T,s), regardless
of any fluctuation around it, which could be, in principle, quite big. This
point is intriguing enough by itself, but it becomes particularly disconcert-
ing when (6.2) and (4.4) are applied to the study of cosmological models
whose matter content is a quantum field; in most of the current literature
[65] on this topic, the background spacetime is assumed to be represented,
initially, by a spatially homogeneous manifold, satisfying Einstein equa-
tions {6.2) with the right hand side constructed out of a scalar field ¢ (=),
which is, of course, initially homogeneous and isotropic, too. The reasoning
which is generally performed is that, as time (referred to the fundamental
observers of our model) passes, ¢{z} will develop spatial perturbations,
due to quantum fluctuations; these, by the gravitational field equations,
will induce perturbations in the metric of spacetime, which will later act
as concentration centers for matter, after other physical processes will have
taken place. This picturesque scenario, which should provide a physical
mechanism for the origin of the inhomogeneities (clusters of galaxies) that
are observed in the present universe, cannot unfortunately rely on (6.2),
because these equations do not couple quantum fluctuations of matter to
the geometry of spacetime: if the initial conditions are spatially homoge-
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neous both in g, and in ¢, they will remain so for all the time.

It is obvious, at this point, that the equations (6.2) seem to involve
an objective interpretation for j1); in equation (7.1), for example, |1|* acts
as a source of the gravitational field (the particle is treated as an extended
system}), and this is hard to reconcile with an interpretation where ¥ is
not a physical field, but represents only the probability of a configuration.
On the other side, in Chapter 3 we have given extensive support to the
idea that |1} fully describes only an ensemble of equally prepared systems,
being it inadequate to predict the behaviour of an individual (remember
that gquantum theoretical predictions cannot be tested on an individual).
Moreover, as it has been explained in the Introduction, equations (6.2} are
inconsistent with an interpretation in which the state vector collapses when
a measurement is performed; we can analyse this point writing the state
vector collapse as

where

3= Y leal In)in] (7.6)

and |n} are orthonormal vectors representing eigenstates of the observable
which is measured {let us suppose, for sake of simplicity, that there is no de-
generacy). According to (6.2), before the measurement has been performed,
the source term for gravity is

(%b'ff‘abl'lib) =tr (ﬁfab) ? ( '

while, after the measurement, it becomes

~3
-1
N

(nlf‘ab|n) ? (78)

with probability |c,|?. As in the thought experiment described in the In-
troduction, the various |n) can correspond to different spatial (i.e. on & of
Chapter 4) distributions of the sources; if the measurement has a duration
AT, the effect of the state vector reduction will be to change the source
from (7.7) to (7.8) in a time ~ Ar: the inconsistency between this process
and the equations (6.2) is emphasized in Figure (7.1), which shows a space-
time diagram of the situation envisaged in the Introduction. At time = a
particle is in a state such that it has the same probability 1/2 to be in two
disconnected spatial regions 4 and B; at time 7> a position measurement
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on the particle is performed, which takes a time Ar; after time 7 4+ A7
(e.g. at time 73), as a result of the measurement, the particle is known
to be in the region B, with probability 1. If equations (6.2) are assumed
to hold, the gravitational field in the spacetime point p will have matter
contributions from both regions 4 and B and, possibly, from the region
labeled by question marks in Figure (7.1), while in the point ¢ it will have
contributions only from region B and, possibly, from the ”7-region”; since
the time At can be made reasonably small, and p and g can therefore be
chosen very close each other, it is clear that, in order to guarantee the va-
lidity of (6.2), we are forced to admit that matter is present in the ?-region,
so that the act of measurement induces an acausal (i.e. spacelike) matter
flow from A to B. This physically unacceptable conclusion leads to drop
either equations (6.2) or the hypothesis that the state vector collapse.

As alast remark on this thought experiment, we want just to stress on
the fact that the occurrence of a spacelike matter flow is a straightforward
consequence of the mathematical structure of (6.2); in fact, the identity

VG, =0 (7.9)

implies i
Ve (| T |y = 0 ; (7.10)

equation (7.10), as known, has the meaning of a conservation law, in the
sense that any change of the matter content' inside a closed spatial 2-
surface implies a flow through the 2-surface itself: the negative result of
the measurement inside A must be therefore accompanied by a matter flow
from A to B, as explained before.

These arguments lead quite naturally to the conclusion that (6.2)
require, in order to be consistent, an interpretation of quantum theory
where the state vector does not collapse; as we know from Chapter 3,
the most reliable of such interpretations are the statistical one and the
many-worlds: we shall now show that both of them are incompatible with
equations {6.2).

In the relative state formulation, the vector (7.5) is supposed to de-
scribe faithfully the matter content of space, under the hypothesis of simul-
taneous existence of different copies of the material system, each of them
described by one of the vectors |n); moreover, these copies do not inter-
act each other. When semiclassical gravity is taken into account by mean
of (6.2), however, this last condition holds no more, because the gravita-
tional field in a point of spacetime is generated by the source (7.7}, which

'Here we do not care about the intricate problems concerning a rigorous definition of
energy in a curved spacetime [66], since they are irrelevant to our discussion.
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takes into account all the copies of the system through the vectors |n) con-
tained in j); this situation provides therefore a coupling between different
copies, mediated by classical gravity. An observer’s state vector, in fact, is
contained in one of the components of |1), but by a measurement of the
gravitational field he/she can be aware of the presence of other components;
it is easy to realize, however, that such a possibility is in conflict with ob-
servations. An experiment has been performed [67] which is a gravitational
analogue of the Schrodinger’s cat paradox, where the positions of macro-
scopic bodies are triggered by a quantum mechanical process; as expected,
the gravitational field has been found to correspond only to one component
of the matter’s state vector, against the predictions of (6.2). Of course,
this result could be considered as an indirect evidence for the quantization
of gravity [67], but we prefer to adopt a more moderate attitude, and to
take it only as a further proof of the non viability of the equations (6.2) to
describe semiclassical gravity.

We are left therefore, in our criticisms to (6.2), with the statistical in-
terpretation of quantum theory: unfortunately, in this visual, the sifuation
is even worse. In fact, the left hand side

Glasly] (7.11)

is referred to a single spacetime, while the right hand side (7.7) represents
an average over an ensemble: equations (6.2) look then conceptually incon-
sistent. It is possible to try to balance the situation by considering the term
(7.11) as an average, too, in the following sense: an ensemble E,, of identi-
cally prepared material systems is described by a state vector |¢); each of
these systems is supposed to correspond to a gravitational field, so that an
ensemble E, will be constructed for gravity. But this means that gravity
also must be treated quantum mechanically, and it seems therefore that a
purely semiclassical theory which does not change quantum mechanics very
deeply is not viable. ' '

Having achieved such a negative result, it is natural to ask for the
conditions under which (6.2) hold in a quantum theory of gravity, in the
sense of a conveniently defined average. Since such a theory, as we have of-
ten stressed, is not presently available, a rigourous answer cannot be given;
however, we can try to investigate the problem in a restricted context,
which will be called weakly semiclassical approximation. The idea under-
lying this approach is to allow the field to have quantum features, but only
those which are induced by the matter: as can be easily realized, this hy-
pothesis removes all the previous inconsistences and paradoxes, and does
not require to deal with the most tricky problems of field quantization,since
"self-quantization” processes are neglected.
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In order to be more explicit about this point, we shall now work out
in detail a "toy model” of weakly semiclassical gravity, where a scalar field
@ in Minkowski spacetime is coupled to nonrelativistic matter according to
the classical equation

V.V =p, (7.12)

where jt is a source term. This model simplifies the problem very much,
since it reduces to one the number of field and source components, while
preserving some crucial features of Einstein’s theory, because (7.12) is a
second order, hyperbolic, equation for ¢; we must remind, however, that
(7.12) differs from (5.1) in that it is linear in the field. Let us now suppose
matter to be quantum: the arguments performed throughout this chapter
imply the field to be quantum, too. Its value at a spacetime point z will
therefore be, in general, not defined: however, it is possible to argue as
follows in order to succeed in defining a probability distribution for ¢(z).

Classically, (7.12) can be solved by the use of the Green function
D{(z,z'), which satisfies the equation [68]

V.VeD(z,2') = —§*(z,z'); (7.13)
in fact, writing
pla) = [ da'8' (e )u() (7.14)
in (7.12), we obtain, by linearity,
d(z) = — /R4 d's'D(z,z' )i (z') . 7.15)

As it is well known, D(z, z') is determined.by (7.13) only up to a solution
D(z,z'} of the homogeneous equation

V. VeD(z,5') =0 : (7.16)

to remove this arbitrariness corresponds to choose a Green function in
agreement with some physical requirements. The choice that is generally
made is the one which leads to the retarded Green function

D(z,a) = Ot~ )5((w—a')) =

1 . .
= mﬁﬂx—x[—c(t ), (7.17)

where § and O are, respectively, the Dirac and Heaviside functions. It is
evident, from (7.17), that the support of D™*(z,z’) is the past light cone
of z, and that (7.15) becomes thus

t 1 - 1 .
qﬁ(m)z—fzdsrc mp(x,t—ﬂx—-x'” (1.18)
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The physical meaning of (7.18) is that a classical pointlike distribution
located in y at time ¢ — 2|x — y|, produces in x at time ¢ a field of intensity

a

o(x, ty) = (7.19)

Cdmlx -y’

where a is a constant depending on the nature of field and matter: this can
be easily seen by substituting

1
bt — Spe— xl) = a8*(x' — y) (7.20)
c
into (7.18).
Now we can state the weakly semiclassical hypothesis, by requiring
that the probability that the field in x at time ¢ is found to have the value

(7.19) be equal to the probahility that the particle is found in y at time
t §|x -~ y}. More precisely, if ¥ is the wave function for matter, we have

BBl 6iy)) = Wiyt — e =y (7.21)

Let us notice that, provide matier motion is restricted to be timelike (which
is certainly true, since we are considering a nonrelativistic model),

, 1 i
n T YP(S(x 1Y) = /Ra dCyli(y,t - —lx—yhFF =1, (7.22)
because |1|*> obeys a continuity equation, and no flowlines can avoid the

past x-lightcone, or intersect it twice. This allows to define an average
value for ¢(z) as

{(=))

H

fRn Pyp(d(z;y))p(z;y) =
- fRs Cylp(y,t - %h{ —yDPe(aiy) =
- /R d'a' [ (2")[*D(z, ") . (7.23)

Now comes the crucial point of all the discussion: we want in fact to check
if it is possible to write the weakly semiclassical equation for ¢ as

Va4 (9) = ($IalY) | (7.24)

where /i is the source operator, such that {(in the Heisenberg picture)
Ay, t) = ol (x —y)lyt) - (7-25)
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Applying the linear differential operator V,V*? to (¢(x)) we get easily

Vo) = o [ i lp(a) e (w0 =
= aly(z)]" = (Pla(2)$) , (7.26)
which is exactly (7.24).

The result obtained is very interesting and enlightening; our toy
model admits a well posed and consistent semiclassical problem, but only
in its weak formulation: the term (¥|z|1) behaves as source not for the
g-field, but rather for its expectation value.

Before to comment a little more about the weakly semiclassical ap-
proximation, we shall put the previous discussion on more precise grounds.
Since the field is considered quantum, we associate to it, in each point of
space, X, a Hilbert space H(x), and in H(x) we consider a self-adjoint field
operator @(x,t) associated to the observable "field intensity at x”. Let us
suppose, moreover, that there exist a set of vectors’

4, %, % y) € H(x), ¥x € R, (7.27)
which satisfy the eigenvalue equation
d(x,1)|d, %, 15y) = d(x, 1 y)i, %, 57 (7.28)

with ¢(x,%;y) given by (7.19); the vectors (7.27) will be required also to
satisfy the generalized orthonormality property

(¢, %, 47|16, %, 1;2) = 8y —2) . (7.29)

A general state vector of H(x) will be written as

9.x) = [ Py B(x,5y)l,x by (7.30)

where

o(x,ty) = (6, % 5y|d, x) (7.31)
is the "wave function” of the ¢p-field at x. The key idea of the weakly semi-
classical approximation is that the ®(x,#;y}, which determine the quantum

behaviour of the field, must be entirely defined by the source; the most nat-
ural hypothesis is that

. 1
B(x,t;y) = 0y, ¢ — lx—=¥D, (7.32)

1Of the rigged Hilbert space.
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with a an arbitrary real function: tlis leads trivially to (7.21).

We would like to stress on the fact that, in this appreach, the field
is a quantum object; therefore, equation (7.30) does not imply that, in the
point x at time ¢, the field is a weighted sum of the fields ¢(x,;y) (which
is what strongly semiclassical theory states)! The meaning of (7.30) is that,
if an observer performs a measurement of ¢ in x at time ¢, he/she has a
probability density |®(x,#;y)|* to find the value ¢(x,#;y).

For what regards the normalization of |¢,x), it is

(@xlgx) = [ Pyl20ctiy)l = [ dyp(sixty) =1, (7.39)

accordingly to (7.22). The expectation value of ¢(z) in the state (7.30) is
therefore

(¢(z)) = (b, x|p(x)]d, %) (7.34)

which leads again to (7.23) and (7.24).

It is very satisfactory and exciting that we have finally succeeded in
the attempts to give a meaningful formulation of a semiclassical problem,
but care is needed again for two reasons:

1) {7.24) is an equation which relates the ensemble averages of ¢
and p: it is useless, therefore, for purposes like that of describing the field
created by a single quantum system;

it) the validity of the semiclassical field equation has been established
only for a toy model: we must still understand how the features of gravity
which were not embodied in (7.12) can change our results.

Let us comment separately about these two points. For what concerns
1), it must be remembered that the semiclassical approach makes sense, as
we have extensively discussed throughout this chapter, only in its weak
formulation, where the field is also a quantum system; for this reason,
all that can be computed about it, are, accordingly to Chapter 2, the
probability for the outcoming of measurements, and the consequent average
values of observables. These predictions, of course, will be testable (and
meaningful!) only for an ensemble of equally prepared fields; since we
have supposed the behaviour of the field to be completely determined by
the behaviour of the matter which creates it (this is the essence of the
weakly semiclassical approximation) the way to construct such an ensemble
is simply to construct an ensemble E,, for matter, described by a state
vector |¢), which will uniquely define an ensemble E; for the field. The
averages (¢(z)) and {u{z)) are thus performed, respectively, on E; and
E,.. If we prefer, we can also consider field and matter as a single system,
and say that, in the weakly semiclassical approach, an ensemble E for the
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total system can be obtained simply preparing matter: the state vector
describing E will be therefore uniquely determined by {4).

It is important, to our mind, to make at this point a comment about
a topic that is sometimes misunderstood. In the standard treatment of
elementary quantum mechanics, it is straightforward to derive the classical
limit of the behaviour of a particle subject to an external potential energy
U(x,t) as

2(t%|t

m%u ~ —V{|U(x, 1)) (7.35)
(Ehrenfest theorem}, where the Schrédinger picture is used. What we want
to make clear is that the physical situations underlying (7.24) and (7.35) are
precisely the opposite! In fact, (7.35) holds in an external field approach,
where the particle’s behaviour is driven by a classical field: the appearance
of the expectation values in (7.35) is a consequence of the little dispersion
of x around (¢|%|t), a fact which depends much on the preparation process
for the particle at an initial time %o, and very little on the features of
the external potential. Contrarywise, in (7.24} is the matter’s behaviour
to determine the field’s one, and both of them are quantum in character;
moreover, it is not possible to assign independently the initial states of
matter and field: if, in the framework of applicability of (7.35), the state
[t} is determined by I7(x,¢) and |¢p), but there is arbitrariness in the choice
of this latter, for {7.24) it is not conceivable to make a separation between
I} and |@,x): if the matter is quantum, then the field must be quantum,
too.

Due to their nature of ensemble average, the weakly semiclassical field
equations for gravity, even if they will prove to be correct!, lose much of
their charm. This interpretation, in fact, makes them useful only when a
collection of equally prepared, identical matter systems is available as a
field source; such a situation can be easily realized in the domain of atomic
physics {and, in fact, semiclassical calculations for the electromagnetic field
are often carried on successfully [54]), but in the context of general rela-
tivity (particularly in cosmology), the relevant physical systems are gener-
ally present in a single copy, und this makes therefore equations like (6.2)
uninteresting. We can compare the gravitational field in the weakly semi-
classical approximation to the macroscopic device M of page 23, which is
triggered by the microsystem m; since the behaviour of m is quantum in
character, it is impossible to predict exactly the values of the observables
A, and, consequently, Asr: only the probabilities p(a!™’) and the expec-
tation value (Apr) can be computed, but they have no predictive power if
only one measurement is performed.

If only one matter system is considered at any time, it is easy to

IUntil now, we have proved only {7.24), which holds for a linear toy model!
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understand that V{¥| in (7.1) has no operative meaning, being only an
average potential energy over an ensemble; as such, it will have no relevance
on the physical behaviour of the system, and equation (7.2) will be replaced
by the ordinary Schrodinger equation

- ]
thus removing all the problems about nonlinearity, at least in the newtonian
limit. In the full relativistic theory, the situation is not so clear, because
the hamiltonian H, in (4.4) is still function of the metric: this metric, how-
ever, cannot be simply the solution to equations {6.2), but must be the one
determined by the single system we are dealing with: since this cannot be
known a priori, all the problem seems to become ill-posed. '

Let us now face point i), concerning the generalization of our con-
clusions from the toy model for the ¢-field to Einstein gravity. The main
difference we have to concern about, regards the linearity of the field equa-
tions; this feature played a crucial role in the proof of (7.24), since the
existence of a Green function and the calculation {7.26) depend heavily on
it. It would be very difficult to repeat tliese arguments in the case of general
relativity, but fortunately we can use the ensemble interpretation developed
while commenting point i}, in order to discuss possible differences. Let us
suppose the field equations (6.2) to hold in the sense of average; this means
that, if |4) describes an ensemble of matter systems, each of them producing
a metric tensor g, and a related Einstein tensor Gg[g}, it will be

(Gasl9])ens = £ (] Tusleb) - (7.37)
But, because of the nonlinear dependence of G, from gu, it is clear that

(Guolg))ens # Gabl(gens] (7.38)

so the metric tensor which solves (7.37) (or, equivalently, (6.2)) is not
(gab>em_, apd has therefore no physical meaning, neither in an ensemble
context.

60



Chapter 8

Outlooks and Conclusions

The analysis performed throughout this thesis has led to several stimulat-
ing results, the most important of which is, in our opinion, the conclusion
that a semiclassical problem can be consistent only in a weak formulation
(unless quantum theory is deeply changed in its foundations); as a logical
consequence, systems like the gravitational field, which interact with quan-
tum matter, must behave in a quantum mechanical way, even on scales
much greater than Planck’s'. Since such a behaviour, as far as we know,
is intrinsically probabilistic, it is meaningless to speak about the value of
the field in some point of spacetime; semiclassical field equations makes
thus sense only as ensemble averages, and can be consistently applied only
to situations where many equally prepared, identical matter systems, act
together to produce the field. Such a condition is generally not satisfied
for physically interesting problems mvolving gravity, where usually only a
single system is considered.

As an example, let us consider again the case of 2 quantum scalar field
in an initially spatially homogeneous universe; from our "ensembles” point
of view, it is clear that inhomogeneities will be developed, both in the ¢-
field and in the metric of spacetime, but there is no way, even in principle,
to predict exactly their occurrence. Equations (6.2), as we have already
said, cancel all the effects of quantum fluctuations, but we can hope that
a better theory would be able to retain some of their features, for example
predicting a spectrum of perturbations in gu(z).

Once it has been established that a field coupled with quantum matter
must be quantum, too, even if in a weak sense, it is natural to ask for the
possibility of "self-quantization” effects. There is a rather natural way to
tackle this problem in our approach: the key idea is to consider vacuum as a

'Planck length, time, mass, temperature and so on, only give the scale at which self-
quantization effects (if they exist) become non negligible.
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form of matter, which is, operationally, a very reasonable point of view. In
fact, accordingly to the interpretation of quantum formalism explained in
Chapter 3, a state vector describes an ensemble of equally prepared systems:
therefore, when speaking of a vacuum state |0}, we necessarily mean an
ensemble of "systems”, all prepared in such a way as to correspond to an
idea of "vacuum?”, which we are trying to concretely realize. Maintaining
the attitude which ascribes the origin of the field's quantum properties to
the matter, we are led to the conclusion that to an ensemble E,, described
by 10}, it corresponds an ensemble E; of fields in vacuum, whose elements
can be, in principle, different from each other. Physically, this means that
when a vacuum is prepared, it determines the field consistent with it and
subject to some prescribed boundary conditions; to different vacua of En,
correspond different fields of E;, but it is experimentally impossible to
decide to prepare one or another of them.

Now, the field corresponding to one matter system will be affected
by the arbitrariness in the preparation of the vacuum copy: to each copy
of the system in an ensemble E! , will correspond many different copies of
the field in E%. Even if definite estimates are lacking at the moment, one
can hope that this could account for the so called "vacuum polarization™
effects, which could be therefore considered in the context of a weak, matter
driven, field quantization. Needless to say, however, that these ideas are
very speculative, and have a high probability to be proved incorrect; as
examples of the many problems which must be solved in order o allow a
more concrete discussion to take place, we can ask the following, until now
unanswered, two questions:

1) which criterions has to be applied in order to decide what is matter
and what is field?

2) which is the prescription to adopt (analogously to (7.32)) in order
to associate a field’s state to |0)7?

There is another improvement suggested by our analysis, based on
the remark that a field, being a system with infinite degrees of freedom, is
very likely to exhibit a classical behaviour, accordingly to our considerations
about complex systems, developed in Chapter 3. We can understand better
this point thinking that the Hilbert space for the all field should be an object

Like
& H(x), (8.1)
xeRd
where, as explained in the previous chapter, H{x) is the Hilbert space asso-
ciated to the field at the spatial point x. (8.1) is, clearly, a monster from the
mathematical point of view, providing evidence for the need to replace our
naive formulation with a more rigorous one; anyway, it makes intuitively
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clear that the field is a complex system of the kind treated at page 24.
This idea can be made more precise with the help of equation (7.32), sug-
gested during the treatment of the weakly semiclassical approach: in fact,
the arbitrariness of the function a(x,y,t) could introduce random phase
relations between the state vectors of the field at different points of space,
thus verifying the hypothesis under which equation (3.20) is proved. An
ensemble for the field would then be a mixture, described by the statistical
operator

s = [yl 1.ty iyl (3.2)
where
1@t y)* ~ I [2(x,;3) (8.3)
xeR3
and
B, t5y) ~ @; |, %, 4 y) (8.4)

should be better defined in a more rigorous formulation. It is important to
remark that, when there is phase coherence between the different field wave
functions @ in a region of space, equation (8.2) does not hold any more,
and the field’s behaviour becomes typically quantum, exhibiting interfer-
ence phenomena; the temptation to identify these regions of coherence with
the quanta of the field is difficult to resist.

As 1t is possible to understand {from the suggestions in this last chap-
ter, our study has led well beyond the original subject of semiclassical field
theory, providing physical insight for a new, alternative, way to look at
field quantization. Even if the probahility that it will eventually prove to
be wrong is very high, nevertheless we believe this approach to be worth to
be pursued further, in order to obtain more definite results, whose validity
could be tested comparing them with the currently available experimental
data. '
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