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I. Introduction

The systems studied by condensed matter physics gen-
erally consist of an enormous number of electrons and
nuclei. Solving the Schrodinger equation for such systems
analytically is impossible, whereas numerical solutions by
means of computers, although possible in principle, are
inaccessible in practice. Approximations have to be done.
The most essential and most widely used one is the Born-
Oppenheimer (BO) adiabatic separation of electronic and
nuclear motion [Bor27]. Since the electronic masses are so
much lighter than those of the nuclei (or rigid ions some-
times ), one may reasonably expect the electrons to follow
the nuclear (or ionic) motion in a somehow adiabatic way. A
slightly more general view is that the typical electronic
excitation energies are so large on the scale of ionic fre-
quency, that no electronic transition is induced by the
ionic motion. If this 4is the case, the electronic energy
eigenvalues can be treated as functions of the ionic coordi-
nates and in turn contribute to the potential enerqgy of the
ions. In addition, if quantum features of the ionic motion
do not play an important role in the problem, one can
further use classical mechanics to describe it[Car86]. With
this simplifications a large variety of problems become
accessible.

However, the electronic energy levels which depend on
the ionic coordinates may sometimes become very close to
each other (on the scale of typical ionic frequencies). 1In
these cases, a transition from one electronic state to the

other might occur, and the electronic wavefunction might be
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no longer an eigenstate of the Hamiltonian in which the
ionic coordinates act as parameters. In this case, the adi-
abatic approximation itself breaks down, and hence the
results obtained by the methods based on it become question-
able. In the present thesis, we construct a model showing
this kind of problem, investigate its dynamics by various
approximate schemes and compare the results with the full
quantum solution. Since the separation of electronic and
ionic motion is a very convenient starting point for any
approximate method, we hope to keep this separation and

try to find some compensation to its failures.

In Section II, we present our model which consists of a
particle (the "electron") which moves in an one-dimensional
double-well potential and is coupled to an one-dimensional
oscillator. We have chosen the parameters of our system
so that the energy gap between the ground and first
excited levels of the double-well subsystem at zero coupling
is very small with respect to the oscillator frequency,
whereas the higher levels are so far apart that they can be
neglected. (The conditions for the validity of this approxi-
mation have been recently discussed in great detail by Leg-
gett et al.[Leg87]) Within the BO approximation, electronic
energy gap changes appreciably with the coordinate Q of the
classical oscillator and becomes of the same order of the
oscillator frequency. In section III, we present a fully
quantum-mechanical, numerical solution of our model. First-
ly, the system is calculated, then the dynamics is obtained
for initial conditions which equivalent to those used in the
following approximate calculations. In section IV, V and VI,

several treatments which we call adiabatic, Ehrenfest and




trajectory surface hopping (TSH) schemes respectively are

used to solve the model. This is done for three different

values of the coupling constant. A comparison between the
various results is presented in Section VII, together with
our conclusions. They can be roughly summarized as follows:

1. The adiabatic evolution is generally the worst approxima-
tion to the true evolution.

2. The TSH method of Tully works best when the adiabatic po-
tential energy surfaces have isolated near-crossing
points ( tunneling points ), and keep well apart most of
the time.

3. The Ehrenfest evolution is closest to the true evolution
in the opposite situation of nearly parallel potential
energy surfaces, with no well-defined near-crossing

points.



ITI. Model

We want to simulate a situation in which two electronic
levels come close to each other for some ionic configura-
tions. In such a case the adiabatic approximation breaks
down, because the electronic levels can come closer than the
ionic, or vibrational levels. The simplest model exhibiting
this features 1is perhaps a ("electron") system coupled to a
harmonic oscillator. Analogous to what done by Leggett
et al.[Let87], the two-state system is realized with a
double-well which has a continuous degree of freedom g, just

like Fig.l. The model Hamiltonian can be written as

o 1d B A 2 141 2.2
= 2dq2+l[-q 2 24&2+20)0Q+?»qQ (2.1

Tq+ Ve (@) + Ty+ V7 (Q) + V¢ (q,0Q)

h(g:;Q) + Ty + Vi (Q)

where A, B, ®, are arbitrary positive parameters to Dbe
chosen, V. =AgQ is a coupling term and A is a coupling con-
stant. For convenience, we set the masses of both subsystem
equal to unity. Throughout the thesis, we adopt atomic
unit( a.u.). At appropriate parameters, we can obtain, for
the g-subsystem, a very close energy level gap A=g—€, (>>®,),

whereas the other gaps A; =g—€, (1i22) are much larger than @, .
we can reasonably think that the motion of the g-subsystem
is restricted to the lowest two states. If the g-subsystem
is localized on one side of the double-well at the very be-
ginning, it can tunnel to the other side with a period 2mA.
The motion of the two subsystem can have influence on each

other through the coupling.




For the g-subsystem(A=0), we would like to obtain a set
of levels such that the lowest two are very close and the
others are so high above that they can be neglected. 1In
order to find the sequence of levels, we must solve the sta-
tionary state equation

%

=34+ Ve (@] 9; (@=ep; (@) (2.2)

The solution for this one-dimensional problem can be
achieved by the numerical Runge-Kutta method, just like that
done in atomic calculations [Her62] ( more details will be
given in section IV.). By choosing B=1 and 2A=4 the first
few eigenvalues of Schrodinger equation are g¢= -2.66145,
€ =-2.65173 and €,=-0.51029, which give out an effective two-
state system. The potential for this set of parameters is
shown in Fig.l. The energy spectrum is plotted as well. 1In
Fig.l, €, and g, are indistinguishable. Now we set the os~
cillator frequency ®,equal to 0.3, which is much higher than
the gap A(= 0.009716) but much less than the gaps Ay, (>2.0) .
Therefore we can indeed restrict our attention to just the

lowest two levels of the g-subsystem[Leg87].

When the coupling to the oscillator is switched on,
the level structure of the "electron" Hamiltonian at fixed
Q, h(g:Q), is qualitatively unchanged. The spectra for dif-
ferent values of A, as obtained by the method described
in Sec.III, are shown in Fig.2. As a reference, we put the
two subsystems’ spectra (A=0) on the left hand of the graph.
For comparing convenience, the oscillator’s levels are ob-
tained from the potential V(0,Q)+€&s, where g 1is the ground

state of V(q,0). This implies that the zero point of energy

- [ -
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Fig.l The potential of g-subsystem(A=0). The
levels are ploted as well. The lowest two are
almost degenerate. Their fine structure is
given at the top on the left.
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has been moved to €, . When A approaches 0, the energy eigen-—
values for the whole system can approximately be written as
E =e,+Eg, ( 2.3)
where e, 1is the energy eigenvalue of the oscillator. For a
fixed en, there is a set of g,’s. The second excited level
is far above, hence most of the levels appear doublets. It
is noticed that the larger the A is, the closer these double
levels are. At the same time they become deeper. This is
because the distance between the two minima of V(g,Q), D, e-

guals to
2

T
Ly(1+-Ay /8 ( 2.4 )

= +
D ( A WE W

and the minimal value V, equals to

2
Vo=—,—;(A+£oz)z/B ( 2.5 )

So when A increases, D increases and V, decreases, implying
that the doublet levels 1lend to become degenerate and shift

downwards.

In the present thesis, three different values of A have
been used, i.e. A=0.05, 0.015, 0.005. We set up our cri-
terion for the strength of the coupling as follows: when
the oscillator’s potential energy surface (see Sec.IV) cor-
responding to the ground state of the electron appears to
have two minima rather than one, then the coupling becomes
strong. This is similar to the case studied by R. Graham and
his co-workers|[Gra84]. Fig.3 shows the potential energy sur-
faces of Q9 for different values of A. They are weak,
intermediate and strong cases respectively according to the
criterion. It appears that the nonadiabatic transitions oc-
cur most probably at Q=0.0, especially in the strong coup-

ling case.

— 9 —
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III. Full Quantum Treatment

In this section, we solve the Schrodinger equation for
the whole particle + oscillator system
B(q,Q)¥i (9,0 =Ei¥; (q,0) (3.1)

where the Hamiltonian H(g,Q) is

(db o4
T e s . + )
and V(g,Q) is given in Eq. (2.1).
After having determined a set of eigenfunction, we
shall calculate the time evolution of a given wave packet by

expanding it on this basis.
a. Spectrum

The explicit stationary Schrodinger equation for our

model is

4t 2 2
{~zig7,—f;,%z+§q“-—§qz+‘§cz *AQO1¥: (q,0)=E:¥; (1,0) (3.3 )

Since an analytic solution of Eq.(3.3) is not possible,
we employ a matrix method to solve it. First of all, we need
a set of basis functions to expand ¥; as

I'¥i>= 2 Crn Im, 0> ( 3.4)
where the CLJS are the expansion coefficients, and +the
Im,n>"s are the functions we are looking for. Because the
potential consists of wells, it is natural to choose |m,n>
as the direct product of two one-dimensional harmonic oscil-
lators’ eigenfunctions

|m, n> =|m>|n> { 3.5 )

where |m> is the m-th eigenvector for the Q coordinate with



a frequency ®z and |n> is the n-th eigenvector for the g
coordinate with a frequency 0y . We choose Wy equal to the
frequency of the oscillator of our model, i.e. We=0, , and W,
equal to the square root of the 2nd-order expansion coeffi-
cient of V (q) (rf. Eq.(2.1)) at one of the bottoms of the
double well. (In fact, we have found that the final results

is to a large extent insensitive to the choice of W .)

The Hamiltonian operators for these two oscillators are

2
ha(q)=—lia,i,i2 +709q = (a’a+h) o ( 3.6)
h <Q>=——’—f“~2 +2@,0 = (b’ b+1) 0 ( 3.7)
b 2de 778 2 :

respectively. Here a*, a, b', b are creation and destruction

operators for the two harmonic oscillators respectively.

Comparing Egs. (3.6) and (3.7) with Eqg.(3.2), the Hamil-

tonian for our model can be expressed as

B(q,0) =hy (@) +hy, (@) +Da* -5 (A+0] ) ¢ +AqQ (3.8)
Substituting
qﬁFL(a*+a) ( 3.9)
2:07+
Qiga;b +b) ( 3.10 )

into Eg.(3.8), we can get the matrix elements of h(g,Q) as

Hatnt mp=<m,n’ |H|m, n>

+

=[ (n+3) 0y + (mt5) (DQ+TZ%;(6112 +6n+3) —i—)e(Am; ) (2n+1) 18,8, .

+2_—"w’1‘062 [\/msm:m mnygtV (n+1) (m+1) M{nﬁs"f"’f +/n (m+I) a"‘f"‘" 8"5""+

?
+ ¥/mn OponiOn g + [ k (411—2)'(‘%_%)]\/11(11“1)5;{:«—755"3»1 +

e

8 A+wp), —
+ [T@(4n+6) “—Iaf-]‘\/nz +3n+2 Sn;mzfimjmi-

B
+75a%h/n(n-l)(n—2)(n-3) 5¢n¢+

_— /2 —_




+/ (n+1) (n+2) (n+3) (n+4) @mwlamm ( 3.11 )

Now the problem is reduced to a diagonalization of the
Hamiltonian matrix (3.11). This is performed numerically by

employing the standard routine package EISPACK[Gar77].

To get a convergent results for parameters A=4, B=1,
®,=0.3 and three A values 0.05, 0.015, 0.005, we have used
30 |m>"s and 25 |n>'s, so that H is a 750x750 matrix.

Table 3.1
The first three levels for three different A

values. The corresponding gaps and tunneling
period for the lowest levels are given also.

I A 1T E, | E, | E, | A=E, -E, | T=2n/A |
0,05 172.55753] 2. 550831 -2.2522 17 000%10” | 5576 |
"0.015 | 2. 51559 | 2.50615|-2.22537 5435107 | G655 |
0.005 12,5151 -2 5022212, 21188 5. 95x1s | Gasa |

The lowest three eigenvalues obtained for the different
values of A are shown in Table 3.1. The gap reduces with
increasing A. The reason is that the distance between the
minima of the double well increases with A. The difference
between E and E is essentially equal to ®,. The spectrums
below 0 are shown in Fig.2 and have been discussed in Sec.IT.

The tunneling period in Table 3.1 has the following meaning:

Let

-iEst -Et
+e

(D(qult)=e \Pa lP'l

-tAt

(E.t
L L AL L ( 3.13 )

be a state at time t. Due to the symmetry properties of our
model, ¥, and ¥, are symmetric and antisymmetric wavefunc-

tions respectively. Therefore the combination

— |3 —




¥, + ¥, ( 3.14 )
is located in one well, and the combination

¥, - ¥, ( 3.15 )
is located in another. When t=0, ®(g,Q,0) has the form of
Eg. (3.14), and when t=T, it has the form of Egq. (3.15) (within
a phase factor). This implies that the system tunnels from

one well to another with a period T=2mw/A.
b. Motion of a wave packet

Since in the next three sections we shall treat the o-
subsystem (oscillator) classically, we need to make the
present full gquantum solution comparable to those semiclas-—

sical results.

Thus we construct a state whose wavefunction in Q-
direction possesses the form of a wave packet whose center
of gravity oscillates with the period of the «classical
motion[Sch54]. At t=0, the wave packet centered at Qy with a
oscillating period W, can be written as

% -Leg(@-@,)

v (q,0,0)=(L)" u, (q:0=0, )70~ ( 3.16 )
where u, (q,0=0Q,) is the ground state of h(g,Q) in Eq.(2.1)
with the parameter Q equal to Q,.

The state ¥(q,Q,t) can be expanded in terms of station-

ary wavefunctions ¥y (q,Q)’s

-1 Egt
V(a,0,t)=3 APy (q,Q) e " C(3.17)
The Ay’s can be obtained from the initial condition

Eg.(3.16). We have the equality

—‘[‘UJ Q‘&o)z
%A,Q\Pl(qu)= 'Lfgg)%uo(quo)el &( ( 3.18 )
SO
Ap=<¥) (q,0) I¥(g,Q,0)> ( 3.19 )




Substituting Egs. (3.4) and (3.5) into Eq. (3.19), expanding
Up (4,Q0) =% dnd, (q) ( 3.20 )

and denoting

Vy o -8
K= S("(?{g)/’*ez“)“(a %

?,,(Q)do ( 3.21 )
where ¢n(q), 0,(Q) are explicit expressions of |n>, | m>

respectively. From Schiff’s textbook[Sch55]

m -4
- Wa” Gy €
T R ¢3:22)

The d,"s can be obtained numerically.

In our calculation, 25 A;’'s are used (%IAﬂIZ is better
than 0.9999 ). This number has been checked to be good
enough to give convergent results in the time scale

(1=1400 a.u.) we studied.

We now discuss our results, which are presented in
Figs.4a, b5a, ba, 7a, 8a and 9a for the three different
values of the coupling A. Here we show the time evolution of
the expectation values of Q and g which are given by

<Q(t)>=<W[QIW>

—%:AJz L [ oo CL, v T+CE, L, /] +
+2ZAgAg'cos(E1 —-Eg)t. Em[cm,‘cm,,l/mﬁnyrcm_,,‘cm«/'n?]
RM ( 3.24)
<g (t)>=<yiqg|y>
—ZA%W =% [ChCl, vRFT+CE, Chavl +

mnr
'

+22A£Aﬂ cos (Ey~Ep)t . Tk c;f,,, 4/3'?1+C,f'.,Cf, /1]
W_ + Y !

'ﬁ
t ( 3.25 )

The <Q(t)> of the strong coupling (A=0.05, see Fig.4a)
moves somehow strangely. The amplitude also oscillate

between 0 and a finite wvalue, indicating the energy transfer
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from Q-subsystem to g-subsystem. The <0>’s for the rest
coupling cases moves as an anharmonic oscillator with a fre-
quency ®, . But their envelope change with the same period as
the respective <g>’s. Whereas the <g(t)>’s for the three
values of A vibrate according to the periods given in
Table3.1 though there are small fluctuations. This coincides
with the qualitative description by Leggett and
co-workers[Leg87], although their quantity studied is
P (t)=Py -PL (where Pg(P.) is the probability of finding the

system in the right (left) well) rather than <g> here.
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IV. Adiabatic Treatment

In this treatment, we adopt the Born-Oppenheimer (BO) adiabatic
approximation and constrain the g-subsystem to stay in the ground

state all the time.
a. Born-Oppenheimer Adiabatic Approximation[Bor27]

The Schrodinger equation of a system composed by electrons and
nuclei is
Hy =E vy (4.1 )
where the total Hamiltonian can be written as
HOq,Q)=Ty + Ty + V( q,Q )= h( q:Q ) + Ty (4.2)
Here, T? and Ty are the kinetic energy operators for electrons and
the nuclei respectively. V includes the various contributions to
the potential energy. The electronic and nuclear coordinates are q,
Q and their corresponding momenta P, P. The coordinates Q act as
parameters in the electronic Hamiltonian h( g;:¢ ).
In the BO approximation, one writes an approximate total
eigenfuction of H as a simple product
v (g, Q) = %@ﬁq: Q) x:(Q) ( 4.3)
where @;(q; Q) satisfies
hi q:Q ) o(a: Q) =€, (Q)o;(q; Q) (4.4
where Q@ is a parameter.
Substituding Eq. (4.3) into Eg. (4.1), multiplying both sides

by @?(q;Q) and integrating over g, we get

(T +€;(Q) “E)Xj(Q) =% X 456 P 0> B 1i(Q) ~F I<QI T 0> X{(Q)  ( 4.5 )
Here, we have used the explicit expression for Ty
2
L ( 4.6 )

My being the mass of the v-th ion.

In Eg. (4.5), the SJ(Q)'s are the effective potential energy
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surfaces that govern nuclear motion. The terms on the right hand
side can promote transitions between potential energy surfaces, so
we call them nonadiabatic interactions. Of these terms, the first
is usually the dominant one[Tul75]. The nonadiabatic transition
probability N was estimated[Mes65] as about
n= (B M

where m and M are the electronic and nuclear masses respectively,
ty is the kinetic energy of the nuclei, A 1is the electronic level
difference. Hence on one hand, If the tipical ionic fregencies
are much smaller than the electronic level gaps, the nonadiabatic
interaction is very weak and thus these terms can be neglected.
On the other hand, the small ratio of the electronic and nuclear
masses also makes these terms less important ( this point is not
stressed in the present thesis ). 1In this case, the Schrodinger
equation for the nuclei takes the simple form

(Tn+ €; (Q) - E) XU(Q) =0 (4.7)
This means that the nuclei move in an effective potential surface
which is the electronic energy for the relevant state ( the inter-

action between nuclei has been included in €j )
b. Application to Our Model System

Using the BO separation, the Schrodinger equation for the model
described in Sec.III splits into two one-dimensional Schrodinger

equations
[‘QLJ‘L%I“F Ve (@) + Ve (QiQ)] @,:(q:Q)= £:Q)9:(q;Q) ( 4.8 )
2
[~Ff* Ve (@) + €(Q)] % (Q) = Ex; (Q) (4.0 )

We now adopt a classical approximation for the Q-subsystem and
hence discribe it in terms of its coordinate Q. The equations of

motion (4.8)-(4.9) for our system thus become
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1
~hh Ve (@) +Ve (00) 10;(a70) =£:(Q) 9(a0) (4.8)

(2':_%_%?_&@ ( 4.10 )

The set of Egs.(4.8) and (4.10) state that at each instant the
"electronic" system is in the i-th eigenstate corresponding to the
"ionic" configuration Q, and at the same time the ionic system
moves on the potential surface corresponding to the i-th electronic

state.

¢c. Method of solution

Since Eq.(4.8) is an ordinary differential equation with asym-~
ptotic behavior @(g+iw)-0, it is very easy to solve it numerically
by employing the Runge-Kutta method. In this method, the second

order differential equation is divided into two first order equa-

tions.
9 _
43 f(q) ( 4.11 )
QJ—{- = 2[Ve (@) +Ve (q:0)-€]10; ( 4.12 )

Starting from one point far enough from the origin that the
function f and ®; are there very small, one can use the Runge-Kutta
single step method to calculate the function point by point. In the
eigenvalue problem, we start from both a left and a right far point
and calculate the function rightwards and leftwards respectively.

At one appropriate matching point, the Wronskian determinant

@g ®;

£2 g

r
, ( 4.13)

should vanish when g; in Eq. (4.14) happens to be an eigenvalue of
Eg. (4.8). In our model, the starting points are chosen at q= 5.0

where the normalized wavefunctions are very small (~10%—1dq). These
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are represented on a mesh of 1024 points, making the numerical
~(0
error < 10 .
Calculation of the first term on the right hand side of Eqg. (4.10)
is straightforward. The second term can be obtained using the

Hellman-Feynman theorem

2860 _ A
36 - <05 e (4.14)

Numerical integration of Eq.(4.10) is performed by the Verlet
algorithm[Ver67]. This consists in approximating the time derivative
using a finite difference method with time step At. More explicitly

Eq(4.10) is solved using

Q( t+At )= 20(£)-0( t-At )—(Atf [ig + gg 1 ( 4.15 )
The error is of order O(Atq). The time step At in our calculation is
0.01 a.u.. With this At, the total energy

E=2~{QZ+ <Q; lhlQ;> + v, ( 4.16 )

is conserved with a relative error of 10J&during a run of about 10°
time steps.

Since this is an adiabatic treatment, any transition is forbid-
den. In particular we enforce the "electron" to be on the ground

state (i=0) all the time.
d. Results and Discussion

The Figs.4b, 5b, and 6b show the time evolution of the
oscillator Q for three different values of the coupling constant.
Comparing these results with those given by the full quantum calcu-
lation it seems that the disagreement is very sharp for all values
of the coupling constant. The reason of such a disagreement is ob-
viously that we are forcing the electronic system to be on the
ground state, whereas electronic transitions to the lst excited

state can Dby no means be ignored when A becomes of the order or
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smaller than the oscillator frequency. It is obvious in the strong
coupling case that this adiabatic description gives rise to a time
delay of Q(t). The reason is that the force from the g-quantum
system in the ground state (the second term in Eqg.(4.12)) is always
against the restoring force of the oscillator.
The expectation values of g

<g(t)> = <@, (q;0(t)) lale,(g:Q(t))> ( 4.17 )
are shown in Figs.7b, 8b, and 9b. We remark that in contrast
to the full quantum results, these values have the same period as
the Q's because <g> has an one to one correspondence to Q in this

treatment.
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V. Ehrenfest Treatment [Sel87]
a. Equations of Motion

Since it depends parametrically on Q while Q varies
with time evolution, the h(g;Q) in Eqg.(4.4) is time-
dependent. Alternatively, Eqg.(4.4) can be replaced with the

time-dependent Schrodinger equation

i”fﬁf’tL h(q;Q(t))D(g,t), DP(g,t, )=¢ (q:0(t,)) ( 5.1)

where t, is a given initial time. We use instead the same

equations as (4.10) + (4.14) to describe the motion of Q

Re_dVi ey R0
Q o) %ql@(q,t,Q)l-—-——-a& . ( 5.2 )

The justification of Egs. (5.1) and (5.2) has been
given in the literature[Del72]. These equations lead to con-

servation of the energy of the system

d ol -
s [ZQ + Vi (Q) +<@|h|®>]=0, ({ 5.3 )
For adiabatic motion Eg.(5.1) is equivalent to
Eqg. (4.4). Since the time variation of h(qg;Q(t)) is usually

so small with respect to the electronic energy gap A that no
transition is induced, ®(q,t) coincides with G, (q;0(t))
except for a phase factor. Sometimes, people use Eq. (5.1)
rather than (4.4) simply due to computational convenience.
When A becomes of the order of the tipical ionic frequen-
cies, ®(g,t) can deviate substantially from ¢, (q:Q(t)), thus
indicating the occurence of an electronic transition. This
does not mean however that the set of Eqs.(5;l)—(5.2) is
capable to describe nonadiabatic motion, since in this case

the assumption of a single, well-defined classical trajec-
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tory for the ion (Eq.(5.2)) breaks down. Nevertheless we
still employ them to observe their validity by comparing

their results with the exact ones.
b. Method of solution

The method of solution for eq.(5.2) is the same
described in section IV for the corresponding Eq. (4.10) .
The main issue is to solve eq.(5.1). In our numerical pro-

cedure, ®(q,t+At) is obtained from D(g,t) as
{+at
i), hat)dt

@(q,t=At>=e5 @ (q,t)

Vst -iTat -iVat);
e . e =

s

@(q,t)+0(AL’) (5.4 )

where V=V, +V, and Ty is the kinetic operator for g. The
matrix multiplication in Eq.(5.4) is performed by a Fast
Fourier Transform (FFT) method[Fei82] which uses the fact

Vat /2

that e is diagonal in real space while éinat is diagonal
in reciprocal space. Since the use of Fourier Transform
techniques require periodic boundary conditions, we choose a
region for g from -5 to 5 and repeat it periodically. The
wavefunction @ is here represented on a discrete mesh of
1024 points. The finite size of our region does not influ-
ence our results because the potential at the boundaries is
so high that the wavefunctions of interest and their first
order derivatives are practically zero. The time interval At
is 0.01 a.u. to conserve the total energy to better than ld*
over the whole evolution(~l&ﬁt). Every 100 At we also cal-
culate the ground state ¢, of the instantaneous hamiltonian

in order to obtain the occupation number

coft =i<®|@,>* ( 5.5 )

¢. Results and Discussion
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Three calculations corresponding to three different A
values, 0.05, 0.015 and 0.005, have been done. The time
evolutions of Q and the expectation values of g are showed
in Figs.4c¢, 5¢, 6¢, 7c¢, 8c and 9c respectively. The Q(t)’s
oscillate with the same frequency as that of the full
gquantum case. For the strong coupling ( A=0.05 ), the oscil-
lator moves on the lower potential surface when Q<0 but on
the upper surface when 0>0. This implies that the trajectory
always hops at the crossing point Q . For the same coupling
case, the <g> (see Fig.7c) 1is about -1.8 on the whole time
scale except for a small fluctuation. This indicates that
the particle always locates in the left well of the double-
well, i.e. no tunneling occurs. This situation changes in
the intermediate and weak coupling cases (see Fig.8c, 9c).
The values of |c0} (Figs.7d, 8d and 9d) tell us that the
motion is no longer adiabatic. But it is interesting to
notice from Figs.6c and 9c that the Ehrenfest scheme gives a
good agreement with the full quantum ones for the weak cou-
pling case. The particle tunnels back and forth in a cosine
function with the frequency A. This behaviour also agrees

with that described by Leggett [Let87].

The results worsen with increasing A value. For the
intermediate coupling case, the particle does tunnel but
neither in a simple cosine form nor with the frequency A.
Its tunneling frequency is about half of the full quantum
one. So is the envelope of Q. For the strong coupling case,
the results qualitatively disagree with the full quantum
ones. This is the consequence of breaking down of BO approx-

imation.




The reason why the Ehrenfest scheme gives a good
description for the weak coupling case is not yet very
clear. One possible explanation is that the terms we have
neglected on the right hand of eq. (4.5) do vanish because of
the weak dependence on Q of ¢ls. The two potential surfaces
in Fig.3a are almost parallel each other, so the restoring
forces for the oscillator are in the same direction at any Q
point. Hence the trajectories along the two potential sur-
faces do not diviate appreciably. On the other hand, in
Figs. 3b and 3¢, the two surfaces differ somehow. The two

forces are opposite at some Q points.



VI. Surface Hopping Treatment

a. Surface-Hopping method

In the study of the dynamics of molecular collisions,
Tully and co-workers[Tul71l] have developed a method to treat
nonadiabatic collisions called the "Trajectory Surface Hop-
ping Approach" (SH). The method has been quite successful in
general cases and therefore become quite popular. Here we

give a short introduction to it.

Within the Born-Oppenheimer approximation, the nuclear
motion can be described by classical mechanics. The motion
is governed by the effective potential energy surfaces
€; (@), Just like those in Eq.(4.7). The different elec-
tronic levels i correspond to different potential surfaces
for the nuclei. It is however possible that for some confi-
gurations, which are called crossing points, two or more
such adiabatic potential energy surfaces approach each other
closely, and then nonadiabatic transitions occur with high
probability. In the SH model, a nonadiabatic transition is
represented by a hop of the classical particles @ from one
adiabatic potential surface to another. A method for com-
puting the hopping probability should then be selected. In
the one-dimensional case, the simplest is the Landau and
Zener (LZ} method[Lan65]. Every time the trajectory of the
nuclei pass through a crossing point, it will split accord-
ing to the given transition probability. Both of these
branches might reach a second crossing point and split

again, and so forth, so that a given set of initial condi-



tions can result in a trajectory which contains a great many
branches. The final result is the average over all such tra-
jectories starting from a same set of initial conditions. An
alternative way to average over different trajectories using
a Monte Carlo procedure[Tul7l] is described below. This
approach has achieved good results both in molecular colli-
sions [Tul71] and in dissipative system [Ray87]. However,

this method has sacrificed any information about electrons.
b. Application to Our Model

We use the classical equation of motion (4.10) to
describe Q. The crossing point in our model is chosen at
Qo=0. When Q crosses Q,, the hopping probability for the
system to change electronic state is calculated using the

Landau, Zener and Stueckelberg[Tul75] formula

27t A ]
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Bz= exp[- (6.1)

where A is the gap, v the velocity of the oscillator and F,
and F;, the slopes of the diabatic potentials ( i.e. surfaces
with A =0 ) at the crossing point for the surface 0 and 1
respectively. At this point a kind of Monte Carlo procedure
is used, in the same way as Tully et al. A random number R
is generated. If P, is larger than R, a hopping occurs,
otherwise Q keeps moving on the same potential surface. To
conserve the total energy, the velocity must be adjusted at
each hopping. 1In this way, we get one trajectory. Repeating
this process a great number of times, we get many different
trajectories. The final results are obtained by averaging

over the different trajectories.

c. Results and Discussion



The Monte Carlo averaged results for Q have been
obtained as usual for three values of A. The number of tra-
jectories (3000 for A=0.005,0.015; 10000 for A=0.05) has
been checked to be enough for convergence. For the strong
coupling case, the surface hopping results give some
improvement to both the adiabatic and the Ehrenfest schemes.
For this A value, the trajectory at the crossing point
always hops in the Ehrenfest scheme but always stays at the
lower surface in the adiabatic one. So the surface hopping
scheme does some intermediate between these two extreme
cases, in the sense that sometimes there is a jump from a
potential surface to the other, and sometimes there is not.
The improvement is noticeable. For the first few periods,
the present results are quite good (see Fig.4d). But on a
longer time scale, they are different from the exact ones:
although there is still some amplitude damping, the envelop
does not oscillate as in the exact results. The amplitude
damping can be understood as more and more trajectories move
on the upper potential surface with time evolution. Because
at the crossing point the velocity for the upper surface is
smaller due to the energy conservation, the probability P
for hopping 0+1 is larger than that for hopping 1-0. We
also remark that the surface hopping results worsen with
decreasing A (see Figs.4d, b5d and 6d). The reason is
that as A decrease it becomes more and more difficult to
determine at which point the crossing should occur. In our
calculation, we always chose Q =0 as the crossing point.
Unfortunately, the information about the g-subsystem has

been lost in this model.
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VII. Conclusion

In this work we have observed the time evolution for a
coupled system consisting of a two-state subsystem
("electron™) and an oscillator ("ion"). The time evolution
has Dbeen studied with different schemes, namely adiabatic,
Ehrenfest and the trajectory surface hopping (TSH), whose
validity has been checked against a full quantum mechanical
evolution. We have chosen the particular, but very interest-
ing case where the electronic subsystem has two very closely
separated levels (tunneling levels), where the adiabatic

scheme is not expected to apply.

Comparing the results obtained by the adiabatic, Ehren-
fest and TSH schemes with the exact quantum-mechanical ones,
we first of all confirm that the adiabatic treatment gives

totally wrong results.

Both the TSH and Ehrenfest scheme may be either good or
bad, depending on the physical situation. The TSH scheme
works best in the strong coupling case where the adiabatic
potential energy surfaces have isolated near-crossing points
(also called Landau-Zener region) and keep well apart most
of the time. In this region, the Ehrenfest scheme fails. Tt
should be noted however that the TSH scheme can only give a
description of the nuclear motion without any electronic

information.

In contrast to TSH, the Ehrenfest evolution gives a
very good agreement with the true evolution in the weak cou-

pling case, where the potential energy surface are nearly



parallel and hence have no well-defined near-crossing
points. If the potential energy surfaces keep roughly
parallel to each other, and in addition, are very far apart
in energy, then both the adiabatic and Ehrenfest schemes
work equally well. 1In our case, however, tunneling implies
very closely separated surfaces (Fig.3a), and for this case

only Ehrenfest scheme works well.

One final comment is that in the strong-coupling situa-
tion one may speak of electron "tunneling™ between two self-
trapped potential wells. Because this tunneling is well
localized near Q=0 (surface near-crossing point, Fig.3c),
the Landau-Zener treatment of TSH works well for this case.
No such well-defined tunneling is identifiable in weak cou-

pling (Fig.3a), which explains why TSH fails in this case.

Summarizing: when a fast and a slow degrees of freedom
are coupled together, their joint quantum mechanical evolu-
tion can be given a satisfactory approximate description
even in those cases where the usual adiabatic approximation
fails. In the particular case where the electronic subsystem
has two very near tunneling levels, we have found that the
Ehrenfest scheme works very well for weak coupling, whereas
the TSH scheme works well for strong coupling. Nevertheless,
the TSH scheme is clearly incomplete, since all information
about the fast degree of freedom is lost. Work is in pro-
gress to find alternative scheme that could fill up this

deficiency.
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