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Introduction

A reliable solution of the electronic structure problem, i.e. the quantum many-
body problem of interacting electrons is a very important goal in several areas
of science. For instance, accurate calculations of molecular properties such as
binding energies, bond lengths, charge distributions and potential energy surfaces
are essential in Quantum Chemistry for both basic scientific understanding and

technological applications.

In Condensed Matter Physics a suitable treatment of many-body effects
is a crucial achievement especially for studying the new high-temperature
superconductors(!l and other strongly correlated systems such as Mott-Hubbard

insulators!?l and heavy fermion metals®].

In order to achieve this result one must accurately compute particle correla-
tion, a very hard task when realistic and truly interesting systems are considered.
For a many-electron system the correlation energy is defined as the difference be-
tween the Hartree-Fock energy, that is the energy obtained when each electron
is considered as moving in the average field of the remaining (N — 1) electrons
with Pauli principle taken into accoﬁnt, and the exact non-relativistic energy. We
must point out that the correlation energy contribution is usually very small. For
example in molecular systems it is typically of the order of 1%. Therefore if one is
only interested in the total molecular energy, then correlation represents a slight
correction. However it has an important effect on the calculation of properties like
molecular binding energies which are often characterized by an energy scale of only
a fraction of the correlation energy; for instance the O-H bond strength in water is

about 50% of the molecular correlation energy. In these cases if correlation is not
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taken into account wrong results may be obtained even for qualitative predictions.

In the recent years computer power greatly increased and, therefore, this
opened the possibility to attack the problem by numerical calculation. In this
context various techniques are applied.

The ezact techniques (full Configuration Interaction*], Many-Body Perturba-
tion theoryl®l...) aim at evaluating the exact ground state of a given hamiltonian
H.In practice, however, these methods are only applicable to systems with a small
number of electrons since the number of degrees of freedom of a real many body
wave function grows exponentially with the size of the system and the number of
electrons.

Obviously a lot of approzimate techniques exist. We can mention the varia-
tional procedures like Hartree, Hartree-Fock!®!, and J astrow!”], the Random Phase
Approximation® in many-body perturbation theory, and naturally the Local Den-
sity Approximation (LDA)[®l) which is a very convenient and popular approxima-
tion of the well known Density Functional Theoryl19:11],

Unfortunately all these approximations are difficult to control and to improve
systematically: for example the variational techniques are too much dependent on
(and consequently their results largely prejudiced by) the choice of the form of the
variational wave function, since only a small number of parameters can practically
be varied in order to minimize the ground state estimated energy.

Current approximation methods have costs ranging from the third power to
the 7" power of the number of electrons and, therefore, they are still rather
cumbersome. For instance the Hartree-Fock method, which is pursued heavily by
quantum chemists, is already expensive enough even though it completely neglects

correlation.

The Density Functional methods are largely used by condensed matter physi-
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cists and are distinguished from the Quantum Chemistry methods by their applica-
bility to large systems (hundreds of electrons with present computing capabilities).
However the Density Functional approach is, in practice, implemented by assum-
ing that the exchange-correlation energy density depends locally on the electron
density (LDA), and, even though the incorrect character of this assumption is ev-
ident, no genuine and really efficient improvement has been developed till now in

the DFT framework.

Another group of methods, the stochastic techniques, simulate quantum sys-
tems and calculate their ground state properties by using classical statistical meth-
ods: these techniques are generally called Quantum Monte Carlo methods!12~19],
They are of both the wariational type in which the Monte Carlo method is used
to numerically evaluate expectation values obtained from a given (generally op-
timized) trial wave function v¥,, and of the ezact type in which the Schrodinger
equation is solved. In these latter approaches various procedures are used to
stochastically sample the exact wave function of the physical system, subject only
to statistical errors. Properties of interest are in effect “measured” as the sys-

tem evolves under the Schrédinger equation. When a stationary state is obtained,

averages of the measured quantities provide the desired expectation values.

Monte Carlo algorithms are very promising because they treat correlation ef-
fects, either approximately or exactly at a numerical cost having a size dependence
similar to that of single-particle approaches (like Hartree or Hartree-Fock). How-
ever the proper inclusion of the Pauli principle is a major difficulty in the exact
QMC methods. This is basically because the many-body wave function is usually
described by a statistically evolving ensemble of configurations (specified by the
coordinates of each particle). The Pauli principle, which enforces a spatially non-

local relation between configurations which differ by the interchange of a pair of
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fermionic particles, is thus difficult to implement in the simple local algorithms
used to evolve the ensemble.

A particular Quantum Monte Carlo method is performed by introducing aux-
iliary fields and was successfully used by Scalapino et al.27:28] to investigate finite
temperature properties in the Hubbard model. It was recently suggested as an al-
ternative method of approaching the ground state electronic problem by Sugyiama
and Koonin!?l. In this technique, which was pursued by Sorella et al. [21:22] and we
use in our thesis, the Hubbard-Stratonovich Transformation [23’24](HST) is applied.

The ground state ¥y of the hamiltonian H is obtained by filtering out from
an initial trial wave function %, its ground state component by applying to ¥,
the imaginary time propagator e™# H for large enough time (.

In fact if H ¥; = E;1; the exponential decay of the amplitude of higher energy

states in the imaginary time evolution:

lim e'ﬁﬁzﬁT = ,alin;o Z e PEigp; (1h;|ih, ) = e PBoghy (o |ty ) o< o

B—oo
leaves only the lowest state 3y in the infinite 8 limit, provided that (1o]#,.) # 0.

The HST of the propagator e~*H introduces an auziliary field o to reduce the
exponential of a two-body operator to a functional integral over an infinite set of
exponentials of one-body operators. In fact the imaginary time evolution et s
convenient for numerical treatment when the hamiltonian contains only one-body
operators and no interaction term.

In practice HST transforms the many-body problem in a functional integral
over the variables o, since the two particle interaction term in H is replaced by one
particle interactions with a set of random time-varying auxiliary fields; integration
over a Gaussian distribution of these fields restores the physical interaction.

After a suitable discretization the functional integral can be evaluated numer-

ically by statistical methods (Monte Carlo, Langevin Dynamics, Hybrid Molecular
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Dynamics-Monte Carlo techniques,...). Therefore this approach is especially suit-
able for lattice models. In fact, until now, the auxiliary field formulation has been

used extensively to study electron correlations in the Hubbard model(25=3°1.

In comparison with other Quantum Monte Carlo techniques, this new method
could be attractive for condensed matter physics applications essentially (see Chap.
1 for details) because (i) it allows an easier application of the widely used one-body
techniques, (i) antisymmetrization for electrons can be enforced exactly and (iii)
the famous “fermion sign problem?”, which is one of the main difficulty in fermionic

many-body calculations, could become less troublesome.

In this thesis, for the first time, the Auxiliary Field Quantum Monte Carlo
(AFQMC) method is applied to continuous, physically realistic systems, in partic-
ular to the Hydrogen molecule H,. Here the “fermion sign problem” is not impor-
tant since the exact ground state wave function is nodeless in coordinate space,
nevertheless the generalization from a simple and schematic Hubbard model to a
mblecular system with a continuous Coulomb potential r~! is, in itself, a non triv-
ial task and even a fundamental step towards a large application of this technique

to more interesting and complex physical systems.

In particular we show that application of the AFQMC technique to an ultra-
simplified (low energy cutoff) H, molecule, where comparison with exact diago-
nalization results is possible, can be successfully performed. In preliminary ap-
plications to a realistic Hy molecule a new difficulty was found, probably related
to the short wavelength fluctuations of the auxiliary fields. At the moment this
problem does not seem an insuperable obstacle, provided that an improved version
of our algorithm is developed, but we must stress that a satisfactory solution of
this difficulty appears to be crucial for any subsequent application of this method

to continuous systems.




The outline of this thesis is the following:

In Chap. 1 some of the most popular QMC methods, Variational Monte
Carlo (VMO), Green’s Function Monte Carlo (GFMC) and Diffusion Monte Carlo
(DMC) are reviewed. Then the HST formalism is presented in general terms, with
the introduction of auxiliary fields and some arguments are advanced about the
potential advantages of the AFQMC method in comparison with other stochastic
approaches.

In Chap. 2 this technique is specifically developed in a way suitable to our par-
ticular problem with a continuous repulsive potential which determines electron-
electron correlation.

Chap. 3 contains a brief discussion about the methods one can adopt in order
to perform the functional integral by efficiently sampling the auxiliary fields.

In Chap. 4 we give a concise but exhaustive enough description of many nu-
merical tests performed, together with all technical improvements and tricks we
have developed in order to make the method really efficient and practically appli-

cable. Finally the serious fluctuation problem is illustrated and briefly discussed.



Chapter 1

Stochastic methods for the fermionic

ground state problem.
1.1 Variational Monte Carlo

The variational method has proved to be a very useful way of computing ground
state properties of many-body systems. Conceptually it is quite simple. The
variational principle tells us that, for any many-body function %, (R) (here R =
{r1,r2,...,rn} refers to the coordinates of the IV particles), the variational :énergy
E_ defined as:

_ JdRy, (R)H Y, (R)
i JdR [y, (R)?

(1.1.1)

will be a minimum when 1, is the ground state solution of the Schrédinger equa-
tion Hipg = Eotbe. The variational method then consists of constructing a family
of functions %, (R,a) and optimizing the parameters a so that the energy (1.1.1)
is minimized for a = ag. The variational energy is a rigorous upper bound to the
ground state energy and, if the family of functions was chosen well, then ¥, (R, a,)
will be a good approximation to the ground state wave function.

For example for Fermi liquids the following form for the trial wave function

[7,31,32]

is widely used. It was introduced by Jastrow et al. who generalize an

expression originally developed by Bijl as a good trial function for a Bose liquid
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at zero temperature:

Yr(R) =5 (R) [] f(Ira —rg]) = ¢ (R)e™? Zama Tl (1 9)
a#p

where ¥, (R), the ideal Fermi gas wave function, i.e. a determinant of plane waves,
is multiplied by a product of two particle correlation functions f (Ira —rgl). We
note that the square of the term e~% Za# Ilra=rsl) is completely equivalent to
the Boltzmann distribution of a classical system with J(r) replaced by particle-
particle interaction potential over KgT. However, in contrast to the classical
situation, now the “potential” J(r) is varied to minimize the energy in (1.1.1). In
practice J(r) is chosen to have some functional form with several free parameters
which are then varied.

Optimization of a Jastrow wave function (1.1.2) by variational methods often
produces a good approximation for ground state wave functions. In practice the
main task is to evaluate multidimensional integrals to get expectation values and,
in particular, to calculate the variational energy (1.1.1).

The Monte Carlo algorithm [*3!, which was invented to calculate properties
of classical statistical systems, is an extremely powerful way to compute multi-
dimensional integrals. In particular, for quantum systems, an algorithm which
produces configurations with a probability proportional to the square of the wave
function, is required. Then any measurable quantity can be written as an average
over such configurations. Let us suppose O is an operator and we wish to compute

its expectation value defined as

-\ _ [ Ry, (R)OY, (R) .
(0) = e mr (1:9)
Let R; be a set of points drawn from the probability distribution:
e (R)[?
R) = 1.14
PR = TaRpy, (R .
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where the integral in the denominator serves here merely to normalize p(R). Then,

for any function f(R), the central limit theorem!®# of probability gives that:

M 2
lim — SR = / dﬁiﬁﬁpﬂ?ﬁ(ﬁ” (1.1.5)

and in particular:

w3 ZW R.)b. (Ri) = (0). (1.1.6)

If O = H then
<131>= lim ———ZE (R:) (1.1.7)

M—oo M

where we have introduced the so-called “local energy”: E,(R.:) = Hib, /1. We
observe that a good approximate trial function, containing whatever information
is known about the exact wave function, yields averages with low statiﬂgtical un-
certainties. In fact if 4, is a good approximation to o, then E, (R) — Eo, that
is it becomes nearly independent of R.

The Monte Carlo algorithm is a biased random walk in configuration space; as
usually carried out each particle is moved one after another to a new position. That
move is either accepted or rejected depending on the magnitude of the trial function
at the new position R’ compared with the old position R: if |1, (R')|? > ¢, (R)[?
the new point R’ is accepted. Otherwise it is accepted with a probability ¢ given
by:

e (R)P
1= e R (1-1.8)

In general the VMC algorithm!*®25:3%] is very simple to program and test, and

follows very closely a Monte Carlo simulation of a classical system.



1.2 Diffusion and Green’s Function Monte Carlo

The exact Quantum Monte Carlo approach basically aims at evaluating ground
state properties by performing the imaginary time propagation e=PH .. This can
be obtained in different ways.

The Diffusion Monte Carlo (DMC)[1"~1% method uses the time-dependent

Schrédinger equation:

Oy 1 4
i = [—§v2 + V(R)J v = H (1.2.1)

where a.u. are used and V(R) is the potential energy of the system. Eq. (1.2.1)

can be represented in imaginary time (7 = it):

__g}é — [__sz +V(R) - ET] ¥ (1.2.2)

with D = 1/2 and a constant energy offset, E,, was introduced for convenience
to alter the zero of energy without affecting the properties calculated from the
solution of the Schrodinger equation.

Eq. (1.2.2) has real solutions of the form:
¥ (R,7) = ) da(R)e Fa=Frr, (1.2.3)

So, for positive real 7, the decaying exponential causes the states with the larger
eigenvalues to decay away, leaving only the state with the smallest eigenvalue,
after long 7 (see also Introduction).

(15]

To implement importance sampling'®!, an essential technique used to improve

the statistical accuracy of the simulation, the exact wave function is multiplied by

a trial wave function ¢, to obtain a new function f:

f(R,7) = ¢ (R)¥ (R, 7). (1.2.4)
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Substituting f/¢, for ¢ in eq. (1.2.2), we obtain the following Fokker-Planck

equation for f (R, T):

0
af —DV2f +(E,(R)— E;) f + DV [fF,(R)] (1.2.5)
where E,(R) = H¢,. /b, is the local energy obtained from the trial function, and
F,(R)=Vin|¢,(R)]* = 2Vé:(R) (1.2.6)

¢-(R)
plays the role of a “quantum force”.

The terms on the R.H.S of eq. (1.2.5) may be identified as a diffusion term, a
source/sink term and an advection term, respectively. As usual, the Monte Carlo
simulation of the Fokker-Planck eq. (1.2.5) is carried out by representing the
“density” f by particles that take random steps to simulate the diffusion, take
directed steps to simulate the advection (the quantum force pushes the particles
toward regions of higher importance, that is higher ¢,), and are multiplied or
eliminated to model sources and sinks. ’j

The asymptotic solution to eq. (1.2.5) is:
F(R,7) = o (R)o (R,7) e (FomFr)T, (1.2.7)

Then the ground state energy may be calculated!® by using, at large imaginary

times, the average value of the local energy:

[dRf(R,B)E,(R) _ z
<H> Eo “ﬁ]im [dRf(R,B) = A7 Z: (128)

where M is the number of points R; distributed according to f(R,3). Again

statistical accuracy is greatly improved if a good trial wave function is chosen.
For a generic operator O, which does not commute with H, we can obtain its
expectation value by considering the approximate estimate(16l:

O 2 MOR Mo
R R
(0)= % |30 >o

+ o(g?) (1.2.9)

2
¢T
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where |f means: “points R; distributed according to function f”, and & o< 1o — ¢
As far as the Green’s Function Monte Carlo (GFMQC)!%1837 method is con-

cerned, one considers the time-independent Schrodinger equation:

[-%vz - V(R)] H(R) = Ey(R). (1.2.10)
This may be rewritten in its integral form:

P(R) = E/dR'G(R,R')¢(R') (1.2.11)
where G (R, R'), the Green’s function, satisfies the equation:

[_%vz +V(R)} G(R,R')=§(R-R (1.2.12)

and the boundary conditions of the problem.

Let a succession of functions be defined for some initial %(°)(R.) by:
$H(R) = E/dR’G(R, R') $((R)). (1.2.13)

When the spectrum of the hamiltonian is discrete near the ground state (R of
the Schrodinger equation, then 1o (R) is the limiting value of (")(R) for large n.
It is possible to devise a Monte Carlo method (in the general sense of a random
sampling algorithm) which produces populations drawn in turn from the succes-
sive (™). In practice, in eq. (1.2.13), the exact eigenvalue of the ground state is
substituted by a trial eigenvalue £, and the main technical problem lies in con-
structing a method(*®] for efficiently sampling G (R, R'), which, in general, does
not exhibit an analytic expression. In this case too, some importance sampling

technique has to be introduced to get low statistical errors.
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1.3 The Auxiliary field method: general description

In the following we introduce a functional integral formulation for interacting
fermions. We describe a formalism to calculate ground state properties of a many-
body system by using a classical statistical method.

Let us consider the generic hamiltonian H=K-+ Vg , where Kisa one-body
operator (generally consisting of kinetic and external potential terms), and Vais a
two-body interaction term due to electron-electron correlation. We can write Hin
second quantization (for the sake of clearness we use the coordinate representé,tion
with basis functions given by delta functions, but, obviously, the procedure holds

for a generic representation):

. + 1
H = z Kijelcj + 5 Z Vgijc;(c;f-cj'ci (1.3.1)
irj i\
where Va;; = Va(|r; — rj|), and cz , ¢; are the creation and annihilation operators
of a particle at position i (for the moment we omit to explicitly write spin indices).

As we are only interested in ground state properties, in place of considering

the thermodynamic partition function Z = Tr (e“ﬁH ) , where 8 indicates the

[20,38].

inverse temperature, we consider a pseudo partition function

Q= (| e P 3py) (1.3.2)

where %, is a trial wave function and 3 can be thought of as an imaginary time.

We have already seen (see Introduction) that, if 1 , the ground state of H,
has a non vanishing overlap with the trial wave function v, the imaginary time
propagator e‘ﬁH, for 8 — oo , projects from v, its component along %y; therefore

Q behaves asymptotically as the true partition function Z:

Jim Q= (olo) [P, (1.3.3)
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Then, in terms of @, the ground state energy is given by

Ey = lim (—%ln Q) _— (1.3.4)

B—oo
More general expressions for other ground state expectation values can be obtained
by differentiating eq. (1.3.4) with respect to appropriate external fields coupled to
the quantity of interest. In fact, by using the Hellman-Feynmann theorem, we can
calculate the ground state expectation values of a general operator O, (o] O o),
by differentiating, with respect to A, the ground state energy of the éorresponding
perturbed hamiltonian H + \O:

A %)

o Q) : (1.3.5)

Hence, in this scheme, the pseudo partition function @ can be considered as the
“generator” of all the ground state correlation functions. However, a direct eval-
uation of Q is actually a difficult task, since H contains two-body contributions
and 1, is a many-body wave function. Now we show that, by using a suitable

transformation and introducing auxiliary fields o, Q) can be rewritten as:

Q=5 [ 406(@) (a1 V(o) 1b) (136)

where G(o) is a Gaussian weight and ﬁ(a) is a one-body, auxiliary field depen-
dent, operator. For each auxiliary field configuration ¢ propagation U/ (¢)¥, may
be easily performed because U/ does not contain two-body terms. Therefore, in
principle, @ can be explicitly computed together with all ground state expectation
values, via eq. (1.3.5).

We start by splitting the total imaginary time propagator into a product of
P short time propagators and applying the Trotter approximation [**! to each of

them:

) P o N
6_’6H — (e—A'rH) — (e—%—«Iune—ATV e—Ag Ixm) + O(ATs) (137)
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with Ar = % and, usually, Trotter decomposition separates the kinetic term Kin,
from V = H — Kin, the remaining component consisting of external and electron-
electron potentials. The short time propagator e & Kin—ATV — 47 Rin i clearly
hermitian and positive definite.

Then we can rewrite the approximated short time propagator of the hamilto-

nian H as an ezact short time propagator of an equivalent hamiltonian H:

- Z AT I - v AT i
e ATH — 5 Kme ATVe =~ Kin (138)

with H = H + o(AT?).

In conclusion all the calculations obtained by using the Trotter approximation
give exact ground state properties of the effective hamiltonian H which differ at
most by o(A7?) from the desired ground state properties of the true hamiltonian
H.

As we have already said, the evaluation of the propagation performed by
operator (1.3.8) is numerically tractable when H contains only one-body operators.
Therefore we can introduce the Hubbard Stratonovich Transformation (HST) which
exactly aims to reducing the exponential of a two-body operator (e.g. the term
involving Va;; in eq. (1.3.1)) to a functional integral, over an auxiliary field, where
only exponentials of one-body operators are present.

First of all we can rewrite hamiltonian (1.3.1) by anticommuting the creation

and annihilation operators in the normal-ordered two-body interaction:
; - 1 A
i = Zf‘ifcicj - 'Q‘ZV%]'PW - 'Q’ZV'_’iiPi (1.3.9)
i3 i3 i

where g; is the fermion density operator and the last term is an unphysical self-

interaction contribution which can be temporarily grouped with the one-body term
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K and which will be removed later: Kf- = K;; — leijfsij,

H = ZR’:JCZCJ + - Z Vaijpip;. (1.3.10)

%]

Now we apply HST to the exponential of a two body operator which is present
in Trotter decomposition (1.3.8) when we perform imaginary time propagation

—Ar (i Bi B
e 2 22 Vais Pifi (see Appendix A):

Jay A A A W:: 3: 4>
__2_1'. Zi‘j V‘J:] PipPj — e‘—zl Ei,j Ws] PiPj —_

_ % da; —Ar W;tei5; (AT &; b:
= (detArWY; /H\/%Fe b 240

€

(1.3.11)
where W;; = —V3;; and, for reason of simplicity, we have assumed that Vaij is
a definite negative matrix and therefore W;; a positive definite one. In fact (see
Appendix A) the previous transformation can be directly applied only for negative
definite two-body operators contained m the hamiltonian H. While this property is
certainly not true in general (for example electron-electron electrostatic interaction
is repulsive), nevertheless HST can always be performed for quite general two-body

fermionic operators (see the following chapter) by using suitable techniques with

Eq. (1.3.11) introduces o variables as auxiliary fields with dimensions of
potentials. In order to avoid using the inverse matrix Wi;1 it’s possible to change

integration variables, by defining:

oi =Y W;'s; (1.3.12)
i

Therefore o assume the dimensions of densities and eq. (1.3.11) becomes:

AT e B 1 —_Aar " 7o s
e 7] Zi.j W:] Pi Py — (detATWlJ 5 /H dgz 7 2 W,J Oi0; eAT vz W a,pJ
\ 4T

(1.3.13)
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Obviously we have to perform the transformation (1.3.13) at each time step of the
imaginary time propagation (1.3.7). Therefore we introduce a time index [ in o

variables and we are able to write:

ﬁ Z Wi pidi O/HHdal l)e Zl 12 Wijo:(Do; (1) ATZI 12 Wijoi(1)6;

=1 1
(1.3.14)
where (' is a normalization constant given by
1 i (detATW;; )2
5= =11 _,.___._,___w . (1.3.15)
=1
Now if we consider again the complete hamiltonian # = Kin + V, with
Kin = Z Kinijczz:j (1.3.16)

i,J

V= Z Vi<t pi + %Z Vai0ip5 — Z Vaiipi =
: o :
=S (v - -;—vzii) b= 3 Wisips (1.3.17)
; ij

where V*!(r) is a generic external potential, then we can rewrite the propagation

(1.3.7) by using the previous HST relations:

e—BH o (e—-%lf{ine—A-rVe—%R'in>P _
1 L SAT P S (e (D)
= & [ T TT dos(ne™ ¥ 2rm 2y P00
=1 1

P . .
X H{”%‘f{me—AT(Zi V"Exc’fi—zi.j W"joi(l)p")“ 7 Ki } (1.3.18)

Thus, the evolution operator is the functional integral, over auxiliary fields o, of the

evolution operator for a one-body time dependent hamiltonian, whose non-kinetic
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contribution is given by

Vi(l) = Z Vertpi— Y Wijou(1)p; (1.3.19)

i 1,]

and weighted by a Gaussian factor. In the last relation we omitted the self-
energy term ——%— >; Vaiipi , since it acts as a constant potential in the one-body
propagation and (see the following section) this does not affect the computed
estimators of ground state properties.

The main advantages of (AFQMC) method over other stochastic techniques
(for example DMC or GFMC) are the following:

1)— Two-body interaction terms are replaced with random auxiliary ﬁelds
which act as external potentials on the particles, therefore the interacting problem
is replaced by a sum over an ensemble of non-interacting systems in a set of
random time-varying external fields and one can easily apply all typical one-body
techniques (for instance local and non-local pseudopotentials) in a natural way.

2)— The antisymmetric property of the fermion wave function is preserved at
any time of field evolution. In fact a Slater determinant trial wave function evolves
into another Slater determinant for each auxiliary field configuration sampled.

3)— GFMC or DMC methods accurately describe boson systems but for
fermions a difficulty arises. In fact, if, for instance, we consider a DMC approach,
the wave function ¥; = e~tH 1, can be obtained as a solution of the imaginary
time Schrédinger equation which is viewed as a diffusion equation with “branch-
ing” and the many-body wave function is described by a statistically evolving set
of configurations, each of which is specified by the coordinates of the particles. The
weight chosen for the statistical sampling is directly related with the many-body
wave function 1, itself (see Section 1.2).

The lowest energy solution of the diffusion equation on the space of configura-
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tions of the system is nodeless (it’s the boson ground state), but, when fermionic
systems are to be studying, the antisymmetry of the fermion wave function deter-
mines regions of i¥; with positive and negative sign: each part with definite sign
¥7 and ;" of the propagated wave function 9; = ®%; — ; has a non vanishing
component on the more stable boson ground state, so the calculation becomes
unstable because, through the imaginary time propagation, each part of the wave
functions ¥ and %, is attracted by the bosonic ground state, until the fermionic

component becomes undetectable from a numerical point of view.

This instability, the well known fermion sign problem, prevented an extensive
application of either GFMC or DMC to fermion systems, although the “fixed node
approximation” 17® allows upper bounds on fermion ground state energies to be
determined.

In the AFQMC approach observables are calculated as averages over the set
of auxiliary field configurations. The difficulty here is that the quantity to be
averaged is not always positive (the statistical weight may be not positive definite).

In practice the fermion sign problem reappears since, és B — oo , the number
of positive terms can nearly equal the number of negative terms and the difference,
which is the quantity we are interested in, becomes very small compared to the
total number of terms. Nevertheless in this situation the fermion sign problem
seems to be less dramatic than in GFMC or DMC approaches.

In fact one can show (this aspect was extensively studied by Sorella et
al.[21:2229] and, recently, by Fahy and Hamann[*" ), by theoretic arguments and
numerical evidence, that, in many non trivial cases, the AFQMC method is stable
for arbitrary large imaginary time and that fermion sign problem can often be

circumvented with negligible error in the calculated physical quantities.

Finally the AFQMC method is exact apart from statistical errors we can, in
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principle, reduce as small as we like, but we expect it requires computer resources
which don’t grow exponentially like, for example, in a full Configuration Interac-
tion approach. In fact, in the AFQMC procedure, in practice only the calculation
of determinants depends on the number of electrons. Therefore a cost increasing
with the 3¢ power (or less) of the number of electrons (see Chap. 2) has to be
foreseen.

Therefore this method seems to be promising and opens new possibilities for

the simulation of interacting fermions.
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1.4 Ground state properties calculation

In the previous section we used HST to rewrite the pseudo partition function Q

as a multidimensional integral over classical auxiliary fields:

i 1 :
Q= (el ) = 5 [do Gl D@ ) (1)

where, in a concise expression, we have used G to denote the gaussian weighting

factor

G- 6_%1 Zz E;,J’ Wi o:(Doi (1)

and (7'(0') denotes the one-body propagator:
~ P ~
U(e)=[]U[(0)] =
=1

P
-TI {--‘}%f?ine"A’(Z; Vi E, , Wiiei(D5) —-“—z-’-ffm}
=1 '

At this point the quantum problem would be solved if an exact numerical eval-
uation of the multidimensional integral (1.4.1) were possible. Unfortunately:'this
is not the case because the functional @ contains a prohibitively large number of
variables. Nevertheless we can use a statistical approach by interpreting the func-
tional @ as a classical partition function of the variables ¢, and apply a statistical

method for evaluating @) and related physical quantities. In fact we can write:

1 v .
Q= E/dae—v(a)/KBT (1.4.2)

by considering @ as a classical partition function of the variables o, that “interact”,

at an effective temperature KpT = 1, through a potential:

V(o) =—InG —1In (¢,|U(o) |¥,) + const. =
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= 5 X Wisesllos0) =1n (9] 00 ) + const (1.43)

Here we assume that the term (v..| U(c) |#,) is always positive.This is in general
not true (it’s the practical manifestation of the fermion sign problem - see previous
section) because the propagated many-body wave function U’(a)gb,_,. can have a
negative overlap with the initial trial wave function.

Now, in order to obtain the ground state expectation value of a given operator

O, we have to compute a well defined classical average, by using eq. (1.3.5):

(o] O lho) = hm (—Eah oan> Q"lc,/dcrE )e V(@) (1.4.4)

with the estimator E5(c) given by:

10

Eg(o) = Jim (~55xheoln (6e 07(0) ) (1.45)

where the A-modified propagator U*(c) is obtained by adding to the hamiltonian
(in practice we add it to the kinetic term) a perturbation AO. Then Es(0) can be
calculated, by performing the differentiation with respect to the external pertur-
bation in eq. (1.4.5), as an imaginary time average of independent measurements

computed at a fixed imaginary time ¢:

Es(o) = AT S wi ($r | Uo (P1) OU, (1,0) [9r) _
(%2 U(a) [$z)
_ 13w (ay 00(P,l) 0T, (1,0)br) 1 .
P ($r] U (P, 0) by ) 8 / dtBg(e)  (146)

where last relation holds in the limit A7 — 0, and

(Y] [}U (ﬁit) 0(70 (£,0) [¥r)
("/"T ‘ Us (8, 0) l¢'T>

Eté(a) =

with

l
U (1,0) = [] U [o(')]
I'=0
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P—l-1
Us (P1)= [] Ule(P-1]. (1.4.8)
I'=0

U, (0,0) = U, (P,P) = I, and the weights w; are = zforl=0,orl=P,and =1
otherwise. In practice when one evaluates the estimator with the imaginary time
average (1.4.6), the contributions coming from imaginary time measurement close
to the initial ¢ = 0 and the final ¢ = # imaginary time produce a slow convergence
of the physical quantities with respect to the inverse temperature. In fact such
measurements are too close to the trial wave function and give contribution which
vanishes as 37 1. In order to improve systematically such convergence in /3, we can
consider an average over an interval which is far apart from the initial ¢ = 0 and
final time ¢ = f3, instead of averaging over all the imaginary time slices. Therefore

we can use (n > 2):

1 p-3)

This kind of estimator can be formally obtained by taking the logarithmic deriva-
tive of the partition function @, = (¢, l“ﬁﬁ’\-’l‘ [r):

o) 1 —8H :

—=0 | — =<1 PH 1.4.10

B/\IM( A Twm) (14.10)
where ﬁ')\T = H 4+ ), 0, and now Ar acts as a time-dependent perturbation:

e { b E<e<o0- D),

0, otherwise.
This gives, for § — oo, the correc"c ground state expectation value +th an expo-
nential convergence in 5. A good value for n may be n = 4.
| Then the expectation value of the operator O is obtained by evaluating the
multidimensional integral (1.4.4) with a statistical method:

N . doE-(c)e V(o)
(0) = (o] O [gho) = J fdzi-)‘/(‘ﬂ (1.4.11)
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To this end some importance sampling scheme must be used, by generation o
configurations according to the probability function e~V(?), For this purpose one
can use either a Monte Carlo algorithm or a Molecular Dynamics strategy: one
simply consider the system with o degrees of freedom in the fictitious classical
potential V(o). The variables o are taken as functions of a formal continuous
time variable s ( the fictitious time). In this way the statistical evaluation of
classical expectation values of estimators, depending on the variables o, can be

expressed as a temporal average:

A cEA(a)e V() ?
<o> - fdfiii_)v(@ - 31320(8_1—30)/80 ds'E [o(s")] (1.4.12)

where s is the time needed to reach equilibrium for the Molecular Dynamics egs.,
or the Monte Carlo scheme. For infinite fictitious time s eq. (1.4.12) would lead to
zero statistical error. Actually this is not feasible and one has always to consider
statistical errors.

A naive estimation would give:

((6)-(9)')
VR

where N, is the number of sampled configurations.

INTE

AO ~

(1.4.13)

However this is not exact since, usually, strong correlation exists between
successive configurations. In order to correct for this one could measure the average

interval IV; between statistically independent configurations and this should correct

((0%)- (o))’

The underlying hypothesis is that, at equilibrium, E5(c) is gaussianly distributed.

(1.4.13) in the form:

AO ~

(1.4.14)

Since this is not always the case it’s practically convenient to measure statistical
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error by dividing the measure into segments of sufficiently length and comparing
the averages obtained in these intervals. If the segments are long compared to the
correlation time of the simulation, then the sub-averages are roughly gaussianly

(341, An estimate of the error using eq.

distributed, due to the central limit theorem
(1.4.13), where N, now represents the number of sub-averages, is therefore correct
and ensures the 68% of probability of finding the exact value of <O>, within the

calculated uncertainty.
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1.5 Jastrow Auxiliary Field method

After developing the AFQMC method we can go back to the variational tech-
nique where, substantially, a multidimensional integral with, for instance, Jastrow
trial wave function has to be evaluated. There have been many approaches to
this problem, practically all of them borrowed from the theory of classical fluids:
namely cluster expansion, integral equations, Molecular Dynamics and, above all,
the Monte Carlo method we described in Section 1.1.

In the following we present a new technique by showing that variational Jas-
trow estimates of ground state properties may be computed by an Auxiliary Field
approach analogous to that we illustrated in Section 1.3 for the exact many-body
problem.

First of all let us define a Jastrow operator which is again the exponential of

a two-body operator:

U, = e 30 = 73 2 L T binint (1.5.1)

such that

b, = U, %, (1.5.2)
where Ji; = J (|r; — r;|) and 9, is the Jastrow many-body wave function. Now,
by using Jastrow approximation, the expectation value of a generic operator O

can be obtained as:

A _ <¢J|O|¢J>
0), = et (1.5:3)

According to variational principle, if O = H, then E, = <ﬁ> J > Ey. By definition

(1.5.2) relation (1.5.3) can be rewritten as:

<O>J_ _ (el ¥0e ) (15.4)

(¥rl e o)
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Then it is easy to show that:

A 15]
0),=- %

where the Jastrow “partition function” Qi‘ is defined as

In Q) (1.5.5)
A=0

A= (e T e 0T ) (1.5.6)

We note that the procedure is formally identical to the scheme previously devel-
oped by introducing the pseudo partition function @ = (.| e=PH |4, ). Here the
BH term is simply substituted by J.

Now the HST can be performed in order to reduce Jastrow two-body operator
to a functional integral, over two auxiliary fields 1,02, of one-body field dependent

operators. Therefore

@ =5 [dondes G- (el O(e)e U (@) ) (159)

Hence, by applying (1.5.5), we obtain:
O =@ 1~—1 doe™ViE. (o 1.5.9
< J J Cr € OJ-[ ] ( s )

where

V,(0)=—InG—1In (%, U,(01)U,(02) 1) (1.5.10)

and the Jastrow estimator is given by:

2))IIZ>> : (1.5.11)

| 1, (2100

EOJ[U} — <¢T‘ 3(01)
<'¢’T | U.I(Ul)

Introduction of Jastrow auxiliary fields is a useful technique, not only to

perform a variational calculation, but also to reduce computer CPU time required

by an exact AFQMC procedure. In fact if the trial many-body wave function ¥,
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is not the usual single Slater determinant obtained by a previous self-consistent
Hartree-Fock calculation, but a Jastrow trial wave function % ,, which already
“contains” a certain amount of particle correlation, we expect a smaller 3 will be
necessary in the imaginary time propagation e=BH %, in order to attain ground
state properties. Hence we can obtain an efficient algorithm by introducing two
different kinds of auxiliary fields: one, time dependent, is connected with imaginary
time propagation e=PH performed in the usual Trotter decomposition, and the
other is due to the presence of Jastrow propagator e=J. This procedure can save a
relevant amount of computer time since, roughly speaking, we introduce only two
(Jastrow) propagation step when, generally, a lot of imaginary time propagation

steps would be necessary to recover the same correlation already present in 1, .
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Chapter 2

Interacting Electrons.

2.1 The Auxiliary Field method in a realistic
physical system

In the following we specify previous general HST relations for a realistic phys-
ical system: a molecule with positively charged nuclei and electrons interacting
with a repulsive Coulomb potential. Our hamiltonian is given by (a.u. are used

throughout this thesis):

1 Y 1 1
'} 2 ext
= -3 «a o T 7 ion 2.1.
H QZVQ+ZV (r)+zz|ra-rﬁy+E (2.1.1)
a=1 a=1 a#B
with:
Vert(p,) = — Z _Zr (212)
b lre — Ryl -
1 Z14 g
FEion = = —_— 2.1.3
s s

and where Greek indices are used for electrons, Latin capital letters for nuclei and
Z1 indicates the charge of the I th pucleus.

In order to apply, in practice, the HST formalism we have to “discretize” our
problem. For example this may be carried out by introducing a spatial lattice.

In second quantization hamiltonian (2.1.1) becomes:

1

H=-=
2

. . ex Lo 1 ..
(iu V2 5} elyeiw + >V (ri)pint 5 D Vispiupiw (2.1.4)

NI (3 1yt
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where

Vi =V (

1 ,
r; — I‘jl) = ’ (2.1.5)

and, for simplicity we omitted the useless self-energy contribution (see previous
chapter) and the constant ion-ion repulsion term. Now we have explicitly intro-
duced the spin variable g =T, |, and the following relations hold for the fermion

density operator pj, = czucw:

> piu=N. (2.1.7)
7

Here N is the total number of particles operator.
In this case the difficulty is given by the fact that V;; is a positive definite
matrix. Therefore when we consider the exponential of two-body term in the

Trotter decomposition (1.3.8) we have an expression of the form:

EPIACLL (2.1.8)

where V;; = —V;;. Hence we can’t directly apply the HST, since V}; is a negative
definite matrix (see Appendix A). Nevertheless we can solve the problem in the

following way. Let’s introduce a modified interaction matrix:
Wij = }\(51']' - V,J (2.1.9)

Obviously, for A sufficiently large, W;; is a positive definite matrix. In practice it’s
convenient to choose A equal to the maximum eigenvalue of the matrix V;;.

Now if we define the total density and magnetization operators:

-

d; = PET -+ p;'l (2.1.10)
ﬁli = p;'T - p}l (2.1.11)
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we can write the two-body term:

Z Viipiupiw = ZV d;d; %Zéﬁ-%zwﬁéi@. (2.1.12)
i ‘ 1,

N

Then, by using relations (2.1.6,2.1.7), it’s easy to show that:

Zp;Tp;;l = % (N-me) (2.1.13)

Therefore
S0 = 842X g =2 - o (2119
And finally:
: Y. 1 s s A ~ 2 y
Y. Visphupiw = =5 > Widid; — 5 3 i + AN, (2.1.15)
TN 4 :
In this way:
Y Vi Pabiur _ %—(Z Wijdidj+2 Y, mI-2AN) _
A 30 Wadidi J8EAYT w? —ArAR (2.1.16)

Wi, did;
In conclusion we have obtained two quadratic contributions e & Z R

e TN 2™ and therefore two distinct Hubbard-Stratonovich transformations are
necessary. In practice the presence of spin variables and the strategy used for
reducing the negative definite matrix V;; = —V;; to positive definite forms implied
introduction of two different time-dependent auxiliary fields: one, ¢, coupled with

local density and the other, ¢™, with local magnetization. Now we can apply HST:

AT i g AT d N
=T . Wiidid; —Ar§ W0 cr AT Yy L Wio! d —
e ? Zw 19i% const./ l I dofe % i Luig 9 (2.1.17)

eA%LZ.'m const. /Hdg e %"Eia;”ge}\ATZf o (2-1-18)
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Therefore, on the whole, we obtain:

AT Y ~ AT .ot m2
s 2D DI CT Y / l l do"dole” ? (2., Waelaf+a 3, o )x
i

xeAT(zs\j Wijoldi 4230, ol ) e N | const.. (2.1.19)

Finally, by considering all time slices in Trotter decomposition, our pseudo parti-

tion function becomes:

Q= (Y] e PH [¥r) = const./da <G (Y] (7(0') |7 ) (2.1.20)
where the gaussian weighting factor is given by:

O = o T (S, Wt 0ot Y, o7 () (2.1.21)

and the single particle propagator is:

P

A
)]

- - A Trexts NG AT Lo 2 3 EEON RS A - 1
_ Tl e—%mne—mkzi v (re)di—zi’j Wijol(Hdj—a 3 o (‘)mi)e—-‘l‘,_,—’lKinJ

(2.1.22)
where we have omitted the e=*A7N term which is inessential in the propagation
since, in our calculation, the total number of particles is a fixed quantity. We note
that [7(0) can be written as the product of two propagators [7(0) = U(O’)T . [7(0)1,
each acting on separate spin subspaces. Therefore, since we consider, for the trial
many-body wave function, a single Slater determinant made up by NT spin up
and N! spin down orbitals, ﬁ(a‘) acts independently on spin up states ¢,7 and on

spin down states ¢p).
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Hence we can write:

(o U(0) [9p) = det (0p1]UT(0) |0gr) - det (01| U4 (o) lpqr) - (2.1.23)

As far as the non-kinetic part contained in the one-body propagator ﬁ(a) is con-

cerned, we observe that:

(ri] e_AT(Zj Ve = 30, Wakef (Dde=A 3 ) leprs) =

_ e_mv;ff(r.-,l)sop”(ri)_ (2.1.24)

In essence HST allows us to use a simple one-body formalism, but with an effective
external potential which becomes time-dependent, spin-dependent, and which is a

function of o variables:

VET (ri, 1) = Vi (r) = > Wiiaf(1) = Ao™(1)
J

Vet (ri, 1) = Vi) = > Wisaf (1) + Ao (D). (2.1.25)
J

Ar K :
7 King o1 it’s conve-

Finally, in order to apply the kinetic term propagation e~
nient to evaluate such propagation in reciprocal space (see Chap. 4), where Kin
is a diagonal operator, and then to come back to direct space by using the Fast

Fourier Transform [49],
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2.2 Estimators calculation

The ground state expectation value of an arbitrary operator O can be calculated
using the fundamental relations (1.4.4 — 1.4.14). Evidently the main task is the
calculation of the estimator Ej(c), at a fixed imaginary time . We start by

deriving it for the operator 0= ciuC}u- Eq. (1.4.7) can be easily written as:

ijﬁa (taﬁ) 1/)1* C;“ﬁa (t,O) ¢T>
(U (4,8) ¥ |Us (2,0 ¢, )

If ¢, is a N-state single Slater determinant, then eq. (2.2.1) involves the scalar

Ej(o) = < (2.2.1)

products of two N + 1l-state determinants, due to the presence of the creation
operators. Now the scalar product of two Slater determinants is the determinant

of the corresponding overlap matrix, that is:

detA* (3, 7)
1] . 3
EO(U) - detAll' (2.2.2)
where A* is the N* x N* overlap matrix:
Apg = {5l ﬁ(") lpq) = <95§(t)|‘:5q>(t)> (2.2.3)

in which single particle orbitals have the same spin p and A* (7, 7) is the (N* + 1) x
(N* + 1) matrix defined by

§ij oo g(rs)
A= _ 2.2.4
Pq 905(1‘1') qu ( )

Here we have introduced the forward and backward propagated wave function for

integer times, defined by (see eq. (1.4.8)):
95q>(t) =T, (t,0) pq = ‘15q> (I-Ao7) = Us (1,0) ¢q (2.2.5)
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Ga(t) =Us (t,8) pp = py (1 A7) = Us (1,8) - (2.2.6)

At first sight the full calculation of this estimator would seem to be a very expensive
task. In fact, by letting the indices ¢ and j assume all possible values corresponding
to all possible IV, lattice sites, we obtain N2 matrices of the form (2.2.4). Therefore
we should evaluate N? determinants of order (N* + 1) for each spin value p =T, |.
However we can simplify the problem by following Sorella’s procedurel?%,

In fact, by varying 7,j indices, the N2 matrices differ one from another simply
by the exchange of one row and one column. Therefore it’s convenient to introduce
the quantities:

B*(i,5) = ) ¢, (r;) (A4*),, 65 (x)- (2.2.7)

Pq
Obviously a determinant remains unchanged if one adds to a column any linear
combination of others. Hence we may add to the first column of the matrix A* a

linear combination of the other columns in order to make vanishing all the elements

of the first column but the one in the first row:

bij = g beBg(rs) oo P (r;)
detA” = det | _ ; 2.2.8
G = X, hedt, AL, (228)
Now, if we choose:
= (4*) ) o5 (r:) (2.2.9)
9,q'
we obtain the desired result:
Ga(ri) = > bgdk = 0. (2.2.10)

q
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Then, by using definition (2.2.7) and relations (2.2.8 — 2.2.10) we can write:
(51;]‘ — B* (i,j) e (ﬁ;(rj)
detA* = det O n = detA* [6;; — B* (4,7)] .
g
(2.2.11)

Therefore the factor detA* cancels out in eq. (2.2.2) and finally we obtain:

E . (0)= (cincl,) = 85— B (i,). (2.2.12)
Now the computation of the N, x N, matrices BT and B} requires the inversion
of two N# x N# matrices A*, amounting NT? 4 N1 operations, a change of basis
(A”')—1 $< , that is (NTZ + le) N, operations, and remaining NT + N1 multipli-
cations for each different couple of lattice sites for which the matrices are defined.
In total we have }, (N#2 4+ N#2N, + N#NZ) ~ N2 (NT 4 NY) operations, since
, usually, N, > N*#. This is to be compared with the N2 2o (N + 1) operations
required by a direct evaluation of detA* (3, ] )

Then, obviously:

(cles) =655 = (esel) = B(j0) (2.2.12)

where brackets mean the quantum expectation value calculated over a fixed con-
figuration of o fields and at a fixed time ¢, according to definition (2.2.1).
By using standard properties of determinants it’s easy to derive (see Appendix

B) another useful relation:

<cjcj-cjncn> = <c;fcj> <cincn> + <c§cn_> <cjcin> . (2.2.14)

Now, by means of eqq. (2.2.11 —2.2.14), we can compute all physically interesting
ground state estimators, simply by expressing their corresponding operators in

terms of ¢,ci. In the following we give explicit formulae for some of them:
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a) particle density: p;, = czﬂciu

B (0) = B*(iyi) = y_ ¢ (v:) (A*),, &g (ri). (2.2.15)

P

b) kinetic energy: Kin = —1 D i TijCE#Cj# with T3; = <i|V21j>

E;(m =75 Z TzJB .77 =5 Z ng ZQD?(I‘ A“ qu (,5:(1‘]) (2.2.16)

iJ 8 LJ e Pq

c) external energy: Vo' = Din Vex"(ri)c;fﬂcw

Bl (o) = ) V= (x:)B* (5,i) = ) V(s )Z‘PP ri) (4),, g (r:)-
i, iy
(2.2.17)
d) electron-electron interaction: Vee = D V’chcw’ Ciu Cip

Evidently:
T T , —
<cip.cjy.'cjﬂ-’ciﬂ> = <cipc7:#c_11:y,’c.7/—"'> 63 0pp < 3,uCim > =

YA B i ) o, 1 .
‘—<Ci,,ucz,u CiwCim' ) — \CiuCiw ) \CjpCin) -

Hence:

EY. (o) = Z Vi;B* (i,5) B* (4,5) - ZMJB (3,4) B (i,5) =

NS YT

3T Ve 3 (4 SR )5 )

NN ?,¢,p",q’

i\ 1 - - -
S SVe X (A (4F) e RS ()8 (x) (2:218)
(v ?,q,p"q’

where, for clarity, we have pointed out the spin component of the orbitals.
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Chapter 3

Sampling the auxiliary fields.
3.1 Updating field techniques

In the AFQMC method ground state expectation values can be obtained by cal-

culating functional integrals over auxiliary fields:

<0> = —%/daEé(a)e"V(a). (3.1.1)

In order to attain this purpose a lot of strategies are available. Obviously the
simplest one is the conventional Monte Carlo method. In this approach the o
fields for all space points (if a spatial discretization is used) and at all imaginary
time slices are updated:

" = ¢ L §As (3.1.2)

where § is a uniformly distributed random number between —1 and 1, and Ac

is a constant factor used to fix the size of the random steps. Then a Metropolis

°1d) the new configuration

—[V(a‘“ew)—V(Uold)] .

acceptance/rejection test is applied: if V (%) <V (o
is accepted, otherwise it is accepted with a probability given by e
Surely this is not the most efficient way to proceed since all the field variables are
updated by completely random movements and, usually, a very small value for Ao
has to be chosen to obtain a good Metropolis acceptance ratio (between 30 and
70%). Therefore large amounts of computer time are required to correctly sample

auxiliary fields.
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In Section 1-4 we anticipated that the evaluation of the integrals over o vari-
ables can be performed as a temporal average:

(6) = 1im 1 /sdEé [o(s")]. (3.1.3)

s (s - 30) 80
In this context o fields have to be suitably updated in the fictitious time s. An
average over all o can be replaced by an average over a fictitious time evolution

in at least two ways.
One can introduce a Gaussian “white noise” function 7(s) and define the time

dependence of o by the Langevin equation:

El_z . _5V(a’)
ds do

+n(s) (3.1.4)

with
(n(s)n(s') = 28 (s — &'). (3.1.5)

From a physical point of view Langevin equation governs the Brownian motion of
particles. The rationale behind this approach[??!, first suggested by Parisi*l, is
that a Fokker-Planck equation is associated to the stochastic evolution described

by (3.1.4,3.1.5):
dP(0o)
ds

=ViP 4 V[VV(e) P (3.1.6)

where P(o) is the probability that the stochastic trajectory, determined by the
Langevin equation, generates a configuration {¢}. In the limit s — oo then
P(o) — e~PV(?) and one can use this property to sample the Boltzmann factor.
Another approach (see also following Section) is a microcanonical method.
From a Molecular Dynamical viewpoint V(o) is considered as the potential energy

(per unit mass) for a classical dynamics governed by Newton’s law, so that:

d?c V(o)

T (3.1.7)
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This system conserves total energy and time averages will agree (up to 1/volume
effects) with functional averages provided the system is ergodic and the initial
conditions are arranged to satisfy the constraint that the kinetic energy should
average to 1/2 per degree of freedom.

In practice, in numerical simulations, the continuous dependence on time is
replaced by a finite difference approximation, by introducing a fictitious time step
As. Then, in principle, results have to be extrapolated to As — 0, since obviously
a finite time step introduce errors!4?.

A more recent class of simulation techniques, the so-called Smart Monte Carlo
methods!#3~%%] promises to be very efficient. In essence one can only approximately
integrate the (Langevin or MD) equations of motion taking some discrete sequence
of As steps. Then this entire trajectory is accepted or rejected by a Metropolis
test. It is just this global acceptance/rejection step that makes the algorithm
exact. In comparison with a simple MC approach this strategy represents a main
improvement since the o variables are no longer randomly updated, but the force
term tends to guide the sampling of the auxiliary fields along the trajectory of the
natural motion of the system. On the other hand,due to the presence of Metropolis
est, the truncation errors {associated with a finite time step As) aflecting a pure
MD or Langevin procedure disappear. Therefore As may be chosen as large as
possible while keeping the Monte Carlo acceptance rate satisfactorily high.

In the following section a Hybrid MD technique, we used in our numerical

simulations, together with its Smart Monte Carlo improvement, is described in

detail.
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3.2 The Hybrid MD/MC method

Choosing a method which efficiently samples o variables is obviously a crucial
step. While a definitive answer about the real performances of various existing
simulation strategies is still lacking, surely a method which takes into account
force-biased updatings, if possible corrected by a Metropolis test, within a Smart
Monte Carlo approach, is desirable.

For our calculations we adopted the Hybrid Molecular Dynamics approach
(HMD)[#®]| which derives from similar algorithms that are being used in the study
of lattice gauge theoryl*?l. Since Q is interpreted as a classical partition function

of the variables o, with a potential energy V(o) given by
V(e) = —InG —1In (.| U(c) |, ) + const. (3.2.1)

it 1s convenient to introduce a momentum variable p conjugate to each auxiliary

field variable o and rewrite the partition function in the form:
Z = const.,/dpda'e_E“"("’p)/KBT (322)

where KT =1 and Ei. (o, p) is the total classical energy of the auxiliary field o

dynamics:
Eiot (0,p) = Exin(p) + V(o) =
1 P 2

=33 [P+ o)+

=1 1
AT i -

+5 S Wiiod)ef D) + 2> o7 (1) | —1n (¥, | U(0) 1) + const. (3.2.3)
=1 %] i

Since ground state properties are computed by estimators which are functions of

o fields only, the introduction of the p fields has no effect on physical results.
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Our task is to obtain a set of configurations of ¢ and p fields distributed as
e~ Frt(9p)  Therefore we can adopt a microcanonical approach with the classical

dynamics governed by familiar Hamilton’s equations:

L OF ot (U,P) _

o= 0 - P (3.2.4)
. aEtot (U,p) _ —aV(O‘)
p=— e = 9 (3.2.5)

where the dots over p and o signify differentiation with respect to. simulation
fictitious time s. In practice we consider a hybrid scheme (HMD) with two types
of updatings. At the beginning and every s,, time units, each p field is replaced
by a Gaussian random number distributed as exp(—p*/2). Then o fields and
p momenta (till next “randomization”) are updated by integrating Hamilton’s
equations (3.2.4,3.2.5). This amounts to periodically touching the microcanonical
system to a heat bath.

If the system is in equilibrium, then the two types of updatings will keep it in
equilibrium. If it is out of equilibrium, then the heath bath steps will drive it to-
wards equilibrium, while the integration of Hamilton’s equations will be “neutral”.
Thus the combination of two updating steps will yield the desired distribution.

This method should be efficient enough. In fact, on short time scales the
successive increments in o variables are highly correlated and o rather quickly
moves to “new” values; on larger time scales, any “non-ergodic” tendencies for o
to return too quickly to earlier values will be reduced by the periodic randomization
of momenta.

Obviously nonlinear Hamilton’s equations must be integrated numerically and
this requires the introduction of a finite size, As, in fictitious simulation time. The

integration may be carried out by the leap frog method[*®l:
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p (s + é;) =p (s - 92—3) ~ As ax(;'((fa) . (3.2.6)

o(s+ As)=o(s)+p (s + %) As. (3.2.7)

An error of order (As)? is introduced at each time step in the integration process.
Since we take of order 1/As integration steps between heat bath updates, the total
error in measured quantities is of order (As)2,

As usual As parameter has to be chosen by a compromise. In fact making
the step size too big leads to systematic errors while making it too small means,
for fixed computational effort, that the integral (3.1.3) will be done for too small
a time, introducing large statistical errors.

If the Gaussian term is the dominant contribution in potential energy (3.2.1),
that is only Gaussian degrees of freedom are important for the system dynamics,
an ideal value for the s,, parameter can be determined. In fact one can show!*?
that the optimal s,,, which minimizes auxiliary fields autocorrelation functiozis, is
given by s, = 1/2wpin, where wpiy is the minimum frequency present in Gaussian
field dynamics.

Now we explicitly derive formulae for the forces, —9V (o)/0c, which have to
be calculated for integrating the classical equations of motion. Their computation
is the most time-consuming phase of the auxiliary field sampling.

As far as the Gaussian part of the potential (3.2.1) is concerned, derivatives
may be performed in a straightforward way.

On the contrary, for the remaining part, —In (¢, |U(o) |¥,), the task is not
so trivial.

If we define the force:




then its non Gaussian part is given by

o (=1n 06, () 42)) =

0
~ day(D)

that is the problem of computing the forces is completely decoupled in spin space.

<1n det <<p;r,| (o) igol) + In det <§01l,| Ul(o) (t,oé>) (3.2.9)

The derivative in the last expression affects only the propagator ﬁ(a) at the time
slice [ and, in practice, it is performed in the following way. Let us consider the
usual overlap matrix Ayq = (5| U(c)|pq) - Then determinants appearing in eq.

(3.2.9) can be formally written as:

detd = "4, (3.2.10)
Therefore:
0 _ _ 04 4] _ 8A .
20 Indetd = 80‘i(l)trlnA =tr [aai(l)A } = ;: [Bgi(l)] e AL . (3.2.11)

Now the derivative A/da;(l) can be explicitly calculated by introducing the back

and forth propagated orbitals at intermediate times:
oo (1) = A7ER2G> (1. AT) (3.2.12)
pl(l) = e ATERPES (1. AT) (3.2.13)

where this formulation depends on our particular Trotter deéomposition (1.6), and
¢ ,5< are the back and forth propagated orbitals for integer times, defined in eq.
(2.2.5 — 2.2.6). Obviously ¢ (0) and ¢5(PAT) = ¢7(B) are the one particle
orbitals corresponding to the trial Slater determinant /..
Then we can write (here the two distinct auxiliary fields and the spin variables
are restored):
[ 0A*

| = A1) Wijes(rj, Degu(r;, 3.2.14
il T2 el el 2
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64* = <y > (.
[ao.z’rn(l)}pq - :tAAT“Pp'u,(r‘Hl)(pqp,(rz,l)' (3a2o15>

where, in the last equation, sign + refers to spin up (¢ =T) and sign — to spin
down (p =1).
Finally we give explicit formulae for the forces by considering Gaussian con-

tributions too:

= _Ar Z Wijod(1)+ | (3.2.16)

+ATZW,J Z(qu_ rj,l gho r],l)-%-ZSOqA (rj,1 )80;1(1'331)
al

F () = =AAre"(1)+ | (3.2.17)

+AAT | et (v Do (v ) Zso (i, ey (v )
a7

with |
ot (rnl) = > (AM) g eou(Tinl): (3.2.18)

Py

As we discussed in previous section, we are not able to numerically integrate the
equations of motion exactly, and thus cannot conserve Ei.:(o,p) exactly. This
problem may be elegantly solved by a slightly modified algorithm: the Hybrid
Monte Carlo (HMC) method[®:#3l.

In practice we incorporate a Metropolis rejection step based on:

g = e [Bror (e P ) = Eroul 4 p ] (3.2.19)

If ¢ > 1 we accept {¢"*"} as a new sample distribution, and if ¢ < 1 we accept it

with probability ¢. If we reject it, we reuse {o°4} as a sample configuration, choose
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a new set of random momenta, and integrate again. The above procedure generates
a set of configurations which correctly samples the desired distribution!*3). We
have considerable latitude in applying it since we can choose both the integration
step length As and the number of Molecular Dynamics steps n,,, between Monte
Carlo rejection steps. The effective potential for the classical problem tends to have
the form of isolated favorable “valleys” separated by large unfavorable regions, so
increasing error in the integration almost always makes E2e¥ — E°id more positive,
and lowers our acceptance rate. The error increases when either As or n,,, is
increased, while the statistical independence of {¢°9} and {s**"} increases when
the product n,, , As is increased.

In addition this scheme help to overcome another difficulty. If we could inte-
grate the equations of motion exactly, in general o would be confined to one region
of its multidimensional space by the zeros of (¥, |U(c)|%,), since the potential
V(o) would have logarithmic infinities at these locations. This would invalidate
our sample. However the logarithmic barrier are usually very “thin” on the scale
of ¢ “displacements” and therefore, if a finite, relatively large As may be used, our

procedure readily makes the (favorable for our sampling) “error” of going through

them.
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Chapter 4
Technical aspects and results.

As usual, even though theoretical formulation of AFQMC method is well estab-
lished, to develop a really efficient algorithm, suitable for numerical computation
is not a trivial task.

In fact AFQMC was extensively enough applied to the Hubbard modell25—30]
but, in that case, various simplifications and variable transformations may be
exploited which, unfortunately, do not hold any more when realistic continuous
systems are to be considered. Therefore a large amount of numerical tests was
necessary in order to achieve a discrete understanding of the technique and to
develop a reliable algorithm.

In this Chapter an outline of the main technical aspects, together with de-
scription of some solutions to various practical problems, is given. Selected results
obtained by the most interesting numerical tests are also presented.

The determination of enérgies of molecular systems is a problem of general
interest in chemistry and physics. We have chosen the Hydrogen molecule to test
our algorithm since it is a very simple molecular system, the fermion-sign problem
is not present because we have two electrons with opposite spins in the ground
state, and accurate theoretical predictions together with high quality experimental
measurements about ground state properties (in particular the dissociation energy)
are available.

The history of accurate calculations of energies for H2 begins with the 1933

work of James and Coolidgel*”l. Their work represented one of the first success
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in solving the Schrédinger equation for molecules. In the 1960’s, more accurate
results for the Hydrogen molecule were obtained by Kolos and Roothaan!*®! and by
Kolos and Wolniewicz!*®], who established the foundation for future calculations.
They implemented a variational approach in which the wave function is expressed
in elliptic coordinates, and using a method of Born/®°! the hamiltonian is separated
into two parts, H = H, + H', where Hy is the electronic hamiltonian including
nuclear repulsion, and H' is the hamiltonian for the nuclear motion including
coupling between the electrons and the nuclei. The adiabatic approximation is
made by neglecting the off-diagonal contributions of H'. Their calculations have
been outlined in detail by Fischer(5!]. Improvements by Wolniewicz [52] including
a more flexible wave function, a variational-perturbation method to include the off-
diagonal contributions to the exact nonrelativistic hamiltonian, and the relativistic
and radiative corrections, gave a better dissociation energy. In addition, Bishop
and Cheungl®3! calculated the energy of Hy by treating the full four-body problem
as a nonadiabatic variational problem.

Recently (August 1990) a very expensive calculation was performed by
Traynor et al.’* by using a massively parallel supercomputer. They obtained

the

round state energy of the

= Voo o A e d
8Y iSOy vii€ Qha.n)i/ uinn Mormnte

aQ

Carlo method of solving the Schrodinger equation, without the use of the Born-
Oppenhaimer or any other adiabatic approximation. The wave function sampling
was carried out in the full 12-dimensional configuration space of the four parti-
cles (two electrons and two protons). Both a DMC and a GFMC algorithm was
used. Their result is in close agreement with the best, experimentally determined

dissociation energy of McCormack and Eyler®®!, 36118.1 + 0.2cm™1.
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4.1 Calculations in Fourier space

The kinetic operator is diagonal in reciprocal space, where, as we have already
anticipated, it is convenient to perform kinetic term propagation e~ % Kin_ There-
fore it seems to be natural to expand the one particle wave functions ¢,(r); which

kr which form a complete

trial Slater determinant consists of, in plane waves e
set of functions. This a well known procedure in Solid State calculations where
the periodicity of a Bravais lattice is exploited. In fact if ¢,(r) has the periodicity
of a Bravais lattice, that is ¢, (r + R) = ¢,(r) for all r and all R in the Bravais
lattice, then only plane waves with the periodicity of the Bravais lattice can occur
in the expansion. Since the set of wave vectors for plane waves with the periodicity

of the lattice is just the reciprocal lattice, a function periodic in the direct lattice

will have a plane wave expansion of the form:
palr) = 3 Cp(G)eS (4.1.1)
G .

where the sum is over all reciprocal lattice vectors G. The Fourier coeflicients
Cp(G) are given by:

Cpr(G) = %/drgop(r)e"iG'r. (4.1.2)

where the integral is over any direct lattice primitive cell C, and Q is the volume
of the primitive cell. By a formal point of view this approach means that we
are studying a periodically repeated physical system. Nevertheless if an isolated
molecule has to be considered, we can, equally well, use this method provided that
direct primitive cell is large enough. In practice we choose a cubic box with volume
Q) = @®; then, if a is sufficiently large and the system inside the cell is neutral,
we substantially obtain an infinite number of non-interacting copies of the same

system and therefore we are able to recover the properties of an isolated molecule.
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The number of plane waves involved in expansion (4.1.1) is determined by a

kinetic energy cutoft:

1
§G-2 < Eeus. (4.1.3)

Obviously the accuracy of the expansion can be improved simply by increasing
the value of the cutoff energy E.,; and, consequently, the CPU computer time
requested by numerical calculation.

In the AFQMC approach a lot of cén'volution integrals are to be performed.
For instance, in order to compute single particle wave function propagation we

have to evaluate (see eq. (2.1.25)) a term:
Viir) = 3 oW — / dro ()W (x, rs). (4.1.4)
J
By a numerical point of view it is convenient to calculate (4.1.4) in Fourier space:
VI(G) = QW (Q)o*(G). (4.1.5)

Then V'(r) can be quickly recovered by using the Fast Fourier Transform. In
general it is profitable to consider Fourier coeflicients of the various quantities as
the fundamental variables and to compute ground state properties and ¢ dynamics
forces directly in reciprocal space.

In Appendix C the main expressions for ground state estimators and o forces
are given in terms of Fourier coefficients and these formulae were actually used
by our algorithm. Furthermore computational efficiency should be improved by
performing the calculations in Fourier space as far as the auxiliary field sampling

[20] Tn fact if o; = o(r;) fields were updated by using a spatial

is concerned
mesh, we would obtain rather uncorrelated changes at different mesh points, even
though the physical systems is not expected to fluctuate on this scale. Moreover,

the integrability of such extremely erratic functions becomes rather questionable.
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Therefore it is convenient to update Fourier components o(G) of o rather than
their values at individual spatial mesh points, since this is equivalent to perform

“correlated” changes of the field at all space points.
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4.2 Numerical stability by Gram-Schmidt

orthonormalization

By performing single particle wave function propagation, as shown in eqs. (2.2.5—
2.2.6), a problem about numerical stability appears. In fact, since imaginary time
propagation is not unitary, the orthonormality conditions, initially satisfied by the
orbitals, are not preserved during such propagation. Therefore, after repeating
many times the propagation steps, an orthonormal basis set ¢,(r),p = 1,...,N
will no longer remain orthonormal and the algorithm becomes numerically instable.
This can be understood since, due to auxiliary fields introduction, the orbitals are
independently propagated through an imaginary time one-body propagator e~ths,
Thus a direct application of eqs. (2.2.5 — 2.2.6) results in a Slater determinant
with a great deal of linear dependence among the wave functions. In this way the

numerical information about the fermionic ground state is gradually lost.

In order to have a stable propagation, we can apply Gram-Schmidt orthonor-

malization after every few time slices. In fact the t-time Slater determinant

P* = det [} (r;)] (4.2.1)

can be rewritten in terms of an orthonormal basis set by introducing a transfor-

mation:

90; = Z qu%"; (4.2.2)
g

where the matrix U,, is chosen in such a way that <<,o'p] (,0;> = 0pq. The matrix
Upq is not univocally determined by eq. (4.2.2). A convenient choice is to use

the Gram-Schmidt orthonormalization procedure because, in this case, Upq is a
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triangular matrix. Now %* can be written as:

Pt = det

Z qugo;(ri)} = det(U) - det [go;(ri)] (4.2.3)

where the latter equality simply follows by expanding the determinant of the prod-
uct of two square matrices: Upq and py(r;). Therefore ¥* can be expressed, up to
a constant, by means of orthogonal orbitals. Hence we again have to propagate a
Slater determinant, made up by orthogonal orbitals, and one can proceed as usual,
until the numerical stability will require another orthonormalization. With such a
strategy we can propagate for long time any function without any numerical prob-
lem, even though the computation time increases due to the orthonormalization
of the orbitals which costs N2 N, operations.

If the Hydrogen molecule has to be studied, its ground state consists of two
electrons with different spins and, actually, Slater determinant are absent. Never-
theless it is still convenient, by a numerical point of view, to normalize frequently

enough the propagated wave functions.
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4.3 Fourier acceleration

If the real and imaginary parts of the Fourier coefficients ¢(G) are considered
as independent variables, the Gaussian factors, in auxiliary field potential energy
V(o) (see eq. (C.13)), contribute independent harmonic oscillator terms.

Their oscillation periods set natural time scales which are not greatly
modified*%], on the average, by the contributions from the determinants.

It is easy (see Appendix C) to derive the oscillations frequencies and the

corresponding periods:

wH(G) = \/QAT87T (a—zl— - 512—> (4.3.1)

W™ = \/QAT87F (G’i ) (4.3.2)

m _ 2T

We note that o™ fields oscillate with a constant frequency, while o fields oscillate
with G-dependent frequencies. In practice we should limit the size of a single
field update, by choosing a small enough value for the parameter As - see eq.
(3.2.6 — 3.2.7) - in order to maintain stability at short distances, since short-
wavelength (large ) structure tends to evolve more quickly than structure at
long-wavelengths (small G). In this way the evolution of large scale features is
greatly slowed.

This problem can be remedied by introducing G-dependent masses in field
dynamics. In fact these masses are not fixed by our method and can be chosen

according to a criterion of simple technical suitability.
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If we define:

then all o(G) auxiliary fields will evolve with the same oscillation frequency:
wi @) =w™ =1 (4.3.6)

T™ = 2. (4.3.7)

56,57]

By using this Fourier acceleration technique! we are able to speed up the

evolution at long wavelengths without destabilizing the short wavelengths.
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4.4 Results and difficulties

In order to save computer resources and to avoid some problems which, as we
will discuss in the following, affect our method when high energy cutoffs are used,
the most part of our numerical tests were performed by imposing a very small
energy cutoff: G?/2 < F.yy = 0.5 Ryd’s. With this value expansion (4.1.1), for
the one-body wave functions, contains only 7 plane waves (corresponding to the
(0,0,0) and (1,0,0) shells in reciprocal space), therefore we have a low accuracy
and our physical system, the Hydrogen molecule, actually becomes a “toy model”.
Anyway the main technical features of the method may be fruitfully analyzed,
even though quantitative results for ground state properties are meaningless as far
as their absolute values are concerned. In addition, in this small cutoff situation,
the “exact” (with regard to this cutoff) ground state properties can be quickly
obtained by an ezact diagonalization procedure and this is very useful since we

can immediately realize the correctness and precision of our numerical results.

In order to increase correlation energy contribution, which, because of small
. PO 4 S D . | - Mmoo oy o IT 1oLt 1.0
energy cuioil, would be much smailer than exact Hy correlation energy, we multi-

plied electron-electron interaction by a factor 4.

In Fig. 1 a typical AFQMC simulation is shown. The H, ground state energy
estimator is plotted during its fictitious time evolution. The average value of this
estimator, over all fields configurations which are sampled, gives a ground state
energy estimate. Hartree-Fock energy (—0.287 a.u.) and exact diagonalization
energy (—0.366 a.u.) are also shown: their difference gives the correlation energy
contribution. In order to appreciate the convergence of energy estimator average

to the exact ground state value, the cumulative average is drawn. With 5000

56



Energy (a.u.)

simulation steps we obtain Fy = —0.368 + 0.011 a.u. which correctly estimates
the exact value, even though statistical error is large enough due to considerable

estimator fluctuations, which are evident in figure.
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Fig. 1: Fictitious time evolution for H; at F¢y:=0.5 Ryd’s in the Hybrid MD scheme.
The fluctuating dashed line represents the energy estimator evolution while the contin-
uous line is the cumulative average. As a reference Hartree-Fock and exact results are

shown.

In this case o fields were updated according to a Hybrid MD algorithm (see Chap.

3). The fictitious time step As was chosen in such a way to assure a good conserva-
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tion in Eio¢(o,p), the field total energy, during the MD steps between heath-bath
updatings: a value As = 0.05 has proven to be suitable if a Fourier accelera-
tion technique (see previous section) is introduced. Heath-bath updatings were
performed every 20 MD steps.

As far as the single-particle wave function propagation is concerned, At pa-
rameter, which characterizes Trotter decomposition, was chosen by analyzing re-
sults obtained by a Local Density algorithm. A A7 = 0.03 value should give rise to
a systematic error well smaller then statistical error we can attain even if long sim-
ulation runs are performed. Every Trotter time slice propagation single-particle
wave functions were normalized. A total number of 64 imaginary time propagation
steps, that is 8 = 1.92 a.u., has proven to be a long enough propagation, in order
to have a good convergence to H, ground state.

In our tests Hydrogen nuclei were placed at equilibrium experimental distance
for Hy molecule, R = 1.401 a.u.. The trial wave function was the self-consistent
solution of a previous Hartree-Fock calculation. The initial configurations of the

d

o, o™ fields was taken to be the total density and local magnetization respectively,

obtained in Hartree-Fock approximation:

ol (r,1) = ol (x) = pT(r) + pt(r) (4.4.1)
ol (r,1) = o (r) = p(r) — pt(r) (4.4.2)

for all time slices [ = 1,..., P. Simulation of Fig. 1 requires a total of about 500
seconds on a CRAY Y-MP computer. Obviously a better precision, in final result,
can be achieved simply by performing longer simulation runs and by considering
that statistical error is inversely proportional to the square root of the total number

of sampled auxiliary field configurations.
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Numerical tests performed by a Hybrid MC algorithm for auxiliary field evo-
lution gave similar resﬁlts for both ground state energy and its statistical error.
In this case a Metropolis acceptance/rejection step is introduced - see Chap. 3
- and As parameter has to be chosen in order to get a suitable acceptance rate
AR. For instance, by using As = 0.1 we obtain AR= 78%, and, by performing
a simulation run with all other parameters equal to those of the previous Hybrid
MD calculation, we have an estimate: Ey = —0.364 = 0.016 a.u..

A different group of numerical tests was done by using the Variational Jastrow
Auxiliary Field method - see section 1.5. For the Jastrow factor we have chosen

the expression:

J(r) = ae™" 17 (4.4.3)

where « and r; are two parameters that have to be optimized in order to minimize
ground state energy estimate. The practical advantage of this particular form is

that it has a simple analytical Fourier transform:
W%r?e—Gzr;/é. (4’.4.4)

In Fig. 2 a variational Jastrow simulation is presented; in this case & = 1.0 and
r; = 2.5. In a previous variational Jastrow approach, performed by a Monte
Carlo algorithm, we found Ey = —1.151 £ 0.001 a.u. for Hy molecule in the Born-
Oppenhaimer approximation, to be compared with the exact result: Eq = —1.1745
a..!8], In that case about 2% of the total energy was neglected by a variational
approach. In our small energy cutoff situation, we are able to recover, as Fig.
2 illustrates, the “exact” ground state energy and, moreover, by spending much
less time than by using previous exact method (Fig. 1). In fact we obtain Ey =
—0.365 + 0.008 and the required CPU time was about 13 seconds.

In section 1.5 we asserted that a variational Jastrow auxiliary field approach can

59



Energy (a.u.)
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Fig. 2: Fictitious time evolution for H, at E.,;=0.5 Ryd’s in the Hybrid MD scheme
by using a variational Jastrow approach with a=1.0 and r;=2.5.

be also used to produce a trial wave function better than usual Hartree-Fock
determinants, and therefore to save a certain amount of computer time since a
shorter imaginary time propagation (a smaller § value) can be performed. To
verify this expectation we have tested an Auxiliary Field algorithm where the
first “forth” and “back” propagation steps were variational-Jastrow-like while the

remaining ones were the ordinary imaginary time propagation steps. In practice

60

|
T
i



we used a partition function @Q:

Q= (1)) = (a0, 7T, |9 (4.4.5)
1, being the usual Hartree-Fock determinant. The o and r; parameters were
chosen in such a way (a = 1.0, r; = 2.3) to produce, by a simple variational
calculation, a ground state estimate, Ey = —0.346 &+ 0.005 a.u., a little higher
than optimal one. In this situation we found that only 6 imaginary time prop-
agation steps, amounting to S = 0.18 a.u., were necessary to obtain, within the
statistical error, the “exact” ground state energy: Ey = —0.360 £ 0.008 a.u.. In
comparison with usual procedure, without introducing Jastrow trial wave func-
tions, the improvement is evident, since a total of 8 propagation steps (about 60
seconds) are required in place of 64. This is very promising for the general situ-
ation when a variational method can only give a good approximate ground state
energy estimate.

As far as auxiliary field imaginary time-dependence is concerned, some com-
ments are opportune. If one studies the Fourier spectra of the auxiliary fields as
a function of 7, there are as many Fourier components as there are time slices, so
smaller A7 in effect introduces higher frequencies. It has been demonstrated (3%,
in model calculations, that very high frequency fluctuations in the fields have very
little effect on the states being propagated. In fact the high components are strictly
Gaussian in their distribution, showing that the determinant of states reacts back
on them with very weak forces and the amplitudes of the lower components do
not vary much when higher components are introduced through smaller A7. All
this supports the idea that the highest components are not very important to the
development of the projected many-body state.

In the following table we report ground state energy data obtained by the

usual 64 time slice propagation, but with successively reduced Fourier components
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which are used in propagating trial wave function.

Fourier components Energy (a.u.)
64 -0.368 + 0.011
32 -0.365 + 0.009
16 -0.363 £+ 0.008
8 -0.366 + 0.013
4 -0.357 £+ 0.012
2 -0.340 4+ 0.008
1 -0.255 + 0.003
As we can see the exact ground state value, Ey = —0.366 a.u., is contained within

the error bars even by taking into account only 4 Fourier components. Our con-
clusion from these observations is that a small A7 is important to obtain accuracy
from the Trotter approximation, even though the Trotter formula and a correct
treatment of the many-body effects are not inexorably linked. In fact most of the
computational work entailed by small A7 is spent by doing the trivial part of the
problem, the one-electron part, with sufficient accuracy. Probably a similar be-
haviour happens when Fourier coefficients o(G) are considered. In this case, from
a physical point of view, we expect that only intermediate frequency components
of ¢ contribute significantly to the evolution. In fact high-G components should
be not very important since a physical density is not expected to fluctuate on a
small scale, while low-G' components are probably not necessary, since, in most
of interesting electronic systems, correlation length is not too long. At our small
energy cutoff we could not give a definite answer about this expectation.
Unfortunately, when one imposes an higher energy cutoff, in order to obtain
meaningful quantitative results, problems arise. In fact, with F .y greater than
about 1.5 Ryd’s, very large, on the scale of correlation energy, fluctuations in
ground state energy estimator take place. They make the statistical error pro-

hibitively huge, actually preventing to get acceptable results in a reasonable com-
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puter time. Therefore a considerable effort was spent in order to understand what
these fluctuations depend on. Essentially we found that they depend on the fol-
lowing factors:

1) The number Ng of auxiliary field Fourier component which are considered,
as we have just reported. We note that Ng o Ec%ut- To illustrate this Ng-
dependence we have used the variational Jastrow algorithm, at Ecys = 6.0 Ryd’s,
with « = 1.0 and r; = 1.0, but with only the N&f(< Ng) lowest G Fourier
components which are effectively taken into account in the calculation. As we can
see in Fig. 3 the fluctuations, and the consequent error, are still acceptable with
NEF = 60 but they make the results meaningless already for N = 200 (this not
very high energy cutoff would require about 2000 ¢ Fourier components).

2) The strength v of electron-electron interaction. In fact we performed, at
small energy cutoff, some simulation runs with electrons interacting through a
4/r potential (in our previous tests v = 4), and found an approximately linear
dependence on 7, as far as the statistical error is concerned. For example, if v = 1,
we obtained AE, = 0.003 a.u., to be compared with AE, = 0.011 a.u., we got
with v = 4.

3) The imaginary time 8. In Fig. 4 we show a simulation run with the
same parameter of Fig. 1, but § = 0.48 a.u. (only 16 time slices in place of
64). Fluctuations are evidently much smaller - the statistical error being only
AE, = 0.002 a.u. - even though ground state estimator average converges to a
result far from the exact one.

In this case B dependence is also approximately linear and we observe that fluctu-
ations depends on B imaginary time and not on the way it is Trotter-decomposed,
that is the time slices number. In the variational Jastrow approach the same ar-

guments hold: if the Jastrow factor J(r) weakly correlates electrons, fluctuations
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and statistical errors are small, but the result is poor; on the contrary if a suitable
correlation is introduced we obtain fluctuations which are comparable with the
usual ones when a long enough imaginary time is used (compare Fig. 1 and Fig.
2).

4) The A parameter. In Chap. 2 we introduced a A parameter which was nec-

essary in order to obtain a two-body interaction matrix suitable for performing the
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Hubbard-Stratonovich transformation. In principle this A is a simple mathemat-
ical trick which should not affect the physical results, but, actually, its presence
enhance the fluctuation problem. In fact the effective one-body potential, which

governs wave function propagation, has Fourier coefficients given by - see section

2.1-:
4
Verr(G) = Vexs(G) — (/\ - —672—) c?(G) £ Aoe™(G). (4.4.6)
We observe that, since Vexi(G) is proportional to 1/G? and A > 47/G2;_, then
for G > Gy the effective potential becomes:
Ver(G) = =X [0(G) £ 0™(G)] . (4.4.7)

This factor introduces two immediately evident negative and undesirable conse-
quences.

First of all most of the o field components evolve in a way that is completely
independent on the physical system we are considering, the minimum allowed )

being fixed only by the form of electron-electron interaction.

2
min

Second, A is usually a large enough constant. In fact Apin = 47/G
a?/m, with a, the length of our cubic box side, which has to be chosen sufficiently
large to make our system really isolate (we have used a = 10 a.u.). Therefore
it is reasonable that A, which is present in the one-body propagation and in the
auxiliary field evolution, actually introduces a considerable “white noise” in our
numerical calculations. Obviously all these negative effects increase when energy
cutoff grows.

To confirm our previous assertions we have done two kinds of tests. First we
performed two simulation runs at E.,; = 6.0 Ryd’s, by using a variational Jastrow

approach. In these two tests all the parameters (a and r; included) were the

same but, in one case the sign of the Jastrow factor was “wrong” ( the electrons
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would be forced to come closer to each other) and this made the introduction of
a ) factor useless. We found that, when A\ was not present, the statistical error
(and therefore the fluctuations which it depend on) in the ground state energy was
about an order of magnitude smaller than in the other case.

Then, always by using a variational Jastrow method at E.y = 6.0 Ryd’s,
we simply introduced a A factor which was 5 times greater than the minimum
allowed one. In principle this should be of no consequence in final results since
a correct Hubbard-Stratonovich transformation only requires to introduce a suf-
ficiently large (A > Amin) A factor. Nevertheless the statistical error was about 4
times greater.

To summarize we can reasonably assert that, in our present AFQMC algo-
rithm, if a A factor has to be introduced, ground state estimator fluctuations are
essentially proportional to 3vNgA and, therefore, they generally become too large
when those parameters assume suitable values to achieve precise quantitative re-

sults for ground state properties in realistic physical systems.
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Conclusions and Outlook

In this thesis we have described in detail a method for the simulation of realistic
many-electron systems. In this approach the Hubbard-Stratonovich transforma-
tion allow us to replace direct electronic interactions by coupling to auxiliary fields.
Then, sums over these fields are performed statistically using the determinantal
and Gaussian weights to guide the importance sampling by means of a force biased

algorithm.

As in any other statistical method the most important problem is the min-
imization of the statistical error. At present our method seems to be not really
efficient (especially in comparison with other QMC techniques) since, when we ap-
ply it to compute Hydrogen molecule ground state properties, large fluctuations in
estimator values actually prevent us from obtaining physically interesting results

except that in very small energy cutoff situations.

In order to solve this serious difficulty, we are studying several possible im-
provements, all of them being based on the “trick” to build into the method as
much as possible of the physics without biasing the results by limiting the degrees
of freedom of the system. For instance, our preliminary numerical tests show that,
actually, only a small number of Fourier components are strictly necessary to ob-
tain correct results, even though, at present time, a precise criterion to select these
essential degrees of freedom is missing. Another promising solution is to reduce
the auxiliary field degrees of freedom by performing a kind of “spatial importance
sampling”, that is by suitably neglecting field sampling in space regions, which for
example are far enough from the centre of our molecule, where we expect field evo-

lution does not affect physical properties. All these ideas surely require a deeper
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investigation and a substantial amount of further numerical tests.

Nevertheless we are confident enough that it is feasible to obtain good results
for a simple molecular system, such as Hj, at a reasonable energy cutoff, by using
an improved version of our AFQMC algorithm. Then the problem of introducing
very high energy cutoffs to achieve a good accuracy in calculated properties should
not be an insuperable difficulty. In fact we expect that high energy cutoff correc-
tions are essentially due to one-body properties and therefore they can easily be
attained, for example, by a Local Density approach.

In conclusion we have demonstrated that application of the AFQMC method
to a continuous system is feasible, even though the possibility of obtaining truly
meaningful results for realistic systems depends basically on the solution of the

auxiliary field fluctuation problem.

68



Appendix A
Derivation of Hubbard Stratonovich Transformation

We must prove the following identity for multidimensional integrals over real vari-

ables:

8 -1 . . _B N N
et (BA) 7F eF 2 45700 L [ day ™8 D Aument
(2m)f

(4.1)
where A is a real, symmetric, positive definite, n x n matrix.

This identity is stréightforwardly established by changing Variﬁbles to reduce

it to diagonal form and using the familiar Gaussian integral:

-+ oo
™ —az?
\/gz/_m dze . (A.2)

First of all let us perform the transformation:
vi =i~ A5'p;. (4.3)
J

By using the relation ), AikA;jl = §;; and the symmetry of A we can rewrite the

integral in the R.H.S of eq. (4.1):
/dwl e dwne—% Z‘i Aijzizi+p Zi TiPi

_B Aiiyiyi+235°  ATlpips
=/dy1...dyne 22:’:’ PV T 2 A PiPr (4.4)

Then we introduce the variables z = >.: Okiyi , where O is the orthogonal trans-
formation which diagonalizes A:
Y = Ok Ai;05r = ambim. (4.5)
1] .
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With this transformation the R.H.S of eq (A4.4) becomes:
e% 2 A e /dy1 e dyne_gl Dy A vivi

B -1
=e? Zii A5 pips /dz1 .. .dzne_% P (A.6)

where we used the fact that O is a unitary transformation, >, OxiO; =
Sk Oi—]’clij = §;j, and «; are the eigenvalues of A.

Now we can directly apply the well known eq.(4.2):

= =1, _B 2 8 / 271'
2 Ez; At] PiPj / dzl R dzne 2 Zl Fp e fraeed 2 ‘” '-7 p‘pJ H A.7)
al

Finally we can write
I LA (4.8)
o [det (B4)]2

and therefore we have shown that:

/ doy ...dege™ T Lus A=A Y20 _ (4ot (8A)]7F (2m) % e L A5 P
(A.9)
and hence identity (A4.1) is proved.
Note that the positivity of all eigenvalues «; of A4, that is the fact that A is
a positive definite matrix, is essential for convergence of Gaussian integrals and,

therefore, a crucial condition for the validity of the proof.



Appendix B

Higher order correlation function estimator

Here we want to show that (see Chap.2):

<cjc]-c;fncn> = <c;.fc]-> <c,7ncn> + <c;fcn> (cjel.). (B.1)

Let us consider the quantity:

T (chella (t,8) x| elchUs (1,0) . )
<c1cnc cl > = . (B.2)
(0a (2:8) 82 | Us (1,0) %, )
This involves the scalar product of two (N + 2)-state determinants and we can
write: )
detA (jn,im)
<c]cncfcT > e -———d(gr (B.3)

where A is the usual overlap matrix:

Apg = <55; $5q>> (B.4)
and -~
5_7m Onm SD_‘Z (rm)
’sz 5nz g0q>(1‘,_)
Apq (jn,im) = : : : (B.5)
fp (r;) ‘P;( 1) Apg
Let us introduce the quantity
B(j,m) =Y ¢ (rm)d, 35 (x;). (B.6)
pq



Now, since a determinant remains unchanged if one adds to a column any linear
combination of the others, we may add to the first column of the matrix A alinear
combination of the other columns in order to make vanishing all the elements of

the first column but the ones in the first two rows:

6Jm bO nm E qu"q (I'm)
5 bO ni Z bq(,Dq (1‘1,)

detA = det : . (B.7)
95;(1'1') - bO‘f;;(rn) - Zq bgApg

We choose by = 0 and b, = }: Aqq,goq (r;). Then we obtain:

éj: — B (J,1) bni oo Pg(ri)
detA = det : : : (B.8)

Now we can repeat the same procedure in order to make vanishing all the elements

of the second column but the ones in the first two rows and we have:

5jm’“B(jam) 6nm'—B(n37.n) 95q>(rm)
5ji"'B(j7i) 5.,”'—-3(77/,74) (/5q>(r1)
det A = det : : = (B.9)
0 0 Apq
Bax2) Claxn)
= det . = detB - det A. (B.10)
Ovxz) - Avxw)

Therefore by using definition (2.35):
<c]cncTcT > = detB =

72



= [6jm = B (5,m)][8ns — B (n,1)] = [6nm — B (n,m)] [§;; — B (j,1)] =

= <cjcfn> <cncf> — <cnc;fn> <c]'c;f> . (B.11)

Finally, by usual anticommutation rules for fermion operators c¢,c , we obtain:
<c§c]'c,Tncn> = — <c]-cnczcin> 4+ 6in <cj-c:’n> — 0;; <cncfn> + 6nm <cfcj> -

= <c;-er> <cIncn> + <cIcn> <cjcin>- (B.12)
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Appendix C

Ground state energy and forces in reciprocal space

Let us consider the plane wave expansion
r) = Z Cp(G)eiCr (C.1)
G

with Fourier coeflicients given by:

C,(G) = -(15 / dre,(r)eiC. (C.2)

The estimator of total ground state energy, evaluated at a particular auxiliary field

configuration ¢ and at a fixed imaginary time ? is:
E}I(U) = E;{in(o-) + E‘t/ext( ) + E;‘/‘ee( ) + Eion' (0'3)

Then, by using definitions (C.1 — C.2) and relations (2.2.16 — 2.2.18) we can write

the various components in the following way.

EL ( }:}: (A*)5 ZG20*< )C>(G) (C.4)

® P9
Vext ZZ AF‘ pq Z VEXt(G) .;p(G) (0'5)
B Pq G##0
1oz o e
Vee Z Z A# pq A’L Z a_ q:(G) q'l;’(G)_
pr' pgp'q’ G#0
—1 1 LF \ ok
E Z (4%)5 Pq A# pq G2 q’i;(G)fqzi(G)"i’
v pgp'q’ G#0
2T 1 1 ,
G#0

T4



erfc IRI - RJl % R
Bion = 2702 3 IPGWS(G SPIIEZ (IRI = R,rlf) B \/;’?;sz-
I

G#0 I;éJ
C.7)
where:
Apg = Z ~;;<(G’)Cﬂ'q>(G) (C.8)
G
Fnl@) = ¢ [ are5 a7 (e e (C.9)
Ve(G) = —%/drve}‘t(r)e"i@"r. (C.10)

The last term in eq. (C.6), with Geys = /2FEcyt, is due to the fact that a periodi-
cally repeated system is considered. Therefore, in order to obtain electron-electron
interaction per unit cell, one has to formally compute interaction between all the
electrons of allthe cells, by avoiding to take self-interaction into account, and then
divide by the (infinite) number of cells.

The ion-ion interaction energy, produced by repulsion of unit point charges, is
coﬁveniently computed by adding and subtracting the interaction between Gaus-

sianly shaped charge distributions:

3
o 2
peasan(r (")ZL ZremelrmRa) (C.11)
m
I

where a parameter, which determines Gaussian charge radius Rgayss = 1/+/@, has
to be suitably chosen.

We note that, in principle, EY . (7), E},,.(7), Eion all contain G = 0 terms
and, therefore, they are separately divergent due to the form of the Coulomb
potential Fourier transform. Anyway, all these divergent contributions cancel each
other as we expect since the entire system is neutral.

As far as computation of forces, in auxiliary fields dynamics, is concerned, we

can write the total energy FEio:(o,p) by considering real and imaginary parts of
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Fourier coeflicients

Q) = %/dw(r)e—i@r. (C.12)

as independent variables:

P
1
Biot(o,p) = 5> >, (PG + p™(G)) +
=1 G>0
P
+ A7 S S (164G PW(G) + o ™(G)PA) -
I=1 G>0
—1n (| U |, ) + const. (C.13)
where
4
)\ = o (C.14)
1 1 4
W(G) = 4n <Gfm "(’ﬁ) = -5 (C.15)

and we consider only the positive G Fourier coeflicients as independent variables

since we keep our sigma fields real and therefore:
o(—G) =" (G). (C.16)
At each “heath-bath” step (see Chap. 3) we impose the condition:

1
(Bian) = 5Na = 2PN, (C.17)

with Ny, the total number of degrees of freedom, which is obtained by multiplying
the number N, of positive G vectors by the number P of imaginary time slices,
a factor 2 for the real and imaginary components of complex Fourier coefficients
and, finally, a factor 2 for the two different kinds of fields we have to take into

account.
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By differentiating eq. (C.13) we obtain the following formulae for the forces:

FYG, ) = —53% = 2QAT [-0%(G,1) + RY(G,1)] W(G)
F™(G,]) = —5;‘?%/(%% = 20A7 [—o™(G,1) + R™(G, )] A
with:
RUG, 1) = Y (AL) T FL(G D) + D (AL) T (G, )
plal plgl
BTG, = S (AL) (G 1) = Y (AL) T L (G D)
pTqT prlel
and:

1 AR
fi (@) = g [ dros(e ez (0
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