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Introduction

The interest in CP-violation is both theoretical and phenomenological. From the
study of particle-antiparticle mixing and other flavour changing neutral current pro-
cesses (FCNC) with CP-violation, many important constraints on the physics be-
yond the standard model have been imposed. Moreover, the Standard Model physics
itself has been improved, because many parameters of the model, as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, have been bounded or fixed. Ko— Ko
mixing alone led, in the sixties and early seventies, to the conjecture of the existence
of the charm quark and allowed an accurate estimate of its mass prior of its discovery.
In the same way, nowaday, some interesting informations on the top quark mass can

be derived both from Ky— Ky and By— B, mixing.

These FONC processes originate from weak interactions, but they are influ-
enced by strong interactions both at short and at long distances (weak interactions
are described in the framework of the Standard Model and strong interactions are
accounted for by QCD). The long distance strong interactions are presently still a
problem and must be evaluated by non-perturbative techniques. On the other hand,
the short distance sector of the theory is actually well known and can be sistemat-
ically described by means of renormalization group improved perturbation theory,
thank to the asymptotic freedom of QCD.

Every low energy weak process can be described in the effective hamiltonian
formalism. The basic expression of the effective hamiltonian for a given physical
process contains its tree level weak amplitude. Then, QCD corrections can be added,
in a given approximation (leading logarithms, next-to-leading logarithms, etc.) and
summed up to all orders, using the standard renormalization group (RG) techniques.
It’s really important, for the predictivity of the theory, to evaluate how much QCD
corrections modify the effective hamiltonian.

In particular, the theoretical expressions of particle-antiparticle mixing and all
the CP-violation parameters, computed in the QCD improved effective hamiltonian
framework, depend on the top quark mass (m;) and can be used to improve the
present bounds on m,. However, in order to compare our predictions with the ex-
perimental results coming from LEP or SLC, we must describe the m,-dependence
of each of the previous quantities in a rigorous theoretical way.

The computation of QCD improved weak effective hamiltonians for particle-
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antiparticle mixing, etc. has already been performed in the case of a light top quark
(m: < 60 Gev), while not in the case of a heavy top quark. As I will explain in more
detail later on, a certain number of people has been concerned with this problem,
but what is present in literature is still confused. Also, a clear phenomenological
analysis of the result is lacking. In spite of the theoretical problems still existing
(£i. in the evaluation of the hadronic matrix elements and generally in the whole
long-distance strong interaction physics), it is very interesting to dispose of a general
coherent analysis, which uses the more updated experimental and phenomenological
inputs of the CP-violation scenario. In this way, it would be possible to clarify what
can already be considered as well established and what, instead, need still to be
investigated.

Our efforts have been driven just in this direction and we have worked so far
on two main subjects:

(i) the explicit calculation of the QCD corrections to the Ko— K, mixing amplitude,
which can be easily generalized to the case of a Fy—Fy mixing process (where
F' denotes a generic flavour);

(ii) the numerical implementation of the results of (7).

In this context, first of all, we have computed analytically all the one-loop QCD
corrections to the box-diagram for the Ko— K, mixing. Then, we have selected the
leading logarithmic contributions both in the case of a light and in the case of a
heavy top quark, and we have summed them up, by using renormalization group
techniques. We have found that the results obtained for a light top quark can be
safely extrapolated to the region where the top quark is heavy, while the viceversa
is not true. The QCD corrections obtained in the case of a heavy top quark do not
describe with sufficient accuracy the region where the top quark is light. The results
obtained in the two regions match quite well in the intermediate region.

It seems relevant to us to have clarified the “quantitative” discrepances between:
(i) the tree level weak amplitude (originally computed by Inami and Lim 126]); (i)
the QCD improved weak amplitude for low values of the top quark mass (computed
in a definite way by Gilman and Wise [23]) and, finally, (441) the QCD improved weak
amplitude for large values of the top quark mass (initially proposed by Datta et al.
[14]). '

In a second step we have written a program, which, on the basis of our analytical
results, produces a plot of the “€”-parameter (from Ky—K, mixing) and a plot of the
fs B-meson decay constant (from By— B, mixing) as functions of cos § (where § is
the CP-violating complex phase in the CKM matrix). The use of the experimental
value of the e-parameter, which is presently known with great accuracy, allows to
restrict, for a given value of the top quark mass, the range of f, to only two regions
in the (f5,cos §)-plane. A better knowledge of f5 could determine a definite value of
cos 8. This seems to us a very interesting and quite new point of view in discussing
CP-violation and we would like to further investigate in this direction.
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In the future, we are planning to improve our results, by considering also the
“¢'”-parameter in CP-violating processes, both from a theoretical and a numerical
point of view. It is also among our future activities, the more ambitious project to
perform a complete two-loop calculation of the effective weak hamiltonian, including
heavy top “penguin”-diagrams. This calculation is urgently needed to put many
theoretical predictions, which involve “penguin”-diagrams, on a more solid basis.

My thesis consists of four chapters and two appendices. In the first chapter I
give a general description of CP-violation in the Ko—K ( mixing and of its justification
in the contest of the Standard Model. At the end, the present status of art in the field
is generally summarized. The second chapter is devoted to introduce the “effective
hamiltonian” approach to some particular physical problem, more specifically to the
case of weak interactions. In particular, the more technical aspects are illustrated
with two instructive examples: (7) the partial explanation of the “octet enhancement”
or AI=1/2 rule, and (4z) the study of the AS=1 non-leptonic decays. On the latter
case, more details, which will be useful for Chapter 3, are also given in Appendix
A. The third chapter is concerned with the discussion of QCD corrections to the
Ko— K, mixing amplitude, i.e. the box-diagram amplitude, both for the m, < My
and the m; > My, case. The detailed calculations about this second case are reported
in Appendix B. Finally, in Chapter 4 it is given the discussion of the numerical
implementation of the results presented in Chapter 3.
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Chapter 1

CP-violation and the Kj- K|
system in the six quark Standard

Model

1.1 € and € parameters in the K;— K, system: gen-
eral discussion

CP-violation is one of the most interesting phenomena in particle physics. Its exis-
tence is well-documented in kaon-decays, but its origin is not completely clear up to
now. It is possible to explain CP-violation in the context of the Standard Model, but
it could also be sensitive to physics beyond it.

There exists a lot of good reviews about the “history” and the “present status”
of CP-violation [15,27,32]. I will try, here, to summarize the principal features of

CP-violation in the Ky, — K, system, because my thesis will concern mainly this
particular aspect of the problem.

The phenomenon of CP-violation was first discovered in K — 27 and A — 3«
decays and these decay modes has been subject to intense scrutiny ever since. Orig-
inally, it was thought that weak interactions conserved CP, but not flavour quantum
numbers and parity. For this reason Ky — Kg transitions could occur. If CP was
conserved, physical states had to coincide with CP-eigenstates. Choosing, as a con-
vention, that |Ko) = C'P|K,), CP-eigenstates resulted to be of the form:

| Ko) + [Ko)
V2
. | Ko) — [Ko) .
K;) = ——— CP|K,) = —|K. 1.1
| K>) 7 |K>) = —|K3) (1.1)
Everything seemed to agree with phenomenological results. It was known that the
neutral K-meson should have had a long-lived partner and this resulted to be actually

K1) = CP|Ky) = |Ky)

7
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the case. If CP had to be a conserved quantum number, K; could decay into two
pions, but not K, because CP(2m)=+1 while CP(37)=—1. Thus K, was identified
with the long-lived partner of Kj. Only few years later, however, it was discovered
that also the long-lived K (K2) could decay into a pair of pions, with a branching-
ratio of about 2 -107%. Thus the long-lived kaon is called K, and the short-lived
one Ky, in order to distinguish them from the CP-eigenstates K; and K,. This was
a clear evidence of CP-violation and further stimulated the interest in studying the
Ky — K, system.

Let us now introduce the necessary formalism to discuss the neutral kaon Sys-
tem. The time-evolution of the K, — K, is described, using second order perturbation
theory, in terms of an effective hamiltonian. That is, if we write the wave function
of the system in two components as:

o

810) = ax(t}Ko) + ax(t) o) = 2512 ) (12)

we have the following equation of motion:

ﬂ%tl — Fi(¢) = (M - é) 0 (1.3)

where

Ri= (M=) = mi2s, 4 (K24 K0
2]

K" [Hw|n) (n|Hy |K)
my — F, + i

b5 (1.4)

n

is usually called the “mass matriz”. It can be written as:

0o ( (KolH|Ko) (Ko|H|E,) )

(Ko|H|Ko) (Ko|[H|K,)

ﬂ/lll - ZF11/2 .A/Ilz - zT12/2 (1 5)
M1 —i021/2 Myy —iT45/2 T

where M;; and T’ ij are transition matrix elements from virtual and physical interme-
diate states respectively and can be complex. Moreover:

(i) A/_[n = ]1/122 =M and Pll = Fzg =T
due to CPT-invariance;

(ii) My, = M 12 and P21 = FIZ
due to the hermiticity of H
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In this way H assumes the more familiar expression:

M —iT/2 My —ily,/2 (1.6)
My, —il:,/2 M —il/2 '

We note that since |Kj) and |K,) do not communicate through strong interactions,
their relative phase is not specified. |Ky) is related to |K,) via CP-transformation,
up to an arbitrary phase e?:

iKg) = eziEOP‘F0> = —eziGOlF()) (17)

The physical states are the eigenstates of H. Clearly, they “intrinsically” contain
CP-violation and we will see how it is possible to “localize” it in a single parameter,
the “e”-parameter.

In order to find the eigenvalues and eigenstates of H, we have to solve the
equation:

det(H —As1) =0 (1.8)
which becomes:
+(Am —iAT/2)/2 My, —il1,/2 —0 (1.9)
Mjy —iT3/2  =(Am—iAT/2)/2 | = '

or:

[(Am — iAT/2)/2]* = (Mg — iT15/2)(M;, — iT%,/2) (1.10)

where we have defined:
F(Am —iAT/2)/2 = (M —iT'/2) — Ay (1.11)
After diagonalizing H, the eigenstates corresponding to A+ turn out to be respectively:

|K2) +EK1)  (1+48)[Ko) — (1—&)|Ko)

Kp) = -
o RVAENEE V2L + &)
Ks) K1) + &) (1+€)|Ko) + (1 - &)[Ko)

VEAC V2(1+[?)

(1.12)

From the eigenvalue equation:

- 1—-¢
(H - /\il) ( 14z ) (1.13)
- My, — il /2 F(Am —1AT/2)/2 1+€e /)
we obtain: _
1—-¢ (Am—iAT/2)/2 = Mp —iTy,/2

14+ My —il1/2 (Am — iAT/2)/2

(1.14)
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This quantity is particularly meaningful, because it does not depend on any phase
convention. On the contrary € depends on the phase convention between |Ko) and
|Ko) and it is not a physical quantity. For this reason, we will introduce a specific
quantity n defined as:

C|L=F| | My Ty, 2 (1.15)
TE e T |3, =T/ '

This is a physical quantity and the deviation from 17 = 1 specifies the amount of
CP-violation.

In order to relate  to measurable quantities, we need also to consider the decay
of the Ky — K system. K, and K, decay mainly into two pions. We will use the
following notation for the decay amplitudes:

(rm(I = 0)|Hw|Ko) = aoe’:&" (ra(I = 2)|Hw|K,) = azei.‘S2
(mm(I = 0)|Hw|Ko) = ape’ (rr(I = 2)|Hw|Ko) = a%ei® (1.16)
(1.17)

where the phases from strong interactions, e and €2, are factored out explicitly
and the phases of a, and a, are all from weak interactions:
ag = |ag|e'

a; = l|ay| e (1.18)

Note that the strong interaction phases are the same for K, and K,, due to CPT-
invariance of strong interactions. From the previous definitions, we derive that:

1 .
Gosy = (77(L = 0)|Hw|Ksy)) = ——0u—_ (1 + &)ao £ (1 — &)ag eio
(rm( )l ) AT [(1+ &)ao £ (1 — &)ag]
1 .
a5y = (mm(l =2 Hw KS(L, = ——[(1 £)a, 1—¢ a; 6152
o =T = D lRo) = <l (14 e 7 1 - B
(1.19)

Moreover, relating the isospin states to the physical states as follows:

1 V2

(ol = el = 0) = Yopen(z =)
I 1
(el = et = 0) = —(ma(r = 2)
(1.20)
we have that:
_ 0_0 _ _1_ _ @
AOO.S(L) = (71' ™ IHW!KS(L)> = \/3—)0'0,5(1,) \/ga'z,sm)
Al sy = <W+W“’HWIKS(L)> = i‘iao,sm + %az,sm

V3
(1.21)
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Then, it is usual to define the following measurable quantities:

7 N AOO.L _Gon — \/§a2,L — 2¢
” Ao, ao,s — \/iaz,s 1- \/iw
1 N A+—,L QoL + 1/\/§a2,L — et €
T A+—.§ ags + 1/\/§Gz,s 1+ (1/\/5)“’
(1.22)
where:
. Qor __Qags
€ = — ) W = 3
ag,s Qo,s
1 1 (LzL
€ = —wl|l—""—¢ 1.23
V2 (w ao,s ) (1.23)
Experimentally, it is known that |a;/ae| is very small:
1
22— (1.24)
Qg 20

thus w can be neglected comparing to one and the approximated expressions for 7,,
and 7, _

Moo =~ €— 2€¢

Ny ~ €+ € (1.25)
can be used. Note that this is the only point where we make some approximations,

using the experimental information on w. Except for this point, everything up to
here is completely general.

Since both 7, and 7,_ are physically measurable quantities, ¢ and ¢ are too
and they are phase convention independent (this is the reason why we denoted with
€, which is a non-physical quantity, the parameter appearing in th |K;) and |Kg)
definition). € and € can be cast into the form:

€ = Moo+ 2my_/3
€ = N — 7700/3 . (1'26)

and using all the previous formalism, namely eqs. (1.19) and (1.23), we get that:
€ Reag + 1 Imag €+ 1ty

- = 1.27
¢ Reao -+ iEImao 1 -+ 'Lgt() ( )

and . (R 1+ et ty — 1

P 1 €dg 1€19 ) i(5 _5 ) 2 — 19
- 1-—- 270 1.28
‘ V2 (Reag> <1 +i€to> (1=2)e (1 +1€ty)(1 + eto) (1.28)

with: I

= for  i=0,2 (1.29)

Rea;
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In a phase convention in which |é] < 1 (as measured experimentally) eqs. (1.27)
and (1.28) become respectively:

€ = E+Lt0

, i (Rea, i(62~60)
—= =1 (s —t 2% 1.30
¢ V2 (Reao) (. o)e ( )

Here we can explicitly check, with some examples, how the dependence of ¢ and ¢
on a;, t;, é; (1 =0,2) and € can vary, because these parameters depend on the phase
convention. For instance:

(a) if we chose a phase convention on |Ko) and |Ko) such that aq is real, then t, = 0
and:

€ = €

N tpe™o27% 1.31
‘ ‘\/§ (RECLO 2€ ( )

(b) if, on the contrary, we adopt, as usually done in modern literature, the Kobayashi-
Maskawa phase convention:

|Ko) = CP[E) (1.32)
we get: :
eim/4 ImMi, e/ Tty .
= = — +t 1.33
V2 [21%@1\/_[12 * °} V2 [2 + 0] (1.33)
where Iml
miviyg
o = 1.34
M~ ReM;, (1.34)
and - s B
€ _ 01 ises [ ma, Heay J 1.35
€ \/iee Reay  Reaq 0 (1.35)

This phase convention has the advantage that, when you calculate weak interac-
tion amplitudes (within the three families Standard Model), all the complexities
come from the phase in the Kobayashi-Maskawa matrix (as we will see in the
next section).

In summary, we have to investigate CP-violation on two fronts:

o “indirect” CP-violation — “- parameter”: CP-violation in the Ko— Ky mass
matrix;

o “direct” CP-violation — “e’-parameter” :CP-violation in the direct K — 27
transitions.
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T
K, K,
B
Im M12
T
"indirect"
T
K,
Ima,
T
"direct"

Figure 1.1: “Indirect” and “direct” CP-violation

as llustrated in fig.(1.1).

In the Standard Model, each of these contributions to CP-violation is related
to a particular class of diagrams, to be evaluated at the lowest order in weak and
electromagnetic interactions, but to all orders in strong interactions, in a given ap-
proximation (leading logarithms, next-to-leading logarithms, etc.). For this reason,
the problem of understanding the structure of the effective hamiltonian which de-
scribes |AS|=1 and |AS| =2 processes is of fundamental importance. To this aim,
we will discuss in detail in the following section, the baeis of the effective hamiltonians
and how to account in a rigorous way for QCD radiative corrections.

1.2 CP-violation in the six quark Standard Model

Assuming CPT-invariance of all the interactions, the observed CP-violating effects
in the kaon-decay can be described in theories which are:

(a) T-conserving, C-violating, P-violating;
(b) T-violating, C-conserving, P-violating;
(¢) T-violating, C-violating, P-conserving;

(d) T-violating, C-violating, P-violating.
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From many experiments of similar nature, one can infer that strong and electro-
magnetic interactions are not of type (a),(b) or (d). Therefore, if the source of
CP-violating phenomena is located in strong or electromagnetic phenomena, there
must be a part of those interactions belonging to class (c), i.e. C- and T-violating,
but P-conserving. Many models have been proposed:

o Millistrong CP-violation models [34,40,42], which postulate the existence of C-
and T-violating terms of order 10~2 in the strong interactions. The K, — nt7~
would be a two-step process, through an intermediate state X, where K, — X
via normal CP-conserving weak interaction with AS=1and X — 7%7~ by
this T-violating strong interaction. The amplitude of the process would be of
order Gz - a, where G, is the Fermi coupling constant and “a” is the coupling
of the CP-violating strong interaction. From the experimental value of |n,_|
one concludes that a ~ 10-3,

o Electromagnetic CP-violation models [6,7,9,44], which require large part of the
electromagnetic interactions of hadrons to be C- and T- violating, but P-
conserving. The decay K, — n+tn~ would be again a two-step process: X, —
X — w7, which could occur through interference of weak and electromag-
netic CP-violating amplitudes. The product G -c, where « is the fine structure
constant, is not too far from G, - 1073, as required by the magnitude of |n,_|.

o Milliweak models [1,24,33,35,36,38,41,43,54,52], which assume that a part of the
order of 10~® in the weak interaction is CP-violating and responsible for the
observed effects. The decay K;, — 7t7~ would then be a one-step process.

o Superweak models [51], which postulates a new AS =2 CP-violating interaction,
with a coupling constant “g” smaller than second-order weak interactions. This

interaction could induce a Ky — K transition, with a subsequent decay K, —

rta.

Experimentally, there has been no evidence for any CP-violating effect in strong and
electromagnetic interactions [25,31]. Thus we are I~ft with “superweak” or “milliweak”
models. These two classes of models can be distinguished by experiments. The
“superweak” model predicts that ¢ = 0 and consequently 7,_ = n,, = ¢. For the
“milliweak” models, on the contrary, ¢’ does not vanish and can at most be of the order
of the violation of the AT = 1/2 rule in non-leptonic weak decays, i.e. [¢'/e|] < 5-1072,

One particularly attractive “milliweak” model is the one proposed by Kobayashi
and Maskawa (KM)[33]. In the framework of the Standard Model, the KM-model
describes CP-violation as due to a complex phase in the six quark mixing matrix. It
is then possible to construct CP-violating weak amplitudes from “boz-diagrams” like
those in fig.(1.2), which we will consider in detajls later on.

A necessary feature of this model of CP-violation is the non-equality of the
decay rates for K; — n+t7~ and K, — m%7° This CP-violation “of the second kind”
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3 u,c,t a
K’ \ W K’
d S
u,c,t
_ w -
S AVaAVaUaW d
K’ u,c,t u,c,t K’
d VAUV 8
W

Figure 1.2: Ko — Ky “boz-diagrams” in the six quark Standard Model

W
i,c,t T+
u
d d 1
or W
5 ST i,
u,c,t d i
8 C_
d 0
d d m

Figure 1.3: K, — 27 “penguin-diagrams” in the six quark Standard Model

15
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is due to “penguin-diagrams” like those in fig. (1.3), which lead to CP-violation in
the decay amplitudes (¢').

Thus, € and ¢ can be computed in the Standard Model.

Let us analyze a little bit closer how CP-violation is described in the Stan-
dard Model “a la” Kobayashi and Maskawa proposal. Neutral currents are flavour-
conserving and helicity-conserving, so that passing from the mass eigenstates to the
current or “physical” eigenstates does not involve any mixing-matrix between quark
states. On the other hand, charged currents are only helicity conserving, but they
do mix up-type and down-type quarks (as the W vector bosons carry one unit of
charge) and this introduces a quark mixing matrix in a natural way.

Consider, f.i., one of the terms in the lagrangian which generates neutral cur-
rents and its transformation properties under a redefinition of the quark fields:

. _ /2 _ . /2
Ex(Z,t) = gmy* {Bp — i (5) Bg} Zin = GaY" [5# — g (5) BuJ 0

2
= BV |0, - ia: () B Utz

3
9 v
= &t [au —ig: (g) B“] g2ty (1.36)
We see that the rotation matrix U, which allows to pass from gjr to jhy’, is the

same on both sides and no mixing matrix is present at all. On the other hand, the
transformation of the term which generates charged currents gives origin to a quark
mixing matrix, because in this case left- and right-quark fields are “rotated” in a
different way, by the matrices U, and UI:. In general U, # U, and we have:

Ee(Z,t) = [W!—iW?| g g, + hec.

= [} — W2 @V R 4 hec.,
= [Wi—iw? It + he. (1.37)
where :
vV =U,U,! (1.38)
and J¢ denotes the charged current:
Vud Vua I/ub ot d
Vea Voo Vo - - - 5
Vie Vie Vo - - - b

Je=(a ¢t .. -)L'y“ (1.39)
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To be more explicit, F¢(&,t) can be written as:

’

Eo(Z,t) = [W}—iW2] Gv*Vie(1 — ¥5)a
+ W+ W] G Vil - ws)a (1.40)
and under CP it transforms as:
Bo(,1) 5 [WE+iW?| Gy Vin(1 — v5)g;
+ (W= iW2] gtV = vs)a (1.41)

where also (Z,t) — (—Z,t) is understood.

Thus, in order to have CP-conservation, the matrix V should be real. This
reality condition means that the matrix should be real modulus unmeasurable phases.
What matters in field theory is not the absolute phase but the relatives phase of fields.
Therefore, we must examine which phases in V are measurable and which ones are
not. The phases of the fields in J¥ are arbitrary. We may redefine them by letting:

Uy, — PR cr, — e,
d, — g, Sy — ei¢(’)sL
(1.42)
where the quantities @¢(f) for f = u,d,... are arbitrary real numbers. There are 2N

such quantities if there are N families. Under the above phase transformation we
have that:

e_i‘?s(“) 0 0 o Vud Vus Vub
0 e®ad o0 .. Vea Voo Va

vV — 0 0 et . .|| Vi Vi, Vi

eie(d) 0 0
0 ¢ 9 .
0 0 gd) .. (1 43)

therefore, for any number of phases it happens that:

Vaj — expli((7) — ¢(@))]Vay (1.44)

where “a” and “j” denote the up-kind and the down-kind quarks respectively.

A general (N x N) unitary matrix has N? parameters. N(N — 1)/2 of these
parameters may be taken as Euler angles. The remaining parameters are “phases”.
But, from the previous consideration about the measurable phases of the KM-matrix,
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we see that (2IV — 1) of them can be eliminated. Therefore V has (N?—(2N —1)) =
(N — 1) parameters, among which N(N —1)/2 are rotation angles. The number of
phases will be (N — 1)(N — 2)/2.

It is clear that in a model with only two families, no phase is present in the
KM-matrix parametrization; but in a model with three families a complex phase
appears. This is exactly the model proposed originally by Kobayashi and Maskawa,
in which V is parametrized by three angles (the KM-angles) and one complex phase
(the KM-phase). In particular, this phase enters the couplings of quarks to weak
vector bosons and it is responsible for the presence of a CP-violating imaginary part
in the off-diagonal elements of the mass-matrix in the Ky — K, system and in the
K — 27 decay amplitude.

Many parametrizations of the KM-matrix exist. It is only a matter of choice
and I will report here the more usual and useful ones. In the three families Stan-
dard Model, the most convenient one is the parametrization proposed by Maiani
[37]. In comparison, the original one proposed by Kobayashi and Maskawa leads to
cumbersome expressions for the physical relevant transition amplitudes.

In order to understand how the Maiani parametrization arises, let us denote
by d, s', b the three down partners of u, ¢ and ¢ respectively, in the weak charged
current left-doublets. Then we chose, following Maiani’s prescription:

|d) = cglde) + spe |b) : (1.45)
where ¢3 = cosB, s3 = sinf and |d.) is the Cabibbo-rotated down-quark:
|de) = cgld) + s4]s) (1.46)

where the same shorthand notation for cg and sg is used. Two orthonormal vectors,
both orthogonal to |d'), are:

) = =sold) + ol
lv) = —356"’6[dc>+cﬂlb) (1.47)

The angle v is now defined by the physical combinations of |sc) and [v) coupled to c-
and ¢-quark: '

’5:> = cylsc) + sy|v) = cylse) + 37(_3[36—1.6'03«:') + cplb))
b) = —Sy]sc) + cylv) = —5y]sc) + C'v("sﬁe—zéld6> + cglb))
(1.48)

From experiments:
se = A = 0.221 + 0.002 (1.49)

and also
sy~ A and s~ A® (1.50)
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Thus, empirically, s, and sz are very small in the Maiani convention. Neglecting
terms of order A%, one obtain a considerable simplification. The weak “rotated”
doublets are now:

( |d.) +l1236i‘slb> ) ’ ( I5.) Lf>57|b> ) : ( ) —s.,[sc)lt>_ el ) (1.51)

and the quark mixing matrix V is:
Cg Sg ‘Sgei‘S
—s¢ cog Sy (1.52)

~i6
$,8¢ — Sge€ -5y 1

Finally, it is convenient to chose, following Wolfenstein [53]:

s, = AN
sg = AX°p (1.53)
Then V takes the simple form:
1-2 A AX3pel
2 A2 4 (1.54)

2

ANY(1 — ™) —A4)? 1

known as the “Wolfenstein parametrization” of the KM-matrix. The available ex-
perimental informations on A4, p, § and other parameters appearing in the previous
expressions will be given in Chapter 4, when we discuss the numerical implementation
of our results.

Just to conclude, it is interesting to note that CP-violation effects result always
proportional, in the small angle approximation, to the quantity:

J = sgsys81nb (1.55)

The quantity J is universal [27], because it does not depend on the parametrization
and it is also phase convention independent. It is interesting to note that J o« A%, so
that 7 = 107° and this fixes the order of magnitude of CP-violation in the Standard
Model.

1.3 Present status of art

The increasing evidence, coming from LEP and SLC experiments, is that there are
indeed only three generations of quarks. This implies that CP-violation is governed
by one parameter only, i.e. the phase “6” in the above conventions, and that € and ¢
are both different from zero. This can be stressed if we restate the definition of the
two CP-violation parameters already introduced in the previous section as follows:
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e ¢ —‘“indirect” CP-violation

€ = $182838in6 - T(my,s;;,6) (1.56)

e ¢ — “indirect” CP-violation

€ = $18383sin 6 - H(m,) (1.57)

where s;, s, and s; correspond to sy, sz and s, of the Maiani parametrization;
while T(mt,.si,é) and H(m;) are functions of the top-quark mass and of the other
parameters of the theory. e and € are zero at the tree level and are suppressed
at the one-loop level (box- and penguin-diagrams respectively) by GIM mechanism.
However, due to the fact that: My # m. # my, both T and H are non-zero and
in addition they exhibit a strong dependence on the unknown top-mass. This is
particularly true in the m; > My, region, to be considered in view of the recent
experimental lower bound on the top mass (~ 60 GeV).

The theoretical analysis of ¢ and ¢ has come to a very advanced stage. It
enables us to point out the two main shortcomings of the problem:

o the unknown value of my,

e the large theoretical uncertainties in the computation of hadronic matrix ele-
ments.

In spite of these problems, the phenomenological analysis of € and ¢ is still appealing
and mandatory.

The actual entity of CP-violation is usually determined as follows:

o for fixed values of m,, s, (with s, and s, approximately known) and given
hadronic matrix elements, the phase § (which is the last parameter in the
CKM matrix) can be found by comparing the e theoretical expression with the
recently celebrated experimental value:

e = (2.25840.018)- 10~ exp (zg) (1.58)

One finds two solutions for § (one in the first and one in the second quadrant),
but one of this solutions or even both could be excluded on the basis of ¢ alone
and of the observed size of By — B, mixing.

e then the ratio ¢’/e can be predicted through its theoretical expression (~1073%).

A very nice analysis of the consistency of the observed CP-violation, in the six
quark Standard Model context, is given in ref. [11]. There, they extensively discuss
the allowed ranges for m,, 75 and R = I'(b — )/(T' — ¢) for which the six-quark
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Standard Model is consistent with the observed CP-violation in the K-system and in
B-meson decay. Unfortunately, this beautiful analysis is not updated and the values
of m, considered are very small (up to 80 Gev). Nevertheless, we think that one
could inspire oneself to it, in order to extend the phenomenological analysis to the
present available physical regions, mainly the one of heavy masses for the top quark.
This is what we would like to state in a more definite way in our research program,
after having achieved a clear theoretical understanding of the problem.

In the present work we will be concerned only with the e-parameter, by deter-
mining how the box-diagram could be affected by large value of m;.

The ¢ case seems to be a little more involved. A lot of work has already
been done on the subject [12,8,16], but a clear understanding is not at hand yet. It
was thought, initially, that only the QCD “gluon-penguins”, already mentioned in
a previous section, were responsible for the “direct” CP-violation. However, recent
studies point out that there exist many more relevant contributions, which could
change dramatically some fundamental physical predictions. The full analysis of the
problem is therefore mandatory. Something has been done in ref.[10], but not to a
definitive extent.

This is the present status of art and these are our present aims.
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Chapter 2

Effective hamiltonians and short
distance analysis of weak
interactions

2.1 Effective hamiltonians: general meaning

Effective (non-renormalizable) theories are extremely important and have played an
important role in the case of weak interactions. The interest in effective theories
was initially only phenomenological and had origin with the Fermi theory, which was
formulated to describe neutron and nuclei 8-decay. The local Fermi lagrangian:

57 (2.1)

Less =

with

7= Gy = L0y (2.2)

was able to give many interesting predictions, experimentally confirmed with great
success in later years. It has also been the first pioneering step in our understanding of
weak interactions, on the long way which has driven us to the Standard Model theory
and beyond it. I shall try to illustrate what I mean, by discussing the problem of
effective theories from a more general point of view. The idea of effective field theories
is basically related to the existence in nature of different mass scales. Obviously, this
is the case of weak interactions, in which scales from few Mev’s, the leptonic one,
up to the weak-vector boson or Higgs mass scales are present. Analogous situations
arise in Grand Unified Theories (GUT), Supersymmetric Theories and Supergravity.

There are two different approaches to the problem.

o In the first one, you proceed “from the top down”, as to say that you completely
know the renormalizable theory at higher energy and you need to derive its low

23
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energy approximation. In studying the Ko — K g mixing problem we will adopt
precisely this method. Thus it is better to have from now on the feeling of the
main peculiarities of this approach.

Given a certain mass scale as UV cut-off, we can formulate an effective field
theory involving only those particle which have masses below the UV cut-off.
With only these fields, by adding suitable non-renormalizable interactions, we
can describe the most general possible interactions consistent with relativis-
tic invariance, unitarity of the S-matrix, CPT invariance and other general
properties like these ones. Thus we do not miss anything of the “descriptive”
power of a theory, in going to the related effective theory. Apparently, due
to the introduction of an infinite number of non-renormalizable interactions,
corresponding to an infinite number of arbitrary parameters («+ coupling con-
stants of each interaction), we give up the “predictivity” of the theory. Actually,
this turns out not to be the case, because of “quantitative” and “qualitative”
reasons. “Quantitatively” |, by knowing the underlying high energy theory, we
can calculate all the non-renormalizable interactions and “quantitative” calcu-
lations can be performed in the spirit of an effective theory (up to a certain
order in the inverse UV cut-off ); on the other hand “qualitatively”, all the non-
renormalizable interactions in the effective hamiltonian appear with coefficient
parameters suppressed by inverse powers of the UV cut-off. Thus, not only we
do not lose any quantitative predictivity in going to the effective theory, but
also we learn that, when the UV cut-off (e.g. the mass of some very heavy
particle) is large enough with respect to the typical mass scales of the effective
theory at hand, then the effective theory itself result to be almost renormaliz-
able. There are many examples, which illustrate this kind of approach. You
may think to a theory in which a very heavy particle, such that its mass M
is completely out of the range of energies experimentally allowed, is present,
Then, the only thing you can do is to take the M-mass as an UV cut-off and
to develop an effective theory which describes the physics below the UV cut-
off. The effective theory will not include the heavy particle of mass M, while
some non-renormalizable interactions, proportional to inverse powers of the UV
cut-off M, will appear in the effective hamiltonian. This could be the case of
GUT’s or SUSY theories or technicolor theories and so on so for. All these
theories predict the existence of very heavy particles, but we cannot directly
verify it. On the other hand, we can derive a low energy approximation of the
same theories, which can be predictive and verifiable in the range of energies
experimentally allowed. We will apply an “eztreme” version of this effective
field theory language. In fact, we will consider, step by step, the masses of
the different heavy particles present in the theory as boundaries between two
different effective theories, starting from the mass of the heaviest particle down
to the scale at which a given physical process does occur. At each step a given
particle mass is treated as an UV cut-off and one can integrate out the related
“heavy” particle, obtaining a formal expansion in the mass parameter (this is
exactly what happens in the case of the Fermi lagrangian with respect to the
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W-mass). At the same time, at each threshold, you are supposed to get equiv-
alent physical predictions from the two theories which match at that threshold.
Thus you have to connect in a suitable way the parameters of the theory just
below the threshold with those of the theory just above. At lowest order, this
simply implies that the coupling constants of the light fields are continuous
across the boundary. At higher order, due to non-renormalizable interactions,
provided by loop-corrections, it imposes a “matching” of all the correspond-
ing couplings. At each threshold “matching conditions” have to be imposed in
order to eliminate the large logarithms which arise in perturbation theory.

To proceed sistematically, one should start with the renormalization scale u
equal to the mass M of the heaviest particle in the theory and calculate the
matching conditions for the parameters of the effective theory with that particle
omitted. Then one should rescale . down to M, the next heaviest mass in the
theory, using renormalization group (RG) techniques. At this new threshold
M', one has to match the evolved parameters with those of the effective theory
below the new threshold M'. One continues, using the same method, in a
descending sequence of effective theories, down to the physical scale of interest.

e Another possible approach is to proceed “from the bottom up”. This is certainly
a more physical point of view, the one, {.i., which suggested the presence of a
renormalizable gauge field theory of the electro-weak interactions at higher
energy, which had as low energy limit exactly the Fermi effective theory.

In this case, one introduces a non-renormalizable effective theory which ac-
counts for some phenomenological facts. At the same time, one tries to catch
all the “signals” of a hypothetical underlying renormalizable theory at higher
energies, which has the effective one as low energy limit. Typically, every times
you have in your effective theory (describing physics up to a given scale) a
non-renormalizable interaction with dimensional coupling of order 1/M raised
to a suitable power (f.i., 1/MP~% for a D- dimensional operator), you expect
that a heavy particle with mass m < M exists, responsible for it, so that in
the effective theory including also this particle the non-renormalizable inter-
action disappears. Thus, going up step by step, at each threshold we have
that the effects of non-renormalizable interactions grow till they are replaced
by renormalizable ones, involving new heavy particles. :

It 1s just in this spirit that GUT’s, SUSY-theories or Supergravity have been
considered in recent years.

2.2 Short distance analysis

The strategy “from the top down”, sketched in the previous section, needs some more
details. In particular, I will concentrate on weak processes at low energy, considered
at the lowest order in weak interactions, but to all orders in strong interactions (in
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a given approximation: leading logarithms, next-to-leading logarithms, etc.). The
final result of our analysis should be the correct effective lagrangian or hamiltonian
describing the low energy process at hand. It is my purpose here to give only a
schematic description of this subject and to provide more details on some specific
examples [21,22,45,46].

One starts with a basic hamiltonian, which satisfies all the most important
properties of the theory. Then one derives an effective hamiltonian from it and
studies how this last one is modified by strong interaction radiative corrections. QCD
radiative corrections generally modify the lowest order weak effective hamiltonian: if
at the tree level you can express it as a linear combination of a given set of operators,
generally many more operators will be generated as one-loop QCD effects. In other
words, many more new non-renormalizable interactions are introduced, each one with
a given coupling.

From a slightly different point of view, you can operatorially expand the prod-
uct of currents present in the weak effective hamiltonian, at each order of QCD
corrections, by writing it as a linear combination’ of local operators with suitable
coeflicients. The dependence of the coefficients on the scale can be found by using
RG techniques, just as it is done in deep inelastic scattering (DIS).

As we will see in some examples later on, the effective weak hamiltonian receives
dominant contributions from dimension-six operators, like the four-fermion operators
induced by the W-exchange. At scales below My, Heyy is a linear combination of all
the operators that mix with the four-quark operator. Call them O;. Then Hepy will

be of the form:
5 Ci(w)0x(1) (2.3

where C;(u) are the couplings we talked about before (or the Wilson coefficients in
an operator product expansion (OPE)). In general, both the coefficients C;(x) and
the operators Oi(1) depend on the renormalization scale i, but their product must
be renormalization-scale independent. This is the condition which gives the renor-
malization group equation (RGE) which governs the coefficient evolution. Imposing
that:

d
,uzi—l; (Ci0;))=0 (2.4)
you derive that:
0
(“8_/;6“ - %‘j(g)> Ci(p) =0 (2.5)

where g is the strong interaction coupling constant. If you take the lowest order
approximation for v;;:

Vi = Aizg* + O(g*) (2.6)

it is easy to solve the evolution equation:

B Ci) = A59*()Ci() (2.7)
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Denoting with 4 the matrix with components A;; and with C(u) the column vector
of components C;(¢), then we can write the solution of the previous equation as:

C(n) = exp { u: ii,figz(ﬂ')} C(po) (2:8)

The S-function of the strong coupling constant, defined as:

d

Blg) = M (1) (2.9)
is given at the lowest order by:
B(g) = —bog® (2.10)
Thus: 11 d
9' = 5 7" (2.11)

at the lowest order. By using this relation in eq.(2.8), with a change of variables, you
finally get the solution of the RGE for the coeflicients C'(u) in the form:

C(1) = Clpo) exp {—ém <;((:0)))} (2.12)

Note that linear combinations of C;’s corresponding to eigenvalues of A are multi-
plicatively renormalized. Thus, in any case, the first thing to do will be to pass to
a basis of operators which could give a diagonal A, in order to have a multiplicative
renormalization.

Finally, note that the previous sketch is valid in any effective theory. Depending
on the physical problem at hand, you can divide the whole mass range in a suitable
arbitrary number of intervals, imposing mass threshold and matching conditions at
each one of them and evolving the coefficients in the OPE from one threshold to the
other.

2.3 First example: the Al =1/2 rule

The use of short-distance analysis of weak interactions combined with QCD has given
a first important result with the partial explanation of the “octet-enhancement”, or
AT = 1/2 rule, observed in strangeness-changing decays. In the famous two papers
by Altarelli and Maiani and by Gaillard and Lee [19,2], the “octet-enhancement” of
weak non-leptonic amplitudes is found to occur in asymptotically free gauge theories
of strong interactions, combined with unified weak and electromagnetic interactions.
In particular, they discuss the structure of strangeness-violating amplitudes, of order
aM;? (~ G, the Fermi constant), that is of the genuine non-leptonic amplitudes.
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They assume the effective local form of non-leptonic weak interactions in models in
which all interactions are mediated by gauge fields corresponding to a gauge group
7s ® G (S=strong, W=weak). Moreover they consider models in which weak inter-
actions are described by a Weinberg-Salam type gauge theory and strong interactions
by an exactly conserved colour gauge symmetry group.

The discussion is based on the operator product expansion (OPE) of the product
of two weak currents. When the short-distance behaviour of the coefficient functions
in the OPE is computed, the AT = 1/2 rule in AS#0 decays can be explained with a
more singular short-distance behaviour of the Al =1 /2 part of the interaction itself.

Let us summarize the main discussion points. The lowest order contribution
of weak and electromagnetic interactions to the transition amplitude A(7 — f)as,
between two hadronic states, can be written as:

A(i = fasw ~ o [ d2Dp(a?, M2)g™ (f|T (Ti(2)T2(0)) J3) (2.13)

where My, is the charged weak boson mass and Dp(z?, M2) the charged weak boson
propagator. The written currents J# and J¥ correspond to strangeness-conserving
and strangeness-changing charged currents given by:

Jy = (Gcosd — Esinf)y,(1 — ¥s)d + - - -
Ji' = (asinf + cos )y, (1 — Y5)S + - - _ (2.14)

The full A(Z — f),s, transition amplitude would include also some other terms, as
tadpole terms or Higgs scalar contributions. However, tadpole terms cannot induce
weak interactions; while Higgs exchange terms are negligible, because they are of
order am?/M2, where m is a characteristic hadronic mass scale.

The time-ordered product of the two weak currents can be expanded, using
OPE, as:
T [JLN(fc)Js"(O)] =D Fi(z*)Ox (2.15)
k

where the Fi(z?) are c-number functions of the separation distance and the O’s are
local operators of quarks. This is exactly what we have seen in eq. (2.3). The OPE
in (2.15) will contain all the operators needed to account for the tree level process
and for the QCD corrections to the process itself, up to a given order. At each-order
in strong interactions, new operators contribute to the OPE. They naturally arise
when you compute QCD corrections to the fundamental four-fermion vertex and
their coefficients in the OPE are determined in the same calculation. Thus, generally
speaking, using (2.15), you can cast (2.13) in a more explicit form given by:

2

dy
At — flase ~ a]\/IV;ZZDk <ln NIW) (f|Oxl2)
k

m2

2 2\ %
+0 [azvrzlm (£> J (2.16)

m?2
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where Oy, are local operators of dimension five or six (see later discussion) and d are
related to the operator anomalous dimensions. Operators of higher dimension only
contribute to the remaining terms, suppressed at least as m?/MZ.

It is clear from (2.13) and (2.16) that the amplitude A(z — f)asy is dominated
by the matrix elements of those operators with dy < 0. This gives rise to a possible
mechanism to enhance contributions with definite quantum numbers, as f.i. Al =1/2
versus Al = 3/2 contributions.

The operators O could be composed of two or four quarks. But the operators
in the first class either are removed by renormalizing the fields and the parameters
in the lagrangian; or are suppressed by very small coefficients [2,19,45] and can be
neglected. Thus, only four-quark operators remain. It is important to observe, at
this point, that the expansion:

> Di(p)Ox(p) (2.17)

is scale independent; while the coeflicients Dy(u) and the operators Oi(p) in the
expansion are scale dependent. This means that the number and kind of four fermion
operators present in the OPE change with the scale p at which I chose to make the
expansion. In a four quark theory (as the one considered in [2,19]), as far as I consider
a scale p? > m?, only the d = 6 operators:

O1 = @v"(1 —75)q Gru(l — 75)g
Oy = 2 @7*(1—75)t°a: Govu(l — 75)t°qe (2.18)

contributes (where we have denoted with ¢* the usual Gell-mann SU(3) colour ma-
trices). However, when I consider regions in which p? < m?, new d = 6 operators
appear, the famous “penguin”-operators, of the form:

Z(‘jlta‘k)la Z(‘jfta‘b‘)(un) (2.19)

a f

where ), and Y ; are sums over colour and flavour respectively. They can mix with
O,and O, to order a through the diagrams in fig.(2.1), when the quark masses are
non degenerate, that is when the GIM cancellation is active.

However, they arise in a region in which perturbative theory start lacking. If
we chose not to work in that region, “penguin”-diagrams are automatically ruled out
and they will not be considered in what follows.

If we consider only O; and O,, we find that they mix under renormalization.
On the other hand, operators with definite anomalous dimension can be found diago-
nalizing the matrix of the renormalization constants, computed from diagrams where
a gluon is exchanged in all the possible ways between two fermion lines. Explicit
calculations show that the eigenvectors of the anomalous dimension matrix are:

N+1
N

1
Oi - OliiOz
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0

g 8

Figure 2.1: “Penguin”-diagrams

= 5 @eh (B £ (@) (@) (2:20)
with anomalous dimension: 5 N1
=7 (55 (2:21)
respectively. Note that we have used the shorthand notation:
(1¢2)e = @y*(1 = 75) g2 (2.22)

and the Fierz identities:

1
(7192)(F2qs) = N(§194)L(§3Q2)L+2Z(q_1tGQ4)L(Q_{3?fGQ2)L

Z(q-ltaQZ)L(‘j!Btaqtl)L = (LVZT_ZE) (‘_7194)L(q—392)L - ]%[‘Z(q_lta%)L(g:}ta@)L
(2.23)

O contain the terms (5u).(@d), in a combination which is symmetric and antisym-
metric under exchange of v and d respectively. Thus,in O_, v and d are in a (I=0)
combination and the operator can mediate only pure AI=1/2; while in Oy, u and
d are in a (I = 1) combination and the operator can mediate both AT =1/2 and
AT =3/2 transitions. Now, the exponents corresponding to the eigenvectors Oy are

respectively: . ] N1
q:
dey =F— [ — ) [ ——= 2.24
T % (87r2>< ) (2:24)

where 2b = (2472)"1(11N — 2ns) (N + SU(N) n; =number of flavours) is the first
coeflicient of the strong coupling constant #-function. :

Thus, the result d, < 0 shows that AT — 3/2 transitions can never be enhanced;
while d_ > 0 implies that “octet enhancement” is always obtained.

Moreover, Oy form a complete set of operators, as a consequence of the Fierz
identities, and they renormalize multiplicatively. It means that we can rewrite (2.13)
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as:
Ali = flaspn ~ oMz {C4(t, a){F105 (0)fi) + C_ (1, a)(FIO-(O)fi) + -}  (2.25)

where

M2

PE:

with 1 a reference mass scale, & = a(u) being the renormalized QCD coupling at

scale p:

t=In (2.26)

2(,,2

g*(#*) 1

= = 2.27

a(p) 47 bln(p2/K ( )

The dots stand for non-leading terms from operators of higher dimension and also

for ”penguin”-operators of dimension six. Eq. (2.25) strictly resembles eq. (2.16),

if we only take care of the scale evolution of the CL(¢,a) coefficients. The Cy(t, )
coeflicients satisfy a RGE of the form:

(=57 + B0 — (@) Calty) = (2.29)

where F(a) and v4(a) are defined at the leading order as follows:

' da )
ﬂ(a) - 9ln lug = —ba
Y+(a) = A +--- (2.29)

and are respectively the coupling constant §-function and the anomalous dimension
of the operators O.. It is well-known that the solution of the RGE is of the form:

Ca(t,a) = Cu(al(t)) exp {/:(t) da”—yﬁi(((—%)} (2.30)

where a(t) is the running coupling constant at scale M?2,, while o = a(u?), and
Ci(a(t)) = C(0,a(?)) - (2.31)

The coeflficient evolution then will be:

o ve'/b
Ci(t,a) — Ci(a(t)) [&—(5} (2.32)
and eq. (2.25) becomes now:
o 7 /b
A= aseo ~ ady? 3 Cila(0) | 25| 100+ (29
i=%
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Following (2.27), we take a to be of the form:
1

— S 2.34
a(t) bIn(M2 JA?) (2:34)
then the term in the square bracket is exactly of the form:
2\ % (1
(ln —]‘{%‘i) for di= T (2.35)
Iz _ b
modulus constant terms and we obtain:
Mz\*
A = Flaswo ~ oMy 37 D; (1“ ) ) (F10:i) - -- (2:36)
i=+

as in eq. (2.16). From here, as we have already discussed, it is possible to derive a
partial explanation of the AT = 1/2 rule.

2.4 Second example: weak decays

Some years later, Witten has stated in a more definite way the approach to weak
interactions using effective theories, in a famous paper: “Short distance analysis of
weak interactions”, followed by an analogous work on DIS. [49,50]. The basic ideas
and the method used in ref. [49] are very instructive, because he takes, as a specific
example, precisely the K, — K, mixing problem, in a three- and in a four-quark
theory. The method to calculate the S-matrix elements to the lowest order in weak
and electromagnetic interactions, while to all orders in the strong ones ( at a given
approximation), is elucidated and two main points are stressed:

o weak interactions can be replaced by an effective hamiltonian,

e QCD corrections can be summed up to all orders using RG techniques.

There is nothing new in that with respect to the ideas already present in other prece-
dent works, as the ones we already mentioned. However the proof of the theoretical
correctness of the method used seems here to be better stated. The proof proceed
by induction, starting from the weak and electromagnetic interaction lowest order
contribution to the Ko~ K, mixing, the box-diagram in fig.(2.2), without QCD cor-
rections and verifying, at the one-loop order of QCD corrections, that the theory can
still be described by an effective local hamiltonian of the form:

Hepr =k - (37u(1 — 75)d 59%(1 — v5)d + h.c.) (2.37)

Assuming the form of the Hess in eq. (2.37), the result is proven at n-loop in per-
turbation theory and a short distance analysis of the obtained effective hamiltonian
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Figure 2.2: Ky — Ko box-diagram

improved. Later on, some very interesting technical applications has also been de-
veloped in the study of non-leptonic and semi-leptonic weak decays. An exhaustive
description of the problem is present in literature, especially in the complementary
papers by Vainshtein et al. [45,46] and by Gilman et al. [21,22]. The first one
gives a very detailed treatment of the general structure of the effective hamiltonian
to be used, by choosing the operators in the OPE on the basis of symmetry prin-
ciples and flavour quantum numbers. The authors confirm the result that d = 6
four-quark operators are the dominant ones and classify the variety of such operators
in terms of “unitary spin” and “isotopic spin”, in view of their applications to spe-
cific physical problems (they suppose chiral symmetry to be broken explicitly at the
SU(3), ® SU(3)g level, leaving only an SU(3) of “unitary spin”, while it survives at
the SU(2), ® SU(2)x level). Moreover, they treat in a certain detail the real problem
of how to deal with the “long-distance” sector of the theory, namely the evaluation
of hadronic matrix elements.

On the other hand, I would like to spend some more words on the paper by
Gilman and Wise [21]. Later om, in the discussion of the central argument of my
thesis, we will meet with another fundamental work by them [23], which will apply
again the same techniques, except for a few necessary modifications.

In ref. [21], they discuss AS = 1 non-leptonic decays in a six-quark model,
starting from a (v-4)8(v-4)-type effective hamiltonian, at the lower order in weak
interactions and at zero-order in strong interactions, of the form: ’

2

_ 9 gty - .
Heff = 8]\/13‘, J” (0) Ju (O) + h.c. (2.38)
where
JH0) = (@d )y-a + (€5 )v_a + (E )y-a (2.39)

d,s' and b are the current quark-eigenstates and

(90 )v—-a = G7u(l — ¥s)q (2.40)
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The strangeness-changing part in the effective hamiltonian H,;; can also be ex-
panded, because of GIM mechanism, on the operator basis costituted by:

O = [(Satta)v_a(figds)y_a + (Sada)v-a(Bgug)v_a] — [u — q] (2.41)

with ¢ = ¢, ¢, as

(as=1) _ _ G +) 4 o) () 4 A=)
HGTY = el [4. (0 4 Of )+ 4 (01 + 0 )] (2.42)
where
A. = siea(cieges — 32536—1.6)
At = s1sy(cyspcs + c253e_i6) (2.43)

with: s; =sin6;, ¢; = cos ¢; and § are the CKM matrix parameters. This expression
for the effective hamiltonian is particularly suitable to account for strong interaction
QCD corrections, because Ogi) are multiplicatively renormalizable.

They analyze the problem in the leading logarithmic approximation (LL), set-
ting a certain number of mass thresholds, namely M, my, mp and m, (other quarks
are considered as massless), and developing the theory step by step as explained in
section (2.2), starting from y = My at highest mass scale. T will summarize here
only the main results, referring to Appendix A for the details.

Step 1 At this step we take M w as much heavier than any other mass scale and
we get at the leading order in the W-boson mass:

(AS)=1 Gr My, o [ My -
M R E e () o () op
g=c,
(+)
Gr M2)1°
= —2—\/—5“%((72—)2] (Acog+>+Ato§+>)+
M2y _
+ FQL(#T”S)J (4.0 + 4,0 ))} (2.44)
where 6 15
+H -2 ) 2.4
¢ Tay, wd o« 33— 21V, (245)

Step 2 Now m, is taken as the highest mass scalar and a different treatment for
O&) and O is required.

For the first one, O#), we are exactly in the same situation as before, with
the only difference that now we shall work in an effective field theory with only five
quark fields, instead of six. This requires the introduction of a new B-function, new



§2.4 Second example: weak decays 35

anomalous dimensions and so on so for. O(*) result to be multiplicatively renormal-
ized as before and only the dependence of a*, a~ and a(u) on the number of flavours
is altered.

On the other hand, the case of O,Ei) is more complicated. Thank to the Ap-
pelquist and Carazzone theorem [5], we can express this part of H,s; on a suitable
basis of operators {O;}, which mix under renormalization. They depend on five quark
fields only and they are given by:

Or = (Sude)yaliipus)y—a (2.46)
Oy = (Sads)v-a(lpta)v-a

Os = (Sada)v-al(Gpup)v-a+ ...+ (bsbs)v-4]

Os = (Sadp)v-al(Bpua)v-a+ ...+ (bgba)v_4]

Os = (Sada)v-a[(Tsus)vea+ ...+ (bsbs)vial

Os = (Sads)v-al(Tpua)vis + -+ (bgba)vid]

Hess, at a scale p such that my < p < my, results to be:

"+ (+)
- G a(m?)]* a(M2)1°
las=1y _ _ Cr ¢ w ACOH)
s 22 | @G| [almi) o
(=) Sat=)
a(mf) a(My) (=)
’ [a'wJ [aw)_ A0
(+) (-}
MZEIHY1® o [e(ME)]®
vin (2 |y oy w
T Z( ¢ [a(m?) Ot Vi oy A9
(2.47)
where
2y7 95
\/('*‘) = Ve a(mt) \/-'—.IB{"}')
k % kj Oﬁl(/.l.2) Ji 1
Vi) = ST, {“Fmi)'a" V3B . (2.48)
i, o' (p )

All the operators on the r.h.s. of eq. (2.47) should have their matrix elements
evaluated in a five-quark effective theory (all the notations used are explained in

App. A).

Step 3 When the heaviest mass scale of the theory becomes my, a new effective
theory with only four flavours exist, while b-quark is removed from the theory. The

aaey

are multiplicatively renormalized, while the second ones require the introduction of
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a new set of linearly independent operators {P;}, of the same kind of the {O;}’s but
with the b-quark removed:

Py = (Sude)vs(Bgug)y_a (2.49)
Py = (Sadp)v-a(ipua)v_a

Py = (Sada)v-al(Tpup)v_a + ...+ (Gscp)v_a]

Py (8adp)v-al(fpua)y—a + ... + (Zpca)y—a]

Ps = (Sada)v-al(Bpup)via + ...+ (Cscs)vya]

P (5adp)v-al(Gpta)via+ ... + (Caca)vsal

After RGE’s for the coeficients have been solved, you get HE?}szn, at a scale p such
that m. < u < my, in the form:

1, to ma () a+) al+)
pas=1) _ _ Gs Ha(mf)J [a(m?)J [Q(va)} 4,00+

eff 2v2 | | & (p2) a'(my?) a(m?)

[a'<m;2>r"“’ 2t J [a<M3,>J“'“’ACo<_> +

o' (p?) o'(my?) a(mf)

2 alt) 2 al=)
M
+ > W Vig [—oﬁ(ﬂ;"—)J B§+)At+[MJ B4, | P,
a(m$)

o a(mf)
(2.50)
where
o (m)]*
W = Wom | ———2~ 1%
L= [ a wJ s
a(m?) e
Vy = Vi | ———t2 ] vzl 2.51
k zz']: kj [al(mbz)J 71 ( )

Step 4 Finally, when the heaviest mass scale coincides with m, and a three-quark
effective theory enters the game, also O*) stop being multiplicatively renormaliz-
able and we need to expand its matrix elements too on a complete set of linearly
independent operators {Q:}, which again mix under renormalization, given by:

Q1 = (Sada)v_a(Gaus)y_a (2.52)
Q2 = (3ads)v_a(Gpua)v_a

Qs = (Sada)v-al(Gsup)v_a + (dsda)v_4 + (Zscs)v—a]

@s = (Sada)v-al(Bous)via + (dsds)via + (Zocs)vsa]

Qs = (3adp)v-al(Zpua)via + (dpda)via + (Esca)via]
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where Q4 has been dropped to recover linear independence. After having solved the
RGE’s for their coeflicients too, we get:

: "(+)
= G a'(m'z) ¢ a(m?)
2(85=1) _ F ZXH) b :

eff 22 145" |a"(m)?) a'(mg)

c

o+ 5 y7alt
| [ aer

a(m})

! g a”‘“)
e a (my’)
2050

r

a(m?)

(+)
a(M2) ¢
X Wk Vi w B A
o S <{a(ms)} AT
(-)
M2)1° _
[3(——&)} B4 | Q. (2.53)
a(mi)
where
r 1 ”2 '!a;”
X£+) = X, 3#@__) X1 pi+)
; q |« (‘uz)_ qp P
- " Ilz '(1:1”
x(=) = X, _a_ﬁz_c—) x-1p-)
R
‘all(mllz)" a.q
Xom = Xpo | ——c X 1Dr
2% |y | K

"

a' (m;)Z) Lo, . .
W = Wom | =7~ w_;C
= ] W

r

Vi = D Vi {3(—"3%)—)] ? V7 (2.54)

o' (my
and at each threshold suitable matching conditions are imposed.

Some interesting considerations can be done on the structure of the effective
hamiltonian at low energy, mainly about CP-violation. Among the {@Q.} operators:

e Q, and @, are usual four-fermions operators, while

e (3,Qs and Qg are “penguin” operators

and only @, is present at the zero-order in strong interactions. The “penguin’-
diagrams give rise to new effective “interactions” described by Qs, Qs and Qs and
generate for all the coeflicients an imaginary part, which is at the origin of CP-
violation in the Standard Model. In particular “penguin”-operators (s, Qs and Qs
have small coefficients, but their matrix elements are expected to be larger than for
Q. and @3 , so to to give a global non-negligible CP-violating effect.
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Chapter 3

Ky — Ky mixing: a detailed analysis

3.1 The box-diagram and CP-violation

In the general context of the Standard Model, I have already described the basic
features of Ky— Ko mixing and its relation to the e-parameter. € is given by the
following expression:

expiy
ImMi, + 28 Re M-
€ \/iA]VI ( miya (Re 12)
N expiy ( ImMm> 1
~ ~ & T am (3.1)
where TmA
mAp . - 6
= . = w e 0 y . 2
13 Red, with  (7m7(I = 0)|Hw|K) = Age (3.2)

is only a very small correction. AM is the mass difference between K, and K states
(experimentally: AM = 3.5-10"" GeV) and M;, is the dispersive part of the
off-diagonal elements of the Ky~K mixing mass-matrix:

My = (Ko|H5372  Ko) (3.3)

At lowest order in weak interactions, there are two box-diagrams (see fig. (3.1))
which contribute to the |AS|= 2 amplitude and similarly for any other |AF| =2
process (F' =flavour) (e.g., the By—B, mixing).

Our main purpose will be to get a full understanding of the principal features
of the |AS|=2 amplitude, renormalized by QCD perturbative corrections. The aim
is to obtain an effective lagrangian where the radiative effects are summed up to all
orders, in the leading logarithmic (LL) approximation.

S|=2

The theoretical expression of 'Hef s is of the form:

_ G2
HIES=E = = = o5 M, (d7(1 = 75)8)? {N2F () + AL F () + 22\ F (e, 20) }
(3.4)

39
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- U,C,t -

u,c,t

u,c,t K’

Figure 3.1: Two possible box-diagrams for the K, — K, mixing

which, in the case of a light top quark, can also be written as:

= G2 3 ‘
Hip ™ = T M (97 (1= 75))" {Nom B(e) + XimaB(e) + 2 Aena Bz, 22)

(3.5)

because QCD corrections factorize. In equations (3.4) and (3.5), the notations used
have the following meaning;:

© G is the Fermi coupling constant,
® A;’s are related to the CKM matrix element by

Ag = ViiVas (3.6)

where ‘4’ and ‘f’ are the labels of the initial and final states respectively (for
example, i = s and f = d in the Ko-K, mixing case),

o zg =mi/ M ,

* the functions E(z;) and E(z;,z;) are the so-called Tnami-Lim functions [26],
obtained from the calculation of the basic box-diagram (as we will see in App.
B) and are explicitly given by:

1,9 1 3 1 3 (_ @
Y — . . — . — — - = Py ]' 1
Blo) = Blano) = = [4 il 20 —mi)ZJ *3 g

z; — 1
(3.7)
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1

3 1
E(zi,z;) = wimj{[ZJr‘z‘

1 :l ln :Uj
(1—=z;) 4(1—z;)
3 1

+ (25 = @) — 7 } (3.8)

3
4

:Z:j—[l}i

4(1—z)(1—=;)

E(z;,z;) is evaluated from the box—diagram in which a i-quark is exchanged
along one internal fermion line of the box and a j-quark along the other, and
E(z;) refers to the case in which the two exchanged quarks have the same
flavour. The Inami-Lim results for the E-functions are valid for arbitrary values
of the internal quark masses. It will be very useful to consider their expressions
for z; <« 1:
and for z; < z; < 1:

E(zi,z;) ~z;jln — (3.10)

¢ the functions F(z;,z;) and F(z;) are only a shorthand notation to indicate the
@ CD-corrected Inami-Lim function. In particular, when the top quark is light,
they are related to the E-functions by the following simple relation:

F(wcaxt) = 773E($cvmt)
F(z.) = mE(z.)
F(z:) = nE(x:) - (3.11)

The physical value of M, is obtained from the following amplitude:
My = (Ko HE 1K)

GZ
T6m2 ij {NF(2) + MEF () + 22N Fze, 22) }
(Ko|(dv*(1 — v5)s)?| Ko) (3.12)

The crucial point is the evaluation of the matrix element of the (v-4)e(v-4) product
of currents. Usually the “vacuum saturation” approximation is used. This approx-
imation allows us to use a well known result about the matrix element of a (v-a)
current between the vacuum and a pseudoscalar meson state. In that case, only the
axial current contributes:

_ ip,ufx .
0 1 —y5)d| Kp) = —=== 3.13
( l37l-t( 75) l 0> m ( )
where p, and Ey are the momentum and the energy of the meson and fy its decay
constant. The “vacuum saturation” approximation consists in restricting the sum
over a complete set of intermediate states to the vacuum state only, obtaining, in the
Ky rest frame:
7RI 2 4 1 2 £2
(Kol(dy*(1 —75)s)*|Ko) = 2 -Bx—mx’fg
3 Tmyg

4 5
= B (3.14)
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where:

(i) a factor 2 has been introduced to account for the possibility to contract in two
diffeljent ways the currents on the Ky-K, mesons;

(ii) the factor 4/3 arises because the vacuum state can be inserted into two ways.
This corresponds to the two possible box-diagrams in fig. (3.1), which differ
by the exchange of two s-fields. As well known, the (v-4)g(v-4) product of the
two currents can be Fierz-rearranged in the following way:

- - 1 _ - - -
(dlsl)L(dgsz)L = g(dlsg)L(dgsl)L -+ QZ(dlta52)L(d2ta31)L (315)
where:
(diSj)L = di"y“(l — ")/5)5_.,' (316)
and
(dit®s;);, = dit®y*(1 — v5)s; (3.17)

with 1% being the colour SU(3) Gell-Mann matrices. The octet-octet term
cannot contribute when each octet is sandwiched between the vacuum and a
colour singlet K-state. Thus, the two vacuum state insertions, which differ by
the s; + s, exchange, contribute with the factor:

(1 + %) = g- (3.18)

(iii) my is the mass of the K-meson;
(iv) fx is the decay constant for the K -meson;

(v) By is a factor which is inserted to take into account all the possible deviations
from the vacuum saturation approximation. In other words, it parametrizes
our ignorance of the matrix element of (dy*(1 —5)s)* between K, and K,
with By = 1 corresponding to an exact vacuum insertion approximation.

Finally, collecting all the results, we will have that:

M, = 1;;7;;2 M} By fim, {AfF(azc) + AZF(z:) + 22\ F(z., a:t)} (3.19)
and
1 1 [@&

Im {D2F(x.) + APF(z,) + 20 F(ae, ze)} (3.20)
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where ¢ = 0 has been chosen, in view of the smallness of the ¢ parameter. We now
give the expression of A, and A; in the Wolfenstein parametrization, as given in [53]:

2

A
>\c = Uca :d::-—A(l————z—)g—)\—i_

A = UlUL = —A2N(=1+ pe¥)

(3.21)
Due to the unitarity of the KM matrix, by taking A, real, we must have:
ImA,. = —Im)\, (3.22)
because:
Im(Ay+ A+ A) =0 (3.23)
This implies:
Im()\z) = 2Rel.Im A, = —-2\Im A,
= 2Mm A, = 2psin §4°)\° (3.24)
Im(X\?) = 2psin 6A*N'°(1 — pcos §) (3.25)
Im(AX) = —2Xm A, = —2psin 6A2)\® (3.26)
and we get:
Im{NF(z.) + MF(z) + 22N F(ze,20) }
= —24")%psin § {F(ze,z) + F(z.)[A*M (1~ peos6)] — Fz.)}
(3.27)
Eq. (3.20) can now be written as:
L G M2 By fZ 24%X\°psin §
|l€|e=o TN, 1271_21 wBrfmg psin
AF(ze,20) + Fz)[A*X(1 — pcos§)] — F(a.)}
(3.28)

To account for QCD corrections, is necessary to compute the perturbative factors
71,72 and n3. Two different cases must be considered:

(i) the M2 > m? > m? case or ¢; <K 1 case;

(ii) the m, > M? > m? case or ©; > 1 case.
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where m; and m, are the top- and the charm-quark masses respectively. In the first
case, which is now excluded experimentally, very detailed calculations are already
present in literature. In the second case, on the other hand, there are a few recent
contributions. However, we believe that the final result has to be checked and the
structure of the leading corrections in the case of a heavy top quark clarified.

I will consider case () and (i¢) separately and discuss the main results in sections
(3.2) and (3.3) respectively. Finally in Chapter 4 I will present a numerical discussion
of the results obtained using different approximations on Hi?f'ﬂ, with or without

QCD corrections, in the two different ranges for m;.

3.2 Case of a light top quark

The analysis of the corrections from QCD to the effective weak hamiltonian, for
small values of the ¢-quark mass (m: < My ), is nowadays well established. Quite a
few papers [23,39,47,48] in literature describe how to discuss the problem in a very
systematic way. Among these contributions, I think that it is important to quote
those by M.I. Vysotskij [48] and by F.J. Gilman and M.B. Wise [23].

I will essentially follow the second of these papers. Nevertheless, I want to stress
that interesting hints for the case of a large top quark mass are implicitly contained
in the first one, although the general discussion appears a little bit rough.

The starting point is the AS =2 effective hamiltonian without QCD corrections:

I

—_ Gi -
M= = Ton2 M@ (1 = 75)s)* (N E(z.) + A2 E(,) + 20\ E(z, ze)}
(3.29)

obtained from eq. (3.4) or from eq. (3.5), when n; = 7, = m3 = 1. As in section
(3.1), @i = m? /M2 for i=c,1. Eq. (3.29) can also be written as:

Hﬁfl:z = Ang + ’\tZHZ + 2A A H; (3.30)

where Hy, Hy and H, correspond respectively to the three cases in which: 1) two c-
quarks, 2) two t-quarks or 3) one ¢ and one c-quark are exchanged along the internal
fermion lines of the box-diagram. For small values of the t-quark mass, we can take
the z. < z, < 1 approximation for E(z.), E(z:) and E(z.,z,). As already seen in
section (3.1), in this approximation, the Inami-Lim functions become:

E(z,) ~ =z
E(fct) >~ T
E(z.,z,) o~ z.ln 2t (3.31)
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and H,,H, and Hs correspond to the following expressions:

Gz

Ha = S Emiday(l = s)salldey* (1 — 75)ss] (3.32)
G: ., . |
Mo = qprameldayu(l = ¥s)salldsr*(1 = 75)s] (3.33)
va 2 mf < T o
Hs = ———16 2m‘—‘ In “-z[da')’u(l - ’75)Sa][d/3’)/ (1 — 75)3ﬁ] (334)
™ m

c

The above result is modified by the presence of strong interactions and we
can take them into account with the “from top down” method, explained in section
(2.1). In view of the present discussion, in section (2.1) I have explicitly illustrated
the construction of the effective hamiltonian with QCD corrections for AS=1 non-
leptonic weak decays (with details given in Appendix A). The method to be used
here is exactly the same, so I will skip some points already emphasized in the AS=1
case.

The UV cut-off of the theory is assumed equal, step by step, to one of the
masses of the physical particles present in the theory, namely My, m;, ms and m.
respectively. Different effective theories arise at each step and suitable matching
conditions must be imposed at the thresholds. Moreover, the effective hamiltonian
should be expressed at each step as a linear combination of different sets of linearly
independent operators, with expansion coeflicients which are evolved from the highest
limit to the lowest one (the physical hadronic mass scale under consideration) by the
action of the renormalization group.

The three terms in the effective hamiltonian involve different fields, which be-
come more or less important at different mass scales. Thus, except for Step 1, H;,
Hz and H; behave in a different way at each step. We will examine what happens at
each term separately, step by step.

At Step 1, the UV cut-off is set by My, and one develops an effective theory
from which the W-field has been removed. H;, Hs and H; involve the W-field in
an equivalent way and they can be treated on an equal foot. When the W-boson
becomes very heavy, each of the two AS =1 W-vertices is shrunk to a point (see
fig. (3.2)) and you can image to apply to each of them the operatorial analysis
already detailed in the AS =1 case. The product of the two weak currents at each
vertex can be expressed as the linear combination of two operators, which do not
mix under renormalization and are respectively half the sum of colour symmetrized
(+) and anti-symmetrized (-) pieces:

Ogi) = [(EU)V—A(ﬁd)V—A + (Ed)v_A(ﬂu)v_A]
~[(3@)v-a(qd)y-a = (5d)v_a(Cc)v_4] (3.35)

where “g”can be a c- or a t-quark. We have used the following shorthand notation
for the product of (V — A)-currents:

(8d)y-a(3d)v—a = Bavu(1l — 15)dadp7"(1 — 75)ds (3.36)
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u,C,t u,c,t

Figure 3.2: AS=2 amplitude in effective theory with a very heavy W-boson

As long as the internal fermion lines are not shrunk to a point, the AS=2 vertex in

the effective hamiltonian is equivalent to the product of the two AS =1 vertices, as
emphasized in fig. (3.2). Thus, each of the effective hamiltonians H; for 7 =1,2,3
can be obtained as the product of two AS =1 effective hamiltonians. Each AS =1
vertex is the linear combination of two operators: Ogi), where ¢ is the quark of one
of the internal fermion lines. Thus, the product of two AS =1 vertices gives origin
to four terms and we can write each H;for 7 =1,2,3 as:

My =H 4 1) Lom) 4o . (3.37)

where H§-++) is obtained from the product of two O+ operators, H§-+_) from the
product of an Ot and an O- operator and so on so for.

We can account for QCD corrections to the global AS =2 effective hamiltonian,
by simply multiplying two QCD-corrected AS =1 effective hamiltonians. We have
seen in sections (2.3) and (2.4), how for a AS=1 vertex QCD corrections, computed
in the (LL) approximation, can be summed up to al orders in strong interactions
(using RG techniques). The product of two QCD-corrected AS =1 vertices, then,
gives the QCD-corrected expression for each term 7, in ’Hngfslzz) as follows:

e ) gl =)
H’ — a’(j‘/‘[vzv) : H(++)+ CZ_,(A/IEV) ¥ H(+“)+
I s I R J
NESES 24(-) :
a,(My,) (—+)  |e(M7) (--)

_ : 3.38
S A oy B 5:39)
where a(*) = 6/21 and o7 = —12/21; p? is renormalization scale and a(m?) =

g*(m?)/4r the strong interaction running coupling constant in a theory with six
quarks, evaluated at a scale p? = m?2

From Step 2, when the UV cut-off of the new effective theory coincides with
the top quark mass and the top quark is removed from the theory, the three factors
of the effective hamiltonian start behaving in a different way, due to the different role
played by the t-quark in each of them. We must treat them separately.
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e Consider first H,.

Both at Step 2 and at Step 3, when the UV cut-off of the theory coincides
respectively with m; and my, there are no problems, because H; does not involve
directly either the t-quark or the b-quark. The AS =2 vertex in the effective
hamiltonian can again be interpreted as the product of two AS =1 vertices,
which renormalize separately. Thus, the basic structure of the hamiltonian
does not change with respect to the one in eq. (3.38), except for the presence
of RG-evolved coefficients. The RG-evolved coefficients will be the product of
three terms of the form [a(m?)/a(m})]”, obtained as at Step 1, but in different
effective theories. The explicit calculation for each AS =1 vertex is exactly
the same one explained in more detail in Appendix A. The only difference is
that we have here the product of two AS =1 vertices. However, this product
can be treated exactly as at Step 1. Namely, taking into account that we have
passed two mass thresholds and we have changed our effective theory at each
step, down to a four-quark effective theory, we get for H;:

- - ’ ' 12/25
p = |01 /[ (m3>}1z’23[ (mf)} )
| o (m?) | (] Lel()
—— —6/23 ' ' —-6/25

o [ )] T T en(md) 17 ()]
Lon(md) ] Lei(my) o, (2 1
- - ’ ' 12/25

o [ [ anmd) P Talmd) ]
La(m?) | ledm®)] L) 1

P - ' ' —24/25

L [easd) 2‘*/“[a,<mt>} e [axmm} o)

| (i) | J(my?) o (12 1

(3.39)

Eq. (3.39) has exactly the same structure as eq. (3.38), as we expected. Masses,
coupling constants and anomalous dimensions have been evaluated, step by
step, in a six-quark, five-quark and four-quark effective theory. I have denoted
them with non primed, primed and doubled primed variables, referring to the
case of a six-quark, five-quark and four-quark effective theory respectively.

Finally, at Step 4, when the UV cut-off of the theory becomes m., also the
c-quark is removed from explicitly appearing in H;. The two intermediate
quark-lines of the box-diagram are shrunk to a point , as shown in fig. (3.3)
and the resulting effective interaction will be expressed in terms of the AS=2
four-fermion vertex operator only:

(5d)v-a(3d)v_a = [Fayu(l — 75)da][357"(1 — 7s)dp] (3.40)

with anomalous dimension:

1112 IH

() m _L may o @ "o 3.41
7 g ) =m0 )= 44 + O %) (3.41)
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[=9]

u,c,t

Figure 3.3: AS=2 amplitude in a three-quark effective theory

Each operator in eq. (3.39) can be “projected” on the four-fermion operator in
eq. (3.40). As we learn from Appendix A, the matrix elements of each term in
H, (which appear in evaluating explicitly weak amplitudes) can be expanded
as:

" -+ m" " " _ n
(1217 = 169 (26" ) s aGsdya )" (2
with the usual meaning of all the non primed, primed and double-primed vari-
ables. The triple-primed variables refer now to the three-quark effective theory
and the formalism used in eq.(3.42) has the following meaning:

1

IR = (1 )" 'y ) (3-43)
and equally for ( | (5d)y_4(5d)y_4 | )", except for obvious modifications.

’Hgii)-type operators have well-defined anomalous dimensions, thus it is not
difficult to state the RGE’s for the L(*®) coeflicients, imposing that both sides
of eq.(3.42) are y-independent. The RG formalism to be used here is strictly
analogous to the one reported in Appendix A. Thus, I will give only the final
expressions for the L(+%) coeflicients, which read:

L) (Q) _ ﬁ 1 [ o’ (1) }/ [a'jlgm?)r’” [a”’gm:Z)r‘*/”
Iz 21 7% [a"(m;?) o (p?) a'(p?) |
29 (Tes) = -[3]5 [Sh] T 2] )™
p 21 w2 | (m;?) a”(u?) a’(p?)
(=) (mé' g) — H 1 [ o' (1) J/ [a’%m:ﬂrm [a”(m?)r’%
' 2l 77 [ (m?) o () o (u?)
(3.44)

where the initial conditions

L(++)(1,0) = -5 [_}
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e = L[
L=7(1,0) = _7—35 E} (3.45)

are assumed. The final expression of H; is now at hand and is:

GZ - _ all(muz) 6/27
—_— F * c
s = gl =9l - sl [LE)
3 o (MZ) e a,(m?) 12/28 a, (my?) 12/28
2 | a,(m}) al(m?) o (m!'?)
o, (M5,) /3 a,(m?) ~6/23 ., (my?) 6/
as(m?) a;(méz) o (m?)
) )| el 1]
2o | @@ [am) '
where e
o a"<m;'2>J
Me =M |~ 3.47
[ a’(u?) (3.47)

e Consider now H,.

Its case is strictly analogous, with the only difference that now, instead of two
c-quarks, two t-quarks are exchanged. Thus, the AS =2 four-fermion operator
in eq. (3.40) already appears at Step 2, when the UV cut-off is set by m,
and the top quark is explicitly removed from the theory. After this threshold,
the four-fermion operator renormalizes multiplicatively, as a AS = 1 vertex
operator, so that the final result for H, reads:

Moo= — o Emid(l - 1e)salldar(1 - 7455 (3.48)
S {a'%m;'z)] " e ]/ Eu }/
] L") [om)
3 as<M5V>} e [asuvfzv)] L [MM@)J /}
) [2[%(@2) afmf)| T2 | au(mi)

e Finally, consider H,.

This case is a little bit more tricky, because Hs involves both # and c-quark.
At Step 2, when m, sets the UV cut-off, only one of the two internal quark
lines is shrunk to a point and we cannot describe anymore the global AS=2
effective hamiltonian as the product of two AS = 1 effective hamiltonians.
On the contrary, by explicitly calculating the renormalization of the AS = 2
effective hamiltonian, one finds that a new complete set of linearly independent
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operators is required in order to expand the matrix elements of each term in
Hs. They are given by:

OFE) i/d4:c T{Ogi)(m)(gada)V_A(ﬂﬁ’uﬁ)V-A} (3.49)

o) _ / d*z T{O®)(2)(5udp)y_ a(tigue)y—a}

o) = i/d4:c T{O) (2)(Sada)v—al(Tigus)v—a + . .. + (Bbs)y_a]}

of) = i/d4"’ T{O) (@) (3ads)v-al(Tgua)v—a + - .. + (Baba)v—al}

O i/d4:c T{OF) (2)(3uda)v-al(Tpus)vin + ... + (Bobs)vsal}

05 = i [ d* T{OM) @) (5uda)y—al(@3ua)vsn + ..+ (Bobo)yoal)
which are well-known from the AS = 1 case, plus two additional ones

OF) = i/d% T {{(Sava)v-a(Zods)y—u % (Fuda)v-a(Esup)y—al()

X [(8xexn)v_altisds)v_4 + (8xdx)v-a(tscs)v—al(z)} (3.50)
08 = 2 5.3(1 ~15)dul[5a7(1 — 7)) (3.51)

They mix under renormalization and we can compute the matrices of their
anomalous dimensions, at the leading order in the strong coupling constant of
the five-quark effective theory, ¢' (or ). The same happens at Step 3, when
the UV cut-off coincides with m;. We need a new set of eight operators to
expand the operators in H,. They are of the same form of the operators in egs.
(3.49) and (3.50), but with the b-quark dropped wherever it appears. Finally,
at Step 4, when m, sets the UV cut-off, both the quark internal lines are
shrunk. We are left, as in the case of Hy and H,, with the usual four fermion
operator only, namely Os.

At each of the previous steps, we should only generalize, in a straightforward
way, the technique of the AS = 1 case. However, this operation results to
be really complex and an analytic expression for H; can be derived only by
making some suitable approximations. The authors propose, at this point,
some sensible approximations, looking at the structure of the bare coefficients
of each operator and at the expressions of their anomalous dimension matrices.
They find that operators Os;...,0¢ can be neglected with respect to operators
O1, Oz, Or and Os. With this assumption, the problem greatly simplifies. At
Step 2 and Step 3, only O7 and Og operators are considered, while, at Step 4,
as usual, only a term proportional to Os occurs. Assuming all that, the derived
analytical expression for H; looks like [23]:

G2 , au(muz) 6/27
P *2[ < _ ¢
Mo = amar ()™ a1 = 75)dall5a7(1 = 45)dg] - [T"(#z)J
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This completes the theoretical analysis of the problem and the effects of QCD can
be verified by comparing H;, H, and H; as given in eqs.(3.46), (3.48), (3.52), with

their free quark values.

3.3 Case of a heavy top quark

In the present section, we will consider the effective AS =2 hamiltonian in the case
of a very heavy top quark.

The most complete calculation available in literature is the one contained in
the paper by Datta et al. [14] I have checked their calculation and I agree with the
results.

I have also to mention other people which have worked on the same problem
[29,30,18,17]. The results contained in the latter calculations are incomplete or only
partially correct, as is very well discussed in a recent preprint by Buras et al. [13].

Let us now return to formulate the problem as Datta et al. [14] have made.
As I have already said, I have reproduced the whole calculation and tried, in the
meanwhile, to confirm the correctness of the underlying logical scheme. Let us start
considering the AS =2 bare effective hamiltonian:
=2 G2
HYT? = o T (dayu(l = ¥5)34)? (AfE(a,c) + A E(z) + 2)\cAtE(:cc,:ct)> (3.53)
and the AS=2 QCD-corrected effective hamiltonian:
2

L, G2 ,
HAS=? = T (deru(1 = 75)50)? (N F(ze) + A F () + 22\ F (zey20))  (3.54)
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with the aim to compute QCD corrections in the presence of a very heavy top quark
(all the notations used should already be clear). In eq. (3.53), one has formally
the same effective hamiltonian considered by Gilman and Wise [23] and discussed
in the previous section. However, here we do not make any approximation on the
Inami-Lim functions E(z;,z;) and E(z;).

The calculation is made in the leading logarithmic (LL) approximation and, as
mentioned in the previous section, many hints can be found in ref. [48]. In particular:

(1) theidea to write each contribution in the bare effective hamiltonian (or the Inami-
Lim functions themselves) in a suitable way for the subsequent inclusion of QCD
corrections (namely, for the computation of the loop integrals appearing at that
point);

(ii) the idea to analyze the two-loop structure of the box-diagram integration, when
QCD-corrections are present, in three steps: (1) fix the external loop momen-
tum (the p-momentum) and integrate on the gluon-loop momentum (the ¢-
momentum) first, then (2) keep only the (LL) terms and (3) finally reduce all
the loop-integrals to the only two possible integrals which may appear. These
last two integrations result, thank to the particular structure of the effective
hamiltonian; ‘

(iii) the idea to collect the graphs obtained by exchanging a gluon in all the possible

: ways and compute separately the contribution of each of them, selecting only
those which give a (LL) contribution. Then you have only to sum up all the
corrections in order to define the anomalous dimension at order O(e,);

(iv) finally the method to deal with the running of quark masses.

However, in [48] these ideas applied only to the case of a light top-quark, while here
we will analyze the whole range of m;, from the region in which m, <« M, up to
the region in which m, > M. Obviously, some new features will appear. Mainly, a
whole class of graphs (those in which a gluon is exchanged between an external leg
and an internal heavy-quark leg) does not contribute to the anomalous dimension in
the case of a heavy top quark.

Here following, I will give separately a summary of the expressions for F(z.),
F(z;) and F(z.,z;) to be used, in the case when m, <« My and in the case when
my > My. From the comparison, the difference between the two cases will be clear.
The m; < My, results are taken from the paper of Gilman and Wise [23], while the
m¢ > My results come from a very careful analysis of the work made by Datta et
al. [14]. In Chapter 4, a numerical comparison of the two cases will be given.

(1) F(z,) case

F(z.) remains the same both for m; € M, and for m, > M, , because it
does not involve the top-quark operator. Namely, it is given by:

F(z,) = mE(z.) ~ne. (3.55)
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where the z. < 1 approximation of the Inami-Lim functions has been used.
However, different authors give different expressions for 7;, because they at-
tribute different relevance to the threshold structure of the underlying effective
theory. Thus, following Gilman and Wise :

" "o 68/27
@ \m

7 (00)
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o (p - e
e o e

3

[ e e
1
2

(m?) o, (my?) .(m?)

™ ™

a.‘!

3

T3 | a(m?)

s [

(3.56)

where no primed, primed, double-primed, etc. quantities refer to different ef-
fective theories, with six, five, four, etc. flavours only.

On the other hand, following Datta et al. we have:

2/bs

m o= [a((m))} F(mz7M3V;8/bn,2/bn,—-4/bn)
97 6/27 »

[i(( ;))] F(m}, My,;24/25,6/25, ~12/25)

(3.57)
where:
F(p?, M%;4/bs, 1/ba, ~2/b,) =
L eale®) 1Y [aule®) 1 8] aule?) |7
5 L) |l ;) (35%)

(2) F(z) case

In the m; > M, region, Datta et al. compute F(z;) numerically, starting
from its integral expression:

4 p’
D 1
Fzy) = ]\lv?;,/dp2 {pz-l—f‘/ffv L’ ) ( 2+ Mz ——(2g:91 — 912)>

1 X _ 4 P’ 2 P’
—]—]‘/Igvgl(—Qgt“ +g1‘°)J + mt (pg + ]\/Igv)zgt [4M,,2V + 2 T
(3.59)
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where

2 2/bn

. - [“a(f’z)J (3.60)

o, (p?)

z = F(p",p* + ML;8/b,,2/b,,—4/b,) (3.61)

= F(p*,p*+ M;4/b,,1/b,,—2/b,) (3.62)
1

= 3.63

and the threshold structure in the Integrations is accounted for in the a,(p?)
computation.

In the m, € M, region, the Gilman and Wise result is recovered by setting
z = z' only.

(3) F(z.,z;) case

Also in this case, the m, > M, region is described by the Datta et al. result.
They integrate numerically the following expression for F(z., o)

4 2 2
N 2 ) D (gc - gl) P S _pr _ .
F((Ecywt) — /dp { pz n Mvz[, (gl (pz + M&, ") gt (pz +MV2V z )}

2 1 1
+ mlimlg.g—2L +—z
I T P e V)

3 P’ (3.64)
M (P 4 ) || |
where z, z and 2’ are as before, while y is defined by:
/b
a(p?) 1°
— wa 3.65
] 1569

On the other hand, in the m, < M, region the Gilman and Wise result holds,
obtained from the previous one by setting again z = 2'.

Actually, in the numerical analysis, we have improved the results given by Datta
et al., because we have fully accounted for the threshold structure of the effective
theory, while they did not in their paper. On the other hand, Gilman and Wise have
considered in their work all the thresholds of the effective theory. Thus, our results
are better comparable with those given by Gilman and Wise.

We will give now a description of the analysis step by step, reminding for a
certain number of detailed calculations to Appendix B.



§3.3 Case of a heavy top quark 55

3.3.1 The standard box-diagram

When we consider the Inami-Lim functions, automatically we have included in the
amplitude all the four different box-diagrams, in which: a) two W-bosons, b) one
Higgs boson and one W-boson (two possibilities for two legs) and ¢) two Higgs bosons
are exchanged in the box (see fig.(B.1) in Appendix B. Each case can be separately
computed and the relative contribution can be cast in a suitable form to account for
QCD corrections at a subsequent stage.

We work in the Feynman gauge for the weak interactions, while in the Landau
gauge for the strong ones. GIM mechanism is introduced from the very beginning,
as it is well known from the box-diagram amplitude evaluation, whose main features
are collected in Appendix B.

As an example, consider the contribution coming from the exchange of two
W-bosons, Hyw say. As can be read in Appendix B, it gives:

(2
GE

HWW:l

]\va(da’y“(l —75)qa Z)\ A M2 m m* I(m?,mj-) (3.66)

1.7

where indices 7 and j refers to the quarks of the internal fermionic lines, namely u, ¢
or t, while the function I(m?,m?) is given by the extrnal loop integration

1 | ,

/dp (p? + MZ2)2(p? + mf)(p? +m?) (3.67)

As well known from the light-top theory, in the approximation of a massless u-quark,
only three term in the previous sum contribute, those in which: @) two c-quark, b)
two t-quark or c¢) one c- and one t-quark are exchanged. In the present approach, it
is essential to define the dominant regions in the integration over the external loop
p—momentum. Thus, we switch to the Euclidean region and then we integrate over
the four dimensional angles. All the integrals can be expressed, in this way, as linear
combinations of the following two elementary integrals:

m?) dp? =1 3.68
m;) / P +m) - (3.68)
and
C(mi,m?) = /dp2 L
v (p* +m?)(p* +ml)
1 m; dp? 1 m?
= e e = e e 3.69
(m? —m}) /2 p?  mil-—m? . m} ( )

with coeflicients which depend on functions of the masses of the particles in the game.
The original expressions given in [26] as functions of the z; variables: z; = m2/MZ
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can also be rearranged in such a way to give

miM?2
s = (g e (Bm) + B2~ i 02
w ) )
2 1 2 .

for ¢ = ¢,t and

1 B(M3) M,
. 22 M,
Awwe = mlm] <M3V —m? (va —x:nf * mi — Clme, M)
M2 2
( i 1
Tl - o e
t (1 _ wc)(l _ mt) (1 - wc)z(wt - :Ec)

! |
(1 —z)%(z; — ) n
get for the other term in the global box-diagram ampli-

(3.71)

+

In a quite analogous way we

tude:
4
_ m, 2 2 2 qr2
AHH,tt = 4‘“‘*———(1\{3‘, _ t) ( (.Z\/[ ]1/[2 ) 2th(mt,MW)>
2
z? -
= — Tt 2 1 3.72
4(1_wt)(1+1:t+ l—mt nwt> (3.72)

4

A = @1/[7271}}%) ((m + M? )C('m't?ﬂ/fz ) — (m?) - B(va))

z2 142 —
= i ( h tlnmt—i—.?) (3.73)
2mlm} m? 2 g2 m; 2
AWH,ct - mt mz (_.7\/_[2 _mzo(mc,]\/f )+ FO(WL“]\/[ )
2 2
my —m, 2
+(mt2 MZ)(MZ — m2) (]VIW))
LTy Le Tt
= 2 c— ——1
z: — z. ((1_zc)2 lne (1—z)2 %
LTy — T
— .74
) (3:74)

4

2 2
T C(m?, M2)
a4

Anme = e
T AME(mI —m2) \ M2 — 2
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m; M3, (m{ —m2)
m? —

"t 2 pr2 —
2 —mzC o M)+ e~ iz
Tt t2

z? !
T imw \ @ —ey T

zln:ct

(1 — )

+(1 - :cttil i- wc)> (3.75)

and for the effective hamiltonian in (1):

H = k (AiAWW,cc + A (Awwee + Awre + Asrrge) +

+2Ac)‘t(AWW,ct + AWH,ct + AHH,ct)) (3-76)
where k is given by
2
b= L (Tl — e)aa )’ (3.77)
1672

For comparison with the previous light-top effective hamiltonian, it suffices to
say that Gilman and Wise [23] use the following approximation

AWW,cc + AWH,cc + AHH,cc ~ Te
Awwie + Awp e+ Appn =~ @
AW’W,ct -+ AWH,ct + AHH,ct ~ I 1n($t/$c) (3-78)

3.3.2 QCD corrections

Now QCD corrections can be included. The whole problem reduces to define only
how to treat two possible cases. After the gluon-loop integration, we are generally
left with an integral expression of the form:

20,217

;(p )} (3.79)

(p

[ &%) LS 7

where p; is a fixed momentum scale. Here, two possibilities arise:

(a4

(i) theintegral [ dp’f(p?) after the integration has a power dependence, as is the case
for B(m?) terms. In this case, an accurate result is obtained just by multiplying

the integral [ dp®f(p?) by [a?(m?)/a?(p?)]";

(ii) the integral [dp®f(p?) after the integration has a logarithmic dependence, as is
the case for C’(m?,m?) terms. In this case, the previous approximation is not
suitable anymore and a careful treatment requires the direct evaluation of the

following integral:
m? dp? [a2(p?)]"
1 / P [aa(p )} (3.80)

) Jmz p? |[o?(p?)

(m? —m})
as originally well-stated in a paper by Novikov et al [39].
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Figure 3.5: QCD correction are summed up to all orders, in the case of a diagram in
fig. (3.4)

This is the basic statement of the problem. Let us now give some more details
for the different cases which may occur.

Gluons connecting the external quarks We start considering the case of cor-
rections to the whole AS =2 vertex operator, in which a gluon connects two equal
external legs, as in fig. (3.4). The main features of this computation are reported in
Appendix B, while I will comment here only about the result, which is:

How = kM?“’iM-/dz P
" Tdr 2" P MR (0 md) (R )
2 2 2 2
jz p*+m P

We recognize a (LL) contribution which can be summed up at all the orders in strong
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interactions, as sketched in fig. (3.5) using the renormalization group equation:

3 4
My = kM2 )\)\/dp P
" mzl (p% + M2, )2(p? + m?)(p* + m?)

=5 5

In other words, an external gluon exchange does not see the presence of an internal
heavy or light top quark, but is a correction to the whole vertex-operator (obtained
in the last case when m; starts to be considered the heaviest mass scale in an effective
five-quark theory).

Similar results holds for the diagrams with the Higgs bosons. Using the GIM
mechanism, we can summarize our results as follows:

4

= kM2 X [ dp? ——-p— . — g 3.83
His = ”ZQA [ e e — e (389)
Mo = b 3 /\/\2/d ————p2m3m§ (3.84)
= p gig;m -
i 1,7=2 +‘Z\/‘[3V)2 ’
p*m?m?

YD WY /d 2 PR 85
HHH 1]2:2 J4ﬂ/,[2 P (p -+ Z‘/.[z )29 g;T (3 8 )

Gluons connecting an external to an internal quark A lot of diagrams do not
give any (LL) contribution when the gluon is treated in the Landau gauge, namely
those in fig. (3.6). This was originally suggested in the Vysotskij paper [48] and we
have checked it explicitly, confirming it (see Appendix B).

On the other hand, all the “crossed” graphs of the type reported in fig. (3.7)
give a (LL) contribution, but only in the case in which the gluon is attached to an
internal light-quark line, as is clearly explained in Appendix B.

For this kind of diagrams, we can see that each AS =2 contribution is equivalent
to the product of two AS=1 vertices, as illustrated in fig. (3.8).

Therefore, everything is based on the computation of the (LL) QCD corrections
to the AS =1 vertex, in which one or two external legs may also be heavy-quark legs.
Finally the two halves are composed again to give the AS=2 amplitude. The basic
calculations of the AS =2 amplitude and of its AS =1 sub-amplitude are given in
Appendix B. In that context, it is pointed out that the dominant logarithmic terms
are of the form In((p* 4+ m?)/p?), in contrast to In(*p® + My )My ) or In((p? +m?)m?)
terms, which appear only at a sub-leading order. Unfortunately, the (LL) term
does not reproduce the exact propagator structure in the 1ntegra1 expression for the
amplitude.
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Figure 3.6: QCD corrections which do not give any (LL) contribution

Figure 3.7: QCD corrections: gluon starting from an external quark leg and landing
on an internal one

Figure 3.8: (AS = 2) diagram as the product of two (AS = 1) vertices
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For the WW-box diagram, f.i., the result reported in Appendix B can also be
cast in the form:

wa_k “ Z ik /dp R+ R;) (3.86)
7,7=1

where:
1 In p® + m?

= 87
M2 —m? p? + M2 (38)

There are two possible cases:
(a)m; < M,

In the m? < M, case, due to the fact that the integral is already UV con-
vergent, we can replace, to a good approximation:

1 1
M —m? LI (3:88)
and \
p + m? D
In —_—In =—— (3.89)
P+ M2, M2,
so that:

4 2

Huw — kot ME2. S A /dp (3.90)

__p___ gigsln 2—
i,5=1 + M&/)Z ’ ‘ZVI‘?V
where the correct propagator structure in the amplitude is recovered. Thus, the QCD
corrections, after they have been summed up using the RGE formalism, reduce to
mult1phcat1ve factors. These factors can be computed in a standard way, by using

the (AS=1) ® (AS=1) structure of the whole AS=2 amplitude. The well-known

multiplicative factor, in this case, is given by:

il

F(p®, M%;8/b,,2/b,,—4/b,)

1| a,(p?) 8/bn o, (p?) 2/on 3] au(p?) —4/bn
5[as(Mev>} ‘[awfn] * 5[as<Mev>} (3.91)

It is structure can be derived from the renormalization of the (AS = 1) vertex, in
terms of the O. operators and their anomalous dimension factors dy (dy = —ﬁ—',

d_ = b4 ), as we have seen in section (2.3). When you compose two (AS=1) vertices,
you obtain that the (AS=2) amplitude and hence the (AS =2) effective ha.mlltoman

is expressible as the sum of four terms:
HA= ~ 20,0, +2C,C_0,0_+C*0_0_ (3.92)
To each coeflicient will be associated an anomalous dimension factor in terms of dy
and d_:
4

n
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2

O+C’_ - d+ + d_. = -b——
02 —2d = .;_ (3.93)

Thus, up to here, the general QCD correction factor has the form:
8/57; 2 2/bn 2 "‘4/bu
e
~ q | — + b + C 3.94)
Taep [as(#"’) a,(u?) as(p4?) (

with a,b and c coeficients to be determined. Clearly: a+4b+c =1, because 7ycp ~ 1
when p? ~ u?. Their relative value can be determined by colour traces. When you
combine the two (AS=1) vertices, you get:

H o~ q_aC’abechchd q—a-Dstth_uDuvqu (3.95)

where CyCly (or DyD,,) are the colour matrices in the two currents previously
joined by a W-line:

CaCea = CRC=A41Q01+B> t*°@1t°
DyDw = D®D=A1@1+B') et
b
(3.96)

C or D can correspond either to O or to O_. For instance, for C ~ Oy, 4 = 4/3
and B = 2; while for ' ~ O_, A = 2/3 and B = —2. When the intermediate quark
line is contracted to give a four-quark (AS=2) vertex, we get:

H ~ §a(CD)avqy §:(DC)saqa (3.97)

At this point, if you take the two possible projections over colour singlets, by con-
tracting either with §,,6,,; or with 04464y, you obtain that:

22
W~ 1244+ 4(BA + AB') + ZBB’ (3.98)
and 3 )
O+O+ : O.}.O_ . O_.O_ = 5 : (-—1) . 5 (3.99)
or 3 1
-2 = —1 == .10
a=c , b , = (3.100)

so that F(p?, M?
(b) m2 > M,

Clearly, in the m? > M? case, the previous replacements are no longer justi-
fied, because now:

;8/bn,2/bn, —4/b,) assume the aspect as in (3.91).

lim R, =0 (3.101)

mi— o0
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Thus, terms containing R; are omitted. Moreover, R, is taken to be:
R.~ R, (3.102)

In order to obtain the corrected perturbative series, the lowest order propagator is
replaced by:
1 1 p?

PP+ M2 M2 MZ(p:+ M2)
Where the first term can be summed with the higher order QCD corrections associ-
ated with it, while the second one has no QCD correction factor. This technical trick
1s equivalent to the assertion that such kind of diagrams are suppressed by a power
m?/M? in the main integration. In the case in which the two internal quark lines are
both of heavy-quark, there will be no contribution; while in the case in which only
one of them is a heavy-quark one, the multiplicative F-factor will be:

F(p?, My;4/b,,1/b,, —2/b,) (3.104)

(3.103)

where the anomalous dimension factors are half of the previous ones, because half of
the graphs does not contribute.

Finally, we observe that for box-diagrams containing Higgs bosons, the only
contributions come from diagrams with two top-quarks in the internal loop, because
the relevant coupling is proportional to mf/MfV They give:

HHW:ki"—ZAAzfdzp gigJ(R—f—R)

4 ,12

+M)

o, 1 p m?m?
= k=3 A / (i i By

1,7=2

(3.105)

Mass corrections Finally, we have to consider also that the introduced QCD cor-
rections depend to a large extent from the masses of the internal quarks. Masses are
“running-objects” in the context of the RGE analysis and they have to be evaluated,
in our case, at the dominant momentum of the integrals. The running masses [39]
are of the form:

my(p?) = mg (1 _goelme) i) = m, [“’(pz)}m (3.106)

T m? as(mg)

The mass corrections enter the calculation depending on the integral over the internal
momenta. There are the following three possible integration cases:

() Type 1: mévB(m;) where N is an arbitrary exponent. These terms give no large
logarithms (because the dominant momentum region in the loop sits around

2
m,);
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(ii) Type 2: m;vB(M;,) In this case, when mg < My, we have a correction,
because my must be evaluated at the dominant momentum of the integral, i.e.

M,,. The evolution gives as correction factor [as(m2)/ o (M2 )]V,

(iii) Type 3: méVC'(m;,M;’,) Being the whole range between mg and My (for
my K My ) involved in the integration, a correction is possible, in the form:
[oes(p?)/ e, (M2)]*N/5, However it has to be included in the integral, due to the
logarithmic behaviour of the initial integration (C'(m?, M2)).

In all the cases in which the mass correction is present, it results to be very small for
heavy quarks and we will account for running mass corrections only in the c-quark
case. '

3.3.3 Analysis of the results

Here, I would like to organize in a detailed summary all the possible QCD corrections
in the two cases : (1) the m; < M,, and (2) the m; > M, case. The case in which
™y ~ My, can be obtained by matching the other two cases. These results will be
introduced, later on, in the numerical discussion.

1. m; K M, region : light top region.

In this region we are concerned with QCD corrections to a box-diagram with
two internal light quarks “” and “77, assuming m; < m; if they are different.
Clearly, here the analysis could have also be performed as Gilman and Wise
[23] have done in their paper and a direct comparision is possible and required.
As we saw, the Inami-Lim functions are approximated by their light top form
and up to here the two approaches agree, while they depart one from each other
in going further. Let us see how in each case:

(i) when the two quarks are identical:
Hi = kAlF(z,) = kXZE(zg)n; o EX2zn; (3.107)

for i = 1,2 and q = ¢, t respectively. Each 7; receives contributions from
both the kinds of graphs we have described in the previous subsection. No
running mass correction is present, because the integration structure is of
Type 1. Thus, at the end:

o (,mZ) 2/b; , , '
— N g M2 .
;= [T—ZTJ F(an, ",,8/6,1,2/6,1, —'4/bn) (3.108)
for ¢ = 1,2 and two principal differences stand out with respect to ref.

[23]: (a) there is no account for running mass corrections, and (b) the
threshold structure of the effective theory is roughly treated. In fact, the
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b-threshold is neglected, but n = 4 is chosen, as if the b-threshold itself had
already been accounted for. Datta et al. apologize for that, justifying the
choice of b, with a one-unit uncertainty by saying that it could produce
only a negligible numerical difference.

(ii) when the two quarks are different:
Hs = 2kANF (2, ) = 2kANE(2c, )13
~ 2k Nz, In (Ti>n3 (3.100)

Ty

where

S mtdp? Ta(p?)] [ au(p?) 1%
T Weed P )] |a(me)
- F(ml, M2 ;8/b,,2/b,,—4/b,) (3.110)

We see that mass corrections are accounted for, being the integral expres-
sion of T'ype2, so that the only difference with ref. (23] is in the roughly
discussion of the threshold structure of the effective theory.

In both of the previous cases there are no Higgs contributions, because we are
considering light quarks only.

2. my > M, region : heavy top region.

Here the new features discovered for QCD corrections play an important role
and account for the differences in the 7;’s behaviour with respect to the light
top region. Basically we have that:

(i) 71 remain unchanged from (1), because no top-quark is involved in H;

(ii) In order to compute 7, let us summarize all the contributions proportional
to the term A? in the hamiltonian. Hww, Huw and Hyy give different
results.

(ii.a) Huww
In the case of the box with two W-bosons we have:
o the tree level hamiltonian contribution; ,
o QCD corrections from gluons exchanged between external legs;
o QCD corrections from gluons exchanged between external and internal
legs.
They give respectively:

3 4
2 2 2 P 2
Hww = kM, 3 Al /dP W(gt —g1) (3.111)

1,J=2

SHY = ke A2/dp2——i——(gt —91)221n—pi (3.112)
wWw 471" w (pg +Mgv)2 ’UZ
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2 X 8 4
w

ig=1
where the notation used should be already familiar.
(ii.b) Hyw
In the case of H,, there are:
e the tree level contribution;
e QCD corrections from gluons exchanged between external quarks;
® no QCD corrections from gluon exchanged between external and in-

ternal quarks, because they give zero contribution for R, =0.

They are respectively:

2 2 2 szf 2
—F /d __Pme 3.114
HHW i'jzzz Atz p (p2+]‘/_[pzv)2gt ( )
o 3 p2m4 p2
SHO = e /\22/ 2P 29 P 3.115
e = b 202 W G S (3:419)

(ii.c) Hyg
In the case of Hyy we have:
o the tree level contribution;
® QCD corrections from gluons exchanged between external quarks;

® no QCD corrections from gluon exchanged between external and in-
ternal quarks, because they give sub-leading contributions.

They are respectively:

Huw =k 3° 20 —1 [’ P g (3.116)
=AYV A eIy VR TRl -
3 1 p4m4 p2
SHY =% S A2 /d 2 P 299, P 3.117
M=k 2 Nam | W gyt (3-117)

Adding all the previous contributions and summing up the (LL) QCD
corrections we get for F(z,) the following integral expression:

4

_ 2 2 p 1 2 p’ 2
F(ay) = MW/dp {pz s [pz T2 (gt + W@gtm —91))

1 , pz pz
+ mgl(‘zgtz +912)J +m?(P2+Mv2v)zgt2 [4va +2f
(3.118)
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where
C‘S(pz) 2o
z = [ad(m} (3.119)
(3.120)
z = F(p,p* + M%;8/b,,2/b,,—4/b,)
, (3.121)
Z = F(p*,p* + M2;4/b,,1/b,,—2/b,)
(3.122)
1
gi = p? + m?

12 can be computed numerically from (3.118), as the ratio between (3.118)
and (3.118) itself but with no QCD corrections, that is with z = z = 2’ =
[(ii1)] 75 can be computed numerically as 7;. We have to collect all the
terms proportional to A.A; in the hamiltonian. Again Hyw, Hew and
Hyw give different results. The contributions to each one of the previous
terms in the hamiltonian are exactly as in case (i), except for Hgw, which
receives also contributions from gluons exchanged between an external and
an internal leg. Moreover, there is an overall running mass corrections,
due to the logarithmic nature of the tree level integral expression of the
amplitude.

The final result for F'(z., ;) is easily obtainable and reads:
(g — g1) p?
Pl = [dpt {20 -
(e, ) P { P+ M2 91 P+ I z

P’ :
o (5 L3 )

, 2 1 1,
+ mEimlgegi—— { + oz

p?+MZ |p*+ M2 M2

3 p?
. 3.123
4M@@L+M%J}my (3123)

!

where z, z and z’ are as before, while y, defined by:

2\ 78/bn
- [%(P )} (3.124)

a,(m?)

is the running mass correction.



63

Chapter 3: Ky — Ko MIXING: A DETAILED ANALYSIS



Chapter 4

Numerical analysis of the results

I will describe in the present chapter the numerical implementation of the theoretical
results discussed in Chapter 3. The general purpose of our analysis is to obtain a
global description of CP-violation, using all the theoretical and experimental infor-
mations at hand. In this context, large uncertainties still exist, mainly the unknown
value of the top quark mass and the large theoretical uncertainties in the calculation
of hadronic matrix elements. Nevertheless, the whole space of parameters involved in
the description of CP-violation can be greatly constrained, if we use simultaneously
the informations coming from three principal fields:

o Ko—FK, mixing,
e By— B, mixing,

e ¢'/e ratio.

In the previous chapter, I have described how the theoretical analysis of Fyp—Fg mixing,
for “F” a generic flavour, has been developed up to now. The problem of QCD
corrections for large values of the top quark mass seems now to be understood. Thus,
the indications coming from Ky — K, mixing and By — B, mixing can be considered
quite accurate. On the other hand, there are still large uncertainties in the theoretical
and experimental prescriptions on the €' /¢ ratio. It would be our aim for the future
to proceed to a careful analysis of the problem, but for the moment it is only a work
in progress. Thus, we have implemented numerically only the results about Ky— K,
mixing (e-parameter) and By — By mixing (f; decay constant).

First of all, we have verified how much QCD corrections for a large value of the
top quark mass (m;) differ from those for a small value of the top quark mass. We
have compared the bare (without QCD corrections) Inami-Lim functions with the
QCD-corrected Inami-Lim functions, predicted by Gilman and Wise [23] for small
values of m; and by Datta et al. [14] for large values of m,.

69
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Remember that the effective hamiltonian for Fy—F, mixing is of the form:
HGT™ =k {\2F(2.) + A2F(2,) + 22\ F (s, z)} (4.1)

where )

— F
1672
F(z.) does not depend on my, because it is related to the amplitude of a box-diagram

without any top quark in the internal fermion lines. On the other hand, F(z,) and
F(z.,z.) depend on m, explicitly. They are given respectively by:

M, (dyH(1 — v5)s)? (4.2)

(i) the bare Inami-Lim functions E(z;) and E(z.,z;), in the absence of QCD cor-
rections;

(ii) the product of the bare Inami-Lim functions F(z,) and E(z.,z:) times a factor
due to QCD corrections, in the case of a theory with a light top quark, as in
the paper by Gilman and Wise:

F(z,) = N2 E(z:)
Fze,z:) = n3B(z,,) (4.3)

where 7, and 73 are the QCD correction factors discussed in section 3.2;

(iii) the integral expressions given in egs. (3.118) and (3.123), in the case of a theory
with a very heavy top quark, as in the work by Datta et al.

In the numerical program we have used the complete expressions for the bare Inami-
Lim functions, that is:

19 1 3 1 3
E(z:) = E(zy, ;) = w [— + ) —3 J + 2 (m z 1) nz, (4.4)
. —

1 3 1 3 1 lnwt

E ¢y = T - ~ -
(2e;2.) Txt{[ +2(1—wt)4(1—$t)2Jwt—mc
1

3
+ (thmc)——

4.5
4u—mu—m} (45)
On the other hand, in order to account for QCD corrections in a more straightforward
way,we have improved the results given by Datta et al. In their paper [14], they have
proposed for F(z;) and F(z,,z,) the integral expressions in egs. (3.118) and (3.123),
which we report also here for sake of clearness:

P+ My, |p? 1 MG,
pZ

2 2 P’ 1 2 P’ 2
F(e:) = M, [dp 5!+ 3 (200 = 9?)
+ L (—2g:2" + z)| +m} 2|_P° +2| vz
Mg T o+ M) |4,

(4.6)
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and
*(9: — 1) P’
Flaea) = [dap? 0o -
(zc, ) P {PE'*‘—M%V g1 7+ M3, z
L (__Pz___z' }
i p*+ My
2
2 9 p 1 1 '
TS [pz v, g,
3 p? :
i 4.7
4M%f(p2+ma)]} " (47)
where

-

(4.9)
z = F(p*,p* + ME;8/b,,2/b,,—4/b,)

(4.10)
' = F(pz,pz+]VI€V;4/bn,1/bn,—2/bn)

(4.11)

1

$T prm

(4.12)

8 bn.
y = | %) /
as(m?)
However they have not accounted in a systematic way for the thresholds in the
effective theory.

On the contrary, we have implemented in the program the whole threshold struc-
ture of the effective theory, using a specific subroutine. This subroutine calculates
a(p?) at a given scale, after having satisfied the whole set of matching conditions
present at each threshold above the given scale y®. A detailed description of the
method used in the subroutine is given in Appendix C. '

With this improvement, the result obtained in a theory with a very heavy top
quark become directly comparable with those obtained in a theory with a light top
quark, as given by Gilman and Wise [23], who have considered the whole threshold
structure of the theory. Their results can also be obtained from the integral expres-
sions in (4.6) and (4.7), by setting z = 2', because in the case of light top quark all
the possible QCD radiative corrections contribute.

We have reported in Table 4.1 and Table 4.2 the obtained numerical results.
For each value of m,, Table 4.1 gives the value of the bare Inami-Lim function, say
E(z:); the value of the QCD-corrected Inami-Lim function obtained from a theory
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Figure 4.1: E,(z,), Es(z:) and E,(z;) as functions of ™my

with a light top quark, say Es(z:), (extrapolating the results in the heavy top region)
and the value of the QCD-corrected Inami-Lim, function obtained from a theory with
a heavy top quark, say Ep(z:), (extrapolating the results in the light top region).
Table 4.2 is analogous, but it gives, for each value of m,, Efz.,z:), Fs(z, ) and
Ep(ze, ) respectively.

We can observe that, while the Gilman and Wise results, extrapolated at large
values of m; are quite accurate, the improved Datta et al. results, extrapolated at
small values of m, are not so accurate. Moreover, as you can see also from figs. (4.1)

and (4.2), the two theories differ only in the small m, region, while it is impossible
to distinguish them in the large m, region.

See also figs. (4.3) and (4.4), where we have plotted the ratios Ep(z;)/Es(z:)
and ED(a:C,rct)/EG(mc,mt): except for the small m, region, each ratio results to be
very closed to one.

Finally, we have plotted in figs. (4.5) and (4.6) F(z,) and F(z., ), using the
values of Eg(z;) or Es(z., ;) for small m, and the values of Ep(z:) or Ep(z,, z;) for
large m;. As one can see, the two curves match very well at the threshold (~ 80

GeV).

In each case, the exact values of the threshold and the value of my and m, are
not influent.
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™My E/(z) Eg(zy) Ep(z:)
40 0.221 0.138 0.118
50 0.331 0.197 0.180
60 0.456 0.267 0.252
70 0.595 0.342 0.328
80 0.745 0.424 0.411
90 0.906 0.515 0.503
100 1.075 0.607 0.597
110 1.253 0.709 0.700
120 1.439 0.811 0.802
130 1.632 0.916 0.908
140 1.832 1.025 1.017
150 2.038 1.137 1.130
160 2.251 1.252 1.245
170 2.471 1.381 1.375
180 2.696 1.504 1.498
190 2.928 1.629 1.623
200 3.166 1.757 1.752
210 3.411 1.896 1.891
220 3.661 2.030 2.026
230 3.918 2.168 2.164
240 4,181 2.314 2.310
250 4.450 2.464 2.460

Table 4.1: E.(z.), Es(z:) and Ey(z;) for different values of m;
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™y Bz, ;) Es(z.,zy) Ep(ze,zt)
40 2.00 e-03 6.86 e-04 6.84 e-04
50 2.14 e-03 7.27 e-04 7.25 e-04
60 2.25 e-03 7.50 e-04 7.49 e-04
70 2.33 e-03 7.67 e-04 7.67 e-04
80 2.40 e-03 7.81 e-04 7.81 e-04
90 2.46 e-03 7.93 e-04 7.93 e-04
100 2.51 e-03 8.03 e-04 8.03 e-04
110 2.56 e-03 8.11 e-04 8.12 e-04
120 2.60 e-03 8.18 e-04 8.19 e-04
130 2.63 e-03 8.32 e-04 8.33 e-04
140 2.66 e-03 8.38 e-04 8.39 e-04
150 2.69 e-03 8.44 e-04 8.45 e-04
160 2.72 e-03 8.49 e-04 8.50 e-04
170 2.74 e-03 8.53 e-04 8.54 e-04
180 2.77 e-03 8.57 e-04 8.58 e-04
- 190 2.79 e-03 8.60 e-04 8.62 e-04
200 2.80 e-03 8.64 e-04 8.65 e-04
210 2.82 e-03 8.67 e-04 8.68 e-04
220 2.84 e-03 8.70 e-04 8.71 e-04
230 2.85 e-03 8.72 e-04 8.74 e-04
240 2.87 e-03 8.75 e-04 8.76 e-04
250 2.88 e-03 8.77 e-04 8.79 e-04

Table 4.2: E,(z., ), Es(ze, ) and Ep(z., z;) for different values of m;,
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Figure 4.5: Plot of F(z;) without extrapolation
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Figure 4.6: Plot of F(z.,z;) without extrapolation

In a second time, we have used our QCD-improved results to see how the space
of parameters which describes CP-violation can be restricted by only using Ko— Ko
mixing (e-parameter) and Bo— By mixing (f5 decay constant). We have considered
the following expressions for the e-parameter and for the f2 decay constant:

GZM2 M, f?
l€le=o = {W] Bx2A%)\%psin§ [F(:cc, T:) + A2/\4(1 — pcosé)F(z;) — F(:I}C)]
(4.13)

and
G2 M2 MMt , . -1
fi =5 [—F——g;;B—J 7o A%(1 + p? — 2p cos 8) 2 F ()] (4.14)

They depend on a set of parameters which can be fixed, because a variation of them
couldn’t produce a significative effect. We have fixed these quantities as reported in

Table 4.3. '

Let us comment some of these choices. We have fixed Agep = 0.1,0.2,0.3 in
three different runnings of the program, in order to verify that the dependence on
Agcp is negligible. The values of the other parameters are taken from the data of
the Madrid Conference of the last year, except for By, taken from the data given by
Sharpe during his communication at the meeting in Capri, last year too.

Both Bj and By values are from lattice calculations, also if there are also
theoretical arguments for By = 1. A very important comment about the B-parameter
must occur at this point. The B-parameters reported in Table 4.3 does not depend on
the renormalization scale . However, the B-parameter defined as the ratio between
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parameter value
Gr 1.16634-107° GeV~?
Agep 0.1/0.2/0.3GeV
™, 1.5 GeV
my 4.5 GeV
My, 80.6 GeV
K 0.94+0.02
Bpg 1
My, 0.49 GeV
My 5.287 GeV
AM 3.521. 10718
fx 0.165 GeV
A =sind, 0.22140.002
Ty 0.73
€eap 2.28.1078

Table 4.3: Used values of the fixed parameters
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the matrix element of the bare AS =2 effective hamiltonian between |K,) and |K,)
states and the same matrix element evaluated in the vacuum insertion approximation
i1s p-dependent. Usually one writes that:

(Bol (5D -(5D)y-| o) = - Bl i M (415)

or:

<F0|(3d)( V_A,(Ed)( V—4) IK0>
3 fx M,

Bi(u) =

(4.16)
(Ko|(3d)iv—a)(5d) v )| Ko)
(Kol(3d)iv—n]0){0](3d);v-a)| Ko)
as we have seen in Section 3.1. However, also the QCD correction factors are u-

dependent. Precisely, when the UV cut-off is made to coincide with the mass of the
charm quark, an overall factor:

[aa(mﬁ)

as(p?)

arises in all the kinds of QCD corrections to the AS = 2 box-diagram, both in a
theory with a heavy top quark and in a theory with a light top quark. Thus, if one
defines a B-factor (for the Ko~ K, mixing as well as for the By— B, mixing) as:

B = B(u) - [ew ()] = B(n) - [ ()] ° (4.18)

this is p-independent and the p-dependence is cancelled also in the QCD correction
factors, compensated by the u-dependence of B(u). We have assumed the B-factor
defined as in eq. (4.18) and, coherently, we have put o,(u?) = 1 in the computation
of the QCD correction factors.

2/b3
} (4.17)

To estimate the uncertainty from the experimental measurements, we have let
my¢, A, p and 75 to vary in the following intervals:

90 < m, <160

1.0 < A<1.10

40 < p< .50

1.13 < 7, < 1.61 (4.19)

They are justified by experimental and phenomenological analysis. I will try here to
sketch it briefly.

® Tp is quite well measured experimentally. The reported value is:

75 = 1.18 £ 0.14 ps. (4.20)
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° A is determined from the B-lifetime and the semi-leptonic branching ratio

Bsy = B(b — evX):

Bs, = Iy - Te (4.21)
The semi-leptonic width T, can be computed in the parton model improved
by QCD and phase space corrections, as in the ACCMM model [3]. One could
also add non-perturbative corrections to the spectator picture, typical of the
parton model. These terms are model dependent, but are small for the “fully
inclusive” semi-leptonic width. One obtains:

Bsy - 107 3sec
F!b-——»u?
Zc (1 + I"(b«—-»c))

7| Vie|” = 75| AN?|? = (4.22)

The parameter Z. (proportional to I'(b — cev)) has been carefully evaluated in
[3], where the value Z, = 4.0 + 0.6 was determined. The value of By, is taken
from experimental data to be: B, = 0.0109 4 0.006. Inserting Z, and Bj, in
eq. (4.22) (for D(b — u)/T'(b — ¢) < 0.08), one obtains:

A~1.05+0.17 (4.23)

and our interval for 4 is well centered on this value.

The present constraints on p are obtained from the experimental limit on R —
I'(6 — u)/T(b — ¢) (where I'(b — u(c) means (b — evXy()), the semi-leptonic
width into charmless (charmed) final states), trough the expression:

2
(0.47 4 0.02)R = ,’g“b;z = (Ap)? (4.24)
where
=sinf, = 0.221 -- 0.002 (4.25)
The numerical factor:
(0.47 &+ 0.02) (4.26)

is obtained from the parton model plus phase space and QCD corrections (as
in the ACCMM model [3]). R is determined by the electron spectrum near the
endpoint. We have: '

dT 1 dT(b— )

_ 1 dl'(c—u)
ig, ~ 1w [P(b — )  dE,

] +T(b—c) [P(b —¢) dE.
(4.27)

and the derivation of a limit on R necessarily involves some model dependence.
It seems quite difficult to improve the systematic error involved in the theoret-
ical predictions for the inclusive rates. Tentatively, iti s given:

|Vis |
,Ktcl

0.04 < <0.13 (4.28)
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or
0.2<p<0.6 (4.29)

which seems consistent with other results of CP-violation (e, ¢'/¢). Our interval
is well centered on these values.

o Experimental indications coming from LEP and SLC suggest for m; the range
between 60 and 220 GeV. Presently, the lower bound has been fixed at 89 GeV,
by CDF results (if B(t — evX) ~ 11%). Also from LEP, we should have some
bound indications, expecially from the analysis of the invisible and hadronic

width of the Z,.

However, the parameters A4, p and 75 are not independent and for this reason
we have thought to modify our program as follows.

1. We have rewritten the expression for € as follows:

le] = costy - Ci(4,p)-siné [F(ze,z:) — Fz.) + Co(A)F(z:)(1 — pcos§)]
(4.30)
where:
costy — GEMZ M fiN®
62

Cr(4,p) = BrplANY]

Co(4) = A*)N* (4.31)

Then we have let only C; and p varying (with an infinitesimal increment around
a given value). For each set of values (m;, cosé§, C1, p) we have considered only
the maximum and the minimum values of |e|, among all the values obtained
by varying C; and p. Repeating this procedure for a fixed value of m,; and for
cos 6 which varies from —1 to 1 with regular steps, we have obtained a band
and the central value in the (cos§, €) plane.

2. In an analogous way, we have rewritten the expression for f2 as follows:

Ty 1

2 : 4,32
Ts costy F(z)C3(A,75)[1 — p? — 2p cos §] ( )
where
GEME Mp)?
costy = —
672

Cs(A,m5) = 75A2N (4.33)



82 Chapter 4: numerical analysis

With the same method used for €|, we have obtained two sets of values for fa,
a minimal and a maximal one, plus a set of central values, as plotted in figs.
(4.7), (4.8) and (4.9). Also in this case, a band and a central value is defined
in the (cos§, fy) plane.

Finally, by combining the results in (1) and (2) and by using the experimental value
of €, presently known with a great accuracy, we have determined, for different values
of m, the allowed regions for f,. In figs. (4.7), (4.8) and (4.9) we have plotted fs
and ¢ as functions of cos 6, one under the other, for three different values of m;. In
the e-plot, the dotted line stands for the experimental value of € (¢ = 2.28 . 107%).
As one can see, if the mass of the top quark is small or if f, is small, no interesting
information can be derived from the plots. On the other hand, for large values of the
top quark mass (m; ~ 160 GeV or more), two narrow regions on the cos§ axis are
determined, by fitting the theoretical e-curve with the experimental value. Moreover,
was fp quite large or small, only one of these two regions of cos§ could be selected.
This would be a great improvement in our knowledge of CP-violation.

Recent indications coming from lattice [4] calculations push up the value of f5.
Up to here, not so much attention have been paid to the value of fs. On the other
hand, it seems to us a very important point. A great value of f; would imply a
different “morphology” of the description of CP-violation in the Standard Model. As
reported in [28], the amount of CP-violation in the Standard Model is proportional
to the area of the triangle, in the complex plane, of sides:

a{k = ViV
4 = VyVy,
aék = V5V, (4.34)
This is due to the unitarity of the CKM matrix, for which:
3
2 VisVii =0 (4.35)
i=1
This is equivalent to say that:
al* + ad* 4 alf =0 (4.36)

and this relation define exactly a triangle in the complex plane, the so called unitarity
triangle. If no CP-violation exists, all the afk for 1 =1,2,3 are real and the triangle
degenerates to a line (area=0).

The present estimation of CP-violation suggests that the triangle is a very flat
one, with a very small area. However, a large value of fs would imply a large value of
[V V5| and this would change the shape of the unitarity triangle. The triangle would
have a larger area and a larger amount of OP-violation could be argued. This is a
quite new point of view on the problem and it would also have a great experimental
importance.
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Figure 4.7: € and f5 as functions of cos § for m; =100 GeV
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Figure 4.8: ¢ and f5 as functions of cos § for m, =140 GeV
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Figure 4.9: € and f; as functions of cos é for m; =160 GeV
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Conclusions

The study of non-leptonic weak decays and mixing processes has been and is also now
very important for a deep understanding of the Standard Model. It does represent
one of the most powerful tools in the analysis of the subtle points of the Standard
Model and could also give advices of new physics.

In this context, we believe that the explanation of CP-violation is a fundamental
step. As I have discussed in my thesis, the field is still wide open. Qur future research
program will be oriented in this direction. We would like to complete the theoretical
analysis of CP-violation, by studying the case of the €’/¢ ratio. Qur project is to clarify
the theoretical features of the problem, reproducing a next-to-leading calculation of
¢/e. In a second time, we would like to insert the found results in a numerical
program which optimizes all the theoretical and experimental informations at hand.
Using Ky — Ko mixing, By — By mixing and €' /e ratio, we should be able to better
describe the physics of CP-violation and to better state our knowledge of the Standard
Model.
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Appendix A

Effective hamiltonian for As =1
processes

I would like to give here some computatwe details about each of the steps trough
which the final expression for Hef ¢ is derived.

At Step 1 evolved Agﬂ:) (—j—"—,g) coeflicients are introduced. Namely, in a mass-
independent minimal subtraction scheme, they must satisfy a RGE of the form:

5+ B(0) 2 = 19(9)) 4 (M ) o (a.)
p )

where 7“:)( ) are the anomalous dimensions of the operators O(i) for ¢ = ¢,t, which,
calculated at one-loop give:

1) = 5+ 0"
1) =~ + 0l (42)

the standard solution of eq. . (A.1) gives:

w a(Mw/mg)  ~(E) (g M, ‘
A(i) (ﬂi ,g) = exp (/g " —zﬁ(ag—))dm> Agi) (1,§ (—;—,g)) (A.3)

where Agi) (1, g (Jv—fl"l, g)) can be replaced by their free-field values in a LL calculation.
Setting:

(£) (£) | |
7 (z) _ 2a + (finite terms at x=0) (A.4)

B(z) =
with 6 19
) -~ d (=) == A5
“ 33— 2N, an ¢ 33 — 21V, (4.5)
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we get:
M §2(My /1, 9)]* o(M2)]*
A (_w, g> _ [LMQ_} 4, = [ ;v J 4, (A.6)
p 7*(1,9) a(pu?)
At Step 2 we start dealing separately with O(*) and OF):
(o) O) are multiplicatively renormalized, as to say that:
By — p&) [T )y
where
(OB = (10 )(g s pymeyy - - my) (A.8)

is the matrix element evaluated in the new efective theory, while B(*) < , g) satisfy
now to the following RGE:

(435 + 05+ wlaime +90a) ).

B (_#_t,g) _ 0 (A.9)

as is easy derivable. The solution of eq. . (A.9) can be found defining the running
coupling constant through:

#v9g) 1 — %(m)
Iny = AN | A.10
ny /g Gle) (A.10)
instead of
9(v.9) d:c
Iny = A1l
ny / B(z) (4.11)

where the two definitions agree because they have the same small-z behaviour. We
get this way that:

—(mz/Mw,g) (:t)(m)
B&) ('@, ) = ex ( ’ 7 dz) .
w? P / A=)
3(1,3) (%)
- exp (/9 g (= )dw> B(*)(l,g)

- B'(=) 5

where again the B(%) (Tj,g) can be replaced by their free-field values (= +1).
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(o) S ; on the other hand, require the introduction of a set of linearly inde-
pendent operators {O;}i=;_¢:

O (Sada)v_al(tigug)v_a (A.13)
O, = (gadﬁ)V—A(ﬁﬁua)V—A

Os = (3ada)v-al(fpus)v_a + ... + (bbs)v_4]

Os = (3adg)v_al(@ptia)v-s+ ...+ (bgba)v_.4]

Os = (5ada)v-al(Bpup)via + ... + (bﬂbﬁ)vu]

Os = (Sadg)v_al(Tpua)via+ ...+ (bﬂb Jvial

as a basis to expand the Oﬁi) matrix elements on, as follows:

(1P =SB () (o +o (Z)

They are not, generally, all multiplicative renormalizable and in order to solve the
RGE’s for the related coefficients:

3 (012 + wlomeg o)) i 716" 8 (20) =0
(A.15)

it’s better to diagonalize the matrix 7: of their anomalous dimensions. The eigen-

vectors of such diagonalized matrix will be operators: O( ) , multiplicatively renor-
malizable, whose coefficients B( )<m‘,g) are related to the old ones through the
diagonalizing matrix V as follows:

~ m _ m
B (f,g) =Y VB (—i,g) (A.16)

7
After having solved the RGE in such a basis, you “rotate back” to the old one and
finally get for each coefficient that:

_al#)

B (?—;—g) . [“(mf )} > VB (1) (4.17)

a(p?)

where

?)

where a’ is defined in completely analogy to a®), but in the effective theory. As we
can see, they are exactly the evolved coefficients inserted in the final expression for
’HE?fS ) at this stage (2.47). Then, at Step 3, we are faced with the same situation,

as already said, that is: (¢) O() are multiplicatively renormalized, so that:

T S s

"

B (#' ’g) - [2’527;;))}0 i [a’((n éﬂ e (A19)
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(o) Oﬁi) require the introduction of a new set of linearly independent operators
{Pn}n=1,.,6, which are obtained from the {O:}s by dropping the b-quark dependence
only, or explicitly:

Py (5ada)v_a(Tpug)y_a (A.20)
Py (gadﬁ)V—A(ﬁﬁua)V—A

Ps = (Sada)v-al(Bpug)y_a + ... + (Gpcg)y_a]

Py (gadﬁ)V—A[(ﬂﬁua)V—A + .o+ (Csca)v-ad

Py = (3ada)v_al(Zpup)via+ ...+ (Cacs)via

Ps (gadﬂ)V—A[(_ﬁua)VM +.o..+ (Eﬁca)V+A]

such that . , '
(0H) = 36, (f;—g) (1P (4.21)
whose coefficients should solve the RGE:

a . 7 0 ! ' ! a
Z [(#% + Blg )—8}7 +7(g )mbgm—;) 0k 6rm +

k,n
' ' " " n m’ .
+ Y59 )6 — S (9”)] CF (—#—b,g> =0 (A.22)

Diagonalizing the two anomalous dimension matrices independently, the first one
exactly as at Step 2, while the second one through a new matrix W, solving the

“rotated” RGE for certain é’,? <%,g> “diagonal” coeflicients and finally “rotating

back” to the original operator basis, we get the evolved coefficients in the form:

m

Ol:’ (%79) = z:\'/ik“/“’/nlcyzg (175_7, (f?g)> (A23)
z,l

where ,
Vi= ) Vi [MJ B Vie (A.24)
j a'(p?) ’
om S [£10 e
= a’(p?) "

which combined with the result at Step 2 gives exactly the expression of the
final Hg?fs:l) at Step 3 (2.50).

Finally we come at Step 4, where both Ogi) and O,gi) are not multiplicatively
renormalizable anymore. A common operator basis {Q,},=1,. 6 is needed to expand

both ( [P )" and ( |O®)] )" matrix elements. They are obtained with the usual
strategy , dropping the c-quark contribution from the {P.}’s, but now they are not
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linearly independent anymore. Linear independence can be recovered only omitting
(4, where explicitly:

Ql (gada)V—A(a,Buﬁ)V——A (AZG)
QZ (gadﬂ)V~A(ﬂﬁua)V—A B
@s = (5ada)v-al(Bpug)y_s + (dsds)v_a + (3¢ )v—d]
Q4 = (Sadﬁ)V—A[(ﬁ'ﬂua)V 4t ( .ﬁd )V a4t (5 Ca)V—A]
@ = (Eada)V—A[(ﬁﬂ“ﬁ)VM + (‘% 8dg)via + (85 8)vsal
Qo = (5adp)v_al(Tpta)vis + (dpda)vis + (Gaca)vsal
In such a basis:
() for OF) matrix elements we get:
QeSUNN ZD& ( " ) (1Q.1)" for r=1,2,3,5,6 (A.27)

where the D) satisfy the RGE:

a n n a " " 5 II:}: 1
2 (kg + 8@ g om0 6

r

" " m: " }
- ’YPTT(g )} Dv(‘i) ( L ' g ) =0 (A28)
and result to be:
1 Il( ”2) —'ﬂ,lli
m 7 o \m
D (-;“‘,g ) B [ a"(#cz) } ZX”,D( '(1,9) (A.29)
Where /n
X n( ”2) X_l A 30
rp —-Z rq '”(#2) gp ( . )

(o) for O) matrix elements we have to consider that now:

() =307 (2,

"

) (1Q:1)"  for 7=1,2,3,5,6 (4.31)

where the D7 (%’—‘—,g"> satisfy the RGE:

7] ne ny 8 8

n,r

+ 7}1(9”)5% - mﬁlﬁf(g"')] Dr ( p ,g"> =0  (A.32)
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whose solution, after usual manipulations, results to be:

Dy ( e g) = 3 WaXop D% (1,3) (A.33)
mn,p
where
" m/lz “a,,:l_ B
Wnl = anm[ (( 2))J Wm}
Xep = X —-————”( "2) X1 A.34
rp = Z Tq m(#) qp ( . )

and inserting the final form of the evolved coefficients in 'H( 5“1) at Step 3 (2.50) we
obtained ’H(AS U at Step 4 as given in (2.53).



Appendix B

One-loop radiative corrections to
the box-diagram

B.1 The box-diagram

In this section I would like to summarize the main features of the boz-diagram ampli-
tude calculation, which gives the correct expression of the Inami-Lim [26] functions,
discussed in Chapter 3. If we consider a generic (AF =2 )(with F' a given flavour
quantum number) process in the context of the electro-weak Standard Model, at the
lowest order in the weak interactions and without QCD strong interaction correc-
tions, there are four box-diagrams which could contribute, leading to the well-known
structure of the effective hamiltonian Hf,?f:z). They are reported in fig. (B.1) and
correspond to the case in which:

(a) two W-vector bosons,
(b),(c) one W-vector boson and one &-Higgs boson,
(d) two ®-Higgs bosons

are exchanged along the internal bosonic lines of the box, while the u; and u; quarks
exchanged along the internal fermionic lines correspond to first elements of the weak
fermionic doublets, that is the charge-2/3 elements of each doublet. These four
amplitudes present some common computative features:

(i) In each case the amplitude for a given pair of internal quarks wu; and wuy is pro-
portional to a function of the quark masses

B, ma, ) (B.1)

and the total amplitude is the sum over all the possible pairs of exchanged
internal quarks, “weighted” by coefficients depending from the CKM matrix

95
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w B b

Figure B.1: The four possible box-diagrams

elements associated to each pair of quarks:

N N
F =73 XNMF(my,my,) (B.2)
J=1k=1
where IV is the number of generations and A;j is defined as a product of CKM
mixing matrix elements of the form:

s =UpUs (B.3)
for a u; quark exchanged along one internal fermion line.

(ii) This amplitude can be cast in a more suitable form by using the unitarity prop-
erty of the CKM matrix itself, or the derived unitarity relation:

N
=0 — A== (B.4)
: <

J=1

In fact, using (B.2) and (B.4) the amplitude can be written as the sum of four
terms:

N N
F = Z Z AJA/‘ [F(mui’muk) - F(mulymuk)

J=1 k=1

(M, My ) + F(may,my, )] (B.5)

fact this which turns out to be very uselful in practical calculations too, in
order to retrieve the convergence of the integrals in it. By direct computation
F' results to be explicitly of the form:

J

F (cza*y“(l — 75)qa>d > )\i)\j]\/fﬁ,mfmil'(mf,mz-) (B.6)
2
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where
1

/P (p? + M2 )2(p? + m2)(p® + m?)

(B.7)

I(m2 m

(iii) Correspondingly, the contributions to the effective hamiltonian (3.5)(with 7, =
M2 = 13 = 1) from the four diagrams in ﬁg (B.1), with exchange of quarks u;
and u; can be written as:

d
E = 23 [ES(zj,20) — B (21, 2)

i=a

*E(z) T;,21 —}—E‘gz) T1,T1 (BS
=] 7

where ¢ = a,b,c and d and z; = m?2 /M. The point is, thus, to compute these
four amphtudes and this is done by using standard algebra obtaining at the
end the following result:

1
Ef)(zj, ) = RCTACHED)
. 1
EQN(zjm) = EP(e5,m) = 5Zikgo(25, k)
1
Egd)(:cj,:ck) = —gwj:ckgl(mj,mk) (B.9)
where
1 y \’ z \2 1 1
” - o (e
91(z,y) y—m[(y——l) i z—1) °F y—1+93—1}
1 Y T 1 1
z, = lny— ———Inz — B.10
Summing the four contributions we get:
d
Eo(zj,z1) = ) Ea(z;,2)
3 Ty 1 3 1 7 T;
—491(%’:%) B Lcj-—:ck (4 293j—1)+4(mj—1)2} ~
T 7T 1
lna:j+§+zm]_1 + (z; «— k) (B.11)

from which the explicit form of the Inami-Lim functions both for different and
equal quark exchange are easly derived as:

A 1 1 3 1 3 1
(mJ,;t‘k) T;Th {:Ej”“wk [4 2wj -1 4('1,]. — 1)2] nT;
3 1
‘ 9 B.12
s o a) 4(z; — 1)(zp — 1)} ( )
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d ——, S
|
1' P k p+k
NN < =N
!
| d
S
P -k

E(zj,z;) = E(%’)=—§< = )2111%'

2 :Bj—-l
1 9 1 3 1
S _2 B.13
“”[4 dz; -1 z(mj—1)2} (B.13)

The original calculation by Inami and Lim was done in a generalized ¢- gauge,
but, as one could expect, the final result given in (B.12) and (B.13) is gauge-
independent.

B.2 Radiative QCD corrections

I will summarize here all the possible one-loop QCD radiative corrections to the
box-diagram, noting when a possible (LL) term appears, in order to identify the
anomalous dimension for the O(e,) term in the expansion. In each case all the
possible four boxes in fig. (B.1) should be examinated. However, in many cases the
box-diagrams with one or two Higgs bosons, do not contribute, due to the coupling
proportional to the involved fermion-mass.

(a) Gluon exchanged between two external equal quark legs

Let’s consider before the box with double-W-boson exchange. We will work in
the Feynman gauge for the weak interactions, while in the Landau gauge for the strong
ones. With reference to fig. (B.2) using the properties already detailed in section (B),
after carrying on some straightforward but lengthy algebra and introducing Feynman
parameters we get the amplitude in the form:

A ( ) ggv 2 i )\ )\ 2 2/ dpz 1
a - 1 — i . . .
et 2 7 TS ] @y (pF — mi)(p? = 03)

ilj:"z
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W E N
1

m} — M}, % {<[k2 - Jé’(?’n?)]‘1 k- M(}n? = 0)]4)

= (ms = My)} (5p7v"dr)(327.d1) (B.14)
where |
M(m) =2(1 — z)p’ + (1 — 2)m} = p’z® — (p* + m})z + m! (B.15)
and . |
(527udz) = 5(davu(l = ¥5)sa) (B.16)

Transforming the integrals to the euclidean region and performing the inner ones,
with the introduction of a suitable IR cut-off (which would naturally have been given
by the external quark masses, if we had retained them) we get:

4 2
Iw 2 2 2/ dp 1 1 1
A, - A imim? i
@) = 9 L AN | o o7 ) MR~ A
1
= [(Z6",m?) — T67,0)) = (i = M)] (537d1)(F7,ds)
(B.17)
where
Iwm) = [ do o — 3o”
’ 0 —plz — (m? — p?)z + m? + p?
3z%(1 — z)%p?
- (—p*z — (m? — p2)z + m?2 + p?)?
3 2 mt mS
= 2342
p’ { p*  p*  pHp?+m?)
L mi p2+m2_2 P . 12
pZ(pZ + mz) m?2 p2 + m2 p?, + m2
3 2 2 2 )
~ —5{—4})—2_2—]9—2111 ”2} (B.18)
P ™m m?  m
when p* < m?, which is the only region which gives (LL), and:
5 3 In ,

Thus, in the previous “(LL)-region” the amplitude is:

1 1
p? +mi)(p? + M?) m} — Mj,

3
Aay(ww) = _%iro ) Ai/\jmfmngv/dpz(

1,j=2
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100
1 pz pz 'uz 3 qu
(R gt )~ (mem M)
(B.20)
with
L )
= v g - _ .G 9, _
= 1573 ]\;Z?V(SL’)/”dL)(SL'}'udL) = —igery My, (517dy)(55vudr) (B.21)

The (LL) contribution is (in the p* « m?, M2 region):

3
A (ww) = gio S AAjmim?M
m

2,7=2
1 pe
. dp® 2In — B.22
| e Tt B

where we have accounted for the crossed graph too. Summing up all these (LL)
contributions, (B.22) can be cast as in (3.83).

Then we have to consider the Higgs-boxes. The formalism is exactly the same
and I will summarize here only the main results.

We consider first the case of the two boxes with a W-boson and a Higgs boson.
The amplitude for the exchange of a gluon between equal external legs is now of the

form:

A . gzv gaz 2 A A 2 2 dp4 1
@) = oA a2, mim? | (2m) (p* — m3)(p* — M)
1 i i}
F =7 LEm) = I07,0)) = (mi o Miy)] (527"dg)(527ads)
(B.23)
where:
A 1 pz —m? /_Lz m* & p4 ,u2
I(p*,m?) = —= In 1
#hm) P’ {3+ P m () tme g g
m4 +p4 pZ m2 pz mg
_p——“——z(pz +m2) In (1+ E *2;;111 1+ ;7,_2 + m2+p2 .
(B.24)

Following the same procedure used for R(a)(ww), we find that the (LL) contribution
in this case is:

3
Al (aw) = 2203 200, -
(=) 4 7,7=2 ’
mim?p? p?

J —

. d 2
/ P M7 ) (p? + mE)(p? + m2)” T p2

(B.25)
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which, by summing up (LL)’s, can be cast as in (3.84).

Finally, we have to consider the case of the box with two Higgs bosons. When
a gluon is exchanged between equal external legs, the amplitudes reads:

2
Iw 1
A - A /
(o) (225) 16M4 47r)2 Z ™ m14 (p? — m})(p? — M%)
1 _ _
V) [(I(Pz,m?) - I(p",0)) — (m: & My)| (557"dr)(557ud)
(B.26)
where
1 m? m* 1 m* p?
T(p*m?) = —{9+ "~ = — | In &
(p,m) pz{ +p2 pz(m2+p2)2( +p4)nmz'
m* + p* 12 m? + p? 1 mt 2
—In — ———1In
2(m2 +p2) m2 +p2 m?2 2 p4 m2 4+ p2
5 m4 mz _+_ p2 -
-——2_])_4 In ., (le)
Proceeding as in the previous two cases, we get for the (LL) contribution:
A ) = 2 Z 2N
() dn A=, " Az,
22 2
pim;m? 7
dp? J 2In — B.28
[ i sty 0

and (3.85) can be recovered, after (LL)’s have been summed up.
(b) Gluon exchanged between an external and an internal quark leg

To fix the point, consider the diagram in fig. (B.3). Its amplitude can be written
as:

1

dp* - I(p*, m?, M} B.29
| G e T B9)

where Z(p?, m?, M2 is the contribution from the sub-diagram in fig. (B.4), which the
only thing we actually have to compute, if we follow the analysis reported in section
(3.3). Using the same formal machinery, we arrive at a sub-diagram amplitude of the
form:

Ae) = —aUials {3(@7u(1 = 1)) (57*(1 = 75)a:)p’ (B.30)
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Figure B.3: Gluon exchanged between an internal and an external leg
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Figure B.4: Sub-diagram relative to the diagram in ﬁg(B3)
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1 p*+m? 1
In + —
(ML —m?)  \p*+ M%) p?
mi 1 P’ M1 P’
————-——le g In (1-{———)—1--—*]\/[2 — '—P;hl <1+7\/—f;2:>}
+ (@7l = 1) I ) (Y1 — 15)a)F )

1 mt 1 P ME 1 P
_ — W 1 =
[p“ Mz—mzpﬁln(1+ >+M2— ?pﬁln( —*_m:-Z

+ mi(@G7u(l —7)7 7V (Y1 — 15) @) 1a@)

MZ 1 P’ m? 1 P’
b@—wﬁmb+w'w@—wﬁml+w

Inserting it in the whole amplitude expression we get:

(B.31)

2 1
Ay = —i2=S7 22, /d P
) Z47r Z Ajmim P ot ¥ M) (p? + m2)(p? + m?) m?

1 p* 4+ m; 1 mi 1 p?
1 : T— —T7T———1n|(1
{BM&,—mf n(p2+]\/[;~:,>+(p2 M2 — m?p* n( +m§

M1 P mIMZ 1 P’
T2 —In{l+—]|— 2~————————-—1 14
+ fov-mfp“n( +m> M2 — m? p n( +m?>

1
2

L o9 mi 11 14
T M - m} pt

R RIA CRACERRTS

‘L

(B.32)

and is the first term which gives the (LL) contribution in the various regions of
integration. Both in the case in which m} < M? and m? > M2, the (LL) term
appear in the intermediate momentum range of integration, that is, respectively,
when m? < p? < MZ or when M2 < p* < m?. However, while in the first case the

(LL) term:
1 p2 +7TL2
R, = 1 B.33
Mgv—mgn(p +M2> (B.33)
is replaced to a good approximation by:
1 \ 1
M2 —m?  p*4 M2
2 2 2
P+ m; P
—t ] = In—— B.34
" (p2+M3v> ", 53

allowing us to retrieve in the amplitude the original right propagator structure and
to clearly identify the anomalous dimension at this order; in the second case the
approximations made in (B.34) are no longer justified, while new ones occur :



104 APPENDIX B

-P

Figure B.5: Gluon exchanged across a W-vertex
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Figure B.6: Sub-diagram included in the diagram of fig.(B.5)

2 2 2

p”+m; p

2 —In— B.35
[F3E) - a1

which do not reproduce anymore in the amplitude the correct propagator structure.
We can retrieve it “by hand” dividing and multiplying for a W-propagator term,
but this causes the (LL) term now obtained to be suppressed by a factor M2 /m?
and hence to be negligible. This explain the result mentioned in section (3.3) as
“decoupling” of the contributes due to gluons starting from an external leg and
landing on an internal heavy quark leg.

The Higgs boxes can be computed in avery similar way and the result is exactly
the one reported in (3.105).

(c) Vertex correction 1

Let’s consider corrections of the type sketched in fig.(B.5). Also in this case, the
real thing is the computation of the sub-diagram in fig.(B.6). Its amplitude results



§ Radiative QCD corrections 105

k
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/'/ \\
1/ ~ \l S
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S d
p

Figure B.7: Gluon exchanged crossing two W-vertices

to be:

11 m?  m? p?
2
{(4}9"‘];/ — DY) [~—7 - =]+ -p?Jln (1 + W)}

J

b e~ )| - S (12| o mas)

J

When inserted in the computation of the box-diagram amplitude, this gives:

QW g 1

Ay = : /d

© Y A S T s sy
m
p

= v 2 v 1 1 3 m? p2
{3%(1 - 7s) [—15/(41? 7 —p"") (552‘ - =+ p—sln (1 + ;@))
+rﬁw>mwﬁ—@h@+%»hw%ﬂ
r p m;
(T =)~ i)yl - s)d ==

1
— CZA)\mm/dP (p? + MZ)2(p? 4 m?)(p? + m3)

(B.37)
(Sa¥u(l = 75)da)(Bavu(l = v5)da) + .-
and no (LL) contribution is present. This will also be true for W H- or H H-boxes.

(d) wvertex correction 2

Another possibility to exchange a gluon along a fermion line is the one shown
in fig.(B.7) where a gluon is exchanged crossing two W-vertices. As before, we are
interested in the sub-diagram shown in fig. (B.8) whose amplitude is:
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k
- <~
/s - ~ AN
/ AN
/ \
l/ ‘I
d S
K k+p k
p p

(B.38)

[—1— - =14 %m <1 + i)} + [ Y (L - 75)d]

J

1111 m?  mi j p? m$ p?
b i (145 )~ 4 (142
2[6}74 pG 4p +3 n +m§ 1 +m§

After inserting it in the main amphtude, we get:

g gt 1
Ay = 9w _9s A /d
@ T O e 2N |

2 4 6 2
{4 il il (1 + p—z)}
3 pt pt m$

(Bavu(l — 75)da)(§a'yu(1 ~Y5)da) + ...

and again no (LL) contribution is present. The same will hold also for Higgs-
containing boxes.

(B.39)

(e) Gluon exchanged between different external quark leg

As we can see from fig. (B.9) the only part of the diagram to be computed is
the sub-diagram in fig. (B.10) whose amplitude is:

A 9w 95 o
(e) 24 (4r)>2 iU,
1 M2 p? _ _
{— [-]-35 + p—fln (1 + MT” (G7*(1 = 75)d)(37u(1 — 75)gs)

1711 ME p? ME p?
= vy L) 32wy £
+ [ +3p n(l—f—]‘/[&, 3p n 1—}—]\/[2
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Figure B.9: Gluon exchanged between different external quark legs

Figure B.10: Sub-diagram included in the diagram of fig.(B.9)
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Figure B.11: Possible self-energy corrections on the internal and external quark legs

(G777 (1 = 75)d) (57ap7(1 — 95)as)} (B.40)
which, inserted in the main graph gives:

4 2
gW' ga 3 2 1
AL = 9w /\i/\-/d
@ = gl MY Yo MY ) + )

M?2 p? M? p?
2 w . 2 2 A _ _*W A
{ e M;p ln(1+~Mv2v) 2p4 ln(1+]fov>}
(57*(1 = 75)d)(57.(1 — 75)d) (B.41)

with no (LL) contribution.The same for the Higgs-including boxes.

(f) Quark self-energies on the quark legs

All the internal and external quark legs can give a self-energy term, as shown
in fig. (B.11). Clearly, we need to compute only the quark self-energy at this order,
see fig. (B.12), which gives:

Al = g {(if)z (4 + %%m (1 + T%J)) (B.42)
# s (e = [ dstn ol )+ (1- o] + 0<e2>>}

The second term is responsible for mass corrections, while the first one has to be
considered in our main amplitude. Clearly, when the self-energy is inserted on an
external leg, there is no correction at all. Otherwise you get:

1
p* + M3 )2 (p? + m?)(p? + m?)

94 9’2 2 2 2
A = —39w 9 A A ./d
= TG Qa2 A |
2
J

=
3

7;12' In (1 + ;Z:;)} (57(1 = 75)d)(57u(1 — 75)d)

J

(B.43)
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Figure B.12: Quark self-energy

with no (LL) contribution, as for the Higgs-boxes too.

This summarizes all the possible QCD radiative corrections to the box-diagram,
where only in case (a) and (b) we find (LL) contributions.
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Appendix C

The value of o(y?) at scale 2

I have described in Chapter 4 how we have implemented in a numerical program the
theoretical results obtained in the study of Fy — F, mixing processes for a theory
with a very heavy top quark. As I have stressed in that discussion, we have improved
the results given by Datta et al. [14], because our computation of the QCD-corrected
Inami-Lim functions F(z;) and F(z., ;) takes into account all the thresholds of the
effective theory. We have realized this improvement, by introducing a specific sub-
routine in the numerical program, the subroutine “alpha”. This subroutine calculates
the value of the strong coupling constant a(u?) at a given scale u?, after having sat-

isfied the whole set of matching conditions for the thresholds above the given scale

pe.

Here following, I will describe how the subroutine “alpha” works. We have taken
the usual definition of the strong coupling constant:

o) =b— (1)

02
].Il vl

where A = Agcp, and “b” is the inverse of the first coefficient of the strong coupling
constant S-function, that is :

1 2
-=11- - .2
; 11 3Nf (C.2)

with Ny the number of flavours.

In the effective hamiltonian approach to the description of Fy — Fy mixing
processes, the UV cut-off of the theory is made coinciding step by step with the
physical masses of the theory, namely M2, mZ, m? and m2. When the UV cut-off
coincides with a certain physical mass m?, all the physical particle with mass larger
than m} are integrated out of the theory. Thus, moving from M2, down to m?, we
pass from a six flavour theory to a three flavour theory. Each physical mass m?
is a threshold, at which effective theories with a different number of flavours should
match, that is should give equal physical predictions. In particular, we have to impose

that the strong coupling constant a(u?) predicted by one theory or by the other is

111
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the same. The expression of a(p?) at a given scale u® depends on the number of
matching conditions imposed.

The subroutine “alpha” starts selecting if a given scale u? is greater than m? or
not. If 4* « m?, than the strong coupling constant to be considered is simply :
1

2
7
In iz

a3(/.tz) = b3 (03)

where a3(u?®) and b3 must be calculated in an effective theory with only three flavours.
On the other hand, if u? > m?, the subroutine “alpha” consider three possible
cases: mf L ik mf or mf < ,u2 < mf or p? > mf.

If m} < p? € m?, the right strong coupling constant is ay(u?), evaluated in
a four quark effective theory. The subroutine calculates ay(p?) as follows:

1

2y — C4
oy (1) Ot imE (C.4)
where the constant C; is defined as:
2
Cr =11 ™ (C.5)

by A2

To obtain (C.4), you have only to impose that as(u?) and ay(p?) match, at the m?

threshold. This means that: . .
—_ (C.6)

ag(m?)  ay(m?)
In order to satisfy this matching condition, suppose that:

1 1. w?
=—In—+ K C.7
a(d) Rt (G.7)

for a given constant K. Imposing (C.6), one finds that:

1 1 m2
(1 =|—~——)In—=5 C.8
A <@ @)IlAz (C.8)
and inserting (C.8) into (C.7), one finds exactly the expression for ay(p?) given in

(C.4).

If mj < p* K m?, the strong coupling constant is as(u?), evaluated in a five
flavour effective theory. Again, one takes as(p?) to be of the form:

1 1., p?
= —1In— 1.9
as() byt pr T He (6.9)

for a given constant k,. By imposing the matching condition:
1 1

(C.10)

ay(mi) GS(mf)
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one obtains:

C’1+5~1n;;;-—ilnﬁi (C.11)
and finally: )
as(p’) = W (C.12)
where: m?
Cy=0Ch+ Eln — (C.13)

Finally, if p¢* > m?, the subroutine gives ag(p?), the strong coupling constant
in a six flavour effective theory. In this case, again, you start from:
1 1.

Bl PNLTY ¢ C.14
056(#2) b nA2+ 3 ( )

and imposing that:

1 1
= C.15
as(m) ~ aa(m) (€49)
you get respectively:
1. m? 1, m?
(3=Co+ —In— — — 16
K, C2+b51nm§ ™ 0o (C.16)
and .
ag(p?) = C.17
with: m?
Oz =0Ch+ b (C.18)
5

In this way, (u?) can be recursively calculated at a given scale uZ.
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