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Le Stelle

Si suona il flauto per dichiarare ’amore o per annunziare i ritorno dez
cacciatori. Gli indios waiwar convocano col flauto 1 loro invitats. Per 1 tukano 1l
flauto piange; e per i kalina il flauto parla, mentre il corno grida.

Sulle rive del Rio Negro, il flauto assicura agli uoming il potere. I flauts
sacri sono tenuti nascosti e ogni donna che si avvicina merita la morte.

In tempi molto remoti, quando le donne possedevano © flauts sacri, gl
uomini raccoglievano la legna e l'acqua e preparavano il pane di manioca.

Narrano gli womint che il Sole si indigno alla vista di un mondo nel
quale erano le donne a regnare. Il Sole scese nella selva e fecondo una vergine,
spruzzandole succo di foglie.

Cost nacque Jurupars.

Jurupari rubd 1 flauti sacri e li consegno agli womini. Insegno loro
a nasconderli = o difenderli e a celebrare feste rituali senza donne. Racconto
loro, inoltre, 1 segreti che dovevano trasmettere ai figli maschi sussurrandol
all’orecchio.

Quando sua madre scoprt il nascondiglio der flauti sacri, Jurupar: la

condanno a morte; e con 1 brandelli del suo corpo fece le stelle del cielo.

Fduardo Galeano

Memoria del Fuoco
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INTRODUCTION

In this Thesis I review some topics of modern cosmology I am interested in.

The layout of this work is as follows. In Chapter I, I summarize the
fundamental assumptions of physical cosmology, then fixing basic concepts and
notation. The link between matter fluctuations and metric fluctuations in New-
tonian approximation and the role of the comoving coordinates in describing the
dynamics of particles in an expanding Universe are discussed. The Newtonian

theory is accurate for cosmological perturbations with sizes that are very much

smaller than the Hubble radius.

Most theories of galaxy formation assume that galaxies and other large-
scale structures grew by gravitational instability from initially small stochastic
perturbations § to the energy density of the Universe.

An important point is that no cosmological theory attempts to predict
the initial conditions §(x,t) exactly. A “complete” theory might predict e.g. the
mean abundance of clusters and of galaxies and the mean distance of galaxies,
but not the specific locations of galaxies and clusters in our Universe. In other
words, theories predict only the statistical properties of §(x,t), in particular the
spatial statistical properties.

The statistical predictions about large scale structures in the Universe
are commented in Chapter II, where the concept of “random field” is introduced.
The Gaussian and non-Gaussian nature of primordial density distribution are

compared. Technical aspects of Gaussian random fields can be found in Ap-
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pendix A.

Quantifying the large scale structures of the Universe is a difficult task
and a variety of techniques have been developed to approach it. In Chapter
III, I describe in some detail the most commonly used statistical measurements
of galaxy clustering, the correlation functions and their Fourier transform, the
power spectra; if someone is interested in, the cumulant expansion theorem is

presented in Appendix B.

The most largely accepted scenario to approach the structure formation
is the so called gravitational instability scenario, which treats essentially noise
amplification, ie. linear (small) perturbations at some early time grow to non
linearity under their own self gravitation. I describe in Chapter IV the funda-
mental equations governing the growth of matter perturbations. Linear solutions

are discussed in detail.

Measuring the mass content of the Universe is one of the most impor-
tant tasks in observational cosmology, but it is not easy at all. In Chapter V,
I review dynamical techniques for estimating the density parameter 2,. The

missing mass problem and non baryonic universes are then analyzed.

Until fairly recently cosmologists tacitly assumed that the luminous
matter traces the matter distribution ie. the mass-to-light ratios M/ L of different
cosmic structures were the same. However, there is a great deal of observational
and theoretical evidence that this is not the case (Chapter V).

Such a evidence leads in a natural way to the concept of “ biased” galaxy

formation ie. galaxy formation (or, more in general, cosmic structure formation)



occuring in such a way that galaxies do not fairly trace the underlying mass
distribution. In most biased scenarios, one is able to relate luminous matter
and “dark matter” by involving a very specific form of bias, although such a
prescription is not unique. In Chapter VI, I talk about the motivations for
biasing the galaxy distribution, possible physical mechanisms and the types of
bias expected in various cosmological scenarios.

Since the Kaiser’s suggestion (1984) that the prominent structures in
the Universe formed in correspondence of the high peaks of the primordial fluc-
tuation field, the biased approach characterized the way with which cosmologists
analyze the structure formation in the Universe, although the relation between
light and matter has become sometimes obscure. Mathematically, to describe
“what is” a peak of the background density field is not just easy. In §6.9 a
new “weighted” biasing scheme for galaxy clustering is considered. Contrary
to previous treatments, the biased density field coincides with the background
mass-density whenever the latter exceeds a given threshold. All the observables
in this approach can be continuously defined down to the unbiased case. The
two-point function of biased objects, which is computed for underlying Gaus-
sian density fluctuations, turns out to be quite different from that obtained in
previous treatments even at large distances and for high threshold.

| The cosmological implications of this new biasing scheme have yet to be
analyzed. The results seem promising. To weight a proto-structure with its own
mass above a given threshold permits one to recover the unbiased observables
simply by taking the limit ¥ — — co. New observables, like the mass fluctuation
in the excursion regions, can be defined. In general, the weighted peak-peak cor-
relation functions are enhanced with respect to the classical Kaiser peak-peak
correlations, overall at small and intermediate scales (w ~ 1), while the standard

expressions of the biased two-point correlation functions are recovered at very



large separations (w — 0), essentially because the intermediate scale information
is lost there. It has to be explored if in this description more power on large

scale is possibly originated in the standard CDM model.

The linear growth laws discussed in Chapter IV hold until § ~ 1. When
the perturbation amplitudes approach unity, non linear gravitational effects be-

come important.

The evolution of linear perturbations of FRW models has been dis-
cussed by a large number of authors and little of this material is controversial.
In contrast, the evolution of non-linear cosmological perturbations is still poorly
understood despite the existence of a large literature on the topic. After review-
ing the recent literature on the subject, though this is changing too rapidly to
make such an enterprise worthwile, I analyze in Chapter VII second and third
perturbative order equations of motion for density and velocity fields. New cos-
mological observables are considered, like skewness and kurtosis of density and
velocity fields.

Gaussian fields have zero skewness by definition, but the presence of
a non-zero skewness in the e.g. IRAS data, does not necessarily imply non-
Gaussian initial conditions: evenif the initial probability distribution of the mass
density contrast § is Gaussian then symmetric, an asymmetry will inevitably
develop later, as a second order effect, under the influence of gravity. Indeed,
§ can grow indefinitely in regions where it was initially positive, whereas in the
voids it can never decrease below —1.

I review how gravity can induce skewness in an initially Gaussian dis-
tribution, computing and solving the second order solutions of the equations of
motion for matter. Next, the skewness in density field, assumed Gaussian at

early time (e.g. at recombination), is calculated, also suggesting how to work



out the skewness in the more general case in which § is non-Gaussian at the be-
ginning. I conclude discussing how the observations can be used to distinguish

“conventional” models from an intrinsically non-Gaussian alternative.

Finally, in Appendix C, the QDOT survey is analysed in order to in-
vestigate the convergence properties of the estimated dipole and the consequent
reliability of the derived value of Q0% /b. It is found that there is no compelling ev-
idence that the QDOT dipole has converged within the limits of reliable determi-
nation and completeness. Therefore the value of , derived by Rowan-Robinson
et al. (1990) should be considered only as an upper limit. Furthermore, it is
found strong evidence that the shell between 140 and 160 h~! Mpc does con-
tribute significantly to the total dipole anisotropy and therefore to the motion of
the Local Group with respect to the Cosmic Microwave Background. This shell
contains the Shapley concentration, but it is argued that this concentration it-
self cannot explain all the gravitational acceleration produced by it; there must
exist a coherent anisotropy which includes this structure, but extends greatly
beyond it. With the QDOT data alome, it is impossible to determine precisely
the magnitude of any such anisotropy but any contribution to the Local Group
motion from large scales would favour a value of 0°/brras < 0.6, smaller than
previous extimates based on IRAS galaxies; such a result would be consistent
with the dipole measured from samples of rich clusters, which are much more

complete at large depths.



CHAPTER 1

Background Cosmology

We summarize here the fundamental assumptions of physical cosmology:

o The observable part of our Universe may be approximated as part of a
homogeneous and isotropic Friedmann-Robertson- Walker (FRW) universe.
The assumptions of large-scale homogeneity and isotropy is often called the

COSMOLOGICAL PRINCIPLE.

o To describe the evolution and structure of space time we apply General

Relativity Theory, mainly in its Newtonian approximation.

o We live in a perturbed FRW Universe: the metric fluctuations are small

within our horizon, although density fluctuations are not necessarily small.

Three main tested observational facts support the so called Hot “Big

Bang” Cosmological model (Gamow 1946):

e THE UNIVERSE IS EXPANDING. During the thirties, Hubble discovered

that (distant) galaxies are receding from us according to the Hubble’s law
v=Hr, (1.1)

where v is the recession velocity, H is the Hubble constant, r is the esti-
mated distance of the galaxy. This expansion corresponds to a true geo-

metrical space-time expansion (see Hubble 1934; 1936).
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e THE MICROWAVE BACKGROUND. Penzias and Wilson (1965) discov-
ered the so called cosmic micro background radiation (CBR, MWB), mea-
sured as an excess antenna temperature in the first experimental studies
for the Telstar project. Soon it was realized that this could be relic black-
body radiation left by a primeval fire ball (Dicke et al. 1965). This has
been definitively confirmed by the recent measurement of COBE (Mather

et al. 1990; Smoot et al. 1991).

e LIGHT ELEMENT COSMIC ABUNDANCES. The hot big bang model
predicts the nucleosynthesis of the light elements (e.g. Wagoner 1973)
with abundances which are remarkably close to the estimates obtained

from observations (Yang et al. 1984; more recent: Walker et al. 1991).

The synthesis of the light elements is determined by (nuclear) events
occuring in the epoch from ~ 1s to ~ 1000 s in the history of the Universe, when
temperatures varied from ~ 10" K or higher ( 2 1 MeV) to ~ 10° K or higher
(2 0.1 MeV): thus the observed abundances offer a probe of the Universe at
epoch far earlier than those probed by CBR (t ~ 10°yr; T ~ 10* K ~ 1eV)

(see e.g. Weinberg 1972).

The zeroth-order Hubble expansion is described by the cosmic scale

factor a(t) that satisfies the Friedmann equation

0 = <é>2 _ 8 G pp(t) — L2 . (1.2)

a 3 a?

ps(t) is the background total mean density in the Universe; k is the cur-
vature constant. The Hubble parameter has present value H, = 100 hkm/s/Mpc,
where almost certainly 0.5 < h < 1; several recent determinations favor h ~ 0.8

(Jacoby, Ciardullo & Ford 1990; Tonry 1991; anyway see the fine review: Huchra



1992). The present value of a, a, = a(t,), is by definition equal to one. The

Eq.(1.2) is the most important equation in cosmology; solving for k we get
k=(Q, - 1)H?, (1.3)

where (0, = Q(¢,), (t) being the density parameter, defined by

8rGpu(t) _ pult)
SO~ plt)’ )

0(t)

and p., is the critical density. pp(t) is the sum of the matter, radiation and

vacuum energy contributions. It satisfies the energy equation

dpy ( Pb) a
_ LI 1.5
dt 3 pb + 2 a ? ( )

where p is the pressure (subscripts refer to the background). The equation of
state p = p(p) relates p versus p (see Weinberg 1972).

If the Universe is dominated by non relativistic matter, for which p <«
pc?, like in the late stages of the expansion of the Universe, when the matter is
the only dynamically important constituent, its adiabatic expansion dilutes the

mass density inversely with volume ie.
Pb = poa (matter era) (1.6)

where

po =1.88 x 107*° Q, h? gem ™ (1.7)

is the present mean density; {2, lies in the range (see e.g. Peebles 1986)
0 <O < few. (1.8)

Some preliminary aspects of the evolution of the model might be noted;

for instance from (1.2) and (1.6) we get

1-Q(t) 1—-6,
——W— = a,(t)—Tlo— , (1.9)

8



therefore we see that = 1 is an unstable fixed point during the evolution of the
Universe: as a(t) increases, {} increasingly deviates from Q=1;ifQ =1 at the
beginning, then {0, = 1 (a very interesting kinematical analysis of the behaviour
of the parameter (t) is given in Madsen & Ellis (1988)). The Einstein-de Sitter
model has @ = 1 and p = 0 (= A = cosmological constant); in such a model we

have

a o t?? (1.10)
6rGpt° =1, (1.11)

that we’ll use often. The Einstein-de Sitter model is a favored model among cos-
mologists, above all the inflationary ones (Guth 1981): in fact inflation predicts
) = 1 with great precision (however, see Ellis 1988); anyway, both the open
(Q, < 1) and closed (2, > 1) very early universes expand like the Einstein-de

Sitter solution, a o t2/3.

The curvature constant k appears in the expression of the Robertson-
Walker metric (RW) line element; it can be obtained directly starting from the

homogeneity and isotropy hypothesis (see Weinberg 1972)

ds* = g, dzVdz”

= c2dt? — a? [(1 — lcar:z/cz)‘ldac2 + mz(d92 -+ sinzedt,oQ)} . (1.12)

The coordinates z, § and ¢ are comoving, fixed to fluid element: we obtain a
proper distance r multiplying the comoving distance z by the scale factor a(t).

The effects of curvature are negligible in correspondence of scales much
smaller than the Hubble length cH;! = 3000A~'Mpc, which is a convenient
measure of the distance to the horizon (about the distance that free photons
have travelled since the big bang): because of (1.3) and (1.8), the condition

z < cH-! implies kz?/c? < 1; typically the Universe is well sampled only on

9



scales much smaller than the Hubble length (an all-sky redshift survey of galax-
ies detected by IRAS has been used to map the Universe out to ~ 140 h='Mpc
(Saunders et al. 1991)), and if we restrict ourselves to structures much smaller
than this, the curvature term may be neglected in the RW metric (1.12) (but not
necessarily in the dynamical Friedmann equation); the RW line element reduces
to the simplified form ds® = ¢*dt? —a?dx-dx, x = (21, ©s, ©3) being Cartesian

comoving coordinates.

The proper position will be denoted by
r=a(t)x. (1.13)

Sometimes in cosmology the conformal time is introduced

Tz/()t;d(—i—). (1.14)

Transforming t in 7 reduces (1.12) to a conformally equivalent metric ie.
ds? = a(7)? [c2d7'2 — (1 — kz?/c*) M dz? — 2°(d6” + sinzedcpz)] , (1.15)

which is conformally flat in the limit of small scales (kz?/c* < 1); adopting this
metric, the equations of motion for the matter have a very simple form, as we’ll

see. We indicate there 7 by the usual symbol ¢, unless differently indicated.

During the matter-dominated epoch (post-recombination universe: be-
low 4000 K the atomic H is almost completely formed) the large-scale structures
are developing, so the fluctuations in the background radiation (and any other
eventual relativistic components, as neutrinos) are negligible with respect to the
non relativistic density fluctuations, the only dynamically significant; these load
to fluctuations in the metric, which can be described just by one scalar field, the

Newtonian gravitational potential ¢; we know indeed that, solving the Einstein
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equations to first order in ¢/c* we get gy = 1 +2¢/c* (see e.g. Weinberg 1972);

in the conformal Newtonian gauge we have
dﬁ:udﬂzK1+2¢nﬂdw#-41—2¢kﬂdxwm]. (1.16)

This form of the metric highlights the metric fluctuations induced by a non per-
fectly homogeneous and isotropic distribution of matter, at least at small scales.
Note that the metric fluctuations are small even if the matter density fluctua-

tions are not so small: §M ~ ¢ (see below).

The coordinate velocity of a matter particle in conformal time is just
the peculiar velocity ie. the velocity measured by an observer at the particle

position and at fixed x:

dx dx dr

Note that, of course, the Hubble velocity is subtracted; also, the proper velocity
of a particle relative to the origin can be written, from Eq.(1.17), as

] |
-£:4x+ax, (1.18)

where dot indicates time derivatives d/dt.
The gravitational potential perturbation in the metric (1.16) corre-
sponds to the Newtonian gravitational force. The geodesics in this metric cor-

respond to the equations of motion. For a massive test particle m (see Peebles

1980, §7)
p=ma’x, (1.19)
dp

_ s, Vo (1.21)



The extra “Hubble drag” term —av/a arises because we are using co-
moving coordinates and it is not due to some cosmic force; the comoving coor-
dinates define a non inertial, because expanding, reference frame: if ¢ =0, p is

constant, but v oc a~! because of the Hubble expansion.

The zero-zero component of the Einstein equation for an ideal fluid is,

to first order in ¢/c? (see Peebles 1980, §7)
Vi = 4G a® [p(x,t) — pu(t)] , (1.22)

where p(x,t) is the mass density at the point (x,t). Eq.(1.22) is known as the
(comoving) Poisson equation. We stress the fact that the source for ¢ is al-
ways the fluctuating part of the non relativistic matter density. Also note that
(1.16), obtained from the standard weak field approximation (see e.g. Landau
& Lifshitz 1979, Eq. (105.9)), does not assume that §p = p — py is small. The
reason is just because we assumed that ¢ < c*: if a region of scale A contains a
mass M ~ py A3, where the density pp is roughly uniform, the condition ¢ < ¢?
implies that Gpy A? < c?; in the Friedmann-Lemaitre models Hubble constant
is H ~ (Gpy)'/* (see Eq.(1.11)); therefore in the Newtonian approximation we
are neglecting terms of order (AH/c)? ie. we assume that perturbation are small
with respect the Hubble scale; more in detail, the source of ¢ is the fluctuation
§p, then ¢/c®* ~ (HMX/c)? §p/py and, on scales much smaller than the horizon,

¢/c* may be small even though §p/ps is very large.

Apart from the baryonic matter, the Universe contains a homogeneous
sea of black body radiation, with temperature (e.g. Weinberg 1972; Mather et

al. 1990; see also Gush, Halpern & Wishnow 1990)

T(t) =T, (1 +z), (1.23)
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T, = 2.735 £ 0.06 K , (1.24)

where z is the cosmological redshift (because expansion)

a(te) |
Ao = "0 A=(1+2)X. (1.25)

Ao is the wavelength observed now (t,), of radiation emitted at epoch t at wave-
length A by an object comoving with the fluid; the redshift z often is used as a

label of an epoch, just because
z=at'-1. (1.26)

The Hubble law, 7 = Hr, gives the redshift of an object at proper distance
r L cH ! :

z~ Hyr/c, (1.27)

which is a good approximation for z < 1.

The mean mass density in the radiation is
Ey(t) = B, (1 + 2)*, (1.28)

Ey=a, T2 =45x 10" gem™ . (1.29)

At the beginning, the Universe is radiation dominated; instead of (1.10) and
(1.11), during the radiative-era we have

aoct'/?, (1.30)

32 \
TGt =1, (1.31)

in an Finstein-de Sitter universe; (1.6) is substituted by

p o< a radiation era) . 1.32
P

The crossover between the matter era and radiation era occurs at the

equivalence epoch, a.,, when p, = pm; detailed calculations show that z,, ~ 10*.

13



The other important cosmological epoch is that of recombination, z.., after the
temperature has fallen below 4000 K, the baryonic matter is essentially union-

ized and the matter and radiation therefore decouple.

After reviewing some basics in standard cosmology, we start to enter

more in detail in that branch of modern cosmology in which we are interested

in, the statistical analysis of the large-scale matter distribution in the Universe.
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CHAPTER 11

Statistical Predictions of Large Scale Structures

Most theories of galaxy formation assume that galaxies and other large-
scale structures grew by gravitational instability from initially small stochastic
perturbations & to the energy density of the Universe (Chapter V).

An important point is that no cosmological theory attempts to predict
the initial conditions §(x,t) exactly. A “complete” theory might predict e.g. the
mean abundance of clusters and of galaxies and the mean distance of galaxies,
but not the specific locations of galaxies and clusters in our Universe. In other
words, theories predict only the statistical properties of §(x,t), in particular
the spatial statistical properties and, for this reason, the temporal parameter
t is commonly understood, all statistical computations being made at a given

cosmic time t.
2.1 Random Fields

In the statistical description of the matter distribution on large, the

energy- density fluctuation field in the Universe

5(){) = P(X) '— (p(x)) (2.1)

is treated as a random field ie. a set of random variables, one for each point x

in the three dimensional real space, defined by the set of finite-dimensional joint

15



probability distribution function
Pn[6(x1),8(%2), - -, 6(xn)] d8(x1) db(x2) - - - d8(xn) (2.2)

(Here, by forcing the notation, §(x) also indicates the value of the field §(x) at
the point x). This is the probability that the function §(x) has values in the
range [6(x;), 86(x;) + d8(x;)], with ¢ = 1,2,...,N , N an arbitrary integer and
Xi,Xa,...,Xy are N arbitrary points in the euclidean space (Kac & Logan 1979;

Adler 1981; Vanmarcke 1983; Bardeen et al. 1986 (BBKS)).

By random process we mean that §(x) for our Universe is just a random

realization from a statistical ensemble of universes.

The assumption that the Universe is homogeneous and isotropic on
average implies that the density field p(x), ie. &(x), is a homogeneous and
isotropic random process (sometimes called stationary ; see e.g. Fall 1979). So,
the averages over the ensemble in (2.1), (-}, are invariant with respect to spatial
translations and rotations. Observations probe only the spatial distribution in
one realization of §(x). On the other hand, theory specifies the probability

distribution over an ensemble.

2.2 Ergodic Hypothesis

Actually implicit in all theoretical discussions is the Ergodic Hypothe-
sis : ensemble averages equal spatial averages taken over one realization of the
random field. The Ergodic Hypothesis has been demonstrated for a Gaussian

random field (see Appendix A) iff its power spectrum (see §3.3) is continuous

as a function of k (Adler 1981; see also BBKS). Essentially, the Ergodic Hy-

16



pothesis requires spatial correlations (§3.1) to decay sufficiently rapidly with
increasing separation so that there exist many statistically independent volumes
in one realization. These conditions are satisfied in a large class of theories of
primordial scenarios, including quantum fluctuations produced during inflation
(Brandenberger 1985). If the Ergodic Hypothesis is assumed valid, then all the
information is available from a single sample of §(x) over all space, and we have
to hope that by measuring §(x) over a sufficiently large volume arbitrarily precise

tests of theories can be made.
2.3 Path-Integral Approach

An alternative approach, which has been extensively explored in re-
cent years, is to apply the path-integral approach of Feynman & Hibbs (1965).
More in general, the random field §(x) is fully described by the joint probability

distribution functional P[§(x)] with measure
P[8(x)] [dé(x)] , (2:3)

which is obtained from (2.2) for N — oo, with the points x; covering the whole
Universe; the limit may be made well-defined (see Bertschinger 1992), the corre-
sponding measure is called a Wiener measure. By the assumption of statistical
homogeneity, even though §(x) is not constant, the distribution P[6(x)] is inde-

pendent of position x. One recovers the n-point distribution by

Py(ay,...,an)day---day = (] 6p(8(xn) —an))

h=1

- /[da]g@w(xh)wh)mﬂ. (2:4)

This approach is not necessary for any of the applications we are inter-

ested in, but it surely permits us to develop in a relatively simple formalism
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a statistical study of the field §(x), obtaining results that may not be eas-
ily worked out using the classical prescription, above all in the case in which
the density distribution is a generic non-Gaussian type distribution. (see Fry
1984; Politzer & Wise 1986; Lucchin, Matarrese & Bonometto 1986; Goroff et
al. 1987; Bertschinger 1988; Cline et al. 1988; Catelan, Lucchin & Matarrese
1988a; see also 1988b; Coles 1988; Lucchin, Matarrese & Vittorio 1988; Scherrer

& Bertschinger 1991).

2.4 Nature of Density Distribution

One of the most challenging and interesting problems to solve is to es-

tablish the nature of the distribution (2.3).

In the last decade of studies of cosmological large-scale structures, at-
tention has been focused mainly on the two-point galaxy correlation function
(§3.1) and on the analysis of the primordial density fluctuations Gaussian dis-
tributed (we briefly discuss the technical aspects of Gaussian fields in Appendix
A).

Indeed the simplest and more usually accepted hypothesis is that the
distribution (2.3) is Gaussian.

A reason justifying this is a principle of stmplicity, according to which
all the complications should arise during the non-linear evolution of the pertur-
bations after the recombination (see e.g. Primack 1984; Chapter VII). If we had
to translate this statement into the language of field theory, we could say that
the density fluctuation field was initially free, and all its interactions are due

to the subsequent action of gravity. Stated in such a manner, it appears as a
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quantitative formulation of our intuitive idea that the gravitational interaction
has to play the main dynamical role on large scales. Furthermore, it is known
that a Gaussian distribution provides us many practical advantages.

The Central Limit Theorem, which tells us that the probability distri-
bution of the sum, or mean, of many random variables, being both (nearly) in-
dependent and (nearly) identically distributed, tends to a Gaussian distribution
(see e.g. Feller 1971; Adler 1981; Vanmarcke 1983), is largely used to justify such
a restrictive hypothesis. Also, the Gaussian functional distribution, being ex-
ponential of a quadratic form, involves extremely simple analytical calculations;
this is due to the fact that a Gaussian distribution is completely determined by
its power spectrum (see below) ie. by its 2-point correlation function (which
corresponds to the Green’s function of a free scalar field): a possible definition
of Gaussian distribution is indeed when all the reduced or connected correlations
(see Appendix B) of order higher than second are zero L,

There exist many usually invoked arguments asserting that, during the
linear phase of evolution of perturbations, the second order correlations consti-
tute all that is necessary to know. During the major part of the primordial
history of the Universe, the clustering process is negligible, as one observes in
correspondence of the largest scales, and the connected correlations of higher
order are assumed be negligibly small (however see e.g. Baumgart & Fry 1991).
Furthermore, the inflationary model (see e.g. Kolb & Turner 1990) predicts
the existence of scale-free primordial Gaussian density fluctuations ie. fluctua-
tions that cross the horizon with constant scale-independent mass variance (§3.3;

Bardeen, Steinhardt & Turner 1983).

IThere exists only one positive definite density probability p(z) with only a mean and a
variance, the Gaussian distribution (see Fry 1985).
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However, non-Gaussian fluctuations for structure formation have been
advocated by numerous cosmologists.

Peebles (1983; 1987) has suggested that the distribution of galaxies is
not adequately described by a Gaussian process: actually the distribution of
galaxies is surely non-Gaussian on small scales (as confirmed, for instance, by
detection of low order connected galaxy correlations; see §3.2; Saunders et al
1991) and, from a certain moment onwards, we must think that the assump-
tion of Gaussian distribution is inadequate; we could deduce that such moment
corresponds to the beginning of the non-linear regime, but there exist many
indications asserting that it could be very antecedent to that phase (Fry 1984;
1985; Baumgart & Fry 1991).

Non-Gaussian distributed perturbations can be assumed to be the most
general starting point for computing a number of cosmological observables, such
as spatial correlation functions (Matarrese, Lucchin & Bonometto 1986), ex-
pected size and frequency of high density regions (Catelan, Lucchin & Matar-
rese 1988) and of fine-scale hotspots and coldspots in the microwave background
distribution on the sky (Coles & Barrow 1987).

A strong theoretical reason for analyzing non-Gaussian probabilities
is that the fractional density enhancement §(x) must satisfy the fundamental

constraint

5(x) > —1 (2.5)

everywhere, because the semipositivity of the mass density p(x). The normal
distribution cannot allow for this constraint, because it predicts a finite chance
that § assumes a value smaller than —1 (the consequences of this are particularly
relevant in the ‘weighted’ biased scheme presented in § 6.9; Catelan et al. 1992).

Since cosmological perturbations can only be assumed normally distributed dur-
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ing the very linear stage of their evolution, this latter problem is commonly dis-
regarded. In this stage the probability of getting one of these “negative mass”
events is negligibly small; one can recall the Chebyshev inequality (e.g. Feller
1971), stating that, given any distribution function p(§), the a prior: probability
that § < —1, in a randomly chosen point, is not larger than the mean square

fluctuation ¢?, where linearity implies o2 < 1.

Variations of the inflation model which yields to non-Gaussian primor-
dial fluctuations which are basically scale-invariant have been recently widely
discussed (Matarrese, Ortolan & Lucchin 1988; Barrow & Coles 1990; Salopek
& Bond 1991; Mollerach et al. 1991; Salopek 1992). In the context of inflationary
models, Allen, Grinstein & Wise (1987) and Kofman & Linde (1987) constructed
axion models with non-Gaussian fluctuations. Late-time phase transitions (Hill,
Schramm & Fry 1989), cosmic string models (Vilenkin 1981; Turok 1984; Scher-
rer, Melott & Bertschinger 1989) and global textures (Turok 1989; Turok &
Spergel 1990; 1991) are additional models whose statistics may not be described
by a Gaussian distribution (Scherrer & Bertschinger 1991; Scherrer 1992). The
importance of the high order moments of density distribution for the final des-
tiny of the large scale structures has been recently analyzed in a series of N-body
simulations by Messina et al. (1990; 1992), Moscardini et al. (1991), Matarrese
et al. (1991) and Weinberg & Cole (1992).

Particular non-Gaussian random fields are usually defined e.g. by per-
forming a nonlinear transformation on an underlying Gaussian random field; a
possible statistics obtained in this way is the lognormal distribution, the proto-
type for multiplicative processes, which has been widely analyzed in cosmological
framework (Coles & Barrow 1987; Lucchin & Matarrese 1988; Coles 1989; Coles

& Jones 1990); negative mass events are not allowed in this statistics.
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CHAPTER I1I

Statistical Measures of Galaxy Distribution

We now review some of the statistics, and observational data about
those statistics, usually applied by cosmologists to describe the spatial distribu-
tion of galaxies and clusters.

The first systematic analyses of galaxies surveys concentrated on the
measurement of low order galaxy correlation functions for two-dimensional sky
survey (Totsuji & Kihara 1969; Peebles 1980; Sharp, Bonometto & Lucchin
1984). The same methods have been applied to the CfA survey (Shanks et al.
1983; Davis & Peebles 1983), the Abell cluster catalogue (Bahcall and Soneira
1983; Klypin and Kopilov 1983; Postman, Huchra & Geller 1992) and to the
recent new catalogues e.g. the APM galaxy survey (Maddox et al. 1990; Dalton
et al. 1992; Efstathiou et al. 1992). The cross correlations of galaxies and rich
clusters have also been studied (Lilje & Efstathiou 1983)

A simple linear integral equation, Limber’s equation (Limber 1953),
provides us with the ability to obtain the angular correlations starting from the
knowledge of the spatial correlations and/or viceversa (for a thorough exposition

see Peebles 1980; for the inversion of Limber’s equation see also: Fall & Tremaine

1977; Bonometto & Lucchin 1978).
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3.1 Definitions

The probability that an object (galaxy, cluster of galaxies) is found in

the infinitesimal volume §V chosen at random is defined by
§P=néV, (3.1)

where the mean number density n is independent from the position; this is an
average on the ensemble. The probability of finding more than one object in 6V
is an infinitesimal of higher order if we assume, in the cases of practical interest,
that the objects do not cluster in arbitrarily dense regions.

The two-point correlation function ¢(*) is defined in such a way that

£

§P =n? [1+ O (r)]| 6V16V5 (3.2)

is the joint probability of finding (two) objects in the volumes 6§V and §V3, chosen
at random and separated by the distance ry,. Consistently with the assumption
of homogeneity and isotropy, £(*) has been written like a function of spatial
separation. For a purely random process, the probabilities of finding objects in
5§V, and 8V, are independent, so that the joint probability is the product of the
single point probabilities

§P = n® 6Vi6Vs (3.3)

In this case ((3) = 0; if the positions of the objects are correlated, ¢ > 05 if
the positions are anticorrelated, —1 < ¢ < 0. ¢(®) is the excess or the defect of
probability with respect to a purely random distribution (Poisson distribution).

An equivalent way to introduce the correlations is possible when the
distribution of objects can be (approximately) described by a continuous density
function, p(x). A link relating discrete and continuous distributions is given, for

example, defining the number density field for a point-like process as a sum over
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Dirac delta function:
p(r) = X bp(r —x.), (3.4)

with mean over the statistical ensemble of point processes

(p(x)) = . (3.5)

€0(r) = ([p(x) — (p)] [p(x + 1) = (p)] / (p)* = (6(x) 8(x + 1)) - (3.6)

We stress the fact that £(*)(r) has a different meaning in this case: in
the continuous case, {()(7) is the autocovariance function of the field §(r) ie. a
measure of the degree of spatial correlation of the density fluctuation é(r); in
the discrete case, we repeat, correlations are defined in term of probabilities of
finding discrete objects at specified points.

If, viceversa, one is interested in generating a discrete distribution from
a continuous one, the simplest method is to employ the Poisson process : given
the continuous realization p(x), one randomly places one particle in each volume
6§V = dx with probability p(x)dx and independent probabilities for all volume
elements. Correlations are built into the point process by correlations in the
density field p(x); for instance, the result of discretizing the continuous process
6(x) writes

(8(x1)8(x2)) ) = €P)(r12) + 07 16p(x1 — x3) (3.7)

where the Dirac delta function contribution to the correlation arises from dis-
creteness, and it is not present in the continuous case; the outcome is a double
random process, with one level of stochasticity coming from the random field
p(x) and a second from the Poisson sampling (see Peebles 1980, §33; Fry 1985a;

Scherrer & Bertschinger 1991).

24



According to (3.6), it is possible to write

1+ €@ (r) = (p(x) p(xx + 1)) /()" (3.8)

and we can see that ¢(?) is the connected part of the two-point complete correla-

tion function (p(x)p(x +1))/(p)*.

In a similar fashion, the three-point function €@ (rig,7e3,713) = ( is

such that
6P =n® [1+¢£0(12) + £3(23) + €2(13) + ¢®)(12,23,13)] §V16V26V3, (3.9)

is the joint probability of finding (three) objects in the volume elements Vi, 8Va,
§Vs, separated by the distances 714, ra3, 713. The assumption of the homogeneity
and isotropy of the Universe on large scales means that ¢B) depends on the
absolute value of the separations only, and it is a symmetric function of the
three separations. If the distribution of the objects is described by a continuous

density function, we have that
¢ (7, s,|r — x|) = (6(x) 8(x + 1) §(x + 5)) (3.10)
ie.

1+ €@ (r12) + £ (ra3) + € (riz) + E®) (12,723, 713) = (p(x1) p(x2) p(x3))/(p)”
(3.11)
where 7;; = |x; — x;|. €@ is the connected part of the 3-point complete function

(3.11), which is zero if the density distribution is Gaussian.

In general, by supposing that the distribution is approximately contin-

uous, the N-point correlation function is defined by
N N
§P = (1] p(xn)) I1 6Va, (3.12)
h=1

h=1
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and the N-point joint probability contains all the connected correlations until
order N, different from zero only for non-Gaussian distributions (we discuss in
Appendix B the role of the reduced or connected moments in describing a gen-

eral probability distribution).

As we shall see, the only galaxy correlation functions actually estimated
are not above the fourth order; those higher than fourth order are undetermined
because the scarcity of the available data (see Sharp, Bonometto & Lucchin

1984; Baumgart & Fry 1991).

3.2 Observational Data

One of the main observational tests of the large scale matter distribution
is supplied by the analysis of the two point correlations of different sets of objects

(from galaxies to superclusters). The relation
9(r) = (r/ri)™"* (3.13)

sufficiently interpolates the 2-point correlation for all classes of objects, each one
characterized by a correlation length r; and by an interval of distances where
(3.13) holds. Moreover, there are indications that r; increases with the richness
of the system (Davis & Peebles 1983; Bahcall & Soneira 1983; Klypin & Kopilov

1983; Schectman 1985; Bahcall & Burgett 1986; Plionis & Borgani 1991).
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Galaxies

The observed 2-point correlation for the galaxies has the form (see e.g.

Peebles 1980)
E8(r) = (r/rg)™7, (3.14)
v=177+04, (3.15)
ry=54+01h" Mpc, (3.16)

with 0.12 " Mpc < r < 10h~ " Mpc and £ (r) <« 1.

Hierarchical models reproduce this reasonably well in N-body simula-
tions (Frenk et al. 1983; Davies et al. 1985; White et al. 1987; Frenk et al.
1988). The Durham deep-redshift sample (Shanks et al. 1989) indicates a cor-
relation function with scale length ~ 7h™'Mpc, beyond which a break in the
slope appears. There is persistent evidence that the correlation function is not
a power law, but has a “shoulder” on scales ~ 2 + 5h™"' Mpc (see also Dekel &
Aarseth 1984; Guzzo et al. 1991), although this could arise because the data are
in redshift space rather than true position (Kaiser 1987). There is also persis-
tent evidence that the correlation function becomes negative at 20 h~' Mpc never
turning positive again, but this may be because the survey appears to avoid no-
table galaxy clusters; the newly compiled APM catalogue of more than 2 million
galaxies reveals a strictly positive £{% up to ~ 50 + 100 A~ Mpc, which is un-
expected within the popular (biased) CDM model (Chapter VI). Peacock and
Nicholson (1991), using an all-sky sample of radio galaxies at redshifts z < 0.1,
find ¢ ~ (r/11h~*Mpc)~'® on scales up to several hundred Mpc; this strength
of clustering is hardly surprising, since radio galaxies are elliptical and tend to

reside in clusters.
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In the case of the higher order galaxy correlation function, the results
are essentially relative to 2-dimensional catalogs and they have pointed out an
approximately hierarchical form for the connected correlations, in the sense that
6553) and fg(]'*) can be expressed as sums of products of N — 1 (N = 3,4) 2-point
correlation functions; respectively (Groth & Peebles 1977; Fry and Peebles 1978;

see also Peebles 1980)

Q

£9(1,2,3) ~ @ [£2(12)¢7(28) + £2(12) £2(13) + £ (13) €2 (23)]

(3.17)

Q~1.29+021, (3.18)

£0(1,2,3,4) = 3 [Ra€(55) € (8) P (k1) + By € (i5) €7 (i) €]

17kl

24

(3.19)

R,~25+£06; R,~43+1.2 . (3.20)

Note that these hierarchical forms are symmetric in their arguments and go to
zero if one or more objects are far from those remaining .

Fry (1984) showed that the above forms are originated by nonlinear
evolution starting from Gaussian primordial conditions. The form of Eq.(3.17)
appears in hydrodynamics, where the three-point complete correlation function
is given by the Kirkwood superposition relation (Huang 1963; Ichimaru 1974).
Melott & Fry (1986) extract a reasonable value of { from a big N-body simula-
tion. Szalay (1988), in the biased scenario, computed the scaling coefficient €

in terms of the Hermite expansion of a general non linear thresholding function.

It has been attempted to obtain from the Zwicky Catalogue the 5-point
correlation function, but with poor success, because the errors have the tendency

to become comparable with the measurable quantities (Sharp, Bonometto &

Lucchin 1984).
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Clusters

Since the first quantitative analysis of (rich) cluster correlations (Hauser
& Peebles 1973), showing that clusters are clumped on scales at least as large
as ~ 25 h~! Mpc and possibly larger, it was known that the 2-point correlation
function for the rich Abell clusters (number of galaxies N, > 65) has the form
(Bahcall & Soneira 1983; Klypin & Kopilov 1983; Postman, Geller & Huchra

1986)

—1.8
@) [ o 2
66 (T) (25 h—ljt/IpC) ? (3 1)

out to separations of order ~ 100 h~! Mpc, although this upper limit is controver-
sial (Olivier et al. 1990; Sutherland & Efstathiou 1991). Note that this implies
that ¢ =~ 20 Eéz) and the rich clusters of galaxies are observed to have greater
amplitude than could be expected for the galaxy distribution on the same large
scales.

Recently many controversies have grown about the first thought well
established clustering of Abell clusters. Firstly, the Bahcall & Soneira sample
(1983) is very small (only 104 clusters) and the statistical uncertainties are cor-
respondingly large. A realistic analysis of the likely errors is given in Ling, Frenk
& Barrow (1986). Secondly, there are considerable doubts as to the reliability
of Abell’s catalogue; in particular the visual method used to obtain the richness
classes of clusters can lead to large systematic effects (Lucey 1983; Efstathiou
et al. 1992). A careful analysis of a larger three dimensional cluster catalogue
(Struble & Rood 1987) has, moreover, revealed clear evidence for projection ef-
fects in the Abell catalogue (Sutherland 1988) that, once allowed, reduce the

amplitude of ¢{?) to ~ 1 at 14 A~' Mpc rather than 25 h~! Mpc (see also Dekel,
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Blumenthal & Primack 1988)

—1.8
Oy | _ 3.22
&) (14 h“lﬂfpc> ( )

This trend seems confirmed also by recent determinations of cluster
correlation for the new APM cluster catalogue (Dalton et al. 1992; Efstathiou
et al. 1992; see also Postman, Huchra & Geller 1992) and for ACO catalog (Mc
Gill & Couchman 1989; Batuski et al. 1989).

In addition, the correlation length for the Abell clusters increases with
cluster richness (Bahcall & Soneira 1983; Bahcall, Soneira & Burgett 1986). This
can be understood qualitatively just because the richer clusters are rarer. Shect-
man (1985) determined the 2-point correlation for the identified poor clusters for
the Lick catalog and confirmed the previous results: richer and more luminous

systems are more strongly correlated (see also Plionis & Borgani 1991).

The Kirkwood relation for the three-point spatial correlation for the
rich clusters has been analitically obtained by Politzer & Wise (1984) and, in
a more general way, Matarrese, Lucchin & Bonometto (1986). The problem of
estimating the 3-point correlation function of galaxy clusters has been recently
addressed by several authors, both considering angular samples (Jing & Zhang
1989; Toth, Hollosi & Szalay 1989), three dimensional samples (Jing & Val-
darnini 1991) and numerical simulations (Gott, Gao & Park 1991). All these
analyses converge to indicate that the hierarchical model of Eq.(3.17) is con-
sistent with data. However, although similar values of @ are worked out from
such analyses, remarkably different estimates of the relative uncertainties were
given, according to the different method used for the correlation and error anal-

ysis; these questions are summarized and addressed in Borgani, Jing & Plionis

(1992).
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Superclusters

Analyses like these have been extended to the supercluster scale. Bah-
call & Burgett (1986) have studied the Supercluster Sample of Bahcall & Soneira
(1984) and they found a positive correlation on scales of the order of 2 10 A~' Mpc.

If this correlation is quantified by the usual power law,

£D(r) = (L> o, (3.23)

Tac
one has r,. ~ 60 h~'Mpc (Bahcall & Burgett 1986), higher than r.. The law
(3.23) holds in the range 50 A~ Mpc < v < 150 A~! Mpe.
These results, even more than those relative to the clusters, must be
considered with caution, because of the smallness and the peculiarity of the

statistical sample examined.

Richness-Correlation Relation

As suggested previously, there exists a tendency for the correlation be-
tween homogeneous systems of rising richness and scale (galaxies, clusters and
superclusters) to increase. This fact is shown e.g. in Fig.1 and Fig.2 in Bah-
call & Burgett (1986). A universally accepted theoretical justification of this
does not exist, but some authors have attempted to explain such a tendency in
the framework of the biased galaxy formation scenario (classical references are
e.g.: Kaiser 1984; Politzer & Wise 1984; Schaeffer & Silk 1985; Fry 1986; BBKS
1986; Jensen & Szalay 1986; Matarrese, Lucchin & Bonometto 1986), where high
peaks of the mass density field are taken as the sites where bright galaxies or rich
clusters of galaxies form. The consequences of such a hypothesis are discussed

in Chapter VI.
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3.3 Power Spectra

Cosmological information is stored not only in the N-point correlation
functions, but also, in a complementary way, in their Fourier transform, the
power spectra (see e.g. Baumgart & Fry 1991; Peacock 1991).

Furthermore, to follow the ultimate gravitational collapse into con-
densed systems of initially small (Gaussian) perturbations, one must first de-
termine an initial spectrum for density perturbations in the very early Universe.

The main physical observable connected with density perturbations,
indeed, is the root-mean-square relative mass fluctuation oy = (6%,) inside
a sphere of radius R; cosmologists estimate it by e.g. the r.m.s. fluctuation
in galaxy counts, (§N/N),. Such an observable can be expressed in terms of
the relative density perturbation §(k) in Fourier space, which in turn can be

expressed in terms of the 2-point correlation function

, (M2 — (M)?
N VSE

1 oc = ~
- / dk k2 (|3(k)?) W2(kR),  (3.24)
2w2 Jo
where M = 4mpR? is the mass inside the R-sphere and W(y) = 3(siny —
y cosy)/y>, which is zero if y > 1 and one if y < 1: essentially all the pertur-
bations with wavelength A ~ k' > R contribute to the variance o};. Another

important physical observable is the rms peculiar velocity on a given scale R

(see e.g. Gorski 1988; Kashlinsky 1992 and references therein)

_ H2f()2a?

22

7R) = (v(R)) [ aR(Emn PR, (325)

where f(Q) =~ Q%6 (see §4.1).

The power spectrum can be defined from the expectation value of the

two-point function in Fourier space, as follows (see e.g. Fry 1986; Bertschinger
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1991)

(8(k,)6(ky)) = (27)° 6p(ky + ko) P(ky) . (3.26)

If we assume that the density field is continuous, P(k) is the Fourier

transform of the 2-point correlation function ¢(r) (Wiener-Kintchine theorem)

P(k) = /drﬁ(r)eik'r = 4r /Um drr* ¢(r) Si;‘f" , (3.27)
£(r) = (271r)3/dkP(k)e’ik'r = 2?/ dk K P(k )SiZfr. (3.28)

Once £(r) is given, (3.27) can be considered another definition of P(k);
the Dirac delta function is required because of translational invariance: it is rem-
iniscent of the “momentum conservation” in QFT Green’s function. Similarly,
isotropy implies that P(k) depends only on the magnitude of the wavevector k.

Instead of (3.24) and (3.25), we can write
1 —
7= G / dk P(k) W2(kR) , (3.29)

2_.H?f“ /dk ) W2 (k) . (3.30)

U

We see here one of the several reasons for the importance of the power
spectrum: apart from the presence of w (W = 1 for any k if the density field
is not smoothed out), we see that P(k)dk is the contribution to the variance of
83 from modes with wavevectors in the volume element dk around k.

Another manner for saying that is stated as follows: do3;/dInk =
(1/27?)k*P(k) is the contribution to the variance of §;; per logarithmic interval
of k. Moreover, do?/dInk = (1/2x2?)(aH f)*kP(k). If the power spectrum is
peaked at some scale k.., we can say that more energy is injected in correspon-

dence of that scale, and
(1/271' ) maz P(kmml') 3

ol ~ (1/27%)(aH f)? knaw P(Kmaz) -
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Another reason for the importance of the power spectrum is that it
completely specifies the statistics of a Gaussian random field (Appendix Aj; B).
As cosmologists are increasingly realizing (Baumgart & Fry 1991; Pea-
cock 1991; Park 1991), P(k) is a powerful direct statistic for describing both

large-scale and small-scale structure.

Smoothing

For doing comparisons between observational data and theory, it is
necessary to filter the fluctuation field §(x) by means of a window function

Wr(z), z = x|,
5n(x) = [ dy 8(y) Wallx — yl) = [ dy 8(x —¥) Wa(y) (3.31)

The windowing convolution averages the fluctuation § over the points
y in a volume ~ R3, where one has no interest in the substructure, filtering
out the high frequencies corresponding to scales inside this volume: the physical
information on scale A < R is completely lost.

The characteristic of Wg(z) is to be essentially constant in the inner
regions of radius R and practically zero in the outer regions, with [ dx Wg(z) =
1. The introduction of this cut-off is moreover justified by the fact that the high
frequency content of the spectrum P(k) can be overlooked, since the microscale
fluctuations (k > R™') are not observable and also not relevant in cosmology
(see e.g. BBKS).

Usually one assumes R as the typical size of the proto-object consid-
ered, and it is related to the mass M of the proto-object through M(R) =
4m{p) [° dz z® Wg(z) = ey (p) R®, ci being a number that depends on the par-

ticular choice of the window function.
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The result in (3.24) can be now understood in another manner: W(y) =
3 (siny — y cosy)/y® is the Fourier transform of the “top-hat” window function

Wr(z) = 360(z — R)/4r R, introduced just because of the definition of mass

given there, Myy = %W(p)RE}H. This is not necessarily realistic, an observa-

tional sample has indeed a complicated boundary determined by observational
selection; moreover galaxies and clusters of galaxies do not have sharp edges.

An alternative assumption is that of a Gaussian window (see BBKS)

2

Wr(z) = (2rR?)™/2 exp (-%) , (3.32)

~ 21,2
W (kR) = exp <~R2 ) , (3.33)

for which JV[G = (271') < >RG H ]VITH = ]V[G if RG = 0.64 RTH

The arbitrariness of the smoothing procedure means one must be cau-
tious about making quantitative predictions, particularly when these are sensi-
tive to R. However, the filtering is not only a purely formal concept, but it can

correspond to real physical processes (see Peebles 1980; BBKS).

All properties of §(x) are inherited by §gr(x) and for each observable
relative to §(x), there exists the correspondent relative to dgr(x). In such a

manner, the 2-point correlation of the filtered density field §p(x) is

£ (1 — x2) = (Er(x)8r(x2)) = [ [{ dehwn eh = ¥u)} €231 - v2)

(3.34)
The Wiener-Kintchine relation reads
€0 () = 27r2/ dk & smfr P(k) Wi(k) . (3.35)
One can say that
Pr(k) = P(k) Wh(k) (3.36)
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is the power spectrum of the fluctuation §p(x). In this context, ép represents

the mass fluctuation in a volume of radius R, suitably smoothed by the chosen

Wk .
The relation (3.29) can be written in the more general form as
oo(R) = €5(0) . (3.37)
Origin
The most common choice of the wave-number analytical dependence of
P(k) is

P(k) o k™ . (3.38)

n is the primordial spectral indez, where n > —3 to provide convergence of the
rms density fluctuation as k¥ — 0 (ie. asymptotic homogeneity) and n < 4
is imposed by the discretness of matter (minimal spectrum; see Peebles 1980;
Peacock 1991). The power-law form is chosen because we have no physical
reason for picking out any characteristic scale: it is therefore a statement of our
ignorance more than anything else.

The assumption (3.38) can be written in terms of primordial mass vari-

ance on scale M as

opy o M (F3)/6 (3.39)

changing, because of evolution, to oa; o« M~("~1)/® ypon first coming within
the horizon (see e.g. Peebles 1980): the Harrison-Zel’dovich n = 1 spectrum is
characterized by a constant variance at the horizon crossing, independent of the
scale; it is the most natural primordial power spectrum (Harrison 1970; Peebles &
Yu 1970; Zel’dovich 1972), predicted in inflationary models too (Brandenberger

1985, 1990; Mukhanov, Feldman & Brandenberger 1992 and references therein).
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The Zel’dovich spectrum also arises automatically if the fluctuations are due to
cosmic strings (Zel’dovich 1980; Vilenkin 1981; see however Albrecht & Stebbins
1992) or to the more updated global textures (see Cen et al. 1991; Gooding
et al. 1991). Other nomenclature which is worth mentioning is the flicker-
noise spectrum (n = — 3), and the white-noise spectrum (n = 0). Spectra with
n < 0 (n > 0) imply more power on large (small) scale.

Evolution of the fluctuations after the inflation epoch modifies the spec-
trum. While the fluctuations are still linear the modification is simply a linear
filtering, with transfer function T'(k,a) = P(k,a)/P(k,a;). For a discussion of
the transfer function in various cosmological models see Efstathiou (1990).

With a power-law model
P(k) = Akme k/k | (3.40)

where k. is a short wavelength cut-off that is necessary if n > 0 (see Peebles
1980, § 42), some insights into {(r) are obtained.

The autocorrelation function simplifies to

ATG+n) . (C4m)TY o
_ n) | 3.41
€)=t ( 2 ’ (3-41)
For 0 < n < 2, ¢ becomes anticorrelated at large 7, approaching zero as r™>7",
and first becomes negative at
. = k-—-lt ( T ) . 342
T [+ g 2 + n ( )

Therefore, sign and slope of ¢, on linear scales should provide direct

information about the power spectrum there.
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Normalization

Although inflation generically predicts the slope of the initial power
spectrum, the overall amplitude is effectively a free parameter that cannot be
calculated with any confidence because it is highly model dependent: it is usually
assumed to be fixed by observations. However, there are, as yet, no observations
that can be related unambiguously to the amplitude of linear fluctuations in the
density field. Two prescriptions for fixing the normalization have been applied

relatively widely.

The first is based on the second moment of the mass correlation function

/ drr® E(r W/dkp )W3kR) , (3.43)

compared with estimates from galaxy redshift surveys. There are several prob-
lems with this type of comparison (see e.g. Efstathiou 1990). By an analy-
sis of the spatial correlation function from the CfA redshift survey (Huchra et
al. 1983), Davis & Peebles (1983) find J3(10A~*Mpc) = 277 (h~'Mpc)® and
J3(25 ' Mpc) = 780 (h=! Mpc)?, although 10 A~' Mpc is about the largest scale
on which a reliable estimate of J3 can be derived from the CfA survey (see Efs-

tathiou 1990).

Another prescription for matching theoretical power spectrum with ob-
servations is similar and involves the variance of the galaxy distribution when
sampled with randomly placed spheres of radius R (see Eq.(3.24)). Normaliza-
tion now corresponds to specifying o for some R. For R = 8 A~ Mpc, the rms
relative mass fluctuation is also denoted og. Galaxy number counts give og = 1

(Peebles 1982); if galaxies trace mass on scales of several Mpc and if nonlinear
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effects do not modify og appreciably, then og = 1 is reasonable. In practice, this
method of normalizing theoretical spectra is similar to the J; method.

If instead of assuming that galaxies accurately trace the mass distri-
bution we adopt the less restrictive assumption that fluctuations in the galaxy
distribution are proportional to fluctuations in the mass distribution, (6p/p), =
b(6p/p), b = const. > 1, then £, ~ ¢, (see Kaiser 1984) and o = b~'. In the
0 = 1 adiabatic CDM model, which we discuss in detail in § 5.3, a “biasing”
parameter of b~ 2 is required for consistency with the observed peculiar veloc-
ities of galaxies and then the mass density fluctuations on scales 2 8h~!Mpc
are expected to be linear.

Other normalization prescriptions are based on measurements of pe-
culiar velocity fields (see Eq.(3.25)) and of fluctuations of the microwave back-

ground radiation (Peebles 1982; Abbott & Wise 1984).

High Order Spectra

We can also evaluate higher order spectra. The bispectrum B is defined

by the irreducible part of the 3-point correlation function in Fourier space
(8(k1) 8(ks) (ks)) = (27)*6p (ks + ka + ks) Bk, ko) (3.44)

ie.
Bk, ks) = /drdsg(r,s)eikvr“krs , (3.45)

where, in the continuous case, { is the connected three point correlation function.
Fry & Seldner (1982) showed that if the three-point function is of hier-

archical form (see Eq.(3.17)), then the bispectrum

Bk, ha,ka) = Q [P(ky) P(ho) + P(ky) P(ka) + P(ka) P(k)] ,  (3.46)
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with the same value of (), which can be also estimated by the simple gravitational
instability picture in perturbation theory (Fry 1984).

Similarly, for the fourth moment we have
<5(k1)5(k2)5(k3)5(k4)>c = (27)%6p (Z ki) T(ki, k2, bs) (3.47)

where, by extension, T is the trispectrum
T(ki, bz, kes) = /drds dz 7(r,s,z) e T+ ik s tik s (3.48)

and 7 is the connected 4-point correlation function. In the hierachical model

(see Eq.(3.18)), the trispectrum is the product of three power spectra

T(kl,kz,kg,k;;) = Ra [P(kl)P(lkl -+ kg')P(kg) + C.p. (12 terms)}

+ Ry [P(ky) P(k2) P(k3) + c.p. (4 terms)] . (3.49)

Recently, Baumgart & Fry (1991) claimed a strong detection of a third
moment from CfA catalogue data (Huchra et al. 1983) and from a compilation of
galaxy redshifts in the Perseus-Pisces supercluster region (Giovanelli & Haynes
1985; Giovanelli, Haynes & Chincarini 1986; Haynes et al. 1988). The observed
bispectrum obeys the hierarchical pattern. The trispectrum, though weakly
detected at best, still follows the hierarchical pattern.

Nonvanishing higher order (N > 3) moments imply that the galaxy
distribution is decidedly non Gaussian, even on those large scales where cor-
relations are very weak. This should not be surprising: in a nonlinear theory,
even an initially Gaussian primordial distribution soon develops higher order

correlations (Chapter VII).
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CHAPTER 1V

Growth of Perturbations

Cosmologists reasonably believe that observed structures grew from
general small perturbations of the homogeneous and isotropic background in
the energy density of the universe at early times.

The most largely accepted scenario to approach the structure formation
is the so called gravitational instability scenario, which treats essentially noise
amplification; ie. linear (small) perturbations at some early time grow to non

linearity under their own self gravitation.

Since the beginning of modern cosmology, the role of gravity in develop-
ing the departures from homogeneity into structures like galaxies and clusters of
galaxies has been at the center of exciting discussions (Einstein 1917; Jeans 1928;
Lemaitre 1933a; 1933b; 1934). Curiously, Lifshitz, who developed the general
analysis of linear perturbation in a Friedmann-Lemaitre model (Lifshitz 1946a;
1946b), stated that “we can apparently conclude that gravitational instability is
not the source of condensation of matter into separate nebulae” (Lifshitz 1946b).

Why Lifshitz’s statement was not quite correct was first pointed out by Novikov

(1964a; 1964b).

Another problem is to understand the physical mechanism which could
generate these fluctuations. Peebles (1980, §17) takes in consideration primeval

magnetic fields, perhaps present at the time of the big bang, as possible sources
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of mass density fluctuations.

Actually, cosmologists tend to solve the problem of the origin of the
primordial fluctuations by accepting inflation: perturbations are generated dur-
ing the epoch of vacuum energy domination, when the Universe is in an expo-
nentially expanding de Sitter phase; primordial scalar fields placed in de Sit-
ter space exhibit quantum fluctuations, generating perturbations to the mat-
ter density (Bardeen 1980; Guth & Pi 1982; Hawking 1982; Starobinsky 1982;
Bardeen, Steinhardt & Turner 1983; Abbott & Wise 1984; Brandenberger 1985;
Mukhanov, Feldman & Branderberger 1992).

These quantum fluctuations manifest themselves as curvature fluctua-
tions with a constant amplitude on the horizon scale as long as the inflation
persists. Therefore it is a “natural” prediction of the inflationary model that
the Universe should contain primordial fluctuations of scale-invariant form, as
apparently confirmed by the more recent COBE measurements (Smoot et al.
1992).

Because these were generated by fluctuations in spatial curvature, they
are adiabatic in nature, affecting the matter density and radiation density fluc-

tuations equally, namely

4
b, ==bm . 4.1
. (41)

A solution orthogonal to curvature fluctuation is conceivable: it is
termed isocurvature fluctuation. This mode results from isothermal initial con-

ditions, in which the matter density is perturbed, but not the radiation density

5§ =-2"56.,, (4.2)

;
where, in the radiation-dominated era, p,, < p,: this generates no perturbations
in the curvature, just because matter is a negligible constituent of the very early

universe, instead modifying the number of photons per particle (entropy per
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baryon), leading to the alternative name of entropy perturbations.

It is more natural to produce adiabatic fluctuations than isocurvature
fluctuations, namely any GUT model, in which the baryon asymmetry of the
Universe is generated via baryon number violation, will produce a constant en-
tropy per baryon (Kolb & Turner 1990). Models have been suggested in which
later phase transitions (e.g. quark-hadron transition) generate entropy fluctua-
tions, but there is not clear evidence for them to be scale-invariant. Moreover,
isothermal fluctuations generate adiabatic perturbations of the same magnitude,
at horizon crossing time; this point has been further clarified by careful investi-
gation of isothermal fluctuations through the epoch of decoupling (Suto, Sato &
Kodama 1985): even initially isothermal perturbations give rise to temperature
fluctuations in later stages comparable with those of initially adiabatic pertur-
bations. This seems to rule out isothermal perturbations as a solution to the
galaxy formation problem, but the possibility for them should not be rejected
(Barrow & Turner 1981; Bond, Kolb & Silk 1982; Kofman & Linde 1987). For
a detailed discussion of isocurvature perturbations using general relativity, see

Kodama & Sasaki (1986). A recent fine review on cosmological perturbations is

given by Mukhanov, Feldman & Brandenberger (1992).

4.1 Equations of Motion for Matter

We want now to describe in some detail the motion of nonrelativistic
matter in the Universe; galaxies and clusters of galaxies are possibly tracing it
now. Namely we present here the fundamental equations describing the growth
of matter perturbations. We assume the (adiabatic) instability scenario: per-

turbations generated somehow in the early stages of the Universe start to grow
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when (nonrelativistic) matter begins to dominate the density of the Universe; we
assume the existence of post-recombination density fluctuations in nonrelativis-
tic components of matter; it contains nucleonic matter as well as a collisionless

dark matter component clustered around galaxies and clusters of galaxies.

We treat the matter as a pressureless (p = 0) ideal fluid, ie. the par-
ticles’ paths do not cross. The standard equations for an ideal fluid are the
classical Poisson equation, Euler equation and continuity equation, ie. respec-

tively, in Eulerian formulation

Vi =drGa®(p — p) , (4.3)
gt  a a a
7 1
(—9£+3Ep—}——v-pv:0. (4.5)
ot a a

All the observables, potential ¢, peculiar velocity v and density p are
functions of the comoving coordinates x = r/a(t); the cosmic scale factor is not
an unknown here, it is solution of the Friedmann equation (1.2).

The Poisson equation (4.3) states that (matter) density fluctuations
originate, and are originated by, metric perturbations given by the Newtonian
gravitational potential ¢. The Euler equation (4.4) and the continuity equation
(4.5) state respectively the momentum and the energy conservation during the

evolution of the perturbations.

If we define the (mass) fluctuation §(x,t) as

o(5,8) = pu(t) 1+ 6(x, 1)) (46)
the previous system of equations takes the more familiar form in the literature
V¢ =4dnGpya®§, (4.7)
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ov 1 a 1
oyt (Vv oV ==V, (4.8)
06 1

Essentially any relativistic component contributes negligibly to the den-
sity fluctuations, therefore fluctuations means mass fluctuations.

Sometimes, looking for § solutions, a second order differential equation
is introduced, obtained combining (4.8) and (4.9); explicitly it is given by (see

e.g. Peebles 1980, §9; Fry 1984)
026 + 2a07 006 = a2 [Ba(1 + 8) Bad + Oulp (1 + sy (4.10)

ie., from (4.7)

826 + 240" 10,6 — 47Gpy § =
= 4w Gpy 6% + 0" 20,6 8adp + 720,05 (1 + §)v™0? | (4.11)

where 8, = 0/0t, 8, = 0/0z> and summation over repeated indices is under-

stood.

The Eulerian fluid equations may also be derived by taking velocity
moments of the Vlasov equation for the time evolution of the phase space dis-
tribution function f(x,v,t): the streaming velocity of the fluid is defined as
the local mean momentum per unit mass of the particles (for this alternative
approach see Peebles 1980, §9A).

We stress that the comoving Euler and continuity equations hold even
for large §; to apply Eq. (4.11) one must find some technique for dealing with

the right-hand term: in the linear approximation such a term is just dropped.
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Linear Solutions

The lowest order solutions of the fluid equations are recovered lineariz-
ing (4.7), (4.8) and (4.9): we assume that the amplitude of the matter fluc-
tuations is very small (§ < 1), so that the rms particle velocity about the
zeroth-order Hubble flow solution is small too. The main reason for looking for
linear solutions is that surely at early times § < 1 (because of CBR constraints),
or, in other words, the linear description may be good for describing the large

scale phenomena, even if § > 1 on small scales.
(i) Linear § Solution

6 is solution of the equation (just dropping the right hand side of (4.11))
026 +2aa7'0,6 — 4rGpy§ = 0 . (4.12)

This equation has been discussed at lenght (Meszaros 1974; Groth & Peebles
1975).
The general growing mode (the decaying mode disappears rapidly: we’ll

not consider it) is given by
§(x,t) = 6,(x) D(¢). (4.13)

Therefore the § solution is self-similar in the linear regime (in fact the
Eq. (4.12) does not depend on spatial derivatives): § evolve only in amplitude,
preserving their original shape. Thus in the linear regime structure retains a
memory of its origin.

The function D(t), which satisfies the ordinary equation corresponding
to (4.12)

D+2ia'D—4rGp,D =0, (4.14)
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takes different forms depending on the model of Universe. For instance, in an
Einstein-de Sitter universe (2 = 1, A = 0), we have a o t*/3 and 47vGp, = 2/3t?;

therefore (4.14) reduces to

. 4. 9

D+gD=55D (4.15)
One finds

§(x,t) = & (x)t** . (4.16)

Solutions for open or closed universes are given in Peebles (1980, § 11):
usually they are much more complicated.
We stress the fact that the solution (4.16) is local even though the

peculiar gravitational field g depends on an integral over the mass distribution

§(x/, 1)
= —Ga’ P A2 4.17
#(x,1) Gapb/dxlxt_xl, (4.17)
(5,t) = V¢ = G /df&@fw;ilii
g b - a - apb H ]Xl . X}s
B ;o x' —x
- Ga/dx Pt (4.18)

in fact, what is relevant is the divergence of g (V - g o VZ¢), which of course
depends on local density.
The evolution of § is non-local ie. non-selfsimilar to second order per-

turbation expansion.
(ii) Linear v Solution
In the linear regime, the peculiar velocity field satisfies the equations
Oo(av)=ag, (4.19)
V-v=-a0,4. (4.20)

By solving the last equation

dxGpy a

v:aao( 5 ) (4.21)
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which, once substituted in (4.19), gives us

B (a2 aoi> = 4rGag . (4.22)

pra
This is another form of the Eq.(4.12). The growing mode of the velocity field v

corresponds to the growing mode of the density field in (4.16):

¢ dlnD
= ] 4.23
M 471'pr dt ( )
In an Einstein-de Sitter universe we recover the classical v = gt (~ t!/3).
Eq.(4.23) is usually known in the form (e.g. Peebles 1980, Eq.(14.8))
Hf 2f
= = 4.24
VG 8T 3HO S (4.24)
where
dlnD
= f(Q1) = 4.25
£ = f(0) = 4 (4.29)

is the logarithmic growth rate. The approximation f(2) ~ Q%f is commonly
used (Peebles 1980); more accurately, the leading term near = 1is f(Q) = Q/7
(Lightman & Schecter 1990; actually the first one to work out this result was
Fry, in a not well known paper (Fry 1985b)). We stress the fact that v is parallel

to the acceleration g (since (4.19)).

Eq.(4.24) is extremely important in observational cosmology; it offers
the possibility of determining the density parameter §2: this is usually done by
measuring the infall velocity of the Local Group towards the Local Supercluster

(see Davis & Peebles 1983).

We'll often use alternative expressions of the linear velocity; defining

the Newtonian potential

A=—2 ___1 /dx’ dESL) (4.26)

ArGpya? 4w |x/ — x|’

It
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for which

VIA =6, (4.27)
g = —4rGpa VA, (4.28)

we get
v= *Z}El“p_,,z"gw’: a8,V = ——a%VA. (4.29)

It is evident from these expressions that v has zero vorticity.

It is often convenient, especially for instance when going to higher orders
in perturbation theory, to work in k-space, where one wins simplicity, since
derivatives become simple algebraic operations.

The linear (growing) solutions of the equations of matter in k-space

look, respectively

— k2 A(k) = §(k) , (4.30)
(k) = ia% E(k)% : (4.31)

This simplification is not obtained at no cost, however; for instance
the simple products in x-space (-) become convolutions (*) in the transform

formulation

F (;ﬁl fh(x)) = (%), falkn) =

@%m / dk; - / dk [(%)" 6p (Q‘VZ kp — k)] ﬁ Fiu(len)

Typical Scales: Critical Jeans Length

We have seen how the matter perturbations in an expanding universe
grow; effectively, processes other than gravity can modify our simple description.

Competing effects of gravity and pressure gradient force are in fact important
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before the recombination or in correspondence of small scales: the more impor-
tant result of taking into account the radiation pressure is that not all the matter
perturbations are destined to grow, but only those above a precise scale.

Before recombination, matter is Compton radiation dragged and the
matter plus radiation fluid can be treated as an ideal fluid.

Modifying the Euler equation to consider the pressure contribution,
one finds that perturbation amplitudes of comoving wavelength A/a = 2n/k
are described by a linear acoustic wave equation with Hubble dragging and

gravitational driving terms (Peebles 1980)
- - Arl o=
02 6(k,t) + 2aa'8, 6(k,t) = 4w Gpy [1 - —A—J] §(k,t). (4.32)

At very long wavelengths (very large scales), A — oo, this equation reduces to
the zero pressure case discussed previously; but, at small scales, A — 0, the
pressure term is dominant and the primordial plasma simply oscillates just like
an acoustic wave. The balance between tha pure gravitational regime and the

acoustic regime occurs at the scale

A=Adj=cy/7m/Gpy (4.33)

¢ = dp/dp being the square of the adiabatic sound speed. A, is called the Jeans

length ; it defines equivalently the Jeans mass

My =g (M) L. (4.34)
TERTA\) T '
M; (ie. Ay) fixes the smallest scale on which gravitational instability can be

expected. At the recombination z,.., M, drops from its highest value ~ 2.2 x

10" (Qh)"2Mg to the much smaller &~ 1.27 x 10°(QA)~/2Mg, just because

¢, drops from c/+/3 to +/5kyT/3m, (=~ 10 kms™'), then M, o« a=%? as the

temperature falls down.
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We know that the perturbations with A > A; grow as a power ¢* of
the cosmic time ¢ (in a flat universe); those with A < A; behave like oscillating
waves: in the limit p <« pc* the cosmic expansion damps their amplitude (but

not in the case p = pc?/3) according to the law
§ ~ [ey(t) a(t)) /2 e [ eskse (4.35)

We could reconstruct at this point the history and the fate of a rel-
evant sized fluctuation, say on a galaxy scale Mg ~ 10" My, but the picture
is effectively complicated by another process that we have not considered, the
Silk damping (Silk 1968): the photon diffusion indeed damps out very efficiently
the adiabatic baryon fluctuations below the Silk scale during the radiative era.
The Silk scale can be estimated as follows. The photon mean free path is given
by I ~ (o7n.)"!, where o7 is the Thomson scattering cross-section and =, is
the number density of electrons. A photon diffuses a distance A in the time
74(A) ~ A?/lc; the Silk damping scale is found if we equal 74(A) to the Hubble
time ¢ ie. As ~ (lct)!/?, and the Silk mass is defined by

™

ZV[S:G

Prm /\35 . (4.36)

Detailed calculations show that, at recombination (Silk 1968; Peebles & Yu 1970;
Bonometto & Lucchin 1976; Press & Vishniac 1980; Wilson & Silk 1981; Peebles
1980; 1981)
Ms ~ 102 (QR?)=5/* (4.37)
All the fluctuations A < Ag are damped by photon diffusion, since 7y < t¢;
the damping rate, determined also by the fractional ionization of the hydrogen,
increases for decreasing scales.
Depending on the spectrum of the primordial perturbation, the cutoff
at Ms may fix the size of the first generation of objects to form after recom-

bination. If QA% = 1, Ms ~ 10'2 My ; if QA? = 0.03, Ms ~ 10" M, and
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it is very interesting that one can find a reasonable interpretation for either of
these numbers: the mass in the visible parts of the largest galaxies is ~ 10'% M,
and the nominal mass in a rich cluster is ~ 10" My . Thus, typical galaxies,
~ 10'! Mg , can form only by fragmentation of larger collapsed perturbations.
This opens another problem. The value of the Silk cutoff, extrapolated to the

present epoch is

As & 2/(0.036 + QA2) Mpc (4.38)

which is uncomfortably large for any acceptable baryonic universe: if the ampli-
tude at recombination is large enough to make bound systems of size Ms form,
then we should also see density fluctuations of large amplitude on the scale Ag.
This strongly contradicts the observations that the galaxy 2-point correlation
function is less than unity at » 2 7, ~ 4 A~ Mpc.

A way to solve the problem is to consider the isocurvature modes. In
such a case, there is no Silk damping, just because the radiation is smoothed,
and fluctuations on scales below the baryon Jeans mass (now 10° M) can grow
after recombination: in this picture, the larger structures form by hierarchical
merging of sub smaller scale structures. This scenario, popular in the 1970’s, is
not actually so favoured, mainly because of small scale anisotropy constraints
from CBR (Bond & Efstathiou 1984; Vittorio & Silk 1984), detailed N-body
studies (Frenk 1986) and, overall, the requirement that 2 should take the value
unity: this can occur only in non-baryonic dark matter universes, as we’ll discuss

in a next section.
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4.2 An Application of Linear Theory: The Local Group Motion

The strongest evidence for a peculiar motion of the Local Group (LG)
of galaxies is provided by the observations of the CBR.

Since the first convincing detection of anisotropy in the CBR (Fabbri et
al. 1980), it was realized that a dipole anisotropy characterizes the microwave
sky map: the dipole, amplitude AT/T =~ 1.2 x 1073, points roughly towards 45°
away from the Virgo Cluster (namely, in galactic coordinates: | = 268°, b = 27°).
The usual interpretation is that such a dipole is not a cosmological phenomenum,
instead it is originated by the fact that the Earth is moving with respect the CBR
rest frame. The recent spectacular COBE measurements confirm that AT/T =
1.240.03 x 1073 and vy = 622+20 km s~ towards ([,b) = (277° £2°, 30°£2°)
(Smoot et al. 1991).

Using determinations of solar motion relative to the LG (Yahil, Tamman
& Sandage 1977), Davis and Peebles (1983) quantified one component of the
LG velocity, precisely the LG infall velocity towards the Virgo Cluster, located
roughly at the center of the Local Supercluster (~ 10A~'Mpc far from us).
Knowing this, Davis and Peebles (1983) did the first determination of {}, from
large scale dynamics. Adopting a simple spherical model, the LG infall velocity
at distance R from the Virgo Cluster is related to the excess of mass 6 M located

there by the linear equation (4.24)

_ 2G f(5)

vy = SHR 0. SM (4.39)
or
1 M
=~ H, RO 2 4.40
3 ° M (4.40)

Assuming the Local Supercluster to be a fair indicator of the distribu-

tion of matter ie. estimating §M/M = §N/N = §, where §N/N is the concen-
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tration of bright galaxies in the LSC, one obtains

Vs — 3 (”—‘) 5, (4.41)

UH
vy = H,r being the Hubble flow velocity. Measurements in the LSC give

6N/N =2.2+0.3; vy =400 £ 60km s~! and (Davis & Peebles 1983)
QQ‘LSC ~ 0.2. (442)

The uncertainty on 2, 15c is essentially due to the uncertainty in vi-; on the
other hand, a simple spherical model does not seem quite adequate, in view of
the fact that the LG peculiar motion with respect to the rest frame of the MWB

has other components besides vy .

Many efforts are actually devoted to understanding the peculiar motion
of the LG and its origin. Further modifications of the smooth Hubble flow have
been revealed, and there is evidence that the LG motion is shared by the whole
local volume within 30 + 40 A~! Mpc (Staveley-Smith & Davies 1987; 1988).

An innovative suggestion has been advanced that the local galaxy bulk
motions are caused by enormous mass concentrations just beyond ~ 40 h~' Mpc
(Dressler et al. 1987; Burstein 1989; Kaiser 1990a; Dressler 1991), this opening
the era of the huge “attractors” (see e.g. Scaramella et al. 1989).

Another open question is the determination of , from large scales.
Among others, an elegant technique consists in calculating the peculiar acceler-
ation acting on the LG from the distribution of objects like galaxies and clus-
ters of galaxies, as sampled by flux-limited catalogues (optical, IRAS, Abell,
ACO, etc.): applying Eq.(4.39) one can obtain, in principle, estimates of {,,
namely 0-°/b, where b is a linear “bias” factor (see Chapter VI), from the deep-

est depths until now sampled (e.g. ~ 300h~'Mpc in Scaramella, Vettolani &
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Zamorani (1991)). All these analyses seem to suggest the existence of a huge
mass concentration towards the Centaurus region at ~ 150 A= Mpc, which could
contribute to originate the LG motion, but the reliability of the estimated {1,
value is controversial, both for the biasing scheme dependence and/or statistical
incompleteness of the available catalogues; moreover, the clustering pattern in
redshift space may be strongly distorted by peculiar velocities (Kaiser 1987; Mc
Gill 1990; Strauss et al. 1992).

The existence of a large scale anisotropy towards Centaurus is confirmed
by a recent analysis (Plionis, Coles & Catelan 1992) of the all-sky QDOT-IRAS
redshift survéy of galaxies (see Kaiser 1990b), where the questions of biasing
dependence, statistical catalogue incompleteness and redshift distortion in doing
), determinations are discussed; we present the forthcoming paper in Appendix
C.

In the next chapter we'll review other techniques with which it is pos-

sible to estimate the value of the density parameter (.
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CHAPTER V

The Mean Mass Density in the Universe

Measuring the mass density of the Universe is one of the most important
tasks in observational cosmology, but it is not easy at all. In the previous section
we showed how the value of the density parameter {2, can be estimated by the
Local Group infall to Virgo. Here we review other dynamical techniques for
estimating €, (a fine review is in Peebles 1986). The missing mass problem is

then discussed.

5.1 Dark Matter in Spiral Galaxies

From the fact that the rotation curves of spiral galaxies are flat (but
see Persic & Salucci 1991 and references therein) from few kpc to distances well
beyond the point where the light emission ceases (by observing the rare stars
or 21-cm emission from neutral H, or HI, gas clouds; see e.g. Bosma 1981) it
follows that the mass of dark halos is much larger than the entire visible mass.
In particular, the mass-to-light ratio A//L can increase by a factor 100 in 10 kpc
(Faber & Gallagher 1979; Carignan & Freeman 1985). From dynamical studies
of the Milky Way’s satellites (see Primack 1984), it is possible to set lower limits
of Thato 2 70 kpc and correspondingly M/Mpym 2 10 and M 2, 2 x 10'2 M, f§r
our own Galaxy. This mass is comparable to that suggested by studies of the

dynamics of the LG of galaxies (Einasto, Koasik & Sear 1974).
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A dark matter component is present also in large cosmic structures,
like Abell clusters and superclusters; moreover the DM fraction increases with
the scale. Indeed, the first one to show the presence of DM in the Universe
was Zwicky (1933; 1937); analyzing the velocity dispersion of galaxies in Coma
Cluster, Zwicky demonstrated that Mconra.dyn/Mconra,um 2 100.

The presence of DM in spiral galaxies translates into a DM contribution
to Q,.

To quantify it, we remember that the observed galaxy luminosity den-

sity is roughly (see e.g. Peebles 1980)
(L) ~ 1.8 x 10° h LoMpc™ (5.1)

where Lo = 3.83 x 10 erg s—!. With this, we can evaluate the mean mass-to-

light ratio of the Universe
M/L = Qp./(L) ~ 1500Qh Mg/ Lg . (5.2)
Typically, in the central regions of galaxies (Efstathiou & Silk 1983)
M/L =~ i4hzv1@/L@ , (5.3)

then

anl = pgal/pc =~ 0.02 y (54)

if we take into account the entire visible mass.
On the other hand, if the dynamical galactic mass, including that of the

halo, is about ten times greater, as previously discussed, then
Qayn = payn/pe = 0.2 . (5.5)

This is the strongest evidence that the observed Universe is open and

that 90% of the dynamical mass in the Universe is dark.
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Remembering that hot big bang primordial nucleosynthesis and the
observed light element cosmic abundances constrain the baryonic contribution

Qs of the matter density (Yang et al. 1984; Walker et al. 1991)
Q, £ 0.1, ‘ (5.6)

we conclude that essentially all the dynamical mass can be in baryonic form.
However, an Einstein-de Sitter (or inflationary) Q = 1 Universe cannot be bary-

onic.
5.2 Correlation Analysis

Galaxy correlation data, combined with estimates of the relative pecu-
liar velocity between pairs of galaxies, can be used to give dynamical estimates
of . In order to use these data to estimate the mean content of matter in
the Universe, it is fundamental to assume that the luminous matter distribu-
tion coincides with the underlying mass distribution. However this is not the
case; it is known that the rich clusters are more correlated than galaxies (Kaiser
1984), therefore they cannot both be good tracers of the mass, perhaps neither
are. For the moment we ignore the problem (however it will come up again in
Chapter VI), and assume that the galaxies are good tracers of the mass, with

§p/p ~ &,(r) = &(r) (Efstathiou & Silk 1983).

Peculiar Galaxy Dynamics

According to Peebles (1980), the rms of the peculiar velocity field v, =

vy — vy of a pair of galaxies at comoving separation u = u; — uy is

(vis(r)) g(szb / dr/ = ZE() (ryz,|r —z|), (5.7)
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where r = a(t)u, z is a fixed position relative to the pair of galaxies. By

Eqgs.(3.14) and (3.17), the previous relation reduces to the form (Peebles 1980)

2 _ 67Gpy Qry J(v) P2
W) = c e a - (5.8)

where J(1.8) = 3.70. Eq.(5.8) is known as the Cosmic Virial Theorem. 1t can be
understood also remembering that the mass of a typical aggregation of matter

with r < g is

M(r) = pr’® =~ py fy)(r)ra Ny, 3 (5.9)

and therefore the currents on scale r are
v(r)? = GM(r)r~' &= Gpyry 7*™7 5 (5.10)

we observe that (vi,(7)) is the sum of the contributions of motions on all the
scales < 7 interior to the subclusters. Since v < 2, the main contribution to this

sum is given by the currents in correspondence of the scale 7, so that Eq.(5.10)
coincides with Eq.(5.8).

We can rewrite Eq.(5.8) as

2
(v3,(7)) 1h'Mpc\ >
0= .= Q7! A . 5.11
polp ¢ (BOOIs:m.S'1 T > ( )

Observationally, from estimates of redshifts (Davis & Peebles 1983; Bean et al.

1983)

(v2,) =300 £ 50 km. s™* (5.12)

on scales ~ 1 h~1 Mpc, with a slight dependence on 7 compatible with Eq.(5.8).

By the Cosmic Virial Theorem with @ ~ 0.7 + 1.3, one has

Q~01+02. (5.13)
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Cosmic Energy Equation

Another estimate of ) can be obtained by applying the Cosmic Energy
Equation (Layzer 1963; 1964; Dmitriev & Zel’dovich 1964; Irvine 1965)

d 1da
Z(T+ W)+ - = (2T +W)=0. (5.14)

Eq.(5.14) relates the cosmic potential energy per unit mass W with the
cosmic kinetic energy per unit mass T due to the gravitational interaction with
the rest of the Universe. In particular, Eq.(5.14) relates the velocity dispersion
along ;1 fixed direction, say @,, of a galaxy, with the potential energy stored in
the mass fluctuations (see Peebles 1980).

The differential equation (5.14) can be approximated by an algebraic
relation (Davis & Peebles 1983)

2
T, & S HL Jy(00) 0 (5.15)

where Jy(o0) = [ d7 {{?)(7) and H, is the Hubble constant. If féz) is negligible

at » 2 20 k"' Mpc one has Jy(0o0)h? ~ 150 Mpc?, from which

- 2
O~ | —2—— = 0.25 .16
(_660 km/s) ’ ’ (5.16)

where ¥, = 330 kms~! (Davis & Peebles 1983).

Statistical Equilibrium

An estimate of {2 due to Davis & Peebles (1983) is based on the assump-
tion that the matter clustering on scales less than 1 A~! M pc is statistically stable,
ie. the Hubble flow and the processes of gravitational collapse are compensated

on average. This condition can be written as

o,(r)? = 4.13Q (Hor)? € (r) 0, (5.17)
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where o,(r) is the line of sight rms fluctuation of the difference of the pecu-
liar velocities of correlated pairs of galaxies at separation 7; such a quantity is

measured precisely on scales hr < 5 Mpc:

pp ) (013£0:04)
a(r) = oo (1]V[pc> Ems™t, (5.18)
oo =340 £ 40km s, (5.19)
10kpc £ hr S 1 Mpc . (5.20)
Finally we obtain
Q~ Q! (W)Q = 0.20 %9 | (5.21)

compatible with previous results.

We have to stress that all these methods, estimating the mean mass
clustered on scale ~ 1 A~! Mpc, are insensitive to a possible component of dark
matter that is not clustered on such a small scales, but instead distributed rather
uniformly in the Universe (see Dekel & Rees 1987). The ‘biased’ galaxy forma-
tion scenario, according to which the galaxies form where the high peaks of the
field 6p/p are, can reconcile the observed value of Q with the larger theoretical

value.

Conclusions:

The accurate measurement of the cosmological density parameter is

difficult, but it probably lies in the range 0.1 < Q < few. Large {1, such as the

Einstein-de Sitter value Q = 1, are excluded, unless mass density is distributed

considerably more broadly than luminosity.
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Arguments for 2 =1

As we have seen, the value of 2 is of course an observational question.
Despite of the dynamical estimates of (), we review some theoretical arguments
which have been advanced in support of = 1. A more detailed discussion is

given in Peebles (1986 and references therein).

e (i) In Guth’s inflation model (Guth 1984), the expansion of the U'niverse
can be traced back to a phase transition before which the energy density
would have had a large nearly constant term (which behaves like a large A-
term) that would have caused space to expand as an exponential function
of time (instead of the power-law expansion of the usual models). If this ex-
ponential inflationary phase lasted long enough, it could have stretched all
characteristic lengths. This implies that the curvature term in Friedmann

equation (Eq.(1.2)) is negligibly small. This brings us to 2 =1

e (ii) Galaxy formation seems to be easier to understand if = 1. Actu-
ally in a purely baryonic universe, & = §, =~ 107!, the adiabatic per-
turbations cannot collapse in cosmic proto-objects without violation of
the CBR isotropy: indeed at recombination their amplitudes should be
86(2Zrec) 2 (R2rec)™t 2 1072, On the contrary, if 107! = Q, < Q = 1 then
8b(2rec) &= 1073 compatible with the CBR constraints §7'/T < 10~* (Bond

& Efsthatiou 1984; Vittorio & Silk 1984).

e (ili) Galaxy biased clustering (Chapter VI).

The amount of (dark) matter in the Universe is strictly related to the
age of the Universe. If one assumes the existence of a non baryonic component
weakly interacting with the other components and closing the Universe, formed
by (unspecified) massive particle, say X, such that Q, < Qy =~  ~ 1, it is

possible to fix the following constraint.
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Remembering that, for a matter dominated model with { =1, the age

of the Universe is given by
2 -1
t, = §H° ~ 6.5 Gyr , (5.22)

and, since the oldest stars in globular clusters formed at least 10 + 13 Gyr ago,

it must be that A < 0.5 <+ 0.65, from which
Qxh* $0.25 +0.425 . (5.23)

We remember that the parameter QA? is very often present in the cosmological
expressions. We stress that, if a cosmological term is absent, the values (1 =1
and H, = 100km s~ *Mpc™', which is the maximum value of H,, are incom-
patible, since for a such a type of universe t, = 6.5 Gyr; instead, it must be
H, £ 60kms 'Mpc~' ie. A $0.6. Standard CDM model assumes 2 = 1 and

h = 0.5.
5.3 Non Baryonic Dark Matter in the Universe

The particle candidates to constitute the cosmological dark matter are
essentially divided in three classes: Hot, Warm and Cold DM particles. The
classification has been introduced by Bond, Primack & Blumenthal (Primack &
Blumenthal 1983; Primack 1984), in terms of the free-streaming of the DM parti-
cles. The free-streaming distance is the mean distance covered by the DM parti-
cles, since the decoupling with the other components of the primordial plasma to
the moment in which they are not longer relativistic. Collisionless particles, as
the DM particles, rapidly dissipate the fluctuations with wavelength below the
free-streaming distance. Essentially, the fluctuations on a typical galactic scale

~ 10! M, ) are dissipated by hot particles, but preserved with warm particles;
O] P p
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all the cosmologically significative fluctuations survive in universes dominated
by cold dark particles.

Of course, there is the possibilty that the dark matter is a mixture
of, for instance, “jupiters” plus neutrinos (Schramm & Steigman 1981). Some
models even include unstable DM that decays into relativistic particles (Sciama
1990a; 1990b; Splinter & Melott 1992).

For brevity, we'll consider in more detail the cosmological implications
of two types of particles, the hot and cold DM particles, since these seem the more
promising scenarios. The WDM scenario shows considerable intrinsic difficulties;
for instance, there is at present no obvious warm DM candidate elementary

particle, in contrast to the hot and cold DM cases.

Hot Dark Matter (HDM)

‘Hot’ dark matter is any form of non-baryonic dark matter that has a
relativistic velocity at the time of equal matter and radiation (z ~ 101). The
standard candidate is the massive neutrino, which has to have a mass m, =~
30 eV for being cosmologically important (Gershtein & Zel’dovich 1966; Bond,
Efstathiou & Silk 1980). There is no conclusive evidence that there actually
exists a species of neutrino with the required mass.

The important fact about neutrinos (or other HDM particles) is that
they are expected to be relativistic at decoupling, with neutrino decoupling
temperature Ty, ~ ]VI;,UBG;Q/B ~ 1 MeV, where the Planck mass Mp; = 1.22 x
10'® MeV and the Fermi constant Gy ~ 1073 GeV~2; they remain relativistic
until the matter temperature drops to & m,. During this interval of time, the

neutrinos stream freely over a distance A\, = A (T = m,) ~ Mp;m;?, where

A~ (Gp)~'? ~ Mp T2, In order to survive this free streaming, a neutrino
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fluctuation must have linear size > A, . Correspondingly, the minimun mass in
neutrinos of a surviving fluctuation is My, = A}m,n, (T = m,) = M} m;*.
Thus, even collisionless particles effectively exhibit a Jeans mass (free-streaming
Jeans mass). Careful calculations (Bond, Efstathiou & Silk 1980; Bond & Szalay

1984) give
m,,

30eV

A, = 41 ( )'l (1+2)"' Mpe, (5.24)

or A\, = 41(m,/30eV) Mpc in comoving coordinates. The corresponding neu-

trino Jeans mass is
M; = 17T M} m;? = 3.2 x 10" (m, /30eV)™* My , (5.25)

which is the mass scale of superclusters; objects of this size are the first to form
in a v-dominated universe, so that galaxies must form by fragmentation of early
larger structures.

Note that when a fluctuation of total mass ~ 10'° My enters the hori-
zon at the equivalence epoch z = 10%, the photon-baryon fluid perturbations
cease growing, starting to oscillate as an acoustic wave, while those of the mas-
sive neutrinos continue to grow linearly with rate (1 + z)~!. At recombination,
z =103, 6,_,n/6, £ 107!, with an eventual additional suppression of §,_, by Silk
damping (see Primack 1984, Fig. 3.4). Thus the hot DM scheme with adiabatic
primordial fluctuations predicts small-angle fluctuations in the CBR somewhat
below observational limits (Uson & Wilkinson 1984). Similar arguments apply

in the CDM scenario (Bond & Efstathiou 1984; Vittorio & Silk 1984).

There exist however a number of problems with the neutrino dominated

universe.

o (i) From dynamical studies of non-linear clustering, A < 10 Mpc, and bulk

velocities in the linear regime, the supercluster formation is not an ancient
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event: zsc < 2 in any case (Frenk, White & Davis 1983; Kaiser 1983). On
the other hand, limits on galaxy ages from globular clusters (Faber 1984),
and determinations of high redshift quasars (Warren et al. 1987) and
radio sources (Lilly 1988; Chambers, Miley & van Breugel 1990), indicate
that zgr 2 3. This timing-scaling problem has severe implications for the
neutrino pancake model. However, since a recent radio detection of neutral
H at redshift z = 3.4 (Uson, Bagri & Cornwell 1991), claimed as the first
observational evidence of a Zel’dovich pancake, the timing-scaling problem

could be not so acute.

(ii) Another problem regards the ratio mass vs. baryonic mass at small and
large scales. Large clusters (> 10 Mg) should contain a larger amount
of neutrinic component than the galaxies (= 10'? M), and M /M, should
increase by a factor ~ 5 from galactic scale to supercluster scale (Bond,

Szalay & White 1983). Such a trend is not observed.

(iii) Both theoretical arguments related to the dwarf spheroidal (dS) galax-
ies around the Milky Way (Faber & Lin 1983) and data on Draco, Carina
and Ursa Minor (Aaronson 1983; Aaronson & Olszewski 1988) imply that
dark matter is present in exceptionally large amounts in these systems.
The phase-space constraint (Tremaine & Gunn 1979) then sets a lower
limit m, > 500eV (Lin & Faber 1983), which is completely incompatible
with the cosmological constraints (Gershtein & Zel’dovich 1966). Vicev-
ersa, for reasonable neutrino mass, (= 30eV'), phase-space limits would
then require very large core radii (~ 10 kpc) and masses (~ 4 x 10'! My:
objects of such enormous masses would have spiraled into and merged with

the Milky Way long ago (Gerhard & Spergel 1992).

The general problem with HDM is that it may possess too little power
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on small scales, just due to its own free streaming scale. One possible way to
correct that problem is to produce density fluctuations not from inflation but
from seed perturbations. Seeded hot dark matter models have been recently
studied by a large numbers of people (Scherrer, Melott & Berschinger 1989;
Villumsen, Scherrer & Bertschinger 1991; Cen et al. 1991). Traditionally, in
these studies the seeded perturbations have been taken to be either primordial
black holes, cosmic strings or global textures, and have been quite successful at

improving the small scale power relative to the standard hot dark matter models.

Cold Dark Matter (CDM)

Whereas HDM is characterised by a free-streaming mass M; ~ 10'5 My,
cold dark matter has a free streaming mass very much smaller than the mass of
a galaxy (< 10® M), since the CDM particles decouple and become non rela-
tivistic much earlier than the hot particles. There are a host of plausible particle
physics candidates for CDM including azions of mass ~ 107> eV (Weinberg
1978; Wilczek 1978; Ipser & Sikivie 1983; Sikivie 1983); a heavy, weakly inter-
acting, stable photino, with a mass 2 1 GeV (Goldberg 1983; Ellis et al. 1984);
and primordial black holes with 10'7g £ M < Mg (Carr 1978; Stecker & Shafi
1983; Freese, Price & Schramm 1983; Mac Gibbon 1987).These and other CDM
candidates are reviewed in e.g. Primack (1984). None of these candidates has
yet been detected, although experiments are capable of detecting cosmological
abundances of some of them (Smith 1988; Ellis 1991).

Assuming that the primordial fluctuations are adiabatic, when the Uni-
verse is radiation-dominated, the perturbations in the CDM grow as § ~ R’ on
scales larger than the horizon. When a fluctuation crosses the horizon in this era,

the photons and charged particles oscillate as an acoustic wave and the neutrinos,
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assumed to be massless in this scenario, stream away. This means that the driv-
ing term for the growth of the CDM perturbations disappears and the growth
consequently stagnates until we reach the transition to matter-domination at
z =~ 10" (Blumenthal et al. 1984), after which all linear modes grow with the
same rate; as a consequence, the fluctuation power spectrum has a discontinuity
at the horizon scale. The detailed growth of fluctuations in this scenario must be
handled essentially numerically , although it is possible to make substantial ana-
lytic progress using a gauge-invariant formalism (Peebles 1982a; 1982b; Vittorio
& Silk 1984; Bond & Efstathiou 1984; Efstathiou 1990 and references therein).
The detailed solutions are obviously complicated, but they are characterized by

limiting forms. The initial power spectrum P(k) o< k" is modified so that
P(k) < k" Ink. (5.26)

Thus, for mass scales much less than the horizon mass at the matter-radiation

equivalence (M., ~ 10'° M), we get

%{ ~ (In M)*? , (5.27)

so that the spectrum is rather flat for M <« M,,. If n = 1, the spectrum steepens

to

§M

~ M3 (5.28)

for M > M,,. A more detailed discussion of the growth of perturbations in this
scenario is given in a fine review by Blumenthal et al. (1984).

In this scenario, as in the HDM case, the CDM perturbations can start
to grow before the baryons decouple from the radiation. After recombination
(z & 10%), the baryon fluctuations grow rapidly to match the CDM fluctuations
(they tend to fall into the potential well created by the CDM perturbations): in

this model the first structures to form will be of the order of the baryon Jeans
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mass after recombination, ~ 10% My (“bottom-up” scenario).

The CDM model has been considered, during the last years, the most
successful theory for the formation of structure in the Universe (Davis et al
1992). However it has recently suffered some setbacks from observational evi-
dence suggesting that there is more large-scale power than it can explain.

The most serious of these observational challenges has come from sta-
tistical studies of the galaxy distribution on large scales ( 2 10~ Mpc). The
recent APM catalogue of more than 2 million galaxies reveals indeed more large-
scale structure than predicted by simple versions of the theory (Maddox et al.
1990). Further evidence has come from infrared galaxies detected with the IRAS
satellite (Efstathiou et al. 1990; Saunders et al. 1991), from clusters of galaxies
(Bahcall & Soneira 1983) and from radio galaxies (Peacock & Nicholson 1991).

Possible fixes for the CDM model involve decaying particles or depar-
tures from the scale-invariant fluctuations predicted by simple inflationary mod-
els. For instance, the predictions for large-scale structures can be boosted if
17-keV neutrinos (Simpson 1985; Hime & Jelley 1991) really do exist (in addi-
tion to CDM) and decay on a timescale of ~ 1+ 5 years (Bond & Efstathiou
1991). Alternatively, one can construct models of inflation that are tuned (for
example, by involving multiple scalar fields) to produce seed fluctuations with
a large-scale characteristic length (Salopek, Bond & Bardeen 1989). A third
possibility is that primordial fluctuations do not arise from quantum processes
during inflation, but rather reflect the gravitational effect of topological defects
generated at a different phase transition. Recent work, however, indicates that
the cosmic string model, for a long time the most promising of its kind, actu-
ally produces less large-scale structure than standard CDM (Albrecht & Stebbins

1992)! Cosmic textures, a type of topological knot that unties itself as it shrinks,
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may provide a more successful model (Turok 1991). Notice that each of these
proposals requires both CDM and a flat universe; the only differences from the
standard theory concern the nature of the seeding perturbations.

There may be less exotic ways of producing extra large-scale struc-
tures, which require nothing more than low-energy astrophysics. As we’ll note
in the next chapter the relation between the distribution of galaxies and mass
is uncertain and is poorly constrained by current observations; although it is a
convenient model, the “high-peak” biasing scheme may be a poor representation
of where galaxies actually form. Possibly, the galaxy formation process could
itself introduce structure in the galaxy distribution on large scales (Bower et al.

1992).
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CHAPTER VI

Biased Galaxy Formation

Until fairly recently cosmologists tacitly assumed that the luminous
matter traces the matter distribution ie. the mass-to-light ratios M/ L of different
cosmic structures were the same. However, there is a great deal of observational
and theoretical evidence that this is not the case. Such a evidence leads in
a natural way to the concept of biased galaxy formation ie. galaxy formation
(or, more in general, cosmic structure formation) occuring in such a way that
galaxies do not fairly trace the underlying mass distribution. In most of biased
scenarios, one is able to relate luminous matter and dark matter by involving
a very specific form of bias (Kaiser 1984), although such a prescription is not
unique (Bower et al. 1992).

In this section we review the motivations for biasing the galaxy distri-
bution, possible physical mechanisms and the types of bias expected in various

cosmological scenarios. A more detailed discussion is in Dekel & Rees (1986).

6.1 Missing Mass Problem: Can the Universe Be Flat?

Mass estimates on very large scales are obtained using knowledge of the
statistical properties of galaxy clustering and/or linear theory of overdensities,

using galaxy counts to estimate the overdensity (§ 4.2). If one assumes that
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galaxies trace mass, on the scale r (Eq.(5.8))
L1 —t v(r) :
Qmp G (=) > (6.1)

where €(r) is the two-point correlation function , v is the mean pair-velocity
and/or (Eq.(4.41))

_ 3'1) 1.7
Q51 <——) , 6.2
Hr (6:2)

where § is the density enhancement within the LG radius r, and v is the infall
velocity at r. The results apparently suggest {2 ~ 0.2. The crucial point is that
they are obtained using observables corresponding to galazies: their number
overdensity é, or the galaxy-galaxy correlation function {,(r). If, indeed, the
galaxies cluster more than the underlying matter, such that §, = b6 ie. {,(r) =
b%€(r), the real value of Q, as obtained by (6.1) and (6.2) is larger by a factor

b'7 + b?. The data would be compatible with = 1 if the degree of bias

corresponds to b~ 2 + 3.

6.2 Voids

“Voids” ~ 50 A~* M pc in diameter in the galaxy distribution are actually
quite common (Hoffman, Salpeter & Wasserman 1982; De Lapparent, Geller &
Huchra 1986; Oemler 1987; Geller 1987). It is difficult to reconcile the existence
of such a voids with the CBR isotropy, if the galaxy formation is not biased. The
number density of bright galaxies in these “voids” is typically less than 10% of
the mean, and, according to spherical model (Hoffman, Salpeter & Wasserman
1982), such an underdensity in the mass distribution corresponds, at decoupling
Zdec, t0 [6] <1072 if O = 1, and to |§] < 5 x 1072 if Q = 0.1, evidently too large.
The existence of void-regions so large (like the Great Void in Bootes) contradicts

the results of large scale N-body simulations too; even in the “pancake” scenario
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(White, Frenk & Davis 1983; Centrella & Melott 1983; Dekel & Aarseth 1984)
such large regions are never found with an underdensity less than 25% of the
mean. Moreover, voids cannot be dynamically so evacuated (by the only gravity),
even harder if < 1.

For estimating the real mass in the voids, let consider a simple model of

universe in which superclusters and voids have uniform density, both in luminous

(59) :<5g> _b. (6.3)
Opar void dpar SuperCluster

If we assume that structures like the Local SuperCluster (LSC) and the Bootes

and dark matter, and

Void (BV) are quite common, we can adopt the corresponding observed values for
the galazies 84, 5c =~ by, 15c ~ 2.5 and 6,1 ~ 65,87 =~ —0.9. On the other hand,
if Q =1 (b=3), we get, from the previous relations dpar,sc = §par,Lcs = 0.85
and Spprv &~ bpar gy ~ —0.32. It is not difficult to see that the fractional
volume of voids is 0.73 and the fractional mass in voids is 0.5. The obtained
mass densities in superclusters and in voids are both compatible with |§] ~ 1073,
at Zgee, which corresponds to 67 ~ 3.5 x 107° (Qh~1), if most of the dark matter
is non-baryonic, which is compatible with the observed isotropy comnstraints if
Qh? = 1. An open universe with Q ~ 0.2 (b = 1) would require a real mass

underdensity of ~ 10% in the voids ie. 7 ~ 5 x 1072, too large.

6.3 Difficulties in Cosmogonic Scenarios

Simulations of the two most popular scenarios (see e.g. Primack 1984),
in which the Universe is either dominated by “cold” DM or by massive neutrinos,
have led to the conclusion that (if Q ~ 1) neither can reproduce the observed

large-scale distribution of galaxies unless galaxy formation is biased.

73



e CDM. The CDM N-body simulations of Davis et al. (1985) are not com-
patible with the observed Universe unless bright galaxies formed at the
top of high peaks of matter distribution. Assuming that light traces mass,
Davis et al. (1985) found that 7, = 1.27h~*Mpc in an Einstein-de Sitter
universe, too small if compared directly with the r, = 5 h™? Mpc observed
for galaxies, except for the case h = 0.25. The specific scenario of CDM
with @ = 1 would require an enhanced clustering of the galaxies relative
to CDM such that £,(r) = 5 + 20{(r), h = 0.5 + 1, which is consistent

with the values of b deduced above from more general considerations.

e HDM. In the case of 30eV neutrinos, N-body simulations (Centrella &
Melott 1983; White, Frenk & Davis 1983) show that the neutrino cor-
relation length is » ~ 8 (Q2h*)~!, too large in comparison with 7, unless
Qh? > 1. If the galaxies form only in the collapsed regions, these con-
straints become even tighter, so the bias required here is of an opposite
sense: the galaxies should somehow be less clustered than the neutrinos.
This seems to make a “biased” neutrino model rather difficult to accept:
we require an anti-bias to get the correct {y4(r), but a positive bias to

resolve the problems of missing mass and voids.
To summarize:

o (i) A large-scale segregation between galaxies and the dominant mass seems

inevitable.

e (ii) Large regions of low density as observed in the “voids” cannot form b
g y

the present, especially if §) < 1.

o (iii) If @ = 1, as favoured by theory, most of the (non-baryonic) mass must

hide in the “voids” to escape detection in clusters and superclusters.
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e (iv) Neither the CDM scenario nor the HDM scenario can match the ob-
served large-scale galaxy distribution unless galaxy formation is biased ie.

restricted to the peaks of the density field.

6.4 Physical Bias Mechanism

We review here some physical mechanisms that could originate galaxies
in correspondence of high peaks of density field. Such a type of bias mechanism

could be classified in three general types (see e.g. Rees 1985).

e (i) The voids may be filled with a uniform component of ‘missing-mass’ of

a different nature from the clustered DM.

o (ii) There is one important kind of DM, but the baryonic component is seg-
regated from the non-baryonic DM even on scales ~ 30 h=! Mpc, providing

supply for galaxy formation only in certain regions (density peaks).

o (iii) The large-scale baryon distribution traces the DM on scales > 1 h=!Mpc,
but the efficiency with which baryons turn into luminous galaxies is sensi-

tive to other enviromental effects.

In particular the bias mechanism could be autonomously determined in
each protogalaxy, when the intrinsic properties of a protogalactic perturbation
determine its final state (galaxy or no galaxy), or it may be a result of feedback
interaction, not only gravitational, among more galaxies. The result might be
destructive, suppressing galaxy formation locally (causing underclustering) or
far away, but it could also be constructive, enhancing galaxy formation in the

neighborhood of other galaxies (e.g. explosions).
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Recently, Bower et al. (1992) have considered a feedback biased model,
in which galaxy formation occurs at high peaks of the mass density field, as in
the standard biased picture, but is further enhanced by the presence of nearby
galaxies. Such a modification produces enough additional clustering to fit the

angular correlation function of the APM galaxy survey (Maddox et al. 1991).

6.5 Uniform Component

A hypothesis that might hopefully ease the voids problem previously
discussed is to suppose that the Universe is dynamically dominated by a uni-
form unclustered component of dark matter with different properties than the
clustered dark matter. For example, the spread DM may be non baryonic and
the clumped DM all baryonic.

One way that this could happen is in an Universe dominated by ‘ultra-
hot’ dark matter particles which are still relativistic today, or at least they have
velocity > 103 km s~!, the estimated peculiar velocity among clusters (Bahcall
1988), and therefore do not cluster at all. Hoffman & Bludman (1984) have
shown that if such particles formed at an early stage of the evolution of the
Universe, they would always be dynamically dominant over the baryons, and
would have prevented any gravitational clustering. This would also yield an
unacceptably fast expansion timescale during nucleosynthesis. Further possibil-
ities are that the particles are generated by the decay of heavy particles with
lifetimes comparable to the age of the Universe (Turner, Steigman & Krauss
1984; Gelmini, Schramm & Valle 1984; Olive, Seckel & Vishniac 1985; Daly
1987; 1988).

Apart from the ad hoc fine-tuning of particle lifetimes in these scenarios,
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the main observational constraints on such models arise from the isotropy of
the microwave background and from the effects of the decay on the dynamics of
structures (Turner 1985; Efstathiou 1985). For instance, Flores et al. (1986) find
that the galactic rotation curves would not have remained flat if the Universe

were dominated by relativistic decay products.
6.6 High Peak Biasing

An enhanced clustering of galaxies or rich clusters over the background
matter can arise in a ‘bottom-up’ scenario if galaxies formed only from high peaks
of the density distribution smoothed on galactic scales or cluster scales; peaks are
characterized by an overdensity § above a threshold vo,, where o2 = (6%). Kaiser
(1984) showed that, in the case where the density field is Gaussian distributed,
in correspondence of scales where £ < 1, the enhanced correlation function of

high v-peaks is approximated by

e o [ o222 \E) (v e
£2(r) ~ (fuoo - exp(—m2/2)) {0(0) (7) €D (r) . (6.4)

This relation shows that, while £(*) has the same form of ¢ higher peaks (ie.

richer systems) have an amplified autocorrelation.

The result (6.4), which determines precisely the bias parameter b, sug-
gests a statisticalinterpretation of the clustering properties of rich Abell clusters
(we'll rederive it in a detailed manner in a later section).

This suggestion motivated a number of detailed mathematical analyses
of the properties of high level regions in Gaussian random field (e.g. BBKS 1986;
Couchman 1987a; 1987b) following previous discussions in a rather different
context (Rice 1954; Cartwright & Longuet-Higgins 1956; Doroshkevich 1970;

Adler 1981; Vanmarcke 1983).
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It is argued that for rich clusters this form of biasing is very natural:
clusters form very recently in bottom-up models and they are clearly very rare;
they are plausibly identified with high peaks. The lower peaks on cluster scales
either have not yet collapsed or have collapsed but have not produced a final
object identified as a rich cluster.

The crucial question one has to answer for applying this idea to galazies
is what astrophysical mechanism prevents lower-amplitude peaks from turning
into galaxies as well? Such a mechanism would produce a fairly sharp cut off in
the efficiency of (bright) galaxy formation at v ~ 2 + 3, the number density
of such peaks being comparable to that of bright galaxies (see the papers by
Bardeen, Kaiser and White, 1986).

The most obvious thing about high v peaks is that they could collapse
earlier and have a higher turn around density than the typical fluctuations on a
given mass scale !. Rees (1985) argue that, in principle, this might be enough
to create the biasing if star formation were highly sensitive to, for instance, the
ratio of the cooling time, oo ~ p~*, to the collapse time, 7o ~ p~1/%; collapse
and fragmentation of gas clouds to form stars are faster when this ratio is small.
If high v peaks collapse at z > 10, Compton scattering off MWB photons would
produce very efficient cooling. If lower peaks form after this time, Compton
cooling would be unimportant and cooling much less efficient. It is still an open
question if these effects can produce a cutoff sharp enough at v.

The bias may result from processes intrinsic to the protogalaxies. For

instance, Dekel & Silk (1986) have argued that protogalaxies formed from high

IThe height of the peak is correlated with the time of collapse. Modeled as a spherical,
uniform density “top-hat” with a density excess §7y extrapolated to the present by linear
perturbation theory, the peak collapses to infinite density at a redshift z. such that

142, =6/1.68.

A threshold in § corresponds to a threshold in time, in that only peaks which collapse before
a certain time (above a certain redshift) form the galaxy or cluster.
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v fluctuations would have higher velocity dispersions and escape velocities than
low v peaks. High v peaks are more able to retain gas that might be blown
out of low v peaks by e.g. explosive processes (supernovae); they argue that
bright galaxies must originate from high density peaks (20 + 305) in the initial
fluctuation field, while typical peaks (~ lo,) either cannot produce a luminous
galaxy at all, or they make very faint dwarf galaxies with very low gas content.
This would lead to a selective bias, in which bright galaxies are biased but dwarf
galaxies do trace accurately the DM distribution. There is, as yet, no definitive
observational evidence to confirm or reject the assumption that £y, for bright

galaxies is different than ¢, for dwarfs.

6.7 Bias in a ‘Top-Down’ Scenario (Neutrinos)

A bias mechanism is generated automatically in any top-down scenario
where the perturbations below ~ 30 h~! Mpc have all damped out, as in neutrino
universe. Motions of the baryonic matter from proto-voids to proto-pancakes
are followed by collapses into flattened structures (‘pancakes’) accompanied by
streaming toward their intersections (‘filaments’) and knots where rich clusters
form; there the gas collapses dissipatively into high density regions, within which
cooling and galaxy formation start. Galaxies are thus limited to very specific
‘biased’ regions. However, if the efficiency of galaxy formation is similar in all
the collapsed regions, this natural bias just makes the timing-scaling problems
more severe; one has to invoke a mechanism that would suppress the formation
of galaxies in the high density regions, or enhance their formation in the low
density regions, but such a mechanism is not a natural outcome of a dissipative

pancake scenario.
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Dekel (1983) proposed an alternative non-dissipative pancake scenario,
which would arise from a hybrid scenario: if galaxies form independently of
pancakes, e.g. from another component of density perturbations, the timing-
scaling constraint becomes irrelevant: galaxies could have formed at z > 3 and
large scale pancakes at z ~ 1. Therefore galaxies would not be limited to
pancakes but rather be present everywhere, subject to the biasing mechanisms
that are relevant in general bottom-up scenario. Such a hybrid scenario could
consists of two types of DM, baryonic and/or non-baryonic, and of two types of
initial fluctuations, adiabatic and isothermal (see e.g. Valdarnini & Bonometto

1985).

6.8 The Kaiser Biased Model

As we mentioned previously (see e.g. § 3.2), according to the obser-
vations, the rich clusters of galaxies are strongly correlated at distances where
the correlation functions of the single galaxies have negligible amplitude, and the
correlation length increases with the scale of the system. Kaiser (1984) suggested
that the origin of such enhancement is primarily statistical and it is not due to an
underlying substantial power spectrum on cluster scales. By assuming that the
(rich) clusters of galaxies condense where the primordial (smoothed) Gaussian
ﬁuct‘uations exceed a suitable level vo,, then they exhibit a 2-point correlation
amplified with respect to the mass correlation, and moreover this amplification
increases when the scale is increased. We outline the mathematical details. We
want now deduce the 2-point correlation of the up-crossing regions above the
threshold vo,(R) in the case in which §p is Gaussian distributed. In the sim-

plest version of the Kaiser biasing scheme the galaxies trace the mass, therefore
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§(r) = £og(r)-
The 2-point correlations of the enhanced regions can be calculated as

follows: by choosing at random a point, the probability Pl(") that the Gaussian

fluctuation §p exceeds the sharp threshold vo,(R) at that point is given by

0 1
(v) _ B
P = /WO(R) dap(a) = 5 erfc(v/v2) , (6.5)

where p(a) is showed in Eq.(A.1). P is the fraction of space where ép >
vao(R). The probability PQ(”)(XZ,XQ) that in the points (in the neighborhood of

the points) x; and x. is §p > vo,(R) is given by

P (x5, %2) = / (R) e / daz plon;02) (69

Voo oo R)

where p(ay, ;) is the bivariate Gaussian in Eq.(A.8).
Finally, the 2-point correlation function for the enhanced (> vo,) re-
gions, £, is

(6.7)

if 7 = |x; — Xo|. The integral in (6.6) is difficult. The original approximation by

Kaiser (1984) for large v and small {2 (r) (linear regime) was

() - (6.8)

A suitable choice of v can therefore explain, as statistical enhancement,
the amplification of the 2-point cluster correlation function and the trend of
increasing 7. with richness by identifying richer clusters with higher levels. Other
authors have analyzed the model in more detail. Politzer & Wise (1984) obtained

the 2-point biased correlation in the form
14+ £D(r) m e 00, (6.9)
w®(r) = fg)(r)/cro(R), which generalizes (6.8). They also computed N-point
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correlations in this approximation
' N ) N )
14+ €M) = exp | 4 Zwﬁ-h) =11 (1 + E,(,“))(]h)) ) (6.10)
i>h j>h
similar to the Kirkwood superposition. Politzer & Wise’s result is only an ap-
proximation, obtained on the linear expansion of the exponent in the bivariate

(multivariate) Gaussian distribution. The exact result for sharp clipping was

obtained by Jensen & Szalay (1986), using a series expansion for any v

¢ (r) = i_ w(;), . (6.11)
Am(a) = 2™ Hnoi(a) (6.12)

VT Vv2© erfc(a) ,

where o = v/+/2, H, is a Hermite polynomial of order n, erfc is the comple-
mentary error function; the leading term of the series corresponds to the Kaiser
approximation.

All these results are obtained in the case of sharp threshold function,
say G(6) = 0(6 —va,), where 8 is the step function. Szalay (1988) considered the
effects on the biased N-point correlations of a general nonlinear biasing function

G(6).

In the next section we’ll consider a new “weighted” biasing scheme and
analyze preliminary results (Catelan et al. 1992): as we'll see, generalizations of

the previous expression can be obtained.

The calculation of ¢, we showed is physically meaningful when the two
points with field values @, and a, lie in the disjoint regions of the field above
the threshold, since only in such a case the two points correspond to different
proto-objects, but no condition is given to ensure that x; and x; actually lie in

different enhanced regions.
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Coles (1986) showed that, unless v is larger than = 3, typical sizes
of the regions are rather large, with a high probability of exceeding even 15 +
20 b~ Mpc. Some clusters are effectively counted more than once. This means
that the simple calculation presented previously will seriously overestimate the
two point cluster-cluster correlations at distances of this order (see Peacock &
Heavens 1985; BBKS). For very high threshold (v > 3), the problem is not so
acute, because the regions are then much smaller (see Coles 1986).

Another question is that all calculations based on the high-level region
approximation predict that £.(r) = 0 whenever the underlying matter correla-
tion function is zero (our ‘weighted’ biased scheme shows the same behaviour).
Monte-Carlo simulations of 3D noise by Otto, Politzer & Wise (1986a) reveal
that true maxima do not possess this property. Unfortunately, their analytic
expressions for the correlations of peaks are incorrect (Otto, Politzer & Wise
1986b) and they give no explanation of that. This point is particularly relevant
to the CDM model, in which contex biasing is usually discussed; the CDM cor-
relation function goes to zero at 7 ~ 18 A~ Mpc if Q = 1 (Otto, Politzer & Wise
1986a), but the observed cluster-cluster 2-point correlation is non-zero at this

distance.

In spite of the likely errors in the details of the statistical enhancements
predicted by the simple Kaiser model, the qualitative explanation of such en-
hancements in terms of peaks of the density field above some level is extremely
plausible. To avoid problems like those mentioned previously, what is required is
a calculation of the 2-point correlation function of local maxima, not just regions
above some level. The reason for studying true peaks rather than high regions
is that peaks define a true spatial point process, with no disjointness problem of

the sort discussed here.
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Unfortunately, the statistical properties of maxima of 3D random fields
are extremely difficult to compute rigorously. BBKS (1986) obtained asymp-
totic expressions for the correlation function of peaks of Gaussian random noise
€pk—pk(T) as 7 — oo, but these expressions can only be accurate for monotoni-
cally decreasing covariance functions. Further progress with peaks of 3D fields,
by handling fairly cumbersone relations, is given in Cline et al. (1987). The clus-
tering of local maxima of random Gaussian fields is also analyzed in Couchman

(1987a; 1987b), Coles (1989) and Lumsden, Heavens & Peacock (1989).

6.9 Weighted Bias and Galaxy Clustering

A weighted biasing scheme for galaxy clustering is considered. Contrary
to previous treatments, the biased density field coincides with the background
mass-density whenever the latter exceeds a given threshold. All the observables
in this approach can be continuously defined down to the unbiased case. The
two-point function of biased objects, which is computed for underlying Gaus-
sian density fluctuations, turns out to be quite different from that obtained in

previous treatments even at large distances and for high threshold.

A Weighted Biasing Scheme

In this Section we introduce a Biased Density Field (hereafter BDF)
starting from density fluctuations §g exceeding a threshold vogr. Specifically, ér
is the mass density enhancement §r(x) = (pr(x) — (p))/(p), filtered on a scale

R, defining the typical size of a given proto-object, and op is its rms value on

that scale. Qur BDF is defined as

pur(x) = pr(x) 6[6r(x) — vor] (6.13)
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§ being the step function. Note that p, p(x) actually represents the true mass-
density inside a smoothed sphere of filtering radius R centered on x for those
mass fluctuations which exceed the threshold. It is also useful to define the ratio
pr(v) = (pur)/(p), which represents the total mass fraction in ezcursion regions
(ie. those regions where the mass fluctuation dr exceeds the threshold vop).
In fact, by considering the brackets as spatial averages over a large (formally

infinite) volume V, we find

_ Sy dx pr(x) 6[8r(x) — vor] _ Jiney X pr(X) _ Mg(v)
Ji dx pr(x) Ji- dx pr(x) Mror ’

pr(v)

where Vr(v) is the total volume of the excursion regions. As a consequence,
the ratio ngr(v) = pr(v)/vr(v), where vp(v) is the fraction of volume above the
threshold, provides an estimate of the mean density inside an ezcursion region
normalized to the background mean density. Assuming that the mass fluctuation
is a Gaussian random field, we find

—v?/2

V2w v ’

pr(v) = %erfc(u/\/i) + IR v = [@(V) + uch]

= (6.15)

where erfcz = (2/+/7) [ dye™? is the complementary error function, while
the function ®(v) = ﬁue”zerfc(u/ﬁ) can be asymptotically expanded as

follows
@@)z1+§]—nn—737:. (6.16)

We also find

VOR

B(v)

nr(v) =1+ (6.17)

The function pgr(v) is plotted in Fig.l for different values of opg; its
maximum value, pr(vy,) > 1, is reached at v, = — 1/or. Both ppr(v) and nix(v)
tend to unity as ¥ — —o0, since in such a case our Gaussian BDF reduces to
the mass density field. The presence of negative mass events in the Gaussian

statistics causes pp(v) to exceed unity for some values of v». This behaviour is
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actually common to any probability distribution p(pr) admitting pp < 0 events.

This point can be made more clear by considering the ensemble averages

S (1tvor) 4PR PR P(PR)

S b . (6.18)
J2% dpr pr P(PR) + [3) (140 ) @PR PR P(PR)

pr(v) =

The integral f_(izj(l““’”“) dpr pr p(pr) in the denominator always con-
tains a negative contribution coming from pr < 0 unphysical events, which is
indeed maximized (in absolute value) when v = —1/oR.

It then follows that the Gaussian statistics can be consistently applied
provided that either op < 1 values are taken, ie. large smoothing scales, which
reduces the overall probability of unphysical events, or large threshold values,
v > 1/oR, are considered for a given smoothing scale,so that negative mass
events have little effects on observables such as ur(v), nr(v) and BDF correla-
tions functions.

In order to study the behaviour of the observables ur(v) and nr(v), we
have computed these two quantities for an underlying lognormal distribution of

density fluctuation (e.g. Coles & Jones 1991), namely

(e[ W[+ 6R)y1+oh]
P(or) = 27 ln(1 + o}) P 2In(1 + of) . (8.19)

In such a case we find

] In[(1+ vor)/y/1+ o] (6.20)

pr(v) = = erfe
2 21n(1 4 %)

which consistently takes its maximum value pr(v,) = 1 at v, = —1/op, cor-
responding to the unbiased case. The function 7z(v) is immediately obtained

dividing the above expression by the volume fraction above the threshold

1 In[(1+ vor)y/1+o%] | (6.21)

vp(v) = = erfc
2 21n(1 + o})
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BDF Two-Point Correlation Function

The next step is to obtain the BDF two-point correlation function,
which is defined as &, r(r) = (8,,r(x1) 6,r(%2)), where 7 = |x; — x| and by 1s
the BDF fluctuation

5,1(x) = pr(v) " [L + 6r(x)] 6[8r(x) — vor] — 1. (6.22)
One has
ph()[1 + &un(r)] =

= ([L+ 6r(x1) + 6r(x2) + 6r(x1) §(3x2)] B8n(x:) — vor) B[6r(x2) — vor]) -

(6.23)
It is straightforward to show that, in the Gaussian case,
w1+ )] = [ [ dads
(1+ochw)—20 (l+w)—a—+20‘2wi2—+0'2(1+w2) : (a, B3w)
R R Ga  TRY gaz TR dadp| DN
(6.24)

where w is the ratio of the background correlation function £z (r) (for the smoothed
field) to the variance, namely w(r) = €r(r)/ck. The joint probability (e, B5w)
is a bivariate Gaussian for the normalized field §gp/oRr, namely p(a,f;w) =
(2T %) expl—(a? + 57 — 2waf) /21 - w?)]

Some of the integrals in Eq.(6.24) can be performed leading to the

following expression

) 1l+ckw [ —al/a V—aw
lﬁ%(”)[l + Eu,R(T)] = “‘2’7——2%“[/ dae™ ?erfc (m) +

-v?/2 1 — 2 /1 2
ore€ v w OR w —-Uz/(1+w)
+ [ 1+w(l ———erfc | —= + . (6.2
[ w( ~]—wm)] N (\/ﬁ - w> o e (6.25)

The expression for the standard bias (Kaiser 1984) is easily recovered from the

latter equation, by taking the or — 0 limit at fixed v and w,

l r) = \/i < ae_az/zerc Vv — aw
1+ &, R(r) = ﬁ[erfc(y/ﬂ)]g/u d f (—-———2(1_w2)> . (6.26)
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Note that, as v — —oo, the BDF correlation function reduces to the background
one, &p(r).
The formula in Eq.(6.25), in the limit of zero lag, ie. for w — 1, yields

an exact expression for tha BDF variance

» _ (L+0R)O(w) +vor(2+vor) , (6.27)

g 2 Ly,
2R @(v) + vor)t (e¥7/2y/ 27 v)

which in the limit ¥ — —oo reduces to the background mass variance, o}.

Weighted Biasing Factor

An interesting approximation can be obtained in the limit of large dis-
tances, ie., for w < 1. By Taylor expanding Eq.(6.25) up to first order in w,

. . . 2/ —p?
which involves expressions such as e ™*"/(1+%) ~ (1 4 v?w)e~>" and

erfc (—\;—i %%) ~ erfc(l//\/ﬁ) + .\/guw e_v?/2, (6.28)

one gets
&r(r) = br(v)* ér(r), (6.29)
where we have introduced the linear biasing factor

or®(v) + v(1 + vog)
or®(v) + vo}k

br(v) = (6.30)

This result can be compared with the Kaiser’s expression (1984)

v

0'R<I>(1/)'

br(v) = (6.31)

Contrary to Eq.(6.31), our biasing factor in Eq.(6.30) reduces to unity
in the unbiased Gaussian case, bp(—o0) = 1. Also, note that Eq.(3.9) gives

br(v) =~ v/og in the high-v limit.
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High Threshold Limit

High threshold (v 3> 1) relations can be obtained both for pn(v) and
for the BDF correlation function, provided that w # 1. The first integral on the
r.h.s. of Eq.(6.25) can be approximated, using Mehler’s formula (e.g. Bateman

1953), by the asymptotic expression

1 oo 2 V—ow e
dae™* ?erfe : ~ eV, 6.32
24/2m /u ( 2(1 — wz)) 22 (6.32)

while in the second term erfc z ~ (wz2)~!/?¢=*", for = — oo. One therefore

obtains p,(v) = (2mv?)~2(1 + vo,)e ' /?, and

(1+2w) e’ (24voyvo, [(14+w)? ol (14)

1+é&,, =
Hon X T ) (tvo)r V 1-w

(6.33)

In the limit o, — 0 (actually for o, < 1/v) at fixed v and w we recover

the Politzer & Wise (1984) relation
1+¢,, =~ exp(viw) . (6.34)

On the contrary, for o, > 1, we get

(1+ )

= exp[v’w/(1 + w)], (6.35)

1+€IJR%

which is clearly not affected by the negative mass events of the Gaussian statis-

tics. This also reduces to Eq.(6.34) at large distances (w < 1).

The cosmological implications of this new biasing scheme have yet to be
explored. The results seem promising. To weight a proto-structure with its own
mass above a given threshold permits one to recover the unbiased observables
simply by taking the limit » — — oo, contrary to previous treatments. New
observables, like the mass fluctuation in the excursion regions, can be defined. In

general, the weighted peak-peak correlation functions are enhanced with respect
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to the classical Kaiser peak-peak correlations, overall at small and intermediate
scales (w ~ 1), while the standard expressions of the biased two-point correlation
functions are recovered at very large separations (w — 0), essentially because

the intermediate scale information is lost there.
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CHAPTER VII

Non Linear Gravitational Evolution: Perturbative Theory

The linear growth laws discussed in Chapter IV hold until § =~ 1. When
the perturbation amplitudes approach unity, non linear gravitational effects be-
come important. For instance, by using a simple spherical top hat model, it is
easy to show that collapse to a point of infinite density occurs at a time when (if
Q = 1) the Lnear density contrast is 6 ~ 1.68 (see Peebles 1980). However, to
follow the non-linear stage of the gravitational collapse is undoubtly very hard to
do in an analytical way and the interest in such a type of analysis is drastically
reduced. People are forced to resort to N-body techniques (Hansel et al. 1985;
Suginohara et al. 1991. Davis et al. 1985; Efstathiou et al. 1985; White et al.
1987a; 1987b, in the CDM framework), or various analytical approximations, as
the Zel’dovich approzimation (Zel’dovich 1970; Buchert 1989; 1992), leading to
another ones, the adhesion approzimation (see e.g. Gurbatov, Saichev & Shan-
darin 1989; Kofman & Shandarin 1989; Shandarin & Zel’dovich 1989; Kofman,
Pogosyan & Shandarin 1990) and, more able to follow the development of struc-
tures beyond the epoch of first caustic formation, the frozen-flow approzimation
(Matarrese et al. 1992); these approximations are useful for developing intuition,
but they are not a substitute for exact or numerical non linear solutions.

A very interesting new general-relativistic algorithm to study the non-
linear evolution of density perturbations of collisionless matter is given by Matar-

rese, Pantano & Saez (1992).
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Recently the interest in the analytical treatment of non-linear gravity
has grown and many efforts are devoted to understand the results.
The basic technique is the perturbative theory, the systematic develop-

ment of the perturbative expansion being obtained by writing

§=Y 60, (7.1)

n
i

where §(") = 0(6(U"), §(1) corresponding to the linear solution. Comparing terms
of equal order in Eq.(4.11), one constructs the differential equation for the n-th
term 6(), lower order solutions providing source terms for the higher orders.

The published literature on the perturbative approach is considerably
growing.

The evolution of cosmological adiabatic perturbations in the so called
weakly non-linear regime, when the second order contribution §(*) in (7.1) is not
negligible, was analyzed by Juszkiewicz (1981): he showed that second order
effects could induce tidal processes leading to the disruption of large scale inho-
mogeneities into smaller units; the articles of Vishniac (1983) and Juszkiewicz,
Sonoda & Barrow (1984) treat in detail the consequences on the galaxy clustering
pattern.

Fry (1984) calculates the evolution of cosmological density correlation
functions to lowest non vanishing order in perturbative theory for an initially
random Gaussian distribution; an extrapolation of the observed hierarchical form
of the two-, three- and four-point correlation functions ¢, ( and 5 (Groth & Pee-
bles 1977; Fry & Peebles 1978; Sharp, Bonometto & Lucchin 1984) emerges quite
generally. The form of the connected correlations induced by non-linearities in
the time evolution of primordial Gaussian fluctuations is discussed also in Goroff
et al. (1986). Fry (1986) stresses that the enhancement of clustering, proper of

the biased scenario, is a general feature of non-linear processing of the galaxy
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distribution. The non-linear gravitational evolution is essential to predict a cor-
rect interpretation of large-scale deviations from the Hubble flow, as showed in
Grinstein et al.(1987). The predictions of the Zel’dovich approximation, often
used to mimic the effects of non-linear gravitational time evolution, are com-
pared with those of the true non-linear regime in Grinstein & Wise (1987).
More recently, Coles (1990) uses perturbative technique to explore the possibil-
ity of originating more power on large scales in the standard CDM cosmogony.
Suto & Sasaki (1991) found that, even when fluctuations are in linear regime, a
non-linear correction might significantly affect the result for the corresponding
velocity field predicted in the framework of linear theory. They show also that
nonlinear effects either suppress or enhance the growth of perturbations on large
scales, depending on the spectrum shape; the second order-perturbations are
analytically tractable for all power-law spectra (see also the very recent Makino,
Sasaki & Suto 1992). Moutarde et al. (1991) in a rigorous Lagrangian pertur-
bative theory (at the end of calculations physical observables are known in the
rest frame of each fluid element), whose first order corresponds to the Zel’dovich
apprc;ximation, found that density contrasts up to § ~ 50 could be appropri-
ately described analytically. Bernardeau (1992b), using results of Bernardeau
(1992a), derives the exact relationship between the density and the divergence
of the velocity field, including all non-linear features.

The first direct observational suggestion that gravitational instability
in the perturbative regime operates on large scales is in Baumgart & Fry (1991);
the observed bispectrum obeys the hierarchical pattern, with a reduced three
point amplitude that is consistent with gravitational instability in perturbative
theory starting from Gaussian initial conditions. The trispectrum, marginally
detected, is again consistent with the hierarchical pattern.

More emphasis was showed claiming the measurement of another second
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order effect: the distribution of IRAS galaxies out to 140 A~ Mpc is such that the
inferred underlying distribution of density is found to be positive skewed, physi-
cally meaning that the superclusters (positive fluctuations) are smaller than the
voids (negative fluctuations), but depart more from the mean density (Saunders
et al. 1991). This result, with the detection of new superclusters and voids, “rule
out the standard CDM model at least the 97% confidence limit” (previous refer-
ence, pag. 37), already seriously challenged by the large-scale power detected in

IRAS (Efstathiou et al. 1990) and APM (Maddox et al. 1990) catalogues.

7.1 Second and Third Order Perturbations

Second order perturbative theory has been discussed in a more general
context (e.g. pressure included) by Hunter (1964) and Tomita (1967; 1971;
1972). Peebles (1980) indicates how to compute the growth of skewness (the
third central moment) in second order approximation; positive skewness has
been recently detected in IRAS data (Saunders et al. 1991) and analyzed by
Park (1991); the importance of the sign of the skewness of the linear (non-
Gaussian) density field as a predictor of the non-linear evolution has recently
been emphasized by Moscardini et al. (1991), Matarrese et al. (1991) and
Messina et al. (1992 and references therein) in the framework of CDM scenario
(see also Weinberg & Cole 1992).

Gaussian fields have zero skewness, but the presence of a non-zero skew-
ness in the e.g. IRAS data, does not necessarily imply non-Gaussian initial con-
ditions: even if the initial probability distribution of the mass density contrast
6 is Gaussian then symmetric, an asymmetry will inevitably develop later, as a

second order effect, under the influence of gravity. Indeed, § can grow indefi-
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nitely in regions where it was initially positive, whereas in the voids it can never
decrease below —1.

We show here how gravity can induce skewness in an initially Gaussian
distribution, computing and solving the second order solutions of the equations
of motion of matter. Next, we calculate the skewness in density field, assumed
Gaussian at early time (e.g. at recombination), also suggesting how to work out
the skewness in the more general case in which § is non-Gaussian at the begin-
ning. We conclude discussing how the observations can be used to distinguish
“conventional” models from an intrinsically non-Gaussian alternative. If some-
one is interested in the subject we advise Silk & Juszkiewicz (1991), Juszkiewicz
& Bouchet (1991), Martel & Freudling (1991), Coles & Frenk (1991) and Bouchet

et al. (1992).

Second Order Equations: Solutions

In comoving coordinates, the equations of motion for the pressureless
self-gravitating fluid are Eq. (4.7), Eq.(4.8) and Eq.(4.9).

The perturbative series for § and v may be written as
§=260 463 4. (7.2)

v v Ly® (7.3)

where § and v(™ are of order n; §() and v(1) are the linear solutions.
In particular, we consider only the growing mode §() o« D. The second
order contribution 81 + §® is a solution of the differential equation (4.11),

reducing to, once (4.12) is taken into account
8263 + 26a"19,6® — drGpys? =

= 4nGpy 617 1+ 020,601 8,81 + 720,05 v P (7.4)
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§® is related to the second order peculiar potential ¢(*) by
V2 = 4nGa’p, 6O . (7.5)

A common way to write (7.4) is

826® + 23a718,6® — dnGpy 6 = [47{'@/)(, + (%) §M24
D 2 D 2
[471‘@,0;) +2 (5> } 0.,6M g, AN & (5) 88501 8,85 A | (7.6)

where D = D(t) is a solution of (4.14) and AW is the linear gravitational
potential defined in (4.26). We can see that each side of Eq.(7.6) is homogeneous
in powers of t; we solve (7.6) in an Einstein-de Sitter universe: noting that

D? x §3) = 6,(x) D(t)?,
2
82D + 2aa”'0,D* — 4nGp, D* = = f(x,1) (——) , (7.7)
where, since 4rGpy, = 2/3t? and D/D = a/a = 2/3t,
8a(x)f(x,8) = 56M2 478,80 0,AM 1+ 28,8541 8,850

ie. by (7.7),

or

F=1D".
Therefore the solution of (7.7) is given by (Peebles 1980, Eq.(18.8))

52 = -?- 502 1 5,61 ,AM 4 -27- 8,051 8,851 (7.8)

It is not difficult to show that (§(?)) = 0, ie. mass is conserved.
We see from (7.8) that, to second order, the behaviour of ¢ is non local
(and in fact it depends on spatial derivatives): the mass fluctuation at the posi-

tion x depends on initial perturbations at other positions via AW (Eq.(4.26)).
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Physically this means that, differently from the linear local case, when density
fluctuation grows in amplitude, its spatial dependence, in comoving coordinates,
changes. Thus the gravity field does change direction and particles are not
accelerated in a fixed direction, as occurs in linear regime; the last term in
right-hand side of Eq.(7.8) corresponds to the linear peculiar velocity shear con-
tribution: indeed, if we write this, apart from a multiplicative factor, in the form
7o = (162577 — 83) $0, we get (BaBsANY = 32 5o (0s)”

Finally, if §(V) is Gaussian distributed, §() is no longer Gaussian dis-

tributed.

The second order velocity v(?) is solution of the equations

Bu(av®) = (v¥) . 7) v = agl®, (7.9)
8,6% + o'V - (v 4 s v) =0, (7.10)
where g(® = —a~1V$® is the second order peculiar acceleration. From (7.10)
(2)
@ —48 g — sy 71
v a 0(4Wpra> v (7.11)

Substituting in (7.9) and taking the divergence,
8261 + 24a718,6) — 4xGpy 5 =

=—a"'V- [(Bo +aa ) §0v) — g (v V)v“)] , (7.12)

which is another form of (7.4).
Because 6(2 o« D?, we have g(® o py a D?; alternative forms of (7.11)

are therefore

D[ 2g®
@ = = FOAVINS)
M “D drGppa +8V
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D
= q—

AR 2V A )]

= a%v{ (VA“))'Z—ZA(Z)} : (7.

-1
—
(W]
N

1
2
where A = ¢(2) /4rGpy, a® is the second order gravitational potential.

In an Einstein-de Sitter universe v(¥) ~ ¢, slower than 5§~ p1/3,
V Av® = 0. We stress the fact that v(?) is not parallel to the second order
acceleration g(¥: this is a consequence of the non locality.

Finally, we remember that v(*) is known only once §(?) is known. The
equation (7.6) can be solved exactly only if = 1, in which case all terms in
right-hand side have the same time dependence, making the equation separable.
For Q # 1 the equation (7.6) is not separable, and thus cannot be directly
integrated.

Approximate expressions of §(*) in non-flat universes are given in Fry
(1984) and in Martel & Freudling (1991), but the Eq.(7.6) is really solved, for a
general ) universe, only in Bouchet et al. (1992): using an elegant perturbative

theory in Lagrangian representation, they find

5 = -12- [1 - E(Q)/D?] 5<‘*>‘2+aa5<1>aaml>+% [1+ E(Q)/D?] 885018,85 A1

(7.14)
where E(f) is a very complicated function of {1, but in vicinity of @ = 1,

effectively in the range 0.05 < 1 £ 3,

E(Q) = -g - p2 o [(0 -1y (7.15)

from which (0.4% accuracy)

52 = % [1 + 29-2/63] 5002 4.,608, AW +-§ [1 - 29-2/63] 0.8s18,8, A1) .

(7.16)
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Therefore, the  # 1 solutions scale with time almost exactly like D*,
since §() oc AW o D(t), and E(Q) is extremely weakly sensitive to Q. This
property has been also noticed by Martel & Freudling (1991), who have inte-

grated an approximate time evolution equation for 612 with Q = 0.2.

~

We stop a bit for computing the Fourier transforms of §(2 and v,
although Peebles in his book (1980, §18) derives for an Einstein- de Sitter universe
the induced-by-gravity skewness of an initially Gaussian density field directly in
x-space, it is much more simple to do that in k-space.

We can obtain (2 directly Fourier transforming the differential equa-

tion (7.6) (* indicates convolution)

825® + 2aa718,6®) — 4w Gp, 61 =
D : D z ko
4w Gpp + (—5\) drGpp + 2 (b_) (ka5(1)) * (EE 5(1)> +

. D\? (kRS -, kekP
+ (5) ( = 5(”) * (75‘ 50)) . (7.17)

In the Einstein-de Sitter case, the left-hand side becomes 14 §(2) /9t?; therefore,

B0 4 0 1

- - - B
3{5%5(1 + (k260 % (’ZZ 5<1>> += (kk’: s >) (kkk 5<1>) , (7.18)

which is just the Fourier transform of (7.8).

5§ =

Explicitly (time dependence is understood)
§O) (k) = / K Tk k — K) SO 0k — k),  (7.19)

where we have defined the function

k-k'+g k-k\’
27\ kR

= UL E w4 o ) (7.20)

Jo(k, k')

i
~3} ot
+



p =k-k'/kE', P(r) and P;(p) being Legendre polynomials. Note that, because

of mass conservation, (5(2)(1{)) = 0.

For completeness, we give also the Fourier transform of v{2):

7®(k) = i 5 - /dk’ Jo(k' k — k) EO(K) 50 (k — k'), (7.21)
where
] L (k+X)-k
J(k k) = 2J:(k, k) — (*—7;2““
13 & 8
= S B+ o Pale) (7.22)

A more general expression of §(2), for a general () universe, is recovered

if one takes the Fourier transform of (7.14).

Third Order Equations: Solutions
§0) is solution of the equation
826 + 2aa16,6 — 4xGp, 6@ =

= 4nGpy (2652 + a7 (0a60u g + 8,6 0,01) +
+2a720,05 vMyBB | q725, 0, §01) y(e (15 (7.23)

however, from the third order on, the advantages of the Fourier transform for

computation become more than obvious; we get, from the previous equation,

826 + 24071 8,6®) — 4w Gp, §O) =

L ) ke . 2
= 4nGpy [2 81« 5 + (k=50) (7: ‘5(2)) + (k5) « (k_ o ﬂ
+ a2 (6k*) (k") 25007 5 508 4 5 5 5o 4 508 (7.24)
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In an Einstein-de Sitter Universe, because §(®) o« D? o t?, we have 8260 4
2aa"10,6() — 47 Gp, §3) = 460 /t?; using the second order results it is not diffi-

cult to show that

1 - - .
= W/dkl dk, dks 6D(k1+k2+k3—k)Jg(ki,kz,kg)5(‘>(kl)5(1)(k2)6(1)(k3) ,
(7.25)

where

oy (o k) 4Kk ke (s + k)
ko + kj)? 9 kK (ky+ks)?

4
Jo(ks, Kz, ks) = Jo (Ko, Kea) [ .

2k -k k-(ky+ks) (ko+ks)- ks 1k -k k-ks

i = 7.26
9 k¥ (ko+ks)? k3 9 k3 k3 ( )
The third order velocity v(? is solution of the equations
0o (av(3)> + (v(l) . V) v(@ 4 (V(Z) -V) vl = agl® | (7.27)
8,6 + a7V - (v(a) + 6Oy 4 5(2)\’(1)) =0, (7.28)

and, in an Eistein-de Sitter universe, v(3) ~ ¢3/3  slower than §(%); its Fourier

transform looks like

D ko dky dk, dk
c@o(l) — ;2 ° [ 2X18K2 0K
vk =te g / (27)°
Sp(ky + ky + kg — k) Ja(ky, ko, k) 6 (ke ) 69 (ko) 60 (ks) (7.29)
. k- -k k-(k; + ko) -
(ki ky k) = — S S .
Js(ki, ko, ka) = 3J3(ky, ko, ks) w2 Jo(ko, k3) (e, 1 k2)? Ja(ky, ko)

(7.30)
These solutions, although exact, are surely difficult to apply directly,
because of the presence of non local terms. In Nusser et al. (1991), an approxi-

mate interpolation of the contributions up to third order is given.

101



7.2 An Application of the Non Linear Theory: Skewness as a Cos-
mological Probe

We have now all the ingredients for calculating the gravitationally in-
duced skewness, starting from an initial Gaussian distributed random field §(") =
6,D; the skewness at high redshifts, when the second order effects are negligible,
is then

(60%) =¢(0) =0, (7.31)
where ( is the three point correlation function. The lowest order non vanishing
term is

(83) = 3 (W25 (7.32)

To evaluate this quantity, we have to multiply both sides of (7.8) by
612, than take averages. In k-space this is easily done; from (7.19) we derive

the intermediate result
<5(1>(k1) 5 (k,) 5(2)(k3)> =

(27 6p(k; + ks + k) P(k)) P(ky), (7.33)

10 ki-ky 4 (kl ~k2>2
7

EL
7T TR ki kn

where P(k) is the primordial power spectrum, then
(8% = —0_ [ diedic 7, X') P(k) P(K) (7.34)
(2m)8 ’

Because of the addition theorem for spherical harmonics

6 > Y™ (k) Y, ™ (k) = Bip) (7.35)

m

the integral in (7.34) is trivial; we get (Peebles 1980, Eq.(18.8))
3 34 o2 — 22
(%) = —¢€(0)* = 855 (67)°, (7.36)

where £ is the two-point correlation. The expression for Ss in k-space with Q = 1

was first derived by Fry (1984). Goroff et al. (1986) first properly included the
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filters Wx in their calculations and pointed out that S3 may vary with scale
when the slope of P(k) changes. Expression (7.36) takes a different form in the
case in which the primordial density distribution is non-Gaussian, as we shall
see.

The generalization of (7.36) for Q0 5 1 is given by Bouchet et al. (1992):

the parameter S3 depends extremely weakly on

34
53:———+

- Q% -1y, (7.37)

e Al

or, in other words, Ss is a very slowly varying function of time. This property
improves the prospects of using observational estimates of (¢§°) (Saunders et al.
1991) to distinguish gravitational instability models with Gaussian initial condi-
tions from more so called exotic scenarios, as pointed out in Silk & Juszkiewicz
(1991). The quadratic scaling law (7.36) obtained here from Gaussian initial
conditions and small §, with S3 expected to be constant in the conventional pic-
ture, is favoured by the IRAS data (Saunders et al. 1991; Bouchet, Strauss &

Davis 1991; Kaiser 1991) and the QDOT data (Park 1991; Coles & Frenk 1991).

Recently, Turok & Spergel (1991), in the framework of global tex-
ture models, and Scherrer & Bertschinger (1991), in general intrinsically non-
Gaussian models, computed the probability distribution of mass fluctuations &
and explicitly estimate the deviations from a Gaussian distribution in terms of

the skewness; what is found is that the skewness scales like
(8%) = 53(6%)°%, (7.38)

so that, for having an eventual agreement with data, we need 53 o (62)-172,
we see that the power of the test for non conventional models increases with

decreasing variance or, in other words, the possibility to detect non-standard
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departures from Gaussian distribution improves with the size of the sample.

The last generation of catalogues may actually allow to make that detection.

The smoothing operation, necessary to do theoretical predictions com-
parable to observational estimates, modifies the skewness; for a top hat filter,
Juszkiewicz, Bouchet & Colombi (1991) found that, in an Einstein-de Sitter
universe, there exists a dependence on the spectral index (see also Fry 1984)

34
53:—7——(3+n), —-3<n<1. (7.39)

IRAS data (Kaiser 1991) and APM data (Hamilton et al. 1991) in the
range 20 = 100 A~ seem compatible with (7.39) if n = —1; if a Gaussian filter is
used, S3 changes from 34/7 = 4.9, at n = 3, to 3.0 at n = 1. 34/7 seems to be
the saturation value of the skewness for the minimal small-scale power, n = —3.
The skewness 53 has been also estimated in recent N-body simulations (Bouchet
& Hernquist 1991; Weinberg & Cole 1991), with results in agreement with those
derived previously in the conventional scheme. We note that (7.39) contradicts
a recent claim of Coles & Frenk (1991) which states that the expression for S;
for the smoothed field “does not involve terms describing the initial spectrum”.
The problem is that they adopt as universal the value S5 ~ 3, deduced by Goroff

et al. (1986, fig.5) in the case n = 1 and Gaussian filter.

Skewness of a Primordial Non Gaussian Density Field

All the results previously presented have been obtained assuming that
the primordial density distribution is Gaussian. An obvious generalization one
may think to do is to extend the same techniques for computing the skewness
(&%) starting from a general non-Gaussian primordial density field; in this case,

we guess immediately, there is a contribution to the skewness from the lowest
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perturbative order: this is a ‘primordial’ contribution ie. already contained in
the initial conditions. However, because of the difficulty of the calculations (at
least for us!), is not so easy at all to compute the contribution to the skewness
from the second order terms, which are the terms which take into account the

non linear gravitational evolution.

We indicate here a manner for trying to compute the induced-by-gravity
skewness starting from a primordial non;Gaussian random field. We do this, ex-
tending the previoﬁs formalism, by working in k-space. However, it has been
suggested (Fry, private communication) that the same calculation can be prob-
ably more easily concluded if one chooses to work in x-space.

All we need are the previous results up to the second perturbative order,

(8o = (807) +3(60726)

i

¢(0) + 3 (M2 (7.40)

As in the Gaussian case, we compute the perturbative contribution
in k-space, but now there is the connected contribution from the four point

correlation
<5(1)(kl)g(l)(kg)gm(kg» = _-_(271r)3 / dk, dk; 6p(ka + ks — k3) Ja(ka, kp) ¥

x [(8) (16 )60) (1e2)60V) (kg )8 (key) )+ 2! (81 (11)5 (ka)) (50 (1)50)(1c,))] -
(7.41)

Instead of Eq.(7.34), one finds

1
(2m)°

3 (5105, ¢ = / dk dk’

1
(2m)?

6 J,(k, k') P(k) P(K') + [ 1,0 ke = =) Tk, KK (742)
where T'(k, k', k") is the trispectrum.
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Finally, the skewness for a general initially non-Gaussian random field

is

17 , 17 ]
<53>nc—<§(0)=76(0)'+é—1(5“)‘>+1, (7.43)
where we have defined the quantity I as
1 , k" 4
= "= — P kK k" 7.44
I L /dkdk dk {2 Py(p) + 57 Palp)| Tk, K ) (7.44)

and & =k +k + k7, T = ||, p the cosine between the vectors k" and 2.
From Eq.(7.44), we see that the skewness induced by gravity is different
from the Gaussian case, this implying a deeper discussion about its cosmological
significance.
Apart of integration in I, dependence on the §) value (but we suppose
that also in this case it is negligible) and on filtering the underlying field é has

yet to be discussed.

Kurtosis in Density and Velocity Fields

We conclude this section on perturbative techniques by computing the
fourth order moment induced by gravity, the kurtosis, in density field and veloc-
ity field, initially Gaussian distributed.

The actual catalogues surely are too poor for these observables to be
measured; however, Villumsen & Brainerd (1992) analyzing by N-body simula-
tions the highly nonlinear evolution of initially Gaussian perturbations, find that
the peculiar velocity field induced by gravity exhibits a strong positive kurtosis.
Roughly speaking, this means that the velocity probability distribution p(v) is
more strongly peaked near v = 0, but it has larger tails at large values of |v|
than the Gaussian distribution.

A non-Gaussian behaviour in velocity fields reflects the non-Gaussian

nature of the underlying density fields (the converse may not be true). Scherrer
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(1992) shows that the kurtosis of p.(v.) is positive for all seed models with ran-
domly distributed seeds and for all local non-Gaussian models; it is still unclear
whether this is a general result which applies to a larger class of non-Gaussian

models.

Since § is initially Gaussian distributed, the lowest order non zero con-

nected part of 771234 is of order 6 in s,

n o= (60(x1) 8" (x2) 6 (xs) §)(x,)) + c.p. (6 terms) +

+ (60(x1) 60 (x2) 6 (3¢3) 6 (x4) ) + c.p- (4 terms) . (7.45)
In particular the density kurtosis is given by (see App. B)
ky = n(0) = 6 ( §12 632y 4 (51360 (7.46)
It is really much more simple to work in k-space; we have
<5(”(k1) 51 (ky) 52 (k) 5(2)(k4)> =

(27!')3 50(1{1 + kg =+ k3 + k_;) X 4:P(k1) P(kg)x
x[Jo(—k1, ki + k3)Jo(ka, ke + k3)P(|ki + ks|)+
-+ Jg(kg + k3, —kz).]g(kg -+ k3, kl)P(ikg + kgl)] . (747)

We need now for the piece (5(1)3 5(3)) :
(50 (k) B0 (k) 5 (ks) 5 1)) =

— (27) 6p(ky + ko + kg + ky) 31 P(ky) P(k2) P(ks) Ja(ki, ko, ka) . (7.48)

Combining these results we get the integral expression of the kurtosis

ky(6),
n(0) = 2 /dk di' dk" P(k) P(K')P(k") [Js(k, k', k") +
(27[‘)9 ? ?
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+Jo(—k, k+k") o (K, k+ k") P(|k+k"|)+Jo( =k, k' +k") ], (k, K'+Kk") P(|k+k"])] .
(7.49)

To treat integral expression like this seems not easy at all, except for

some naive configurations (see Fry 1984). Goroff et al. (1986) treat similar
expressions in a CDM framework (P(k) = k) using standard Monte Carlo tech-
niques, for Gaussian-filtered density fields: if the normalization of the primor-
dial power spectrum is chosen so that (8%) is greater than 1/3 at a distance
Rh? = 5 Mpc, then the connected part of (§%) dominates over the disconnected
part indicating that for such normalizations the probability distribution for ép

is still highly non Gaussian at this distance (see their Fig.6).

We can apply the previous results for computing the excess of kurtosis
induced by gravitational evolution on the peculiar velocity field. We restrict the
analysis along one chosen direction, say &. The fourth order reduced moment of

the velocity field, to lowest perturbative order, is given by

ky(ve) = <val)(x1)vg)(x2) v (x;3) v&z)(x4)> + c.p.(6 terms) +

+ (0 (1) v (3x2) v (35) 0 (%)) + c.p. (4 terms) ,  (7.50)

because, due to isotropy, all odd moments are zero.

By using the second and third order perturbative results, we get

!
94 (oD ke kg B (ke + kS + k)
,(0) = o) [ e dicy iy L2 S A
75(0) (D) L O e e Al T ks + K2

P(k,) P(ky) P(ks) [jS(k17k27 ki) + jz(—k1,k1 + ka)jz(k'z, ky + k3)P(lk; + ka|)+

Jo(—ka, ko 4+ k3)Jy(ki, ke + k3) P([ky + kj)] - (7.51)
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APPENDIX A

Gaussian Random Fields

Let consider the homogeneous isotropic Gaussian random field §(x) =
[p(x) — (p)]/{p), with mean zero and variance o7 = (p)}/*. The pdf of § with

power spectrum P(k) is
p(6)d8 = (2m0%)"1? exp(— 6*/207) (A1)

where (§ 3.3)

o = % /OOC dk k? P(k) = £(0) , (A.2)

¢(r) being the 2-point correlation function. All statistical properties of § can
be expressed in terms of the correlation function {(r) and its derivatives or,
alternatively, in terms of integrals over the power spectrum. For instance, one

useful moment is

o2 = —3£"(0) = 517; INCIR{GE (A.3)

which is the mean-square derivative of the field along a line. One may define a

related coherence length

= To _ ip2y-1/2 A
Te = o <k ) ’ (‘ ‘4)

which measures the effective range of the correlations present in the field. Many
of the power spectra of interest in cosmology lead to a zero coherence length
(ie. an infinite mean-square derivative). This happens because such fields have
structures on all scales and are therefore not differentiable. The usual approach

is to smooth away structure on scales less than some scale of interest R (§ 3.3).
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Behind many statistical calculations is the joint probability distribution
of the values of the field §(x) and/or of the derivatives of the field § in N points

X1,-..,XnN, Which is a multivariate gaussian pdf
N —1/2 1
Py(ay,...,an) = {(Zvr)‘V detﬂl} / exp {_5 Z ozjﬂ/fﬁllah} . (A.5)
jh

M, = (ajoy) is the N x N correlation matriz. A simple example is the joint
probability distribution that & has a value a; = §(x;) and a value a; = §(x3) =
§(x; + r). To make things as simple as possible, we use normalized variables
o} = @;/0, and define a normalized correlation function (autocorrelation) w(r) =

€(r)/o?. The correlation matrix and its inverse are

1 w A 1 1 —w
M , M- =

1 —w?

, (A.6)

therefore,
plag, ap; w) = (271-\/1 — wf)_l exp[—(aj — 2w ayas + af)/2(1 —w?)]. (A7)

For those interested in the path-integral approach, we remember that,

for a Gaussian scalar random field (Feynman & Hibbs 1965)

P[§] o exp {—% [ xdy s(x) K(x,¥) 5(y)} , (A.8)

with [[d§]P[6] = 1, from which it is possible to obtain all the previous relations.
K is defined by the relations K = £~' and [dy K(x,y) K~'(y,2z) = §(x — z),
as in the usual field theory (see e.g. Negele & Orland 1988; Ramond 1989),
and therefore P(k) = 1/K(k), with K the Fourier transform of X. The math-
ematical theory of Gaussian random fields is given in books by Adler (1981)
and Vanmarcke (1983). Many properties are also analyzed in beautiful classical

works e.g. Chandrasekhar (1943) and Rice (1954).
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APPENDIX B

Cumulant Expansion

A general way of specifying the distribution functional (let suppose that

we are treating the continuous field case)
Plo(x)] d[é(x)] (B.1)
is by (all of) its moments
(5(x1) -+ 6(%x)) = pv(Xns- - » Xn) - (B.2)

A way for generating automatically these moments is by functional
differentiation (e.g.Monin & Yaglom 1971; Zaidi 1983; Fry 1985) of the moment

generating functional Z[J]

I <exp / dx §(x) J(x)> - / d[5(x)] exp / dx §(x) J(x) P[6(x)] : (B.3)

LAY
)u'N(X17 v 7XN) = 5.](}{1) . 5J(XN) lJ——-U .

(B.4)

From either the original definition (B.2) or this expression, it 1s apparent that
iy is unchanged by interchange of any subset of its arguments.

It is next convenient to introduce the generating function

K[J]=1n2]J] = <exp (/ dx §(x) J(x)> _ 1>C , (B.5)

from which one can obtain systematically, by functional differentiation, the con-

nected or reduced moments

bl 708) = g gl = 86k e (D)
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The ky are the reduced correlation functions of the distribution P[6(x)]d[6(x)],
also known as semi-invariants and /or cumulants in probability theory (Monin &
Yaglom 1971; Kendall & Stuart 1977) and in statistical studies of liquids (Rice
& Gray 1965), and related to the connected Green’s function of Quantum Field
Theory (Brandenberger 1985; Ramond 1989). In QFT, Z[J] is also know as the
partition functional or vacuum-vacuum transition amplitude in the presence of
the external source J(x).

By (B.6), one can state the cumulant ezpansion theorem writing

Z[J] = exp Z + (N /dxh Xp) > S(xy) - 6(xn))e (B.7)

from which, we see, one may reconstruct the generating functional In Z[J] from
the N-point connected correlation functions €M) (x;,...,xy) = (8(x1) - -+ §(xn))e-
The probability distribution functional P[§(x)] then follows from the (inverse)
functional Fourier transform of the functional Z[iJ], often called, in this case,
the characteristic functional of the distribution (see e.g. Fry 1985): therefore, in
principle, the hierarchy of N-point correlation functions completely specifies the
statistics of the homogeneous and isotropic continuous random field §(x)(however
see Bochner’s theorem, Reed & Simon 1980, theorem IX.9).

The cumulant expansion theorem is known in classical (e.g. Ma 1985)
and quantum statistical mechanics (e.g. Negele & Orland 1988) as the linked-
cluster theorem.

The reduced correlation functions ky have the desirable property that
kn(8 + &) = kn(8) + kn(8') and ky(ad) = aVky(8). More importantly, any
contribution to py which can be separated as (§)(§V~%) has been removed
from ky. Thus, ky — 0 as any subset of {xi,...,xx} is removed to infinite

separation.
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The first few v and ky are related by the relations (with p; = (8)=0)

/L2:k27
#3:k37
Hy = ]C;; +3!’C§,

ps = ks + 10 ks ks,
H7 = k’7+21k2 k;—; +35k3 k4+105k§ kg, (B8)

etc., where, for brevity, labels on the unconnected parts are omitted; one has to

take all distinct subgroupings of {Xi,...,xx}, for instance,

a(1,2,3,4) = ky(1,2,3,4) + k2(1,2) Ba(3,4) + Ea(1,3) k2(2,4) + Fa(1,4) k2(2,3).
(B.9)

The first few ky in galaxy clustering are known as ko(x1,%2) = &(212),
the two point function; ks(xy,X2,%X3) = C(i23, the three point function; and
ky(x1,%2,X3,%X4) = 71234, the four point function.

Finally, if one assumes that the random field ¢ is Gaussian distributed,
then all reduced moments ky of the distribution vanish for N > 3; since we have
subtracted out the mean also, this means that the distribution is completely
specified by its two-point correlation function (z) (ie. by its Fourier transform,
the power spectrum P(k)). Thus, the Nth moment, un = (6M), is obtained by
connecting all possible pairs of points: py = 0if N is odd, or py = (N — 1) EN?
if N is even.

The particular form of Z[J] in the case of Gaussian field is (Feynman

& Hibbs 1965)

Z[J] = /[5(x)]exp{—% //dxdy6(x)K(x,y)5(y)+/dx5(x)J(x)} .
(B.10)
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Some cosmologists state that the word non-Gaussian means nothing,
in the same sense that the word e.g. non-dog means nothing.

We disagree.

With the generic word non-Gaussian we characterize any probability
distribution with some higher reduced moment different from zero, and this is
not a null-statement; of course, this is not sufficient for picking out a specific
probability distribution. On the other hand, there exists one exception, namely
the distribution p(z) = §p(z — a), with only a mean and no nonvanishing higher

irreducible moments.
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APPENDIX C

Evidence for Low {2, Universe

The QDOT and Cluster Dipoles:

Evidence for a low 2, Universe?
Manolis PLIONIS !, Peter COLES ? and Paolo CATELAN !

1 SISSA - International School for Advanced Studies,

Strada Costiera 11, 84014 Trieste, Italy

2 Astronomy Unit, School of Mathematical Sciences
Queen Mary & Westfield College, Mile End Road

London E1 4NS, UK

Summary

We have reanalysed the QDOT survey in order to investigate the convergence
properties of the estimated dipole and the consequent reliability of the derived

value of 0Y%/b. We find that there is no compelling evidence that the QDOT

dipole has converged within the limits of reliable determination and complete-
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ness. Therefore the value of {1, derived by Rowan-Robinson et al. (1990) should
be considered only as an upper limit. Furthermore, we find strong evidence
that the shell between 140 and 160 ~A~! Mpc does contribute significantly to the
total dipole anisotropy and therefore to the motion of the Local Group with
respect to the Cosmic Microwave Background. This shell contains the Shapley
concentration, but we argue that this concentration itself cannot explain all the
gravitational acceleration produced by it; there must exist a coherent anisotropy
which includes this structure, but extends greatly beyond it. With the QDOT
data alone, we cannot determine precisely the magnitude of any such anisotropy
but any contribution to the Local Group motion from large scales would favour a
value of 19%/b;p.1s < 0.6, smaller than previous extimates based on IRAS galax-
ies; such a result would be consistent with the dipole measured from samples of
rich clusters, which are much more complete at large depths.

Key Words: Galaxies: clustering — Infrared: Galaxies — large-scale Structure

of the Universe.
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C.1 Introduction

Assuming that gravitational instability is the cause of the observed
peculiar motions, then the local deviations from a uniform Hubble flow provides
a powerfull tool to study the local mass distribution and therefore to estimate
the cosmological density parameter, {,.

Using linear perturbation theory (Peebles 1980), the peculiar velocity
can be related to the peculiar acceleration via v o< f(£o)g. The local peculiar
velocity (v) has been determined, to great accuracy, from the dipole anisotropy
of the Cosmic Microwave Background Radiation (CMB), which implies a Local
Group (LG) motion of ~ 600 km/sec towards [ ~ 270° and b &~ 30° (Smoot et al.
1991 and references therein), while the peculiar acceleration is usually estimated
from the dipole moment of the galaxy (or other mass tracer) distribution. To
use linear theory one explicitly assumes that the motion of the LG is determined
from large scales where non-linear effects can be ignored. It is also necessary to
assume that the extragalactic objects, used to determine the peculiar accelera-
tion, trace the underlying mass fluctuations. The latter assumption, however,
can be directly tested from the data since the determined peculiar acceleration
should be parallel to the peculiar velocity. Note, however, that if the extragalac-
tic objects are biased tracers of the mass distribution (Kaiser 1984; Dekel &
Rees 1987) then the picture becomes somewhat more complicated. If a simple
phenomenonological model for the bias is adopted, in which (6p/p)y = b(6p/p)m,
then the dipole moment test constrains a combination of b and {2,, namely Q96/p

(see Section C.2 below). To deduce the value of ), one therefore needs to know
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the value of b so the result is rather model-dependent even for this simple biasing
scheme. In more complicated (i.e. more realistic) biasing schemes (e.g. Dekel
& Rees 1987; Babul & White 1991; Bower et al. 1992) there might be no sim-
ple local relationship between galaxy numbers and mass density, making it even
more difficult to relate galaxy velocities to density perturbations. We should
therefore state at the outset that the weakest link in the chain of reasoning that
leads from velocity information to a value of ), lies in the choice of model for
the bias.

Furthermore, it is very important to note that this test can be applied
with success only if the galaxy (or other mass tracer) dipole has converged to
its final value within the limits of the catalogue used. That is to say that the
apparent convergence must not be dictated by insufficient sampling of depths
from which contributions to the LG acceleration could be significant. Since
most catalogues of extragalactic objects are either magnitude/flux or diameter
limited there is a significant possibility of this happening. The alignment of the
galaxy dipole with the CMB dipole direction and an apparent plateau of the
cumulative dipole over some scales should not a priori be considered as evidence
for the convergence of the acceleration to its final value because it could well be

that:

e The structure producing the LG peculiar motion could be very extended
and thus the alignment found within a small (inner) volume could just
result from the fact that the galaxy catalogue traces only part of a coherent

anisotropy which is larger than the sample can probe.

o Beyond an apparent plateau (which in most recent studies coincides with
the characteristic depth of the sample !) there could be a further contri-

bution to the dipole. In fact this actually seems to happen in the case
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of the cluster dipole; see Plionis & Valdarnini (1991) (hereafter PV91);
Scaramella et al. (1991), hereafter SVZ. There is no a prior: reason why

the acceleration should grow continuously with depth up to its final value.

Up to now various populations of extragalactic objects have been used
to estimate the peculiar acceleration induced on the LG: optical galaxies (Lahav
1987; Plionis 1988), IRAS galaxies (Yahil, Walker & Rowan-Robinson 1986;
Meiksin & Davis 1986; Villumsen & Strauss 1987; Strauss and Davis 1988 and
references therein; Rowan-Robinson et al. 1990, hereafter RR90), X-ray clusters
(Lahav et al. 1989), X-ray AGNs (Miyaji and Boldt 1990) and Abell clusters
(Plionis & Valdarnini 1991; Scaramella et al. 1991). Lahav et al. (1988) and
Lynden-Bell et al. (1989) found that the optical and IRAS dipole (using samples
with characteristic depths of ~ 60 A~ Mpc) are aligned with the CMB dipole and
conclude that the source of the LG motion isAwithin ~ 40 h~! Mpc. However,
RRI0 using the deeper 0.6 Jy IRAS survey with a characteristic depth of ~
120 h~! Mpec, find that the dipole continues growing up to ~ 100 h=! Mpc
and flattens thereafter while it is also roughly aligned with the CMB dipole.
Furthermore, PV91 and SVZ find that the dipole, as traced by Abell clusters,
builds up in the same way as that of the optical galaxies (although it misses the
local < 25 h~! Mpc contributions) but has a further dipole contribution from
depths > 120 — 150 A~! Mpc, while it is aligned with the CMB dipole direction
to within only ~ 5°—10°. PV91 have shown that the cluster dipole, estimated in
independent equal-volume shells of §V ~ 4 x 108 A3 Mpc® out to 1602! Mpc,
is roughly aligned in each shell with the CMB dipole direction which provides
evidence for a coherent anisotropy over a scale-length (diameter) of ~ 300 A~
Mpc. To ignore the gravitational pull caused by such large correlated structure

by assuming the dipole converges at a much smaller depth than 160A~! Mpc,
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would lead to a large overestimate of the value of {1,.

Under the crucial assumption that the optical (ESO4+UGC) and IRAS
galaxy distributions contain the source of the LG motion then the amplitude of
the optical and IRAS dipoles suggest that {1, ~ 1 with b,, ~ 2 and bpas ~
1.3 (but bear in mind the comments above about the simplicity of the bias
model adopted in these calculations). However, the value of (1, is sensitive to
contributions to the dipole from depths beyond the scales sampled by the optical
and IRAS catalogues and such contributions can significantly lower its value. In
fact, the rich cluster samples, which probe much greater depths than those of
galaxies, have led to a much smaller inferred value of 2, < 0.3 if the bias factor
for galaxies lies in its usual range of 1.6 to 2.5 (PV91; SVZ).

The question of convergence of the dipole has been addressed by other
authors (Juszkiewicz, Vittorio & Wyse 1990; Lahav, Kaiser & Hoffman 1990;
Strauss et al. 1992). These studies have, however, concentrated upon a model-
dependent view of the problem; that is to say, given a particular model of clus-
tering — such as CDM - at what depth can one expect the dipole to converge?
Or, put another way, how large a sample volume is required to contain the en-
tire source of the Local Group motion in a CDM Universe? Although these are
undoubtedly interesting questions to ask, it is in our view better to keep the anal-
yses as data-oriented (rather than model-oriented) as possible. We would prefer
to ask the question whether there is any evidence, given the data on galaxy clus-
tering and minimal assumptions about models of structure, whether the dipole
has conx}erged within the depths probed by relevant galaxy and cluster sam-
ples. With this point of view in mind, we decided to reanalyse the IRAS galaxy
dipole inferred from the QDOT survey, and compare the results obtained with
the dipole inferred from the distribution of rich clusters. The main questions

we shall ask are (1) Out to what depth is the sampling density of the QDOT
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survey sufficient to allow a reliable determination of the dipole? (ii) Is there
any evidence for a significant contribution to the dipole from scales larger than
~ 100A~" Mpc that would make the QDOT analysis consistent with the results
mentioned above obtained from samples of rich clusters?

.The layout of the paper is as follows: in Section C.2 we review briefly the
method we use for estimating dipoles and relating the result to {; in Section C.3
we give some details of the QDOT survey catalogue and apply our dipole method
to it; in Section C.4 we discuss the results in the light of other observations; we

state the main conclusions in Section C.5.

C.2 Dipole Calculations

C.2.1 FORMALISM

The multipole components of the galaxy (or other extragalactic mass
tracer) distribution are calculated by summing moments. The monopole and

dipole moments are:

1 1 1
= Z— Z ;3 = ZT—FHS'/.L (C.1)
3 n 1 T; 3 2
Q 4 — ¢(7'z) 7';'-2 47TH01 ? (C )
where
Lde
qs(r,-):/L (D) (C.3)

is a selection function to take into account the fact that at different distances we

sample different portions of the luminosity function. Lpin(r) is the luminosity
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of a source with the limiting flux-density at a comoving distance 7, estimated

by:
_cDy(2)
T =g Ty
Hy(1+ 2)

(C.4)
with Dy (z) the luminosity distance, Dy (z) = ¢, [qoz +(go — D[(1 + 2g02)'/? — 1” .
Throughout this paper we use g, = 0.2. Different values of g, affect the distances
only by a small fraction. Note that although in our notation the monopole and
dipole moments depend on the value of the Hubble parameter, their ratio does
not. Furthermore, it has been shown (PV91), that the relative uncertainties
in D/M are significantly smaller than in D, due to the fact that errors have a
similar effect on the values of D and M and therefore cancel out in their ratio.

The relatively small size of flux, magnitude or diameter limited galaxy
samples, especially at large distances, can introduce a net ‘discretness’ dipole and

large shot noise errors. The shot-noise (discreteness) dipole can be estimated for

a uniform population, sampled by N objects each having a weight w;, by:

(1-7)F = N*(w?)? (C5)
where w; = ¢(r;)~' r7? and the corresponding shot noise dipole to monopole
ratio is o, = 3 (wz)%/Né (w). Although this calculation gives an indication

of the order-of-magnitude of the dipole induced by shot-noise effects, 1t is not
accurate for realistic data sets because of the non-uniform nature of the sampling.
In order to compute the discreteness dipole and corresponding shot-noise errors

in this paper, we use Monte Carlo simulations as described below.

C.2.2 AN ILLUSTRATIVE MODEL

A reliable determination of the dipole from galaxy samples can be used

to determine the cosmological density parameter, ;. We have discussed many
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examples of this type of analysis in the Introduction, so we shall not go into
much detail here. Here, however, we wish to pay particular attention to the
question of convergence of the dipole and consequent uncertainty in the value of
{ls. Many authors (e.g. Juszkiewicz et al. 1990; Lahav et al. 1990; Strauss et
al. 1992) have discussed how one might expect the dipole to converge given a
particular model for the density field, such as CDM. We will take an alternative
approach in asking if there is any evidence in the observational data itself that
the dipole has either converged or not converged. We stress again that any
determination of Q, is only reliable if the total gravitational acceleration of the
local group is completely accounted for by structures contained entirely within
the sample volume and the value of {3, obtained depends upon the depth at
which the cumulative dipole converges to its final value. To show explicitly how
this happens we hall apply the formalism introduced in Section C.2.1 to a simple
illustrative model.

The gravitational acceleration induced at a point (e.g. the Local Group)

by the surrounding density inhomogeneity is

7 4G
g=¢f p(;a)“dz ==°D (C.6)

where p(r) is the continuous mass density and D is the dipole moment (C.2)
of a set of mass tracers. Using linear perturbation theory (Peebles 1980), we
can relate the peculiar velocity of the LG, due to the combined gravitational
field of all mass tracers, with the dipole moment and the value of {15, as follows.
We must first assume that the gravitational acceleration has converged to its
final value within the limits of the sample and that acceleration and velocity are
aligned. We now need to model the density distribution p(r) in (C.6), taking

into account the distribution of the mass tracers that are used. To do this, we
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first expand the mass density in spherical harmonics:
p(r) = po+8(r) 2+ .-,

The dipole vector, §(r), is the only term that contributes to the acceleration
so this is the term we need to model. For an arbitrary mass distribution, the
manner in which the dipole amplitude builds up as a function of depth can be
very complicated, but, for illustration, and without loss of generality, we assume
that the dipole builds up in two steps (as indicated by the cluster dipole in PV91

and SVZ):
5(r) = 6,(r)O(Ry — ) + 5(r)O(R2 — 7)O(r — H1) (C.7)

where ©(z) is the Heaviside step function; 8,(r) is the dipole due to the distribu-
tion of mass-tracers in the sphere [0, R,]; §,(r) is the contribution to the dipole
from the shell [Ry, Ry]. Assuming for simplicity that |6,(r)| = & (constant) for
r < Ry, |8,(r)| = 8 (constant) for By <7 < R, and |§(r)| = 0 for » > R, and

picking a convenient coordinate system, we can express the density p(r) as:

,

po + 6y cosd r € [0, Ry]
p(r) = j po + 82(cos § cos x + sin § sin ¢ sin x) r € [Ry,Ra] (C.8)
Po r > H;

where 0, ¢ are the usual angular coordinates and x is the angle between &,
and §,. 0 is also the angle from the CMB dipole direction. The gravitational

acceleration is then:

2

F4

9 1/
4 5p1\’ 2
] = S7Gupe [(Rl pl) + (AR 5""’) +2 (R1 5’”) (ARQ’—’E> cosx} :
- 3 Po Po Po Po
(C.9)

where p. (= 3H?/8wG) is the critical density and AR = Ry — R;.
If the mass tracer distribution (indicated with suffix ¢) is modelled in

the same way as in Eq. (C.8), we can express the monopole and dipole terms of
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the spherical harmonic expansion as:

M(< )—i/RZ (r)2dr = R (C.10)
> 22 T o Ptfrzﬂ—- 2 Pot .
3 Ry T Ry r
< 9 = — P i
|D(< 22)] y M Pt(f)rsdf‘*“/;?i pt(_t)rsdzJ

2

. . 1/
= [(Ri8p1e)® + (AR 8pa)® +2(Ribpr)(AR 8py) cos x| (C.11)

Using the standard “linear” picture of biassing, ie., (6p/p): = b(ép/p) it is

straightforward to show that

47TGR2QQPC [_-D.(S Zz)l
_ 1
gl 3b M(< 2z3) (€12)

and the resulting relation between v, and the dipole moment (expressed as the

ratio of dipole over monopole M, which is independent of H,) is:

Q3¢ D]
Up = dconv —3—57(3 dr:onv) P (013)

where v, is the LG velocity with respect to the cosmic microwave background
radiation rest frame, doon, = czo =~ RyH, is the depth at which the dipole
converges to its final value and b is the bias factor that relates galaxy to mass
overdensities and which is defined in the introduction. The Q€ factor comes in
when one uses the theory of linear gravitational instability to relate the peculiar

velocity to the gravitational acceleration (Peebles 1980).
C.2.3 COMMENTS

Although that we have worked out Eq. (C.13) on the basis of a two-step
model this result is valid whatever model one assumes for the dipole growth,

as would be expected from the fact that gravity is a conservative force. (For

example, Villumsen & Strauss (1987), Lahav et al. (1988) and Miyaji & Boldt
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(1990), have all used an even simpler one-step model to derive the same result.)
Equation (C.13) therefore holds for any continuous distribution &(r) since we
can approximate §(r) at each point by an infinitesimal step. Morover it is valid
whether §(r) increases smoothly until it reaches its final value or whether, for
example, it increases in finite steps with large plateau between them. We have
chosen the two-step model for illustration because it shows explicitly how such
a mass distribution could produce a dipole that apparently converges at a depth
less than R, (which is, by contruction the depth at which the dipole actually
converges). If one had a data set which samples space poorly in between R,
and H,, one might interpret the plateau as evidence for convergence and thus
overestimate the value of .

We shall not be attempting to fit this simple model to the data; it serves
only as a warning that one must be convinced that the dipole has converged
before attempting to infer a value of ..

RRI0 estimated the dipole from the QDOT sample and derived a value
of ), using a slightly different formulation from ours. We choose our formulation
to highlight the point that the value of {1, inferred depends crucially on the value

of dconv .

C.3 Application to the QDOT Survey

The QDOT data set is a sparse-sampled (one in six) redshift survey of
the IRAS galaxies with S > 0.6 Jy at 60-um. The original IRAS catalogue and
the area exclusion mask are described in RR90. Due to cirrus emission near the
galactic plane we limit our analysis to the |b| > 10° (as in the original work of

RR90). To get an idea of the depths traced by the QDOT sample we present in
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Figure 1 the space-density of QDOT galaxies evaluated in equal volume shells
with 8V =~ 1.2 x 10° A3 Mpc®. As expected from the fact that the IRAS
galaxy saml;le is flux-limited, the galaxy space-density is a steeply decreasing
function of distance. It is evident that at ~ 100 ™' Mpc the QDOT galaxy
space-density has dropped by a factor > 8 and therefore these depths are very

sparsely sampled.

-FIGURE 1-

We have estimated the galaxy weights (C.3) using the parametric form

of the luminosity function derived by Saunders et al. (1990):

B(L) x (—ﬁz—)) exp [—%5 log?, (1 + —L—:I(Lz_)>] (C.14)
with @ = 1.09 £ 0.12, ¢ = 0.724 & 0.031 and L. = 1084703 h=2 Lo, We
prefer to use this parametric form in order to test the stability of the resulting

dipole to the details of the weighting scheme adopted (see below). No significant

difference is found in the behaviour of the dipole if one uses the non parametric

form given by Saunders et al. 1990, but this form does not allow one to model
the uncertainties as easily.

The QDOT sample we use covers the regions with [b] > 10° (~ 82%

of the sky), while there is still a ~10% area not covered. In calculating the

multipole components of the QDOT survey we must take into account the regions

not surveyed. Our approach has been to use a composite method:

e The contribution to the dipole and to higher order moments of the excluded
region |b] < 10° is estimated by expanding the observed surface density
of IRAS galaxies using spherical harmonics (I < 2) and correcting the
coefficients of the expansion for the masked region (cf. Yahil et al. 1986;

Lahav 1987; Plionis 1988, 1989; PV91).
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e Since the boundaries of the remaining ~ 10% of unsurveyed sky are rather
complicated we estimate its contribution to the dipole by assuming a uni-
form distribution of IRAS galaxies, having the average weight (as estimated

from the rest of the sky).

Note that we have corrected the galaxy velocities to the LG rest frame
and we have excluded all galaxies lying within 2 2~ Mpc of the LG centroid as
well as all galaxies with a luminosity < 10® A=% Lg (in accordance with RR90).

Once the weights have been constructed and the correction for missing
areas has been performed, one can determine the behaviour of the monopole
as a function of radial depth. This is shown in Figure 1 (with an arbitrary
vertical scaling). Note that, although the density of galaxies is falling rapidly
due to the selection of brighter and brighter galaxies, the monopole increases
with depth. If the monopole had not carried on increasing in this way, one could
have immediately concluded that sampling was too poor to make a reliable
statement about the convergence of the dipole (PV91). On the other hand, a
given monopole contribution could be made up of a large number of galaxies,
each with the same weight, or just a few galaxies each with a much bigger weight.
In the first case, the dipole properties would probably be well-defined but, in
the second, there will be uncertainties because of small number statistics and
also the fact that the weights require accurate knowledge of ®(L). Thus, the
continued growth of the monopole is a necessary condition for a ‘good’ dipole
determination but not a sufficient one.

We now proceed to estimate the cumulative moments.of the QDOT
galaxy distribution in 20 distance bins each of width 10 A~! Mpc. In the light
of the above discussion, we must also estimate the shot-noise dipole produced

just by virtue of the small number of galaxies sampled. We do this, using the
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same binning, by randomly redistributing the positions of the galaxies found in
each bin. In this way we conserve the observed QDOT selection function; RR90
applied a similar method in their analysis but ours is much faster since we do
not generate a random 3-d catalogue each time. We perform 50 such Monte-
Carlo simulations and we then obtain the net QDOT dipole by subtracting
the shot-noise dipole from the raw one. In Figure 2 we present the net QDOT
dipole (filled circles), the raw dipole (dashed line) and the shot-noise dipole (open
circles); errors are estimated from deviations around the mean simulation dipole.
Although the uncertainties are quite large, the dipole certainly seems to have
converged to its final value at ~ 90 to 100 ~~! Mpc (in agreement with RR90):
within this range the QDOT dipole points only ~ 16° away from the CMB
dipole direction. The corresponding net amplitude (|D|/M (< 100 Mpc) ~ 0.28)
implies byp.1s Q76 ~ 1.5, a value which is about 20% larger than that derived
in RR90. We are not quite sure why we get such a different answer but it
can probably be attributed to the different way we choose to deal with regions
of low galactic latitude (|b] < 10°). We prefer to extrapolate the structural
pattern of the surveyed to the unsurveyed sky, using the spherical harmonic
expansion to fill in the missing regions. RRI0 replaced the missing regions with a
uniform (Poisson) distribution of objects. We believe our method makes a more
reasonable estimate of the contribution to the total dipole from the obscured
region.

As we have discussed above, since the space density of QDOT galaxies
is extremely low at large depths, distant galaxies are assigned an extremely large
weight (Eq.(C.3)). The dipole contribution from these depths might therefore

be extremely sensitive, to the details of the luminosity function.
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-FIGURE 2-

-FIGURE 3-

C.4 Evidence for Contributions from Large Scales: Comparison with
the Cluster Dipole

The dipole shown in Figure 2 certainly seems to have converged by
around 100~~! Mpc but how strong a statement can we make about whether
there is any contribution to the dipole from distances > 100 A1 Mpc when the
sampling density and uncertainty in the luminosity function make the conver-
gence of the amplitude of D/M difficult to determine?

To answer this question, we decided to look at the way in which the
dipole changes as we increase the integration depth, not just in amplitude but
also in direction. We find that when we integrate up to ~ 90 A~! Mpc the
dipole direction found by successively adding shells of radius 10 A~1 Mpc is
consistently aligned with the CMB dipole direction to an accuracy of ~ 15°,
However, continuing the integration to larger volumes we find that the dipole
direction deviates systematically from the CMB dipole direction by a random-
walk only to be pulled back to the vicinity of the CMB dipole when we encompass
the shell at 150 + 160 2~! Mpc where the Shapley concentration lies (Shapley
1930; Scaramella et al. 1989; Raychaudhury 1989). In Figure 4 we plot the
QDOT dipole direction at each step of the volume integration. As we go to
greater depths, the deviation from the vicinity from the MWB dipole direction

as well as its consequent realignment is apparent.
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-FIGURE 4-

This is exactly the behaviour we would expect if the LG motion were
influenced by structures at the these depths. In order to study the significance of
the apparent influence to the dipole of the 150 A~" + 160" Mpc shell, we have
determined the incremental dipole within equal volume shells of §V ~ 3 x 10°
k=3 Mpc3. In other words, we measure the dipole contributed by each shell
separately. In order to take into account the direction of each shell dipole, we

define a signal to noise ratio (S/N) as follows:

S |D|/M x cos(Abms)
N o ’

D/AM

(C.15)

where Af.mp 1s the angle of deviation between the shell dipole and that of the

CMB and o is the shell shot-noise dipole. In Figure 5 we plot S/N for

D/Ar
each shell and it is evident that the only significant contributions to the total
integrated dipole come, as expected, from the first bin (~ 40) but also from
the fourth bin (~ 1.5¢) where the Shapley concentration lies. This finding is
in agreement with the results of the cluster dipole (see PV91 and SVZ) which
shows that up to 30% - 35% of the total dipole comes from depths 100 <~ < 160
h~! Mpc. It is surprising that we can see anything given the uncertainties at
such a distance but, even though we do find evidence of a signal, the QDOT
survey samples depths beyond ~ 100 A~! Mpc so sparsely (Figure 1) that we

cannot determine the precise contribution of fluctuations at such depths to the

LG acceleration using this data set.

-FIGURE 5-

What we can do, however, is demonstrate the remarkable agreement

between the incremental QDOT dipole and the corresponding results from the
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cluster dipole of PV91. Table 1 shows the equal-volume shell limits, the number
of clusters and IRAS galaxies respectively in the shell, the directions (in galactic
co-ordinates) of the cluster and IRAS dipoles and the mis-match angle between
these vectors and the CMB dipole vector. The agreement is remarkable for
the 0 = 99 and 142.8 + 157.3h~! Mpc bins particularly in the outer shell when
one considers the huge drop in the number of IRAS galaxies out to this depth.
One could argue that this contribution to the dipole is only aligned with the
CMB vector by chance and it is really only a shot-noise effect. However, the
probability of two random vectors aligning in this way is less than 3 x 10~
while the joint random probability that both mass tracers (Abell clusters and
IRAS galaxies) are aligned with the CMB dipole within the indicated angles,
assuming that their respective distributions are independent of each other, is
less than 10~7. Although the two dipoles are aligned at around 150~ Mpc, the
difference is that the cluster dipole shows a clear increase in amplitude at this
distance whereas the QDOT dipole does not. Without such a clear increase in
amplitude our arguments are bound to be based upon circumstantial evidence.
On the other hand the shot-noise errors we have estimated are certainly large
enough to mask a 25 percent contribution to the QDOT dipole at this distance.
It is not unreasonable therefore to interpret our results as evidence that the
apparent convergence of the QDOT dipole is just due to poor sampling and
that the real mass dipole converges at a much greater depth as indicated by the

cluster dipole.

-TABLE 1-

Some indications of the magnitude of the contribution from large scales

to the LG motion can be seen in other work. Raychaudhury (1989; 1991) argues
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for a contribution < 15%, while the cluster dipole analysis (PV91; SVZ) sug-
gested a ~ 35% contribution. Note, however, that Raychaudhury’s limits refer
to the contribution to the dipole of one structure only, the Shapley concentra-
tion. PV91 estimated that the contribution of this structure is about 20% of the
total dipole, which leaves about 15% to be due to other sources on scales > 100
h~! Mpc. In effect what we find from the QDOT sample (Table 1), as well as in
PV91, is that the dipole direction of the shell between 142.8 and 157.3 h~! Mpc
points towards the CMB direction and not towards the direction of the Shapley
concentration. This, in turn, implies that there is a correlated structure at this
distance that consists not only of the Shapley concentration but also has con-
siderable extent around the shell. This indicates that the ~ 15% contribution
to v, derived by Raychaudhury, should be probably considered as a lower limit.
In any case any contribution to the dipole from scales larger than the apparent
convergence scale of ~ 100 A~' Mpc implies a lower value of {1, than what we
derived in section 4 (and from the RR90 value). For example, a contribution
of 20% and 35% to the dipole results in £, ~ 0.4 and ~ 0.3 respectively (for
biras = 1). A flat universe would require b;p4s > 1.8. Additional constraints
on b are obviously needed if we are to reach an unambiguous conclusion about
the value of Q,. Some steps in this direction were made by Lahav, Nemiroff
& Piran (1990) who calculated the correlation functions of galaxies selbected by
different criteria. The amplitude of the correlation function scales by b* in the
linear bias model (Kaiser 1984). If different, for example, optical and infra-red
selected galaxies possess different bias parameters b then they should therefore
have different galaxy-galaxy correlation lengths (defined to be the separation,
To, at which £(r,) = 1). By comparing the auto- and cross-correlation functions
of the ESO/UGC and IRAS samples of galaxies, Lahav et al. (1990) find that

bopt/biras =~ 1.7. In order to reconcile this and the dipole result with Q, = 1
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we require b,, =~ 3; not impossible, but rather large for comfort. All this is
predicated on the linear bias model being correct, which is by no means certain.

The picture that is emerging is therefore that there might well be a
significant source of gravitational acceleration on a scale of ~ 150 k™! Mpc which
appears clearly in the cluster data but is masked by uncertainties induced by
the sampling properties. The actual distribution on large scales might therefore
be reasonably well modelled by the simple picture described in Section C.2.2.

Tf this is true then it is an interesting corollary of Eq.(C.10) that, in the shell

where 3 is the fractional contribution to the total dipole from that shell. This

[Ry, R;] we have:

implies that the density fluctuation of QDOT galaxies in the shell [100,150] A~!

Mpc is ~ 23 the density fluctuation in the [0,100] A~" Mpc shell.

C.5 Conclusions

The main conclusion from this work is that there is no compelling ev-
idence that the QDOT dipole has indeed converged to its final value within
the sample volume. Comnsequently, the value of Q96/b quoted by RR90 should
be interpreted only as an upper limit. Furthermore, even though the QDOT
survey samples the galaxy distribution only very sparsely on scales > 100 h~!
Mpec, there is circumstantial evidence of a contribution from distances out to
~ 160 ! Mpc because there is a strong alignment of the incremental dipole at
that distance with the MWB dipole vector. The most obvious source for this
contribution is the Shapley concentration, which is known to contribute around

15 % of the optical dipole (Raychaudhury 1989). But if the Shapley concentra-
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tion were the only source of the dipole anisotropy in the relevant distance bin,
then the incremental vector in that bin should point in the direction of Shap-
ley. It doesn’t; it points in the CMB direction. There must therefore be some
correlated structure in this distance bin that includes the Shapley concentration
but also has significant extent around the shell. Although this structure is not
visually prominent in the QDOT data set because of the low sampling density,
we interpret the alignment as strong circumstantial evidence that there is sig-
nificant structure in the galaxy distribution on scales ~ 150 A~' Mpc; we cannot
be more precise about the magnitude of its contribution to the dipole because
the sampling is so poor.

We stress again that, in this respect, the QDOT data set possesses sim-
ilar properties to the cluster catalogues analysed in PV91 and SVZ from which
one infers a rather low value of Q%6/b. Bearing mind the large incompleteness of
QDOT and the consequent insensitivity to structures beyond ~ 100 h~! Mpc, it
is impossible to derive anything other than an upper limit on Q%€/b;r4s < 0.6
from this data set if there is such a contribution from this scale. Although the
clusters (which are presumably much more biassed than IRAS galaxies) suggest
a value Q%6/by,, < 0.2 (PV91) which is consistent with the IRAS dipole as
long as we interpret the IRAS dipole as an upper limit rather than an exact
determination. We should stress that the reason we get a higher value for the
IRAS dipole than clusters might be nothing to do with a different bias for the
two sets of objects; it could well be just because the cluster dipole contains the
correct contribution from large scales whereas the IRAS data misses this. Thus,
the QDOT and cluster data together suggest a low value of (), unless there is
compelling evidence of gross systematic errors in the cluster catalogues and the
QDOT dipole alignment at 160 2" Mpc is a fluke.

We stress that this analysis is based on the assumption that any bias
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that exists can be modelled by the simple linear model mentioned in the intro-
duction. If the appropriate value of b for IRAS galaxies is around unity, as has
been suggested (RR90; Saunders et al. 1991) then our results are clearly incom-
patible with a flat 2, = 1 Universe. The simplest interpretation would then be
that we live in an open Universe with clusters moderately biassed, as expected
on simple theoretical grounds (Kaiser 1984). IRAS galaxies may even be less
clustered than the total mass distribution if 0, < 1. An {2, = 1 Universe is not
excluded by these results, but the price to be paid is a much more complicated

biassing scheme that would require much more detailed modelling.
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Shell Limits TRAS Galaxies Rich Clusters

(h~! Mpc) N l° b Al N [ b° Af

0.0-99.0 1181 2519 34.7 15.8 50 247.1 245 18.9

99.0-124.8 225 120.2 23.8 120.5 40 325.6 11.3 56.2

124.8-142.8 118 338.7 -47.6 97.9 47 2836 6.2 256

142.8-157.3 74 260.7 39.1 13.6 49 2715 214 64

157.3-169.4 50 339.1 -75.5 11l1.5 36 69.1 5.7 142.5

Table 1. Incremental dipole in each of 5 equal-volume bins for both QDOT
TRAS galaxies and Abell and ACO clusters (from PV91). The columns give (i)
the radial distance limits of each bin; (ii)-(v) the number of QDOT galaxies in
the bin, the dipole vector direction for that bin and the difference, Af between
this vector and the CMB dipole vector; (vi)-(ix) give the number of clusters,

dipole direction and CMB offset angle for the cluster data for comparison.

141



Figure Captions

Figure 1. The space density of QDOT galaxies in equal volume shells.

Figure 2. The QDOT dipole (filled circles) with its estimated errors given by
equation (5), together with the raw dipole (dashed line) and the dipole simulated

by reshuffling the galaxy positions (open circles).

Figure 3. The effect on D/M of varying the luminosity function parameters by
lo. We plot the ratio of the D/M obtained with different luminosity function
parameters to that obtained with the “standard” choice. The upper curve is that
obtained if e, o and L. all lie at the bottom end of their allowed 1o uncertainties
and the lower curve shows what happens if these parameters take values at the

top end of their uncertainty ranges.

Figure 4. The QDOT dipole (cumulative) direction at each step of the integra-

tion. The CMB dipole direction is marked with an asterisk.

Figure 5. The Signal-to-Noise ratio, S/N, for each equal volume shell as a func-
tion of distance (see text). The only significant contributions to the integrated
dipole come from the nearby shell (S/N ~ 4) and the shell between 140 - 160

h=! Mpc (S/N =~ 1.5).
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