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Introduction

This thesis is a survey on weak interactions of quarks at low energy in the
framework of the Standard Model. By low energy we mean those phenomena in

which the propagation of the W vector boson is unimportant.

The first half of the thesis deals with phenomenology. In chapter one we ex-
pose the elements of the Standard model relative to the quark mixing, and describe
the most recent determinations of the CKM matrix real angles. A fundamental
test of the Standard Model can be realized in this sector by overconstraining the
parameters of the quark mixing matrix. As it is stressed, non perturbative effects
of strong interactions play generally an important role in quark weak processes.
The theoretical task is that of evaluating the matrix elements of the weak Hamil-
tonian between hadronic states. An improvement of the theoretical techniques is

shown to be necessary.

In chapter two we discuss particle-antiparticle mixing. This kind of processes
allows a determination of the C'P violating phase in the CKM matrix. We limit
ourselves to a combined analysis of ex and z4; the first parameter describes C' P vi-
olation in the superposition of the neutral kaon states while the second determines
beauty oscillations in the B system. The experimental value of €', the parameter
describing C P violation in kaon decays, is still controversial and we do not report
the theoretical estimates. The computation of perturbative QCD corrections to

mixing amplitudes is a very technical and complicated topic and we give an outline



of the present status. The main uncertainties in the theoretical predictions do not
come however from corrections at short distances but from the unknown value of
the top quark mass and of the hadronic matrix elements of kaons and B-mesons.

The second half of the thesis deals with the most promising techniques avail-
able at present for the understanding of strong dynamic in quark weak processes.

In chapter three we expose the general theory of effective Hamiltonians, to-
gether with some popular applications. This approach constitutes in effect a renor-
malization group strategy in that it separates the effects of interactions acting at
different mass scales.

In chapter four we apply the theory of effective Hamiltonians to strong inter-
actions, in particular to bound state dynamic, in the limit in which the mass of
the heavy quark is very large. The contributions to the amplitudes of high energ
strong interactions can be then systematically computed in perturbation theory.
The effects of low energy strong interactions can be isolated in the matrix elements
of a series of operators generated by the effective theory. There are symmetries in
the effective theory that are not present in the full theory and that lead to many

interesting physical predictions.



Chapter 1

Quark weak interactions
in the Standard Model

1.1 Introduction

The Standard Model (SM) of electroweak interactions formulated by Glashow,
Weinberg and Salam in the late sixties [1] describes in an excellent way the phe-
nomenology of weak interactions up to the higher energies so far explored, E ~
100 GeV. It is a renormalizable chiral gauge theory based on the SU(2); ® U(1)y
Lie group. The structure of the SM, in particular the fermion spectrum, is mainly
motivated by phenomenological considerations. In order to reproduce the correct
low energy weak interaction phenomenology, left handed quarks and leptons are

assigned to weak isospin doublets of the fundamental representation of the SU (2)r

(&) () () g

where dj, sy... denote superpositions of the mass eigenstates (see sect.1.2).

group:

Charged weak interactions are then produced by exchange of gauge field quanta
(W bosons) associated to the off-diagonal generators of the SU(2); group. Right

handed fermions like ug, dg, eg... are singlets with respect to the weak isospin.
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Hypercharges Y are assigned to fermions f using an analogue of the Gell-

Mann-Nishijima formula:

Y(f) = QUf) — (/) (2)

where Q(f) is the observed electric charge of fermion f. It is possible including
QED in the gauge interactions requiring the combination of generators Q = I3 +Y
to not suffer spontaneous symmetry breaking. The vector field coupled to the cur-
rent Q is identified with the eleciromagnetic field A,, and it is a linear combination
of the neutral SU(2)s and U(1)y gauge fields. The orthogonal combination is the
neutral Z9 field, and generates neutral weak current processes.

In the minimal Standard Model spontaneous symmetry breaking (SSB) of the
SU(2); ® U(1)y group down to U(1)em is realised with an isodoublet of scalars
in order to account both for the short range of weak interactions (~ 107*%cm)
and for fermion masses (the generation of quark masses in the SM is discussed in
detail in the next section). With SSB 3 degrees of freedom of the scalar doublet
are transformed in the longitudinal polarization of the massive vector fields. We
are then left with a real scalar field, which is identified with a physical boson called
the Higgs particle. The existence of the Higgs is a genuine prediction of the theory.

SM incorporated successful models of particle interactions like the old V-
A theory, QED, the quark model and current algebra and led to the successful
predictions of the existence of neutral current processes and of the W and Z vector
bosons. The masses and the properties of these particle were predicted in terms of
low energy parameters only. In view of its theoretical consistency and experimental
reliability it is naturally assumed as the standard to which compare experimental
results.

A sector of the SM that still needs a detailed verification is that of weak
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interactions of quarks. It is necessary to measure the parameters of the quark
mixing matrix with a high precision in order to make decisive consistency checks.
There is also a further physical interest. The origin of fermion masses and of
mixing angles is not explained in the SM and is a fundamental open problem in
particle physics. Weak decays and especially particle-antiparticle mixing are very
sensitive to new interactions up to fairly high mass scales scales and constitute the
only manifestation of the CP-symmetry violation. Let us mention some examples.
i) The more stringent lower bound on the mass of additional W bosons present in

left-right symmetric models

Mw, > 1.6 TeV (3)

comes from the mass difference of neutral kaons AMy.

ii) The first indication of a massive top quark was suggested by the observation of
a relatively large amount of B — B mixing [2].

iii) Historically one of the first dynamical evidences of the charm quark, together
with an estimate of its mass M, ~ 1 GeV, came from the observed small value of
AMg (GIM mechanism [3]).

With respect to purely leptonic processes, as for example p decay, the study
of weak process involving quarks is relatively involved due to the interplay be-
tween weak and strong interactions. We assume strong interactions are described
by Quantum Chromodynamics (QCD). Quarks interact strongly and are never ob-
served as asymptotic states (particles); theoretical predictions of weak transitions
amplitudes can be obtained only if one is able to compute matrix elements of the
weak Hamiltonian between physical hadronic states. Quark weak processes are
generally much affected by strong interactions acting at every mass scale present

in the theory, like the inverse of the confinement radius R™!, quark masses, W
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mass etc... The main theoretical tool developed until now for dealing with strong
interactions is the concept of effective theories. The basic idea is that of separat-
ing the effects of strong interactions acting at different mass scales. Since QCD
is asymptotically free, high energy strong interactions are relatively weak and can
reliably computed with perturbation theory (as goes to zero only logarithmically
and it is a too crude approximation to simply neglect them).

Low energy strong interactions, acting at mass scales of order R™!, where
R is the confinement radius, down to zero momenta, need true non perturbative
techniques, like lattice QCD simulation, chiral perturbation theory, 1/N expansion
or QCD sum rules. Alternatively one can use suitable models, like constituent
quark models or bag models. In the latter case however, it is not clear how these
models could be derived from QCD. It is practically impossible to give a realistic
estimate of the systematic errors of the computations. The only techniques based
on first principles to compute the dynamic of strong interactions are lattice QCD,
1/N expansion and QCD sum rules. In the last two cases it is very complicated
to go beyond the lowest order approximation. Statistical and systematic errors
involved in lattice QCD computations can instead be progressively reduced with
increasing power calculus.

The strategy to combine the effects of high energy and low energy strong
interactions in the evaluation of the hadronic matrix elements is the following.
The natural scale of electroweak interactions is the W mass Mw ~ 80 GeV. The

operators entering in the weak Hamiltonian are usually renormalized at this scale
@~ Myw. (4)

We scale the renormalization point g from the value of eq.(4) down to a low

but still perturbative mass scales @ > R~!. The evolution of the operators is
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controlled by renormalization group equations and the coefficients are computed
with perturbation theory. The effects of perturbative strong interactions, then,
are contained in the normalization of the operators of the weak Hamiltonian. The
main contributions generally amount to large logarithms of the heavy particle
masses like In(Mw /p),In(M;/p), etc... Their physical origin can be understood
considering that the heavy masses of the SM act as an ultraviolet cut-off for

radiative corrections of low-energy processes.

The quantitative effect of low energy strong interactions is contained in the
values of the hadronic matrix elements of the operators entering in the effective
weak hamiltonian, defined at a low but still perturbative renormalization point
(or, in the language of bare operators, at a low but still perturbative ultraviolet
cut-off Ayy). With a non perturbative technique we then compute the effects of

strong interactions from the scale & up to zero momenta.

The general theory underlying effective Hamiltonians is exposed in detail in

chapter 3 and the applications to strong interactions in chapter (4).

1.2 Quark‘mixing in the Standard Model

In the SM quark current masses are generated through spontaneous symmetry
breaking (SSB) of the SU(2); ® U(1)y gauge group down to U(1)em. Renormal-
izable gauge-invariant Yukawa couplings are introduced between quark fields and
the complex scalar isodoublet field ® in the lagrangian. The field ® acquires a non

zero vacuum expectation value (VEV)

<0]®()|0>= v (1)
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after SSB. Denoting by I the relevant part of the SM lagrangian we have:
L = hg .(.:Z-RI'(I']L -qr; + hiL; qrq ‘I’O‘LLR]' + h.c. (2)

where:

qr; denotes the lefthanded quark doublet of the j-th generation:

() () ()

uRr; = (Yr,cRr,tR), dp; = (dr,sgr,br) are vectors in generation space containing
the righthanded up, down quarks, which are assigned to isosinglets.

®C = i7,®7 is the charge conjugate field of ®.

hY, AP are adimensional complex matrices of Yukawa couplings, acting in gener-
ation space.

The SM for the real world is build up repeating the same multiplet scheme
for every generation observed in nature or assumed to exist. Within the Minimal
Standard Model there is not any physical principle which protects AV and AL
matrices from being off-diagonal, or forces them to have a particular form. As
a consequence, many arbitrary parameters are introduced in the Yukawa sector.
These parameters correspond to the quark masses and to the quark mixing matrix
(10 real parameters for the case of 3 generations, see later).

After SSB, the field ® is usually parametrized as:

®(z) = e v & =)/ (v N g{(m)> (4)

(expanding up to first order the exponential in eq.(4) we get the usual cartesian
expression of a doublet of complex scalars).

H(z) is a real scalar field with zero VEV associated to radial excitations of the &
field. ép(z) (for k =1, 2,3) are gauge dependent real scalar fields determining the

orientation of the ® field in isospin space.
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Performing an SU(2)z ® U(1)y gauge transformation we can set to zero the func-
tions &k(z) in all the space-time ( we go in the so called unitary gauge [4]) and we
can identify directly the particle content and the spectrum of the theory. H (z) is
clearly to be identified with the Higgs field.

2= (1) (5)

we get the terms for quark Dirac masses:

Substituting in eq.(2)

LmQ = ZZ—RiMiZJ?dLj +~"ZLiM5uRj <4 h.c. (6)

where we have defined the up and down quark mass matrices as

MY =vhf

MP =vhj 0
Quark masses, like vector boson and lepton masses, are all proportional to the
symmetry breaking mass scale v ~ 250 GeV present in the theory. The extraor-
dinary dispersion of observed fermion mass values, which go from m, ~ few eV
up to M; ~ 100 GeV, is accommodated by introducing different dimensionless
Yukawa couplings. That is clearly a weak point of the model: there is no physical
reason why a neutrino may have a small mass as few eV in comparison with the
symmetry breaking mass scale.

In order to get the spectrum of the theory, it is necessary to diagonalize the

harmonic part of the lagrangian, i.e. the Jagrangian part containing quark mass

terms. We can perform an independent unitary transformation in generation space

on the left-handed and right-handed components of the up and down quark fields:

u%,L = UR,LUR,L
(8)

0
dp1 = DrrdrL
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where the '0' fields are the gauge eigenstates considered up to now, and the fields
without superscript are the physical ones.

Expressing the quark mass lagrangian in the physical fields we get:
LmQ = ERDI{MDDLdL + ﬁLU}Il\/IUURuR + h.c. (9)

Every complex matrix C' can be diagonalized and put in a real form Cgiqg by

means of a biunitary transformation of the form (for the proof see [4]):
Ciiag = UCV (10)

where U and V are two independent unitary matrices. We can then choose

Dy g, Ur,g so as to diagonalize the mass matrices:

mg O 0

DLMPD, = M2, = | o Tgb B (11)
m, 0 0

ULMYUL = Mg, = 8 ”5 ngt (12)

Let us see the effect of transformations (8) in the expression of the currents of the
SM.
All the neutral currents Jxn can be expressed as linear combinations of bilin-

ears of righthanded or lefthanded quark fields:
TaTedhy TL7udl (13)

where ¢ = u,d . The field rotations (8) have no effect on the form of the Jy of

the SM, that remain diagonal in flavour (GIM mechanism at the tree level).
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For the charged currents Jo we have instead:
Jo = E%')’ud% =UrLvu Vdr (14)

where V = U‘]L,DL is a general m X n unitary matrix, and n is the number of
generations.

We have thus a quark mixing in the charged current sector as a consequence of
the ’primordial’ relative orientation of the left-handed up and down quarks in
generation space.

If neutrinos are massless, no analog mixing occurs in the leptonic sector, since
an appropriate unitary rotation can be applied to the left-handed neutrino fields,
to transform the mixing matrix V into the identity (the neutrino mass matrix of
course remains diagonal because it is identically zero). In other words, we see that
conservation of separate leptonic flavors in the SM is a consequence of massless
neutrinos.

In quantum field theory, particles and antiparticles are destroyed (and cre-
ated) respectively by complex fields and their hermitian conjugates, such as
b, ¢, b, b, ete. Let us define antiparticles with the C'P operation. The the-
ory is then CP-conserving if it doesn’t make any distinction between particles and
antiparticles. A necessary condition for C'P violation is then the presence of com-
plex couplings in the lagrangian. In order to see if the quark mixing in the SM is
CP conserving or not, we have to establish if the matrix V can be put or not in a
real form with an appropriate redefinition of the quark field phases. We are faced
with a phase counting problem.

The number of observable CP-violating phases f is given by:

f=d-a—-u (15)
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where:

d = n? is the dimension of a unitary n X n matrix.

a=n-(n-1)/2 (16) is the number of real angles of a unitary n x n matrix,
ie. the number of parameters of an orthogonal n x n matrix.

u 1s the number of unobservable phases. Performing an appropriate U(1) rotation
of the up/down quark fields we can make real an arbitrary row/column of matrix
V. Since any row and column of a matrix intersect at one element, we can make
real only 2n — 1 entries of V. It follows that uw = 2n — 1.

Substituting in eq.(15) we get:

;o (n—-l)é(n——Z) o )

We arrive then at the fundamental result of Kobayashi and Maskawa [5] that
the Standard Model is CP-violating if 3 or more generations are included in the
particle spectrum .

Employing formulas (16) and (17) for n = 2 generations, we recover the
famous Cabibbo result quark mixing is controlled by only one real angle, the
Cabibbo angle §c.

Forn > 3 generations the KM matrix is determined by n+(n—1)/2 real angles
and (n — 1) - (n — 2)/2 phases.

In the case of three generations, as indicated by LEP data, mixing between
quarks is determined by three real angles and all CP-violating effects are to be

ascribed to a single phase.

1.3 Parametrisations of the CKM matrix

A parametrization of the CKM matrix can be realised composing 3 indepen-
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dent orthogonal rotations in the generation space spanned by the gauge eigenstates
| d>,|s>,|b> andinserting a single phase factor €*? in arbitrary entries of the
matrix; the only requirement is that e’ cannot be removed by phase redefinition
of the up and down quark fields.

In this thesis I will follow the parametrization introduced by Maiani [6] and
adopted by the Particle Data Group. According to Maiani, we can perform first

an orthogonal rotation by an angle 6 in the d-s plane:

Cg S@ 0
Rda(ﬁ) = —89 C¢ 0 (1)
0 0 1

where cg = cosg, sg = sing.
Limiting to the | d >, | s > subspace, R4,(f) is the mixing matrix for the case of
2 quark generations and 8 is the Cabibbo angle 8¢.

After that, we rotate by a real angle 3 in the d-b plane the transformed basis

and insert the phase factor e'? imposing unitarity:

cs 0 Sﬁei¢
Rap(8,¢) = 6o 1 0 (2)
—Sﬁe—u“l5 0 B

The phase factor cannot be removed by field redefinition because it is inserted in

the intermediate rotation.

Finally, we perform an orthogonal rotation in the s-b plane by an angle ~:

1 0 0
Ra(r) = |0 o s (3)
0 —sy ¢

Making the matrix product we derive the parametrization of the CKM matrix for

the case of 3 generations:

V' = Ru(y) Rae(B,8) Ras(8) =
c3 Coq ' c3 39 ) s ei¢ (4)
= —Cy S — 83 S~ Co e ¢y Cy — 83 5+ 89 e~ 54 Cg
Sy S§ — 83 C Co e~ —8v Co — 83 $g Cy e i® cy €3
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In the Maiani parametrization the ratio of u —s to u —d couplings is given by tan 0,
like in Cabibbo theory. The ratio of u — d coupling to v, — u coupling is given by
cpce, and involves a second mixing angle in addition to 6, that, in principle, can
be measured by a very accurate determination of V4, Vus.

Though expression (4) is exact, a natural approximation on V can be intro-

duced, by noting that, empirically:

sg = 0.221 4 .002
by~ o (5)
sg ~ 5y

In the small angle approximation V reduces to:

co sg spe'?
V = —3g co Sy (6)

Sy89 — sﬁe_i‘f’ — Sy 1

Apart from Vig, every matrix element depends only on a real mixing angle. In

particular:

| Vi |=s9 | Vas|=sy |Via|=sp (7)

Maiani parametrization is so simple because it consists. of rotations about the
3 different axis, that are commuting for infinitesimal angles; parametrizations
employing for instance Euler angles 6, 0y, 0, are less practical since rotations
about the z axis are obtained as commutators of rotations about y and z axis.
We can switch to an even more convenient parametrization setting, according

to Wolfenstein [7]:

Il

AN (8)

sp =ApA®
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where A and p are real constants of order one.

Including terms up to order A\*(A\®) for the real (complex) parts, the CKM matrix

reads:

1-2/2 A Ap)3 et?®
Vo= —A(1+ A?X*pe™*?) 1-22/2 AN? (9)
N (LW gy A1)

The parameter p entering in eq.(9) is the analog of m of the original
parametrization of Wolfenstein. We see explicitly that the coupling between 20
and 3° generation is of order A?> and between 1% and 3° generation of order A3,
Since A € 1, A ~ 1 and p ~ 0.5 the CKM matrix is almost diagonal. That is
the way the quark mixing scheme accommodates the old experimental observation
that strange particles and, after, beauty particles have lifetimes relatively large
with respect to the naive dimensional estimate of the decay width, I' o« GrpM®.
These particles, the lightest in the respective doublet, are unstable only by virtue

of small non zero intergenerational couplings.

1.4 Experimental determinations of mixing angles

The normalization of the CKM matrix elements is needed to make consis-
tency checks and requires the knowledge of the Fermi constant G, the coupling
characterizing the strength of charged weak processes at low energy. p decay is
the cleanest weak process observed in nature since 1t consists of a single decay
channel and doesn’t involve any strong radiative correction up to 1 loop included.

Gr (called in this case G,) is then best measured by comparing the experimental
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p lifetime

1
o= = (2.197035 £ .000040) x 10™°sec (1)
exp

with its theoretical decay rate.
Since the momentum transfer to the e~ 7, g is negligible ¢* < mi/2 < M3y,
we can drop the W boson propagation and express the Hamiltonian for p decay

as a local 4 fermion operator Hesy:

Gr_ _
Hepy = ’ﬁ”ﬂ’u(l — Y5 ) eu’)’u(l — V5 )Ve (2)

The theoretical decay rate is given by:

Tin =T(p — evevy) =

G2m3  m? 3m? a(m,) 25 (3)
KB e 1 B 1 ey 2
tozms 1 Ums) U 5arz,) 1T on G-
where f(z) = 1—8z+8z% —z*—12z%Inc and a™'(m,) = a“l—gl;ln(%)-}-gl; =

136.
To match the high experimental precision on p lifetime determination, in the
expression for the theoretical decay rate (3) 1 loop electromagnetic radiative cor-
rections have been included, together with corrections due to finite values of m?2
and 1/M%,. Since m, > m. the whole series of e.m. leading logs, of the form
a™In™(m? /m?2) has been summed up (see reference [8] for a more convenient renor-
malization scheme).

Real mixing angles 8, 3, v of the Maiani parametrization, or the constants
), A, p in the Wolfenstein one, are fixed from the absolute values of the CKM
matrix elements | V;; | contained in the first 2 row [8,9]. The latter, in turn, can

be quite well determined from semileptonic decays of various flavored hadrons:

H — H +1+v (4)
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where H and H' are any two mesons or barons coupled by the charged quark
weak current. Semileptonic decays are selected for the analysis because they are
much simpler to compute than hadronic or leptonic ones. In many cases they
have small renormalization effects by strong interactions. Non leptonic decays
involve generally many interfering amplitudes and final state interactions. They
may have huge renormalization effects; the most obvious example is the AT = 1/2
rule in K — 7 decay, where strong interactions reduce by about two orders of
magnitude the rate of Al = 3/2 transitions. Their computation is problematic
also with lattice QCD. Factorization of the amplitude simplify the task. It can
be proved in the decays of heavy quarks at the leading order of a special effective
theory (the topic is discusses in detail in section 4.8 of chapter 4).
Leptonic decays such as

P—l+v, (5)

where P is a pseudoscalar meson, involve basic low energy effects of strong inter-
actions. Thee amplitude is proportional to the meson annihilation constant fp

defined by:
<0|A,0)|P>= ip.fp (6)

fp is a completely non perturbative quantity because it depends on the meson
wave function.

The determination of the phase ¢ that makes complex the CKM matrix re-
quires the analysis of particle-antiparticle mixing processes, that have a much more
rich dynamical structure than semileptonic decays. Apart from the construction
of the formalism describing a 2 state quantum mechanical dissipative system, con-
siderable more control on strong interaction effects is required for the evaluation

of the relevant transition amplitudes. For this reason, they will be discussed in
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a separate chapter. Here we limit ourselves to discuss the measures of the real
mixing angles.

Let us consider then in detail hadron semileptonic decays. They are produced
by the action of an effective hamiltonian H. #f consisting of the product of a quark

and a lepton charged weak currents:

Gry, +H ;L
He.p = T/_-51/;-1,41”.].‘7 “T 1 he. (1)
where Jgj =%Yu(1l — vs)d; and Ji’ =Tuyu(l —y5)l .
Semileptonic decay rates for j — ¢ transition are proportional to | V;; |2. Also in

this case we can drop the W propagation since, in any case:
2 2 2
¢ < My/2 < My, (8)

where ¢ is the momentum carried by the W. With present accuracy, except in nu-
clear § decay it is sufficient to consider the weak and electromagnetic interactions
at lowest order in perturbation theory. Strong interactions need to be computed
at every order in as. Since they do not couple JL with JH , the transition ampli-
tude A for semileptonic decay (4) is expressed as the product of a leptonic and a

hadronic matrix elements:

A =1L, H* (9)

where L, =< Lv | JE(0) | 0 > and H, =< H' | JH(O) | H > . The
computational problem of process (4) is then turned to that of evaluating the
hadronic matrix element H e

The fundamental property of semileptonic decays is that, as anticipated, in
the limit of very light or very heavy quark masses, the computation of the rate
does not require the evaluation of the renormalization effects of low energy strong

interactions.
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Light hadron exclusive semileptonic decays like pion or superallowed nuclear
B decays can be computed by means of isotopic spin symmetry. In the limit of

equal current masses of up and down quarks
M, = Md, (10)
that is a good approximation since
| My — mq | Ageb, (11)

the weak vector current becomes a Noether current for the strong interactions. The
symmetry is realised in the quantum theory and fixes the value of the hadronic

matrix elements of the decays:

V2

i

<’ | /d3mVO“"'d(a:) |t >
(12)
<7 /d%v;,u—*d(m) 1Z+1>=1

where | Z >, | Z+ 1> denote the states of two specular nuclei. We can figure
the decays as a u(d) quark that is transformed by the weak current into a d()
quark with a negligible momentum release with respect to typicai bound state
momentum transfers in the hadron. Since the strong force is flavour independent,
in the limit of equal u-d masses nothing happens during decay with respect to
hadron dynamics. In addition, symmetry breaking corrections are of second order
in the symmetry breaking parameter (Ademollo-Gatto theorem [10]).

Extending the isotopic spin symmetry into the SU(3) flavour symmetry un-
der the assumption m, = mg = m, allows to extract directly, with analogous
considerations, | Vi, | from kaon or hyperion semileptonic decays. SU(3)s sym-

metry violations are however much larger than in the SU(2)r case, of the order
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~ 20 + 30%. A detailed knowledge of | V., | requires to compute with chiral
perturbation theory symmetry breaking effects.

In the limit of very massive quarks @
Mg > Agep (13)

perturbative QCD becomes appropriate for computing totally inclusive semilep-
tonic decay widths. We can implement a short distance approach analog to the
parton model of hadrons [11]. The b quark lies probably close to the asymptotic
region (13).

Semileptonic decays of charmed particles are the most difficult to compute

because the charm quark is in the border zone between the two limiting cases:
My K AQC’D, My > AQOD- (14)

There is not any simple symmetry or dynamical property that prevents low energy
strong interactions from playing an important role. Neither the parton model
nor chiral perturbation theory can be applied because the mass breaking effect is
substantial.

The usual approach for computing hadronic matrix elements is that of choos-
ing a particularly simple exclusive decay channel. In the case the initial and final
hadron are 2 pseudoscalar mesons H and H', only the vector current V. con-
tributes to decay, due to parity conservation of strong interactioms. Its matrix

elements can be parametrized in terms of two relativistic form factors:

<H'|Vu(0) | H > = fH(¢*)pr +pr)u+ (¢ (15)

where ¢ = py — pH'-
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The electronic (muonic) current is conserved up to small terms of order m?/m%
(m?2/m%). In the case of electronic (muonic) decays then only fT(¢*) gives a non
zero contribution on contraction of H, with L#. The problem is that of evaluating
F(d?).

A traditional technique employs quark model wave functions for the initial
and final mesons. The free parameters of the model are fixed comparing with the
experimental mass spectrum. f¥(g?) is computed at ¢ = Grax = (Mg — Mp)?
by an overlap integral of the initial and final meson wave functions. For determin-
ing the form factor in the full kinematic range it is necessary a further dynamical
assumption on the behaviour of f+(q2). It is generally assumed nearest pole
dominance. A first principle evaluation of form factors is possible with numerical
simulation of QCD. Matrix elements (15) for K — x, D — K, D — « semileptonic
decays have been already computed with lattice QCD simulations .

After these general considerations, we pass to discuss the most recent deter-
minations of individual CKM matrix elements.
| Vua | is determined by means of well tested nuclear technique from 0% — 07T
superallowed § nuclear decay rates, that are measured with a precision of 103
or better. The main uncertainty comes from the computation of Coulomb isospin
breaking effects in nuclear wave functions. A careful analysis including also weak

and electromagnetic radiative corrections leads to:
| Vua | = 0.9736 £ 0.0010 . (16)

| Vug | is by far the best determined CKM matrix element.
To control eventual systematic errors, two other independent measures of

| Vua | have been performed. The first one comes from neutron B decay:

n—pt+e +7, (17)
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Coulomb corrections to (17) are much less important but the transition is of a
mixed type and it is required an accurate determination of ga, via [ asymmetry

or e — v angular correlation:
ga = 1.222+£0.005 (18)

This method yields:
| Vua | = 0.9778 £ 0.0029 (19)

a value about 1 standard deviation greater than the preceeding one.
Finally, pion 3 decay
o alte + 7 (20)
gives:
| Vua | = 0.968 £ 0.018 (21)
Experimentally, partial decay rates I'; are determined by measuring particle life-

times 7 = 1/I' and branching ratio B.:
I. = B. T (22)

This measure is less precise of an order of magnitude than the first two because
the branching ratio B(m~ — 7% v.) is of order 107°. The quoted error is a
statistical error. On the theoretical side decay (20) is by far the simplest one to
compute.

| Vus | is measured by K.z decay rates:
Kt 5 a'+em +v. (23)

plus isospin related and charged conjugate reactions. For the extraction of | Vs |

from data the knowledge of fT(g?) is necessary. Assuming nearest pole dominance
M.

_Kr 24
]VI?{* _ qz ? ( )

FH(?) = £7(0)
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that is supported by Dalitz plot analysis, and employing for f7(0) the values
FE1(0) = 0.982 £ 0.008
(25)
Fo(0) = 0.961 + 0.008

we guote:

| Vus | = 0.2196 £ 0.0023 (26)

Anindependent determination of | Vaus | comes from semileptonic hyperion decays:
| Vus | = 0.222 4+ 0.003 (27)

Symmetry breaking effects are best computed in decay (23).

Assuming that it is correct, combining measure (26) with (27) we obtain:
| Vus | = 0.2205 + 0.0018 (28)

| Vea | is best determined from deep-inelastic nucleon-neutrino scattering experi-

ments, through inclusive cross section measurement of the reaction:
vp+d = c¢c+p”  (4conjugate reaction.) (29)

Processes (29) are detected tagging the muon produced in semileptonic decays of
charmed particles. One selects high energy, high transverse momentum muon pairs
(so called dimuon events). The knowledge of the distribution of quark d inside the
nucleon is required to extract | Vea |. Averaging Cern and Fermilab results we

quote:

| Vea | = 0.215 £ 0.016 (30)

A much less precise value, due to uncertainties on the form factor and limited

statistics, is determined by D meson exclusive semileptonic decays

D—mlp+l+u (31)
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The independent determination of | Veq | from the scalar and vector channel
decays allows a consistency check of the theoretical methods employed, which are
essentially lattice QCD simulations [12] and quark model wave function computa-

tions. It has been estimated:
| Vea | = 0.23T555 (32)
| Ves | is determined from D exclusive semileptonic decays to charmed particles:
D— K/K*+1l+u (33)

Statistical errors are reduced of an order of magnitude with respect to decays
(31) since (33) are Cabibbo favorite. The six relevant form factors of decays (33)
have been computed both with quark models and lattice QCD, showing a better
agreement of the latter technique with the measures.

A less precise determination, essentially because of uncertainties in strange quark

sea structure functions, comes from the reaction:
vpts—ctpum (34)

Combining the 2 kind of determinations we get:
| Ves | = 0.984+0.12 (35)

| Voo | and | Viup | are determined with a model dependent analysis from B meson

semileptonic decays:

B—-X+1+v (36)

where X is any hadronic final state. Their knowledge is essential for determining
the angles v and 3 in the Maiani parametrization or the constants A and p in the

Wolfenstein one.
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The traditional method of analysis is inclusive and considers the energy spec-
trum of the charged lepton [ produced in the decay (36), while the most recent
one is exclusive and refers directly to the partial decay rates.

Let us consider the oldest approach. The differential decay rate width for the
reaction in eq.(36) is given by:

d dar

L (B — X +1+v)=| Vy 12 (B = Xe+14+v)+ | Vas | dr (B — Xu+1+v)

(37)
where FE; is the lepton energy in the B meson rest frame and we have factored
out explicitly the CKM matrix elements out of the currents. X., X, denote any
hadronic state containing the ¢/u quark coming from b decay. From experiments

and unitarify we know that:

| Ve [>] Vs | - (38)
| Vi | is determined comparing the theoretical and experimental distributions of
leptons coming from inclusive b — ¢ semileptonic decays.
| Vus | is determined by looking at inclusive leptons from b — v +1+ v transitions.
To avoid the huge background from b — ¢ transitions, only the spectrum above the
kinematical endpoint for B — D transitions is analysed. The kinematic interval
in F;is 2.2 + 2.6 GeV.

The second method deals with the following exclusive decay channels:
B—D/D*+1+v (39)
for the extraction of | V5 | and
B—o7/p+1l+v. (40)

for the extraction of | Vi3 |. The branching ratio for the vector channel in eq.(40)

has been already measured by the ARGUS collaboration.
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Let us briefly discuss two of the most popular models used in the experimental
analysis of semileptonic B decay.

For the computation of the charged lepton spectrum

dar
'd—E’;(b—-*C-f—l-*—V, El). (41)

an improved partonic model approach has been followed by Altarelli et al. [13]
The parton model is applicable if the energy available to the hadronic degrees
of freedom during the process is sufliciently large. It is then possible to decouple
high and low energy strong interaction effects. High energy strong interactions can
be computed with perturbative QCD. Low energy strong interactions act after
the partonic process takes place. They create from vacuum soft gq pairs and
gluons needed to recombine quarks in colour singlets, in the variety of the exclusive
hadronic final states.

Altarelli et al. make some assumptions about the dynamic of the decay. The
meson decay rate is computed by building a model of B meson dynamic. The
spectator quark ¢ is assigned a constituent mass M, = 150 + 450 MeV and a
gaussian Fermi momentum distribution f(pq) » whose width pz, of order Agep,
is fixed by fitting the lepton spectrum. Kinematic constraints are satisfied by
treating the spectator quark as a on-shell particle and assigning to the b-quark

the proper virtuality, i.e. an invariant mass W = W(pq) such that:

W* = Mp + M — 2Mp./p2 + M? (42)

The physical decay rate dU/dEy(B — X /X, + 1 + v), is then evaluated by con-
volving the parton decay rate dl'/dEi(b — c/u+1+v, W) of a b quark with mass

W with the spectator quark momentum distribution f(pg):

dr

) ar
ZZE}(B‘“WX“J“H”):/ dpg D% F(py) (b — c/u+ L+ v, W) (43)

dE;
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An a-posteriori criterion for a proper applicability of the parton model is the
experimental observation of many multihadronic final states in the process. It is
experimentally established that B — D/D* 4+ | + v almost saturate the b — ¢
semileptonic width, indicating still significant nonperturbative effects of strong
interactions. The parton model is probably more justified for semileptonic b — u
decays.

A complementary approach that privileges bound state properties of strong
dynamic in the decay has been employed by Isgur and Wise [14]. The authors

compute the following differential exclusive widths:

flI—(B — M. /M, +1+v) (44)
dE,

where M./M, are low-lying final mesons containing the ¢/u quark coming from b
decay.

Relativistic form factors for various channels are evaluated at high g* as over-
lap integrals of nonrelativistic meson wave functions computed with the Cornell
potential [15]:

40
V(r):——gg——l—kr-%—(] (45)

P

where as is the QCD coupling constant computed at the relevant scale, k is
the string tension and C is an additive constant determined by fitting the mass
spectrum.

Inclusive decay widths are computed by summing over all the low-mass meson
exclusive decay channels. Multihadronic decays are then assumed to proceed only
via resonance decays.

The most recent determinations of | Vi | according to the Altarelli et al. model
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(ACM) and the Isgur and Wise one (ISGW) are:

| Ves | = 0.046 + .003 ACM
(46)
| Ves | = 0.045 + .004 ISGwW

whilst for | V.5 | we have:

| Vs |
— = 0.11 4+ 0.01 ACM
| Ves | (47)

= 0.20 £ 0.02 ISGW

Asit stems from the values of | Ves |, and even more of | V,, |, an improvement
of the theoretical computations is essential for a precise test of the CKM scheme.
The research we have developed this year aims to compute the form factors for
transitions (39) and (40) within the framework of lattice QCD. As will be discussed
in chapter (4) the computation is relatively involved. The basic problem is that
with present computers it is not possible to simulate the dynamic for the & quark.
We have then decided to implement an effective theory for the b quark (static
theory, Eichten [4.6]). A detailed understanding of the renormalization properties
of the static theory is essential. Using renormalization group techniques, it is
possible to obtain physical quantities, such as the pseudoscalar decay constant B,
the decay form factors T (¢?)2—P, Ft(g%)B~", ete..., from the calculation of the
corresponding quantities in the effective theory, on the lattice. On overview of the

static theory is presented in chapter (4).



Chapter 2

Particle-antiparticle mixing

2.1 General theory

In quantum field theory particles p and antiparticles p are distinguished by
opposite eigenvalues &q; # 0 of a set of charge operators @; associated to internal
U(1) symmetries S; = e**% of the theory:

Qilp>= +alp>
~ ~ . (1)
Qi|P>=—Qi|p> 1=1...n

and:
[H,Q] = 0 (2)
where H is the hamiltonian of the interacting fields.

If for a given field ® no such internal symmetry exists, particles are neutral, i.e.

they coincide with their antiparticles
p=7 (3)

as is the case for v, 7%, ®, Z°,etc...
{Q;} may be a single operator as baryonic number B in the case of neutron
systems, or various operators , as lepton number L and electric charge Q.; for

electrons.
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An ’intermediate’ case between neutral and charged particles presents in nature
when the greatest part of forces acting on a system, described by an Hamiltonian

Ho, do verifye an internal symmetry § = @@
that is violated by the remaining ones, contained in H:

In the latter case a rich variety of mixing and interference phenomena occurs in
the dynamic of the system, due to degeneracy of the unperturbed spectrum [1].
Qet, B, L are conserved by any interaction contained in the standard model,
while flavors like strangeness §, charm ¢ , beauty B, etc.. are conserved by strong
and electromagnetic forces but violated by weak forces. Neutral flavored mesons
like K°, D°, B,, Bg, etc... can then undergo to a transition with the corresponding

antiparticle. We may set:
Hy = Hy + Hem
(6)
Hr = Hyp
Neglecting H; we can define particle-antiparticle states distinguished by a flavour
operator F: F9, FO, related to each other by C' (C'P) transformation [2]:
c: F'— FO
_ (7)
FO — FO
Of course, particle and antiparticle states of Hy are only introduced for their
utility; at the end of the analysis of K° — i'g mixing, for instance, we will end

with quite distinct K, Kg states, representing simply independent particles just

like #° and 7 mesons.
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Weak interaction Hamiltonian H, can be treated as a small perturba-
tion of Hy, that connects F° with F—O and with various continuum states ¢ —
Tt w70, w7ty atao0) ete... (see fig.1). The complete system of evolu-

tion equations for the state of the system | ¥(t) >

[9(0) > = apo(t) [ F* > + ao(t) [T > +aclt) [ > + aw(t) | ¢ > +--- (8)

are:
.d
iai(t) = hija;(t) (9)
where: a1 = apo, a, = azo, 03 = Gc... and hy; = m;é;; + O(Hyk).
Ce) () (b)) ()

-

=

Fig.1: quantum mechanical analog of particle-antiparticle mixing. The am-
plitude of the wave function in regions a(b) and ¢(d), is the analog of the am-
plitude of the particle(antiparticle) state and of the decay channels of the parti-

cle(antiparticle).

Continuum amplitudes a,(), ac(t)... can be eliminated as state variables solving
the equations (9)and substituting the known ac(t) values. By the superposition
principle the resulting (integro-differential) equations are linear and in a certain

approximation they reduce to the following differential equations [2,3]:

o) = 7 (20) w
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where:
"Hy  Hi )
H = 11
(H 21 Hoo (11)
is an effective hamiltonian describing the time evolution of | ¥ > restricted to the

FO_TF subspace:
() > = apo(t) | F°> + apo(t) | T > (12)

If CPT symmetry holds for both Hy and Hr: Hii = Hjs.
We can decompose H into an hermitian M and antihermitian —iI'/2 matrices

(mass and decay matrices respectively):
H = M — /2 (13)

Equation (13) is the generalization for a 2 state system of the effective hamiltonian
for an unstable particle: H = m —47/2 which gives ¥({) = P(0)e~imt=Tt/2
that is valid for v < m (quasi stationary states [4]).

The physical content of M, I' matrices is derived expressing the effective
Hamiltonian matrix elements H;; with ordinary perturbation theory and separat-
ing dispersive and absorbitive part of the amplitude:

Hy =méy;+ <i|Huklj> +

<i|Hypr|n><n|Hor|J>
+Z m — E, + e

(14)

+ O(HL)
n#i,j

0

where i, j = F% F and m = mpo = mzo Is the unperturbed F° mass

(m > Ty, M;; for i # j). Substituting in (14) the identity:
1 1
= P — ind(m — En) (15)

m — E, + te m — En
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we get:

Z <t|Hyp|n><n|Hyrlj>

M = méy; | How | 5 16
i méij + <i|Hue|j> + P — (16)

n#i,j
and:

Tij = 2m > 6(m—En) <i|Hyp|n><n|Hy|j> (17)

n#i,j

Then, My,, I'12 are respectively the dispersive/absorbitive part of the transition
amplitude F - F°, generated by virtual/real intermediate states in the spectrum
of Hy. In other words, Iy is the coupling of F° —F states through common decay
channels. In covariant perturbation theory T';y is computed using Cutkowsky

rule, cutting in all possible ways Feynman diagrams for F o Fo amplitude and

substituting in place of propagators:

1

m — 27T6+(p2 -_ mz) (18)

Relation (18) is the covariant analogue of (15). For instance, in the case of B — B

mixing I'12(B) is given by the cut Feynman diagrams of fig.(2): i

SN S s, > e

b Uye ol b Y, e _ b

974 ! W — 7 By W By W

< ; Bo < < N

Lo e d c d W ¢

: Q{ g G'l. w, ¢

Penhanse NIRRT
u,c v/,// W, T b U, e G wc
;ﬁé—mr\/\f\/\f——-e_ Bd Bd P B o
o b & fig.2

Asit stems from eq.(16,17), the theoretical task in the study of particle antiparticle
mixing is the computation of AF = 2 weak interaction matrix elements between

eigenstates of Hy = Hy; + Her,.
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The eigenvectors |+ >, | — > of H are associated to quasi stationary states
of the system and represent the physical particles F,y, F_ who evolve in time inde-
pendently transferring amplitude only in continuum states. Masses My, M_ and
widths 'y /2, T'_ /2 are respectively the real and imaginary parts of the eigenvalues
Ay — of H.

¥

Imposing:
det(H — M) =0 (20)
we derive:
A_(.." —_ ]VIIJ. - ZF11/2 :!: Q (21)
where
Q = \/(M}, — T, /2)(Myz — iT15/2) (22)
then: N
Mph,ya = ]VIll =+ RCQ
(23)

rpihys /2 =T11/2F ImQ
Masses and decay width differences are functions of off diagonal elements of H

only, being an effect of weak interactions:

AMphys =My — M_ = 2ReQ
(24)
Alphys/2 =T4/2 — T_/2 = —2ImQ
The eingenstates in the F°, F basis are given by:
1
+>=n())
! (25)

-=n(’)

My, —aI'%, /2
77 — \/ 12 12/ (26)

where:

.Z\/_[lg ~iP12/2
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and NN is a normalization factor.

We have now to see how C'P violation is incorporated in the effective Hamiltonian.

The following basic theorem holds: If Mi, and I'y, have equal phases:

CLT’g(M]_Q) = arg(I‘lg)

there is not C'P violation in F? — F° mixing.

(27)

Proof: If eq.(27) is true, we may set M, =| Miz | €%, | T12 | €. 7 equals a

phase factor

n = e

and the eigenvectors can be written as:

1 0 —id | =0
l+>:ﬁ([F > + eI F >)
> = (P> — % | 5)

The relative phase between FO and 7' can be redefined by letting:

[_FD >—+ei¢IFO>

Eigenstates now become:

1 0 -0
|+>:7_2_(]F >4 | F>)
|=>=—(F°>—|F >)

V2

(28)

(29)

(30)

(31)

Defining C' P as in KM convention: CP | F >=| F° > we see that Hamiltonian

eigenstates can be made coincident with CP eigenstates, i.e. CP is conserved.

c.v.d.
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In the case M;5 and I';; have the same phase, the expressions (23) and (24)

for the masses and widths simplify to:

Mz, =Myt | My, | -
Toye =T11/2% | T12 | /2
and
AMppys =2 | My, |
(33)

A]-—‘ph,y.s =2 l FIZ I
It is common in the literature to express the above theorem in terms of a complex

mixing parameter ¢, defined by:

1—e¢
1€

=7 (34)

If CPis conserved,n = ¢~*® and ¢ = i tan $/2,1.e. it is a purely imaginary number;
also, the eigenstates can be put in form (29), implying that if CP is conserved we

can always transform e to zero. In terms of ¢ the normalized eigenstates are given

by:
Y 1+4¢
| + > = N(e) (1——5)
Lt (35)
> =m0 (,7)
where:
N = — (36)
© = TR |

The analysis of particle-antiparticle mixing developed until now has been
completely general and we assumed only C'PT symmetry of all the interactions.
We did not specify neither the physical system nor the dynamical laws. Before
ending this section, however, let us briefly mention the main concrete differences
between the two most important cases: K — K’ and BB’ systems (they are

discussed in detail in sections (2.2) and (2.3)).
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In the framework of the SM, as discussed in chapter (1), flavor dynamic is
described by the CKM matrix. Vud, Vus are real and V.4, V., have very small
imaginary parts in the Maiani or Wolfenstein parametrizations.

By eq.(17) T'12(K) is the coupling of K° and K. states through common
decay channels (analog graphs of those in fig.(2)). Since My ~ 0.5 GeV only light
quarks give the dominant contribution to I'15(K), which is then practically real.

In the dispersive box diagram amplitude for K° — I'g mixing a significant
imaginary part to the amplitude is generated by top exchange contribution, that
is highly Cabibbo suppressed. As a consequence, M, has a small imaginary versus
real part. C'P violation effects are then small in the K system.

For B mesons it’s quite different since b quarks appear as external states.

Assuming all quarks massless except b and ¢, I'12(B) is proportional to M?:
F12(B) o (VusViy + Vo Vi)’ My = (Vo Vi) M3 (37)

The imaginary parts of M;,(B), I'12(B) are not small anymore, but the phases are
very similar by virtue of eq.(37) and (2.3.11) y glving again a small C'P violating

effect.

2.2 K'-% mixing

2.2.1 Interference phenomena

Consider the time evolution of a coherent K° — K. beam, described by a state

| T >, with 7 the proper time:

|7 >=as(r)| S > +ar(r)| L > (1)
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where | § >, | L > are the neutral kaon eigenstates and

as('T) :as(o)e-—-il\ls T—ysT/2
(2)

ar(r) =ap(0)e *MeT—727/2

The state | 7 = 0 > has to be fixed by an initial condition; it is supposed to be
known and is related to the specific production mechanism. For instance, | 7 =0 >

may be a pure K state, produced in the reaction:
T~ +p— A+ K° (3)

The threshold for &' production is indeed sensibly higher. In this case then:

as(0) = a5(0) = 7——-—% (4)

The decay rate T of state | 7 > to a given channel | ¢ > is easily computed as:
Te(r) e [< e |7 >"= as(0) Pl< c| S>> €7+ | a(0) |P|< c | L >|? e "
+2a5(0)ar(0) |<c| S>|l<ec|L>| x

x exp{—i(Ms — Mp)7 + ¢r(c) — ¢s(c) = (vs +71)7/2)} + C-'(f-)
5

where we have factorized decay amplitude phases:
<c|Ksp>=|<c|Ksp > ei¢s.c(c) (6)

In K system, since lifetimes are well separated and large, 75,7, ~
107°,107%sec, I'o(7) can be measured at definite T values disposing along the
bean a series of detectors, at coordinates z, z', z"..., and measuring the intensity

of ¢ states in each of them. We only need the relativistic transformations:

=77, T = vt =vyT (7)
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where v is the 3-velocity and -y the Lorentz factor of the kaons.

The third term in eq.(5) is an interference term and originates in K system
because it is possible to create superposition of | § >, | L > states with strong and
electromagnetic interactions that decay weakly in the same channel ¢. It produces

in I'o(7) an oscillating behaviour of decay product intensity on time 7 (or z).

Fitting measured intensity I'.(r) with expression (5) we can determine the
K1, Ks mass difference and both modulus and phase of the various decay ampli-

tudes:

<c|Kyp >, <c|Ks>. (8)

The experimental confirmation of behaviour (5) is a clean verification of the
superposition principle of quantum mechanics, since any non linearity inevitably
leads to additional frequencies in time evolution. Also, with kaon systems, we
are able to observe directly the time dependence of quantum amplitudes, that,
according to wave-particle duality is given by~ e~ 5T,

CP violation has been discovered in K system detecting 27 decay modes
(CP =1) at long times 7, 7 >> 75, when only the long lived component | L > is
present in the beam. With careful measurement and analysis, going at intermedi-
ate times 771 ~ (ys5 4 1)/2, it is possible to extract from the interference term
in (5) the relative phase of < 77 | Ks > and < nw | K7 > transition amplitudes

(see sec.2.2.3 for implications).

An interesting consequence of equation (5) is the phenomenon of strangeness
oscillations (we derive it in a simpler way than setting | ¢) =| 1Ty, | 7#Ti7D)
in (5) and using the selection rule AS = AQ). The strangeness content ag—;(7)

in the beam at time 7 is computed expressing | 7 > as superposition of flavour
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eigenstates K0, e

1 ; 1
T e (L 9las(0)e ™M gy (0)em M) g0
€

+ (1~ e)[aS(O)e_iMsT_”YST/2 — aL(O)e_iM”““T/Z] I i'e >}

(9)
The coefficients of KO,FO in eq.(9) give the amplitude of strangeness § = 1.
Starting at T = 0 with a pure K° state (eq.(10)), strangeness intensities

Is=1(7), Is=_1(r) are given by:

5 1 _
Is=t1 =] as=y1 |’= 1 [e775T + 7727 L 2¢cos AMe ("5"”7’3)7/2]

1 1 € l'l 3—;[8_757 L e T _9cos A]er—('YS‘*"YL)T/Z]
€

(10)

IS:-—l =| As5=—1 |2= [

Since empirically AM ~ vg > YL, €q.(10) shows an effective oscillation in the
strangeness content of the beam, before intensity decay occurs.

Since down quarks/antiquarks decay semileptonically only into nega-
tive/positive leptons (AS = AQ rule), strangeness oscillations appearing in eq.(10)
are observable, measuring the rate of negative and positive leptons produced in

the beam as a function of  (or z):

Dp- x+(7) o< Is=41(7)
(11)

Pitx-(7) < Is=—1(7)

A simple mechanical analog of strangeness oscillations is offered by a pair of clas-
sical oscillators with the same unperturbed frequency wy coupled to each other by

a tiny spring (see fig.1). Dropping dissipation effects, the equations of motion are:

ZZEEa(t) = — wga(t) + e(a(t) — a(t)) (12)

2 0(t) = — wga(t) + e(a(t) — a(t))
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giving: ’
a(t) =C cos cte Wt

@(t) =iC sin ete ™"

The analogies are the following:

unperturbed frequencies wy + strong eigenstate masses Myo = Mo

tiny spring — weak forces
(14)
oscillation amplitudes ++ strangeness amplitudes

beats +— strangeness oscillations

2.2.2 ¢ parameter

In the case of K mesons it holds:

IIliz [<< ] ReMlg l
(15)
I Iml'ys ’<< l Rel'y5 I

and the mixing parameter can be expanded in ImMi;, ImI'y, , keeping only the
first order terms. We have from eq.(26) and eq.(34):
~ 1 Im]VI12 -+ ImF12/2

€p = 1

2 R€M12 — iReP12/2

(16)
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Since we are interested in comparing theory with experiments only with respect
to C'P violation, we can express ReMis, Rel'is in terms of mass differences and
widths determined experimentally. In strangeness oscillations we can surely drop

C P violation effects, and using eq.(33) we get:

AM ~ 2ReM, (17)
and
AT I'y —-T r
ReFlz ’.‘.“[ 1_‘12 Ig ’3— = %——S— o ”*25 (18)
then:
€ lIm]\/I]_g (19)

AMjy +Ts/2
where we have neglected | ImI'12 |<| ImMi, |. Experimentally I's/2 ~ AM;

and then:
iImM;i, eTi™/t ImM;i,
(1 —l—z)A]\/fk \/?—, A M,

Then ¢, phase is known as a consequence of | ImIl'1y |<| ImM;is | and the

theoretical task reduce to computing the imaginary part of the dispersive box
diagram amplitude ImM;,.

Let us now discuss the computation of M7, in the framework of the SM. As
discussed in chapter (1), in principle, the knowledge of ¢ fixes the complex phase
in the CKM matrix. M, is computed by means of an effective | AS |= 2 weak

Hamiltonian le;f[:z :

My, =<K | B | K0 > (21)

The inclusion of perturbative QCD corrections in H l?}g =2 is essential for a quan-

titative understanding of the mixing. For simplicity, however, we expose the com-
putation neglecting in a first step the effect of high energy strong interactions. We

will take them into account later.
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]ASI=2
Heff

(z) is given by the dispersive part of the | AS |= 2 box diagrams

. =0 .
having as external states K and K° valence quarks with zero momenta (see

fig.2).
S we, t 4 3 _
— . =< L < < NN — GL

fig.2

The transition requires two W emissions and absorptions, with a total of four

weak vertices that generate a double W scattering or annihilation of the initial

d, 5 quarks. Computing box diagrams (a) and (b) with arbitrary masses of the

up quarks M;, M; circulating in the loop, we have (Inami and Lim [5]):

u,c,t
AS|= G2 - s
Hl-ffl : = 1671:2 JV[IZ'V(d7#(1 - 75)5)2 Z }‘i)\jE(l‘i,CBj)
1,J
where |
A =ViaVig
M?
Ty = 5
My
and E(z;,z;) (Inami-Lim functions) are given by:
19 1 3 1 3 =
Ei;i-’:EiZi-— —_ — = In z;
for : = 7 and:
1 3 1 3 1 Inz
E M ) =2,y — — —_—— J
(z5,2;) mxg{[4+21_mj 4(1=z;)% z; —

(22)

(25)
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for z; # z;. For z; < 1 we have:

E(z;) ~z; (26)

implying that a given quark ¢ has a contribution to mixing o« M?. For z; < z; <

1:

E(ziyz;) ﬁmjlniv—i (27)
Zj
Inserting eq.(22) into eq.(21) we get:
G%‘ \ u,c,t
Mz = 1672 MW(; AidjE(zi,z5)) § (28)
where:
§=<X | (dyu(1—7s)s)" | K > (29)

Low energy strong interactions acting at scales ~ My up to zero momenta enter in
the computation of the matrix element S, that involves non perturbative physics.
A reference value for S is obtained inserting vacuum state only as intermediate

state between ds quark bilinears. We set:
4 .
5 = gka;]\/fk (30)
where f is the kaon decay constant

<0 31— 78)d | KO >= Pelt (31)

~ VR2E

and By, is a factor parametrizing deviations from vacuum saturation approximation
in §. A factor 2 is included in eq.(30) to take into account that each of the currents

57.(1 — v5)d can annihilate (create) Kﬂ(fo) meson. A further factor £ =1+ 3
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arises because K° (_KO) can be annihilated (created) by 3, d operators in the same

or in different colour singlet bilinears. Using eq.(30) we get:

G2 u,c,t
My = ﬁfEMVZVB’“sz’“ > AidjE(zi,z;) (32)
ij

Taking the real part of Mi,, we compute the neutral kaon mass difference
AM ~ 2ReM;, (33)

while Im M, determines the mixing parameter | € | (f; = ImAy/Re4, can safely
be neglected).
Let us discuss the computation of e.

By unitarity:

Mt A+ A= Y VIV = 0 (34
and by convention:
ImAy, =0 (35)
then:
ImM, = —Im); (36)

For ¢ we have to compute:
ImX2  =2Rel.Im); ~ —2XIml, = 2AIm),
ImA?  =2Re);Im); ~ —2A4%X°(—1 + pcos §)Iml, (37)
Im(A:A;) ~Red ImA; ~ —AIm),
Neglecting the small contribution of u — ¢, u — ¢ exchange we derive for the imag-

inary part:

Im(XNE(z.) + M2 E(z¢) + 22 M E(ze,20)) =
(38)
= —24%Xpsin S E(ze i) + Az/\*(l —pcosd)E(z:) — E(z,)]
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and then:

1 GZ
— M2 B f2M,,24%X8psin § x
VIAM, 12727 efic M P (39)

X[B(ze, ) + A*X*(1 — pcos §)E(z,) — E(z.)]

el

Let us now consider briefly perturbative corrections to the effective Hamilto-

nian. Oneloop QCD corrections to H i_].:.fs ? consist in one gluon exchange between
all pairs of quark legs (both internal and external) in the box diagram; they have
been computed in LLA in the two limiting cases:

1) My <€ Myy that is now ruled out by CDF experimental lower bound 89 GeV <
M; [6,7,8].

2) M; > My [6,9].

In general, corrections to the bare result (33) are of order ~ 150+300%. We sketch
only the discussion (for a much deeper analysis see ref. [6]). In the first case, the

effect of strong interactions amounts simply to a rescaling of factors 71, 72, 73 of

the bare Inami-Lim functions:
F(z.) =mE(z.)
F(zi) =mE(ze) (40)

F(ze,z¢) =n3 E(zc,z4)

where we called F; the corrected functions. In the second case, the functional
dependence on M., M; is different but there is a good agreement in the interme-
diate top mass region: M; ~ Mjy [6]. In general, the computation of case 1) can
be extrapolated to region 2) while viceversa is not true. In table (1) we give a
tabulation of the Inami-Lim functions taken from reference [6] for the cases: 1) no
strong interactions, 2) M; < My, 3) M, > Myy-.

Remarks:

1) It is interesting to note that | € | depends on many parameter of the SM: the
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masses My, M., M;, M,, all the angles of the CKM matrix A, 4, p,6 and Agcp,
through strong radiative corrections.
2) At the present stage of knowledge two essentially unknowns appear in eq.(2%):
the M; value, from which | € | is highly dependent and that gives ~ 90% of the
contribution, and sin §, to which | € | is roughly proportional.
3) The quantities ReMi2, ImMi; have a different theoretical reliability. Apart
from the hadronic matrix element S, | € | is a short distance quantity since it
involves only heavy quark ¢ and ¢ exchange.

The computation of ReM;s is instead uncertain because it depends on long
distance effects of strong interactions, for the following facts:

1) Double top quark exchange in box diagram gives a negligible contribution
to ReMis for every realistic value of M; < ]VIC/A"‘ ~ 500 + 600 GeV, because of

Cabibbo suppression. In Wolfenstein parametrization we have:
A=+ (1 =222 +...= +X+...
Ae=—A1=-2/2)+...= =] (41)

Ay = — AZX5 (=1 + pe'®) = —A%X%(~1 + pcos§) —1A* NP psin §

then .
A2 )2
(42)
At NAIO
and then:
(weight of top)  E(z¢)A2 M:
= ~ 1 43
(weight of c) E(z:)A? (]VIC/A"*) < (43)
Also top-charm exchange gives a negligible contribution since:
E(ﬂ:c, mt)AcAt Mt 4
ok Sads Red ZAALIALRPUY Y Quinily | 44
Tl (N <1 (44)

2) The contribution of up quark exchange is important.
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In a convergent loop integral, the region of momenta which gives the main
contribution to the amplitude, are the momenta of the order of the external mo-
menta:

l Ploop INI Pext IN Mg (45)

In loops involving ¢ or ¢ quarks, it is then justified setting to zero exter-
nal momenta (that is the same as shrinking the box diagram to a point), since
M;,M: > Mj. On the contrary, for an up quark circulating in the loop the non
local and non perturbative effects corresponding to soft internal momenta are very
important. The leading contribution to AM} coming from double charm exchange

alone , is not sufficient to explain the observed experimental value:

A My (boz) _0 7(Mc
AMi(ezp) 1.5

) B (46)

and, from lattice computations, By = 0.94 + 0.02.

2.2.3 ¢ parameter

By means of interference effects (see sec.2.2.1) it is possible in neutral kaon system

to measure both modulus and phase of the C'P violating amplitudes:
_ < xtr~ | Kp >
e T o rtr [Ks >
<77 | K >
<im0 | Kg >

(47)

Moo =

The observable (47) are expressed in terms of the physical states | Ks >, | K1 >
and | 7F7~ >, | 7%7% > . As stressed above, hadronic matrix elements are
computed with perturbation theory in the basis of the eigenstates of the strong

. =0
interaction Hamiltonian Hy, composed of flavour eigenstates | K° >, | K > and
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isospin eigenstates | 7w (I = 0) >, | 7m(I = 2) > . To compare predictions with

measures it is necessary to connect the two set of states:

=0

Ks, Ky, — K" K

(48)
T S I=0,I=2

Let us divide the computation in two steps:
1) 7tr™,m%7% — wr(l = 0,2)
Since pions are emitted in S wave, by Bose symmetry:

2 1

ITFO'TI'O>= §!I=2>~7§‘]I=O>
' (49)

1 2
ITF+7T—>=”EII:2> +\/—é’I=O>

Expressing 74—, 7go in terms of amplitudes for pions with definite isospin, we

have:
S aor + 1/v/2as;,
+_ —
aps + 1/\/—2‘;‘125 (50)
Moo = apL — \/EazL
00 = ———=—
ags — \/§a25
where we have defined the 4 relevant transition amplitudes:
s = <0|S5> Al =1/2 CP cons
ar = <0|L> =1/2 viol
(51)
ars = <2|8> =3/2 cons
ap, = <2|L> =3/2 viol

ags 1is clearly the largest amplitude since it is AT = 1/2 and it is CP conserving.
aor/azs is suppressed because it is CP violating/AI = 3/2. ayr is doubly
depressed being at the same time AI = 3/2 and C'P violating.

From eq.(50) we see that n_ # 7n9o as a consequence of small AT = 3/2 weak

transitions.
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Expressing 74— and 79 as sums of AI = 1/2 and AT = 3/2 terms we get:

!

€
- =€ 4+ ——m————
T 1+ 1/v/%
!

(52)
€
= € — ———————
oo 1 — /2w
where:
aoL
€ = ——
ags
azs
w =
Gos (53)
1
¢ = — (8L _ we)

\/2_ s

w is the ratio of C'P conserving AT = 3/2 and AT = 1/2 amplitudes, and is known

experimentally to be very small:
| w| ~ 0.045 (54)

Neglecting w with respect to 1 we arrive at the well known expressions:

12

M- Ze + ¢

(53)

1

Moo e — 2¢

Note that simply neglect as5 with respect to aps in eq.(50) results in a mistake: we
loose the we term in eq.(53) that is of the same order as asr/aps. € is expected
to be much smaller than ¢ since it originates from Al = 3/2 and C P-violating
interactions.

2) Ki, Ks — K°, i'a

We have to express | Kg >, | Kz > in terms of | KO >, | K" > and the mixing

parameter eg:
| Ks>=N(e)[ (1+e) | K°> + (1-e) | K >]

| K> =N (1+ea) | K> - (1-¢)|E >
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Substituting eq.(56) in eq.(51) and eq.(51) in eq.(53), we get:

€r + it
= — 57
¢ 1 + 'IZtho ( )

where we defined: ’
<0 K% > = Age*

<0 | > = Akl

. (58)
<2|K®> = Aye*”
T < 2| K> = ALt
where tg = ImAy/ReA, and we have factored out strong interaction phases.

Since strong interactions are C'P conserving, their phases do not change sign under

C P transformation that brings the first/third equation into the second/fourth.

For w we have:
ReAz + . ImA.2
. Z£EA2 L e
— 61(62——50) REA() k REAO (59)

1 -+ iﬁto

The exact expression of ¢' is finally given by:
y g y

1
€ =

ei(52‘50+7\'/2) 1 - e:}zc ImA, ImAy ReA,

V2 (1 + derto)? Redy " Red, Rer] (60)

Since | ex |~ 1072 and | o |< 1 (since decay amplitudes have small imaginary

parts) we may safely approximate eq.(60) as:

eilb2=bo+7/2) Tm A,  ImAy Red,
\/—2— RGAO REAO RCA()

!
€

1%

(61)

¢ phase is then determined uniquely in terms of strong interaction phases. From

partial wave analysis of wm diffusion it is known that:

br— ok 5 = (48:8) (62)
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¢ and ¢ phases are then approximately equal and the theory has only to compute
the ratio of their moduli:
— 63
1<) (63)

At present the best experimental determinations os | €'/e| are:

!

| = |=(+3.3 £ 1.1) - 10~ (CERN)
€
=(-0.5+£1.5)-10"*  (FERMILAB)

2.3 B- B mixing

The study of B—B mixing gives independent informations on the CKM matrix
in addition to neutral kaons. A combined analysis of K — K and B — B systems
can then impose interesting constraints on the value of the complex phase ¢. Up
to now only beauty oscillations have been measured with B mesons. We then limit
ourselves to discuss the experimental measure and the theoretical computation of

B — B mixing.

2.3.1 Time integrated beauty oscillations

Observables in B — B mixing are not the same as in kaon system because of
concrete experimental differences: lifetimes are much shorter and relativistic time
dilation factors, at the same energies, are reduced of an order of magnitude:

M 1
8 ~ 107 sec € 7%  and sz ~ T (1)

As a consequence, up to now, only time-integrated mixing parameters have been

measured. Just as in the case of strangeness oscillations (sec.2.2.1), also beauty
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oscillations can be studied considering semileptonic decays of B mesons. A classical
measure of mixing in B — B events is the ratio p of the numbers of events with

same sign dileptons to that of unlike sign:

_ N(I*IY) + N(SI)
p= N(+)

(2)

If beauty particles are produced incoherently, as in hadronic collisions 7 + p, m +
target, p+ P, etc., B and B evolve independently. Starting with a pure B° state
at ¢t = 0, the ratio r of positive [* to negative leptons [~ produced in the whole

story of the event is given by the time integrated intensities:
N+ S Ip=—s(r)dr

Nl" foco IB=+1(T)dT

.y 1—c¢ 2 z? + 2

Sl l4e 2422 —y2

r =

where we used equation (2.2.10) and we defined:

AM AT
LT = = —
) Yy oT

= (4)

I is a mean B meson width. Starting with a pure B state we have instead:
Nl_ _ ‘/‘OOO TB=+1(T)dT
NH‘ fooo TB:—__.l(T)d‘T

1-+e¢ |2 w2+y2
1—¢e' 2422 —y2

7=

= |

Neglecting C'P violation in beauty oscillations, we may set:

We may also neglect y with respect to z since by eq.(2.1.19):
AT = 2| Ty |~ M}

AM = 2| My, |~ M?
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then:

72

2+

P=7 =

3 (8)

As it is intuitively clear, mixing increases with AM and decreases with small
lifetimes.
In the incoherent case p is then given by:

2r

pzl—l—r2

(incoherence) (9)

In the case of coherent production, as is the case in timelike v, ¥ or Z° decays,
BB do not evolve independently, because of Bose symmetry. For J = odd in the
initial state, we have [3]:

p=r (J = odd) (10)

2.3.2 B — B mixing in the SM

M, in B — B mixing is computed as in K system with AB = 2 box diagrams.
Since external quarks are bd(3) instead of sd, top-top exchange contribution is by

far the dominant one, both for ReM;; and ImM;, (fig.1).

L A (s) L s o (s)
> ¢ ~ —> NN
b
w W
1(3) s 2s) ]
—< < —_— —

fig.1
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B — B mixing is then a short distance phenomenon. Perturbative QCD cor-
rections to the effective Hamiltonian Hl?}gl:z are the same as in K system, since

external momenta are set to zero. We have then:

AM
2p, =t =2 | Myy | 75, =
GI;L;CIZ M (1)
:WAz/\s(l 4+ p* —2pcos §)F(z¢)fh,BB.TBq

The main uncertainties in eq.(11) come from the unknown value of the top quark
mass M; which enters in the argument of the function F(z¢), and from the
hadronic matrix element of the effective AB = 2 Hamiltonian between B meson
states. As in the case of KK mixing (eq.1.2.19), the hadronic matrix element is
parametrized in terms of the coefficient Bp, and the B meson decay constant fg,.
There is a general agreement that Bg, = 1. The main justifications come from
lattice computations [10] and from the Zweig rule. For the value of f3, to insert
in eq.(11) the situation is still controversial. In the case of kaons, fx is measured
through leptonic deacay: K* — [ +y,. For B mesons instead, the branching ratio
for B — [+ v is extremely small and it has not yet been measured or bounded; it
is then necessary refer to a theoretical value. We report two determinations of B,
On the one side, assuming the validity of the decay constant scaling law of the
static theory (sec.4.2) and assuming for fp the value from lattice computations

and QCD sum rules [3]

fp 2180 Mev (13)
we get:
seal > 110 MeVv (14)

On the either side, assuming for fg the value computed by two groups with lattice

QCD simulations of the static b theory (see sec.(4.2)), we have [10];

5 = (310 £ 25+ 50) MeV (15)
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2.3.3 Combined analysis of K’ — K and B° — B’ mixing

Without making a choice between values (13) and (15) for fg,, we report the plot
of ref.[ 6 ] of fg and € as functions of cos § at given M, values (fig.2). Let us give
some qualitative comment. Increasing the M; value, GIM mechanism becomes less
efficient and €, increases. At given € value, then, the range of allowed sin § values
moves toward zero with increasing M;. It turns out that, for large M, values,
imposing the experimental ex value, two allowed regions of cos § emerge.

As stems from eq.(11), zp, decreases with increasing cosé. At given zp,
value, then, cos § increases with increasing fg,. The small value of fp (13) selects

the region with cos§ < 0 while the large one (15) the region with cosé§ > 0.

m, =100 GeV

cosd
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Chapter 3

Effective theories

3.1 Introduction

An effective theory [1,2] is a tool for computing low energy processes, with
a prescribed accuracy. It may be generatedvfrom a complete theory (describing
processes at every mass scale) as an expansion for small momenta. The main
advantage is that of being simpler than the original theory.

The reasons that lead to the construction of effective theories are related to
the following characteristics of quantum phenomena. The amplitude of a process
occurring at an energy scale E receives contributions from virtual states of every
energy E' # E. In many important cases the relevant coﬁtributions come from
high energy states. This implies that when studying an elementary process at the
scale F we cannot simply forget about the different energy scales E' present in
nature.

A clear example of this aspect of quantum theory is neutron beta decay,
n—p-+e+u. (1)

It is generated by the exchange of the W boson that has a mass My ~ 80 GeV,

while the scale of the process is E ~ M, ~ 1 GeV. The decay occurs because
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of the existence of the W boson, that enters in an intermediate state with a high
virtuality. The contribution of particles with mass M > E is just the origin of the
decay. The decay amplitude is a function of the W mass 4 = A(Mw) and at the
tree level can be expanded as:

Ay Az

A(Mw) =
M) = g, g

T (2)

where A;, Aj,... are functions of the external momenta only.
Perturbative corrections modify the behaviour of eq.(2) only by logarithmic factors
of the form In(Mw /u). There is then a complete decoupling only in the limit
Mw — co. Since the process is depressed by the high virtuality of the intermediate
state, we are interested only in the lowest order (or at most in the first few terms)
in the 1/M%, expansion. The systematic method for isolating the leading terms
in the inverse of heavy particle masses involves the construction of an effective
theory.

The idea is that we can neglect the W field for the description of the neutron
decay and replace it’s effects by new local interactions between the particles ap-
pearing as asymptotic states: n, p, e,v. At the tree level, it corresponds to the

following expansion for the W propagator:

1 1 1 42

= — — 3
PR R VR VN VR 3

On the right hand side of eq.(3) the degrees of freedom of the W field do not
appear any more and new interactions take their place. In general, with effective
theories we truncate expansion (3) at a given order, determined by the precision
required. Since ¢*> ~ (M, — M,)? < M}, the series is rapidly convergent. At

lowest order in 1/M3, we recover the old Fermi theory of beta decay.
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Other important examples are given by the effective Hamiltonians for pro-
ton decay or neutron-antineutron oscillations in the framework of Grand Unified
Theories.

These examples generalize to light particles with low energy E whose dynamic
is generated or largely modified by heavy particle effects. By ’heavy’ we mean
particles with mass M > F, that cannot appear as physical asymptotic states.

In the real world many different mass scales are present: the masses of the
observed particles, the QCD fundamental mass scale, the Plank mass etc... Every
elementary process receives dynamical contributions related to the existence of
these mass scale. It is possible to build up an effective theory for low energy
processes eliminating explicitly the particles with mass M greater than the energy

scale F:
M>E (4)

The fundamental property of the these effective theories is that they are simpler
than the original theory and at the same time contain the effects of the heavy
particles. They can be thought as an expansion of the heavy particle 4-momentum

around the null vector

Prutt = (0,0). (5)

The construction of the effective Hamiltonians is outlined in section (3.2) and a
well-known example is discussed in section (3.4).

Another interesting example is the anomalous magnetic moment of the elec-
tron p.. As we shall see in section (3.2), a proper generalization and formalisation
of this example leads to the construction of the so called non relativistic QED.
The anomalous part of p, is computed in QED by loop corrections to the basic

electron-photon vertex (see fig.1) and is then a consequence of virtual electron-
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photon states.

fig.1
An important contribution is given by relativistic virtual electrons, with ener-
gies E > m., because they feel an increased external magnetic field B.: induced

by the Lorentz transformation:
Bl ~ 7L Best (6)

where v, is the Lorentz factor of the boost from the laboratory frame to the rest
frame for the virtual electron.

Relativity is then necessary and the computation of the same graphs with the
Pauli Hamiltonian would result in a quite different correction value for pe.

The experiment for the measure of . can be realised with very slow electrons
and a weak external magnetic field Be,:; the only mass scale involved is m.. Then,
we arrive at the conclusion that with an accurate measure at the scale m. one can
observe effects related to much higher scales E > m.. In other words, with
experiments involving only slow electrons we may have an indirect verification of
relativity, that refers to states with E > me..

Now it comes the fundamental observation. Even though there is a coupling
between low energy and high energy states in quantum theory, we can separate
the two with the following strategy. If we limit ourselves to measure slow electrons

and soft photons (A > 1/m.) we can take into account the anomalous magnetic
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moment correction of QED, by simply adding to the Pauli Hamiltonian a local
magnetic dipole term. Since, in this particular case, there is already a dipole

magnetic term, we are renormalizing its coupling:

e ., = e . =
T 25 « Bogt — sze 25 « Bog: (7)
where:
Z=1+24... (8)
ki

It is to be understood that the renormalized magnetic dipole interaction has to
be computed at tree level in the low energy theory, because radiative corrections
have already been included. In certain applications however we are interested in
computing matrix elements of the low energy Hamiltonian at an higher order, for
instance at one loop level. In this case consistency requires subtracting from the

renormalization constant Z the non relativistic vertex correction contribution:
Z =1+ (full theory corrections) — (low energy theory corrections) (9)

As we shall see in section (3.2), with replacements of the form (7) we transform
the Pauli Hamiltonian in a quantum effective Hamiltonian for low energy electro-
magnetic processes. It is essential to note that going to the effective theory we do
not loose the quantum effects of the high energy theory.

This example generalizes to processes involving real particles that suffer small

momentum transfer ¢, with respect to their mass M:
¢ < M? (10)

These particles can be considered heavy’.
In these phenomena the ’heavy’ particle neither decays nor is generated in

the dynamic. Its large rest mass M is not created by or annihilated in momenta
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of light degrees of freedom. It always appears in the initial and final states of
the reaction. In the language of diagrams there is an high energy flow along the
heavy particle line. We can build up an effective theory for such particles that is

basically an expansion for small momenta around the on-shell momentum:
Pon shell = (J\/'[‘l 6) (11)

We cannot eliminate the heavy particle in the effective theory because it appearsin
the external states; we remove the heavy particle degrees of freedom that decouple
in the M — oo. This operation generates new interactions between the remaining
degrees of freedom. This effective theory can be generated as an expansion in the
inverse of the heavy particle mass, 1/M. In section (3.2) we apply it to atoms
with one electron. Chapter (4) deals with the application of the 1 /M expansion
to heavy quark bound states.

The two exami)les discussed, and the related effective theories, have the basic
concepts in common, but there is an important difference. In the first case the
energy and the spatial momentum of the heavy particle E, p are much less than

its mass M:

E, | Pl M. (12)

The effective theory can be thought as an expansion of the heavy particle 4-
momentum around a null 4-momentum (eq.5). In the second case, instead, the

heavy particle is real and its spatial momenta | 7| are much less than M:

E~M
(13)
| 7 | M.

This second kind of effective theories can be regarded as an expansion of the heavy

particle 4-momentum around an on-shell value (eq.11).
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3.2 Construction of an effective theory

We can identify the following steps in the construction of an effective hamil-
tonian describing processes up to an energy scale E.
1) Removal of the heavy degrees of freedom.
The effective Hamiltonian is constructed by eliminating from the original theory
all the fields with mass M > E. The physical degrees of freedom are then identified
through the fields which correspond to external states.
2) Construction of all the possible interactions, allowed by the symmetries of the
original theory, between light fields.
The effect of virtual heavy particles is mimicked in the effective theory adding to
the original vertices all the possible interactions between light fields. It is only
required that new interactions satisfy the fundamental laws of nature, like CPT
symmetry, Lorentz invariance, hermiticity, etc... In contrast to the complete high
energy theories we do not require the new interactions to be renormalizable. That
is quite in agreement with the idea that effective theories do not describe correctly
the physics at small scales. Their § matrix elements have to be computed at tree
level or at most at a fixed number of loops. Each new interaction O; introduced in
the effective Hamiltonian has a strength that is characterised by an undetermined
coupling constant ¢;. In general the number of possible new interactions is infinite,
because the theory is "effective” and does not require to be renormalizable. The
dimension of ¢; is M*~P, where D is the dimension of the operator O;. Usually
D is negative and is related to the inverse of an heavy particle mass present in the
original theory.

3) Matching of the 2 theories.

This is a consistency requirement. We have to impose that the original and the
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effective theories generate the same physics at low energies. The procedure is
straightforward:
i) Expand the matrix elements of the full theory up to a given order in the inverse
of the heavy particle masses.
ii) Compute a sufficient number of amplitudes in both theories at a given order in
perturbation theory, in order to determine all effective couplings ¢; of the effective
theory.
iii) Equate the expanded matrix elements of the full theory with the corresponding
matrix elements of the effective theory.

In this way all the couplings of the effective theory are determined in terms

of the parameters of the high energy theory and of the heavy particle masses.

3.3 Non relativistic QED

Non relativistic QED is an effective theory for low energy electromagnetic
interactions. It has been formulated for high level computations of bound states
properties of atoms like muonium (u*e™) and positronium (ete™) (Caswell and
Lepage [3]). The essential problem of the computations of the hyperfine struc-
tures is that relativistic corrections play a crucial role, for the reasons exposed in
section (3.1). The most direct way of taking them into account is to employ a
tully relativistic formalism, based on Bethe-Salpeter equation [4]. On the either
side, positronium or muonium are weakly bounded states, with small momentum

transfers among the constituents. The particles have a non relativistic motion
v
-~ (1)
c

that needs only the first few terms in the relativistic corrections. With an effective
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theory we can separate low energy and high energy electromagnetic interactions,
that are coupled in a relativistic theory. They can be treated with different for-
malisms and gauges. According to the procedure described in section (3.1) we
write down the most general nonrelativistic Lagrangian involving only the fields
of the particles building up the atom. The electromagnetic field of course has the
same description in QED and in NRQED. The differences lie in the interaction
with the matter and in the description of the matter itself. We impose only general
constraints on the structure of the interaction terms, such as hermiticity, Galilean

invariance, etc. For muonium we have:
Less = = 2(B* — BY) + 91(i0: — e + D* [2m)pet
+ ples D*/8m® + ca(e/2m)F - B
+es(e/8m2)d - E + ca(e/8m*){iD - E x &}tbe (2)
+ pl[di(e/8m®){ D%, 5 - B}y
— (da/mem,)($1Gbe) - ($loYu) + ..

where D = §+ied is the gauge covariant derivative and ., ¥, are two component
spinor fields. The effective lagrangian can be thought as an expansion in 1 /m or
in v/c since any power of 1/m brings a factor v/ec.

The coefficients ¢; and d; are determined imposing the equality of a adequate
number of scattering amplitudes computed at a given order in « both in full QED

and in non relativistic QED (NRQED):
<f|S|i>gep=<f|S5|t>NRQED (3)

up to a given order in the inverse of the particles masses.
Relativistic quantum effects are then incorporated in the values of the coefficients ¢;

and d;, up to a given order in a. They are easily computed in QED with covariant
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perturbation theory and a covariant gauge. At the tree level cy...cq,d1,dp = 1. In

general we have:
¢y di = 14 (QED corrections) — (NRQED corrections) (4)

With non relativistic QED we can compute every low energy process. The results
agree with those of QED up to the higher order in the inverse of the particle masses
considered in the effective interactions. Bound state properties are then computed
using the Schroedinger equation with ordinary (non covariant) perturbation theory

and the Coulomb gauge.

3.4 AI=1/2rule

It is experimentally established that nonleptonic kaon decays obey an approx-
imate Al = 1/2 selection rule. AI = 3/2 amplitudes are suppressed by about an
order of magnitude with respect to Al = 1/2 ones.

A partial explanation of this law is that it is induced by the strong interaction
dynamic, as found with the use of the effective weak Hamiltonian (G. Altarelli
and L. Maiani [5], M.K. Gaillard and B.W. Lee [6],[7,8]). Gluon exchanges are
thought to be responsable for the effective strength of AI = 1/2 interactions
and suppression of the Al = 3/2. The computation is simplified considering a

Standard Model with only 2 quark generations:

U c
(@) () 2
The effective Hamiltonian for strangeness changing decays H eAfi“ s given

by:
H?;ff’— ( ) \/— udVUSZO :Uw ) (L)
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where O;(y) are renormalized local four fermion operators and Ci(u) are the rela-
tive coefficient functions. The matrix elements of the effective Hamiltonian must
be independent of u, because p is simply the scale at which the renormalized op-
erators have been defined. The dependence on p of the coefficient functions Cj
and of the operators O; must compensate. The complete theory, including the W
boson field, doesn’t have other divergences than the usual of a renormalizable the-
ory. In other words, one loop QCD corrections of the AS =1 vertex are finite in
the complete theory. The physical reason is that the W mass acts as an ultraviolet
cut-off in the high energy theory and it is not necessary to introduced any mass

scale for the subtraction point.

At the tree level in weak interactions and ignoring strong interactions, the

effective Hamiltonian is given by:

cr
V2

Hffffl(z = V2 VusO1(z) + hec. (3)

where
O1(z) = T(z)yu(l — 7v5)s(z) d()yu(l = 7s)u(z) (4)

We want to include the effect of strong interactions in the effective Hamiltonian in
leading logarithmic approximation. Since p is arbitrary, let us we choose p > M..
Using standard renormalization group techniques, we need only to compute 1 loop

Feynman diagrams with a gluon exchange between quarks legs of the operator O
(see fig.1).

w
5

PO OIS

4
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fig.1
Logarithmic divergences are found that impose the renormalization of O. They
appear in graphs where colour is exchanged between quark bilinears, and the renor-
malization is then not multiplicative. The operator O; mixes with the following

four fermion operator:

0s = A(2)7u(1 — y5)u(z) Az )yu(1 = 75)s(2) (5)

The linear combinations of O; and O, that are multiplicatively renormalized are:

Ot =yu(l = 75)s dyu(l — 7s)u +T7,(1 — v5)u dyu(l — 7s)s ©

O =uyu(1 —vs)s dyu(l — vs5)u — Tyu(l — vs5)u dyu(l —vs)s
O- is antisymmetric under the exchange of @ and d fields. Two of the three
spinors carrying a nonzero isospin are then in an isosinglet state and the operator
O_ can mediate only Al = 1/2 transitions. O~ is instead symmetric under the
exchange of the @ and d fields and then can produce both Al =1/2 and AT = 3/2
transitions. After the inclusion of strong interactions the effective hamiltonian

reads:

B = ZE(C4(t,05)04 (1) + O (t,5)0- () (7)

for M. < p < M. t= ln(MI%V/,uz).
The requirement of p independence of H. 7f generates a renormalization group

equation for the coefficient functions Cu(t, as):

d
33 Olt,5)0(h) = 0 (8)

The explicit form of eq.(8) is the following renormalization group equation:

(=5 +B(as) 5o ~7%(a) JOult, xs) = 0 (9
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The solution is:

Caltias) = Cu(0,ms(b asera( | aw2led)) (10)

We insert in eq.(10) the one loop expressions for the running coupling constant

and the anomalous dimensions of the operators:

d .
g os(k) = —bas(n) (1)
75 (as) =4 ag
where:
-1 1
+(1) . T+ (1) _ = 12
g 5 ~ (12)
and
2b = (247*)7(33 — 2N;) (13)
The result of the integration is:
— as (1) /3
= t — ]/ 14
Oi(taas) G;{;(O,as( 7a5) )[Es(t,as)] (14)

We have now to impose the matching of the effective theory with the complete one,
computing the same amplitude in the full theory and retaining only the leading
term in 1/Myw . If we impose the equality of the amplitudes at a particular value of
t, 1t will be true for every renormalization point, because of the u independence.
In a leading logarithmic computation the matching is greatly simplified and there
1s no need to compute any graph in the complete theory. We equate the renormal-

ization point p (or cut-off) in the effective theory to the W mass that appears in

the full theory:

p = Mwy (15)
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With this choice the difference of 1 loop matrix elements of the complete theory
and the operators Oy does not contain any leading log. We neglect subleading

terms in our leading log philosophy, and the matching reduces to:
Cﬂ:(oaaS(tvO‘S) ) =1 (16)

The effective Hamiltonian then reads:

G o -
AS=1 _ ZFqyrx s gy
Heff \/i uqua{[a—S(t,aS)] O‘(/‘L)+ (17)

as ,Y+(1)/b

for M, < p < Mw.

Scaling the renormalization point g from g > M. down to p < M. the charm
quark field disappears and we go in a new effective theory containing only the
flavors u,d, s as dynamiéal fields. There are new matching conditions to impose.
We have to introduce in the 3 flavour effective theory new interactions between
u,d, s fields representing at the lowest order in 1/M. the effects of virtual c loops
that are present in the 4 flavour theory. At one loop level, 4 quark operators
containing c¢ fields do generate diagrams that can mediate AS = 1 transitions (so

called penguin diagrams [7,8], see fig.2).

5\\Mlcwqa

fig.2
New 4 quark operators, with a different chiral structure with respect to the original

ones enter in the effective Hamiltonian. However, the charm mass scale is not far
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from the confinement radius R™! and the perturbative theory rapidly becomes
inadequate for the matching. We limit ourselves to an estimate of the enhancement
effect and drop neglect penguin operators in the matching at the M, threshold.

We simply evolve the coefficient functions in eq.(15) down to u in the region:
M, <p< M, (18).

We can try to minimize the differences in the (unknown) hadronic matrix elements
of O_(u) and O4(u) by taking u of the order of the kaon mass. With this choice
there are not different mass scales in the matrix elements and no large logarithms

can appear. Inserting the values Agep = 300 MeV and p ~ 0.5 GeV we get:

C_. ~ 3
(19)
C+ jnd 06

giving an enhancement factor ~ 5. It is to note that scaling the renormalization
point g down to u ~ 0.5GeV is to a large extent arbitrary, because of fundamental
non perturbative effects. Keeping u in the perturbative region, u ~ 1 + 1.5 GeV,

reduces considerably the enhancement.



Chapter 4

Heavy quark bound states
in QCD

4.1 Introduction

The dynamic of a heavy quark Q in a hadron is an interesting problem in
particle physics both for phenomenological and theoretical reasons.

As discussed in section (1.4), an accurate determination of the weak current
matrix elements between mesons composed of heavy quarks is necessary for the
extraction of | V3 |, | Vys | from the experimental decay rates.

The dynamic of bound states containing heavy quarks contains also informa-
tions on the basic properties of strong interactions, as will be discussed in section
(4.4).

The typical momentum exchange ¢ among the constituents of a hadron is of

the order of the inverse of the hadron size,
g~ Agop (1)

Light quarks ¢, whose mass my < Agop, are relativistic and subject to non

perturbative effects of strong interactions. On the contrary, the motion of a heavy
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quark Q is slow, because exchange of high momentum gluons is suppressed by
asymptotic freedom.

We can distinguish the following cases:

1) Mesons composed of a pair of light valence quarks, like the p or the K mesons.
The dynamic is non perturbative. Since current lattices have an ultraviolet cut-off,
Ayv =1/a ~ 2+ 3 GeV, much greater than the typical momentum transfer ¢ of

quarks and gluons,

¢ < Auv (2),

processes involving light quarks can be safely computed with lattice QCD [1].
2) Mesons composed of a pair of heavy quarks QQ, like the J/1 vector meson
or the Y states. The motion of the constituents is non relativistic:

1
10

2

1
<vE >~ -, 4
v 3 (4)

for ct, bb systems respectively [2,3]. The dimensions of these mesons are much
smaller with respect to the cases 1) and 3) (see below), implying larger momen-
tum transfers. The dynamic can be described by Schroedinger equation, in analogy
with the hydrogen atom. The effective potential represents the exchange of gluons
between QQ and creation of light pairs. An instantaneous "effective” potential
model is a reasonable approximation of reality, if the dynamical degrees of free-
dom of the gluon field can be neglected. In physical terms, the motion of the
constituents must be enough slow in order to not excite gluonic states [3].

3) Mesons composed of a heavy and a light quark Qg, like the B’s. It is an
intermediate case between case 1) and 2). The light quark motion is relativistic
and non perturbative while that of the heavy one is non relativistic. Momentum

transfers are smaller than in case 2) and the mean velocity <v > of the heavy
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quarks, from quark model estimates, is given by:
1
<v >~ g iy (5)

for D and B mesons respectively [3]. In this chapter we are mainly interested in
these kind of particles. An analogue classification holds for baryons.

We now introduce the basic idea for dealing with heavy quarks..

The basic idea, which corresponds to our "naive” physical intuition, is that in
the limit of a very large mass, the heavy quark behaves as a static source of colour
which screens the field of the light quark. It is then reasonable to expand the
heavy quark Hamiltonian, Hg, in powers of 1/Mg (Eichten [2,3]). Heavy quark
propagators, interaction vertices and finally physical observables like decay rates,
mass splittings, etc... can then be computed like formal series in 1/Mg. The
expected contribution of terms of a given order nis ~ (Agcp/Mg)".

The expansion in powers of 1/M¢ of the Dirac gauge-covariant Hamiltonian is
a very old result (Foldy-Wouthuysen [4]). It originated from the idea of getting
rid of the couplings between particle-antiparticle states with a proper unitary
transformation S that diagonalizes in 2 by 2 blocks the Dirac Hamiltonian H in

the standard representation:
S H ST = Hdiag- (6)

S is naturally organised as an expansion in powers of 1/M.

At the beginning of relativistic quantum mechanics [4], the nonrelativistic
treatment of the Schroedinger equation has been discarded at the fundamental
level, since it leads to a non local wave equation. Nevertheless it keeps it’s validity

at low energy as an effedive theory.
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The assu mption that momentum transfers in a hadron are of order Agep is
of fundamental importance for the validity of the 1/Mq expansion. The main the-
oretical justification is that Quantum-Chromodynamic, being a non abelian gauge
theory, is asymptotically free: the effective coupling constant as between quarks
and gluons goes to zero with increasing momenta (though only logarithmically)
and great momentum transfers among constituents in a hadron are suppressed.

These considerations should overcome to a large extent the theoretical diffi-
culties related to the confinement of quarks and gluons inside hadrons. The 1/M
expansion can be demonstrated only in the perturbative regime, as for example
in the computation of electromagnetic bound states. In the latter case the force
is weak, goes to zero as the distance r of the constituents increases, 7 — oo, and
the binding energy is consequently small. In the case of strong forces one could
imagine a model in which the constituents are inside a deep, negative, potential
well. The observed value of the bound state mass M, for instance the proton mass
Mp ~ 1 GeV, doesn’t imply in this case that momentum transfers ¢ among the

constituents are of the same order of magnitude of M:
¢ 4 M>. (7)

In other words, the bound state mass can result as a small difference of large,
opposite sign, kinetic and interaction energies.

There are two main applications of the 1/Mg expansion.
1) Derivation of symmetry properties in heavy quark systems.
In the limit Mg — oo, the effective Hamiltonian possesses new flavor-spin symme-
tries which allow to relate among themselves properties of different hadrons. They
arise at a given order in 1/Mg (for the moment computations have been mainly

limited at lowest order): the main results concern asymptotic relations between
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hadron masses, form factors, decay constants, absolute normalization of hadronic
matrix elements, etc...

2) Numerical simulation of heavy quark systems.

1/Mgq expansion allows the numerical simulation on the lattice of the dynamic of
quarks with mass Mg > 1/a, where a is the lattice spacing. In lattice regular-
ization of quantum field theories, the inverse of the lattice spacing 1/a acts as an

ultraviolet cut-off in momentum:
Ayy ~ 1/a. (8)
It is then impossible to simulate the dynamics of a particle with a mass
M>1/a, (9)

since it has a Compton wavelength ). smaller than a. With present computers it
is not possible to simulate QCD with 1/a > 2+ 3 GeV [1,5], making questionable
calculating charm quark dynamic and impossible the beauty one. Since however
in many interesting processes involving heavy quarks, momentum transfers are
much less than 1/a, it is still possible to simulate them, giving up the description
of structures with mass scales of order Mg [3]. The systematic method for this
task is just a appropriate discretization of the heavy quark 1/Mg expansion. With

1/Mg expansion we can then simulate the dynamic of ¢ and b quarks.

4.2 Static theory for heavy quarks

In this section we discuss the static theory for a heavy quark, i.e. the effective

Hamiltonian at lowest order in the 1/Mg expansion [6,7].
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The dynamic of a quark Q inside a given colour field Au(z) = A5 (z)t* is

determined by the Dirac lagrangian:

L(z) = Q(z)(iv* D — Mq)Q(2) (1)

where: D,(z) = 0, +igAu(z).

According to the previous ideas on the dynamic of hadronic bound states
(section 4.1) it is natural to assume that a heavy quark Q in a meson or a baryon is
nearly on shell and nearly at rest, because its momentum differs by (Mg, 5) at most
by terms of order Aggp. It follows also that the heavy quark is subjected mainly
to chromoelectric interactions and chromomagnetic effects can be neglected. At
the lowest order we can drop terms related to the spatial motion of the heavy

quark, of eq.(1), obtaining the following "effective” static theory lagrangian:

Ls = Q(z)(i70 Do — Mq)Q(z) (2)
The static theory (2) , unlike the high energy one (1), is no more Lorentz or
even Galileo invariant, since we have set equal to zero the spatial components of
the 4-vectors p,, A,. By abandoning the complete theory in favour of the static
one we have done an operation analogous to the gauge ﬁxihg in quantizing gauge
field theories, which notoriously breaks gauge symmetry.
In most applications of the static theory only heavy quarks or heavy anti-
quarks are involved. We can decouple the corresponding fields (6] by writing Q(z)

as a combination of its upper and lower components:

Q) = L pa) + Lo k(o) (9

In terms of quark and antiquark fields, H and K, Lg(z) reads:

Ls(z) = Hi(z)(iDo — Mg)H(z) + K'(2)(~iDy — Mo)K (z) (4)
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The number of degrees of freedom for a given orbital state is preserved since we
have converted a 4 component theory in 2 independent 2-component theories. Such
a transformation is impossible in the Lorentz invariant theory (as is well known
from the first days of relativistic quantum theory [4]) , because of simultaneous
particle-antiparticle creation. The static theory is a low energy effective theory
and particles states with momenta comparable with the mass are absent from the
spectrum: there is no way to excite the ”Dirac sea”.

In the static theory the parameter Mg can be removed because it does not
represent any more a true, dynamical mass. In the free case it is equivalent to

expanding in powers of 1/Mg the relativistic energy-momentum relation

E=./p*+ M2 = Mg +p*/2Mg + ... (5)

keeping only the leading, momentum independent term
E = Mg. (6)

The parameter Mg therefore doesn’t control anymore the changes in energy related
to a given change in momentum. In the lagrangian of eq.(4) it can be removed
with a time dependent redefinition of the quark and antiquark fields:
H'(z) = H(z)eTMat
' iMqt ()
K'(z) = K(z)e *¥e
In classical field theories the propagation of waves in the space is described

adding to the lagrangian bilinear terms in the field and it’s spatial derivatives,

such as
9;40:9, $7: 0 (8)
where ¢/4) is a bosonic/fermionic field (In euclidean theory terms (8) are associated

to field diffusion). Dropping these terms, waves do not propagate any more and
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the field reduces to a continuum of independent oscillators, one for every point
of the space. As a simple example, consider the Klein-Gordon lagrangian with

spatial derivatives omitted:

. 1/04\* 1 ,,,
150 = (%) -3t (9)
The equations of motion are:
Eﬁqs(i’t) = —m”¢(,t) (10)
having as solutions:
B(&,1) = §(&, 0)e ™I 4 g(z, 0)etimem ) (11)

for every Z. The oscillation amplitudes #(Z) and phases §(Z) are completely ar-

bitrary functions of Z. In quantizing the theory we get a spectrum of excitations

consisting of particles created in various points (instead with a given momentum)
=1 bt

Z, @' ... by different operators Azy Qzyvnoe

By dividing Ls(z) of eq.(4), after the removal of the mass,into a free part
Ls(z) = H(z)id H(z) + K(z)(~1)0. K () (12)
and an interacting one

Li(z) = ~gH(z)do H(z) + K (2) 4o (2) K (z) (13)

D)

it is straightforward to compute the Feynman rules for the static theory. For a

quark we get:
]
:::7'\: = . 14
P—— (14)
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Taking the Fourier transform of the momentum space propagator of the 4-

component theory
1

— 16
YoPo + € (16)
and reinserting the mass term of eq.(2), we obtain:
1 . 1— .
Sp(z) = —¢5<3>(.~c)(i2—12@(t)e-%t + *—212®(~t)e+’MQt) (17)

As it stems from eq.(17), an infinite-mass quark is a classical particle: once created
in a point it remains there forever. There is not contradiction with the uncertainty
principle since ézév = §z6p/m ~ h/m which goes to 0 as m — co. The interacting
propagator Sp(z) is computed by noting that for an infinite-mass quark finite
momentum transfers cannot change its motion nor rotate its spin. For a very
heavy particle the sum over histories collapses in the classical one (z(t) = 0 for
each ?). The interaction then generates only a phase factor in colour space. By

gauge covariance the propagator can depend only on:
t —
P(4) = Pexp(ig/ Ao(0,t")dt") (18)
0
where P denotes path ordering, and then:

Sp(z) = P(A) - Sp(e) (19)
4.3 Relativistic infinite mass theory

4.3.1 General considerations
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Consider the semileptonic decay of a B meson into a D or a D* meson:

B—D/D*+1+u (1)

where | = e, and v is the corresponding neutrino. In the rest frame of the B
meson, the constituting b quark, that is essentially at rest (Ep = Mp + O(Agep),
78 = O(Agcp)), and is surrounded by the meson cloud, decays into a ¢ quark and
a | + v; couple. The charm quark emerges from the weak interaction vertex with
a given velocity ¥, which can go from 0 up to = 0.8c. Since the ¢ quark is heavy,
M, > A, it changes very little it’s velocity due to the interaction with the meson
cloud; in first approximation it behaves as a colour source moving with constant

velocity ¥, which is followed by the light colour-screening meson-cloud (see fig.1).
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Space-time diagram of b — ¢ semileptonic decay. With respect to bound-state
dynamics, the decay appears as a static colour source that starts moving at time
t* with constant velocity v.

In the static theory B, D and D* are composed of the same meson cloud.
Since the cloud and the heavy quark spin are both conserved in time by hadron
dynamic, spin flips are produced only at the weak vertex. The hadronic part
of process (1) is then described as a b quark decaying into a ¢ quark with the

same/opposite spin orientation (ﬁg.Q).
>

.', Y'{,‘\ gl - -
r4 K\ <L e /5
\4 \(.;’,‘,/ B_*h 'r
e ’:’::g;:, LY Yoo, /,1-’-,/«\ — —
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fig.2
The systematic errors in taking M., M, — oo are of order Agcp/M.. A
more precise computation has to take into account 1/M. correction terms to the
static theory, which include the nonrelativistic term p®/2M,, the chromomagnetic
interaction due to the quark spin and of the orbital motion of the charm quark

with the meson cloud.

From the above considerations it is clear that semileptonic B — D, B — D*
transition amplitudes are related in the static theory. They equal the probabil-
ity amplitude that the meson cloud doesn’t excite when the colour source starts
moving.

If pp/pp+ = 0 in decay (1) a b quark at rest is transformed into a ¢ quark
at rest, and nothing happens with respect to bound state dynamics: meson cloud
doesn’t feel any change and the broken line of fig.(1) turns into a straight line.
These intuitive considerations indicate that there is an absolute normalization of
the hadronic matrix elements of processes (1) in the static theory for both b and

¢ quarks.

At this kinematic point the decay (1) resemblances a purely leptonic one,
since a lepton and a neutrino emerge from the decay vertex with opposite spatial
momenta p, = —p; and fixed energies determined by ¢*> = (pi + p,)? = ¢hrax =
(Mp — Mp/Mp~)2.

In the framework of the 1/Mg expansion it is easy to understand why various
quark model predictions agree fairly well among themselves in the values of the
hadronic form factors of processes (1) [8]: at lowest order in 1/Mg the wave func-
tions of the B and D/D* mesons coincide and the overlap integral is independent

of the parameters of a specific model.
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The quantitative understanding of the properties related to processes (1) in
the My, M. — oo limit requires the construction of a theory describing infinite
mass quarks moving with various velocities. It is discussed in the following sub-

section.

4.3.2 DBasic elements

The static theory for heavy quarks (section 4.2) is not relativistic because if we
move from the laboratory system to an inertial frame with velocity ¥, where a
static quark is viewed as a particle with constant velocity —¥, this case is not
described in the lagrangian (4.2.1). Relativistic invariance can be recovered by
performing all the possible Lorentz transformations of the static lagrangian Lg(z)
(eq.4.2.1) and then summing the resulting expressions L(z,v) with a relativistic
invariant invariant measure (Georgi [9]).

In the rest frame S' of the infinite mass quark @, the static equation of motion

holds:
(#70 Dy — Mo )9'(z') = 0 (2)
We have to express equation (2) in the variables of a reference frame S moving with

velocity —¢' with respect to S'. The standard Lorentz coordinate transformation

A from S to S’ gives:
Dy = ASD* =Dy ~ 435D =v*D, (3)

where v = 1/v/1 — v? is the time dilation factor. The Dirac spinor 1 transforms

according to:

¥'(2") = S(A)p(e) (4)
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where S(A) is the spinorial representation of A. Substituting eq.(3) and (4) into
(2), left-multiplying the result by S7'(A) = S(A™"), and using the relation:

STHAYLS(A) = A (5)
we arrive to the result:
(i7" - D — Mo)h(=) = 0 (6)

The equation of motion (6) can be derived by a variation from the lagrangian:
Lo(2) = Bliruo*v - D — Mo)h(z) =0 (7)

which is the lagrangian of an infinite mass quark moving with constant velocity
7. Summing L,(z) over all the velocities v* with the measure Jd*vé(v? —1) =

[ d3v/2v° we get the relativistic expression for the heavy quark L(z):

d3v
1) = [ 5 Ee(@) ®)
Since a static quark Q doesn’t change spatial position by means of finite momentum
transfer and an infinite mass quark with velocity ¥'is simply a static quark observed

from a moving frame, we derive a velocity superselection rule for the relativistic

infinite mass theory (Georgi [9]), namely:
AT =0 (9)

where A7 is the velocity change in a collision.
The velocity superselection rule (9) can also be derived with the following obser-
vation. After a collision with momentum transfer k, the momentum of the meson

containing the heavy quark is given by:

Mv' = Mv+k (10)
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where v and v' are the initial and final velocities and M is the meson mass, that

coincides with the heavy quark mass Mg up to order Agop terms. For finite &

we have:
v o= 'o—I—i — v (11)
M
for
Mg — oo. (12)

The velocity superselection rule (9) implies that there is a separate field ¥, (z) for
each velocity v, since no dynamical process can couple any two fields ¥, (z), Y (z)
with v' # v.

As in the case of the static theory, we can remove the parameter Mg in the

relativistic infinite mass theory lagrangian (8) by writing:
P'(a) = "M (x)
| We get (dropping for simplicity the prime):
Lo(z) = Figuoto - Db(a) = 0 (13)

The Feynman propagator Sg.))(k, v) of the relativistic infinite mass theory can
be computed with a Lorentz transformation of the static one eq.(4.2.16). The same
result could be obtained as follows. In the propagator of the Dirac theory:

p+ Mg

Oy — 5
Sr (P = e

(14)

set p = Mgv + k and keep only the leading term in the residual momentum &

(small virtuality). The result is:

1+ 1
2

. 1
vk +e (15)
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From the anarmonic part of (13) we get the vertex rule:
—1igtvHis; (16)

The interacting propagator in configuration space Sp(z,v) can be derived
making the same Lorentz transformation A applied to the static lagrangian, on
the static propagator Sp(z) (eq.4.2.17).

The relevant transformation formulas are:

t' =vtz, (17)
Ay(e') = 9, 4%(2) (18)
like eq.(3)
STHA)S(A) =10 (19)
dt' = gg- (20)

where we have differentiated eq.(17) and we have used the equation of motion in
the S system z; = (v;/vo)t.
o(t') = 0() (21)

since proper Lorentz transformation do not change the sign of the time.
The transformation of the §(3)(z') is derived considering that the condition &' = 0
in K' becomes in K z; = (v;/vp)t. Then, it must hold the proportionality relation:
§3)(z") = a(v)6CNE — (T/vo)t).
Integrating both sides on d*z = d*z'/y, because of Lorentz contraction, we get
a{v) = 1/v and then:

1 .

§3(') = —63)(F — 4). (22)
Y Vo
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Using (17),(18),(19),(20),(21),(22) and (4.2.17), we derive:

Bz _ = - ‘ s .
SF((E,"U) = —ZP(A) . é (mO H,t) . (1 _;_ v@(t)e—tl\/.[qv-z + _1 5 v@(_~t)e+zIVIQv~z)
)
(23)
where:

¢ dt’

P(A) = Pexp(ig/ A(ut', ')y v —) (24)
0 Vo

Equation (23) is a generalization of the static case considered in eq.(4.2.19).

4.4 Correlation functions

In the infinite mass limit, dimensionful parameters disappear from the original
theory and some interactions simplify so that new symmetries appear, relating
properties of different hadrons and amplitudes of different processes.

A general technique for proving symmetry relations of the infinite mass theory
is offered by the functional-integral formulation of quantum field theory, whose

basic elements we review in this section.

4.4.1 2-Point correlation functions

The mass of the lightest particle P with given quantum numbers can be computed
by the asymptotic values (¢ — oo) of the euclidean correlation functions Fap(z)

of any two operators A,B having the same quantum numbers as the particle:

Fap(z) =< 0| T[A(,¢)B(0)] | 0 > (1)
The operator B(0), because of symmetry, can excite from the vacuum | 0 > only

those eigenstates of the hamiltonian, | n >, with the same quantum numbers of the
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particle B. In euclidean theory, where numerical simulations are performed, these

states evolve in time as e™%»*, At long time separations between the operators
skaXes

4, B, because of decay, only the lightest coupled to the sources, that are one

particle states, generate the correlation and F 'ap simplifies to:

3
Fap(#,1) :}; / (_2?%@?0 | AQ0) | P,p, )P, 5, | B(0) | 0)# ¥ iFr (D0
+exponentially small terms

(2)
where o denotes collectively all the particle quantum numbers (spin, isospin, etc.),
d’p/2F, is the Lorentz-invariant momentum measure for momentum eigenstates
and we have used translation invariance. For simplicity we make the computation
in Minkowsky space. Integrating over the space we arrive at:

3 oy 1 = 5 —iMt (o
/d 2Fap(&,1) = Y s <0 A0) | P,0,a >< P,0,a | B0) |0 > ¢ (3)

27

Computing the correlation function Fag and, for instance, F4 41 for various large
t values we can determine the particle mass M and also the matrix elements of A
and B between vacuum and 1-particle states.

According to Feynman path-integral formalism, Green functions like
Fap..z(z,y... ,Z) can be computed as expectation values of c-number operators

like A(x)B(y)...Z(z) weighted over the distribution ', where § is the action of

the theory:

<0|TA(z)B(y)...Z(z) | 0 > = < A(z)B(y)...Z(z) > (4)

where we have introduced the notation:

1

< A@)B(y)-2(:) > = 7 / [dg)A(2)B(y)... Z(z) &SI4] (5)
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where ¢ is the set of dynamical fields of the theory and Z = f[dqﬁ]eis[‘ﬂ becomes in
the euclidean theory Z = [[d$]é5(¥l2 and can be viewed as the partition function
at zero external field of a statistical system with hamiltonian SH = Sg.
Comparing eq.(3) with eq.(4) we conclude that masses and operator matrix
elements can be computed with functional-integrations once the action S of the

theory is given. In the case of QCD:

3
2 <0]4(0) |a>< a| B(0) | 0> e ——% A(=)B(0) >dx (6)

The average in this case is over fermionic and gauge fields, and A, B are composite

operators made out of quarks and gauge fields.

4.4.2 3-Point Correlation Functions

The matrix elements of an operator O(z) between 1-particle states | Py >, | P2 >
<P1‘O(€Z!)|P2> (7)

can be computed from the asymptotic values of an euclidean 3-point correlation

function

F(:cl,:cg) =<0 l TAl(CBl)O(O)Ag(:Bz) I 0>=<0 l Al(wl)O(O)Az(mg) l 0> ( )
8

for ¢y — +00, 13 = —o0

where A;, A, are operators with the same quantum numbers as particles P; and P,
respectively. By the same reasoning as in section (4.4.1), for ¢; large A;(z1) | 0 >

will be mainly a superposition of P; states only:
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d? o T
Ai(z1) | 0>= Z/ 27r)31;1; 1) Fp* | Pyyp1yon > exp(—ip1 - &1 +iE(p1)t)

+ exponentially small terms

(9)

where we defined:

Flal =< Pl,pl,al iAl(O) IO> (10)

and for —i; large:
d? ' i o
Az(z2) |0 >= Z/ " an’ | Py, ps, 2 > exp(—ipz - &2 + iE(p2)t2)

27‘(‘ 3E pz

+ exponentially small terms
(11)

where we defined:

F;z :<P2,p2,ag \A2(0)10> (12)

o1, s denote collectively all the strong interaction quantum numbers of particles

P,, P, such as spin, parity, G-parity, strangeness, etc....

Substituting eq.(9) and eq.(11) in eq.(8), we get for both ¢; and —1, large:

d d*ps
F(z1,25) = Z/ pl P2 peax por i

X < Pi,p1,a;1 | O(0) | P2yp2, 0z > exp{ipy - &1 — ip2 - T2 — 1E(p1)ta +iE(p2)ta}
(13)

Making the space Fourier-transform of F(z1,z2) — F(q1,d2,%1,t2) We can isolate
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in F' the correlation between modes with given momentum ¢, ¢ only:

F(q1,@,t1,t2) =

= /d3m1d3m2 exp(—iq1 - T1 + 12 Z9)F(z1,22) =

Forpg . .
= ay o y 41, P7 » —iE i E t2
E , 1, 24E(q1)E(q2)<P1 gi,o1 | O(0) | Pz, g2, c2) exp(—iE(q1 )t +4 (QZ)(1)4)

Computing the 2-point correlation functions F, 1, F we can determine
1

Ala,
(eq.4.4.3) < 0| Ay | PL > and < 0| Ay | P, > and then to extract from (eq.14)

the required matrix element:
<P17§€17a1i0(0)lp2a§’2)a2> (15)

We have thus proved the initial assertion.

The Feynman path-integral expression for F' is:
F(ml,mz) =< Al(ml)O(O)Az(wz) > (16)

Comparing eq.(14) with eq.(16) we get finally the path-integral expression for the

matrix element (7):

Flal *anz . '
1E(q1) E(q2) P —iE(q1)t1 + iE(g2)ta
Z 1E(q1) E(q2) < Pp,qi,01 | O(0) | Py, g2, 2 > exp(—iE(q1)t1 +1 (g2)t2)

Q,02

= /d3m1d3w2 exp{—igj’l . a’:’l +1(j2 . 52} < Al(wl)O(O)Az(H}z) >

4.5 Symmetry relations
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Symmetry properties of the static theory and the relativistic infinite mass
theory can be derived doing manipulations on functional-integral expressions com-
puted with the static QCD action (eq.4.2.2, 4.3.8). We will include the renormal-

ization effects due to QCD in section (4.6).

4.5.1 Symmetry relations in the static theory

Consider the lowest-lying pseudoscalar P and vector mesons V composed of a
heavy quark @ and a light antiquark g. As interpolating fields (sources) we take
respectively the time component of the axial current A4(z) = Q(=)7a7rg(z) and
one of the spatial components of the vector current Vi (z) = Q(z)yrg(z), (k=
1,2,3).

Let us consider first the pseudoscalar case. Setting A(z)t = B(z) = A4(z) in
eq.(4.4.6) gives:

1

Y7 1< 0] As(0) | P >|? e7 Pt = /d% < Ag(z)As(0) > (1)

Performing the (symbolical) integration over the quark fields 1 1 and using Wick

theorem the right hand side of eq.(1) becomes:

~ [ 2 < TrrsSale | 0prs5:(0 [ 2) >4 (2)

where we have introduced the notation < ..... >4 to denote 1/Z times the func-
tional integration over the gauge fields A, with the action S [4,]. |

S[A,] = Sym{du] + In[detA(A,)]Nt, is an effective non local action, generating
gluon field correlations only by integrating over gauge field, Le. including all

fermion loops. A(4,) is the Dirac operator and Ny is the number of light quark



95 HEAVY QUARK BOUND STATES IN QCD

flavors (according to the idea that heavy quark loops are unimportant). The trace
is taken over spin and colour indices and minus sign comes from the fermionic
loop.

Static theory enters at this point, in substituting static propagator for the

heavy quark. Doing that, expression expression (2) reduces to:
< Tr((1 — 74)/2P(A)Sq(0 ] 0,2) >4 e™*Ma? (3)
where: P(A) = Pexp(ig fot Ag(0,t')dt' and we used that

vavs (1 +7a)/27a7s = —(1 — 74)/2 (4)

Equating the first member of these relations with the last we have the result:

ﬁlﬁ- |< 0| A(0) | P >[? e~ {Mp=Ma)t —¢ Tr[(l—;l‘*-)-P(A)sq(o |0,8)] >a

(5)
Since the right-hand side of eq.(5) doesn’t contain Mg, the left-hand side also is
independent of Mg, implying that:

a) The quantity ¢ = Mp — Mg is independent on the heavy quark mass.
This property can simply be derived noting that strong interactions in QCD are
flavor independent and that in the static theory heavy quark masses Mo,Mqg: ...
disappear from the lagrangian.

More generally, in the static theory, all heavy-light mesons have identical
properties since they simplify to a cloud of light ¢g pairs and gluons screening a
static colour source.

b) The coefficient of the exponential on the left hand side of eq.(5) is independent
on Mq:
e

|< 0] A4(0) | P >|*= constant (independent of Mg) (6)
2Mp
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Introducing the pseudoscalar meson decay constant fp:
< P|A40)|0>=1ifpMp (7)

we get the famous decay constant scaling law [10]:

const

vV Mp

Repeating the previous computation with the vector meson source Vj instead of A4

fo =

we arrive at the same right-hand side as eq.(5), since v£(1+74)/27% = —(1—71)/2,
like in eq.(4). Comparing eq.(5) with the vector case, we derive:

1 .
S Dimt [< O Vi(0) | Vyr >[7 e iy =Ma:
v
(9)

- 2 —i(MP—]VIQ)t
2Mp |< 0 ] Aé(O) l P >| e

a) Since the equality (9) holds for any ¢ :
My = Mp (10)

The equality of pseudoscalar and vector meson masses (10) can be understood
in a simple way by considering the spin symmetries of the static theory [10]. The
chromomagnetic moment [g associated with the heavy quark spin §Q is a term
of order 1/M¢q. At the tree level:

fo = N—I’ZQ-S’Q. (11)
fig determines the spin interactions of the heavy quark with the meson cloud and
has has the effect of removing the degeneracy (10). In the static theory fg = 0.
The pseudoscalar meson spin results from antiparallel orientation of the heavy
quark and meson-cloud spin, both conserved in time. Rotating by 180° §Q we

transform the pseudoscalar meson into the vector one without any energy supply.
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We expect the difference between pseudoscalar mass M p and vector meson
mass My to be inversely proportional to the average mass M = (Mp + My)/2.
It holds then then the relation (see fig.1):

M{, — M2 = const (independent of M) (12)
0.60 ] T = g T T
0.58 ~— —]
- ]
L < N
0.56 |— -
o
% 0.54 — -
g
},:
T 052 — =
050 o‘ml_nl 2 3 L5 6 7 BI.(;}I()
o MgtM, (Gev) fig.1

It is surprising that the asymptotic law (12) is experimentally satisfied at the 5%
already for light mesons (p, 7) and strange mesons (K, K*).

With an analogue computation we can prove the equality of the masses of the
lowest lying scalar and axial mesons. The simplest choice of interpolating fields is

the following:
@(w)q(m) scalar meson

@(1?)’71:7491(3:) axial meson

b) Equating the coefficients of the exponentials on both side of eq.(9), we get:
3
Z <O VE(0) | Vir >P=|< 0] Ae(0) | P >[°= F2M2E = const Mp (13)
r=1
Let us introduce the vector meson annihilation constant fv:

<0|Vg(0)]|V,r >= %‘zie}; (14)
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where € is the polarization 3-vector of the state | V,» >. Putting eq.(14) into
eq.(13) and using the completeness relation of polarization vectors €”, Zi:l €L€] =

0r,1 we get:

i%ffi =1 (15)

4.5.2 Symmetry relations in the relativistic infinite mass theory

The normalization conditions and the relations among heavy meson form factors
anticipated in section (4.3.1) can be derived computing 3-point correlation func-
tions with the relativistic infinite mass theory lagrangian. The original derivation
has been given by Isgur and Wise employing the spin-flavor symmetries of the
infinite mass theory [11]. They constitute a formalisation of the qualitative con-

siderations of section (4.3.1). The matrix element of the quark weak current
T (@) = eahru(l —1s)b(z) = Va(e) - Au(a) (16)

between an initial B meson state with velocity vp and a final D meson state with

velocity vp
(Dsvp | Ju(0) | Byvg) = (D,vp | Vu(0) | B,vs) — (D,vp | Au(0) | Byvs) (17)

can be computed with the aid of the functional expression (4.4.17) (U. Aglietti
and G. Martinelli) which yields:

Fi Fp
4E(pp)E(pD)

<D,vp | J,(0)| Byvg > eap{—iB(pp)tp +iE(ps)in} =

:/dsde%D exp{—ifp - &p +if5 - 55} < Ap(20)T,(0)A5(z5) >
(18)
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where:

Fp = < D,vp | Ap(0)|0 >
(19)

Fg <B,'UB|AB(O)|O>

Ap(z) and Ap(y) are any two interpolating fields for the B and D mesons respec-

tively. The simplest choice is:

(z) = b(z)vs5q(z)

Aglzx
#(e) (20)
Ap(y) = q(z)ysc(z)

where ¢(z) is a light quark field: ¢ = u,d,s. Of course, the result we derive are
independent of the particular interpolating fields employed, since the propagation
of a physical particle is independent of the generation mechanism. The matrix ele-
ment of the interpolating field cancels in taking the ratio of the 3-point correlation
function to the 2-point correlation functions.

The axial part of the matrix element (17) vanishes due to parity conservation of

strong interactions:

< D,vp | 4,(0) | B,vg >=0 (21)

We then proceed by considering only the vector current matrix element.

Performing the functional integration over the quark fields 1, v, and employing

Wick theorem, we get for the right hand side of eq.(18):

~ [ dzgd®zp exp(—ipp - Tp + iFg - &
/ Bd zp exp(—ipp - p +ipp - TB) (22)

< Trlvs So(zm [ 2D) 5 Sc(zp | 0) 74 Sp(0 | z5) ] >4

Inserting in expression (22) eq.(4.3.23) for both b and ¢ quarks, and taking into
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account that tg <0, tp > 0, we get:

F}Fp
4E(ps)E(pD)

< D,vp | J,(0) | B,vs > exp{—iE(pp)ip + iE(pB)te} =

-1 . o - ) )
= ~B 1D eXP{"“:ZD -#ptp +1¢B uUBtB — ’L_Z\/[Ctp/’yp ‘*‘ZMst/’YB} X

1+ 9p
2

149
X<TT[P1, + %5

vs Sq(tm,@BtB | tD,UD) 75 P.yu] >a

(23)
where #g, @p are the 3-velocities and vB, YD the relativistic time dilation factors
of B, D mesons respectively. Py, P, are the P-line factors of the propagators of

the b and ¢ quarks:

‘ di
P, = Pexp(ig/ A(t,@pt) - vB—)
tp B
o ” (24)
P. = Pexp(ig / pA(t,upt) - vp—)
0 YD
We have identified the velocity of the b/c quark with that of the B/D meson;
otherwise the bound state would decompose as time goes on into the cloud and

the heavy quark.

Solving with respect to the weak current matrix element we arrive at:

1+ 7p 14+ 9p

< D,vp | Ju(0) | Byvp >= K - Tr [—5— 751715 Vol (25)
where we have defined:
4Mg Mp
[ = oo 26
FiLFB (26)

and:

t t ~ ~
L= —exp{e(—q— - —2) 1 < Py Sq(ts,uBtB | tp,¥ptp) Pe >a (27)
YD VB
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¢ = Mg — My = Mp — M. can be interpreted after renormalization as the heavy-
light meson (universal) binding energy.

Since L is integrated over all gauge field configurations and is independent of
times tp, tp, as it stems from eq.(25), it may depend only on the 4-velocities vg,

vp. According to Lorentz symmetry, it can be expanded into:
L = M, + Myvg + Mstp + Mytgtp + MsdpUB (28)

where M;, @ = 1,2...5 are matrices in colour indices only, depending on the
scalar vg - vp.

Higher powers of 95, 9p are not linearly independent with respect to the termsin
eq.(28) and vs-terms cannot appear due to parity conservation of the QCD action.

It is more convenient to express L in terms of projection operators:

1+%g 14+ 143 1—9
L=0C+C—2 D,g,=— "5 D
2 2 2 2 . (29)

1—98 14+7p 1—98 1—17p
+ Cy 5 5 + Cs 5 5

where C; are linear combinations of the matrices M;.

Substituting eq.(29) into eq.(25) we arrive at:

< D,vp | Ju(0) | B,vg >= (v +vD)u vV MpMp {(vs - vD) (30)

where £, the Isgur-Wise function [11], is defined by:

¢ = (K/+/Mp Mg) -Tr[Cs]
/M5 Mp () (31)
F3Fp

The factor /Mp Mg is introduced for convenience (see later).
An analogue computation for the hadronic matrix element of the semileptonic
decay B — D* gives:

1+9p th-l—sz
€
5 ® 2

<Dm7'UD)51JlJ‘(O)IB7'UB>: K'TT[ 7#(1_75)] (32)
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where we used the relation between the vector and pseudoscalar annihilation con-
stants (15), the mass degeneracy relation (10), and the completeness relation of

the polarization 4-vectors:
3
k.k
Z €€ = Guv — 2 (33)

Computing the y-matrix algebra, we get for the vector part:

1+9B 1+9p

Tr| 5 15 Lée 2 vul = Tr(Cs) - e“ap,\eav%vg (34)

and for the axial part:

1+ vp 14+ 9p

Tr| 5 vsLé 5 vu7s] =1 Tr(Cs)[ep(1 +vp -vB) —vB - € VD) (35)
and then:
< D*,vp,e| V,(0) | B,vp > = e#ap,\eo‘vgvg v/ Mp Mg &(vB -vD) (36)

< D*,'UD,G l AP,(O) I B,vp > = i[e#(l +'UD'UB) —’UBG(‘UD)#]\/ Mp Mg é(vBU‘p)

(%)

Equations (30) (36) and (37) imply that the six form factors characterizing
B — D, D* semileptonic decays can all be expressed in terms of a single function
¢ = €(vp -vp) (Isgur and Wise [11]).
For determining the absolute normalization of hadronic matrix elements (17), i.e.
the value of £(vp - vp = 1), let us limit ourselves to the temporal component of

the vector current V,—o and take in eq.(23):

vg = vp = (1,0) (38)
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We have:
1— L
< D,rest | Vo(0) | B,rest > = — K < T7r] 270 C S.(tB,0|14,0)] >a
K
==  FrF (39)
iMp Mg PP
= 2+/Mp Mp

where we used equation (5) in the form:

1

1 — 70 — -
< T C 5,(0,0]¢0)] >s= ——nex FL F 40
r{ 5 ¢(0,0]¢,0)] >4 T (o fe (40)
On the other hand:
< D,rest | V4(0) | B,rest > = 2+/Mp Mg &(vpvp = 1) (41)

Comparing eq.(39) with eq.(41) we get the wanted normalization condition (Isgur
and Wise [11]):
¢(vpvp=1) = 1 (42)

This relation can also be immediately derived by using the conservation of the

vector current, which holds in the infinite mass limit.

4.6 Renormalisation

The static theory and its generalization to an arbitrary velocity discussed
in section (4.2 ,4.3) are effective theories and the methods and considerations
developed in chapter (3) apply to them as particular cases. In the following we

will consider the renormalization properties of the operators discussed in sec.(4.5).

4.6.1 Renormalization of the static theory
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Let us discuss in detail the renormalization of the operators in the static theory.
A comparison of the Feynman rules of the static theory (eq.4.2.2) with that of the
high energy one (eq.4.2.1), allows us to recognize that tree level amplitudes in the
two theories, for equal external states, differ only by terms of order 1 [Mqg.

Loop corrections to the above amplitudes can be computed by introducing an

ultraviolet cut-off Ayy in both theories. Differences of the form
In(Auv/Mg) (1)

will appear which do not vanish even at small external momenta. These differences
originate from the fact that, in intermediate virtual states, particles with momenta
up to Ayv are excited, which propagate and interact in a quite different way in
the two theories. The ultraviolet behaviour of the two theories is different because
in the full theory Mg < Ayv while in the effective theory Mg is larger than any
scale, i.e. Mg > Ayv. Asitis has been explained in chapter (3), effective theories
can be refined in suchla way to include radiative corrections. Terms of the form (1)
can be reabsorbed introducing suitable renormalization constants Z; for the fields,
coupling, masses and Green functions of the effective theory. The constants Z;
are determined by a consistency requirement: the low energy and the high energy
version of the same physical theory must generate the same transition amplitudes
for small external momenta. In the case of the static theory, amplitudes have to
coincide at the lowest order in 1/Mq.

Let us start with a specific example. For the weak interaction phenomenology

a relevant quantity is the axial current fil,:

Ay (z) = brrsa() (2)
where the b field is treated in the static approximation and ¢ is a light quark

field: ¢ = u, d, s. We will consider now the renormalization of this operator.
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In the full theory the axial current is partially conserved and then undergoes
a finite renormalization. In the static theory this property doesn’t hold due to
the different ultraviolet behaviour of the theory) and the axial current acquires

anomalous dimensions, i.e. a renormalization point u dependence:
A, = Ay(p) (3)

There is not any contradiction with the Ademollo-Gatto theorem because we
cannot consider any more the heavy quark mass Mg as a small,infrared, axial-
symmetry breaking term. Let us give an intuitive explanation. We may think
that the mass of the heavy quark Mg acts in the full theory as a cut-off for the
radiative corrections to the axial vertex. Modes with momenta p >> Mg give a
negligible contribution to the amplitude, because they ’see’ essentially a conserved
current. We can then let Ayy — oo in the full theory without generating any
divergence. In the effective theory it is Ayy < Mg, because Mg — co. Going
to the effective theory, then, we loose a physical cut-off, the heavy quark mass.
Mg specifies the (finite) amount of axial symmetry violations in the real world.
To make amplitudes finite, we have to introduce in the effective theory a new
arbitrary cu’;—off or renormalization point u.

The differences in the full and in the effective theories originate from the fact

that the limits
Ayy — oo

(4)
J\/IQ — OO
do not commute with each other.

The effective axial current 4, (u) is multiplicatively renormalized and is re-

lated to the physical one A, by a renormalization constant C4(u):

A, = Ca(p)A,(p) (5)
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C4(p) has been computed in LLA by many authors [12,13]. The most convenient
renormalization prescription is the MS scheme. We only need to compute the
divergent parts of the 1-loop corrections to the axial vertex of the effective theory

(see fig.1).
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fig.1
The whole series of leading logs is summed up with the usual technique: we
integrate over a finite scale transformation the R.G. equation that express the p
independence of the right hand side of eq.(5):

(e = 1a)Calp) = 0 (6)

where 4 is the anomalous dimension of the effective axial current A,.
The matching condition in LLA is easily derived by noting that for p = Mg there
are not large logs in the difference of matrix elements of 4, and A,(p). We then

have:
Oualp=Mg) =1 (7)

Note that the static theory ”doesn’t know” the heavy quark mass, Mq. A depen-
dence of Mg of its matrix elements is generated only through renormalization, with

matching conditions. The computation yields for the matching constant Ca(p):

Catu) = (EQ))astss-am) ®)
as(p)

where Ny is the number of active flavors.
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The renormalization of the axial current fi,,( i) generates logarithmic correc-
tions to the asymptotic scaling law of the pseudoscalar meson decay constant fp.

By definition, for a meson P at rest, we have:

<0|A4s | P>= if2" Mp, (9)
and by eq.(4.5.6)
ﬂif; |<'0 | Ay(p) | P >*= const (10)
Using the relation (5)
<04, |P>= Calp) <0]|A,(n)| P> (11)

we derive for the physical decay constant the following scaling law:

phys _ COnsi as(Mg) ~6/(33—2Ny) (12)

P T VMp as(p)

Dividing by the same expression with the replacement Mp — Mp:, Q — Q', we

derive finally the equation:

hys
11; Y = Mp —1/2 O‘S(]VIQ) ]~6/(33—2N,=) (13)
Zhe Mp as(Mqr)

which tells us how the decay constant should vary as a function of the heavy quark
(meson) mass. At this order we can identify the mass of the heavy quark with that
of the meson, since differences arise at order 1/Mg. The additional dependence

on the heavy quark mass produced by the last factor in eq. (13) is mild.

4.6.2 Renormalization of the relativistic infinite mass theory
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The renormalization of the relativistic infinite mass theory follows the same lines of
that of the static theory. The mass renormalization §m., and the field renormaliza-
tion constants Z, are independent of the heavy quark velocity v in a regularization

of the theory (4.3.8) that preserves Lorentz symmetry.

In numerical simulations of the relativistic infinite mass theory it is required
to adopt lattice regularization, which breaks Lorentz symmetry. In this case dmy
and Z, become complicated functions of the velocity v of the heavy quark and it
is necessary to introduce velocity-dependent factors in the matching of the rela-
tivistic infinite mass theory with the complete one. There are differences between
a continuum and a lattice space-time only in the modes with wavelength A < a.
Since high-energy modes are weakly coupled in QCD, if the ultraviolet cut-off
Ayv = 1/a in numerical simulations is large enough, continuum-lattice matching
can be done in perturbation theory. At 1-loop level the dependence on v of §my,
and Z, is generated by hard gluons radiative corrections (A ~ a, where a=lattice
spacing). For simplicity, however, we assume in the following dimensional regular-

ization.

The renormalization of heavy meson form factors is essential for computing the
hadronic matrix elements of the weak Hamiltonian between heavy quark bound
states. Tt has also a methodological interest because it involves a sequence of

effective theories and matching conditions.

Relations between semileptonic B — D, D" decay form factors (eq.4.5.30,
4.5.36, 4.5.37) are true at leading order in the effective theory for both M, My —

0. We introduce matching constants Z4, Zv relating the weak currents V,, 4,
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in the effective theory to that in the complete one Vi, Ap:
V, = ZvV,
i} (14)
A, = ZaA,
The computation has been performed in LLA assuming M, > M. > Agep (A.
Falk et al. [14,15]). Let us consider the renormalization of a generic heavy quark
current
G(z) = &(z)T'b(z) (15)
where T is a matrix in the Clifford algebra.
The running of the current G in the mass region M, — M is easily computed

with MS renormalization scheme of the Feynman diagrams of fig.(2), involving a

heavy b quark and a light ¢ quark:
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Diagrams (b) and (c) are standard heavy and light quark selfenergy cor-
rections. A straightforward application of Feynman rules of ordinary QCD and

relativistic infinite mass theory gives for the vertex correction (a):

D 4, [ d*k dp(k + Mcde + M)T
n == —71-=
2 39 | (@n)* (k? + 2Mcvck)k2vs - k

Computing the anomalous dimensions of the current (the ultraviolet log-divergent

(16)

part of (a) +1/2(b) 4 1/2(¢)) and summing leading logs with standard R.G. tech-

nique, we get the current scaling factor:

(5560) o
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where ar = —6/(33 —2Ny) and Ny = 4 is the number of active flavors in the mass
interval M, — M, that has been integrated. The factor (17) is the equal to the
renormalization constant of the axial current in the static theory.

The running of the current G in the interval p — M., where p is a given
renormalization point for the b,c effective theory, is computed by the one loop

Feynman diagrams of fig.(3) with heavy b and c quarks:

PN NN

The vertex correction reads:

4, d*k vpv L
Dl = ““'l'é‘g / (271_)4 ('Ub . k) L2 (vc . k) (18)

Then, the running of the current in the interval M, — p introduces the further

‘scaling factor:

where:
8(vp - ver(vp - ve) — 1)
33 — 2Ny

(20)

ayp =

Ny =3 is the number of active flavour for p < M. and r(z) = (1/vz? — 1)In(z +
22 —1). The anomalous dimension of G in this mass region is velocity dependent,
because in the relativistic infinite mass theory fields that create particles with

different velocities are different fields (velocity superselection rule of eq.4.3.9).
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Multiplying factors (17) and (19) we get the required matching constants in
LLA, connecting heavy b, c theory with the ’true’ one:

Inserting eq.(21) in the relations between hadronic matrix elements (4.5.30),
(4.5.36) and (4.5.37) we get the same rescaling for the Isgur-Wise function & (vbve)

of the effective theory:

E(vpve) = E(vpve, My, Me, ) €o(vbve, 1) (22)

where:

st o) = (ZUD) " (SOEN)T

and £(vpv.) is the Isgur-Wise function of the complete theory. It is p independent,
then the pu dependence of = compensates the one of £. Since ap is velocity
dependent a change in p amounts to transferring part of the (perturbative) vsve
dependence between E and §o, just like in the evolution of structure functions
with Altarelli-Parisi equation. & is the true non perturbative contribution of
strong interactions. If it is compu;ned with Montecarlo simulations of QCD, it is
necessary to introduce a further matching constant relating continuum and lattice
regularization.

Let us discuss an interesting subleading contribution to full-effective matching.
Spin interactions in the effective theory differ from that of the complete theory:
the effective theory propagator Sk(v,k) is obtained setting p = mv + k in the
complete one Sp(p) and dropping the k term in the numerator. As a consequence,
radiative corrections to the I' vertex generate different Lorentz structures in the

full and in the effective theory. Let us consider the matching at the M, threshold,
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between the effective theory for b quark only and the one for both b and ¢ quarks.
Dropping the terms that simply renormalize the lowest order result, we get for the

spin dependent matching contribution [14]:

4 , [ d*k Bkl
Do — Dy = —i~g°
2= Di=—i30" | G (7 ¥ 2Mook)kPok (24)
M.)? .
= — %}-r(vbvc)vbr 4

Thus, the matching at the M, scale is realised adding to I' the term (24), incorpo-
rating as a new interaction for the effective b, ¢ theory the correct effect of charm
spin interactions:

M.)? 5
' —T-— 9—(6—#2—)—r(vbuc)'vbI‘ +-- (25)

In quite analogous way, at the Mp threshold, due to different spin interactions of
the b quark in the complete theory and the effective theory for the b quark, we
have for the spin dependent matching [14]:

g(Ms)*

I‘ __
Iy

YubsDOpyy + - (26)

Combining (25) and (26) we get the spin dependent matching term relating heavy

b, ¢ theory current with the complete one. Up to order as we have:

g(My)*
242

g(M.)*

[=1- 62

')’uﬁbrf’b’)’” - T‘(Ubvc){;b]:‘ 4o (27)

The matrix on the right-hand side up to order a5 generates the same matrix
elements in the effective theory as I' in the complete one.

For the case of the vector and axial vector currents I' = v,, 7,75 We have respec-
tively:

Yo (1 +k)vu + (Ao — AC(UWC))f’b’Y# (28)
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and
vurs — (1 +E)vars — (Mo + Ae(vsve) 067075 (29)
where:
M 2 M.
Ay = 2sUMe) A = 2esWe) (30)
3 3r

and k is a renormalization constant of order as that depends on the renormaliza-

tion prescription which is adopted.

4.7 Large energy effective theory

Consider the exclusive hadronic B decay
B—D+m (1)

Process (1) is generated by the action of an effective hamiltonian H.ysy consisting

at tree level of the product of two colour singlet V — A currents:

Gr
V2

where O (z) = J;(Lb_'c)(:c) J#(e=d(z), One loop gluonic corrections of (2) require

H.p; = —=VeVia O1(z) (2)

renormalization and introduce, due to colour exchange between quark bilinears,

the octet-octet operator Oz(z) in the effective Hamiltonian:

Oa(2) = ()ru(l — 715)t°b(z) d(z)7u(1 — 7s)t"u(z) (3)

We assume that typical momentum transfers g, between quarks and gluons
occurring in the generation of final bound states (D and 7 mesons) are of order
Agop:

¢ ~ Ahop (4)
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At partonic level, process (1) is described by spectator b decay:

b—c+u+d (5)

The energy E transferred to light @ and d quarks, assuming b quark at rest, is

given by:
M2 — M

E>
2M,

~ 2.2 GeV > Agep (6)

To form a low mass particle, with a large energy release, the @ and d quarks have

to be emitted collinearly, with momenta that differ at most by order Agop:

pg = zptk (7)

pe =(1—z)p—k (8)

where k is residual momentum of order ~ Agop, po = E and p? ~ 0.
z(1 —z) represents the fraction of momentum transferred in partonic decay to %(d)
quark. We naturally assume that z distribution is not peaked at z = 0,1.

Spectator quark ¢, ends up in the D meson, since this channel implies a
momentum transfer to g, of order Agop instead of E. In intuitive terms, spectator
quark starts to move screening the colour of the ¢ quark, that has a Lorentz factor
~vr ~ 1.8 and then transfer a momentum ~ yLAgep ~ Agep (the dynamic is the
same as in B — D semileptonic decay at ¢* == 0).

Decay of the type (1) can be computed with an effective theory for energetic
light quarks, organised as a1 |/ E expansion (large enrgy effectiev theory, Dugan and
Grinstein [16]). The expected contribution of terms of order N is (Agop/E)N.
Setting p = En, where n is a null vector n? = 0 with ng = 1, we get for the

energetic collinear light quark propagators at lowest order in 1/E:

L — o) (%)

Su(k,n) : (zp + k)% + e
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and:

Sa(k,n) = Sz(k,n), (10)

since at lowest order there is not = dependence. Note that the expansion is singular
at ¢ = 0,1, when the leading momentum of @/d vanishes.

Light quark/antiquark in the large energy effective theory is treated as an infinite
momentum particle with zero rest mass. Propagators (9) and (10) can be derived
from the lagrangian:

Lyspe = hinuDFp (11)
where the field 1 satisfies the condition A = 0. The simplest version of Feynman
rules for the large energy effective theory Is:

1

= — 12
n-k -+ i€ (12)

.
/& = -—igtanp (13)

At the end we have to multiply by 7/2 for every light quark in the process.

Weak interactions, with respect to hadron dynamic, act in decay (1) as an
external agency, transferring the energy £ to the light degrees of freedom. With
1/ E expansion we extract analytically the dependence of amplitudes on the 'high
energy’ E. With the additional application of the heavy quark effective theory for
b and ¢ quarks, Agcp is the only mass scale left in the process.

The large energy effective theory can be made covariant by summing
L, ppr(n,z) over all possible null vectors n, with a Lorentz invariant measure,
just as in the case of the relativistic infinite mass theory (involving timelike vec-
tors v,, with v = 1). Alsoin the case of the large energy effective theory there is
a superselection rule, related to the spatial direction of light quark motion, that

is not changed by finite momentum transfer.
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4.8 Factorization

The large energy effective theory discussed in the previous section exhibits factor-
ization of decay amplitude (1) at leading order in E and at every order in the loop

expansion (Dugan and Grinstein [16]):
<7D |01(0) | B >=<7|J,(00*"?[0><D| JEE=) | B> (1)

Amplitude factorization is equivalent to say that the process consists of indepen-
dent subprocesses.

Indeed, in the light cone gauge:
Ty AF' =0 (2)

the interaction vertex vanishes on contraction with gluon propagator. The only
non zero radiative corrections involve the b — ¢ current, like in semileptonic B
decays.

Factorization allows a prediction of non leptonic decay rate of (1) on the basis of
the knowledge of pion decay constant fr and B semileptonic decay form factors
(d*), F7(*).

Oz(z) doesn’t contribute to leading order in 1/ E to decay (1) since physical states

B, D, = are colour singlets:
< wD ‘ 01(0) l B >=
D0l — 3s)H(0) | B > < 7| A0 —75)tu(0) | 0> (3)
=0

Matching constants of the effective theory for light quarks with the complete

theory have been computed in LLA, assuming b(and c) as heavy and employing the
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heavy quark effective theory [16]. The corrections however are not realistic since
the mass scales My, M., E are not well separated and 1/ E corrections are expected
to dominate. More investigation will clarify this important point. An experimental
analysis by the CLEO collaboration has shown that factorization works reasonably
well for the B decays observed so far, within still sizable experimental errors.

In quite analogous way, we can prove factorization in A, hadronic decay:
Ay — A+ (4)

Let us end this section with some qualitative observations on other decays than

(1).

We expect b — u transitions ending into two light mesons, such as
B—om+tp (5)

to be further suppressed in addition to the small factor | Vus > / | Ve |2. We
assume that a quark antiquark pair in b decay has to be highly collinear to combine
into a m(p) meson. The third light quark coming from b decay has an energy
~ E. To form the second p(m) meson, it has to tranfer to the spectator quark a
momentum of order E. The amplitude is then reduced by a factor ~ Agep/E.
Finally, factorization is expected to hold in hadronic decays with many ener-

getic high collinear pions.
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CONCLUSIONS

The study of weak processes involving quarks is still a wide and open research
feld. It involves crucial tests of the Standard Model because there is a high
sensitivity to short distance effects. On the either hand, these phenomena can
reveal new physics beyond the Standard Model itself. As we have stressed in
various circumstances, a detailed understanding of strong dynamic is essential. In
our opinion the most promising technique for this task is lattice QCD. We aim to
perform a first principle computation of the form factors for B— D/D*, B—7/p
semileptonic decays. With present computer facilities it is not possible to study b
physics on the lattice and it is necessary to implement the effective theory discussed
in chapter (4). We have then discretized the continuum infinite mass theory with
a proper definition of particle velocities on the lattice. To convert the measures on
the lattice of the form factors in physical unit it is necessary the renormalization of
the lattice infinite mass theory. That is a quite long and involved work. At present
we are finishing the computation of the relevant one loop Feynman diagrams (we
do not reported in the thesis the lattice action, the lattice Feynman rules and the
lattice loop integrals because they are not essential for the physical understanding
of the problem). This will be followed by numerical study.
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