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Introduction

In chaotic dynamics, experiments as well as numerical simulations produce unsta-
ble trajectories from which only statistical information can be extracted. This is
the case when the trajectories belong to a strange attractor, which means that
they are highly sensitive to initial conditions [RuEck].

Although it might be easy to display a graphical representation of such an attrac-
tor, one needs a specific method to extract numerical parameters associated to it,
in order to try a meaningful comparison with theoretical arguments.

At this aim the multifractal description of measures supported by strange sets

[HIKPS, F, HeP, BoR, BoT, CLP, CDM] has been introduced in order to
analyze actual experimental data in chaotic systems.
We believe that an interpretation using large deviation probability theory [E]
should clarify many features of this thermodynamical approach for the multifractal
description of strange sets and a justification of such an approach on the basis of
the thermodynamic formalism has previously been given for Cantor sets invariant
under expanding Markov maps by Collet et al [CLP].

We [CDM, AM] will illustrate the results in a somewhat different case, that
is for measures supported on Julia sets associated to complex valued polynomial
transformations on the complex plane and, in particular, we will be interested in
small perturbations of the monomial case z?, with ¢ integer not smaller than 2,
for which the Julia set is the unit circle.

The Julia sets associated to polynomials T of degree g which may be treated as a

small perturbation of the monomial case, are quite untrivial objects: in fact, while
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topologically still circles, they have a complicated geometric structure, since they

are non-rectifiable Jordan curves [BR, BL, Sull, Sul2].

These sets belong to the class of hyperbolic Julia sets, which have inspired
the definition of mixing repellers [Ru2]. In the last years many studies have
been devoted to understanding the geometric and dynamic properties of strange

rep:ellers [Ru2, Su2, Va, Bor, BoT, BD].

These are invariant sets under the iteration of a map characterized by the fact
that each orbit, which starts in a neighbourhood, moves away from them. Some-
times the repeller arises as a boundary separating the basin of two attractors: a
trajectory with initial orbit point close to the repeller will wander for a short time
before falling into an attractor and this transient period is characterized by the

expanding properties of the repeller itself.

To these mappings the powerful techniques of the thermodynamic formalism
[BowRu, Rul, Ru3] can be applied. Such a formalism is a body of ideas and
results originated in equilibrium statistical mechanics and which has had a con-
siderable impact on the study of the ergodic theory of hyperbolic differentiable

dynamical systems.

Although our presentation will be centered around the Julia set case, the
exposition of the multifractal formalism using large deviation arguments is more
general; however the existence of the “thermodynamic limit” requires some specific
hypotheses, for instance the invariance of the set and of the measure supported by

it under an expansive transformation.

The key point in the case of hyperbolic Julia sets, is that the expansive transfor-
mation provides a way of comparing different scales in a uniform way, due to the

so-called distortion lemma [Sul, Su2] which will described in the first chapter.



More precisely, we will use the thermodynamic formalism “a la Collet”
[HIJKPS, CLP] for polynomials close to 27, [CDM] that is we will introduce
the uniform Zy(B) and the dynamical Zp(fF) partition functions associated to
coverings of the Julia set. The thermodynamical limit of these functions exists, as
the size of the pieces of the coverings goes to zero. The corresponding free energies
Fu(B) and Fp(B) may be shown to be analytic functions in § and real analytic
in the coefficients occuring in the polynomial T, for T small perturbation of the

monomial case.

One of the consequences are the real analyticity properties, as function of
the parameters of the polynomial transformation, of the Hausdorff dimension, and
of the correlation dimensions of arbitrary order Dg, which form the dimension

spectrum [Ru2, CDM].

We will show how to extend previous perturbative results [Ru2, WBKS,
CDM] on the Hausdorff dimension for polynomials of the form T'(z) = 27 + ¢,
with ¢ small complex constant, to the case of a generic polynomial T'(z) = z7+¢(z),
with ¢(z) polynomial of degree less than or equal to ¢ — 2, which will be treated

as a perturbation of the monomial case 2?7 [AM].

We will describe briefly the procedure which we have followed in order to
perform perturbation expansions, that is expansions on powers of the real part
and the imaginary part of the coefficients of the polynomial ¢(z), for the various
thermodynamic functions associated with the Julia set Jr and its invariant and
balanced measure pu.

We will show that it is possible to express the dynamical free energy in form

of a classical statistical model; then the usual perturbative methods apply and

permit a perturbative expansion of both Fp and Frr and therefore of the spectrum




4 INTRODUCTION

.of dimensions Dg.
The starting point is so the computation of the dynamical free energy, for which

we will use the following expression

Z@) ~ an;ﬁ(’T'(Tk(z))‘)ﬁdp(z).

Starting from such an expression requires an effective way of computing the pertur-
bation expansion for mean values taken on the perturbed measure p, besides the
usual expansions occuring in statistical mechanics in a case where the interactions
are not limited to nearest neighbours.

This has been accomplished using the Boettcher conjugation equation [Bl], so to
be left with the evaluation of such integrals with respect to the Lebesgue measure
on the circle.

The resulting expansion in terms of ¢ agrees with the preceding ones for the case
in which the perturbation polynomial ¢(z) reduces to a constant.

Our aim in affording such a perturbative expansion is to give a device for
computation which may be applied to any polynomial, not give numerics, since all
these perturbative approaches have an intrinsec limit in what tfley do not preserve
the convexity property of the “free energy” [CDM], so that such computations
do not reproduce the whole dimension spectrum Dg, but are valid only in a small
range of .

On the other side, our approach, allows a direct evaluation of the thermo-
dynamic quantities, in a somewhat different spirit than the approach based on
classical thermodynamic formalism [BowRu, Ru2], in the sense that the large
deviation argument may clarify the relation between the box counting, which is

related to geometric measurements, and true dimensions as the Hausdorff dimen-



sion, as it is shown in earlier papers. These considerations apply to many systems

and in particular to those to which the distortion lemma applies.

A difficulty remains for the systems for which the thermodynamical function dis-
plays discontinuities: an example of this situation occurs when the box counting
procedure gives rise to a non convex function f(t). In this case we have to look for
a more detailed way of computing partition functions, which will provide, without

any doubt another interpretation in the large deviation formalism.

The study of the scaling properties of chaotic systems has also another facet,
apart from the “macroscopic part”, which we have analyzed whatsoever. In fact,
on one side one should seek for global desciptions which enables one to predict
the overall properties of the multifractals. This aspect, which has its analog in
thermodynamics and has been introduced above, is centered on the study of the

generalized dimensions of the set or its spectrum of scaling indeces.

On the other side, one should seek a more detailed type of approach, which enables
one to get a more detailed description of the local properties of the strange set.
This approach, which may be considered as the “microscopic part” of the program,
has its analog in statistical mechanics and is centered in our case on the study of

the so-called scaling functions [FJP, KaP, JKP].

Such aspect has not yet received a rigorous treatment and, fenomenologically,
it has been introduced by Feigenbaum in the case of systems on the borderline of

chaos [F].

It should be noticed that the limiting scaling function depends on the way it is
constructed, and the various approaches not-necessarily in the limit are equivalent,
that is give rise to the same thermodynamic functions. In the case of nearly-circular

Julia sets it is possible to show that the various approaches converge to equivalent
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limits [JKP], meaning that it is possible to map the theory onto Ising models with
finite range interactions. The largest eigenvalue of the associated transfer matrix

then furnishes the thermodynamic functions.

We will consider a perturbative approach to the scaling properties of nearly
circular Julia sets [AM], showing that all the self-similarity structure is already
present in the first order expansion in ¢ and show that the first order expansion
in ¢ converges to a limit we conjecture is continuos in function of the point on the
Julia set. This argument is in favour of the convergence and continuity also of the

limiting scaling function itself.

As a last remark, we would like to comment the fact that throughout this
thesis we will restrict our discussion to the apparently academic problem of poly-
nomial iterations, but we think of this example as of a non trivial model problem,

in a domain which has been growing very fast in recent years.

Moreover we consider a dynamical system in one complex dimension. The invariant
set is not an attractor and the transformation is repulsive on the set, a situation

analogous to the case of Markov maps or cookie cutters.

In order to get a strange attractor, one needs to consider a non conformal map
in at least two real dimensions, that is two complex dimensions for its complexi-
fied version. The relevance of our analysis to actual physical situations could be
questioned, but the usual argument is that what we model is in fact the Poincaré
return map associated to a diffeomorphism and the invariant measure is nothing

but what we get by considering only the transverse unstable directions.

Clearly the analysis of the geometrical properties of chaotic dynamics will still

receive a large development in the close future.

The plan of the thesis is as follows:



In the first chapter, we will consider the properties of Julia sets, which are
needed in the subsequent chapters and which cluster around the topological and

geometrical characterization of polynomial nearly circular Julia sets.

On one side the distortion lemma [Sull, Sul2] is the central geometrical prop-
erty which will be considered, since it allows to characterize the self-similarity
of the Julia set and on the other side, since it provides uniform bounds on the
expansion properties of the map, it is used throughout in the thermodynamic
characterization of the Julia sets under study (existence of the thermodynamic
limit, characterization of the dimension spectrum and so on).

On the other side the Boettcher conjugation theorem [BI] tells us that the Julia
sets under study are topologically circles; such property will be heavily used in the
perturbation expansions in Chapters 3 and 4.

In the second chapter we introduce and discuss the thermodynamic formalism

“3 la Collet” [CLP, CDM] , specializing to the case of hyperbolic Julia sets
embedded with the harmonic measure [Br].
We will define the dynamical and uniform partition function, give arguments for
' the existence of the thermodynamic limit and its analytic properties and discuss
the relation between the Legendre transform of the uniform free energy and the
dimension spectrum [CDM].

In the third chapter, after a preliminary discussion of previous results in
the perturbative approach [Ru2, WBKS, CDM], we explain our perturbation
results [AM] for the dimension spectrum starting from the dynamical partition
function. In the appendix we give some details on the computation.

Finally in the forth chapter, we introduce and discuss the microscopic for-

malism of the scaling function [FJP, KaP, JKP] and, after a brief account on
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previous results, discuss our perturbative approach [AM] and the convergence
arguments for the perturbation expansion terms.
The results presented in chapters 3 and 4 and in the appendix are part also

of [AM].
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Chapter 1

Some results of the theory

of Julia sets

The theory of holomorphic noninvertible dynamical systems of the Riemann sphere
is an extremely fascinating and intricate subject of study in itself. The inde-
composable, completely invariant sets are often fractals ([M]) because they are
quasi-self-similar ([Sull,Sul2]), sometimes they are Jordan curves whose Haus-
dorff dimension is greater than one; yet these sets are determined by a single
analitic function z,4+; = R(2,) of a single complex variable.

The study of this subject started with P. Fatou [Fal, Fa2] and G. Julia [Ju].
They applied the theory of normal families and, in particular, Montel’s theorem, to
prove some remarkable results. The fundamental one is that the Riemann sphere
splits into two disjoint sets: the closure of the repelling periodic points, which is
called the Julia set, and the open set of stable points, which is sometimes referred
to as Fatou set.

Recently there has been an explosion of interest in the subject and many
mathematicians have made substantial contributions. Among them, we quote,
as an example of how a “simple” dynamical system can have a complicated dy-
namics, Sullivan’s complete classification of the dynamics (see [Sul3,Sul4]) in the

domains of normality, and the work Hubbard and Douady [DH)] on the dynamics
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of quadratic polynomials surely must be quoted.

In this chapter we will limit ourselves to present the properties of Julia sets
which are relevant for our purposes, since a comprehensive survey of classical and
recent results would bring us too far away from the aim of this thesis.

In particular we recall that we are interested in polynomials with complex coeffi-

cients T'(z) of degree ¢ > 2 of the form
T(z) = =274+ Xc(z2), (1.1)

where ¢(z) is a polynomial of degree at most ¢ — 1 and A is a small complex scale
parameter.

The definition of Julia set is given in section 1. Section 2 contains some
fundamental classical consequences of Montel’s theorem. In section 3 we introduce
the conjugation function and show that it can be analytically extended outside
the Julia set. Section 4 contains some important results about the geometric
characterization of nearly circular Julia sets: the distortion lemma gives in fact
a meaning to the notion of self-similarity of such sets, while a therem of Ruelle
shows that the Hausdorff dimension depends analytically on the map. Finally, in
section 5 we give some results about the invariant measure which can be defined

on the Julia set.

1.1 Definitions

Let us consider a discrete dynamical system of the Riemann sphere € generated

by a holomorphic transformation

R :C — C. (1.2)
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The phase space is then the unique, simply connected, closed Riemann surface

€ =C U {0} which is homeomorphic to the 2-dimensional sphere
S? = {(z1,z2,23) € R®| @} +2f +23 =1}

If we use the variables z and w = —lz- to represent the two standard coordinate
charts on € determined by stereographic projection, then any holomorphic map R
of € can be written in the form

T(z)
Q(z)’

R(z) (1.3)

where T and @ are polynomials with complex coeflicients and no common factors.
Hence, there is a one-to-one correspondence between rational function, (1.3), and
holomorphic maps (1.2).

The degree, deg(R), of any continuous map R : S* — S? is a homotopy
invariant which measures how many times R applies S? into itself and is defined

as

deg(R) = max {deg(T), deg(Q)},

when R(z) is written in the form of Eq. (1.3).
It is also the number (counted with multiplicity) of the inverse images of any point

of €. The theory of Fatou and Julia applies to rational maps R whose degree is at

least two.

A dynamical system is formed by repeated iteration of the map R from € to

1tself.

Definition: given z, €, the sequence {z,}, inductively defined by

Zn41 - R(zn)7
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is called the forward orbit of zy and denoted by OT(z).

I denote by R™ the n-fold composition R* = Ro Ro Ro...o R of the function R

with itself.

Definition: Let U be an open subset of €, with the spherical metric, F =
{fili € I'} a family of meromorphic functions defined on & with values in@, where
Iis any index set. F is a normal family if every sequence f, contains a subsequence

fn; which converges uniformly on compact subsets of If.

The condition of normality can be shown to be equivalent to that of equicontinuity

on every compact subset of & (Arzela’s theorem, see [Ahl] for details).

Definition: a point z € € is an element of the Fatou set F(R) of R if there
exists a neighborhood U of z in € such that the family of iterates {R™U} is a

normal family. The Julia set J(R) is the complement of the Fatou set.

The Fatou set is open by definition and, since R is continuous and an open map-
ping, F is completely invariant, that is z € F implies R(z) € F and R7!(z) € F.
Consequently, J(R) is also completely invariant and compact (see [Br, Bl] for

instance).

It is easy to show by contradiction that the Julia set is never empty.

Definition: Let zy; be a periodic point of period n. Then the number 7., =

(R™)(20) is the eigenvalue of the periodic orbit.

Since by the chain rule ., is the product of the derivatives of the map R along

the orbit, then it is an invariant of the orbit O (zy).

Definition: A periodic orbit O (zy) is:

(1) attractive if 0 < |y:,| < 1;
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(2) superattracting if ., = 0;

(3) repelling if |v.,| > 1;

(4) neutralif |y,,| = 1.

From the Mean Value Theorem and Arzela’s theorem it follows that attractive
and superattractive periodic orbits OF(zy) are contained in F, repelling periodic

orbits in J ([BI]).

1.2 Basic properties of Julia sets

In this section we quote some of the classical basic results of the theory of Julia
sets (see theorem 1.2 and corollary 1.3), which will be used in the following. In
particular the fact that the Julia set is the closure of repulsive periodic orbits and
a perfect set is a direct consequences of the following theorem of Montel, which

gives a sufficient condition for normality of families of meromorphic functions.

Theorem 1.1

Let F be a family of meromorphic functions defined on a domain U. Suppose
there ezist points a,b,c € @ such that [Userf(U)] N{a,b,c,} = 0. Then F is a

normal family on U.

Definition: Let U be a any neighborhood of z J(R) then the set of ezceptional

points for z is defined as E, = UEy, where Eyy =C — Upso R (Y).

Notice that as I/ becomes smaller, then Ey; “grows” and it can also be considered
as the inductive limit of Ey, as U goes to z. From Montel theorem, it immediately
follows that Ey; at most contains two points. It then follows that Ey, is indipendent

of U for sufficiently small 2/ and E. contains at most two points (see for example




14 SOME RESULTS OF THE THEORY OF JULIA SETS

[BI]).
In the case of polynomials T'(z), the point at co is very special: it is a superat-

tractive fixed point whose only inverse image is itself; hence J(T') is contained in

C and oo is an exceptional point.

Theorem 1.2
The Julia set J has the following properties:

(i) J is a perfect set;

(ii) J equals the closure of the repelling periodic points;
(iti) If z €@ — E, then J C {accumulation points of Un>o R™"(2)}. Conse-
quently, if z € J, then J = closure {Un>oR™"™(2)};

(iv) Let p be an attractive fized point of R and call the stable set of p the set
We(p) = {z| R*(z) = p as n — oo}, then the frontier of W*(p) is J.

Idea of the proof{see [Bl] or [Br] for details). (4): since we have already seen
that J(R) is a non empty, closed, compact set, it is sufficient to show that it is
dense in itself. This follows from Montel’s theorem and the fact that if a € J, then
there exists b € J such that a € OF(b), but b &€ O (a).

For (iii) one uses the definition of exceptional set and property (7) of this theorem.
The proof of (i) is made up of two fundamental steps: one first shows that J is
contained in the closure of the set of periodic points using Montel’s theorem; then
one bounds the number of attracting periodic orbits plus half of the number of
neutral periodic orbits by a finite number 2¢ — 2, where g is the degree of R. Then
(ii) easily follows.

(iv) is a consequence of the observation that J does not contain proper, closed,

completely invariant subsets of J.

One important consequence of (7i) is that neighbourhoods of points in J are
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eventually surjective, that is J is “locally eventually onto” (leo),

Corollary 1.3

Let A be a closed subset of @ such that AN E = (. Given a neighbourhood U
of a point p € J, there ezists an integer N such that A € RN (U).
Therefore, if D is o domain such that DN J # 0, then there ezists N such that
RN(DnJ)=1J.

The proof follows from the previous theorem and the fact that A4 is compact
(see [BI] for details). It may be considered as a first justification of the term

“fractal” applied to Julia sets, we will comment the notion of self-similarity for

Julia sets later in the present chapter.

1.3 The conjugation function

Both superattracting and attracting periodic orbits aré locally conjugated to sim-
ple maps of disks through analytic homeomorphisms. In the attractive case R|I/ is
conjugated to the rotation 7 z, (see [SM]) so that the neighbourhood U is forward
invariant, i.e. R"(Y{) C U and the orbit of every point in I/ is asymptotic to the
periodic orbit OF(zy).

The following theorem, known as Boettcher conjugacy theorem (see [Bl] for
the proof), shows that the dynamics in the superattracting case is much more
interesting. It applies to any analytic function, not just to rational maps. We

denote by (R")*)(zy) the k-th derivative of R".

Theorem 1.4

Let OF be a superatiracting periodic orbit. Suppose k > 2, (R™)®)(zy) # 0,
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and

(R (20) = (R")P(z) = ... = (B")*V(z) = 0.

Then there ezists a neighbourhood U of zy and an analytic homeomorphisn @ :
U — D, (for some r) such that ®(z) = 0 and ®'(20) = 1, and the following

diagram commutes:

R™
U U
@J l@
D, > D,
Z—)Zk

As in the periodic case U is a forward invariant neighbourhood and every

k is not locally invertible:

orbit in it is asymptiotic to OF(zp), but the map z — 2
this gives a great deal of information which is particularly helpful in the analisys
of the dynamics of polynomials.

Let T(z) be a polynomial of degree gq. As we have already mentioned, the
point at infinity plays a special role since it is an exceptional superattractive fixed
point such that 771(c0) = {co}. Consequently, the Fatou set is never empty,
the Julia set is contained in a bounded set of the complex plane and the stable
set W?*(oo) coincides with the immediate basin of attraction A(cc), that is the
maximal domain containing co on which the family {7™} is normal. Moreover,
Boettcher theorem establishes the existence of a neighbourhood U of infinity and
of a real number 7 > 1 such that T|¥/ is analytically conjugated to the map z — 29
restricted to the set € — D,.

Since this conjugancy equation will be extensively used in the following, it

is important to know what is its maximal domain of definition. The following

theorem ([Br] and [BIl]) gives the answer:
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Theorem 1.5

The following statements are equivalent:
(i) The map T|A(oo) 1s analytically conjugated to the map z — z9 resiricted to
the exterior of the unit circle;
(ii) The set A(oo) 1s simply connected;
(111) The Julia set J 1s connected;
(iv) The sets A(c0) and C' = { finite critical points } are disjoint. In other words,
for every finite critical point z, the sequence of successive images T™(z) remains

uniformly bounded.

Proof: (i) = (4t). This is due to the fact that the conjugagy is a homeomor-
phism between a disk and A(cc).

(12) = (412). A plane set is simply connected if and only if its boundary is connected,
and in the present case J(T') = 0. A(c0) = OW*(0).

(13) = (iv). It can be shown that A(oco) N C' = @ implies that J(T') is
disconnected. At this purpose define D = {z| |z| > r} such that T(D) C D C
A(o0) and D, = T~™(D).

Let h : U — D be the conjugacy between T(z) and z — 27 in a neighbourhood of
infinity and call 4g = h~}(D,« — D,).

Construct an orthogonal coordinate system on U where circles concentric to 0U
are wrapped by T'(z) onto other such circles in a d-to-1 fashion.

Try to extend the conjugacy by taking inverse images by T(z) and define 4_; =
T-1(z). A NT(C')=0,then T : A_; — Ay is a d-fold covering and A_; an
annulus. So one can pull back the coordinate system and define the conjugacy
h:A_; — D, with s = 77 and can go on iteratively to define A_p = T (A_j+1)
aslong as A_;+; NT(C') = 0.
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But, since A(co) N C' # 0, there exists an integer N such that T(c) € A_n for
some ¢ € C'. In this case T : T7}(A_n) — A_p is not a covering space, but a
branched cover.

The inverse images of the Jordan curve ! trough T'(c) is a pinched curve which
bounds at least two finite open sets and these sets disconnect J(T').

(iv) = (i). Use the same notations as before to denote the annuli A_j and the
fact that T : A_p — A_jy1 is always a d-fold covering space. Then A(o0) =
UUUSL, 4-r).

1.4 Fractal properties of nearly circular Julia sets

In this section we will give a sufficient condition of fractality for the Julia set
of a rational map. The word “fractal” has been introduced by Mandelbrot [M]
to indicate sets which “look alike everywhere” and whose Hausdorff dimension is
different from their Euclidean one. D. Sullivan [Sull, Sul2] has given a simple

description of self-similarity when the map R|J is expanding.

Definition: J(R) is quasi-self-similar if there exist constants K and 7y such
that, for all z € J(R) and for all r < 7y, 2[J N D;(z)] is mapped onto J by a
K-quasi-isometry, that is a bijection that distorts distances between 1/K and K.

That means that each small piece of J can be expanded to a standard size and

then mapped into J by a K-quasi isometry.

Proposition 1.6

If |R'(2)| > 1 for all z € J(R), then J(R) is quasi-self-similar.

This proposition is called distortion lemma and is due to D. Sullivan. We
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will prove an equivalent result in the case of small perturbations of the polynomial
mapping z — z9.

At this aim let T(z) = 2% + ) ¢(2) be a polynomial of degree ¢ > 2, with deg(c) <
g — 1. Choose p > 1 in such a way that [T'(z)| > 1 > 1 in the annular region
A4,={z E@]lp < |z| < p}, for some 7, that is T' is expansive on A,.

Finally take § to be approximately equal half the distance between two consecutive
roots of unity of order ¢. Then under the previous assumptions, the following

proposition holds:

Proposition 1.7
Consider two orbits of lengthn, z; and yi, fori = 1,...,n, defined for alli > 1

by ziy1 = T(z;) and yir1 = T(y:), such that |z¢; —y;| < C < § and z;,y; € 4, V1.
Then
(i) lzi—y| <Cni™", i=1,.,mn;
(ii) there ezists ¥ > 1 such that for all j =1,..n:

A CLAch

g (T9)(91)
(iii) for any sets I and J such that I,,J, C A, where I, = T™(I) and J, = T™(J)
with diam(I),diam(J) < 6§ and such that I and J are obtained from T"(I) and

< (1.4)

T™(J), respectively, by application of the same inverse branch of T™, we have:

Do (@) f(gm D)) < 4 Y=l 09)

Proof: (i) follows immediately by the hypotheses; to prove (z), observe that

J
log l <3 Mg T~ log T )

j
o n
K ) 77 < =,
k=1 1

IN

J
< K Z lzi — yrl
k=1
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where K is a constant (remind that log(7") is holomorphic in the region 4,.
(1ii) is also immediate: recall that diam(I) = sup, ,¢r |z — yl; then choose z,y € I
and u,v,€ J, such that they realize the sup up to epsilon. Then from (ii) the

assertion follows.

In the previous section, it has been shown that the Julia set associated to a
polynomial T' of degree q which can be treated as a small perturbation of the map
z — 27 topologically is a circle. However, geometrically it differs from a circle,
since it can be shown to be a non rectifiable Jordan curve.

This last statement is a consequence of the following theorems (see [Br] for in-

stance):

Theorem 1.8
Let J(T) be the Julia set associated to a polynomial; then, if T has a (su-
per)attractive fized point o such that the set of finite critical points of T~ 1(z) is

contained in the stable set W*(a), then J(T') is a Jordan curve.

Theorem 1.9

. Let o be a (super)attractive fized point of the rational map R(z). Suppose that
W (a) 1s simply connected and that OW*® = J, has empty intersection with the
closure of the set of critical points of R. Then, if J, is not a circle or a straight

line, J,, does not have a tangent at any point.

Corollary 1.10

Let T(z) = 27+ X ¢(z), be a polynomial of degree g, where deg(c) < g—1, then
there ezists € > 0 such that for 0 < |A| < € the Julia set J(T') is a non-rectifiable
Jordan curve.

The Hausdorff dimension ég of J(T') is 1 < by < 2.
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D. Ruelle [Ru2] has then proved the following conjecture by D. Sullivan on the
dependence of the Hausdorff dimension §y(R) from R, as R varies in an analytic

family of maps.

Theorem 1.11

The Hausdorff dimension of J(R) is a real analytic function of the coefficients

of z — R(z) in any open connected set where each such map is ezpanding.

1.5 The invariant measure on the Julia set

Let E be a bounded closed set in the z-plane and let p be a positive mass dis-
tribution on F of finite total mass. The logarithmic potential is then defined
by

1
w(z) = /E log (7 du(()

and the energy integral by
1
I(p) = f / log —— du(() du(2).
EJE |z = (|

Set V =inf, ,(gy=1 I(1), then the capacity v(E) of E is defined by

WE) = exp(=V).

Throughout this section we will restrict ourselves to polynomials of the form
T(z) =29+ ag—127"1 + -+« + ao, with ¢ > 2.

It is then possible to show (see [Br] for details) that the capacity of the Julia set
J(T) is equal to 7(J) = 1 and that the support of u*, the equilibrium distribution
of J (i.e. p*(J)=1and I(p*)=V,)is J(T) itself.
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We can then introduce a sequence {1, } of mass distributions defined as follows
[Br]: po places the mass 1 at a fixed point zp in the plane, except the exceptional
points.
p1 places the mass ¢! at the g predecessors of order 1 of zy and, in general, u,
places the mass ¢~™ at the ¢™ predecessors of order n of zy. Then it is possible to
show that this sequence converges weakly to the equilibrium distribution p*(J),
(see [Br] for instance).

Moreover measure p* is invariant under 7', ([Br]) that is
W(TB) = w(B), (16)
and balanced ((BD, BGH]), which means
pITHB)) = (/9w (B), fori=1,.,q, (1.7)

where B is any Borel set in the complex plane.
A consequence of balancedness is that, if B is sufficiently small and if the various

preimages of B’ = T(B) are well separated, then
w(T(B) = qu*(B) (1.8)

or for two different sufficiently small Borel sets I and J with p*(J) # 0, we have

(f%%) - (55%) ! (1.9)

where diam(7), diam(J) < §, with é§ as in Proposition 1.7, so that the preimages

of I,J will be disjoint at least for € small enough.



Chapter 2

Application of thermodynamic

formalism to expanding maps

In the last few years, several authors ([Rul, Ru2, BD, BoR, CLP, Va, Ru3])
have considered the ergodic properties of a transformation on a repeller in con-
nection with its geometric structure. If the transformation is sufficiently regular
in a neighbourhood of the repeller and uniformly hyperbolic on it (mixing re-
peller), one can apply the powerful techniques of the axiom A systems [BowRu]
to understand the dynamics on the repeller and its fractal properties.

In this chapter, we will especially consider conformal transformations on the
repeller, i.e. in every point the tangent map is a scalar times an isometry. Sullivan
(see [S1, S2] and Chapter one for what concerns the case of hyperbolic Julia sets)
has already pointed out the importance of these systems which include all the
one-dimensional differentiable maps, the rational endomorphisms of the Riemann

sphere and every group of Mdbius transformations of the n-sphere.

The plan of the chapter is as follows: in section 1, we introduce the uniform
partition function Zy . In section 2, using large deviation arguments we recover the
multifractal spectrum and relate it to the measure geometric dimensions. In section
3, we give the relation between the dimension spectrum and the set of generalized

correlation dimensions. In section 4, weintroduce the dynamical partition function
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Zp and show how the “free energy” Fp is related to Fy. Finally in section 5, we
discuss the analyticity properties of the thermodynamic functions, from which the

analyticity properties of the geometric dimensions immediately follows.

2.1 The uniform partition function zy

Let us consider a normalized probability measure g with support contained in a
bounded set S in the complex plane, that is £(S) = 1. The model we have in mind
is the harmonic measure p supported on a nearly-circular Julia set associated to

a map I of the form
T(z) = 274X c(z) (2.1)

which has been introduced in the previous chapter.

Let us cover S with squares of size 27" forming a partition for any n over a
bounded set in the complex plane containing S. We will call P, such a partition.
For n large, the number of square boxes needed to cover S is bounded by A4 227,
where A is the area of some bounded set including S. Now select boxes b such that

fort > 0:
(-1)

t < log,(u(b)) < t+e, (2.2)

and call N,(¢) their number. We then make the following fundamental ansatz,
known under the name of “box counting” assumption, on the behaviour of Ny(%)

for n large:

lim %logz (Na(t)) = F(2). (2.3)

n—0oQ
In the case of hyperbolic Julia sets, for which the thermodynamic limit exists and
is regular, the box counting ”"ansatz” receives a rigorous treatment in the frame of

large deviations, as we will see in the next section.
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In order to introduce the thermodynamic formalism, it is now convenient to intro-
duce the uniform partition function Zy defined by:

ZPE) = Y (u@)”. (2.4)

b

The previous sum extends over all boxes b needed to cover S, such that p(b) # 0,
so to allow negative values for 3.
The box counting assumption allows to evaluate the behaviour for large n of

Z[(J")(ﬂ). Indeed we have:
zME) / N (t) 27 ™Pt 4z, (2.5)
0
Since Ny(t) ~ 2"/} we can estimate the partition function as:

zME) ~ /0 2n(F()=F%) g4 (2.6).

Therefore Z,—Sn)(,@) ~ 2—"F£fn)(ﬂ), that is we have the “thermodynamic limit”:

lim (—1/n) log, (257(B))) = Fu(B), (2.7)

n—00

where Fy(8), the “free energy” associated to the measure p, is defined by the

following condition:

Fo() = inf (Bt-f(1). (28)

The relation between f(¢) and Fy(B) is the usual Legendre transform, similar to

the relation between entropy and free energy in classical statistical mechanics.
Now we will show the existence of the thermodynamic limit for the uniform

partition function. We first observe that if (2.7) is valid with b € P, in (2.4),

the same limit in (2.7) is obtained if instead we assume b in (2.4) to belong to
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a covering R,- made with sets not necessarily square shaped and not necessarily
forming a partition - such that the following properties hold:

1) there exists an integer h such that for any n and any b in P,, there exists
sets by, and b¢ with by € R, and b« € R,4p such that be C b C bs;

2) the same property holds if we exchange the roles of the partitions R, and
Pn.

Theorem 2.1

For the uniform partition function Zz(]n)(ﬂ) which has been defined in (2.4),

the ezpression: (—1/n) logz(Zz(j")(ﬁ))) has a finite limit when n goes to infinity.

Idea of the proof: The proof is simple and makes use of the classical argument
given below, which derives the result from a subadditivity assumption on the

logarithm of the partition function:

Lemma 2.2

Suppose that the sequence of positive numbers Z, fulfils the inequality:

Zn+m < [ Zn Zm, (29)

where the constant C is independent of n, then (1/n)log,(Z,) has a limit when n
goes to infinity. Without additional assumptions this limit can be —oco.
If we also assume a reversed inequality such as: Zpim > C'Zy Zp, where the

constant C' > 0 is also independent of n, then the above mentioned limit is finite.

To prove that the uniform partition function satisfies the assumptions of the
lemma, one has to use the distortion lemma and the “leo property”, that is Proposi-
tion 1.7 and Corollary 1.5 of Chapter 1, as a way to compare small scales to normal

order one scales, and Eq. (1.9) of Chapter 1 to control the corresponding scaling
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properties of the measure p. In fact what is really needed is a kind of homogene-
ity property for the set and the measure supported by it, which results from the
expanding character of the map. For the details, see for instance [CDM].

In an analogous way one can prove that, if we restrict the covering to a small
open box O instead of S, we only need to iterate the covering sufficiently many
times to get a covering of S and check that the distortion lemma allows to compare
the final covering of S with the initial covering of O. The comparison yields the

same thermodynamic limit Zy(8).

2.2 The dimension spectrum f#()

The existence of the thermodynamic limit (2.7) for the uniform partition function,
together with its regularity, which will be proven for the case under study in the
following sections, ensures some kind of box counting statement. More precisely,
we define NS(t), (resp. N (%)), as the number of boxes b with size 277, such that
p(b) > 27" (resp. p(b) < 27™%). Then we have the following proposition, which

is the adaptation of classical arguments of large deviation theory [E] to our case:

Proposition 2.3

Given the measure pu, we assume that the uniform pariition function defined
by equation (2.4) fulfils the thermodynamic limit (2.7) and that the resulting Fy(5)
is differentiable. We then define the function f(t) as:

) = it (28— Fu(8). (2.10)

The function f(t) is thus a convez function, so there is a value t,, such that for

t < tm, the function f(t) is non-decreasing and for t > t,, non increasing. Then
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we have:
limp, o0 = log, (NS@®), for t<tm;

&) = {limn_,c,o %log2 (N;(t)), for t>t,. (2.11)

Idea of the proof: An easy proof of the previous statement follows directly by
a proposition by D. Plachky et al. [Pl, P1S]; let us consider the following sequence

of random variables:
_ Jo if p(b) = 0;
Wa(b) = {log(p(b)) otherwise.
Then, using as associated probability measure the counting measure it follows
immediately that
25°(6)

IE(«BW"') = An 4

where A, denotes the cardinality of the sets b which cover S and which is bounded
by

cd2m < 4, < 2"
Then from the usual arguments of large deviation theory the proposition follows.

We will end this section stating a result which gives a meaning to the name
dimension spectrum given to the function f(t), relating it to the geometrical di-
mensions associated to the measure p through the local density exponent 6(z),

which is defined as:

6(z) = limsup

r—0

log, (4(B+(<)))
{ Tog, () ] ’ (212)

where B,(z) is a ball of radius 7 centered at point z in the complex plane. Then

the following statement holds [CLP]:
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Proposition 2.4

Assume that the thermodynamic limit ezists not only for a covering of the full
set S, but also that the same limit is obtained when in (2.4 ) we restrict the covering
to the intersection of S with any small open set. Then, defining f by Eq. (2.10),
and assuming that the distortion lemma is verified (see Proposition (1.7) in the

first Chapter), we have, for f(t) > 0:
) = dim(BE), (2.13)

where B(t) is the set of points z such that the local exponent 8(z) = t. Moreover,
the same result (2.13) holds if we replace in (2.12) the superior limit with an

inferior one.

Idea of the proof: The inequality f(¢) > dim B(t)) results immediately from
the existence of the covering of the set S by boxes. For the proof in the other
direction one has to find a lower bound to the Hausdorfl dimension dim(B(t)).

Such a lower bound is given by an argument due to Frostman [Fal, CLP]:

Lemma 2.5
Suppose.there exist a measure v and a set D, such that v(D) = 1 and, for
some k and some positive constant ¢, v(B¢) < c €*, for any ball B, of small radius

€. Then we get the inequality:

dim(D) > k (2.14)

The strategy is then to construct explicitly a measure with support on B(t)

satisfying the conditions of Lemma 2.5, with k& = f(¢) [CLP, CDM].
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2.3 The spectrum of generalized correlation

dimensions D,

Let 8 be integer and positive. Then the generalized correlation dimensions are
defined as
1 . n
D, = —— lim —(1/n) log (Z{"(q)). (2.15)

g—1 n—

This formula extends to the case ¢ = 0 and, in the case of nearly circular Julia sets
Eq. (2.1), it can be proven that Dy coincides with the Hausdorff dimension 6.
In fact a relation between Fy(0) and the Hausdorff dimension §x(5) is expected,
since, for § = 0, in (2.4), we just count how many boxes are needed to cover the
support S of p. Indeed we have —Fy(0) > ég(S); for the equality one has to
use Frostman’s lemma (Lemma 2.5) and the distortion lemma (Proposition 1.7, of
Chapter 1).

For ¢ = 1 one recovers the information dimension o, which is usually defined

as
) 1
o = lim -~ > u(b) log (u(b)). (2.16)
b
To prove the equality between D; and o one uses analogous arguments as for the

Hausdorff dimension. Heuristically one can see that indeed this is the expected

result, by expressing (2.15), as

D, = Tim g, (30 u(t) exp {(g—1)log (u(2)) }),

n—oo

and expanding the exponential in the limit ¢ — 1.
The name of generalized correlation dimensions is due to the fact that for
g = 2, one recover the correlation dimension, which is defined as the following

limit, when it exists,
. logC(l, )
v = lm———F
-0 log(l)

J
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where

) = [ 0=l = l)du(s) du(w).

It is interesting to evaluate the total measure of the reunion of boxes b satisfy-
ing (2.2) for a given t. Using (2.3), the result is that the total measure vanishes
forall but one value ¢; of ¢, such that ¢ — f(¢) is minimum, which corresponds to
B = 1 in equation (2.8). This particular value is, in general, different from the
value i, for which f(¢) is maximum and equal to the Hausdorff dimension of the
support S. If we discard some particular, but very interesting, cases corresponding
to strictly self-similar fractals (as the original Cantor set), we see that, in fact,
almost all the measure is contained in a set of Hausdorfl dimension ¢; strictly
smaller than the dimension of the support. As discussed above t; is nothing else
than the information dimension ¢ = D;. The number ¢; = D; is the so called
Hausdorff dimension of the measure, that is the smallest possible dimension of
sets with full measure. So, by removing from the support 9, itself of dimension

tm, sets of measure zero, one can get a resulting set of dimension #;.

2.4 The dynamical partition function Zp

In this section we will consider the dynamical partition function associated to a

nearly circular Julia sets, which is defined by the following property:
@) = Yy (B)7 (2.17)
beDy
where the sum has to be taken over the sets b in the partition D,, defined recursively

as follows: the pieces of the partition D,, are the preimages under T of the pieces

of the partition D(,_1), where, as usual, |b| denotes the diameter of the set b. It is
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more convenient to introduce a more general mixed kind of partition functions:
2&(@B) = 3 (B)T ()7, (2.18)
bECn
where the sum has to be taken over the pieces b of a partition C,, with sizes |b]
decreasing approximately exponentially-like in n. Obvious arguments show that,
when we take for C, the uniform partition P, defined previously, we have, up to

a multiplicative constant indipendent of n:
ZI(’n)(a"B) = 92 nc Zérn)(ﬁ), it C, =P,. (2.19)

On the other hand, when we take for C,, the dynamical partition D,, defined above,
we have in view of the balancedness property of the harmonic measure p, Eq. (1.7)

of Chapter 1:
Z! )(a g) = nd z(m(_ if C,=D 2
D ) q D ( a), 1 n n ( -20)

Now consider the partition function Zp associated to the uniform partition func-

tion given in Eq. (2.19), then the following result holds:

Proposition 2.6

The dynamical partition function Zgl)(a) has a thermodynamic limit:

lim (1/n) log, (z25(e)) = Fpla), (2.21)
which satisfies:
Fo(Fu(B) = 8 (2.22)

Idea of the proof: The argument for the existence of the thermodynamic limit

of the dynamical partition function is very close to the one given for Theorem 2.1.



ANALYTICAL PROPERTIES IN THE THERMODYNAMIC 33

Starting from the mixed partition function associated to P, choosing n and m

large, but with n > m and using the distortion lemma, one gets:
ZM(a,B) ~ 272 UM (_ Fy(8),8). (2.23)

The previous relation is in fact a way to show the existence of the thermodynamic
limit, that is the limit of (1/n) logq(ZgL)(a)), as n goes to infinity, which is a well
known result in the thermodynamic formalism. As in (2.21), let us denote Fp(c)

this limit. Then, using Egs. (2.19) and (2.20), one gets:

g-ne 9g=nFu(f) . g=na g=nFu(B) gmmB mmFo(Fu(B) - (2.24)

and finally
Fo(Fu(B) = B, (2.25)

from which the proposition follows. The relation between Fy; and Fp is surpris-

ingly simple and seemed unnoticed before the work of Collet et al. [CLP].

2.5 Analytical properties in the thermodynamic

formalism

In the previous section, a simple connection has been established between the
uniform and the dynamical partition functions. Here we will use this relation in

order to deduce analyticity properties for Fy; from analyticity properties of Fp.

Theorem 2.7
The limit Fp(B) of (1/n) 1ogq(Z§)n)(ﬁ)) when n goes to infinity as well as the
limit Fu(B) of (—1/n) logz(Z[(jn)(,G)) ezist, are analytic in B and real analytic in

the coefficients occuring in the polynomial T, for X sufficiently small in Eq. (2.1).




34 APPLICATION OF THERMODYNAMIC FORMALISM TO EXPANDING MAPS

Idea of the proof: One can use the following alternate expression for the

dynamical partition function:

2508 ~ 3 [T,

{i k=1

(see [CDM] or Chapter 3) and observe that this expression is the same as for a
partition function for a one dimensional Ising like system, with ¢ possible states
at each site, and an interaction at all sites, which decreases sufficiently fast with
the distance for the application of the usual results. The theorem for Fp then
follows as a consequence of the existence of the limit and of a uniform bound
on log Z[(J")(,B) which can be provided along the lines of [Do], by applying the
well-known compactness criterium for anlytic functions.

The analyticity properties for Fy result from the implicit function theorem which
can be applied to Eq. (2.25) relating iy and Fp. In fact no problem arises from
the functional inversion in (2.25) for polynomials T close to 27, since in the un-

perturbed case we have the following expressions for the “free energies”:

FuB) = (B-1),
Fo(B) = (B+1)

Various regularity results in 8 are avaliable in earlier literature [Bow, Rul],
including real analyticity properties for the Hausdorff dimension [Ru2], which will
be commented in the next chapter. In view of the expression for the correlation

dimensions:

1
Dy = r—1 FU(ﬁ)’

one can deduce from the previous theorem, the analyticity properties of the Haus-

dorff dimension and of the various higher order correlation dimensions. So we
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have now completed our program which consisted in considering the analyticity
properties of the multifractal properties of Julia sets close to the unit circle. Of
course, if we consider polynomials far from 27, one expects interesting singularities
in the thermodynamic functions which remain to be analized. Such a situation
seems to occur for the polynomial 2z? + 1/4, as shown by numerical calculations

[KaP].




Chapter 3

Perturbative computation of

thermodynamical quantities

In the previous chapter we have introduced the thermodynamic formalism for
nearly circular Julia sets and we have shown that the thermodynamic limit exists
and is real analytic in the perturbation parameter. Moreover, we have noticed
that, once one is able to compute the dynamical free energy Fp(B), then it is
possible to compute the dimension spectrum Dg, defined in equation (2.15) of
Chapter 2.

Once Fp(B) is expressed in form of a classical statistical mechanics model, the
usual perturbative methods can be used and permit a perturbative expansion
of Fp(B) and Fy(B), and therefore of Dg. We will concentrate on the generic

polynomial case

T(z) = 274 Ac(2), (3.1)

where A is a sufficiently small parameter and ¢(z) a polynomial of degree less than
g. In this way we are able to compute Fp(83), up to the third order in 3.

Our aim is to give a device for computation which may be applied to any polyno-
mial and generalizes the previous perturbative computations which were restricted
to the case T'(z) = 27 + c. We do not claim that the perturbative approach is nu-

merically competitive for the estimation of the Hausdorff dimension and more
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generally for the set of generalized dimensions Dg. It should also be noticed that
the perturbative approach has an intrinsec limitation in what it does not preserve
the convexity property of the “free energy” [CDM], so that our computations
cannot reproduce the whole dimension spectrum, but are valid only in a small
range of 3. In next Chapter we will see an alternative approach which makes use

of the scaling function.

The plan of the Chapter is as follows: in section 1, we review previous anal-
ogous perturbative computations, which treated the simplified perturbative case

T(z) = z% + ¢ with ¢ constant.

In section 2, we justify our approach and then, in section 3, we show that it is
possible to treat perturbatively the generic case Eq. (3.1), obtaining results which
are in agreement with the previous ones. In the:appendix, finally, we give the
details of the computations. The results presented in section 2 and 3 and in the

appendix have also appeared in S. Abenda et al. [AM].

3.1 Review of previous results in perturbative
computation of thermodynamic quantities for

nearly circular Julia sets

We are going to review briefly the methods of perturbative computation of the
dimension spectrum due to D. Ruelle [Ru2], M. Widom et al. [WBKS] and to
P. Collet et al. [CDM]. They are similar and permit to compute the Hausdorff
dimension up to order 2 [Ru2] and 3 [WBKS] and the set of correlation dimen-
sions for small B up to order 4 [CDM], for the family of perturbed maps of the
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form:

T(z) = 2%+c¢, (3.2)

with ¢ small complex constant parameter. In particular the starting point in
[Ru2, WBKS] is a theorem of Ruelle [Ru2], which provides a useful formula for

computing the Hausdorff dimension:

Theorem 3.1

Let Jr be the repeller for a nearly circular Julia set of the form Eq. (3.2). Let
¥(z) = - log|T'(z)]

and let §gr be the Hausdorff dimension of the set Jy. Then the series

C(u) = e}cp{iynZ Z exp{i 5H\P(Tk:c)}} - (3.3)
n=1 k=0

z€FixTn

has a non-vanishing convergence radius and eztends to a meromorphic function of
u, which it is denoted again by ((u).
This function has a simple pole at w = 1 and no other zeroes and poles inside the

unit disk.

Then, taking the logarithm of Eq. (3.3), we see that a necessary condition for
4 to be the Hausdorff dimension is that
n—1 .
nlgréo zegk;rn exp {; §U(T :z:)} 1. (3.4)
With the aim of approximating the Hausdorff dimension, one first compute per-

turbatively

S @y’ (3.5)

z€FixTm

AZ(8)
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using the Boettcher conjugation equation, which was introduced and discussed in

Chapter one:

B(27) = T(2(2)), (3.6)

which can be continuously extended to the Julia set. And then, one uses such
an expansion for computing §g. (For details on the perturbative computation
using the conjugation equation, see Appendix 1 and [Ru2, WBKS, AM]). The
resulting expression for the Hausdorff dimension is then:

lef? 5 . 3(c+?)ef

T
4log(q) “2 " 16logq (3.7)

by = 1+

The second order term was established by Ruelle, while the third order term is
due to Widom et al. Before passing to the work of [CDM], observe that Ag)(ﬂ)
is an equivalent expression of the dynamical partition function.

P. Collet et al. [CDM] start with the perturbative computation of Fp using
an equivalent expression of the dynamical partition function Z](Dn)(ﬂ), Eq. (2.17)
of Chapter 2, in terms of the preimages of a starting point £, which may be any

point in or close to the Julia set Jr:

3
—

z3(B)  ~ (T (T*(z )" (3.8)
{i} k=0

o

To pass from equation (2.17)

n

zPe) = S )" o= Y (T,

beP, =1

Q)

where A is any bounded open set including the Julia set J and which does not
contain any of the exceptional points, to Eq. (3.8) requires the use of the distortion

lemma (Proposition 1.7 of Chapter 1) The indipendence of Eq. (3.8) on the starting
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point is also an easy consequence of the same lemma. Starting from (3.8) leads
to the usual expansions occuring in statistical mechanics, in a case where the
interactions are not limited to nearest neighbours. Some of the tricks [CDM] use
are very similar to those used in the statistics of the fixed points by [Ru2], and
permit to compute the pertubative expansion of the dynamical free energy up to

order 4 in powers of ¢, which we report here for comparison with our results:

Fp(B) = B+ logl(q) {%ﬂ"’lclz + 5q,21-16,62(2-—,3)(c+5)|c|2 +
5 §
S2a-p) + —gé—"<4~m} oo BN
3+ ¢? 3+g¢g 1,

t mee?  wag” -
+ O(]c]s).

Then, with the help of (2.22)

Fo(Fu(@)) = B8, (3.10)

they compute the expansion of the uniform free energy Fi; in powers of ¢ and then

use (2.15)

Dy = =1 Fuld) (3.11)

to expand the correlation dimensions Dg on powers of ¢ for B sufficiently small.

In this way, they obtain the following perturbative expansion for the Hausdorff

dimension:
1 le|2 36, _ 96, 5 + 56, 3 _
5 _ e g, 2 g, 7,3/ 2 2\) .12
o= e { R Bt g g Beat sy
25 +16q + 7¢> 1 4 5
0 )
( 6i(g —1) T sloglg)) | J T OUP)

(3.12)
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Finally, they use the Legendre transform (2.10)

0Fu(B) _
o

to expand the dimension spectrum f(¢) in powers of c. There is a specific difficulty

f(t) = tB8— Fu(B); where § is given by: t;

in this last step, due to the fact that the unperturbed function f(¢) corresponding
to the unit circle with the Lebesgue measure, is singular and takes only one value
different from —oo, that is f(1) = 1. But there is no difficulty to compute the
perturbed inverse function (f), the unperturbed one being taken as the constant

function with value equal to one.

3.2 Perturbation of the dynamical free energy Fp(f3)

We will now present our results in the perturbative computation of the thermo-
dynamic quantities [AM]. We will use an alternate expression for the dynamical

partition function Z(Dn)(ﬂ), defined in Eq. (2.17)

n

e = > )7 = Y (7)) ’, (3.13)

beD, 1=1

where the second sum runs over the ¢™ inverse branches of the function 7" and A
is a somewhat arbitrary bounded open set including Jr.
With the help of the distortion lemma one can pass from (3.13) to

Z(Dn)(ﬂ) — Z I(Tn),(:ll) B

, (3.14)
=T (2)=¢

where the sum runs over the preimages of £, where ¢ be any point on the Julia set
or sufficiently nearby to it, so that the mapping is still expanding. Defining the

preimages of £ by the following labelling procedure:

T(mil,...,in) = Tiyoin_ 1 g =1,..,q, for k=1,..,n, (3.15)
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where, of course, T'(z;,) = £, we can rewrite Eq. (3.14) as:

zZ5V(8)

.
:13
N
I
s
!
ff
N
w
!

where the sum has to be taken over all possible values of multi-indices {z} which run
for 13,...,2,, and T™ denotes the n-th iterate of T, such that T"(z) = T(T("~1)(z))
and TY(z) = z. Moreover it is convenient to write Eq. (3.16) for any arbitrary
starting point and then take the mean value using the invariant and balanced
measure y introduced in section 2, Eqgs. (1.6) and (1.7), that is u(T!(B)) = u(B)
and u(T;*(B)) = (1/q)u(B), for any inverse branch 77! and any Borel set B.
Then we get:

B

20 ~ 20 = [wo ¥ |I)e)

#iTn (z)=¢
— /d,u, (z) (nHU ('T’ (T* m))l)ﬁ

Equation (3.17) is the expression of the dynamical partition function which we use

(3.17)

as starting point in our expansions, where
g—2
T(z) = 2'+Xc(2), with c(z) = > a2l (3.18)
—t

Then, applying the Boettcher conjugation equation, ®(27) = T(®(2)), we get:

o oeNJ—1
a; <18q>

(3.19)

q—2

»Q!:-a

z(8) = qn<1+m/02” dé ”ﬁ (wq) =

Jj=1
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The fact that we use the expansion for the measure after having used Boettcher
function, does not a justification of the consistency of this method, since the
Boettcher conjugation function is just continuous on the Julia set; indeed there
are arguments in favour of its validity (A. Douady, private communication). Let us
denote by @ = {ao, ..., ag—2}, the vector of coefficients of the polynomial ¢(z). The
resulting formula for the third order expansion in the coefficients of the polynomial

¢(z), of the dynamical free energy Fp(f) = limp—.oo(—1/n)log, ZI(Jn)(ﬁ)’ is:

1 e, o i)
f = —_— a; _—
p(B) L+ B+ 3 ].Z:;] il (1 q) +

(3.20)
2 3 ,
@) + Bn@} +o( mex 1),
where
— ]- 2 —
I,(@d) = =—ajaq—2
q
g—2 .
1 1—1 1 1 1—1
E o 5 46D
O; 1 LJ( q 7 g g
1 1 (2¢—1 1]
+ Z a'zaja'z+z-—q {‘2’“ - "‘( > + ?}
i+j>g 7 1
_ -1 1Vi4+J— 17(1+7—¢q
+ Z AiGjAi4j—q [2— + (2—“> 179 _ ( 3 )};
i, q q q q
and

. 2 q—2 . - 1 .
0 = S w128 () ()

i=1

_ 2t g 1+J—g . 17
+ Z ;0054 5_q li(-;——;};—l) — <—q2 )(21~1+;>}.

i+j>q

It can be easily checked that, if we restrict ourselves to the case

a=c¢ a=...=a, =0,
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our perturbative expansion of the dynamical partition function reduces to the one
computed by [CDM], which was denoted above as Eq. (3.9), up to the third order

in ag = c.

3.3 Perturbative computation of F,(3) and Dy

It is now easy to derive the expansion for the uniform free energy and for the
correlation dimensions using Egs. (3.10) and (3.11) which have been commented
in Chapter 2.

In fact, replacing ¢(z) by A ¢(z), with A real, we get:
Fp(B) = 1+ B + M¢a(B) + Ags(B) + O(N), (3.21)

so that, inserting it into the expansion of the uniform free energy:

Fu(B) = -1+ 8 — NXpaB — Xe3(8) + O(AY), (3.22)
one gets
p(B+1) = ¢B)  es(B+1) = $(B). (3.23)
So that, we can now compute the correlation dimensions using Eq. (3.11)
1
Dy = ——— Fu(B).
g B-1) Fu(B)

Observe that D; = 1 for any g, since, at any order, there is at least a coefficient
(8 — 1)? in the expansion of Fi;(8), as it has been shown in the appendix. Now
the Hausdorff dimension of the Julia set is Dy, so that:

1 1422 7\?
_ _ |2 <
fy = Dy = 1 4 — ZZMJI <1—q>

log(q) | 4 =
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which is in agreement with the formulas previously obtained by [Ru2, WBKP,
CDM] for the case ag = ¢, a; = -+ = ag—p = 0.

It should be noticed that the second order term is a positive definite quadratic form,
which is in agreement with the theoretical prediction of D. Sullivan (Corollary
1.10 of Chapter 1); the fact that the quadratic form is diagonal is in some sense
unexpected and has no interpretation yet.

In the next chapter we will see an alternative approach to the computation of the
thermodynamic spectrum, based on the microscopic scaling structure associated

to the Julia set.




Appendix to Chapter 3

Exp - Log perturbative expansion

of the partition function

We will give in this appendix some detail on the perturbative computation of the
dynamical partition function Zgz)(ﬁ) up to third order. We shall calculate the
perturbation expansion around the ¢(z) = 0 for the dynamical partition function

associated to the Julia set defined by the polynomial
T(z) = 27 4+ Xc(z), (3.24)
where ¢(z) is a polynomial of degree < g — 2 and

c(z) = a;zl. (3.25)

For arbitrary integer ¢ > 2, we will give the expansion up to third order on powers
of c.
We will use the Boettcher conjugation function @, and the following conjuga-

tion equation

T(2(c) = (), (3.26)

which can be be continuously extended to the Julia set J, as we have shown in

Theorem 1.5 of Chapter 1. The Boettcher function admits the following expansion,
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analytic outside the Julia set,

(z) = =z { 1+ é(z)} = 2 {1 + ;1 /\"cpn(z)}, (3.27)

which, inserted in the conjugation equation (3.26), leads to the following recursive

equation for the computation of the coeflicients ¢,(2),
en(2?) = gen(2) = Ra(2), n21, (3.28)

where R(z) is a polynomial in ¢1(2),...,¢on—1(2).

For instance, the first terms read

g—2
()al(zq) — qspl(z) = Z aj Z—(Q—j);

= 2 (3.29)
p2(2?) — qpa(z) = ————9(q;1)ga§(z) + 3 a5 Npy(2).

j=0

The solution is then given by

on(z) = - . R (27), (3.30)

p+1
p>0 g

as it can be easily proven.

As we will see below, in our expansion we will deal with sums of ¢,(z), with z of

the form

z = exp{2irbq'}, [=0,..N, (3.31)

so that it is convenient to express such sums with the help of Eq. (3.28), as

N-—1

Z ©n (ei9q1>
=0
N-=2

N-—1 l
_ q +-..+]. i&N——l q+...+1 101
= ST e () - DR ().
(=0

g
(3.32)
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We use the following expansion for the dynamical partition function Zl(jn)(ﬁ), which
has been commented in Chapter 3,

N-—-1

zpB) = / )T’ 'ﬂ (3.33)

=0

Substituing the expression of the derivative in the formula above, we get

s (r19)”

(3.34)

N-1 _

20%6) = 0 [ aue) [T (1) +
J 1=0

= qN(1+ﬂ)I(N)(ﬂ)_

qg—2

mly

—

]“‘_“‘

Using the Boettcher conjugation equation (3.26) and denoting by ¢ = exp{if}, we

get
™M@y = zwggﬁl{ 1+ {(Hé(éq'))q—l - 1]
0 =0
A sairen (s o)

(3.35)

U™(2) = log(1+ ¥(z)), (3.36)
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the expansion of the logarithm.
From (3.30) and the formula above, it follows immediately that U~ contains only
negative frequencies and that U+t = .

Expanding now the exponential, we get

™ (g) = /2"%5; { ﬁ2U Ut o B3 (U (UT)? + ce) + 0(/\4)} .
' (3.37)

Notice that there is no term of first order in B; this is due to the fact that U~
(resp. U™) contains only negative (positive) frequencies, so that the corresponding
zero Fourier expansion term is null.
For the same reason, it follows also that there is no first order term in A, that
is no first order term in the coefficients of the polynomial ay,...,a,—2, since the
expansion of U~ and U™ start with .

The strategy is now to express conveniently the sum of U ;. and the one of
complex conjungate terms, and then to multiply the resulting terms. At this aim,

we use Eq. (3.32).

Second order coeflicient in c¢(z)
For what concerns the coefficient of second order in A, we observe that the only
contribution can come from the product U~U™. Manipulating U~ and keeping

only the first (lowest) expansion term in A, we get

N+1 N-1 l+
- q -1 g+ —ifq' (¢—7)
U™ =2 T@l(e )~ ) ql+1 § aj e i

=0 3.38
N-—1 qg—2 ( ' )

+ Zqzajewq(qa)

We then multiply the first order expansion of U~ and of U™, and integrate in 8. At
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this aim, we have to compute which are the possible combinations of frequencies
which give rise to the zero Fourier expansion term in 4.

They are those for which
qn(q“‘j) = qm(q"—i)’ OSn,mSN, 057',]39*‘2,

that is the only contribution comes from the terms for which n = m and z = 7. We

then get that the second order coefficient of the expansion of ZI(DN)(ﬁ) in ¢(z) is

2 2 g—2 o\ 2
%U“ U+ = % N Z |a;? (1 - 75) + O(N”l) , (3.39)
=0

from which we immediately get the second order expansion in ¢(z) in Eq. (3.20).

Third order coefficient in c(z)

The only contributions to the third order expansion coefficient of Z](JN)(;@) in
¢(z) come from the terms U~U™ and U~ (U™)?; that is they contain only second
and third order powers in .

The startegy is as before; we are not going to give details on the computation,
which, while lenghty, is straightforward. We just observe that the frequencies

which contribute to the expansion must satisfy
¢"(g—i) + ¢"(q—J) = d¢"(g—k), O0<nmp<N, 0Z4,j,k<qg-2

The possible solutions are
p=n=m+1, 7=0, k=1-1;
p=n=m, 1+j>2k k=1+j—gq;

p=n+l=m+1, 1=7=0 k=qg—2.
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It is then easy to understand that the resulting terms in the expansions, which

were denoted by Z;(a@) and Z»(&@) in Eq. (3.20) in Chapter 3, have the form

" L,
(@) = —éagaq_z

g—2 _ ,
1 1—1 1 1 i—1
B B 200 ()
0; A - - ; -
_ 1 1 (2¢g—1 17
+ Z QiQjAiti—q [— — —< > + _2}
i+i>g 29\ ¢ 2q
+ Y @it [——— + (2~->Z+J g 15(+7 q)J;
i+5>q q q
i 2 25 S i i-1 i
I(a@) = —anaq_z + aoz a;iGi—1 |2 —1-{-5 + 2 p 1_E

=1

R (S SN [

i+j>q

Expanding the logarithm of Z](:,N)(ﬁ) in powers of A and taking the limit for N —

co, in
. 1 N
Fo(f) = - lm = logZp (8)
we then get
D N A%
fp(ﬂ) = 14+ 8+ — Z Ia]'lz (1——- +
log(q) | 4 = q

2

- B .
~hla) + *lgfz(a)} ,

where it can be easily checked that, if we restrict ourselves to the case

ay=c¢, ag =...=a; =0,

our perturbative expansion of the dynamical partition function reduces to the one

computed by [CDM], Eq. (3.21), up to the third order.




Chapter 4

Microscopic scaling structure

and thermodynamics

We will present a quantitative perturbative theory of the scaling properties of
nearly circular Julia sets. Such a theory has a “macroscopic” part which consists of
the generalized dimensions of the set or its spectrum of scaling indeces, which have
been already discussed in Chapter 2 and 3, and a “microscopic” part consisting of
scaling functions, which will be considered in this chapter and were first introduced
by M. Feigenbaum see, for instance, [FJP, KaP , JKP].

These two facets are formally and computationally equivalent to thermodynamics
and statistical mechanics in the theory of many body systems. M. Jensen et
al [JKP] have constructed such scaling functions for Julia sets, showing that
there are at least two different approaches to this construction, one starting from
the backwards iterates of the repulsive fixed point and the other from the set of
repulsive periodic orbits, which they have termed Feigenbaum and Ruelle-Bowen-
Sinai approach, respectively.

In the case of nearly-circular Julia sets both approaches seem to converge, meaning
that it should be possible to map the theory onto Ising models with finite range
interactions. The largest eigenvalue of the associated transfer matrix would then

furnish the thermodynamic functions.
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We will in particular concentrate on the approximation of the so-called Feigenbaum
scaling function and give arguments for its convergence using the perturbative
approach, computing the transfer matrix eigenvalue for big n and discuss the self-
similarity of the scaling function (see also [AM]).

Some numerics on the scaling function, using a distinct perturbative approach
based on the so-called derivative method of Withers [W], is also presented in
[OS]. In section 1, we introduce the scaling function, while in section 2, we discuss
the result previously obtained by Jensen et al. [JKP] for the case of nearly
circular Julia sets. In section 3, we use our perturbative approach to approximate

the scaling function and discuss its self-similarity and convergence properties.

4.1 The scaling function

Let Jr be a hyperbolic Julia set associated to some polynomial mapping 7, car-
rying the harmonic measure, as already dicussed in the previous chapters. Let
us consider the partitions of the set Jr into “balls” of radius I; such that the
measure, p;, associated to each of the balls is the same. Call N, the number of
boxes in the n-th step of. refinement of the set, so that p; = N1 and consider the
partition function Zén)(a,ﬁ) associated to such a partition, which was introduced

in Chapter 2. Call @ = —7 and 8 = ¢, so that
zg(-me) = Y LT, (4.1)

7l

and define 7(q) as the value of 7 for which Zél)(—T,q) = 1. Then from rela-

tion (4.1), we get

NID = N () (4.2)

)
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In general NV, grows exponentially in n, as N, ~ a”, for some positive costant a.
For instance in the case of nearly circular Julia sets of polynomials of degree s, we
have a = s.

Then, we can write the index 7 as a g-adic sequence of numbers (€1, ..., €,). Eq. (4.2)

then reads

a®) = N [l(eny )] (4.3)

€1,y.209€n

Performing two steps of refinement, we get

Z [l(€n+1,---,61)l-r = g3 Z |l(en,...,el)l—r. (4.4)

€nd-1,--€1 €ny-eny€L

The microscopic information is then carried by the so-called scaling function

o(€n+1,..-,€1), which is the daughter-to-mother ratio

l(En+1 g eeey €1 )

MLy ey — 4.5
o(en+s 1) [(€ny ...y €1) (4.5)
The scaling function o depends in principle by the whole hystory (ei,...,€nt1);
however, making appropriate choices of the quantities I(¢,, ..., €1 ), one can produce

a scaling function which depends most strongly upon the high-order digits of the

symbol sequence, and in this case we write
o(€nyey€1) =  F(€n,€n—1,-),

or we may consider a formalism in which the I’s are chosen to make the function
o depend most strongly upon the first elements of the sequence: in such case we
will write

o(€nyey€1) = (€1,€2,...).

Inserting (4.5) in (4.4), we get

Z O(Ent1yey€1) ‘l(en,...,el){wr = (") Z l(en,.,,,el)[. (4.6)

€Endy.. €L € qeeey €L
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However, in the cases that we will consider, the scaling function will depend,
for large n, only on one end of the symbol sequence and, as n goes to infinity
gn(T) — g(7). To see how this works in a heuristic way, note that Eq. (4.6) may
be brought to an eigenvalue equation by adding summations and Kronecker §

functions:

-7 ! ! -T .
E 561“651 552’612 O'(En+1,...,€1) Il(En,.u.,€2,€1)| =

1

Endgly ey EL5ER ns€ (47)

atn(7) Z ll(en, cers el)l—".

Let us now define the transfer matrix 7 by
< €1y eeny €2 | T l E;_L,...,Elz,ﬁl > = O'(En_}_l,...,El)_T(Semeln 5521512. (48)

For large n, Eq. (4.7) can be considered an eigenvalue equation. If o depends
weakly upon either end of its symbol sequence, one can truncate the transfer
matrix by simply neglecting the matrix indeces that do not appear in 0. In the

large-n limit, a?*(") becomes the largest eigenvalue of this truncated matrix:
M = 7). , (4.9)

This kind of formalism involving a transfer matrix and eigenvalues is the usual
way of expressing problems in one-dimensional statistical mechanics. In this way
we have mapped the process of refinement of the set onto an Ising model problem
where the lenght or memory in o is the range of interaction and the number
of values, that €, takes on, is the number of spin states. The thermodynamic
information ¢(7) is then calculable from the largest eigenvalue of the transfer

matrix.
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4.2 Review of previous results on scaling function

We will now describe Jensen et al. [JKP] construction of a scaling function
depending mostly on the tail of the symbol sequence; that is what they call the
Feigenbaum approach. They consider the quadratic mapping

T(z) = 2*+c (4.10)
where cis a small real constant. In the range :f <c< %, the map has an unstable
fixed point which equals ¢ = % + (% — ¢)'/2. Throughout this chapter the following
convention will be used for the sign of the square root: the imaginary part of the
the square-root is always non-negative and, if the imaginary part vanishes, the real
part must be positive. This convention will be used below to define the symbol
sequence.
We have seen in Chapter 1 (see Theorem 1.2, part (747)), that the Julia set may
be obtained from the preimages of the unstable fixed point; at every level of
construction there are then 2” points, whose set is denoted by P,. We can construct

recursivley such points, as

z(er, €2, men) = T" (€)= (1-2a) [a(e,.men) =, (411)

(€1,€2,---,€n
where €; = 0 when the positive branch is used and ¢; = 1 for a negative branch.
It is evident that the position of a point mostly depends on €; and only weakly
on €,. We also notice that, by interpreting €1, ..., €, as the bynary expansion of a

number
t o= > a27F, (4.12)
k=1

the points z(t) = z(ey,...,€n) are well ordered on the Jordan curve around the

origin. For brevity of notation, we shall denote by X" the sequence

ST = (€ €m)- (4.13)
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Let us now define the distances [(")(27) by
(@) = |e(t+1/27) — ()], (4.14)

where # is the binary fraction (4.12). The distances defined in (4.14) are the
nearest-neighbour distances in Pp.
Next we define the “local mothers” of these distances, denoted by [(n=1(ED), to

be simply the nearest-neighbour distances of the previous generation
(n=U(gry = e(mph). (4.15)

Finally, we define the daughter-to-mother ratio, or the scaling function, by

(n)(3n
o(0) = R%%T) (4.16)

If one now plots ¢ in function of ¢, one gets an highly oscillating non-converging
structure, since this scaling function depends mostly on the tail of the symbolic
sequence. To enphatize the dependence on the tail, one must reorder the num-

bers (4.16) by reading the binary number backwards, according to

n

o= ) e 2k/27 (4.17)

k=1
Numerically, Jensen et al. show that the scaling function converges exponentially
fast, computing the average difference between o(X7) and o(Z771) as well as the

largest deviation, as a function of n of Pn. Estimating the leghts 1(™) by using the

derivative of the map
sz = |T(eE)] T ITE), (4.18)
one gets the following estimate the scaling function:

o(Z) = o(53), (4.19)




58 MICROSCOPIC SCALING STRUCTURE AND THERMODYNAMICS

since the derivative factors are aproximately equal; this is in agreement with the
fact that o(X7) depends only very weakly upon the leading digits of X7 7*.
On the other hand, using (4.18), one also finds

n n— n-— -1 n -1 n— n
s(21) = [OEY) T T eEn)] T IeI(Ey). (4.20)
Then inserting, in the definition of transfer matrix, we get
<T|T|E> = |o®)]76(F,8(2), (4.21)

where S'(En,...,e — 1) = (én—1,.--,€1). One can then extract the thermodynamic

information from there.

4.3 Perturbative approach to the scaling function

In this section we will present our perturbation results in ¢ complex [AM] on the
Feigenbaum scaling function. We will consider in particular the case of nearly
circular quadratic Julia sets, but the extension to the generic case of a polynomial
of degree ¢ is straightforward.

We will use perturbative methods in the complex constant ¢, which preserve the
symmetry properties of the scaling function which are a direct consequence of the
symmetry properties of the underlying Julia set.

As above, we will denote by

€k
t o= > o (4.22)
k=0

the dyadic expansion of the binary code associate to the €, ..., €5-th preimage of

the repulsive fixed point £ = % + (% — ¢)*/?, as in [JKP], that is

z(er,onen) = To7 . () (4.23)
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Let us take ¢ = a + i3 on the Julia set J then, (' = —( € J, by the invariance of
the Julia set and the fact that T'(¢) = T(¢'). The corresponding bynary coding for
¢ and ¢’ are (e1,€,...,€,) and (1 — €1, €3, ..., €n); so that it can be easily checked
that

o(€1, €2, €n) = (1l —€1,€,.0 6n), (4.24)

which is our first symmetry property for the scaling function. Notice that when
we plot ¢ against z = (ep,...,€1), we have that points z with the same “head”
(€ny ..., €2) have the same value for the scaling function.

In the case of real ¢, another symmetry property is true: in fact observe that
if ( = a 410 is in J, then also its complex conjugate (' = ¢ is in J, by a similar
argument as above. The corresponding bynary coding for ¢ and ¢’ then read
(€1, €n) and (1 — €1, ...,1 — €,), so that the corresponding scaling functions are
equal:

o(€1,€2y0n6n) = o(l—e€,l—€,.1— €n)- (4.25)

It follows that it is sufficient to compute the scaling function for 0 <t < 1/2, since
o(t) = o(1 —1).

We will now pass to the first order perturbative computation of the scaling
function o, in the parameter ¢, using two perturbative methods which give rise to
the same limiting first order perturbative scaling function. As we have mentioned
in the previous section, the arguments in favour of the convergence of the scaling
function come just from numerical considerations and the regularity properties of
the limiting scaling function have not been characterized yet, evenifit is reasonable
to believe that the outcoming scaling function will be a fractal curve associated
to a Holder continuous function; so in particular there is no proof that in doing

perturbative computations, we are allowed to exchange the limits in ¢ going to
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zero and n to infinity. The motivation in doing perturbative computations on the
scaling function is that, even stopping at first order, we get an untrivial fractal
structure which seems to contain all the complexity structure of the unperturbed

scaling function at least for very small ¢ # 0.
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Figura 1: The Feigenbaum scaling function o(®)(z) for the map T'(z) = 2% + c for ¢ = —.05
(

and n = 12, on the left, and its first order approximation a’ln)(m) incforn=12o0n
the right.
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The straightforward way of doing the perturbative computation in ¢ is to
start from the definition of scaling function o(t), apply the Boettcher conjugation
equation and compute the perturbative expansion of the coeflicients of the resulting
formula. Since ¢ has a finite dyadic expansion, it easily follows that the infinite
series which are associated to the coefficients of the expansion of @ reduce to
polynomials in exp(2:7t). Then, denoting ¢ = |c|exp 2imy, we get for the n-th

nearest-neighbour distances

(et men) = [T e (O) = T ©)]
1

- '@<exp{2iw—62i+-o-+ ;6‘”}> -

. € €n
- @ (exp{2z7r—2— ++—2—5}\)

= [2 (1 -,cos;—:)r {1 _ I;:(_i)

n—1 .
c| = sin(m2™" — w2™7 ")
- 1 os(2mta™ 4+ womm — 2
S cprn s el
(4.26)
Then substituting in the definition of the scaling function, we get
9 9 ~-172
o(er, .. €n) = [(1 — cos %) (1 — cos 27:11) :l 1 4+ Re(c)2™"
n—1 .
B —m M1 m—n _ sin(wr2™" — w2™m7")
|c] T; 27™ cos(mt2 + 72 27y) (72"
n—2
+ || Z 27™ cos(wt' 2™ + w2 — 27y)
m=1
sin(727 "1 — r2monTl)
sin(m2-n+1)
(4.27)

Another way of doing the perturbative computation is by estimating the lenghts
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[(™)(Z7) using the derivative of the map T, that is

I (eryenen) = [T'(0)]" 1P e, ... €n), (4.28)

€1y.e

where 7 is any point in the “domain” set (Tor e )T 1te,(§)) C J. 1t should
be noticed that first we have to take the derivative of the map T and, then, to
apply the conjugation function ®, and that we cannot invert the two operations,
since, the derivative of the conjugation function is singular on the Julia set.

In order to preserve the symmetry properties discussed at the beginning of this
section we will choose n = Te_h’f_jml(f), so that, proceeding as above, we obtain

the following first order expansion in ¢ for o:

-1 l(n_l)(fz,...,én)
=D (e1, .y €n1)

o'l(fla vy €n) = ‘T’ (Te_;,njiml(gn

= —é— {1 + Re(c) + |¢| Z 27 ™ cos(2mt2™ 4+ 2™ — 27y)

on
m=1
n—2
— el Z 27™ [ cos(2mt"2™ + ;2™ _ 2y)
m=1

— cos(2mt'2™ 4 w2™ 7T — 27y )]

sin(m2- "+l — w2m—ntl)
sin(mw2-n+1)
(4.29)

Where in the formula above we have denoted by t' = (€1,..y€n—1) and " =
(€2, .ny€n).

The resulting expansion for o is different for any finite n from the previous one,
but it can be easily seen that they converge to the same limit.

In fact, if the previous two expansions for the scaling function are equivalent, then

they have to be equivalent also to the following one

(n)
Tal€ry oy en) = fa (e1,6n) (4.30)

lgn—l)(ﬁl, ceey Gn..l)
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where

() =TT (er e eny D) LD (g, oy en): (4.31)

It is then quite easy to show, from the direct comparison of the first order expan-

sions in ¢, that

(n) 53 n
};T"?%i_l—) = 1410 (5)
(=

1M (37 1 n
(-0(sp7h) T 5 160 (55)

From (4.32) then it easily follows, on one side, that the first order expansions in ¢

(4.32)

of o, 0, and ¢’ are equivalent in the limit of n large. On the other side, denoting by
Nn = €1,-..,M1 = €, the dyadic expansion of z = Z?:l n;/27, which was discussed
above, it follows that the first order expansions in ¢ of o admit a limit for n — oo,
uniformly in & = (71, .., Py -o)-

In particular if

1 1 1
z = (7717"'777n?77n—|—17"'777n—l-m)

z’ - (771a""nnvni—!-l:"'ani-;-m)

are two dyadic expansions, with the first n digits in common, it follows from (4.32)

that the two first order expansions’ difference satisfies
n
o(c!) — o(2?)] = || O (z—n) : (4.33)

that is, the difference of the first order expansions of the scaling functions of points
with arbitrary near dyadic expansions can be made arbitrarily small. That means
that the first order scaling function admits a limit as n goes to infinity uniformly
in the “reversed” dyadic expansion z for |c| sufficiently small.

From this argument, one cannot deduce immediately that the the limit of the first

order expansion in ¢ of the scaling function is a continuos function in z.
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In fact, continuity would be true if we were able to show that, for the case
of finite dyadic numbers, for which there are two limiting dyadic expansions
(m5+-sm,1,0,0,...) and (m1,...,m,0,1,1,...), the corresponding scaling functions
have the same limit. But this is true if, for each fixed dyadic number z; =
(71, --,m), after truncating the two dyadic possible expansions to finite lenght
n + I, we were able to show that the difference of the corresponding first order
expansions of the scaling function in ¢ decreases as n increases, that is we have to

estimate
o(ZpHH) — o2 =

= .0'(0,0,...,0,1,61,...,61)'—0'(1,1,...,1,0,61,...,61)} - (434)
ln+l+1(2/;z+l+1) ln-H(E;z—l—l)
- ln+z+1(2?+l+1) ln+l(2/;z+l)

.

= o(zpri

Since in correspondance of finite dyadic numbers both the exact and the first
order perturbation expansion in ¢ of the scaling function show “gaps” (see figure
1), which numerically seem to decrease quite slowly as n goes to infinity, we expect
that, correspondingly, the left and right limit of the scaling function in that point
is the same and that the convergence rate is quite slow in comparison with the rate
of convergence O(n/2") for the points with infinite dyadic expansion. That would
give a positive answer to the question of continuity of the limiting perturbative
scaling function for all “reversed” dyadic numbers z.

Indeed, from (4.32), we get the rather crude estimate
lo@’) = o(@®)] = |d 0(1/2),

for truncations of any order n + [, which gives a possible estimate of the constant

7 in the distortion lemma. We believe that is indeed possible to show that a more
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careful estimate of the first order perturbative truncation of the scaling function

gives O(1/(2'n)).
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