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Chapter 1

The alkali doped fullerides

The alkali metal doped fullerides A,,Cgp, based on tightly bound Cgy molecules, are
relatively simple molecular conductors where strong electron-electron correlations,
orbital degeneracy and Jahn-Teller effect intervene at the same time, leading to re-
markable physical properties[1]. The three-fold degenerate ¢, state of the isolated
molecule, icosahedral counterpart of a p state, leads to three bands hosting the valence
electrons provided by the alkali metals. Hence all compounds A,,Cgy with 0 < n < 6
should in principle be metallic if, as one expects, the bandwidth (of order 0.5 eV), is
larger than the relatively small crystal field splittings. The n = 3 fullerides are in fact
generally metals, and become superconducting with T, as high as 40 K [2]. Among
the n = 4 compounds, however, Na,Cg, a stable fcc structure at high temperature[3],
is the only one which is also a paramagnetic metal, whereas K4Cgy and RbyCgy, sta-
ble bct structures down to low temperatures, are instead paramagnetic narrow-gap
insulators. Understanding in detail this insulating state proves nontrivial, and con-
stitues the main scope of this thesis. Known experimental parameters for K,;Cg are
a minimum band gap (probably indirect) between 0.05 and 0.2 eV[4, 5, 6], and a
direct, optical gap of 0.5-0.6 eV[7]. The insulating state is non magnetic with a spin
gap to the lowest triplet exciton of 0.1-0.14 eV[6, 8]. Transition to a metal can be
provoked by pressure[6], which rationalizes why NayCgy should be metallic, Na being
the smaller cation.

One can invoke at least two possible scenarios for the insulating behavior of A4Cg:
a) a band insulator, due to a strong splitting of the ¢, bands, arising for example
from the bct distortion, or else from a collective static Jahn-Teller (JT) distortion
of the Cgo molecules, or alternatively b) a Mott-Jahn-Teller insulator[9], where the
hopping between adjacent molecules is first of all suppressed by a strong Coulomb
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repulsion, an intra-molecular JT effect subsequently optimizing the state of the four
localized electrons. In this work we first study the molecular ion Cgy, and then the
possible origin of the insulating behavior of A4Cgy by several theoretical approaches,
tight-binding Hartree-Fock, density functional, and Dynamical Mean Field Theory
(DMFT). This latter tecnique has been proven to be a powerful method to treat the
Mott transition[10], and has the advantage to allow the study of the Mott transition
for states without symmetry breaking.



Chapter 2

The Cé‘o_ molecular ion

We start considering the single Cf; molecular ion. Within the ¢, orbital, assum-
ing rotational (icosahedral) symmetry, a general interaction among electrons can be
written as

U U
Hiny = Enz + EZ 3(n —n2)® +3) A+ (ng +ny — 2n3)° |, (2.1)
i<j
where n; = 3, cf}gci,g, is the electron number on each orbital (i = 1,2,3), and

n=mn;+ny+n3z Ay =2, cg’acj)a -+ H.c.. Working at fixed n, the second term is
responsible for the multiplet splitting. For n = 2,4, the lowest energy state is the
3Ty, Hund’s rule triplet, followed at energy 2U, by a ' H,, singlet, and at 5U, by a * 4,
singlet. The exchange coupling U, is expected not to be significantly screened by the
t1, electrons, so that a reasonable estimate can be obtained by optical measurement
on solid Cgp, which give Uy ~ 0.05eV[11]. Next, we consider the JT coupling to
the eight H, vibrational modes. In the adiabatic limit, one can use a single-mode
approximation[12]

hw*gf 2 2
HJT = T{(Z -+r >+
2 (m1 +ny — 2n3) + 7v/3 (ng — my) }. (2.2)
By using vibrational frequencies and couplings extracted from gas phase 06(5 ) photoemission[13]

we obtain hw, = 0.117eV, and a dimensionless coupling g, = 1.204, so that F;r =
hw.g? = 0.169eV. Instead of attempting an exact solution of H;y,; + H 7, we consider
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two opposite limits, antiadiabatic (the vibronic frequency is assumed to be larger than
the electron energy scale) and adiabatic (the vibronic energy scale is much smaller
than the electronic energy). Although neither of them strictly applies, for hw, is
comparable to all splittings and the coupling is of medium strength, the former limit
will vield the right symmetries, while the latter will be quantitatively much more
accurate.

In the anti-adiabatic limit, the JT term (2.2) gives rise to a non-retarded electron-
electron interaction, which can be absorbed into Uy — U, —(3/4) E 7, with a change
of sign of U, from 0.05 to —0.076eV. The lowest energy state is now the 'A, singlet,

followed at 0.23eV by the ' H, singlet, and at 0.38eV by the T}, triplet. The overall
JT energy gain in this limit is very large, 0.84eV, about a factor three larger than the
bare adiabatic JT energy (see below). This signals a true enhancement, due to the
gain in zero point energy corresponding to the frequency collapse of the tangential
vibron modes, first pointed out in Ref.[14], as a possible mechanism for explaining
the high critical temperature of A3Cgy compounds.

In the adiabatic limit we diagonalize (2.1) plus (2.2) for n = 4, minimizing suc-
cessively the eigenvalues with respect to z and r treated as classical variables. We
find a lowest energy singlet at a classical distortion z = —1.9867 and r = 0, gaining
E;r =0.293eV. Adding the zero point energy gain fiw,[14], we obtain a total gain of
0.41eV, the zero-point enhancement still sizable. (A similar total gain of 0.42eV was
obtained by uncorrelated eight-mode calculations[13, 12].) The lowest triplet state
has instead z = 1.0 and r = 0 and lies above the ground state by E; = 0.108eV
(spin gap). The lowest singlet, (with z = 1.0 and r = 0), is at E, = 0.208eV above
the ground state. The single-particle (optical) gap, identified with the JT orbital
splitting, is A = (3/2)zEr ~ 0.504eV.

In both limits therefore the isolated Cay ion is predicted to be a singlet. We now
turn to the solid, in order to study how the hybridazation between molecules affects
the molecular physics.



Chapter 3

Bandstructure for A,Cg

3.1 Hartree-Fock

Since the Cgy ion is a singlet, if hybridization between adjacent molecules were much
smaller than all the molecular gaps involved, then a lattice of Cay molecules would
indeed be a non magnetic insulator, moreover with an optical gap A and a spin gap
E; remarkably close to the experimental ones. In that case, an electronic structure
calculation and total energy minimization for the A,Cgo lattice should yield a nar-
row ty, band split by an insulating gap, in turn supported by a static (uniform or
staggered) collective JT distortion of all molecules (scenario (a)).

A tight-binding Hartree-Fock (HF) approximation yields precisely that. The
Hamiltonian which we use is

H= % tg]bczacrcjbff + Hint + Hyr, (3.1)

l?]?a’bld

where the hopping amplitudes t?f are evaluated along the lines outlined in Ref.[15],
and the vibronic terms are treated in the adiabatic approximation, as in Eq.(2.2).
We look for a HF state with a non-zero uniform average of ny = ny # ng (collective
JT state) and find a stable band insulator with direct gap and spin gap of ~ 1.48eV
and an indirect gap of ~ 1.03eV, all of which are much larger than the experimental
values. The calculated HF bandstructure is shown in Fig. 3.1. This indicates that this
method, known to overestimate insulating tendencies, is unreliable for this problem,
and more realistic first principles calculations are called for in this case.
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Figure 3.1: The ¢, bands for K4Cgo according to Hartree-Fock. The chemical poten-
tial is shown as a dashed line.



3.2 Density Functional theory: Local Density Ap-
proximation

We report the results of a series of such calculations for K4Cg, starting with bet
configurations compatible with X-ray data[16], and using state-of the-art pseudopo-
tential plane-wave density functional techniques [17], with E.,; = 35 Ry (55 Ry for
refinements), and careful k-point summations. Confirming previous results[18], it
has been found first of all that intermolecular electron hopping is not small, yielding
metallic ¢, bands of width W ~ 0.6eV, as shown in Fig. 3.2. We searched next for a
spontaneous collective JT distortion by relaxing atomic positions based on Hellmann-
Feynman forces. In order to check that the calculation could in principle yield such
a delicate JT distortion, and also reproduce the molecular limit, we performed test
calculations at an artificially enhanced intermolecular spacing of 13.3A. In that case
a distortion appeared spontaneosly, leading to a distribution of carbon distances from
the Cgo center between 3.511 and 3.553A. This distortion magnitude AR = 0.0424,
although small, is very close to that reported for [PPN(+)]3Cgo(2-) salts[19], namely
0.043A, and that is very gratifyng since JT distortions of Cgs and Cg, should be
essentially the same. The single-particle gap was only about 0.1 eV, instead of the
expected 0.5 eV, a standard density functional shortcoming of no consequence for
this case. When carried out for the true structure (bct,intermolecular spacing 9.97A)
however, an extensive search for a JT distortion with one molecule/cell yielded no
result, and the system remained undistorted and metallic. Notably, X-rays fail to
find a static JT distortion[16], however within a resolution of precisely 0.04A, which
is inconclusive. Selected trial calculations with two molecules/cell also failed to yield
a doubling, as would be caused, e.g., by charge-density-waves [18] or by a staggered
collective JT state. We temporarily conclude that, since accurate density functional
calculations cannot account for its insulating behavior, K4Cgq is probably not a band
insulator. In the following section we will show the crucial role played by the electron-
electron correlation in turning these systems to insulators.
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Figure 3.2: The t;, bands for K4Cgy according to Density Functional Theory (LDA).
The chemical potential is shown as a dashed line.
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Chapter 4

Dynamical Mean Field Theory
(DMFT)

4.1 The DMFT formalism

Electron correlations can be strong in these compounds. A realistic estimate[l, 11], of
the intra-molecular Hubbard U of Eq.(2.1) is ~ 1.0-1.6eV, which is larger than the full
bandwidth. The failure of density functional calculations does not appear surprising
in this light. To get a description of the insulating state, and of the insulator-metal
transition, we resort to dynamical mean-field theory (DMFT)[10], which is exact in
the limit of infinite coordination lattices, and has proved quantitatively successful in
describing the Mott transition.

Within DMFT, the Hamiltonian (3.1) is associated with a single-site effective
dynamics, which can be described in terms of an imaginary-time action for the single-
site fermionic degrees of freedom (co;0, c:‘)w):

¢ B
Serr =~ [/ ar | dr' S el (MG = eais () + S (4.1)

where ng,)f is the interaction (electron-electron + electron-vibron) action for the elec-
trons on the “impurity” site 0. The main difference with classical mean-field theory
is that the generalized “Weiss field” Gg;'(7 — 7') is a function of time. While spa-
tial fluctuations are frozen, local quantum fluctuations are fully taken into account.
To obtain a closed set of mean-field equations, a self-consistency equation relating
Go(t — 7') to quantities computable from S,;; must be supplemented. It can be
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shown that such a relation is given by
Gt (iwn) = iwy + p + Gliw,) ™" — R[G (iwn)]- (4.2)

G(iwy,) is the Green’s function evaluated from Scsf, and R[G] is the reciprocal function
of the Hilbert transform of free density of states (DOS) of the lattice at hand. For the
case of the infinite coordination Bethe-lattice with bandwidth W = 4¢ (semi circular
DOS), the self-consistency equation (4.2) reads

Goit (iwn) = wy + o+ G(iw,) ™t — G (iwy,). | (4.3)

Due to the dynamical nature of the Weiss field, no single-site Hamiltonian form can
be found, and an Hamiltonian formulation can be used only reintroducing auxiliary
degrees of freedom (a);,,a1i») describing a counduction "bath” which interacts with
the impurity site. In such a way the action (4.1) can be associated with a three-fold
degenerate impurity Anderson model,

HAM = Z Eliajwalw + Z Vh(afwcow + hc) -+ Hz(gg, (44)

lio lio

where Hf,?@ is the interaction Hamiltionian limited to the impurity site. This Hamil-
tonian is quadratic in the conduction bath degrees of freedom; integrating them out
gives rise to an action of the form (4.1) with
V2
Gy (twn) = iwn + p — Z —E (4.5)
ile Wn — €l
where the parameters Vj; and €; are chosen such as to reproduce the actual solu-
tion of Gp; of the mean-field equations. Band structure enters the calculations via the
density of states (DOS) in the self-consistency equations. We approximate the realis-
tic DOS of our problem with a semicircular DOS of same bandwidth W, appropriate
for a tight-binding model on an infinite-coordination Bethe lattice. This approxima-
tion does not change the qualitative behavior of the model and is not expected to
significantly influence the value of the gap.

4.2 Results for A,Cg

The Anderson model, eq.(4.4), is solved by means of exact diagonalization with a finite
number (n;) of conduction electron degrees of freedom|[20], checking convergence as a
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function of n, by finite-size scaling. The density is fixed to n = 4 by suitably tuning
the chemical potential. We should look for either orbital symmetry broken (Vj;  Vj;
for i # j) and unbroken (V3 = V) phases, as the capability to describe a true Mott
insulator without any symmetry breaking is a unique feature of DMFT, which is not
shared by HF or density functional-based calculations, always implying symmetry
breaking at metal-insulator transitions. For simplicity, we have restricted our search
for insulating solutions either without orbital symmetry breaking or with uniform JT
ordering. In order to locate the metal-insulator transition (MIT), we calculate the
quasiparticle residue Z given by

1 o -
—Z‘ =1~ é—;ReE(w + 40 )lwzo, (46)

where the self-energy 3 is given by
S(iwn) = Gy iwy) — G iwy,). (4.7)

The vanishing of Z identifies the critical U/W above which a paramagnetic insulator
is stable, and the metallic one is not. Notice that, within DMFT, Z = m/m*, being
m* the effective electron mass. Again, we limit our analysis to limiting cases:

1. No JT coupling;
2. Antiadiabatic JT effect;
3. Adiabatic JT effect.

Case 1 — The three-fold degenerate Hubbard model without JT coupling, is well
studied for Uy = 0[1, 21]. In the presence of a finite Uy /W = 0.08 we find a MIT at
U/W =~ 1.414 for symmetric solutions, much reduced with respect to U/W =~ 1.98
with Uy = 0.

Case 2—The JT coupling renormalizes the dipolar integral, leading to an effective
U /W = —0.127. The critical MIT U/W is shifted to a much lower value U/W =~
0.707.

Case 8 — Solution of DMFT equations is more involved, since the self-consistency
must be required only after averaging over the classical vibrational (five-dimensional)
variable Q [22, 23]. In the broken-symmetry case the average simplifies, at T = 0,
as the probability distribution of @ becomes a single §-function. We obtain a criti-
cal U/W =~ 0.9 — 1.0 (the uncertainty due to convergence difficulty). The orbitally
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symmetric insulating solution, which becomes stable at U/W =~ 1.237, is of particu-
lar interest since it describes a molecular insulator where each molecule is distorted
with equal probability in all possible directions and independently from any other
molecule. This state has therefore a very large entropy which could be reduced by
including quantum fluctuations, for instance in the form of tunnelling between the
equivalent local distortions, a way of describing a dynamical JT effect, not included
at the adiabatic level. It should be noted that our adiabatic limit does not now in-
clude the vibron zero-point energy gain. Because it is present in the symmetric case
only, it could lower the true critical U/W value of this phase, which could in reality
prevail over the broken symmetry case. Moreover, temperature would also favor the
symmetric state, where entropy is higher.

We can now compare critical U/W’s with the true ones. As before, we expect the
adiabatic values to be quantitatively more accurate. The calculated critical values
are in all cases substantially smaller than the actual U/W value, i.e. 1.7-2.7. In such
a way the electronic on-site repulsion has been identified as the dirving force to the
insulating state. We conclude that the insulator is best explained as a Mott-Jahn-
Teller state, where orbital degeneracy has becomes split, giving rise to an essentially
intra-molecular Cg; Jahn-Teller state whose calculated gaps (optical, spin) agree very
closely with experimental data. In the adiabatic limit the orbital symmetry is broken,
but that is likely to change when zero-point energy and temperature are included.

The close agreement between the adiabatic gaps of Cg; and experimental optical
and spin gaps in A,Cgg is perhaps the strongest piece of evidence in favor of a Mott
state. Suppose one could even find, by some other band calculation, such as GW|[24],
a stable static collective JT state as in scenario (a). By necessity, the collective JT
distortion magnitude would have to be substantially smaller than that of the isolated
molecular ion, since electrons leaving the molecule very frequently to hop on other
molecules weaken the on-site JT effect. But, in that case, it should not be possible
to observe optical and spin gaps of exactly the right molecular magnitude, as one
does. They would be much smaller, corresponding to the delocalization, or spillout,
of the band Wannier function. In the Mott state, the electron spillout to neighboring
molecules is reduced to order ¢/U, which is very small. Hence this is the only state
that can explain why JT electronic gaps are essentially intra-molecular. When the
Mott insulator state is destroyed, for example by pressure-induced increase of W and
decrease of U, this intra-molecular physics is expected to disappear rather suddenly
(giving way to a density functional-like metal), instead of gradually as in a band MIT
transition.
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Figure 4.1: Quasiparticle residue Z as a function of U/W for the purely electronic
model-symmetric solution (solid line), the adiabatic limit-symmetric solution (dotted
line), the adiabatic limit-broken symmetry solution (dot-dashed line + dots), and the
antiadiabatic limit-symmetric solution (dashed line).
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Chapter 5

Conclusions

In this thesis the unconventional insulating state in A;Cgp has been studied with a
variety of approaches, ranging from density functional calculations and dynamical
mean-field theory. While the density functional theory (in local density approxima-
tion) predicts a metallic state, in disagreement with experiment, and a simple Hartree-
Fock approach provides unrealistic values for the band gaps, the dynamical mean
field approach yields a (paramagnetic) Mott-Jahn-Teller insulator, in extremely good
agreement with experimental evidence. In that state, conduction between molecules
is suppressed by on-site Coulomb repulsion (Mott insulator), and magnetism is sup-
pressed by intra-molecular Jahn-Teller effect. In the Mott state the most relevant
excitations (such as optical and spin gap) should then be essentially intra-molecular.
It is not surprising that the experimental gaps of 0.5 ¢V and 0.1 eV respectively com-
pare well with molecular ion values, in agreement with the picture described above.
Therefore, a full understanding of the insulating state in these systems can be ob-
tained only considering both the strong correlation effects driving the system to a
Mott insulator, and the splitting of the orbital degeneracy due to the electron-vibron
interaction (Jahn-Teller effect).

This finding incidentally suggests that also the n=3 fullerides, whose bandwidth
is quite similar, are most likeky close to a strongly correlated state [11], (the same
physics would predict in that case a Mott-Jahn-Teller spin 1/2 antiferromagnetic in-
sulator), with the implication that strong correlations should probably not be ignored
when discussing superconductivity in these compounds.

17



18



Chapter 6

Acknowledgments

This work has been performed under the careful supervision of Michele Fabrizio and
Erio Tosatti. The DFT-LDA calculations have been performed by Paolo Giannozzi.
It is a pleasure to thank all of them.

I also wish to thank Sergio Ciuchi for illuminating discussions about dynamical
mean field theory, Matteo Calandra for his precious help and kindness, Luca Capriotti
and Federico Becca for continuous, stimulating and helpful discussions.

I am also happy to thank Paola, whatever it will happen.

19



20



Bibliography

[1] O. Gunnarsson, Rev. Mod. Phys. 69, 595 (1997).

[2] A.F.Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M.
Palstra, A.P. Ramirez, and A.R. Kortan, Nature (London) 350, 600 (1991); D.W.
Murphy, M.J. Rosseinsky, R.M. Fleming, R. Tycko, A.P. Ramirez, R.C. Haddon,
T. Siegrist, G. Dabbagh, J.C. Tully, and R.E. Walstedt, J. Phys. Chem. Solids
53, 1321 (1992).

(3] G. Oszldnyi, G. Baumgartner, G. Faigel, L. Granasy, and L. Forrd, Phys. Rev. B
58, 5 (1998)

[4] R.F. Kiefl et al., Phys. Rev. Lett. 69, 2005 (1992).

[5] G. Ruani, P. Guptasarma, C. Taliani, and J. Fisher, Physica C 235-240, 2477
(1994).

[6] R. Kerkoud, P. Auban-Senzier, D. Jérome, S. Brazovskii, I. Luk’yanchuk, N.
Kirova, F. Rachdi, and C. Goze, J. Phys. Chem. Solids 57, 143 (1996)

[7] M. Knupfer and J. Fink, Phys. Rev. Lett. 79, 2714 (1997).

8] G. Zimmer, M. Mehring, G. Goze, and F. Rachdi, in Physics and Chemistry of
Fullerenes and Derivatives, ed. by H. Kuzmany, O. Fink, M. Mehring, and S.
Roth, World Sci. (1995).

[9] M. Fabrizio and E. Tosatti, Phys. Rev. B 55, 13465 (1997).

[10] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozemberg, Rev. Mod. Phys. 68,
13 (1996).

21



[11] R. W. Lof, M. A. van Veenendaal, B. Koopmans, H. T. Jonkman, and G. A.
Sawatzky, Phys. Rev. Lett. 68, 3924 (1992).

[12] N. Manini, and E. Tosatti, Phys. Rev. B 58, 782 (1998); M. C. M. O'Brien, J.
Phys. C 5, 2045 (1972).

[13] O. Gunnarsson, Phys. Rev. B 51, 3493 (1995); N. Manini and E. Tosatti, in Re-
cent Advances in the Chemistry and Physics of Fullerenes and Related Materials:
Volume 2, edited by K.M. Kadish and R.S. Ruoff (The Electrochemical Society,
Pennington, NJ, 1995), p. 1017.

[14] N. Manini, E. Tosatti, and A. Auerbach, Phys. Rev. B 49, 13008 (1994); A.
Auerbach, N. Manini, and E. Tosatti, Phys. Rev. B 49, 12998 (1994).

[15] S. Satpathy, V. P. Antropov, O. K. Andersen, O. Jepsen, O. Gunnarsson, and
A.IL Liechtenstein, Phys. Rev. B 46, 1773 (1992).

[16] C.A. Kuntscher, G.M. Bendele, and P.W. Stephens, Phys. Rev. B 55, R3366
(1997).

[17] W. Andreoni, P. Giannozzi, and M. Parrinello, Phys. Rev. B 51, 2087 (1995).

[18] S.C. Erwin, in Buckminsterfullerenes, ed. by W.E. Billups and M.A. Ciufolini,
VCH Publishers, New York, 1992.

[19] P. Paul, Z. Xie, R. Bau, P.D.W. Boyd, and C.A. Reed, J. Am. Chem. Soc. 116,
4145 (1994).

[20] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[21] J. E. Han, M. Jarrell, and D. L. Cox, Phys. Rev. B 58, R4199 (1998).

[22] A.J. Millis, R. Mueller, and B.I. Shraiman, Phys. Rev. B 54, 5389 (1996), ibidem
54, 5405 (1996). '

[23] S. Ciuchi, F. de Pasquale, S. Fratini, and D. Feinberg, Phys. Rev. B 56, 4494
(1997).

[24] E.L. Shirley and S.G. Louie, Phys. Rev. B 71, 133 (1993).

22









