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Introduction

The notion of “relaxed Dirichlet problem” was introduced in [6] to describe the asymp-
totic behaviour of the solutions of classical Dirichlet problems in strongly perturbed do-
mains. Given a bounded open subset {2 of R™, n > 2, and an elliptic operator L on Q,
a relaxed Dirichlet problem can be written in the form

Lu u = in
(0.1) {u :-IE)# d on (9,9,
where f € H7'(Q2) and p belongs to the space M;(2) of all positive Borel measures on
) which do not charge any set of capacity zero.

The main result concerning relaxed Dirichlet problems is the following compactness
theorem (see [6], Theorem 4.14): for every sequence {23} of open subsets of ) there exist
a subsequence, still denoted by {04}, and a measure u € My(Q), such that for every
f € H™1(Q) the solutions u; of the Dirichlet problems

{Luh:f in 4,

(0:2) up =0 on 08y,

extended to 0 on \Q, converge in L?*(Q2) to the unique solution u of (0.1). Moreover,
the following density theorem holds (see [6], Theorem 4.16): for every u € My(Q) there
exists a sequence {{};} of open subsets of ) such that for every f € H~1(Q) the solution
u of (0.1) is the limit in L*() of the sequence {us} of the solutions of (0.2). The proof
of this density theorem provides an explicit approximation only when g is the Lebesgue
measure, while it is rather indirect in the other cases, and does not suggest any efficient
method for the construction of the sets .

The aim of this paper is to present an explicit approximation scheme for the relaxed
Dirichlet problems (0.1) by means of sequences of classical Dirichlet problems of the form
(0.2). We assume that g € My(Q) is a Radon measure. The sets {3, will be obtained
by removing an array of small balls from the set (3. The geometric construction is quite
simple. For every h € N we fix a partition {Q%}; of R® composed of cubes with side
1/h, and we consider the set I, of all indices ¢ such that Q% CC Q. For every 1 € I, let
B} be the ball with the same center as Q3 and radius 1/2h, and let E{ be another ball

with the same center such that
cap”(E}, By) = u(Q},) -

Finally, let Ep = UieIh Ei and Qp = Q\E,. Note that the size of the hole E} contained

in the cube Q% depends only on the operator L and on the value of the measure pon Q.
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By using a very general version of the Poincaré inequality proved by P. Zamboni [15],
we shall show that, if p belongs to the Kato space K ({2), i.e., the potential generated
by p is continuous, then the method introduced by D. Cioranescu and F. Murat [4] can
be applied, so that for every f € H~'(Q) the solutions u; of the Dirichlet problems (0.2)
converge in L?(£)) to the solution u of the relaxed Dirichlet problem (0.1). To prove that
the same result holds also when p is an arbitrary Radon measure of the class M(Q) we
use the method of p-capacities introduced in [6] and [3].

Finally, if 4 is a Radon measure and g ¢ M(Q), then we prove that our construction

leads to the approximation of the solutions of the relaxed Dirichlet problem

Lu 4+ pou = f in Q,
=20 on 012,

where p is the greatest measure of the class M(2) which is less than or equal to p.
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constructive approximation methods for relaxed Dirichlet problems. We are also indebted

to Raul Serapioni, who drew our attention to the Poincaré inequality proved in [15].

1. Notation and preliminaries

Let {2 be a bounded open subset of R”, n > 2. We shall denote by H*(2) and H}(f)
the usual Sobolev spaces, by H~!(}) the dual space of H}(Q), by Lr(Q),1<p< o0
the usual Lebesgue space with respect to the measure p; if p is the Lebesgue measure, we
shall use the notation LP(2).

For every subset E of {1 the (harmonic) capacity of F with respect to § is defined
by

inf/ |Vul? de
Q

where the infimum is taken over all functions v € H}(2) such that u > 1 a.e. in a neigh-
bourhood of E. We say that a property P(z), depending on a point z € 2, holds quasi
everywhere (q.e.) in  if there exists a set E C ), with cap(F,{) = 0, such that P holds
in Q\E. It is well known that every v € H'(Q) admits a quasi-continuous repfesentative,
which is uniquely defined up to a set of capacity zero (see, e.g., [16], Theorem 3.1.4). In

the sequel we shall always identify u with its quasi-continuous representative.
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By a Borel measure on {? we mean a positive, countably additive set function with
values in R defined on the o-field of all Borel subsets of ; by a Radon measure on ) we
mean a Borel measure which is finite on every compact subset of . Finally, by M(92)
we denote the set of all positive Borel measures 1 on ) such that p(E) = 0 for every
Borel set £ C Q with cap(E,Q) = 0. If x4 is a Borel measure and E is a Borel subset
of 1, the Borel measure ul_ E is defined by (ul_ E)(B) = p(E N B) for every Borel
set B C 1. If p, v are Radon measures and v has a density f with respect to p, we
shall write v = fu. For every F C ) we denote by cop the measure of the class My(£2)
defined by

(11) cos(B) = {

We shall see later that these measures are used to express the classical Dirichlet prob-
lems (0.2) in the form (0.1). This will allow us to treat problems (0.1) and (0.2) in a

unified way.

0, if cap(BN E,N) =0,

400, otherwise.

Another class of measures we are interested in is the Kato space.

Definition 1.1 The Kato space K () is the cone of all positive Radon measures p
on ) such that

lim sup / Gn(y —z)dp(y) =0,
QNB.(z)

where G, is the fundamental solution of the Laplace operator —A in R™, and B, (z)

denotes the open ball with center z and radius r.

For every p € K;F(Q) and for every Borel set 4 C Q we define

= ~z[*"d if n>3
il et gy 223[4 ly—=[""duly), ifn=3,
diam (4) .
”'LL“K:'(A) = :25[1103 (W) du(y) + /J(A), - i n= 2.
For every p € K (Q) it is easy to see that H/LHK:r(Q) < +o0 and “,LLHK:(A) tends to

zero as diam(A) tends to zero. We recall that every measure in K;F(2) is bounded and
belongs to H~'(2). For more details about this subject we refer to [1], [6], [9], [14]. We

shall use in the following a Poincaré inequality involving Kato measures.

Lemma 1.2 Let A be a Borel subset of a ball B = Br(z) such that diam(4) > q¢ R
for some q € (0,1), and let . € K;'(A). Then there exists a positive constant c, depending

only on q and on the dimension n of the space, such that

2dp < / Vu|*d
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for every v € H}(Bpg).

Proof. An inequality of this kind was proved by P. Zamboni in the case n > 3, 4 = Bp,
and p absolutely continuous with respect to the Lebesgue measure. The same arguments
can be adapted, up to minor modifications, also to the general case. The main change in

the case n = 2 is the use of the inequality

iam(A
/ —————1——————dy <e¢q (log (M_)) +1) Vz,z € A,
Br |z —yllz — ] |z — 2|

which can be proved by direct computation. O
Finally we need a sort of dominated convergence theorem for measures in H ! Q).

Lemma 1.3 Let {un} be a sequence of positive measures belonging to H~Y()) that
converges to 0 in the weak™ topology of measures and suppose that there exists u €

H™Y(Q) such that pj < p. Then the sequence {us} converges to 0 strongly in H™1(Q).

Proof. This result could be obtained easily by using the strong compactness of the order
intervals in H~'(Q2). However, we give here a self-contained elementary proof. Let us
define vy = p — pp. Clearly “VhHH-1(Q) < ||;LHH_1(Q) and so, up to a subsequence,
{vn} converges to p weakly in H~?(Q). The previous inequality, together with the lower

semicontinuity of the norm, implies that ||v]] . converges to ||u| . This shows

Q) )
that {v} converges to u strongly in H~*(Q) and concludes the proof of the lemma.

O

Let L: H}(2) — H~*(Q) be a linear elliptic operator in divergence form
Lu = —div(4Vu),

where A = A(z) = (a;j(z)) is a symmetric n x n matrix of bounded measurable functions
satisfying, for a suitable constant @ > 0, the ellipticity condition

n

alé? < Y aij(z)&ié <ot )

i,j=1

fora.e. z in Q, and for every ¢ € R™.

A set function capﬁ’ can be associated with every measure p in the class My(£2).

Definition 1.4 Let u € Mq(Q). For every open set A C 0 and for every Borel set E C
A we define the p-capacity of E in A corresponding to the operator L as

capﬁ(E’,A):min{(Lu,u)-{—/Euzdﬂ:u—lEH&(A)},
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where (:,-) is the duality pairing between H () and H}(0Q).

The p-capacity corresponding to L = —A will be denoted by cap,,, while the p-ca-
pacity with respect to g = coq will be denoted by cap’. The latter coincides with the
classical capacity relative to the operator L according to the definition of [13] and [12].
If L =—-A and g = o0q, then capﬁ‘ coincides with the harmonic capacity introduced at
the beginning of this section. If 1 = cop for some F C 2, and L is any elliptic operator,
then capﬁ(E,A) = capY(E N F, 4) for every EC A.

Some of the properties of caplfj are stated in the following proposition.

Proposition 1.5 Let p € My(Q), A, B open subsets of Q and E, F subsets of A.
Then
(i) capl(D,4) = 0;
(i) ECF = capL(E,4) < capl(F, A);
(iii) capf;(E UF,4) < cap{;(E,A) + capfj(F, A);
(iv)] AC B = capL(E, A) > capL(E, B);
(v) acap,(E,4) < cap{j(E,A) <at cap,(E,A) < alcap(E, 4);
(vi) if {En} is an increasing sequence of subsets of A and E = U, Ey, then capZ(E, A) =
supy, ca,pI/;(Eh,A).

Proof. See [6], Proposition 3.11, Theorem 3.10 and [5], Theorem 2.9. o
Now we introduce the notion of relaxed Dirichlet problems.

Definition 1.6 Given p € Mo(Q) and f € H~!(Q), we say that a function u is a

solution of the relazed Dirichlet problem

(1.2) {Lu—{—uu:f in Q,

u=0 on 012,
if we Hj(Q)NL2(9) and
(o) + [ wvda=th,0)
Q
for every v € Hj(Q) N L%(Q2).

We recall that for every f € H~'({2) there exists a unique solution u of problem (1.2)

(see [6], Theorem 2.4). It is easy to see that, if E is a closed set, then u is a solution of

Lu+oopu=Ff in,
u=20 on 092,




if and only if v = 0 q.e. in EN{ and Uy is a weak solution of the the classical boundary

value problem
Lu=f in Q\E,

Definition 1.7 A sequence {us} in Mo(Q2) vZ-converges to u € M,(Q) if, for ev-
ery f € H71(Q), the sequence {u} of the solutions of the problems

Lup +prup=f in Q,
up =0 on 01},

converges strongly in L?(2) to the solution u of the problem

{Lu—i—,uu:f in Q,
u=20 on 0f).

With every p € My(2) we associate the lower semicontinuous quadratic functional

on H}(Q) defined by

F,(u) = (Lu,u) + L u? du.

The following theorem shows the connection between 4% -convergence of the mea-

sures p1p, and I'-convergence of the corresponding functionals F, .

Theorem 1.8 A sequence {up} in My(Q2) vL-converges to the measure p € Mo (), if
and only if the following conditions are satisfied for every u € H}(Q):
(a) for every sequence {u,} in H}(Q) converging to u in L?(f)

Fu(u) < lilfninf Fuo(un);
(b) there exists a sequence {us} in H}(Q) converging to u in L?() such that

Fu(u) = hh—{%o Fy(un).

Proof. See [2], Proposition 2.9. |

Our definition of v~ -convergence coincides with the definition considered in [5]. As
shown in [2], Proposition 2.8, if properties (a) and (b) hold on , then they also hold for
every open set ) C 2. Conversely, if (a) and (b) hold for every open set Q' CC €, then

they hold on Q. So our definition of v -convergence differs from the definition given in [3]
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only in the fact that now the ambient space is Q instead of R®. When [ = —A, our

definition coincides with the definition given in [6].

Remark 1.9 Let {A4} and {un} be two sequences in M(0) which v~ -converge to A
and u, respectively. If Aj < pj, for every h, by Theorem 1.8 we have Jou?dd < [ u?du

for every v € Hj(Q). In particular, if p is a Radon measure, then ) < L.
We briefly recall some properties of the 4% -convergence of measures in My (£2).

Theorem 1.10 For every sequence {uy} in My(Q) there exists a subsequence {pn,}

which % -converges to a measure p in Mo(2).

Proof. The proof for the case L = —A, can be found in [7], Theorem 4.14. The proof

in the general case is similar. O

Theorem 1.11 Let {up} be a sequence in My(Q2) which v -converges to a measure 7’
in My(2). Then
capﬁ(A,B) < H}{ninf capfjh (4, B),

for every pair of open sets A, B, with A C B C ().
Proof. See [5], Proposition 5.7. o

We consider now a sufficient condition for the 4% -convergence of a seqiience of mea-
sures of the form {cog, }, where {E,} is a sequence of compact subsets of 2. In this case,

if Q5 = Q\ E;, the solution u, coincides with the solution of the classical problem

Lup=f in Qy,
up =0 on 01,

prolonged to zero outside .
Assume that {E,} satisfies the following hypotheses, studied by D. Cioranescu and

F. Murat: there exist a measure p € W~1°(Q), a sequence {w;} in H'(), and two
sequences of positive measures of H~1(Q), {v} and {)\;}, such that

wp — 1 weakly in H'(Q),

wy, =0 g.e. in Ey,
Lwp =vp — Ay,
vy — p strongly in H71(Q),
Ap — weakly in H™(Q),

and (A,v) = 0 for every h € N and for every v € H}(Q), with v =0 q.e. in Ej.
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Under these hypotheses the sequence {up} converges weakly in H}(f) to the weak

solution u of the problem
{ Lu4+pu=f in(Q,
u=20 on O}

(see [4], Théoréme 1.2). Later, H. Kacimi and F. Murat pointed out that the hypothesis p €
W=1°(Q) can be replaced by p € H7*() (see [10], Rémarque 2.4). In conclusion, using
the language introduced in Definition 1.7, the following theorem holds.

Theorem 1.12 If {E} satisfies the hypotheses considered above, with p € H™1(Q),

then the sequence of measures {cog, } v -converges to the measure .

2. The mailn results

In this section we prove that for every Radon measure g € M(2) the general approxi-
mation rule outlined in the introduction provides a sequence of measures of the form {cog, }
which L -converges to u according to Definition 1.7.

To deal with the case p € K7(2), we need the following lemmas.

Lemma 2.1 Let U and V be open subsets of Q, with V CC U CC Q, and let w be

the L-capacitary potential of V with respect to U, i.e., the unique solution of

w e HH(U), w>1g.e onV,
(Lw,v —w) >0, Vve H(U),v>1gqe onV.

Let us extend w to 0 by setting w =0 on Q\U. Then w € H{(Q}) and w =1 q.e. on V.
Moreover there exist two positive Radon measures v and v belonging to H™(§) such
that supp~y C 8V, suppv C 8U, Lw = ¥ —v in Q, and v(Q) = 4(Q) = cap®(V,U).

We call v (resp. v) the inner (resp. outer) L-capacitary distribution of V' with respect
to U.

Proof of Lemma 2.1. It is well known (see [13], Section 3) that there exists a positive
Radon measure v € H™*(U), with suppy C 8V, such that Lw = v in Q and v(Q) =
cap”(V,U). Let us consider now the following obstacle problem

z € H}(Q), z >0 q.e. in Q\U,
(Lz+v,v—2)>0 Yve H(Q),v >0 qe. in Q\U.

It is well known that there exists a unique solution z of this problem, that z is a supersolu-
tion of L+7,ie., Lz+4v =v > 0 for some positive measure v € H (), and that z < ¢
for every supersolution { € H*(Q) of L+~ with ( > 0 q.e. in Q\U (see [11], Section II.6).
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Since 7 is a positive measure, 0 is a supersolution of L + v. Consequently z < 0 q.e.
in 0. As z > 0 gee. in Q\U, we conclude that z = 0 q.e. in Q\U, hence z € H}(U).
On the other hand Lz++ =01in U. As Lw =4 on U, by uniqueness we can conclude
that z = —w in U, hence in 2. This implies Lw =y —v in Q. As Lw —~v =0in U
and in Q\U we conclude that suppr C 8U. Since Lw = v —v in {2, we have

/AVw-chd:n:/god'y—/gadv Ve € Hy(Q).
Q Q Q

Let 1 be a cut-off function of class C§°(Q2) such that ¥(z) = 1 in U. Choosing ¢ =

P(w — 1) as test function we obtain

/QAVw-szﬁd:c—f—AAVw-ng(w—l)dw:/Q”gb(w—l)d'y—f—/ﬂib(l——w)dz/

and, using the fact that w = 1 v-ae. in @ and ¥ (1 —w) = 1 qe. on suppv, we
obtain [y, AVw - Vwdz = v(Q). As v(Q) = cap(V,U) = fo AVw - Vwdz, we conclude
that v(Q) = v(Q) = cap?(V,U). )

Let us fix 2° € Q. For every p > 0 let B, = B,(2) and let Q, be the open cube
{zeR™ —p<a, -2} <pfork=1,...,n}. 0<p<rand B, CC Q, let w? be
the L-capacitary potential of B, with respect to B, and let vf be the corresponding

outer L-capacitary distribution.

Lemma 2.2 For every ¢ € (0,1) there exists a constant ¢ = ¢(g,,n), independent of
the operator L, such that, if B, CC Q and 0 < p < gqr, then

1 1

S - dvf < e dugr
vE(0B,) /;Br o= (8B, /w, o
for every ¢ € H'(Q,) with ¢ >0 q.e. in Q,.

Proof. Let us fix ¢, p, 7, ¢ as required, and let u € H}(Q) be a function whose

restriction to B, is a solution of the Dirichlet problem

Lu=20 in B,

We may assume that u = ¢ q.e. on the annulus Bg\ B, for some R > r, so that u = 7
q.e. on Bg\B,. By De Giorgi’s theorem, we have u € C°(B,). For every s € (0,7) we

want to prove that

5 . 5 .
2.1 — | wdyr=—t v’
(2.1) 72082 Jon, " T V(8B Jop, ¢




where «; is the inner L-capacitary distribution associated with w?. Using the symmetry

of the operator L, we get

0:/ AVu-Vwidm:/AVwﬁ-Vudm:
B, Q

:/ud'yﬁ——/udV::/ ud'y:-—/ edvt.
Q Q 8B, 8B,

Since v{(8B,) = capl(B,, B,) = v5(8B,), we obtain (2.1).
Now we remark that, by the maximum principle, © > 0 on B,.. On the other hand,
by Harnack’s inequality,

supu < ¢ inf u,
Byr Bgr

where the constant ¢ depends only on n, g, o, (see [13], Theorem 8.1). If we apply (2.1)

with s = p and s = ¢qr, we obtain

1 / 1
N TET-R sodvfz——-—~/ udyy < supu <
vr(0B;) 8B, 77(8B,) 8B, B

gr

1 1
SCinf’lLSC*—:F—-‘—/i ud’yg":c——,,—————/ SDCZV?‘T
By v+ (0Bqr) 8Bgr vi (8B:) Jog, ,
and the lemma is proved. |

For every 0 < p < r, with B, CC @, let M?:H*(Q,) — R be the linear function
defined by

1
2.2 Py = et dv?
( ) MT' u Vﬁ(aBr) aBr u V'r‘?

where v/ is the outer L-capacitary distribution of B, with respect to B,.

Lemma 2.3 For every ¢ € (0,1) there exists a constant ¢ = c(gq,a,n) such that,
if Q@ CC$ and 0 < p < qr, then

[ — ML | Ser||Vul

L*(Q,) L¥Q.)’

for every u € H*(Q,).

Proof. Let usfix ¢, p, r as required. It is not restrictive to assume z° = 0. Let Q = O,
and B = B;. Let us consider the operator L, defined by Lru = —div (4, Vu), where
Ar(y) = A(ry). It is easy to check that, if w’(z) is the L-capacitary potential of B,
with respect to B,, then v?(y) = w’(ry) is the L,-capacitary potential of B,/ with
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respect to B. By Lemma 2.1 we can write L.vf = X — u?, with supp Ar C 8B,
and suppuf C 0B. We want to prove that for every u € H(Q,) we have

(2.3) / wdv? = "2 / up dpl,
8B, 8B

where u,(y) = u(ry). Let us fix v € H'(Q,) and let ¢ € C(Q) be a cut-off function
such that ¢ =1 on 0B, and ¢ =0 on B,. If ¥.(y) = ¥(ry), then

/ udufz/ u1/)dvf:——/ AVw?! - V(u)de =
8B, 8B, B,

== [ 4 Vo Vi) dy =0 [ urast =t [ wa,
B , 8B oB

which proves (2.3). Taking u = 1 we get v£(8B,) = r"~2 u2(8B), so that the previous
equality gives

1 1
2.4 _ [ rduf
(2:4) 2(8B,) /;B,"‘d”r J2(3B) /;B” it

for every uw € H'(Q,). Finally, we recall that, if P is a projection from H'(Q) into R,
then the following Poincarii inequality holds for every u in H HQ):

lu~ P,

o <817,

HI(Q))' “VU'HLZ(Q) 9
where (HI(Q)), is the dual space of H!(Q) and the constant 8 depends only on the
dimension n of the space (see [16], Theorem 4.2.1). Applying this result to

1
Plu) = p
) pr(0B) /aBudu,,,

and using (2.4), we obtain

e = MEwl?, =1 L (ur = Pf(ur))® dy <
1 2
. < 2. .n - P , \V4 r2d —

— g2 (rgﬁ) uﬂfn(Hl(Q)),)z /Q 9ufd.

. . 1 . .
It remains to estimate T(68) 2] (2'@) " By Lemma 2.2, applied to L,, we obtain

L C¢—rrors

1
< e¢—F wldpl”
#3‘ (BB) 5B l !

/'1‘7 E'E f
dlL[’T‘
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for every ¢ € H'(Q), so that

5571920 oy < & i I
pf(0B) "l (aa@) = C um @By " (@)

(2.6)
By Proposition 1.5(v) and by Lemma 2.1 we have

(27) pT'(0B) = cap™ (B, B) > acap(By, B).

Let ¢ € C§°(R™) be a cut-off function such that ( =1 on 8B, ( =0 on B,,0<¢<1

on B, and |[V(| < ¢; = 2/(1 — q) on B. Then, using again Proposition 1.5(v), for
every ¢ € H'(Q) we obtain

/ o dul = / oCdud = — / A, VoI™ - V(p() dy <
Q 8B B

(2.8)
< a7 (cap (B, B Il g < oo (can(Bir B)” gl
From (2.6), (2.7), (2.8) we obtain
1
718 gy < Mo,
which, together with (2.5), concludes the proof of the lemma. o

For every 7 > 0 let Q, be the cube {zeR™ —r<z,—z)<rfork=1,...,n},so
that @, is the interior of QT.

Lemma 2.4 Let p be a measure of K (Q). For every r > 0, with Q, CC Q,
let p = p(r) € (0,) be the radius such that cap®(B,,B,) = u(Q,), and let M, = M,
where M) is the average defined in (2.2). Then there exists a function w,: R, — R,
with lim w,(r) = 0, such that

0

(29) o= Ml y ) S u) [Vl

for every w € H'(Q).

Proof. First of all we prove that for every g € (0,1) there exists 7, > 0 such that p(r) <
gr for r < r,. We consider only the case n > 3; the case n = 2 is analogous. Since p is

a Kato measure, for every » > 0 we have

uONB) " < [y e dugy) <),
QNB,
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where 7 is an increasing function with lim+ Y(r) = 0. If p = p(r) > gr, then, recalling

r—0

that cap(Bgr, B;) = ¢,7™ 2, and using Proposition 1.5(v), we obtain
acgr™? < acap(B,, B;) < ca,pL(Bp,Br) = ,u(Qr).

So we can write ac,r""? < /.L(Qr) <@ N By,) < Brip(nr)r"=2. Choosing rq such
that ¥(nry) < acy/Bn, we obtain a contradiction for » < r,. Therefore, there exists T >
0, with Q,, CC 2, such that p(r) < gr for every » < r,. Since cg — +o0 as ¢ — 1, we
can choose 7¢ so that for every » > 0, with @, CC , there exists ¢ € (0,1), with » < 7.

Let us fix ¢ € (0,1). It is clearly enough to prove (2.9) for every r < rq. As p €
K1 (Q), by Lemma 1.2, there exists a constant ¢n > 0 such that, if @, CC Q, then

nr

2 2
(2.10) /Q el [ VuPd

for every u € H}(B,,).

Let us fix a bounded extension operator II: H!(Q;) — H}(Bn), and for every r > 0
let us define the extension operator I:HY(Q,) — H}(Bn:) by (Iru)(z) = (u,)(z/7),
where u,(y) = u(ry). It is easily seen that the boundedness of II implies the existence of

a constant &k, > 0 such that
1
(2.11) / |V (1L, ’U)l2 dz < k, </ [Vo|? dz + ~ v2 dm)
B, , ™ Jo.

for every v € H'(Q,). Note that, if v € H'(Q) and Q, CC Q, then v = II,. v q.e. on Q,,
since both functions are quasi continuous and coincide on Q.. Using (2.10) and (2.11), for

every u € H'(Q) we obtain
, K @0 Jp

1
< cpkn []/L][K+(Qr) (/Q |Vu|? de + = /Q (w — My u)? dm) .

As r <7y, we have p = p(r) < gr, so that Lemma 2.3 implies that

1

r2

(v — M, u)2 de < ¢? / |Vu|? de,
QT T

hence

| =M du < enka 04 )l [ 1vaas,

r
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for every 7 <7, and for every v € H*(Q2). Since ||,LLHK+(Q ) tends to zero as r tends to

zero, the statement is proved. O

We are now in a position to prove our result for Kato measures. Let {Q}};cz. be the

partition of R"™ composed of the cubes

Q}z _—_{a; e R"™: ik/hga’:k <(ik +1)/h fork:1,...,n}.

Theorem 2.5 Let p € K7(Q). Let Iy be the set of all indices i such that Qi cC (.
For every i € I, let B} be the ball with the same center as Q% and radius 1/2hk, and
let Ei be another ball with the same center such that

cap”(Ej, By,) = w(Q},) -

Define Ej, = UieIh E:. Then the measures oop, 7E-converge to p as h — 0.

Proof. Let vi be the L-capacitary potential of E;Z with respect to B};, extended to 0
on {2, and let wi =1 — vi. By Lemma 2.1, we obtain Lwi = vi — Al in Q, with vi,
ALe H7H(Q), vi >0, X} >0, suppvy C BL, supp Ay C HE:, and

(212) vi(@4) = X,(Q}) = cap™ (S, BY) = w(@})

Let us define wj, € H'(§) as

(2.13) 0 inEl,

1 elsewhere

i opi i
w  in Bh\Em
wp =

and the measures v; and ), as
(2.14) vy = Z vi, Ap = Z AL
1€l €1
We want to prove that all hypotheses of Theorem 1.12 hold for wj and vy .

First of all, we prove that wj converges weakly to 1in H*({2). Since, by the maximum
principle, 0 < wp, <1 in 2, we have that {wj} is bounded in L?(R2). On the other hand,

o /Q Vui2de < 3 caph (B}, Bl = 3 w(Q)) < w(®).
=3 i€l

Thus {wy} is bounded in H'() so that there exist a subsequence (still denoted {w;})
and a function w € H'(Q), such that {w;} converges to w weakly in H'(Q), and hence
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strongly in L2%(2). We are going to show that w =1 a.e. in {1, using the arguments of
D. Cioranescu and F. Murat (see [4], Théoréme 2.2). Let us consider the family {C} };czn
of all open balls with radius (y/7 —1)/2h and centers in the vertices i/h of the cubes QL.
In these balls we have wp = 1. Therefore, if we define C; as the union of the balls C’,il
contained in {2, we have wi Xx., = Xc, > where x, is the characteristic function of C}.
Since {X,, } converges to a positive constant in the weak” topology of L*°(1), passing to
the limit in the equality wsXx,, = Xxc, We obtain w = 1 a.e. in {}.

It remains to prove that the measures v), defined in (2.14) converge to u in the strong
topology of H~1(Q). Indeed, since w;, converges to 1 weakly in H'(£2), this implies also
that A, converges weakly to p in H™'(Q).

For every h € N we introduce the polyrectangle P, = Uz‘EI,, Q% and we define S, =
2\ Pj. Moreover, for every ¢ € H} (1), we consider the function

Yp = Z (M;L ‘P) XQ27

i€y

where, according to (2.2),

. 1 .
My = ——F—< / wdvy,
YT Vi(8BY) Jepy T "

and we define €5, = ||ul_Sh]| ol Note that {e} tends to zero by Lemma1.3. Recalling

that u(Q%) = vi(8B}) and using the Poincarfi inequality (2.9), we have that,

(vh, ) — (1, 0)| = / ¢ dv} /‘Pd# fsodus
< = aB oBi " ; Sh
, 1/2
< [ o enldu Isoldué<u(ﬂ) | te=en d#) Sl gy 1910 gy =
Ph Sh Ph o
1/2
( u® 3l hsoHLzQJ el g ) <

1/2
< (/L(Q)Ew(l/h) Iv soni(Qh)) enllel gy < (@M RO +en) el 4y o)

el

Thus we obtain

o = 1l s gy S B 20(1/R) + e,

hence {3} converges to p strongly in H~!(Q). Therefore {oop,} v -converges to u by
Theorem 1.12. o
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In order to generalize this result to every Radon measure we need the following results.

Proposition 2.6 For every Radon measure u € My(Q) there exist a measure v €

K;7(f)) and a positive Borel function g:Q — [0,+oco] such that p=gv.

Proof. See [2], Proposition 2.5. O

Proposition 2.7 Let A € My(Q), let p be a Radon measurein My(§1); for every =z €

let
— Bmin capI/\J(Br(:z:),Bgr(:n))
fla) = lnipt = B.(2))

Assume that f is bounded. Then ) is a Radon measure and we have A = f .

Proof. See [3], Theorem 2.3. o

Proposition 2.8 Let u be a positive Radon measure on 1. Then there exists a unique
pair (py,p1) of Radon measures on ) such that:
(i) v=po+p;
(i) po € Mo(Q);
(iii) p1 = pl_ N, for some Borel set N with cap(N,Q) = 0.
Proof. See [8], Lemma 2.1. o

We are now in a position to prove our main result in its most general form.

Theorem 2.9 Let p be a positive Radon measure on Q. Let {Q}} and {E,} be defined
as in Theorem 2.5. Then the following results hold:

(i) if p belongs to My(f), then {cog,} 7*-converges to p;

(ii) if p = po + p1, with py and p; as in Proposition 2.8, then {cog,} ¥ -converges

to pg.

Proof. If u is a Radon measurein M;(}), then, by Proposition 2.6, u = gv, where v €
K(Q) and g is a positive Borel function. By Theorem 1.8, there exists a subsequence,
still denoted by {E}, and a measure A € M(9), such that {cog,} 7% -converges to A.
Let z € Q and let » > 0 such that B.(z) C 2. We want to prove that for every Borel
set £ C By,

(2.15) capy (E, Bar(2)) < p(E).

If A and A' are two open sets such that 4’ CC A C By,.(z) and A is small enough we

have

Uy @ic4,

BinA'#0
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hence, by Theorem 1.5,

cap?(E, N A', By,(z)) < Z capl(E}, Bar(z)) <

E;;nA'#O
< > (BB = Y w(@i) < u(A)
EinA'#0 E;ndA'#0

Using Theorem 1.11 we obtain,
cap¥ (4, Ba(z)) < lii{ninf capZ(E, N A, Bar(z)) < p(4)

and, as A' A, we obtain cap%(4, Bs(z)) < u(A4) for every open set A C Ba.(z) (see
Theorem 1.5(vi)). Since g is a Radon measure, this inequality can be easily extended
to all Borel subsets of By,(z). So (2.15) is proved. Choosing E = B.(z) in (2.15) and
applying Proposition 2.7, we obtain that A is a Radon measure and that A < u.

Define, for k& € N, the measures pf = gFv, where g*(z) = min(g(z), k). As p* €
K} (), by Theorem 2.5 for every k there exists a sequence {Ej 1} such that {oog, , }u
~L-converges to p¥. Since p* < p, the construction of Theorem 2.5 implies that Ejj, C
E) for every h and k. By Remark 1.9 this implies A > p* for every k, hence A > p.
As the opposite inequality has already been proved, we obtain A = y. Since the L -limit
does not depend on the subsequence, the whole sequence {cog, } ~¥-converges to p.

Let now p be any Radon measure on §). By Proposition 2.8, we can write p = po—+ 41,
with gy € My(Q) and p; = pl_ N, where N is a Borel set with cap(V,{2) = 0. Arguing
as before, let A be the 4% -limit of a subsequence of {cop,}. If z €  and r > 0 is such
that Byn(z) C Q, we have |

capX(Br(2), Bzr(2)) = capX(Br(z)\N, Bar(2)),

since cap(N,Ba.(z)) = 0 (see Proposition 1.5). Therefore (2.15), applied with E =
B.(z)\ N, gives

capy (Br(@), Bar(2)) < p(Br(2)\N) = po(Br(2)).

By applying again Proposition 2.7 we obtain A < po.

Since po is a Radon measure of My(Q), by the first part of this theorem we can
construct the holes Ey j such that {cog,,} 7~-converges to pg. Since p(Q1) = 10(QL),
we have Ey , C E, hence, by Remark 1.9, A > po. As the opposite inequality has already
been proved, we obtain A = po. As before, this implies that the whole sequence {cop, }

’yL -converges to pg. : O
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