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Preface

Inverse Compton (IC) emission may play an important role in producing high
energy photons in compact sources. Radiative models for radio quiet AGNs invoke
such effect as the main X-ray and «-ray production mechanism. In such models a low
frequency radiation field (soft photon input) is Comptonized by hot electrons. The
input photons are thermally emitted by nearby cold matter, possibly an accretion flow.
In AGNs there is evidence that the accretion flow takes place in disk fashion. Hot
electrons may form an active corona located above the surface of the disk. The presence
of a corona surrounding an accretion disk is suggested also in Galactic X-ray binaries.
In this kind of models, the source of soft photon is not homogeneously distributed
within the scattering medium, so that the first scattering event is highly anisotropic.
Many papers have been devoted to study Comptonization of low energy radiation in
hot plasma Nevertheless only recently the importance of anisotropic inverse Compton
process in AGNs has been emphasited. The total inverse Compton power emitted in
different directions depends on direction itself, and this has important consequences for
the fluorescent line emission observed in Seyfert galaxies and for the X-ray background

model.

If one assume a non thermal distribution of ultrarelativistic electrons, the photon
spectrum is essentially formed by a single scattering process, and the spectral shape is
not affected by anisotropy. At different viewing angles the emitted spectrum shows the
same power law shape, but with different luminosities. In thermal media the situation
is different, since even for low optical depths the spectrum is shaped by multiple scat-
terings. Being essentially the anisotropic IC an effect at the first order of scattering,

spectral distortions will be present in the low energy part of the Comptonized radiation
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field.

In this thesis I studied the problem of Comptonization in AGNs and galactic
sources, in a formal way. The thesis is divided into two distinct part: the first part
deals with observations and macrophysics, i.e. models which have Comptonization as a
main ingredient, while the second part is devoted to microphysics, i.e. a formal study
of multiple Compton scattering.

In Part 1 I review the basic observations that indicate the importance of IC emission
in Seyfert galaxies and black hole candidates. A brief description of a self consistent
thermal model (Haardt & Maraschi 1991, 1993) is given. Possible problems of thermal
plasmas in rapidly varying sources are outlined, and then I discuss a possible solution,
namely a "quasi”-thermal model (Ghisellini, Haardt & Fabian 1993) that can account
for the observed spectra.

In Part 2, the Boltzmann kinetik equation is solved iteratively for each scattering
order distribution, in the approximation of isotropic scattering in the laboratory frame.
This approximation is bcorrect if the electrons have random orientated momenta, and if
the photons do not show a preferntial direction. The spectral shape of the componized
spectrum is obtained by means of the full relativistic kernel, allowing to deal with
relativistic plasmas.

However, if the input photons are anisotropic, first scatterings should be treated
in a different way. I developed an approximated method to write an anisotropic kernel,
which is angle dependent with respect to an absolute reference system, e.g. the normal
to a plane parallel slab. As an example the calculations are then carried out for a simple
case, assuming Thoi’nson scattering and neglecting the electron recoil. The analytical
results are compared with Montecarlo simulations.

Part of the work of this thesis is based on the following published papers, while
most of the Part 2 will appear in a paper in progress:

Ghisellini G., Haardt F., Fabian A. C., 1993, MNRAS, 263, L9
Haardt F., 1993, AplJ, 413, 680



Haardt F., Maraschi L., 1991, ApJ, 380, L51
Haardt F., Maraschi L., 1993, ApJ, 413, 507
Haardt F., Matt G., 1993, MNRAS, 261, 346
Haardt F., Done C., Matt G., Fabian A. C., 1993, ApJ, 411, L95



Chapter 1

Motivation

The importance of Comptonization in Seyfert galazies and black hole candidates is
outlined. I briefly review recent observations which indicate multiple Inverse Compton
scattering as the main source of the high energy emission from non-blazar AGN, and
weakly magnetized X-ray binaries. The problems arising assuming a thermal electron

distribution are discussed, and a possible soution is outlined.

1.1 AGNs

1.1.1 Observation and Thermal Models

The origin of the X-ray emission from Seyfert galaxies and Quasarsis still unknown.
Successful models should satisfy three main observational constraints. The size of the X-
ray production region must be small due to the fast variability, with typical time scales
of hours (e.g. McHardy 1989). The observed spectrum in the medium X-ray range (2-20
keV) is close to a power law, with a small dispersion in the values of the spectral index,
whose average for Seyfert galaxies is ~ 0.7 £ 0.15 (Mushotzky 1984, Turner & Pounds
1989). Whatever produces the X-rays is close to cold reflecting matter, as inferred from
the presence of fluorescent Fe line emission and of a Compton reflection hump, which
has a broad maximum around =~ 30 keV (Nandra 1991, Williams et al. 1992). In

fact, after deconvolution of the latter component, the spectral index of the underlying



power law is revised to ~ 0.9 (Pounds et al. 1990). Two classes of models have been
proposed to explain the power law shape of the X-ray spectrum. One is based on the
production of very high energy primaries and strong reprocessing via electromagnetic
cascades leading to the formation of an e“e™ pair plasma (e.g. Zdziarski et al. 1990).
The second involves multiple Compton scattering (Comptonization) of soft photons on a
thermal population of hot electrons (e.g. Walter and Courvoisier 1992). In the first case
the derived X-ray spectrum essentially depends only on the ”compactness parameter”,
while in the second the temperature and optical depth of the scattering electrons are
usually assigned in a rather "ad hoc” way.

Recently, the OSSE instrument on the Compton Gamma Ray Observatory has
detected several Seyfert galaxies above 60 keV (Cameron et al. 1993). If fitted with a
power law, the derived energy spectral index is steep, with an average value of a = 1.7,
but the observations are also consistent with thermal models with temperatures around
50-100 keV. The spectra resemble those from Galactic black hole candidates spectra,
observed by OSSE and SIGMA, which show a thermal cutoff at high (~50-100 keV)
energies (see e.g. Sunyaev et al. 1991, Stella 1992).

The Seyfert 1.5 galaxy NGC 4151 was detected by the SIGMA instrument on
GRANAT in 1990 November, and the hard X-ray spectrum fitted by a power law of
energy index o = 2.1 above 40 keV (Jourdain et al. 1992). OSSE spectrum (almost
one year later) can be fitted with a broken power law, with indices & = 1.140.3 between
60 and 100 kev and a = 2.47(3 between 100 and 500 keV. (Maisack et al. 1993). Coppi
& Zdziarski (1992) have interpreted the SIGMA spectrum of NGC 4151 in terms of a
non-thermal pair plasma model, where the steep hard X-ray spectrum is ascribed to
both the effects of an intrinsic curvature in the primary spectrum of the non—thermal
pairs, and the presence of a reflection Comptbn component, contributing mostly around
30 keV (Lightman & White 1988, George & Fabian 1991). In a subsequent paper,
Zdziarski, Lightman & Maciolek (1993) have modified the non-thermal pair model for

NGC 4151 to account for the OSSE results. In this version, only a fraction of the power
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is injected in non-thermal particles, the remainder is released in a thermal component.

Altough the non-thermal pair model (for a review see Svensson 1992) predicts a
steepening of the hard X-ray spectrum, the break cannot be as sharp as the OSSE data
simply require. Furthermore, the non-thermal pair model predicts a flattening of the
spectrum at ~ 100 —200 keV, and the presence of a cospicuous annihilation line, neither
of which is observed.

The steep spectra observed by OSSE can instead be interpreted on the basis of a
thermal model, in which X-rays are due to multiple inverse Compton scatterings. In
these models a strong constraint is due to the requirement of pair equilibrium (pair
production balances annihilation and escape), which limits the possible temperature to
a narrow range, which is weakly dependent on the compactness of the source (Svensson
1984, Zdziarski 1985). By compactness we mean the parameter £ = Lor/(Rm.c?),
where or is the Thomson cross section and L/R is the luminosity to size ratio. The
resulting equilibrium temperature, for £ = 10-1000, is of the order of 50-100 keV, which
is tantalizingly close to the derived value from OSSE data.

The spectral shape produced by thermal plasmas depends upon the dominant ra-
diation mechanism. Haardt & Maraschi (1991, 1993) have proposed a specific thermal
model that naturally predicts a power law spectrum of index close to 0.8-1 below 40
keV and steepér above, by assuming that all the power is released in a hot corona above
a relatively cold accretion disk. About half of the radiation emitted by the corona im-
pinges onto the disk: the largest fraction of it is re-emitted as soft thermal radiation,
while ~ 10 per cent is Compton scattered to form the so-called Compton reflection
hump The photons reprocessed by the disk are then the seed photons which are ther-
mally Comptonized in the corona. Electron-positron pair production contributes to the
optical depth, and limits the minimum possible optical depth and maximum allowed
temperature.

The main result of the model is that the ratio between the Inverse Compton lumi-

nosity from the optically thin corona and the soft thermal luminosity from the underly-



ing opaque disk is fixed. This implies an almost constant Comptonization parameter of
the order of 1. In this calculation we have found, for 7 £ 0.5, y = (160% + 40)7 ~ 0.6.
The energy spectrum of the IC component, averaged over positive angles, when approx-
imated with a power law has, for a soft photon temperature of k7%, = 50 eV, a spectral
index o = 0.9+ 0.05, largely independent of the optical depth of the hot corona. This is
in close agreement with the average value found for Seyfert galaxies after deconvolution
of the reflection hump. For Ty, = 5 €V the spectrum of the IC component computed

with the same approximation is only slightly steeper, o = 1.0 4- 0.05.

For 7 ~ 1 the Comptonization parameter is sensibly lower and the spectrum is

steeper, @ X 1.2. Present observations argue against optically thick coronae.

A more detailed computation of the expected spectra for different viewing angles, as
appropriate for objects observed individually, and including the contribution of reflected
photons, yields a larger spread in the spectral shapes. In the X-ray band, the spectra
are flatter for smaller angles and higher soft photon energy. A reflection component is
always present, but in different proportion with respect to the Comptonized component
in the relevant energy range. These effects give rise to a diversity of predicted spectra
which can account for the observed spectral index distributions of both, Seyfert galaxies
and radio-quiet quasars, if the two classes have different kT}y,. In addition the thermal
photon peak can be identified with the so called ”soft excess” observed in several objects.
All these features make the model extremely attractive for a ”global” understanding of
the high frequency emission of radio-quiet AGNs. Of course further reprocessing and

absorption in external matter may add complexity to the observed spectra.

Finally it is interesting to note that, in the assumed geometry, the X-ray flux is
expected to be polarized. Detailed calculations can be found in Haardt & Matt (1992),
where it is shown that the degree of polarization is a strong function of the photon
energy and of the viewing angle. In principle, future X-ray polarization observations

can be used as a diagnostic for the two phase model.



10 MOTIVATION

1.1.2 Problems for Thermal Models: a possible solution

Thermal models have been previously criticized as the root cause of the high energy
spectrum of AGN, mainly because of the long thermalization time needed at high tem-
peratures. Observed X-ray variability timescales are often so short, indeed less than the
inferred 2-body thermalization timescales, that doubt is cast on the possibility that the
plasma can be described by a Maxwellian distribution. There are therefore significant

problems with both the thermal and non-thermal models for the hard X-ray spectra.

However in a recent paper (Ghisellini, Haardt & Fabian 1993) I gave reasons why
the emitting particle energies extend to low values, and calculate in a self consistent
way the expected spectrum. This is achieved by assuming a mechanism which re—
injects particles, once cold, at some given energy yymec®> (for an extended discussion
on reacceleration models, see Done, Ghisellini, & Fabian 1990, hereafter DGF, see also
Cavaliere 1982 and Svensson 1987). If v is initially large, particles emit y-rays which
in turn create pairs, which are then reaccelerated. Assuming that the injected power is
constant, the increased number of particles to be reaccelerated means that vy decreases.
Equilibrium is reached for 4y ~ a few, when pair creation balances annihilation so that
a constant number of particles is reaccelerated: the equilibrium value of «; is a few, and
onljr weakly dependent on the compactness. With this hypothesis the entire equilibrium
particle and photon distributions have been derived, which (as in completely thermal

plasmas) are functions only of the compactness of the source.

These results show what happeuns if acceleration/heating continues in the emission
region and involves all the particles present. Standard non—thermal models calculate the
spectrum resulting from a region in which only a small and constant number of particles
are accelerated and cool, despite the fact that pair production increases the total number
of particles present. Standard thermal m;)dels assume that all particles are heated and
maintained in a Maxwellian distribution at constant temperature (which depends on

the particle density), despite the rapid variations in luminosity that are observed. Our
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model lies between these extremes, since it responds to the varying particle density, and
allows the particles both to cool and to be non-Maxwellian.

Our model can accounts for the general observations of high energy emission of
compact sources. In this model the particle distribution (computed self consistently) is
basically non—thermal, but extends in energy up to only a few MeV. We followed the
treatment of DGF by assuming that throughout the source energetic pairs are injected
monoenergetically at some Lorentz factor 7y, at a rate corresponding to the compactness
Ly. Soft (UV) photons are injected at a rate corresponding to a compactness £, with
a blackbody spectrum of temperature ¥I5g. The injected particles cool by Compton
scattering, then join a thermal distribution at some temperature k7', and finally part
of them annihilate, while the remaining are reaccelerated back to 7y and reinjected.
We assumed that the plasma is pair dominated, i.e. that the pairs outnumber protons,
and that the plasma is in pair equilibrium, i.e. the rates for pair creation and pair

annihilation balance. Neglecting escape, the assumption of pair equilibrium gives 77 as

(e.g. Svensson 1987)

= (%ge)l/z (1.1)

where ¢ is the pair yield, i.e. the ratio of the luminosity in pair rest mass to the total
injected luminosity. The pair yield measures the efficiency of the source to convert the
injected power in pair rest mass.

We assumed that the reaccelerator operates on all particles, once cooled, on the
timescale ¢,. The reacceleration process takes particles of v ~ 1 and reinjects them at

~o, with a total power given by

N
L, = Vmecz('y() — 1)t—— (1.2)

T
where V is the volume of the source, assumed spherical, and N is the density of the cold

particles, i.e. N = 77/(ocrR). The reacceleration time was taken to be equal to t..;
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which in turn is calculated assuming cooling by Compton scattering and Coulomb col-
lisions. In other words, we required that the pairs can cool before being re—accelerated.
The above equations suffice to solve for the equilibrium values of 77 and 7y once the
pair yield, &, is known. The resulting scattering optical depth of the relativistic particles
was found to be equal to 71, making the total depth equal to twice 7.

DGF have calculated the pair yield as a function of 4y, and have interpolated the
numerical results with a simple analytical prescription, which was intended to described
the overall behaviour of £(£,7y) also for large «y. Based on their results (see their Fig.
1), we here introduce another simple prescription, modelled to better represents ¢ in

the range 1 < vy < 10

vo\® [\ Ly 0 > ¢
= 0. S — 1 — > £ .
¢ 001(10) (e) min (1,30> . > (1.3)

This is a crude approximation to the exact pair yield, but is sufficient for our scope,
since the dependence of the equilibrium 4y on ¢ is weak. Once we know vy and 77, we
derive the particle distribution assuming cooling by Compton scattering and by Coulomb
collisions. At low energies, the latter process establishes a Maxwellian distribution,
whose temperature is derived by balancing the heating due to Coulomb collisions of
relativistic particles with the cooling due to thermal Comptonization. We assume that
the relative contribution of thermal particles to the spectrum can be approximated
with (2/3)[exp(yar) — 1], where ya; = 4077(1 + 40)(1 + 7r). The factor 2/3 has been
introduced to match Monte Carlo results for yj; smaller than a few. In this way we
can find the equilibrium © which, in the cases studied here, is always greater than the
Compton temperature. This is because of the large energy exchange between relativistic
and thermal particles. In other words, Coulomb collisions between the two populations
of particles is a more efficient process than the heating due to the collisions of cold
particles with high energy photons. At high energies there is a tail of quasi power—

law shape, resulting from injection and cooling. This distribution is calculated by the
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continuity equation. In Fig. 1.a the main electrons parameters are shown (from top to
the bottom 7y, ©® and 77. In Fig. 1.b the electron distribution is shown for the case
£, = 100.

We have assumed £;/¢; = 2, and we have added to the primary spectrum a Comp-
ton reflection component due to cold matter intercepting half of the primary radiation,
as in the case of an illuminated cold disk. Note that the choice of £;/£; = 2 mimics the
case of a plane parallel corona model, in which all the power is released in the corona
above the disk (as in the model of Haardt & Maraschi 1991). Spectra are then computed
with a Montecarlo code.

The roll-off of the primary spectrum at energies greater than 100 keV (due to
the small vy), and the contribution of the ‘reflection’ component produces a break of
the spectrum at ~ 50 keV, with Aa ~ 1. The average shape of the spectrum below
the break depends only slightly on £, but depends on the ratio £, /¢,, with flatter o
increasing £5,/{,. Vice versa, the shape of the spectrum above 50 keV depends on £,
being steeper for larger £, because of the smaller ;.

We have shown that reacceleration of low energy pairs at a rate equal to their
cooling rate can yield a particle distribution extending in energy to a few MeV. It
consists of a Maxwellian at low energies, followed by a quasi-power-law tail at high
energies. Since the maximum energy is small, the overall photon spectrum produced by
multiple Compton scattering resembles spectra produced by thermal plasmas.

For hard to soft compactness ratios close to 2 the overall spectral energy index is
close to unity up to 100 keV, and steeper above. Addition of the Compton reflection
hump flattens the spectrum below 50 keV and steepens it above. The spectra shown in
Fig. 2 can explain both the existing observations of Seyfert galaxies in the 2-20 keV
band and the spectra recently observed by OSSE above 60 keV.

The reacceleration mechanism here proposed assumes that the plasma is pair dom-
inated. If ambient, 'normal’ plasma is also present, then the number density of reac-

celerated particles would be greater than in the case here studied. Consequently, the
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equilibrium vy would be smaller. The values given here can then be considered as the
maximum possible vy at a given compactness. In this sense, our results are very similar
to the classical results of completly thermal plasmas, where, for a given compactness,
there exists a maximum allowed temperature.

We have also assumed that the reacceleration mechanism operates on cool particles.
In the case of heating of hot particles, the resulting distribution is bound to peak at
the energy where heating and cooling balances. Again, if pair equilibrium is required,
this energy is small. The exact shape of that distribution depends on the details of the
energy exchange process among particles in the peak. However the photon spectrum is
very weakly dependent on the exact shape of the particle distribution, as long as the
maximum particle energy is small.

We have assumed that the Comptonization source, approximated with a sphere, is
surrounded by cold material giving rise to the Compton reflection component. This cold
material could also produce the flux of soft photons if the power is primarily released
in the hot plasma, as in the model of Haardt & Maraschi (1991, 1993). If the hot
component is above a cold disk, then one should also consider the effect of Compton
anisotropy, which here has been neglected for simplicity (see e.g. Ghisellini et al. 1991,
Haardt 1993). It would introduce a line—of-sight dependence of the spectrum and of the
total power, the disk receiving more power than the observer. Therefore the reflection
hump is increased with respect to the cases shown here, with minor modifications also
in the incident spectrum (Haardt & Maraschi 1993).

One of the main overall features of our study is that intense and repeated heat-
ing of a compact emission region results in a pair—rich particle distribution which in
turn yields a quasi-thermal emergent photon spectrum. The basic results obtained in
the thermal scenario (e.g. Sunyaev & Titarchuck 1980, Svensson 1984, Zdziarski 1985,
Haardt & Maraschi 1991, 1993) are not significantly altered if the Maxwellian prescrip-
tion i1s dropped. The use of a thermal electron distribution is then justified from a

computational point of view, keeping in mind that the temperature should be consid-
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ered as a measure of the mean energy of the actual electron distribution, rather than a

thermodynamical quantity.

1.2 GBH: CYGNUS X-1

Cyg X-1 is the brightest of the Galactic non—transient black hole candidates, and
its X-ray spectrum has been well studied (see e.g. the review by Liang & Nolan 1984).
It shows a hard power law in the 2-10 keV band, and excess emission at lower energies
which is thought to arise from thermal emission from the accretion flow. The high
energy cutoff in the spectrum at ~ 100 keV suggests a thermal energy distribution of
the X-ray emitting particles, leading to the widespread use of optically thick thermal
Comptonization models to describe the X-ray spectrum in this and other black hole
candidates.

If X-rays illuminate an optically thick accretion flow, as expected if it forms an
accretion disk, a Compton reflection spectrum is formed, whose signatures are a broad
hump, peaking between 10-100 keV, a strong Fe K edge, and an associated Fe Ka
emission line (Guilbert & Rees 1988; Lightman & White 1988). These spectral features
also provide a diagnostic of the ionization state of the material, as the photoelectric
opacity decreases with ionization, enhancing the low energy reflected flux (Lightman &
- White 1988), increasing the energy of the iron edge and line (e.g. Makishima 1986) and
changing the line equivalent width (Ross & Fabian 1993; Matt, Fabian & Ross 1993).

The characteristic spectral features of reflection have been clearly seen in both
Active Galactic Nuclei (AGN, e.g. Pounds et al. 1990; Matsuoka et al. 1990) and black
hole candidates (Tanaka 1991; Ebisawa 1991; Done et al. 1992). While this reinforces
the analogy between these two classes of objects (White, Fabian & Mushotzky 1984),
it also reveals some subtle differences. In AGN the Fe Ko emission line (generally with
an equivalent width, W,, of 100-200 eV: e.g. Nandra 1991) and reflected continuum

are in general consistent with that predicted from a flat, solar abundance, cold X-ray
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illuminated disk (George & Fabian 1991; Matt, Perola & Piro 1991). However, in Cyg
X~1 the iron edge energy implies that the material is significantly ionized, while the
(poorly determined) equivalent width of the line is about 50 eV, like in other Galactic
black hole systems (Ebisawa 1991; Done et al. 1992; Mitsuda 1992).

There are two ways to reduce W,. The first is by resonant absorption followed
by Auger de-excitation (Ross & Fabian 1993); this is an efficient way only for iron
between FeXVIII-FeXXIII, as Auger ionization is suppressed for highly ionized ions. If
the source is point-like, and the disk is “cold”, this range of ionization states is obtained
only in a small region of the disk (Matt et al. 1993). For typical temperatures in the
disk inner region in stellar mass black holes, such ionization states can be present over a
larger area, due to collisional ionization. However, an extended source is more effective
in reducing the line intensity, as here the ionizing flux is constant over large areas of
the disk. The second way is through Compton scattering. If the Comptonizing corona
extends over the disk, only part of the line photons will escape unscattered towards the
observer. The remainder is Compton scattered, leading to substantial broadening (e.g.
Podznayakov, Sobol & Sunyaev 1983), so that they would be lost under the continuum
in any present day X-ray detector. This again requires a covering factor of order unity,
suggesting the geometry of this Comptonizing region to be that of an extended corona
over the disk.

In such a physical picture the blackbody photons from the disk, the line and reflec-
tion continuum must all pass through the corona. This alters the theoretical predictions
for both the shape and normalization of the reprocessed components in a manner which
depends in particular on the Thomson depth of the corona, 7r. In order that any re-
flected features are detectable at all implies that »r <1. This is significantly smaller
that that predicted by fitting simple “Comptonization—only” models to the spectrum
of Cyg X-1, where 77 ~3 is typically found (e.g. Sunyaev & Titarchuk 1980). A corona
with that Thomson depth would smear out any reflected features into invisibility.

For archival EXOSAT GSPC data from Cyg X-1, the parameters Haardt et al.



(1993), in the framework of a plane parallel Comptonization model (Haardt 1993) ob-
tained are 7, ~ 0.3 and kT, ~ 150 keV. While the models were computed for a wide
range of parameter values, only certain solutions are physically self-consistent in terms
of balancing the heating and cooling processes. Remarkably, the best fit parameters
are consistent with those derived from equilibrium solutions. These coronal parameters
are also compatible with the high energy data, such as that observed by the SIGMA
and OSSE instruments, though the reported optical depth and electron temperature for
these data are very different. This apparent discrepancy is due to the common use of
optically thick plasma models (e.g. Sunyaev & Titarchuk 1980); if the source is in fact
optically thin, as suggested by the actual detection of the reflection component, the tem-

perature is underestimated by a factor of ~3, and so the optical depth is overestimated

by a factor 5-10.
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FIGURE CAPTIONS

Figure 1. Upper panel shows different electron parameters as a function on the
source compactness. The hard/soft ration is 2. The curves represent (from top to the
bottom) the maximum Lorentz factor (vy), the decreasing Maxwellian temperature (@)
and the increasing optical depth due to Maxwellian elctrons (7). The lower panel
shows the electron momentum distribution for the case £ = 100. Solid line is the total
ditribution, dashed line is the low temperature maxwellian, and dotted line is the cooled

power law.

Figure 2. Comptonization spectra computed with a Monte Carlo code, assuming
the particle distribution calculated as described in the text, for compactness values of
£, =10, 100 and 1000, and £; /£, = 2. The parameter for the three models are, in order
- of increasing compactness: 77 = 0.09, 0.23, 0.46; v, = 5.8, 3.4, 2.5; © = 0.42, 0.18,
0.06. To the direct Comptonization spectrum (dashed line), we have added a ‘Compton
reflection’ component, calculated assuming 2/27 = 1 and cold neutral matter with solar
abundance. The total resulting spectrum is shown as a solid line. For reference, we have
drawn a line of slope 0.7 between 2 and 10 keV, and a line of slope 1.7 between 60 and
300 keV.
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Chapter 2

Theory

The basic equations of Compton scattering are reviewed. The kinetik equation is
solved iteratively, by means of an isotropic kernel. I show ezamples of calculations for
two 1-D geometries, namely an homogeneous sphere, and a plane parallel slab. The
special case of Thomson scattering is discussed. The formalism is then developed for
treating anisotropic Inverse Compton emission, with particular emphasis to the thermal

case.

2.1 BASIC EQUATIONS

The theory of Compton scattering is well established, and a complete discussion
with astrophysical applications can be found for example in Pozdniakov, Sobol & Sun-
yaev (1983). A basic reference for an overview of the topic in an astrophysical context

is Rybicki & Lightman (1979).

Here we simply recall that the momentum x' = (hv'/c)§?' of a photon scattered by
an electron of momentum p = ym.V is changed into x = (hv/c)Q where

v o_ 1-4'B
v 1—p+ (hv'/ym.c?)(1 — cos )

(2.1)

Here 8 = v/c,v = v, p = Q- v/v, ¢/ = Q' - v/v, and the scattering angle
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o= cos—l(ﬂ - ).

If the photon is scattered by an eleétron at rest, its frequency changes because of
the recoil effect, and in general the electron gains energy. This is often referred as Direct
Compton effect. Otherwise, if the electron is moving at high speed, the Doppler effect
plays a dominant role, and the photon can gain energy. This effect is called Inverse
Compton. This is likely to be the main high energy photon production mechainism in

compact sources.

The differential cross section of this process can be written as

do 3o, w v\?2
— = — 2.2.
dQ  16my? (1 — pu/B)? <z/’) (2.2.0)
where \
! 1 1 1 1
w24 po(= )4 (==
w o w ww ww
w = yz(l — pf) (2.2.5)
w' =vz'(1 - u'B)
Here z = hv/m.c? and z’ = hv'/m.c? .
The total cross section is expressed by the Klein-Nishina formula:
3o, 2 2 1 4 1
= l1————]In(1+2 P iy Sra—v .
o(w) 8w {( w w2> a1 +2w) + 2 + w o 2(1 + 2w)? (2:3)

It is important to recall that the effective probability of scattering for a photon with a

beam of electrons moving at speed v is proportional to

o-ef[(w) = (1 - ,LL,B)O‘(’UJ) (2'4)

For example, the scattering probability for a photon moving parallel (z = 1) to an

ultrarelativistic electron beam, is ~ 0.

2.2 COMPTONIZATION SPECTRA
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2.2.1 General Outline

The term Comptonization generally indicates a process where multiple scatterings
play a major role in forming the resulting radiation spectrum. The evolution of the
photon occupation number in the phase space is described by the Boltzmann kinetik
equation. The Boltzmann equation may be expanded to second order if the fractional
energy transfer per scattering is small. This is the case for nonrelativistic electrons.
If the electron distribution is thermal, the resulting equation is known as Kompaneets

equation, reading:

on ® 9
2

T —5;[:34(71' +n + n?)] (2.5)

where ¢ = hv/mec?, n' = On/0x and @ = kT./m.c?. The quantity t. = (n.orc)t is
the time in units of mean scattering time. Note that the mean scattering time is the
light crossing time R/c divided by the scattering optical depth 7 = n.orR. A solution
to the Kompaneets equation has been obtained by Sunyaev & Titarchuk (1980) in the
diffusion approximation. The resulting analytical solutions are valid for ® < 0.3, and
for optical depth 7 = n.orR 2 3, where R is the size of the scattering medium. This
solution is of great irﬁportance, as it provides an anlytical description of Comptonization.
The Sunyaev & Titarchuk model is widely used in fitting the high energy spectrum
of galactic and extragalctic sources (refs.). However, as seen in §? the problem of
Comptonization in rarefied (7 < 1) hot plasmi is of main interest in astrophysics. Mild-
relativistic and relativistic IC scattering is thought to be responsible of the intense X—
ray and y-ray emission observed in GBHC and AGN. The lack of a suitable analytical
formulation in these situations led to an intense use of numerical simulations. An
analytical approach can be however carried out in rather generic situations, solving the
kinetik equation iteratively, i.e. computing the photon distribution within the medium
after each scattering event. Appropriate boundary conditions are then used to evaluate

the observed radiation spectrum.
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2.2.2 Iterative Solution

Consider a given initial photon distribution (z£2,r) a point in the photon phase
space, where z is the photon energy in adimensional units, §2 is a unit vector parallel

to the photon momentum, and r a point in an Euclidean reference system.

The distribution Ty is the 0-th order source function. It defines the seed photon
distribution in the phase space. Our task is to calculate the evolution of this distribution

due to electron scattering within a finite medium of volume V.

Photons created in r’ with momentum x can well suffer a scattering along the
straight flight toward the boundary of the medium before escaping. We are interested
in the number of photons of momentum x that are going to be scattered by an electron
located in r. The scattering probability can be easily computed, so that we can write

the 1-st order source function as:

Ti(zQ,r) = f cir'T()(:z:ﬂ,r')e_lrl~r| (2.6.a)
Vv

where the integral is performed over the source volume. Note that @ = (r —r')/|r — r'|.

The spatial coordinate is implicitly measured in units of n.o.

Of course a photon created in r’ has also a non zero probability to escape unscat-
tered from the medium. The Sy(x), i.e. the 0-th scattered observed spectrum, can be

written as

So(29) = T1 (292, R) (2.6.5)

It is now obvious that T} plays the same role than 7Tj, but with a main differ-
ence: now r becomes a point-source of “new” photons, whose moméntum distribution
is changed according to the scattering laws. The new momentum distribution can be
computed by means of a kernel Kp(zQ,2'?') = P[(z'?') — (z£)], describing the

probabability that the photon momentum changes from z'Q' to Q2 because scattering.
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Of course the kernel depends also on the electron momentum, albeit not explicity indi-
cated. As discussed in the next section, the electrons are generally assumed to have a
randomly oriented momentum. This kernel is then averaged over the (given) electron

energy distribution.

The scattered photons “created” in r’' again have a non zero probability to be
furtherly scattered by an electron located in r along the straight line (R’ — r'), where
R’ defines the source boundary. In the same way as eq.[2.6.a] we can compute T3(z€2,r)

as

Ty(z2, r) =/

dr' e~ Ir" =71, / d(z' Q) Kp(zQ,2'Q) T (2’2, 1) (2.7.a)
v P

where again 2 = (r—r')/|r—r'|. The second integral in the above equation is performed

over space P of photon momenta.

Again, some of the single scattered photons will escape from the source without suf-
fering the second scattering. Their distribution S1(z€2), i.e. the 1-st scattered observed

spectrum, is simply given by

Now the argument can be repeated for any succesive scattering. It is now trivial

to show that

Tip1(z9, 1) = /

dr’e—fr’"fl/ d(z' Q) Kp(2Q,2' Q') Ti(2' Q' ') (2.8.a)
v P

and

Sk(zQ) = Tr41(z2, R) (2.8.5)

Finally the emitted radiation spectrum S(z)is given by

S(zQ) =) Si(z0) (2.9)
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It is interesting to consider the special case of Thomson scattering. When the cross
section is indeed energy independent, the iterative solution described by eq.[2.8.a] and
[2.8.b] can be carried out much more easily. Suppose that the initial distribution could
be written as Ty (22, r) = Xo(z)Jo(r, ). Now it is easy to show that the evolution of
the photon distribution in the space P can be separated from the pure spatial evolution

in the volume V. Then the k-th scattered observed spectrum can be written as
Se(z2) = pr(Q) X1 (202) (2.10.a)

where

pe(R) = Jk+1(R, Q)

Tora(r, Q) = /V dr' Ji(r', @)e vl (2.10.6)

Xk(a:ﬂ):/Pd(m'ﬂ')K'p(:cﬂ,a:'ﬂ')Xk_l(:u'ﬂ')

The term py(€2) represents the escape probability in direction 2 for a photon that has

suffered k-th scatterings.

2.3 ENERGY AND SPACE EVOLUTION

2.3.1 Isotropic Kernel of Single Scattering

A great simplification can be made assuming that the scattering is isotropic in the
lab-frame. As we will show in the next section, for the interesting range of the parameters
this is a satisfactory approximation. This is a good assumption if the electron momenta
are randomly oriented and if the input photons do not have a preferential direction. We
call this condition perfect isotropy. In this case the kernel of single scattering depends
only on the photon energies z, z’. Note that, if we assume an isotropic kernel, the
observed spectrum is not in general independent from direction. In the following we
will consider the case of isotropic scattering. The kernel Kp is then a function only of

the energy of the photon before and after the scattering
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The full relativistic kernel has been obtained by Jones (1968). Recentely Coppi &
Blandford (1990) gave the correct formula of the kernel, as some equations in the Jones

paper appear incorrect. This can be written as

dP

2t
Kp(z,z',v) = l— dz = (2.11)

The inner differential function reads

dpP 3o, cz
2 (o) = :
dz 7 16v*z2 R(z!,v)(B? + €2 + 2Bez)1/2(1 — Bz2)
X [[27;019 — ak? + (a® — B®) 72 (1 + y? — 2ayok + a*k?)
(2.12.q)
1 2 2/.2 12 -—1/2‘1(26“‘1)
* kz(l—ﬁz){k A ey
+(a® = b*) 732 [a(1 — yo )% + 2kb% (1 — yo) — bazkz]}ﬂ
where e =2'/v, k=v/z,a=1—-Fz— (1 —1y)/k, b= 6§/k and
_ (et Bz)(ptep—1+8z)
Yo p(B% + € + 20ez) (2.12.8)
s B = 22) (0267 + 2pe(1 — p)(1 — B2) — (p — 1 + f2)*]'/? o
p(B?% + €% + 20ez)
with p = z/z'. The integration limits of eq.[2.11] are
2 = max[-1, 871 - pld + (d* — 1/7%)'/*]}]
(2.13)

zy = max[+1, 87{1 — p[d — (d* — 1/72)1/2]}ﬂ
where d =1+ € — ep.

The function R in eq.[2.12.a] is the angle averaged scattering rate, i.e.

+1 d
"
C/ ?Ueﬁ(/‘)

-1

3co, /72(”‘3) 2 2 1 4 1
L dw|(1-= - Z ) mI+2w)+24——
16v28z% J,p(1-p) v w o w? a(l+2w) + 2 + w o 2(1 4 2w)?
(2.14)

R(z,7)
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It is important to note that the kernel defined above is normalized so as
/ deKp(z,z',v) =1 (2.15)
0

The kernel takes a very simple form if one neglect the electron recoil, and if the

Thomson approximation is valid in the electron rest frame, i.e. if ¢ < min(y —1, 1/7).

As shown by Rybicki & Lightman (1979) we find

, 1 (L+B8)p—(1-8) Fo<p<1
Kr(®o7) = = | 0+ 8) —p(1-8) 1<p< il (2.16)
0 otherwise

It may be easily checked that the kernel is normalized as eq.[2.15].

The average fractional energy gain is given by

/0‘00 dz(z — z')j(z) = %(72 ~ 1)z’ . (2.17)

The approximated eq.[2.16] is obtained assuming an isotropic phase function for the
scattering. The use of the more correct Ryleigh phase function gives negligible correc-

tions.

In most of the interesting astrophysical situations, the scattering electrons are un-
likely to be monoenergetic. In this case the kernel [2.11] (or [2.16]) needs to be averaged

over the actual normalized electron distribution N(v), i.e.

Kp(z,z') = /100 dyKp(z,z',v)N(v) . : (2.18)

2.3.2 Source volume integration

The geometry of the medium enters in the volume integrals of eq.[2.8.a]. For ex-
ample we can consider an homogeneous sphere of scattering opacity 7 = n.oR. This is
the simpler case as the spectrum does not depend on direction. The angular intgeration

can be easily carried out, and one can write the (k+1)-th source function as

Tk+1(:n,7'):/ drKv('r,T')/ da' Kp(z,2') Tu(e',r') (2.19)
0 0



34 THEORY

where

+1
Ky(r,r') = / dupexp (7' p — /T2 — r/2 4 pi2y2)
-1
1

= -2-—,{(1 Frdr )T = (L — )T (2.20)
;

=) B4 ) = Balr =)

for 0 < 7' <7 and
Yo e
/ dp [exp(r’u + /12 — 12 L pr22)

Ky(r,r') =

-1

+ exp(r'p — /72 — 712 4122 )}
(2.21)

—(1+r-— r')e"r_rl + (r? - 7"2) [Ei(r'+7) + E1(r' — r)]}

for » < ' < 7. Here E; indcates first order exponential integral function (e.g.

Gautschi & Cahill 1970). Assuming that Ty(z,7) = Xo(z)Jo(r), typical initial condi-

tions are
P2
Jo(r) = 5 (2.22)
for a homogenous seed photon source, and
Jo(r) = 6(r — 0) (2.23)

for a point-like photon input in the centre of the sphere.

As the radial coordinate is in units of n.co, if the opacity depends on the photon
energy the above expressions have different normalization for different photon energies.
In order to avoid it, the function Ky must be defined over an energy independent
coordinate system. We can consider a unit sphere of radius R = 1, and then replace
in [2.20] and [2.21] ¢’ with 7(z)r' and r with 7(z)r. The normalization of K, results
correct for any photon energy z. The k-th observed spectrum must be written as

~ Trga(=,1)

Si(z) = == (2.24)
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Another relavant 1-D case is a plane parallel geometry. Respect to the spherical
case, a main difference is that even assuming isotropic scattering, the observed spectrum

depends on the viewing angle. With 2z we indicate the vertical coordinate along the slab.

We find (see e.g. Nishimura, Mitsuda & Itoh 1986):

Ky(z,72) = —;—El([z — ) (2.25)

The observed spectrum can be computed from

Sk(a:,,u):Z/ dze_(T_z)/“/ dze' Kp(z,2')Tx(z',2), wu>0
0 0 (2.26)

Sk(z,pn) = 2/ dze~#/lul / de' Kp(z,z')Tx(z,2), p <0
0 0

2.4 ANISOTROPIC IC EMISSION

In the general case, the assumption of complete isotropy is unrealistic, because of
the possible presence of an anisotropic soft photon input. A typical case is a plane
parallel slab with the seed photon source located on the lower face. In this Section
we drop the assumption of isotropy of the photon distribution; in this case the kernel

depends on the angular variables.

Contrary to the case of complete isotropy, in which the fraction dN of scattered
photons per unit solid angle and their mean energy lzr are independent on direction,
anisotropy implies an explicit dependence of dN and lzr on €. In the scattering pro-
cess the electron radiative losses are larger (in the laboratory frame) in the backward
direction of the input photons, and their magnitude depends on the electron energy (for
a complete discussion see Ghisellini et al. 1991). It is important to point out that when
the emission is integrated over the whole solid angle, we obtain exactly the same results

as in the case of complete isotropy.

2.4.1 Anisotropy coeflicients
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In order to take the anisotropy effects into account, we consider a radiation beam.
We can introduce two dimensionless coefficients, ¢(w) and x(w), representing the degree
of anisotropy in the scattering event as function of the cosine of the scattering angle w.

The coefficients are defined by the following relations:
dN = (1/4r)¢(w)dwdp (2.27)

and
() = [4/3(v* — 1) + Lx(w)e - (2.28)
By definition

5 /_ 11 dwd(w) = 1 (2.290)

and, defining ¢(w) = ¢(w)x(w)
1 !

5| dwlw)=1. (2.29.5)

Besides the scattering angle, the two coeflicients depend on the electron energy distri-

bution.

Our strategy consists in modeling the scattering considering populations of elec-
trons distributed according to angle dependent effective energy distributions. Our basic
assumption is that the kernel of single scattering has the same form as given by equation
(2.11), but photons are scattered in different directions by electrons with different energy

distributions, so that their mean energy after the scattering is described by equation

(2.28).

We define an effective angle dependent energy distribution N_, such as

[/loo dy(v? —1)N_(vy,w) + 1] x(w) = [/loo dy(y2 —1)N(y) +1 (2.30)

so that the averaged anisotropic kernel can be written as

Kp(zwu,zu) = ¢>(w)/0 dy Kp(z,z',v) N, (v,w) . (2.31)
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wher u is a unit vector parallel to the input photon direction.

Finally the anisotropic photon distribution after the scattering can be calculated

from:

Tit+1(zwu, z) = Txr1(z, 6,¢, 2) ::/ dz Ky(z,2') / dz' Kp(zwu,z'n) Ty (z'u, 2)
0 0
(2.32)

In the above calculations a beam of radiation scattered by an isotropic electron
distribution has been assumed, considering the direction of the beam as reference axis.
In the next Section 3.2 these results will be used to model the anisotropic scattering
for a generic axisymmetric distribution of input photons, and the probability density
distribution Ti41(2€,2) will be computed relative to the symmetry axis of the input

radiation distribution.

2.4.2 Anisotropic first scattering distribution

Herefater we consider a given axisymmetric distribution of photons 7}, (22, z) within
a plane parallel scattering medium. In the assumed geometry the anisotropy of the
radiation field is forced to produce relevant spectral distortions in the first scattering
distribution only (see Section 3.4 and 4). In the present Section we consider only the
evolution from Ty (22, z) to T1 (2, z), although the formalism developed in the previous
Section 2.4.1 has a general validity.

In the following we indicate with p' and p the cosine of the angles between the
reference axis (i.e. the normal at the slab) and the photon direction before and after

the scattering, respectively.

As a first step, we compute the distribution P(w,p,p’) of the scattering angle in

direction g for a given initial direction p’. The problem can be solved by means of
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simple geometrical arguments, noting that

w=pp' ++/1—p2/1 = p?cos(p—p'), (2.33)

where p' and p define the azimuthal angle before and after the scattering, respectively.

Due to symmetry, we can set p' = 0, and we find

dp = +(1 — p? — #/2 +2up'w — wz)“l/zdw . (2.34)
It is easy to see that
dp
P(w,y,,pl) =2 dw (2'35)

where the factor 2 takes into account the change of sign in dp. Because of the symmetry
of the problem, the distribution P is independent on the azimuthal angle. Now we can

compute the anisotropic averaged kernel as

W2

Kp(zpu,z'p'u) = / dw Kp(zwu,zu)P(w, g, ') (2.36.a)
w1
Finally the first order distribution 73 is

T +1 el
Ti(zpu,z) = / dz' Ky(z,2") / du' f(u',2") / dz' Kp(zpu,z'p'a) Ty(z'p'u, 2')
~1 0

0

(2.36.0)
where the two integration limits in w read
wy = pp' = /1 — 21— p? (2.37)
wy = pp' /1 —pu2y/1—p? .
Note that
1 [«
— dwP V=1, 2.
ZWL wP(w,p, 1) (2.38)

The function f(u',2')in eq.[2.36.b] takes into account that, since a plane parallel scatter-
ing medium has a finite vertical extension, photons travelling at grazing angles (u' ~ 0)

have a mean scattering probability higher than photons travelling in the slab along the
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normal (s’ ~ 1). The angular distribution of the input photons must be weighted by
means of the appropriate source function. Since the direct escape probability for input
photon injected in z’ along direction u' is o exp[(z' — 7)/u'], where 7 is the optical

depth of the slab calculated along the symmetry axis, we have

fW',2) =1 —exp[(2 —7)/p")] (2.39)

Note that now T must be normalized dividing eq.[2.36] by the factor
T +1 o)
/ dz' / dp' f(p',2") f dz'To(z' p'y, 2") (2.40)
0 -1 0

The above procedure is valid only for the first order distribution T3 (zpu, z). Higher
order scatterings can be treated as in the case of complete isotropy. An average isotropic

distribution can be used to compute T»(z, z).

A simplified calculation consists in considering the averaged coeflicients ¢(u,p')

and &(p, p') given by

dlu,p') = 51;/ 2 dwP(w, p, p')p(w) (2.41.a)
and
E(p,p') = —2—1—7;/ dwP(w, p, p')é(w) . (2.41.0)

Note that the correct value of x defined as &(p, u')/¢(u, p'), and not as a mean value
computed via equation (2.41.a) or equation (2.41.b). The anisotropic distribution 7} is
then computed as

+1

Ty (zpu, z) = /T dz' Ky(z,2') /

0 -1

dp' f(u',2") / de' Kp(zpu,z'n'v) Ty(z' p'a, 2")
0
(2.42)
where the averaged kernel is constructed with the averaged anisotropy coefliceints de-

fined above.

The approximated formulation given above is particularly convenient since the

integrals in equation (2.41.a) and (2.41.b) can be explicitly solved using for ¢(w) and
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é(w) a polynomial approximation of arbitrary order. The calculation is described in

Section 2.5 for the case of thermal Comptonization.

Finally it is important to note that the calculation developed in the last section are
greatly simplified (see Haardt 1993) if the input distribution Ty(zpu,z) has the form
Xo(z)Uo(p)-

2.5 THE THERMAL CASE

2.5.1 Effective electron distribution

We specialize our treatment for a thermal electron distribution. The electron energy
distribution is in this case

1

- sr ey - U, (2.43)

N(v)

where K, is the second order modified Bessel function.

It is easy to see that the total number of electrons is normalized so as

[00 dyN(y)=1, (2.44)

while the fractional mean energy gain per scattering suffered by photons is proportional

to
o _ 1207K,(1/0) + 30K, (1/0)
/1 B = DN = 56K, (1/0) + Ke(1/0)

Using definition (2.30) we can define an (angle dependent) effective temperature O(w, ©)

(2.41)

for the scattering as solution of the following equation:

1602K,(1/0) + 40K, (1/0) 1602K(1/0) + 40K, (1/0)
+1 = = = = 1. (2.42
[ 20K1(1/0) + Ko(1/0) x(w) 20K1(1/0) + Ky(1/0) - (2.42)
and then an (angle dependent) effective number density
1 -
N (7,w) 7(y? = 1)H2em/® (2.43)

~ BK1(1/0)
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The averaged anisotropic kernel is then computed via eq.[2.31].

2.5.2 Polynomial Approximations

The computational method previously described needs a tractable form for ¢(w)
and é(w). We recall that the two coefficients are functions of the electron temperature,
besides the scattering angle. The most convenient procedure is to find polynomial
approximations for ¢(w) and {(w). We note that for high ® and w ~ 1 the anisotropy
coeficients tend to be ~ 0 (see below), and the ratio of the two polynomials could
diverge when both the coefﬁcieﬁts are small. It is then convenient to find an anlytical

approximation for x(w), writing {(w) as x(w)¢(w).

We have performed a Montecarlo simulation of single scattering for a beam of
monoenergetic radiation, computing ¢(w) and x(w) in 20 angular bins with width Aw =
0.1, for eight different values of ® (0.05, 0.1, 0.25, 0.5, 0.75, 1., 3., 5.). Then we have
performed a 2-dimensional fitting to simulations by means of third order polynomials

$(w) = Z Qi(0)w’ (2.44)
and

x(w) =Y Ri(O)w' . | (2.45)

£(w) = Z Z:(0)w' (2.46)

where the coefficients Z can be expressed as combinations of @ and R.

From equation (2.29.a) and (2.29.b) we have a constrain for @y and Zy:

Qo=1- % (2.47.a)
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and

Zy=1-2-_22 2 (2.47.5)

By definition (eq. [2.27]), in the limit of low temperature, ¢(w) coincides with the
Ryleigh phase function times 4, while (eq.[2.28]) x(w) is ~ 1. A further constrain is due
to the fact that for high temperatures the effects of anisotropy do saturate (Ghisellini
et al. 1991) Then we write the @s in the following suitable form:

3202 +¢3,0

0:(9) = o7 140 + 1
24(6) - 6221@;;ij£ i 3/4 (2.48.a)
Q:1(0) = 1%%?12;1@1
and the Rs as 3202 + ¢3,0
B:(0) = f507 140 + 1
£a(6) - 122(;(;)12(;2:—(91 (2.48.5)
Bi(©) = faar e

The best fit values of the numerical coeflicients ¢ relative to the ¢ and x fitting are
reported in Table 1.

In Fig. 1 the polynomial approximation is compared with numerical results. The

fits are sufficiently good for our purposes.

In practical computation is conveninet to use the mean values defined in equation
(2.41.a) and (2.41.b). We remind that the proper value of x(u, ') should be computed

as £(p,p')/¢(1, p'). The integrations in equation (2.41.a) and (2.41.b) are cumbersome
but not difficult. The solution of integral (2.41.b) can be written as

E(p,p') = Z hi(p, ') Z; (2.49.q)
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TABLE 1

Best Fit Coeflicients of Polynomial Approximations

P(w) x(w)
csz 0.034 1.108
C31 0.580 0.184
c22  -0.367 -0.023
c1 0.144 1.121
¢z -16.000 -12.927
Ci11 0803 -5.149
where
ho =1
hy = pp'
1
hy = 5(1‘—,&2—,&/2—{—3,&2#,2)
1
ha = /(3 — 3u° - 3 + 52 p'”)
1 . | . . o
hy = 23— 64" + 3" — 6’ + 360" — 30" + 3" — 30420 + 35 ')
1 ,
hs = guu' (15 - 30p% + 15p* — 301> + 10042 0% —
— TOp*p™ + 150" — T0p2 " + 6342 ")
1 |
he = —(5— 15“2 + 15“'L - 5/L6 — 15/1'2 + 135/1,2#'2 — 225;1,*;/2 + 105p6u'2 + 15;&'4——

16

— 2252 + 525t — 3158t — 5/ + 10520 — 315%p® + 2315'%)

(2.49.b)

Note that the above expression is symmetric in £ and g/, and that the integral over the

total solid angle is equal 1. The integral in equation (2.41.a) is analogous, reading

Bl ') =D bl ) Qs (2.50)

1=0

2.5.3 Examples of thermal IC spectra
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The computational method developed in the previous Section can be used to cal-
culate angle-dependent IC spectra. Here we briefly describe the calculation procedure,
assuming Thomson scattering in a plane parallel geometry. Every model is computed
for given values of the input parameters, namely ©, 7 and g. An initial condition
To(zpu) = Xo(z)Us(p)é(z — 0) is considered. where X is the Planck law, and Uj is a
limb darkening law (Chandrasekhar 1960).

The probabilities px can be computed a priori using the formalism described in
§2.2.2 for the case of Thomson scattering. The heart of the code is the computation of
Xy from Xy_;. We sample Xy on the x-axis in n different points such as 2y ; = exzi_1 ;.
The factor ¢ does not depend on k, and choosing ¢ ~ 1602 + 40 + 1, the 1-D grid is
roughly centered on the considered Xyx. If we use a logarithmic grid, 2n — 1 values of

€ = oy,h/Tk-1,; are possible:

Tx,1

€6 = j=1,n
Ty —1,j
mk).] b
€ntj—1 = ——— ] = 2,n
Tk—1,1

It is important to note that the possible values expressed by the last formula do not
depend on the particular order of scattering, i.e. the kernel G (eq.(6)) is independent
from k. This allows us to compute a priori a set of 2n — 1 values of the kernel G defined
by eq.(6). Integral (4) can be solved by means of a simple linear extrapolation of Xy ;G
between sampling points where the values of G do not change with k. The integration
limits in eq.(4) depends on the energy where Xy is evaluated. For example in order to
compute Xy in the first sampling energy zy 1, the integration must be performed from
Tx—1,1 t0 Tx—1 1, for the second energy zx » from zy_; 5 to zx_1 141, and so on, till the

last sampling energy zi , from zx_1 5 to Zx—1 2n-1.

The same algorithm is adequate to compute the first anisotropic distribution S;.
We select m values of i', and we calculate m values of ¢(u, u') and &(u, ') as previously
discussed. Using the procedure described above we can find a set of m S (z,p,u’)

distributions, and by means of a linear extrapolation between the angular sampling
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points, the integral (25) can be solved. Note that an isotropic distribution X; can be
used to compute X;. If the same model for a different viewing angle is needed, one can
re-calculate only S (and the probabilities px), since the successive distributions Ss, 3

and so on, are independent on p.

In figures from 2.a,b,c to 6.a,b,c some examples of calculation are shown. We have
plotted the photon flux (defined as zf(z)) in order to compare results with the output
of Montecarlo simulations. As can be seen the agreement is sufficiently good for a wide
range of input parameters. As discussed in the previous Section, the errors due to the
approximated treatment of f; are more evident for high inclination angles. From figure

? it can be seen how the flux relative to f; is slightly overestimates for grazing angles.

The IC spectrum is formed by the sum of the single scattering spectra, each of
them reflecting in shape (in some way) the energy distribution of the electrons. In
the case of thermal electrons the total spectrum can be approximated by a power law

f o< m—a—l

if the température is sufficiently low and the opacity high so that single
spectra are closely "packaged” in the frequency axis. Power law shape occurs up to
energies for which the electron recoil is negligible. The power law approximation is not

tenable when the electron temperature is high and the opacity low. In this case features

of single spectra are clearly visible (see figures 7).

In general the spectral index o depends on 7 and ©. If the Compton emission from
a slab is integrated over all directions, for 7 < 1 and ©® > 0.1, good agreements with

numerical simulations are obtained with
a=[—In(r) +2/(3 + 0)]/[In(1202 + 250)] (2.51)

Taking into account the angular dependency of the radiated photons, the main feature
found with our calculations is the deficiency of power in the first scattering distribution
for low inclination angles. This fact causes evident spectral distortions. In the region

dominated by fi, the spectrum is considerably flatter than the average one. We have
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empirically found that a broken power law can qualitatively fit the spectrum. Defining
A; as the mean energy gain per scattering, for x14; < z < A} the spectral index is
given by:

[~1In(r/¢1) +2/(3 + ©)]/1In[(120° + 250)/x1] (2.52)

a

Il

while for ¢ > A2 good fit are obtained with the average formula (41). In general for
p > 0 a is lower than o, viceversa for p < 0. The flatter spectra are seen at low

inclination angles.
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FIGURE CAPTIONS

Figure 1: Montecarlo calculations and polynomial approximations of the anisotropy
coefficients ¢(w) and x(w) vs. the cosine of the scattering angle w. From top to the
bottom the electron temperatureis ® = 0.05, ® = 0.5 and ©® = 5, respectively. Open
squares refer to ¢, filled squares to x, as computed via numerical simulations. The

polynomial approximations discussed in Section 3.3 are shown as continuous lines.

Figure 2: Computed IC spectrum compared with Montecarlo simulations. The total
spectrum (solid line) is shown together with the single scattering ones (dashed lines).
The step function shows the result of numerical simulations. The soft photon input is a
black-body, with emissivity according to a limb darkening law with b = 2 (see eq. [39]).
The input values of the parameters of the hot plasma are ® = 1.7 and 7 = 0.15, which
yield a Compton parameter y ~ 8. The cosine of the viewing angle is u = 0.9 for panel
a, p = 0.5 for panel b, and g = 0.1 for panel c. Montecarlo spectra are averaged in
cosine intervals of width Ay = 0.2 around the labelled value of u. The photon energy
is in unit of kTy1, where Ty, is the black-body temperature. The low energy cut-off of
f3 and the anomalous behaviour of the first two energy bins of the simulated spectra

are due to numerical approximations.

Figure 3: As Figure 2, but ® = 1.59 and 7 = 0.01. The resulting Compton parameter
1s y ~ 0.5.

Figure 4: As Figure 2, but © = 0.188 and 7 = 0.06. The resulting Compton parameter
is y ~ 0.08.

Figure 5: Analytical IC spectrum for ©® = 0.5 and 7 = 0.1. Solid line refers to u = 1,
dashed line to u = 0.5, dash-dotted line to 4 = 0.1 and long-short dashed line to
uw = —0.5.

Figure 6: As Figure 5, but ®© =1 and 7 = 0.1.
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