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INTRODUCTION

The richness of the theory of functions over the complex field makes it natural to
investigate a similar theory for Clifford algebras(§ 2.4) and in particular for the only
other non trivial real associative field, namely the quaternions. Such a theory was not
developed until nearly a century after Hamilton's discovery of quaternions. Hamilton
([Ha])himself and his principal followers Tait ([Ta]) and Joly (IJ]) only developed the
theory of functions of a quaternionic variable as far as it could be taken by the general
methods of the theory of functions of several real variables. They did not delimit a special
class of regular functions among quaternionic - valued functions of a quaternionic
variable, analogous to the regular functions of a complex variable. This may have been
because neither of the two fundamental definitions of a holomorphic function of a
complex variable has interesting consequences when adapted to the quaternions; one is
too restrictive, the other not restrictive enough: the functions of a quaternionic variable
which have quaternionic derivatives, in the obvious sense, are just the constant and linear
functions and the functions which can be represented by quaternionic power series are
just those which can be represented by power series in four real variables(§ 2.2). In spite
of this, the zero set of a quaternionic power series with real coefficients assumes an
independent interest; we follow in § 2.3 Datta and Nag who proved in [D - N] that this
set is a union of 2-spheres.

In 1935 Fueter [F] proposed a definition of regularity for quaternionic functions by
means of the analogue of the Cauchy-Riemann equations. He showed that this definition
led to close analogues of Cauchy's Theorem and Cauchy's Integral Formula.

Sudbery [Su], in 1978 gave a self-contained account of the main stream of quaternionic
analysis by using the exterior calculus and the definition of the quaternionic differential
forms dq and Dq (§ 3.2) to clarify the relationship between quaternionic analysis and
complex analysis.

In particular, Sudbery also pointed out some of the difficulties of the quaternionic theory,
such as, for example, the fact that the identity map is not regular and that pointwise
multiplication and composition of maps do not mantain regularity.

In § 3.1 a few classes of examples of regular functions are exhibited.

§ 3.3 is devoted to a quaternionic version of Cauchy's Theorem and Cauchy's Integral
Formula.



If the function f is continuously differentiable and satisfies

of L of  of o o
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where U is any smooth domain . Moreover if qg lies inside U then

1 CR D
flap) = Dqf(q).
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The above Cauchy's Integral Formula yields, analogously to what happens in complex
analysis, that if f is regular in an open set U then it has a power series expansion about
each point of U(§ 3.4).

We have a certain number of new results concerning domains of convergence of
quaternionic regular series:

we prove in § 3.5 that if Q is a Reinhardt domain (which is simply a ball in the one
dimensional case) then the series expansion about a point of Q converges normally on
and in § 3.8 we give examples which show that, opposite to what happens in the complex
case, (Abel's Lemma), a domain of convergence is not necessarily a Reinhardt domain.
The notions of domain of regularity and of regularly convex domain are defined in § 3.6 :
these notions are completely similar to the more familiar ones of domain of holomorphy
and holomorphically convex domain.

In [P] Pertici proves that any open subset of H is a domain of regularity regularly
convex(§ 3.6). As a consequence of the analogous result holding in the complex case,
Dolbeault's theorem (§1.4) ensures that any cohomology group of the sheaf of
holomorphic functions vanishes on any open subset of C: in § 3.7 we define the sheaf of
regular functions and prove that the first cohomology group of the sheaf of regular
functions vanishes on any open subset of H.

In § 3.9 we are concerned with a reflection principle: a regular function defined in the
upper part of a domain Q , symmetric with respect to the purely imaginary space, is
(under certain conditions of symmetry and continuity) the restriction of a function which
is regular in all of Q.
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1.
HOLOMORPHIC FUNCTIONS

§ 1.1. Preliminaries

The following standard notation is used:

R denotes the field of real numbers,

C denotes the field of complex numbers,

(X1, ..., Xp) 1s an element of R" and

(Z1, wees Zp) = (X1+1Y1, «..p Xp+iyy) is an element of C.

The partial differential operators on C0, __8__ and -Q-are given by:

aZJ aij
d 10 .0 .
— =5 —-i— j=1,..,n;
dzj  “\9%j ayj'j
9 1/d .0 J
= +i— i=1,.,n
a-Zj an an

Correspondingly, we have the differentials
dz; = dx; +idy; , j=1,..,mn;

d_Z-j = de - idyj i=1,.,n
Ifz20¢ C0 andr >0, let us define the open ball as the set

B(z0r)=({zeCn:lz-201<r1)
and the open polydisc as
PU(z0,r) = { ze CP: | zj- z;) l<t,j=1,..n}

We also need a notation for a multi - index.
Let N = {0, 1, 2, ...}. A multi - index o is an element of NJj where j is usually
understood from the context. If o is a multi - index and if z = (zy, ..., Zg) , Set
20 =7%1 7%
1 n

b

9% _ 9 g
0z%  3z®1 9zfn




90 gem

.

0z 0z%l 9z%n
1 n

n
Also al = o!...0n! and l ol = Y0 2 0,

i=1

dz® = dzg A ... Adzy, and dz® = dZg A .. AdZq, .

DEFINITION 1.1.1. Let Q < C™ be an open set. A function
£ Q->C
is holomorphic in 2 if and only if it is holomorphic in each variable separately , that is

[ is continuosly differentiable in each complex variable separately on Q and

of =0onQ, j=1,..n

0%
8(Q2) will denote the C-algebra of holomorphic functions in Q.
The following theorem shows that there are many others different definitions.
THEOREM 1.1.2(Hartogs). Let £2 be an open subset of C and f: Q — C"bpe a
Junction. The following statements are equivalent:
i) fis holomorphic in 2 ;
ii) for each 29 Q there is a positive real number r so that PYz0,r) < Q2 and fcan

be written as an absolutely convergent power series

f(z) = D an(z - 29* for ze Pa(z0) ;

o=0
iii) f is continuous in each variable separately and locally bounded. For each

20e Qthere is a positive real number r so that PY20,r) € Q2 and

1 f(Zl,...,Zn)
f = d ...d n
g (275i)na Pn(CI‘Zl)m(Cn'Zn) 1t
0

where

doPn = {(C1,....Cn)e Pz0r) 1 1 -z l=1 ,i=1,..n.).



§ 1.2. Regions of holomorphy and differential forms

DEFINITION 1.2.1. An open subset 2 of C" is a region of holomorphy if the
Jollowing property holds:
there do not exist two nonempty open sets §2; , 2 such that :

i) £ is connected ,

i) N,

i) S z 2,
so that for every function w that is holomorphic in 2 there exists a function up
holomorphic in §2; such that u = up on £ .
We see from the definition that an open set Q is not a region of holomorphy if each
analytic function on Q can be analytically continued to some slightly larger open set
( and this set does not depend on u).
DEFINITION 1.2.2. An open subset 2 of C* is called holomorphically convex if,
Jor each relatively compact subset K of 2 ( we will indicate it byKcc), the

holomorphically convex hull of K in -

Ro={ze Q: Ve 8Q), )| <sup I fw)! )
weK

is relatively compact in (2.
The concept of holomorphical convexity can be subsumed under the followin g general
scheme, which illuminates the similarity to elementary convexity: for KccQanda

family ¥ of continuous functions in Q ,

Ry=fze Q:1ftz) | Ssup |fw) |, VS F)

A
is called the ¥ - convex hull of K in Q and Q is called F - convex if Kgis relatively
compact in €2, foreach K c c Q.

As an example if Fdenotes the set of all real affine functions defined in C? then

- convexity is equivalent to convexity.



THEOREM 1.2.3 (Cartan-Thullen). Let Q2 be open in C*. The following
conditions are equivalent :

i) is a region of holomorphy ;

ii) Qis holomorphically convex ;

iii) For each z€dQ there exists an holomorphic function in £2 that is not
holomorphically extendible at z.
As a corollary, any open subset Q of C is a region of holomorphy.

In fact, for any £ 0 the holomorphic function in Q f defined by:

fe(z) = -1—-
Z_

is not holomorphically extendible at &.

If Q is an open subset of C! and ® is a differential form on Q, then ® is a sum of
terms of the form

Wap dz*AdZP
where o and P are multi-indices with lof < n, IB] < n and wgp is a smooth function.
If0<p,q<nand

o= 2 waB dza/\d—z:ﬁ
laj=p,!Bl=q

then  is called a differential form of type (p.q). For the same  define

§ : 0
0w = Dap dz;rdz®AdZP
0z;

o,B,]
= oW
oW = E oB dzZjadzoAdZP ;
an
a,B,j

The following important theorem is due to Hérmander:
THEOREM 1.2.5. Let Q2 be a domain of holomorphy (i.e. a connected region of
holomorphy) and f be a (p,q+1) form on §2 satisfying

of =0 (i.e. f is a o-closed form).



Then there exists a (p,q) form won Q such that

ow=f (i.e. fis a 9-exact form).
§ 1.3. Reinhardt domains and power series

A domain is a connected open set.

DEFINITION 1.3.1. Let 2 be a domain in C*. 2 is a Reinhardt domain if:
V(z1, oy Zn)e Q,Voue C @ loyl=1,i=1,..n = (0121, ...,0nZn)E Q.

Consider a power series in CP about the origin:

P(z) = ) agz®

DEFINITION 1.3.2. The domain of convergence associated with P is the set of all
points in a neighbourhood of which P converges absolutely and uniformly.
THEOREM 1.3.3 (Abel's lemma). If the power series P is convergent at a point
Z=(z, ..., Zn) Such that zj z,...z, # 0 then P converges normally in

P10, 1 zy 1) x ... x P10, | z, |).
Therefore :
THEOREM 1.3.4. A domain of convergence of a power series is a Reinhard:
domain.
The connection between Reinhardt domains of convergence associated with a power
series and domains of holomorphy is given by the following equivalence: |
THEOREM 1.3.5. A Reinhard: domain containing the origin is the domain of

convergence of a power series if ,and only if , it is a domain of holomorphy.




§ 1.4. Dolbeault's isomorphism

In complex analysis one frequently has to deal with the question of the existence of a
"global" function having a prescribed "local behaviour". For instance, a classical
problem is the construction of a meromorphic function having prescribed principal parts
or poles. The notion of a sheaf was given as a suitable formal setting to handle this
situation ([G]).

SHEAVES

Suppose X is a topological space and I1 is the family of open sets in X.

DEFINITION 1.4.1. A presheaf of abelian groups (rings,vector spaces,...) on X is
a pair (F.p) consisting of:

i) afamily F=(F (U))uen of abelian groups (resp. rings,...) ;
ii) afamily p = (pg)uVen of group (resp. rings,...) homomorphisms

pY: FU) = FV), Ve U

with the following properties :
a)VUell: pg =idy;

b)‘v’QchU:p‘{vop‘é:pg, .
Generally one writes F instead of ( F, p ). The homomorphisms pl{], are called

restriction homomorphisms and instead of pg (f) one just writes fyy , for any fe F (U).

A presheaf F on X is a sheaf if for every open subset U of X and every family of open
subsets U;c U, ie Isuchthat U = Y U; the following conditions , called the
1€

Sheaf Axioms , are satisfied:

AL Iff,g e F(U) are such that for everyiel, fy; = gqu; .then f=g;

AIL Given elements f; € F (Uy) , (ie 1) such that fi/Uint = fj/Uint Jfor alli and
jinT, then there exists f in #(U) such that f, = f; for every i belonging to L
REMARK.The element f, whose existence is assured by AII is by AI uniquely

determined.



EXAMPLES.
OFor any open subset U of RN, let (*°(U) be the ring of the C*° functions in U. Taking
the usual restriction mapping one gets the sheaf C° of (™ - functions.
OFor an open subset U of C ,8(U) is the ring of the holomorphic functions defined on
U. Taking the usual restriction mapping one gets the sheaf 0 of holomorphic functions.
0The presheaf of meromorphic functions M is defined by setting M (U) to be the
quotient field of 8(U) i.e. M (U) = { -;— :f,ge6(U) }.
Suppose ¥ is a presheaf of sets on a topological space X and ae X is a point.
On the disjoint union of the F (U)'s ,taken over all the open neighbourhoods U of a, let
us introduce an equivalence relation 5 as follows:
for fe F(U), ge F(V):

fz g ¢ there exists an open set W < UNV , ac W, such that frw=gmw.
The set ¥, of all equivalence classes is the inductive limit of F (U)yen is called the
stalk of F ata.If F is a presheaf of abelian groups (rings,...) then the stalk %, with
the operation naturally induced on the equivalence classes is also an abelian group
(resp. ring,...).
COHOMOLOGY GROUPS
Let U= (Up;c1 be an open covering of X. For q = -1, 0, 1, 2, ... define the gzh-
cochain group of F with respect to U as

Clu, ¥)=(0}

CUU, F)= J] FUyn..AUy) forq20.
i()...iqu

The elements of C4(U, F) are called g-cochains . Thus a g-cochain is a family
(fio---iq)io...iqel such that (fio...iq)E F (Uiom...mUiq) forq > 0.

For every q = -1 define the coboundary operator
o1 : CI(U, F)={0}— CO(U, F) to be the zero map,
8: CA(U, F)— CH(U, F ) forq =0 to be such that



+1
(BqDig...iqe1 = :Z() (- 1)J'fio...f}..iqﬂ/Uiom._ﬂUiq+1
where " & " means that o is omitted.
The coboundary operator is a group ( resp. ring,...) homomorphism. For q 2 -1 we
define the following sub-groups (resp. sub-rings,...) of C4 (U, F):
79U, F ) =Ker 8, its elements are called g-cocycles;
BY(U, F )=Im 3y , its elements are called g-coboundaries.
Thus, by definition, a 1-cochain (fj;) is a cocycle if and only if
fie =fij+ fix  on UynU;NUy for all i,j,k. (these are called the cocycle relations)
Remark that (taking i=j=k)
f;=0 foreveryi;
and ( taking i=k)
fi;=-f; foramy i,j,
An easy computation shows that
0q 084.1=0.
As a consequence, every coboundary is a cocycle.
Thus a 1-cocycle (fy) is a coboundary if and only if there is a O-cochain (g;) such that
fij=g-g onUnNUj.
The quotient group
HYU, F)=2Z«U, F)/ BYU, F)
is the qth-cohomology group with coefficients in F with respect to the covering U Its
elements are called cohomology classes and two cocycles which belong to the same
cohomology class are called cohomologous . Thus two cocycles are cohomologous if
and only if their difference is a coboundary.
We study now the effect on HA(U, F) of refining the covering U . We shall be
interested only in locally finite coverings of X.
Let V= {Vi} je_-,be a locally finite covering of X such that Vis arefinement of U Then

each Vjis contained in some U; € 2. We make an arbitrary choice of the U;. This

arbitrary choice defines a map



¢:J—>1
having the property that
Viel: V;c Uyg).
Then ¢ defines a map
0*: CU(U, F)->CUYV, F).
For fe C4(U, F ) let us assign the section
£5G0)-0Gg) 10 Uaio) N UsGig) 2 VigN-eN Vi
then ¢*(f) is defined to be the cochain which assigns the restriction
foti0)..-00Gq) Vign0 Vig to Vj,N...n Vi, .
It is easy to show that ¢* has the following properties:
1) ¢* is a group (resp. ring...) homomorphism;
2) ¢* 0 &y = 84 0 ¢* (with a standard notation) ;
3) for any two coverings U and ¥ of X :
O*ZUU, FNCZYY, F) and  ¢*BUYU, F N BUV, F).

Hence ¢* induces a homomorphism of the cohomology groups:

@y : HI(U, F) - HUY, F).

It can be shown ([K] or [H] ) that (Dg does not depend on ¢.

Let A be the collection of all locally finite open coverings of X. The collection A is

directed by refinement, i.e.
a) U < Vmeans that ¥ is a refinement of U:

b) given U; and U, there exists ‘Vsuch that U < Vand U < V.
Whenever U < Vwe have the homomorphism @3 having the properties:

1) @ is the identity on H(U, F);
2)For US VS W @1",0@;‘,’ =Dy,

Let us consider quAHq( U, F) and partition it into equivalence classes by defining the
e

following equivalence relation:




h1€e HY(Uy, F) and hpe HI(U,, F) are equivalent if,
for some Up < Vand Uh <V : Dol(hy) = Dp(hy).

The set of all equivalence classes, Hq(X, F) is the direct limit on A of the groups
(resp.rings,...) HI(‘U, F).
For an element f in HA(U, F)we denote by @¢«f) the equivalence class of f in
HYX, F). Then
®q:HUU, F) —» HYX, £

is a group (resp. ring,...) homomorphism.

REMARKS.
1) If U< Vthen <I>(qu, : HO(U, F) — HO(V, ) is an isomorphism; therefore each

HO(U, F) is isomorphic to I'(X, F) , the group ( resp. ring,...) of global sections.
2)If U< Vthen CDg :HY(U, F) - HY(V, F) is injective. As a consequence,

O H(U, F) » HY(X, F) is injective. Hence H'(X, F) = 0 if and only if
HY(U, F) =0 for every UeA.
PROPOSITION 1.4.1. Let X be an open subset of R®, C~ be the sheaf of the
C™- functions. Then
Vpe {1,2,..}; HPX, ) =0.
The proof of this classical result is based on the existence of a partition of unity on
every locally finite covering of X ( [H], [K]).
DOLBEAULT'S ISOMORPHISM
Let Q be a domain and 8 be the sheaf of holomorphic functions on Q.The 9 operator
and differential ( p, q) - forms have been defined in § 1.2.
Let A®P(Q) be the group of differential (0, p) - forms,
Z(O'p)(Q) = { we A(O’p)(Q) : 00 = 0 }be the subgroup of d - closed forms;
B(O'p)(Q) ={0w: we AOPD (Q)} be the subgroup of 0-exact forms.

Since do 9 = 0 we have:

10



11

B(O’p)(Q) c Z(O’p)(Q)
The following theorem illustrates the relation between the 9 - resolution problem and

cohomology groups of the sheaf of holomorphic functions.
THEOREM 1.4.2 (Dolbeault).Let Q be a domain in C*, and p > 0. Then

HP©,0) = 2%P ), 80P q) .

For a proof of this result, see ([H], [K]).

Since, from theorem 1.2.5., in any domain of holomorphy, every closed form is exact,

we have the following corollary :

COROLLARY 1.4.5. Let Q2 < C" be a domain of holomorphy, and p > 0. Then
HP(Q,0) =0.



2.
FUNCTIONS OF A QUATERNIONIC
VARIABLE

§ 2.1. Quaternions

Let 1,1, ], k denote the elements of the standard basis for R4. The quaternionic product
is the R-bilinear product
R4xR4 5 R4:
(a,b) = ab,
with unit 1, defined by the formulae:
i2=j2=k2=-1 and
ijj=-ji=k ; k=-kj=1; ki=-ik=j.
The space R4 with such a product is a real algebra H called algebra of quaternions . The
quaternionic product is associative, but not commutative ( ij # ji ).
We will identify R with 1R = { x1 : xeR } and R3 with
Ri+ Rj+ Rk = { x3i + x2j + x3k : X1, X3, x3€ R }(its elements are called pure
quaternions or purely imaginary quaternions).
Each quaternion q is expressible in a unique way in the form
q=xXo+1ix;+jx2+kxs  where xp, X1, X2, x3€R
We will usually denote 1,1, j, k by iy, iy, ip, i3 respectively.
PROPOSITION 2.1.1. A quaternion is real if and only if it commutes with every
quaternion.
PROOF. Obviously, any real number commutes with all quaternions. Conversely, let
q =Xo+1x; +jx3+ kxs be a quaternion commuting with i and j. We have:
iq=4qi = xg =x3 =(;
jq = q_] = X1= 0.
Hence, q = xpe R.

PROPOSITION 2.1.2. A quaternion is pure if and only if its square is a non
positive real number.

12



PROOF. Remark that if q = t +1i x + jy + kz is a quaternion,then g2 = 2tq -2 -x2 -y2 - 22,
It is clear that, if t = 0 then g2 = -x2-y2- z22< 0. Conversely, suppose that g2 R and
q2<0.Then:

q% + x2+y2+ z2+ 12e R = 2tqe R. If t # 0 then q isreal and 2 =2> 0, a
contradiction. Hence t = 0 and q is a pure quaternion.

The conjugate q of a quaternion q=t+1ix +jy +kz is defined by
g=t-ix-jy-kz
Conjugation is an algebra anti -involution, that is, for g,weH,AeR:

q+w = g+ w;

Aq=A7;

qw = W{q
Moreover,

qgeR < q= gandqeR3 e g=-q

The conjugate q can be expressed by a H-bilinear combination of g. In fact
~ 1 C
q=-=5(q+iqi + jqj +kgk) (2.1.1).

For ¢ =t +1ix + jy + kz the non negative number

1
lql=(qq)? = ViZ+xZ+y2+22

is the norm of q. Remark that
Igwl=lqllwl
because conjugation is anti -involutive.
PROPOSITION 2.1.3. Each non zero quaternion q is invertible and

=9
d Igl2°
Remark that if q and w are different from zero then
(qw)1 = wigl,
For q = t+i x+jy+kz the following relations hold :
1 C.
t=4—(q-1q1-JqJ - kqk) (2.1.2)
X =-i—i(-q+ igi - jqj - kgk) (2.1.3)
1., .. ..
y =7(-q-iqi + jqj - kqk) (2.1.4)

2= 7 k(-q- iqi - jaj + kqk) (2.1.5)

13



In what follows we will discuss about a way in which the analogue of a holomorphic
function can be defined in the (non commutative) field H.
Let © be an open subset of H and

f:Q—-H
be a function. A first attempt to extend the definition of a holomorphic mapping could
be requiring the function f to be H- Fréchet differentiable at every point qe 2.

§ 2.2. H-Frechet differentiable functions

Let £ be an open set.
DEFINITION 2.2.1. A function f : Q — H is quaternionic differentiable (on the
left) at q if the limit

gg-= im bri(E(q+h) - (@)

h—

exists.
PROPOSITION 2.2.2. Suppose the function f is defined and quaternion
differentiable on the left throughout a connected open set £2. Then, on €2, f has the
form:

f(q) =a+qb
for some quaternionic constants a and b.
PROOF([SU)). It follows from the definition that if f is quaternion-differentiable at g, it is

real-differentiable at q and that

of .
—— = Jm hl(f(g+h) - )
%0 heR

= Efb (ixh)-1(f(q+ah) - £(q))
heR

=-— , Ae{1,2,3}. (2.2.1)
XA
Put q=v+jw, where v=xg+ix; and w=Xz-ix3and let
f(q) = g(v,w) + jh(v,w)
where g and h are two complex valued functions of the two complex variables v and w.
The equalities (2.2.1) imply:

14



In terms of complex derivatives, these equalities can be written as:

= 2 __% .9 (1)
oV ow 9v ow

k_o%h )
ov  ow

oh 0

=-. % ©
¥ ow

Equation (1) shows that g is a complex analytic function of v and W, and h is a
complex-analytic function of v and w.

It follows from Hartog's Theorem ( Theorem 1.1.2) that f and g have continuous partial
derivatives of all orders.

From (1) and (2) we have:

-2 20
ovz  oviow) oawlov)
and using the same techniques :
d?g d’h  9%h _ d%g _ d%h
w2 avz 9%’ Jvaw  ovow
Then we can deduce that g is linear in v and W and h is linear in ¥ and w. Thus
gv,w) =a+ Bv+yw,
h(v,w) =€+ {¥V + Nw where the greek letters are complex constants.
It follows from (2) and (3) that f =n and { = -y. Then
f(@ = +Bv +yW +je- W + pw) = (@ + j&) + (v + jw)(B - jv)

since, for every complex number ¢, the equality ¢j = j€ holds.

= 0.

The above Proposition shows that the requirement that a function of a quaternionic
variable should have a quaternionic derivative is too strong to have interesting
properties.

A second attempt could be to consider the class of functions which can be expanded as a
quaternionic power series at any point qe Q. That is to require that, for instance, in a
neighbourhood of Oe Q, f is a sum of terms of type agqaiq...an.1qa, with q the
quaternionic variable and ay,...,a,e H the coefficients. If we set q =t +1ix +jy + kz it

15




turns out from (2.1.2 - 2.1.5) that t,x,y,z are polynomials in q. Therefore the space of
H -analytic functions coincides with the space of real analytic functions from R4toR4.
In the following paragraph we will be concerned with the set of zeros of analytic
functions with real coefficients .

§ 2.3. Quaternionic analytic functions with real coefficients

Let Q < C be a domain in the upper half plane I1; = {x+iy € C : y > 0 }.Suppose that
the map ¢ : Q—C defined by 0(x+iy) = §(x,y) + in(x,y) is holomorphic .
Let us define the open domain F(Q2) of H as

F(Q) = { xo+1x7 +jxo + kx3 : (X0, A / x12+x22+x32 )e Q}.

The Fueter transform F(¢) of ¢ is the map from F(Q) into H defined by

F(O)(xo + 1 x1 + jxa + kxa) = (o) + 2K g 59

where x = /le+x22+x32 )

LEMMA 2.3.1. Let ¢; and ¢, be two holomorphic mappings from Q into C and A
be a real number. Then:

i) F(01+ ¢2) = F(o)+ F(¢2) ;

ii) F(M1) =AF (1) ;

1ii) F(0102) = F(0)F(92) ;

iv) F(z) =q.
PROOF. 1), ii), iv) are obvious.iii): let ¢ = &;+in; and ¢p= §o+inz .

ix1+jXo+kx
Let q = xoH x1+jxptkxz € F(Q) , x =, / x1+x22+x32 >0, o(q = SRRl RESSE 7;2 3

Then F(d1)(q) = &1(x0.X) + 6(@)M1(x0,x) and F(92)(q) = E2(x0,x) + o(PM2(x0.X) -
0%(q) = -1. Therefore

F(01)F($2)(qQ) = (§1&2 - N11M2)(x0,X) + 6(q)(E1M2 + E2M1)(X0.%) -
On the other hand

0102(x,y) = (€1€2 - MM(x,y) + i€1M2 + SN x,Y).
The proof follows from the definition of F.

As a corollary we have:

16



PROPOSITION 2.3.2. Let ¢: Q — C be a holomorphic mapping having a power

series expansion with real coefficients around real centres, that is:
0(2) = Y an(z-c)n with a;, ceR.
n

Then
FO)(@) = Y ang-on

q being a quaternionic variable.The two series have the same radius of convergence.

In their paper ([D - N]) Datta and Nag are concerned with the set of zeros of these
quaternionic analytic functions with real coefficients. We summarize here their results.

THEOREM 2.3.3 (Datta - Nag). Let 6 be a quaternionic analytic power series
with real coefficients, convergentin B(c,R) = { ge H : |q - ¢/ < R}, ceR, namely

8(Q) = > an(g-c)

The zero set of this function ,{fqeH : 6(q) =0} , is _
F({z: ¢(z) =0} U {te R :¢t)=0 }where the function
0(2) = Y an(z-c)n

is definedin { zeC : |z - ¢/ < R}.
PROOF. Let ¢ = &§ + i1, q = X0+ x1+jxo+kx3 , X =, , )(21+x22+x32 >0,

5(q) = iX1+jX2+kX3
q)= X .

As 6(q) =F(9)(q) = &(xo, x) + 6(q)N(x0, x) it is clear that
8(q) =0 < q s areal zero of ¢ or
E(x0, X) =M(x0, X) & ¢(xq, X) =0 & qe F({ze C : f(z) = 0}.

Remark that for o and  real numbers, the set
F{la+iB})={a+ix+jy+kze H : x2+y2+22=B2}
is a 2-sphere.
For polynomials, we have, as a corollary
COROLLARY 2.34. Let {o; +ify,..., Om £iBm, V1w ) (@i, By 7; real
numbers) be set of complex roots of the polynomial equation
ang" + ... +ajq+ap =0, aeR. (2.3.1)
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Then the quaternionic roots of (2.3.1) form the set
m
jg Saj,ﬁj U AT Y

where Saj,ﬁj = F({oj+ if;})

Now, we are able to solve 8(q) = ac R . When we wish to solve 8(q) = Ae H we use

the following lemma:

LEMMA 2.3.5.Let o€ S2,06= i0;+ joy+koz, (01 + (0P t(o3)2=1,
Cs={xp+x0 : xp,x €R} and ¢: Q2 c IT; — C be a holomorphic mapping. Then
F(¢)(Cs) cCos.

PROOF . Let ¢ =& +in, q = xo+i X3 +jxo+kx3 € Cgi.e. q =xo+ X0 where

_ _ _ixg+jxotkxs
X =4 f}(21+-x22+x32 >0, c=0(qQ = - .

Then F(9)(@) = &(xo, X) + oTN(x0, X) hence F(9)(q) € Co.

THEOREM 2.3.6. The root set of 6(q) = ap + i aj + jas + kaz € H\R is the set

S={a+ ﬁi&?&_-_kgi) cHa+if)=ap+ia,a=, fa12+a22+a32 >0}

PROOF. Let ¢ = 1?_1;'1?__}&3’_ . From the previous Lemma, 6(q) = ac Cs implies

qe Co.

Now let q =xg + xo€ Cg.

Then 8(q) =F($)(q) = &(x0, X) + on(Xg, X). Hence 6(q) = ap+ ca implies
&(x0, X) = a9 and M(xg, X) = a.

Notice that the Fueter transform of an holomorphic mapping is not necessarily
harmonic (for instance, AF(z) = Aq? # 0 ). This explains why quaternionic analytic
functions with real coefficients do not represent a satisfactory theory.



§ 2.4. Monogenic functions

Clifford Algebras.
The complex Clifford algebra over C™M (m > 1) is defined as follows:
4= Y aAeA:aAeC},

where ep = Coq-Cay > A= {d1,...,0h}, 01 <..<0Op .

Moreover,
eo=1,ex) =¢ k=1,...m
€i€j = - €i€j j#k=1,.m,
e? =-1 j=1,..m

j
Form =2, A4is called the algebra of biquaternions.
As 4is isomorphic to C2m, we provide it with the C2™ norm

1

al=( Y laal)?

Ac{l,...,m}
~ the inequality
m
labl <22 lalIbl holds.
The elements
(X0, X) = (X0, X1, --» X)€ RM*1 and
z = (z, ..., Zyp)e CM
will be identified respectively with the Clifford numbers
m
Xo+X=Xg+ ijej and
j=1
m
Z= 3 Zi€;
j=1

In this way RM+1 and Cm are imbedded in 4.

m
For € and z elements of C™, the bilinear form Z &z; is denoted by <&,z >.
=1
Monogenic functions.
Let Q be an open subset of RM+! and f be a continuously differentiable function in .

DEFINITION 2.4.1. The function f is left (resp.right) monogenic in £ if

m

m
E : of E :af .
Df= Cjozo (resp. &}ej=0)1n Q.
=0

j=0
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m

D =2€ i gg stands for the generalized Cauchy-Riemann operator.
j=0

The right 4-module of left monogenic functions is denoted by Mj(€2, 4). Several

properties concerning these functions can be found in [B-D-S] ( There exists a Cauchy

representation theorem, any monogenic function is harmonic, ...).
There is a canonical way to associate a monogenic function with a holomorphic
function.

THEOREM 2.4.2 (Sommen). Let f be a holomorphic function admitting the Taylor
series expansion for [z/ < p:

f(z) = chzk
k

Then, for z fixed in C™, the series

F(u, z) = ZCk(< u, z >-upz)X , ug + u = ue Rm+!
k

is monogenic in u and normally convergent as a multiple Taylor series of ug, ...,up in
the subdomain D of R™+1 determined by the inequality:

m L,
/uo/(/Z/z,-/Z)2 + %/ujzj/ <p (24.1)
j=1 J=

Notice that when m =1, by the identification e; = -i and u = w = uj +iug we have
F(u, z)=f(wz) (w,ze C)

PROCF. As
k k! k 1 kj
<u,z >-u()Z) = m (-upz) OH (Uij) J
ko+...+km=k )=l
the domain of absolute convergence of the Taylor series under consideration is
determined by the condition
k! = .
2 [Cl m(lllol |Z|)k0H(lUijl)kj < oo (2.4.2)

ko+..+km=k =1



We have:
m
forkg=2s,seN: k0 = (-1) ('z T
1

forkg=2s+1,seN: :sz--(l)S(IZIZJI2

Hence, for any kge N
ko

lzkol < LZ Iz; I2J—

Then , for every k,

k! = .
ICd o (o lzl)kOH(luijl)kJ <
ko m

< |Ck|—k—k-—'—|UQ|k0[|2|ijz (IUijl)kj
j=1

= ICyl (luol(ZIZ 272 4 z lujz;l ] .
=1 j=1
As p is the radius of convergence of f then (2.4.2) is satisfied as soon as (u, z) fulfills
the inequality (2.4.1) and the series converges uniformly on every compact subset of D.
Furthermore, an easy computation shows that, for every natural integer k, the function
Ci(< u, z >-ugz)k
is left monogenic in u. Hence any finite sum of terms of the series F(u, z) is left
monogenic in u (the uniform convergence theorem holds for monogenic functions, see

[B-D-S 1).

In Sommen’s paper [S] the function

P(u,z) =) (<u,z>-ugz)k
k

plays the role of a kernel.
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Let Q be a domain of holomorphy (see § 1.2) and #(£2, A) be the left 4-module of
A-valued holomorphic functions in Q2 endowed with the topology of uniform
convergence- on compact sets. Its dual module #4'(£2, 4) consists of all left 4-linear
analytic functionals in Q. Let Te #{'(Q, 4). We set

AT)(w) =< Tz, Py, 2) >,

u belonging to a suitable open subset Q* of RM+1, depending on €, defined by
1

m - m
Q* = {ueRm: VzeQ, luol(YIz?? +3 luzi <1 }.
: j=1

=1
Notice that if AT) is well-defined, then it is left monogenic in Q*.
Let

ARy,....Rp) = {ze CM: Iz;1 <R;, j = 1,..m};

m 1 m
II(Ry,....Rp) = {ue Rm+1. hJQI(Jz IRJ'|2 T + Y hyRyl < 1}
i=1 =1

It follows from Theorem 2.4.2 that if T is an analytic functional in A(Rj,...,Rp) then

KT) is a left monogenic function in TI(Ry,...,Ry). Furthermore, we have:

AT)(w) = D < Tz,(< u, z >-ugz)k >) =
k=0

' k! N ok
= M 0 km _ kO 1 m
Z kol...kn! ugO...upm < Ty, (-z) z,5.Z >
ko+...+km=k

Let A(Rl,...,Rm) the topological closure of A(Ry,...,Rm).

THEOREM 2.4.3 (Sommen, [S]). Let T € #;'(A(Rj,....Rm), A) .Then the
multiple Taylor series of the left-monogenic function P(T) converges absolutely in
II(Ry,...,.R,,). Conversely, let f be a left monogenic function in a neighbourhood of the
origin such that its multiple series converges absolutely in II(R;,....Ry). Then f = BT)
for some T € H(A(R},....Rm), 4).

It turns out that monogenic functions, in their construction, do not involve the
"complex” or "quaternionic" structure of the domain on which they are defined. Thus,
they do not constitute a satisfactory generalization of the idea of a complex holomorphic

function.



§ 2.5. Fueter regular functions.

In the case of a complex function f: Q — C one has that the fact of being holomorphic
can be expressed in one of the two equivalent ways:

)of=0 inQ;

ii) d(fdz) =0 in Q.
Equation ii) leads (via the Stokes's Theorem) to the Cauchy representation Formula.
DEFINITION 2.5.1. Let Q cH and f: 2 —H be an R-differentiable function in Q.

fis left (resp. right)-regular in Qif
< f of .of . of of .

fad of of . of . of .

fis left (resp.right)-anti regular if

of of .of .of of

G PN —alz o Efo i
(resp. o f = 3q = 9xg axli - szj - BX3k =0) inQ.

Let us remark that any left (resp.right) regular function is harmonic. In fact:

Clearly, the theory of left-regular functions will be entirely equivalent to the theory of
right-regular functions. For the sake of simplicity, we will only consider left-regular
functions, which we will call simply regular.

The operator @ = d; is called the Cauchy-Fueter operator and corresponds to the Dirac

operator of H=C +jC.

Let f=fo+1if; +jfa + kf3.

The Cauchy-Fueter equation of = 0 is equivalent to the following scalar equations :
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ofp ofy _ofy dfy =0 (2.5.1)
axo axl ax2 ax3
ofg ofi o df _ . (2.5.2)
0x; 0Xg Oxy 0Ox3
o of2 ofi dfs _ (2.5.3)
aX2 aX() aX3 aX1
o ofs df ofi _, (2.5.4)
aX3 aXO axl axz

A relation between regulars functions and holomorphy is illustrated by the following :
PROPOSITION 2.5.2. Letf: Q c H =C + jC — C be an R-differentiable
function . Then

fis a regular function if and only if f is holomorphic.
PROOF. Let f=fy+if), q=12 +jzp € Q where

71 =Xg +iX1 , Zp = X3 - ix3 . From equations (2.5.1-4), regularity of f is equivalent to:

ofy ofy

-éx—o- = 5; (2.5.5)
ofy of;
-a-x—l- =- -a-;; (2.5.6)
9& = - —ai (2.5.7)
0x2 0x3
o = ofi (2.5.8)
dx3  0Xp

(2.5.5) and (2.5.6) are equivalent to

*_y

0z

(2.5.7) and (2.5.8) are equivalent to

o o,

k7

If fand g : Q — H are two differentiable functions the following equalities hold:



dlftg) _Of  og

(2.5.9)
o9 93 og
3
oty _of g+ E 0% (2.5.10)
a‘q- aq axx
Hence, if a is a quaternionic constant then
é(g_a_)_ = % a (2.5.11)
aq o

and if f is a real valued function then

A3
0 dg oq

(2.5.12)

Let Ri(Q) be the set of all left-regular functions in Q. It is clear, from (2.5.9) and
(2.5.11) that Ri(€2) is an H-right module.

We deduce, from (2.5.10), that R|(Q) is not an algebra. We can proove it by taking, for
instance, |
f(@ =x0i-x1 , g(q@) =xqj - x2 , where q = xg +1 x; + jxg + kx3 :

f and g are (left) regular in H but

fg(q) = x1x2 - Xpxoi - Xox1j + xgk

is not regular. In fact
Q(—f-g-)- =2x0k# 0.
oq
Moreover, the product of a regular function with itself is not necessarily regular:
f(q) = ixp + jx; is regular

but
2(q) = 'X12 - x% is not.
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Non trivial affine functions are not regular. More precisely:
PROPOSITION 2.5.3. The only H- linear regular function is the zero function.

PROOF. From (2.5.11), a non zero right linear function qa is regular if and only if the

identity is regular.But
%20
aq

From (2.5.10) ,fora=0:

3
d(ag) _ z :ixa-?-g- — a +1ai + jaj + kak = -27 = 0.
a-q axx
=0

(the last equality follows from (2.1.1)).

Remark that in the case of complex functions, one chooses to call holomorphic the
functions f which satisfy the equation of = 0, instead of those, having similar
properties, which satisfy of = 0.

The choice of one of the two operators corresponds to the choice of one point in the unit
imaginary sphere of C. The situation in the case of H is similar, but there are many
more possibilities: for every choice of a point in the imaginary sphere S3 one can define
a class of " regular functions " for the corresponding operator. Of course these classes
are strictly related. In particular one of the choices correspond to the operator

d 0 . 0 )

o1= +i— - j— + k
aXO ax1 aX2 aX3

for which the class of " regular functions " contains the identity.

We end this section with a negative result concerning composition of regular functions.
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PROPOSITION 2.54. Ler Q be an open subset of H , and f: Q — H be a
differentiable function in Q. The following conditions are equivalent :

Dfig)=aq+b;

ii) for any regular function g defined in a neighbourhood of f(A), gof is regular
in 2.

See [P] for a proof.

In spite of these negative results, Fueter regular functions appear as the natural
generalization of holomorphic functions to the case of the field H of the quaternions, as

we will explain in the next Chapter.
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3.
FUETER REGULAR FUNCTIONS

§ 3.1. Some examples of regular functions

PROPOSITION 3.1.1. Let 21, Q2, Q3 be open sets in C and f, g, h be three

holomorphic functions
f:Q->C f=fy +ify,
g:P—-C g =g +ig,
h:Qg—)C h=h0+ih3,

where fy, f1, 80, 82, ho, h3 are real-valued functions. Let Q2 be the open set defined by
Q={q=xg+ix;+jxp+kxseH :xg+1ix;€Q1,x9+ixp €y, X0+ ix3€ Q3}.
Then the function
F: Q — H defined by
F(xo+1xq1+jxp + kx3) =
= fo(Xg, X1) + go(Xg» X2) + ho(xg, X3) + if1 (X0, X1) + j82(X0, X2) + kh3(Xg, X3)
is regular in Q2.
PROOF. For any q=xq+1ix1+jx2+kx3ze Q we have :
F(q) = (fy + if))(xq, ix1) + (89 + j82) (Xg» X9) + (hg + kh3) (X ,X3).
Since f, g, h are holomorphic in their domains the following relations hold:

ofy _ ofy of; ofy

= ; = - (3.1.1)
dxg 0xq dxg  0x »
ago _ g2 : 0g2 - dg2 : (3.1.2)
aX() aXZ aXO aX()
ah0=ah3 : dhs =_ah0 (3.1.3)
aXQ aX3 aX() aX3
We have

aF - afo + iafl + ag() +jag2 + aho +k ah3
dxg Oxg OxXg Oxg Oxg OXxp O0Xg
JF ofy +:8f1 )
0Xx; 0Xg ‘axl ’

2




oF _ dgo + .0g2 )
oxy 0xa Jaxz ’
dF _ dhg + kah3
aX3 aX3 aX3

Hence ,
?f_ oF .0F _OF oF

oq 9x%g ox1 0x%2 0x3

- afo ) af1 +1i af1 " afo + ag()_agg +j ago+ag2 + aho_ahy, +
dxg 0x dxg 0x dxg Oxp dxy  9X%p oxg Ox3

L%, dho
dxg Ox3
The result follows from (3.1.1) - (3.1.2) - (3.1.3) .

Roughly speaking, proposition 3.1.1 asserts that a " disjoint sum" of
functions is a regular function.

holomorphic

It has been showed, in §2.3, how to construct analytic functions with real coefficients

from holomorphic mappings.

We describe in what follows how to obtain regular functions by a slightly different

construction.

The Fueter transform of a holomorphing mapping (§2.3) is not necessarily regular. For

instance F(z) = q (see Lemma 2.3.1).

Let ¢ =& + in be a holomorphic function defined in an open subset Q of the upper half

plane I1,.

For q =xo+1 X1+ jxp + kx3 , let x=\/xf + x5 + x3 and 6(Q) =

as usual.

Then
o2 2 (1) 250

PROPOSITION 3.1.2. AF(¢) is a regular function from F(LQ) into H.

PROOF.([D]} We have :

JF(9) 0% o an +g§§_+(an L R I
g dxg X oxo X ox

ax X X

iX1+jX2+kX3

X
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Since 62 =-1 (Proposition 2.1.2) and the Cauchy - Riemann conditions

9% _om
dxg " ox
k_ o
ax dxg
are satisfied , we have
o)1
aq
Furthermore,

2 2
A(ﬂ)=1 o“n 9ty _,
X X ax(2) ox2

because 1] is harmonic.

The Laplace operator A is a real operator, hence

Jd 0

Ao—=—0A.
dq dq
As a consequence, Af is regular.

Remark that the " transform" of the Cauchy kernel % is the function given by
Ny =4l
AF(z)q) =-4 Iqi2

The function

is called the Cauchy-Fueter kernel and plays in this theory a role similar to that played

by the Cauchy kernel in complex analysis.
PROPOSITION 3.1.3. Let v(q) = (aq + b)(cq + d)-I with a*lb # c-1d be a

conformal transformation of the one point compactification of H andf : H — H be a
regular function. Then the function F defined by

-1
F(q) = %%2' fv(q) s regular.

(see [Su] for a proof.)
An application of the Proposition for v(q) = q! gives the
COROLLARY 3.1.4.Ler f:H — H be a regular function. Then the function
defined in H\ {0} by
G(o)f(q™h)
is regular.
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§ 3.2. Quaternion valued forms

A quaternion-valued p-form ¢ in Qc H is defined by:

O =0o+1¢1+jo2+kds
where the ¢; are real-valued p-forms with C*coefficients.
A p-form ¢ can be expressed as

(b = 2 aio“_ipdxil/\.../\dxip
0<ii<...<ip<3
where the B.ip, ATE C™ functions.
Let Sﬂ(Q) be the H left module of the quaternion-valued p-forms.

We define an exterior product A in a natural way

A ER(Q) x EHQ) — €S

and a differential ;

d: ER(Q) = 5@

such that
d2=0
d(@P A 09) = doP A @4 + (-1)P P A dd for wPe EF(Q) and wae ER(Q).

A quaternion-valued p-form can be regarded as a mapping from H to the space of
alternating R-multilinear maps from H x ... x H (p times) to H.

The exterior product of two differential forms acts as follows:

1
(wP A @) (hy,..., hpﬂ) = 17@'-2 8(p)OJP(hp(l)...hp(p))mq(hp(p+1)...hp(p+q))
p

for all hy,..., hpyq in H, where the sum is taken over all permutations p of p+q objects
and g(p) is the sign of p.
The differential of the identity function is
dq = dxg + i dx + jdx; + kdxs
the canonical real 4-form is
0 = dxgAadxjAdxaAdxs
so that
0(1,1,j, k)= 1.
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Define Dq as the 3-form which satisfies

< hy, Dq(hy, h3, hg) > = 0(hy,hy, h3, hy)
for all hy,hy, ha, hy € H , where <, > stands for the usual scalar product of R4,
Geometrically, Dq(a,b,c) is a quaternion which is perpendicular to a, b, ¢ and has
magnitude equal to the volume of the 3-dimensional parallepiped whose edges are
a,b,c. namely, we have :

Dq = dxjAdxyadxs -idxgadxaadxs +HjdxoadxiAdxs -kdxoadxiAdxy |

If f and g are two differentiable functions from an open subset of H into H then

df = a_fde+ —a—f—dxl + -a—fdx2+ -aidjg (3.2.1)
aX() 8x1 axz aX3
of
Dgnadf =-—86 (3.2.2)
oq
dfADq = g9 (3.2.3)
oq
Hence
f
d(gDqgf) = 5_(?_ f+g 9—- (3.2.4)
oq oq '
and (forg=1)
of
d(Dgf) =—9 (3.2.5)
dq
Furthermore,
dgaDq =-DgAadq = -46 . (3.2.6)

PROPOSITION 3.2.1. Ler a be a quaternion. For any hj, hy, h3e H:
Dq(ahy, ahy, ahs) = a lal2 Dq(hy,hp,h3).
PROOF([Su]). For any unit quaternion u, the map q—uq is an orthogonal transformation
of H with determinant 1. Hence
Dq(uhy, uhy, uhz) = uDq(hy,hj,h3).
Take u = alal-1. Using the R-trilinearity of Dq, we obtain
Dq(ahj, ahy, ahs) = Dq(laluh;, laluhy, laluh3)
= laBDq(uhy, uhy, uh3)
= laBuDq(hy,hy,h3)
= a lal2 Dq(hy,hp,h3).
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We conclude with a Proposition, whose proof is the same as in the complex case.

PROPOSITION 3.2.2([Sul). If f and g are continuous functions in H and
C:[0,1]3—H is rectifiable, then

léffDqgl < (max 161) (max g1 ) éﬁDql .

§ 3.3. The Cauchy-Fueter integral formula

The following Theorem extend Morera's theorem to regular functions. Its proof can be
found in [Su] .

THEOREM 3.3.1. Let f : £2 — H be a continuous function such that

aJI‘Jqu = 0.

for every relatively compact domain U in Q having a differentiable boundary. Then f is
a regular function.

THEOREM 3.3.2. Let f and g be two continuously differentiable functions in a

domain £2 and U < Q be a relatively compact domain having a differentiable
boundary. Iff is left regular in Q2 and g is right regular in Q then

[ epat = 0.
oU
PROOF. From Stokes's Theorem, we have:

f gDqf = f d(gDqf)
oU U

Then, applying (3.2.4)
d of
Jd(quf) = J(g_ +g—p=0

g aq
because
3 = gd =0.
aq dq



As a consequence of the last two Theorems, a function f: Q — H is regular if and
only if

quf= 0
ouU

for every relatively compact domain U in Q having a differentiable boundary.

The Cauchy-Fueter kernel G has already been introduced in §3.1. It is defined by:
_l - !
G(g) = 9‘7 " = 3q ( W)

Since - 2!11I2 is harmonic in H\{0} and A =9;00; = d;09; then G is left and right

regular in H\{0}.
We can now prove the Cauchy-Fueter integral formula which is one of the reasons of
interest in Fueter regularity.

THEOREM 3.3.3(Cauchy-Fueter integral formula).

Let f be a continuously differentiable function from an open subset Q2 of H into H. Let
Dc < Qbe a relatively compact subset of $2, having a differentiable boundary.

For any qpin D we have

g0 == | G(a-q0)Dat().
274 3D

PROCF. Let € > 0 be such that
ﬁ(qo,e) ={qe H:lg-qol<e} cD.
Let U = D\B(qp,e). Theorem 3.3.2 implies that

| 6a-a0Daf@ = [ Gla-qoiDat(e) - -; j(q -G0)Daf(g).
oD Iq-qol=¢ €% 1q-qol=¢

Stokes's Theorem , (3.2.2) and (3.2.6) , imply

L [ (G- L [dganat@ -2 Jorc.
et Iq-qol=¢ et Iq-gol<e E lq-qol<e

. 72e4
Since Vol(B(qo.£)) ==—5— we have hm — Jef(q) 2n2f(qp).
Iq-gol<e
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It follows that any cl regular function is a C° function . As in complex analysis,

however, the condition on f can be weakened by using Goursat's dissection argument

([PD).
§ 3.4. Regular power series

Analogously to what happens for holomorphic functions, regular functions can be
expanded in series with respect to homogeneous regular polynomials.

Let v be an unordered set of n integers {A1, ...,An} where 1 < X; <3 ;v can also be
specified by three integers ny, np, n3 ( ny+no+ns = n) where n; is the number of i's in
v. We'll write v = [ny, ny, n3]. There are %: (n+1)(n+2) of such v's. We denote the set

of all of them by Op. They are to be used as labels; when n=0, so that G,=C we use
the suffix 0 instead of & .
We write for the n-th order differential operator
av
T S n1n.ma 13
Bxl axz ax3

N

If G is the Cauchy-Fueter kernel, let us set
Gv(@) = vG(@) ;

moreover, let us define
1 . . . .
Py(q) = HTE(me- Xap)--(X0lp - X3 ) where q =Xo+1x1+ jX2 + kxs,

. n! . . ' '
where the sum is taken over all 7 different orderings of nj 1's, np 2's,

nilnl ng?
n3 3's.

The polynomial Py is homogeneous of degree n and Gy is homogeneous of degree -n-
3. Let Up be the right quaternionic module of homogeneous (left) regular functions of
degree n.

PROPOSITION 3.4.1. The polynomials Py (ve Oy) are regular and form a basis for
Un. If feUy, then

VqeH : f(@ = D, (-1)» Py(q)dy f(q).

© Veoy
We need two Lemmas.

LEMMA 3.4.2.Let f be harmonic and homogeneous of degree n over R. Then f is a
polynomial.

LEMMA 3.4.3.dim U, = -;—(n+1)(n+2).

A proof of these Lemmas can be found in [Sul.
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PROOF of Theorem 3.4.1({Sul).Let f be a regular homogeneous polynomial of degree n.
Since f is regular

of . of . of of

+1 + ] + k =0
aXO ax1 aX2 aX3
and since it is homogeneous,
of of of of
Xp + X + X3 + X3 = nf.
dxg 0x1 oxa dx3
Hence
3
., of
nf(q) = Y, (xa - Xoia) —
A=1 XA

f
-a--is also regular and homogeneous (of degree n-1), so we can repeat the argument;
Xr

after n steps we obtain

1 . . onf
fl@ = ~ z (-xoip, +Xy)...(-Xoip +X3 ) WQ)
Alseemin 1

= > (-1)n Py(q)dyE(Q).
veoy,

Since f is a polynomial, dyf is a constant, thus any regular homogeneous polynomial is
a linear combination of the Py's.
Since, from Lemma 3.4.1, the elements of Uy are polynomials, the Py's span Up and
hence they form a basis of Uy, . In fact, by Lemma 3.4.2, there are (dimUy) of such
polynomials.

#

The "mirror image" of this argument proves that the Py's are also right regular and that
if fis a homogeneous right regular function then

f(@) = 2, (-1)ndyf(q)Py(q).
VEOR

In the case of one complex variable, we have
(1-gl=3 qn for Ig<1,
=0

and the series converges absolutely and uniformly in any ball Igl <r <1.
This gives rise to an expansion of G(p-q) in powers of p-lq; identifying it with the
Taylor series of G about p, we obtain the
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PROPOSITION 3.4.4. The expansions
Gp-9=2, 2 GupPy(@ =2, 2, Py(@Gy(p)
n=0 veoy, n=0 veoy,

are valid for [q/ < [p/ . The series converges uniformly in any region
{(p,q) : g/ <rlp/} of H? withr < 1.

PROOF.
Gp-9 = -(P-—?l)—
_ (1-p-ig)-lp-li(1-p-ig)-2
- Ipl2
= > f(q)
n=0
where

19\ p-1 (p-1g)™2 (p-1g )03
f(q) = E @ " p (ﬁ)'zcv (P9

v=[nj,ny,n3}e 6y
The series is uniformly convergent for Ip-lgl <r <1, and f" are homogeneous

polynomials of degree n. Furthermore,

L )

aq aq
are homogeneous of degree n-1 and hence they are zero for Igl < Ipl since G(p-q) is left
and right regular in q. Proposition 3.4.1 implies that

Q) = D, (-1)m 3yf(q)Py(q)

VEOn

> (-1)n Py(q)dyn(q)

veGs,

Clearly, (-1)" dyf(q) = 3yG(p) so the proof is complete.

Now, classic arguments of complex analysis adapted to this case and Proposition 3.2.2
give:

THEOREM 3.4.5. Suppose f is regular in a neighbourhood of 0. Then there is a
ball B with centre 0 in which f(q) is represented by a uniformly convergent series

f@=2, 2, Py(qay

n=0 veoy

where the coefficients ay are given by:

av === | Gy(@)Daf(@) = (1)"dy KO) if ve .
21% 3B
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§ 3.5. Regular series in Reinhardt domains

DEFINITION 3.5.1. A domain Qc Hn is called a left-Reinhardt domain if
Y(q1, oG Q, V(t1, wotpe H, I 1=1(31 =1, .,n) = (qit1, -...qatn)€ Q

REMARK. In dimension 1, the only Reinhardt domains are the open balls. We
conjecture that the following result, proved here in dimension one, holds in several

quaternionic variables.
THEOREM 3.5.2. Let 2 be a left-Reinhardt domain containing the origin and let
f€ R (£2). Then the series of f at the origin

fQ)=2 2 Py@ay ;  ay=(-1)dy f0) if vea,.

n=0 veo,
is normally convergent in 2.
PROQF. Write Q = UOQS where
&>

Qe = {qe Q: dist(q,0Q) > €lql }.
Notice that

(1) QecQq if n<e,
(2) 0eQe,
(3) Qgis open for any £>0.

Let Q; be the connected component of Q¢ that contains the origin. Since Q is

connected, we have
4) Q=uQ’.

20 £
Remark that
%) geQ =q(l+e)eQ,

(6) qu;:(VtEH, Itl=1+e = qte Q).

For any € >0 let Tg= {teH : It | < 1+€}. Remark that the function g—1f(qt) is well

defined for te dT¢ and qe Q;. Hence the Cauchy integral

fe: Q; — H given by

L [ 6-1)Dat(q)
212 T,

fe(q) =

1s defined.
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i) fe agrees with f (restricted to % ") in a neighbourhood of the origin.

We have

£,(0) = —15 | G@-1)Dgt(0) = £0)
27 aT,

since from the Cauchy-Fueter representation formula (Theorem 3.3.2)

f G(t-1)Dq = 1.

E

Let o be such that
B(0, 8) c c Q;

2752

and let
0#qe Q;

be such that

Igl < S
T T
Let Q = gt in the integral representation formula of fe. It follows from Proposition

3.2.1 that

f@=—= | G(g1Q-1)glg 2 DQFQ)
272 |Qi=(i+e)lq

Since
G(@@'Q-1)qligt? =G(Q-q)
then

1
fo(q) = | 6(@-9pafQ.
274 |Ql=(i+e)lql
Since, for the choice of §, we have
(1+e)lgl < &

we can apply Theorem 3.3.2 for U = {qe Q: (1+¢)lgl < IQl < 8}. Hence

fe@==— | GQeDaiQ)
2 |Qi=5

It follows from the Cauchy-Fueter integral formula (Theorem 3.3.3) that

fe(q) =f(q) forIgl <8.
ii) feagrees with f (restricted to .(% ") in a neighbourhood of any point qo #0.

For qo# 0 let d be such that
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B(qo,0) c Q; ;
0¢ B(qo,d) ;

£
d<—Iqggl .
2+€ do

Let qe B(qo,9).

By the same argument used in i) we have

fel@=—= | GQaDAQ
2T% |QI=(1+e)lq]
Remark that

B(q0.8) ¢ B(O, (1+&)laD).
In fact, we B(qo,d) implies Iqol - & < Iwl < Iqol + 8. Since & < f—- lqql then
+€

iwl < 228 100 = (1+ &) 1ol - ——1lqol |< (1+ £)(Iqol - &) < (1+ ©)igl
2+€ 2+€

Again, Theorem 3.3.2 gives, for U = {we Q; :lwl < (1+€)lgl and Iw - gol > 8 },

fo(@) =51—— [ GQ-9pQtQ .

T2 |Q-gq I=5

Hence, from the integral representation formula (Theorem 3.3.3), fe(q) = f(q) for
qe B(qo,9).

iii) fe ( = f) has a normally convergent regular series expansion in fg ",

We have
t-1)-1
= 2 ( tl )ﬂl(t-l)ﬂ2+n3+1 It 12
n1,n2,n3

with normal convergence when te dTg.

Since qt belongs to a compact set in Q if q belongs to a compact set in Q; and te 0T¢

we have, using the same techniques as in complex analysis ([V]) and Proposition
3.3.2,
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f(q) = ‘zja ga(q)

where

2
2n =[n1,n2,n3le oy
AT

Let Q =qt (g=0). We have

gn(q) =L J >l yMrnynzmstly I2Dqf(qt) if v = [n3, ng ,n3].
A%

ga(q) = —— J > (QTg)"(Q 1" ™QUQIDQAQ)

2 1;;2 v=[ni,ny,n3lecy
Q=(1+€)lg
Remark that , for Q fixed ,

q)g(Q) = Z (QT(i-)nl(qu)ngﬂlg, Q’l lQ'llz

v=[nj,ny,n3lecy

is the homogeneous polynomial of degree n in q in the expansion

oo

GQ-9 =2, 2, Py(q)Gv(Q).

n=0 veg,

Hence , for any n,

L. n
B@=75  [($@DAQ
IQI=(1+¢g)iql

is regular in Q; (just apply the definition of regular function).

iv) the series expansions of f and f¢ agree in a neighbourhood of the origin.
Using a similar argument concerning series expansions of homogeneous functions we

see that, for a fixed q in Q; , q)ré(q) is a right-regular function in Q. Then by theorem

3.3.2 we have , for a small § and Igl < & :

_ L
B =7 ($@DQAQ
IQI=5

__1
2n2

>’ Py(@)Gy(Q)DQL(Q)

VEGp

1Ql=8
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=Y Pv@ = | GQDQIQ

Ve GOy 27% 1Qi=5
=3 Py(q)(-1"3y(0) (Theorem 3.4.5).

VEOn

Since, from step iii) all g, are regular in the domain Q; , the last equality holds in Q;

by the identity principle.

§ 3.6. Regions of regularity

DEFINITION 3.6.1. An open subset L2 of H is called a region of regularity if the
following property holds:
There do not exist two nonempty open sets £2; and £ such that:

i) £ is connected ,

i) QcHns,

iii) $» < 2, .
so that for every function u that is regular on 2 there exists a function up regular in £2;
and such that u = up on £2;.

<
\J

C Qp NICNIQ

PROPOSITION 3.6.2.([C], 111.2.3) Let L2 be an open subset of H, £2; and £2; be
two domains such that 2; c Q; N Q2 and Qp @ 2. If C denotes the connected

component in £ N L2 containing £ then
QHLNIdCNiR=T.
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DEFINITION 3.6.3. An open subser £2 of H is regularly convex if, for each
relatively compact subset K of $2, the regularly convex hull of K in £2

Ro=(qgeQ: Vie Ry(Q) , Q)< sup 1w)1 )

is relatively compact in 2.

We prove that any open subset of H is both regularly convex and a region of
regularity.

PROPOSITION 3.6.4. Any open subset of H is regularly convex.

PROOF. Let K < < €2 be arelatively compact subset of Q.

i) R is bounded.

Let p2= sup max (xg+xi2)
XQ+ix1+jxo+kx3eK | i=1,2,3

and

Pyr(@) =xqip-xp for A=1,2,3.
Since p = sup  Ifa(w)l we have :

A=1,2,3,weK
A

qeKg = lgl < P1(@l + IP2(q)l + P3(q)l < 3p.
ii) ¢l (R) c Q.
Without loss of generality, suppose that K is closed. Following [K], let

r = dist(K,0Q0).
Suppose that we (2 satisfies

dist(w, d€) < r.
Choose w'e 0€2 such that lw -w' | = dist (w, 0Q) .
Consider the regular function defined in Q by

_w'

= -w) = .9_.__
Since, for every q in Q,
1
|f(q)| = m
it is clear that

qgeK = [g-w'l 21 = If(q)! S;lg s

hence

1
sup If(@Q)l <=,
qellg @ 3

whereas

A
If(w)l = I—\;V-;lmp r% . Then weRo.




PROPOSITION 3.6.5. Any open subset of H is a region of regularity.
PROOF. Let Q be an open set which is not a region of regularity. There exist two
domains Q;and Qy , Q< QN Q and Q& Q so that for every function u that is
regular in Q there is a function u,, regular in Q, such that u =uj on ;. Let C be the
connected component in Q9 N Q containing Q; and gge Q; N IC N Q= D by
Proposition 3.6.2). ‘
The Fueter Cauchy-kernel G(g-qo) (which has been defined in § 3.1) is regular (in q)
on Q. Any regular function G, in Q, such that G = G; on £2; should satisfy the
equalities:

IGa(qo)l = cllier?2 IG(@)l = oo . The assertion follows.

q—dqo

If an open set Q is a region of holomorphy (§ 1.2) there exists a function f,
holomorphic in Q that is singular at any point of the boundary of Q ([K1]). The proof of
this statement is based on the fact that f is holomorphic in € for every positive integer
n. Since, as we showed in § 2.5, this property does not hold for regular functions,we
are not yet able to prove a similar statement.

§ 3.7. A vanishing cohomology theorem

We defined Ri(Q2) to be the set of regular functions in Q. Taking the usual restriction
mapping one gets the sheaf & of regular functions.

It follows from Theorem 3.4.5 that any element of the stalk of & at a point qgis given
by aregular series,

D Y Py(q-qo)(-1)"dvE(qo)

n=0 veg,
uniformly convergent in a neighbourhood of qq.
In §3.6 we proved that any domain of H is a domain of regularity regularly convex.
In the complex case, analogous properties (§ 1.2) ensure that all the positive
cohomology groups vanish (§1.4).
We present a similar result, concerning the first cohomology group of ..

THEOREM 3.7.1. Ler 2 be a domain . Then
H'@Q, ®)=0.
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LEMMA 3.7.2. Let U be an open subset of H. Let fe Ck(U) be an H-valued
Sunction. There exists ge C{U) such that
og=f inU.

The proof of the above Lemma (which can be found in [P]) is an adjustement of the
well-known proof concerning holomorphic functions: it is first shown that the equation
can be solved if f has a compact support, then U is approximated with a sequence of
compact sets.
PROOF (of Theorem 3.7.1). Let U = (Uy;c1 be a locally finite covering of Q and
g = (gipije1 be acocycle in CL(U, R) , thatis, for every i, j, kin I:

8ij * 8jk = 8ik 5

gijis regular on UiN Uj .
As itis evident, g is a cocycle in C1(U, ). Hence, by Proposition 1.4.1 and by the
remark preceding it, g is a coboundary in CL(U , C*). It follows that there exists , for
every iel, a C°° function ¢; defined in Uj such that

gij=0;- ¢; on UyN Uj, for i, je L

Since, for every i, j;

0= §gij = 90;- gd)J on Uin Uj
then the functions

(§¢ﬂie I
define a regular function h in Q which agrees with 9¢; on Uj.
By Lemma 3.7.2 there exists a ! function f in Q such that

of=h.
Let f; = ¢; - f. We have

9(f) =9¢; -9f =0on Uj, iel
hence the functions f; are regular on Uj.
Now,
fi-fi=¢;-¢; =gj on UynU;  fori, jel,
hence g is a coboundary in C1(U, R). It follows that HI(U, R) = 0 for any covering
U of Q .This implies that H/(Q, ®) = 0. |
#
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§ 3.8. Domains of convergence

Since a regular function can be expanded in a series, the domain of convergence of
these series become of natural interest.
DEFINITION 3.8.1. The domain of convergence associated with a regular series

oo

S@=2, 2, Py(@ay

n=0 neo;,
is the set of all points in a neighbourhood of which S converges absolutely and
uniformly.
In § 1.3.3 we stated the classical Abel's Lemma for holomorphic functions. A good
Abel's Lemma in the case of H should ensure that if a regular series converges at a
point q then it converges normally on a domain whose boundary contains g.
In [T] we have:
PROPOSITION 3.8.2. Let g* = ix* + jy* +kz* be a purely imaginary quaternion
such that x*y*z* # 0. Suppose there exists M 2 0 such that

Py(@®)llayl<M for any v.
Then the series

f@Q=2, 2 Pv(@ay

n=0 veoy
converges normally in the open set

. . 2 2
{g=x0+1ixy +jxp +kx3ze H :x§+xfsIx*lz,x§+x§_<_ly*lz,x0+x3 < Iz*[2}.

As it is shown in [T, this is the best possible result with that kind of domain.

It seems also natural to ask weather an Abel-type Lemma holds with respect to others

domains, for example for the balls associated with the two norms:
1

lt+1ix +jy +kz|= (24 x2+ y2+ 222 and
1 1 1
It +1x+jy +kz Il = max {(2+ x2)2, (2+ y2)2, (2+ z2)2}.

The two following examples give a negative answer in this direction:

EXAMPLE 3.8.3. Abel’s lemma does not hold for the | . | norm on H.
Let A ={q=t+ x+y+kze H: t2+ x2< 1} and f : Aj—H defined by

f(t+i x+jy+kz) = ‘1—:(-{1;:;-(-)- .

f is a regular function in A . Its series expansion



f(q) = 20 (ti-x)n

converges normally in Aj.

Now, take " =5+iz+j5+ 10k and q-= 10,

. 1N /1N
Since (—2—) + (7) <1 then
[ converges at g*.
Furthermore,
la-/</q*,
but 10>1 , hence
the series of f does not converge at q -.

EXAMPLE 3.8.4. Abel's lemma does not hold for the || . || norm on H.
Let A= { t+i x+jy+kze H : t2+ x2+ y2+ 22 < 1}, ¢* and q- be such that:

q*e A 1
qeA )
g li<igll 3)

(For instance, g* =%+ i%-+j er-+ k% andq = %+i-2%-+j -2%-+ k'i%)‘
Now,let Q=Q;=A and Q=AuU{qe H:liqli<lig*ll }.Then
i) Q5 is connected ,
infact Aand {qe H:llqll<llg* Il } are both arcwise connected and contain the origin;
N cHnNnQ;
iii) Qy ¢ Q,
in fact, from (2) and (3), g e Q\Q.
A is a domain of regularity (Proposition 3.6.5): there exists a function g, regular in A
which cannot be extended to Q,. Since A is a Reinhardt domain ( Definition 3.5.1) and

Theorem 3.5.2 holds then the series expansion of g at the origin

co

g@= 2, 2, Py(@(-1)ndyg(0)

n=0 veg,
which is normally convergent in A converges at g*. Suppose that the series of g

converges normally for lIgll<lig*ll:
then the series of g would converge normally in . A contradiction.
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As we remarked in § 1.3, as a consequence of the classical Abel’'s Lemma any domain
of convergence of a complex power series is a Reinhardt domain. The analagous
theorem does not hold in the regular case over quaternions:

PROPOSITION 3.9.5. The domain of convergence of a regular series expansion is
not necessarily a Reinhardt domain.

PROOF. Let Ay = {q = t+i x+jy+kze H : t2+ x2< 1} and f : Aj—>H defined by

f(t+i x+Hy+kz) = -i-_-z-tl-i-_-)-(-)- .

The function f is a regular function in A which is the domain of convergence of its

series expansion

oo

f(q) = 2, (ti-x)m.

n=0
Hence the series expansion of f converges at
w1, .1 .
q*=5+ix+ 10
but doesn't at

qtie-104itekl
q-q*1--10+12+k2.

A few words about the zero-set of a regular function.
Opposite to what happens in the complex case or in the case of quaternionic analytic
functions with real coefficients ( § 2.3) this set seems to be not "regular”.

A regular function whose zero-set has an accumulation point is not necessarily zero: let
f (xo +1 x1 + jx2 + kx3) = X1X7 - X0X21 - X0X1]j -

Its zero-set, Z(f) is the union of the three 2-planes
{x1=%x=0}U {xo=%x2=0}U{x;=%x=0}.

The zero-set of a regular function can have dimension 1. This is the case of
f(tH x+y+kz) = -t -x + it - yj
whose zero set is the line {t=x =y =0}.

A regular function can have isolated zeros, for instance the regular function
t+ix-jy+kz
has an only zero .
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§ 3.9. A Reflection principle

The analogous of the Schwarz Reflection Principle holds for regular functions over
quaternions:
THEOREM 3.9.1. Let Q2 be a domain, symmetric with respect to the hyperplane

generated by {1, j, k} and to the three 2-planes generated by {jk}, {i,k}, {ij}; thatis:

gq=t+ix+jy+kzeQ =>-q=-t+ix+jy +kze Q (3.9.1)
= igi=-t+ix - jy-kze Q (3.9.2)
= jgj=-t-ix+jy-kze Q (3.9.3)
= kik=-t-ix-jy +kze Q (3.9.4)

Let €24 be the part of 2 contained in the upper half hyperplane, i.e.

Q. ={q=t+ix+jy+kzeQ:t>0}
and let Z be the set defined by

Z={q=t+ix+jy+kzeQ:t=0}.
Then, a function f=fo+ ifi + j> + kf3 : QU X — H (where fp, 1, f2, f3 are real
valued) which is regular in Q. , continuous in Q,U X and real valued on X can be
extended to a regular function F = Fo + iF; + jFy + kF3in Q in such a way that, for
any q in £2, ’

F(q) = Fo(- q) - iF;(iq1) - jF2(aQ)) - kF3(kgk).

PROOF.Let Q.=N\Q,UX={q=t+ix+jy+kzeQ:t<0}andlet F: Q— Hbe
the function defined by

F(Q) = f(q@) = fo(@) +if1(@) + jf2(q) + kf3(q) if g& QU %,

F(q) = fo(- T ) - ifi (i) - jE2(@) - kf3(kqk) otherwise.
Remark that this definition makes sense, since the symmetric relations (3.9.1-4) hold.
As a consequence of being real valued in Z, F is continuous in . Furthermore, the
Cauchy-Fueter conditions (2.5.1-4) are satisfied in Q4 U Q.. We only have to check
regularity of F in X. Let U be the interior of a parallelepiped properly contained in £2.
If UNX =9 then Uc Q, or Uc Q._, hence

[pE=0 ()
oU

By Theorem 3.3.2. Otherwise, let
U=(a,b)xIj xI)xIs
wherea<0<Db and I; are open real intervals, j=1, 2, 3.
Let
II=UNE={0} xI; xInxIs
and forn=1, 2, ... let
U,=U uU,
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where
Ur+1= {q=t+ix+jy+kzeU:t>hl- }
and
U, = {q=t+ix+jy+kzeU_:t<--I-11- }
From Theorem 3.3.2 we have:
IpeF= [DgF+ [DeF=0 (2
Un auT au;
since Fis regularin Q, U Q..
We wish to prove that f DgF = 0.
au

LCtDn=(-%-, ;11-) x I; x Iox Is.

t
i 2 Dw
|
£ L
.Y P
P
el i
0 9 i ) —— A 7\
- O Dn
L e
R

Then, forn=1, 2, ... we have:

| DeF@ - [ DaF@ = [ DgF@@) = [ Darcq) +
18] aUp D a*Dy d

where
Dn= [ = }x T xIx I
&Dnz{-%}xllxb_x 13,
anaDn\(a{.DnUa—Dn ).

Therefore, forn =1, 2, ...

| | aF@ - [Dar(q) <! [ Dgrg +
au aUp d*Dp d

j DqF(q) +
+

C{ DqF(q)

| aF@) 1 +1 | Darey) | @3).
~Dp Cn
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It is clear, by using an absolute continuity measure argument and the continuity of F,
that

im | DaF@ =0 @)

n—eo

Remark that 0Dy and 0"Dy have opposite orientations. Suppose IT has the same
orientation as d*Dy. We have, by a change of variables:

_ L
a+[,[anF(q) - [ paF@+ )

¥}
and
= - L
a—f)[anF(q) = Hf DgF(q = )
Hence
’ 1
a+13(anF(q) + a_IJ;anP(q) = fDq(F(q+ 1;) - Flq- = )).

I

Remark that F, being continuous in £, is uniformly continuous in the closure of U.
Therefore, for any positive number € there exists ng such that

Vn2ng - |F(q+}-1l-)- F(q—;ll-)l < £ for any q in Z.

| [ Dql maxIFi
I II

Then, Proposition 3.2.2 implies
N 1 1 |
Vn2ng : Dq(F(q+ =) - F(q- = )) <e.
I
This proves that

lim fDq(F(q+ L) Fg- & )=0 6.
II




Now, it follows from (1), (2), (3), (4) and (5) that

| D4F = tim | DqF(q) = 0 for any parallelepiped strictly contained in Q.
aU n—e 30,

With a classic argument, one can extend this conclusion to any domain V < £, apply

Morera's Theorem 3.3.1 and obtain the assertion.
#
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