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ABSTRACT 

Neurons are highly polarised cells that migrate elongating their axon to reach distant synaptic 

targets. In the developing nervous system they travel along highly conserved trajectories defined by 

the molecules present in the surrounding environment, the so-called guidance cues. They can exert 

the function either at short range by direct contact or at long range, secreted by surrounding and 

target cells to create gradients that can be sensed by migrating axons.  

During the PhD course I focused on investigating the spatio-temporal properties of neurons in 

response to chemical signals. I have studied in detail the morphology changes of Growth Cones 

(GC) upon local stimulation and the dynamics of signalling cascades regulating actin dynamics, with 

a particular attention on Rho-GTPases. Moreover I investigated the morphology, molecule 

composition of axonal Actin Waves (AWs), as well as the role of Rho-GTPases in their inception and 

movement kinetics. In these studies I adopted various techniques: from live-cell imaging of the actin 

dynamics in AWs to a combination of FRET imaging and optical manipulation to image the Rho-

GTPases activation in GCs real time upon local chemical stimulus delivery. 

The cellular module designed to perceive the guidance stimuli is the Growth Cone (GC), a 

specialised structure at the tip of the growing axon divided into three regions. The central region 

contains organelles and has a structural function, the transition region is formed by acto-myosin 

contractile arcs and the peripheral region, formed by thin filopodia and veil-like lamellipodia 

structures, that sustain dynamic protrusion and retraction cycles and express on the surface all the 

receptors to sense the presence of guidance molecules gradients. 

The major component of these structures is actin, a molecule that polymerises to form filaments that 

can be arranged, with the cooperation of a wide variety of actin-binding molecules, into different 

architectures. Actin filaments are polarised structure with the “barbed” end oriented towards the 

leading edge and a “pointed” end towards the central region. Filaments undergo continuous cycles 

of polymerisation at the barbed end and depolymerisation at the pointed end, creating two dynamic 

behaviours called treadmilling and retrograde flow. The relative prominence of one process over the 

other is regulated by external signals that are sensed by receptors and initiate different intracellular 

signalling cascades. These pathways involve a lot of diverse proteins at various levels, but almost 

all of them pass through a “bottleneck” step: the Rho family of Guanosine Tri-Phosphatases (Rho-

GTPases). 

Rho-GTPases are molecular switches that cycle between activated, GTP-bound state and an 

inactivated, GDP-bound state. Their dynamics are modulated by upstream signals, and in turn they 
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interact with downstream effectors to propagate the signal transduction to the actin cytoskeleton. A 

single Rho-GTPase can be regulated by many different molecules, called Guanosine Exchange 

Factors (GEFs), GTPase domain Activator Proteins (GAPs) and Guanine Nucleotide Dissociation 

Inhibitors (GDIs), and activate a wide range of cellular responses, depending on the cell type and 

the stimulus received. They are best known for their roles in the modulation of cytoskeleton 

rearrangements, cell motility and polarity and axon guidance. They exert their effect mainly by 

affecting actin dynamics, not only in the growth cone but also in the axon shaft. 

A particular behaviour of the polarising neuronal cells is the extrusion of GC-like structures that travel 

along the neurite shaft towards the tip and fuses with the GC to promote elongation. These structures 

are called Actin Waves (AWs): they have a mean velocity of 2-3 µm/min and appear in a stochastic 

manner in all the growing neurites with a frequency of about 1-2 waves per hour. Their propagation 

is strongly dependent on the dynamic behaviour of the actin filaments, with the balance between 

barbed end polymerisation and pointed end de-polymerisation at its basis. Therefore all those 

proteins involved in the regulation of actin might have a prominent role in their structure and function, 

including the RhoGTPases. 

The main achievements and findings of my PhD are the following: 

1. I combined successfully for the first time FRET imaging with optical tweezers to provide a 

strong tool to study dynamics of intracellular signalling molecules upon local delivery of 

chemical attractants and repellants. The versatility of the optical tweezers, that have the 

possibility to exert both contact stimulation and local gradient delivery, along with the 

precision and high spatio-temporal resolution of the FRET, allowed us to highlight fine spatio-

temporal dynamics of Rho-GTPases in live cells. 

2. Local repulsive stimulation by semaphorin-3A triggers local retraction of the side of the 

growth cone facing the stimulus, with distinct RhoGTPases spatio-temporal dynamics: 

a. I showed, in accordance to previous studies, that the stimulation triggers rapid 

activation of RhoA within 30 s in the central region of the growth cone, causing a 

delayed retraction (100-120 s from the stimulus application) that correlates with RhoA 

activation levels correlate with the induced morphological changes; 

b. I demonstrated that semaphorin-3A local delivery causes a decrease in Cdc42 activity 

within 60 s from the stimulation. Activity levels vary in a wave-like retrograde manner 

that proceeds almost in synchrony with the retraction. In few cases the stimulation 

induced  the formation of active Cdc42 waves that propagate in a region away from 
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the local stimulus and promote the spawning of new filopodia and lamellipodia, 

suggesting a role of Cdc42 in travelling actin waves; 

c. I showed that local stimulation with beads coated with semaphorin-3A induces the 

formation of active Cdc42 waves propagating from the GC edge to the central region 

with a mean period of 70 s. Same “travelling” waves have been found in some cases 

of spontaneous retraction in the neuronal cell culture, but they oscillate with a longer 

period (110 s).  

These overall data show a more complex behaviour for Cdc42 than RhoA, and provide 

evidence for a higher degree of complexity in the Rho-GTPase signalling network. 

3. Actin dynamics in neuronal actin waves are strongly dependent on Cdc42 and Rac1 

activation dynamics. By means of immunofluorescence, STED nanoscopy and live cell 

imaging with inhibitors for different molecules, we showed that: 

a. In accordance with previous studies, actin waves are growth cone-like structures that 

generate at the proximal segment of neurites and then propagate along the shaft 

towards the growth cone. When it reaches its vicinity, the growth cone retracts and 

the two structure fuse together to form a new, bigger and more dynamic growth cone 

that elongates again; 

b. Myosin-IIB is localised at the rear of the propagating wave, suggesting a possible role 

of myosin in their dynamics. This role has been confirmed by further experiments in 

which myosin inhibition with 20 µM blebbistatin highlighted the disruption of the GC-

like morphology of actin waves and the disappearing of the GC retraction upon wave 

incoming at the neurite tip, along with an effect on AW frequency and velocity; 

c. Membrane tension has a role in maintenance of AW morphology and affects also AW 

initiation and propagation. Addition of 250 µM of β-cyclodextrin disrupted the GC-like 

morphology and decreased the AW area of more than 50%. Moreover the treatment 

decreased the velocity and significantly the frequency of AW initiation, suggesting a 

major role of the membrane in AW dynamicity; 

d. Cdc42 and Rac1 have a strong impact on the initiation dynamics of the actin waves. 

The frequency of actin waves per hour is significantly reduced under 10 µM of both 

Cdc42 (ML141) and Rac1 (EHT1864) inhibition: from 2-3 waves per hour to about 0,5 

and 1 wave per hour, respectively. Moreover, addition of a high concentration (30µM) 

of ML141 stopped the AW sprouting almost completely, demonstrating a prominent 

role of these Rho-GTPases in actin wave initiation at the initial segment of the neurite. 
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e. Cdc42 and Rac1 have a role also in the propagation dynamics of actin waves. 

Inhibition of both GTPases resulted in a significant decrease in the velocity of actin 

waves, from a mean of 2,2 µm/min to about 1,5 µm/min and 1,2 µm/min respectively. 

Moreover we observed a disruption of the GC-like morphology of AWs, as well as a 

reduction in the mean area of about 50%.  

These results provide new insights for a prominent role of Rho-GTPases in the overall 

dynamics of the actin cytoskeleton within the travelling waves, in perfect accordance with 

previously reported data. 
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INTRODUCTION 

The growth cone (GC) is a specialized structure located at the distal tip of growing axons which is 

fundamental for correct axonal migration and neuronal network formation. It was firstly discovered 

and described by Santiago Ramon y Cajal as “a concentration of protoplasm of conical form, 

endowed with amoeboid movements” (Ramon y Cajal, 1890). However, the proof that the growth 

cone is indeed a motile structure came in 1907, when Harrison, using long-term culture and time-

lapse observation, demonstrated that axons elongate from a single cell body with the growth cone 

at its tip (Harrison, 1907, Dent and Gertler, 2003).  

The highly organized but dynamic structure of the GC reflects his purpose: guiding the axon towards 

its correct post-synaptic target. Previous morphological studies have identified three distinct regions: 

the peripheral (P) domain, the transition (T) zone, and the central (C) domain, the internal region of 

the GC, where thicker structures and organelles are located (Dent and Gertler, 2003; Lowery and 

Van Vactor, 2009) (Fig 1). These regions and features can be distinguished in every GC, regardless 

the shape, because of the cytoskeletal elements that underlie its morphology. The P domain is 

enriched in actin that can organize into long bundled filaments (filopodia) as well as mesh-like 

networks (lamellipodia) that contribute to the dynamic motility of the GC. The C domain contains 

stable, bundled microtubules (MTs) that enter the GC from the axonal shaft. The T domain contains 

contractile acto-myosin structures (actin arcs) to form a transition ring between C and P domain that 

regulates relative C-P domains dynamics (Lowery and Van Vactor, 2009; Vitriol and Zheng, 2012) 

(Fig. 1). 

 

Figure 1: Schematic diagram of the Growth Cone and its cytoskeletal structure. (Lowery and Van Vactor, 2009) 
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The GC can change its shape dramatically by constant re-shaping of its P domain, where filopodia 

and lamellipodia constantly undergo rapid protrusion/retraction cycles generating the traction force 

necessary for neurite steering (Forscher and Smith, 1988; Zheng and Poo, 2007). Phase contrast 

studies in the early 80’s showed a link between the GC rate of advance and its shape, particularly P 

domain dynamics (Argiro et al. 1984, 1985; Dent and Gertler, 2003). With the advent of video 

enhanced difference interferential contrast microscopy it was possible to distinguish and describe 

three morphologically different stages of GC maturation to extend axonal processes both in vitro 

(Glodberg and Burmeister, 1986; Dent and Gertler, 2003; Lowery and Van Vactor, 2009) and in vivo 

(Godement et al. 1994; Dent and Gertler, 2003). These stages are named protrusion, engorgement 

and consolidation.  During protrusion, at first filopodia and lamellipodia elongate through actin 

filaments polimerization and membrane addition at the leading edges. Subsequently, during 

engorgemente, then the newly formed veils become invested with vesicles and organelles brought 

by both Brownian motion and directed transport by the MTs that invaded the P region. Finally during 

consolidation the proximal region of the GC assumes a cylindrical shape becoming part of the 

growing axon (Dent and Gertler, 2003; Lowery and Van Vactor, 2009; Mortimer et al, 2009; Vitriol 

and Zheng, 2012) (Fig.2). 

 

1. The intracellular machinery underneath Growth Cones: the cytoskeleton. 

The shape of GC and its dynamic changes upon neuron migration and axon elongation are entirely 

dependent on the dynamics of the underlying cytoskeleton. Actin filaments are the primary element 

in maintaining shape, while microtubules are essential in giving the axon a stable structure and are 

important in axon extension (Dent and Gertler, 2003; Lowery and Van Vactor, 2009; Dent et al., 

2011). 

Figure 2: Scheme of GC maturation stages: protrusion, engorgement, consolidation. (Mortimer et al., 2009) 
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1.1 Actin filaments 

Actin filaments (F-Actin) are double-stranded helical polymers composed of globular actin monomers 

(G-Actin), a 42kDa protein. The filament elongation is rapid and proportional to the amount of 

available ATP-bound monomers, and filaments have two distinct ends: the barbed end, where 

polymerisation usually occurs at a rate of about 3000 subunits/s, and the pointed end, where 

depolymerisation of ADP-bound G-Actin usually occurs. The results of these reactions is a semi-

flexible filament with a persistence length of about 10µm (Fig.3) (Dent and Gertler, 2003; Dent et al., 

2011; Blanchoin et al., 2014). 

  

 

F-Actin content in the GC is maximum at the P and T regions, and drops towards the C region. 

Filaments can give rise to several structures, with the association of a plethora of actin-binding 

proteins: branched or cross-linked networks, parallel bundles and anti-parallel contractile structures, 

all of which are important for GC dynamics and navigation function (Blanchoin et al., 2014).  

Branched networks are complex mesh-like structures that form the moving lamellipodia in the P 

region of the GC. They are constructed by a seven protein complex: Arp2/3, which nucleates 

branches on the side of pre-existing filaments. Besides this “primer” filament, the complex needs a 

Nucleation Promoting Factor (NPF) to effectively elongate branches: this molecule connects Arp2/3 

complex to the primer filament and releases the catalytic pocket to initiate extension (Pollard and 

Beltzner, 2002). This process is limited by capping proteins that bind and sequester filament barbed 

ends, stopping actin polymerisation. This interplay gives rise to a dynamic network with viscoelastic 

properties capable of exerting driving force for the cell membrane of the GC (Dent et al., 2011; 

Blanchoin et al., 2014). 

Figure 3: Actin Filaments structure. Scheme of the polymerization of an actin filament and its mechanics 

(Blanchoin et al., 2014). 
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Cross-linked networks are involved in controlling cell shape and mechanical integrity. Cross-linking 

proteins of the Formins superfamily link together pre-exsisting actin filaments to create complex 

shapes. These proteins differ in affinity towards F-Actin and in cross-linking distance: from 10 nm 

(e.g. fascin, fimbrin) to 160 nm (e.g. filamin, α-actinin), and give rise to different structures. The two 

structures of most interest for GC geometry and function are parallel and anti-parallel bundles. The 

former form filopodia in the P region of the GC: formins of the mDia family link together elongating 

parallel filaments to exert force on the membrane and sprout a micro-spike that, with the help of 

other structural proteins, will become a filopodium. The latter are important for contractile actin arcs 

formation in the T region: formins and myosin motors bind together all these filaments with different 

orientation to form a unique contractile semicircle (Dent et al., 2011; Blanchoin et al., 2014). 

Filaments disassembly is fundamental in regulating dynamics of actin-based structures and overall 

the motility of the GC itself. Two key protein factors are involved in this process: ADF/Cofilin and 

Myosin, both acting on filament mechanics. ADF/Cofilin is a severing agent that fragments filaments 

leading to structure breakdown. This process is depending on its saturating concentration along 

filaments: low concentration leads to severing while high leads to filament stabilisation. It binds 

preferentially to ADP-bound rather than ATP-bound Actin and facilitate network turnover by dropping 

the persistence length of filaments to 2µm, and causes massive fracture. Myosin-based dissociation 

is a two step process: first bundle dissociation and then filament disassembly due to contraction. 

The filaments, put under high mechanical stress, buckle and then the high curvature favors 

fragmentation that can propagate to a mesoscopic scale (Blanchoin et al., 2014).  

Neuron guidance and GC motility and outgrowth depend on the dynamic properties of F-Actin: the 

actin structures forming lamellipodia and filopodia undergo continuous reshaping and movement, 

balancing two different dynamics: retrograde flow and treadmilling. The former keeps the length of 

actin filaments constant by monomers addition at the barbed end and disassembly at the pointed 

end, while the latter is the continuous movement of monomers towards the pointed end of the 

filaments. The retrograde flow is driven both by myosin-mediated contractility and by the push from 

freshly added monomers at the leading edge of filopodia and lamellipodia. When these structure are 

strengthened by adhesion to the membrane and the surface beneath, the retrograde flow is slowed 

down and then the treadmilling can exert the force needed to grow (Dent and Gertler, 2003; Lowery 

and Van Vactor, 2009; Dent et al., 2011; Blanchoin et al., 2014). 

1.2 Microtubules 

MTs are polarised structures composed of α- and β-tubulin heterodimers assembled into linear 

arrays: usually 13 dimer arrays form the MT wall, giving rise to a tubular structure with about 25nm 
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diameter and a persistence length of about 1mm. As actin filaments, MTs are polarised into a head-

to-tail configuration, with a “plus” end that undergoes dynamic growth and rapid shrinkage 

(catastrophe) and a “minus” end that is inherently unstable and shrinks unless it’s stabilised (Fig.4) 

(Dent and Gertler, 2003; Dent et al., 2011). 

 

 

MTs can be functionally modified by several forms of post-translational modification, including 

tyrosination/de-tyrosination, acetylation, phosphorylation to cite some of them: neuronal MTs, for 

example, are highly acetylated and sparsely tyrosinated at their minus ends, with vice-versa a high 

acetylation and sparse tyrosination at the plus ends. These changes affect their binding with 

associated proteins and thus interaction with other cytoskeletal components and proteins 

downstream intracellular signalling pathways (Dent and Gertler, 2003). MT dynamics are regulated 

by diverse proteins that bind specific parts of the MTs, called Microtubule Associated Proteins 

(MAPs). They can specifically bind to plus end tips and help polymerisation and rescue after 

catastrophe, they can stabilise MTs and function during neuron outgrowth, branching and  polarity, 

or they can de-stabilise and sever them, being mostly active at the minus end. Disassembly must be 

tightly regulated, since too much leads to few MTs and outgrowth inhibition, whereas too little leads 

to MT loop formation in the C region and growth pausing. 

In neurons, MTs form a dense parallel array in the axon shaft, spreading apart when they enter the 

GC, often adopting a looped morphology, when GC is in a paused state. They usually remain 

confined in the central region of the GC, where they are kept by actin arcs and the dense meshwork 

in the T and P regions. However, during the protrusion phase, individual MTs actively explore the P 

region by cycling through a phase of rapid growth and catastrophe events, a property called “dynamic 

instability”. These MTs help as guidance sensors and provide molecules for directed growth and 

adhesion of the GC. The second major role occurs during engorgement, when the stable, bundled 

C region moves into the new area of growth, while consolidation behind fixes the axonal direction 

(Lowery and Van Vactor, 2009; Dent et al., 2011). Furthermore, MTs are not only “bricks” in the axon 

shaft, but they are also “routes” which different motor proteins like myosins, kinesins an dyneins can 

Figure 4: Microtubule structure. Scheme of the microtubule structure and mechanics (Blanchoin et al., 2014). 
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move along and transport vesicles, other cytoskeletal components and other proteins towards both 

the GC (anterograde movement) and the soma (retrograde movement) (Lowery and Van Vactor, 

2009; Dent et al., 2011). 

2. Growth Cone navigation: the importance of guidance cues 

When Santiago Ramon y Cajal first discovered GCs, he realized also that axons have the ability to 

grow efficiently towards their correct synaptic target, becoming one of the strongest advocates of the 

“neurotropic” hypothesis, or the directed axonal growth in response to chemical cues present in the 

environment (Ramon y Cajal, 1892, Raper and Mason, 2010). This intuition revealed itself true when 

it was shown that the first axons that grow in the developing nervous system travel along highly 

conserved trajectories  and pass through well defined “choice points” to form a reproducible scaffold 

of nerves and tracts. These “pioneer neurons” fasciculate to form a pathway on which later growing 

neurons extend (Raper et al., 1983a, Raper and Mason, 2010). Although they travel along a common 

pathway, axons can diverge their trajectory at reproducible choice points, highlighting that each can 

respond to the same chemical cue in a cell specific manner. The capability of axonal GCs to sense 

the surrounding environment while growing along specific routes is important in many stages of 

nervous system development, from midline crossing either in the spinal cord or in the optic chiasm 

to guidance in and out of the sub-plate region, a pause zone crucial for the correct cortex 

development (Catalano and Shatz, 1998; Raper and Mason, 2010). The cellular and chemical 

environment that surrounds navigating axons is crucial for its guidance, as it reflects the growth cone 

morphology and its dynamics. Depending on different substrata for growing GCs, three general 

morphologies were identified, that reflect also the growth rate. Torpedo-shaped GCs, often with small 

lamellipodia extending from a central shaft, are observed during progression through axonal bundles. 

Wide GCs with complex filopodia structure are observed at choice points, where axons pause from 

active extension to sense the complex chemical cues in order to proceed in the right direction. Small, 

condensed GCs were observed when encountering a repulsive chemical signal, and this structure 

is often followed by retraction: collapsed GCs then can re-extend, repeating the cycle and elongating 

in a new direction (Mason and Wang, 1997; Sakai and Halloran, 2006; Raper and Mason, 2010). 

The information present on the environment surrounding navigating axons must be specifically 

distributed, and it’s the sequential response to these guidance cues as axons extend towards their 

targets that allows for such complex patterns to develop (Raper and Mason, 2010; Kolodkin and 

Tessier-Lavigne, 2010). Guidance information can take different forms, from electrical gradients to 

physical constraints and localized molecular cues: they can function either at long or short distance 

to mediate either attraction or repulsion, dependent mainly on the receptors pattern present on the 
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GC of the growing axon (Bashaw and Klein, 2010; Raper and Mason, 2010; Kolodkin and Tessier-

Lavigne, 2010) (Fig.5). 

 

2.1 Adhesive Cues 

Axons require a permissive substratum to extend in vitro and in vivo, a semi-rigid scaffold where 

they can adhere on and exert traction force through focal contacts and focal adhesions (Letourneau, 

1975; Raper and Mason, 2010). Adhesive cues generally fall into two categories: Extracellular Matrix 

(ECM) components and Cell Adhesion Molecules (CAMs) expressed on neuronal and non-neuronal 

cells membranes (Fig.6) (Raper and Mason, 2010; Myers et al., 2011).  

ECM is composed of a heterogeneous mixture of molecules like collagen, laminin, fibronectin and 

vitronectin. Besides giving GCs a structure to adhere on, they can bind also smaller molecules and 

secreted proteins, thus working with soluble factors to promote axon outgrowth (Hynes, 2009; Myers 

et al., 2012). Some of these components act only as scaffolding proteins, while others, like laminin, 

can also activate signalling cascades downstream of integrin receptors present on axon and GC 

surface both in vitro and in vivo (Myers et al., 2011). They localize in spatially and temporally dynamic 

patterns in region of active morphogenesis, like spinal cord and cortical sub-plate regions, to 

modulate and sometimes alter response of growing axons for canonical guidance cues (Stewart and 

Perlman, 1987; Chun and Shatz, 1996; Myers et al., 2011). Other ECM components, like tenascin, 

are mainly responsible for neuron-glia interactions: they are expressed on astrocytes, radial glia cells 

and some immature neurons (Brodkey et al., 1995; Kawano et al., 1995) and possess specific 

domains for specific cell sub-compartments (Dorries et al., 1996; Myers et al., 2011).  

CAMs are expressed by neurons and glia in various combination to mediate adhesion of axons to 

themselves or other cellular processes. Some important CAMs for axon outgrowth are the Ig 

superfamily and the calcium-dependent cadherins. They can bind homophilically to serve as indirect 

physical linkers of the external structure to the internal cytoskeleton of the cell through focal contacts 

Figure 5: Scheme of different neuronal guidance 

mechanisms. Color refers to either attractive (red) or 

repulsive (blue) mechanisms. (Van Battum et al., 2015) 
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and focal adhesions. However they are mainly responsible of outgrowth regulation by functioning as 

signalling molecules, often in heterophilic combinations. Some IgCAMs, like NrCAM and L1, have 

been implied in guidance as co-receptors in Semaphorin receptor complexes (Mann et al., 2007) 

whereas others, like DsCAM mediate repulsion as homophilic binding strategy, and are thought to 

mediate axonal and dendritic self-avoidance (Kolodkin and Tessier-Lavigne, 2010). Thus, redundant 

utilisation of a small amount of adhesive cues, combined with different quantitative expression and 

spatio-temporal localisation can direct the formation of highly complex neuronal connections both in 

vitro and in vivo (Schwabe et al., 2013). 

 

 

2.2 Morphogens and Trophic Factors 

Signalling from morphogens of the Wnt, Hedgehog (Hh) and transforming growth factor b/bone 

morphogenic protein (TGFb/BMP) families, as well as growth factors like nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF) and many others have been implicated in axon guidance. 

While the former can mediate for repulsion or attraction, depending on the diverse neural system or 

organism, the latter are found to be only attractive, promoting neuronal survival, GC motility and 

axon outgrowth (Kolodkin and Tessier-Lavigne, 2010; Raper and Mason, 2010). Wnts, for example, 

have been shown to repel axon away of the posterior commissure in Drosophila (Yoshikawa et al. 

2003) as well as attraction of spinal commissural axons in vertebrates (Lyuksyutova et al.,2003) and 

are important in guiding migration, directing topographic mapping and regulating synapse formation 

(Kolodkin and Tessier-Lavigne, 2010). On the other hand, NGF and BDNF promote GC attraction 

and growth through signalling cascade initiated by the binding to receptors of the TrK family (Tojima 

et al., 2011). Insulin-like growth factor (IGF) and hepatocyte growth factor (HGF) act as 

chemoattractants for olfactory and motor neurons respectively (Ebens et al., 1996; Scolnick et al., 

Figure 6: Examples of different adhesion cues and their receptors.  
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2008; Raper and Mason, 2010). However, most of the neurotrophins did not elicit a high orientation 

response in vitro, since only steep gradients seem to orient the axonal outgrowth, and thus they may 

act as short range chemoattractants (Patel et al., 2000) or promote the neuron survival after the 

connections have already been made (Reichardt, 2006; Raper and Mason, 2010). 

2.3 Tropic Guidance Cues 

Tropic guidance cues more than other ones impart a directional valence to GC motility, acting as 

attractants or repellants: the chemotactic cues hypothesized by Ramon y Cayal. They can be 

secreted by both neighbouring and distant cells and create gradients of information that steer axons 

“en route”, or they can be tightly linked to cell surfaces to influence by direct contact (Raper and 

Mason, 2010). Using different experimental strategies (Box 1), four major families of these so-called 

“canonical” guidance cues have been identified (Fig.7) (Kolodkin and Tessier-Lavigne, 2010): 

- Semaphorins; 

- Netrins; 

- Slits; 

- Ephrins. 

 

Semaphorins are a family of approximately 20 different molecules that contain a signature 

Semaphorin domain that plays a key role in association and binding with receptors belonging to the 

Plexin family, and that can function both at short and long range as potent inhibitory cues (Zhou et 

al., 2008; Kolodkin and Tessier-Lavigne, 2010). Many of these proteins bind to Plexin receptors, but 

Figure 7: Canonical guidance cues families and their receptors and function. A Semaphorins family (e.g. Sema4D and 

Sema3A) B Ephrins family (e.g. Ephrin-A) C Slits family (e.g. Slit) D Netrins (e.g. Netrin-1) (Govek et al., 2005). 
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some semaphorins, like the Semaphorin-3A (Sema3A), bind to Neuropilin class co-receptors, that 

link the semaphoring ligand to the plexin receptor and trigger activation through a conformational 

change of the holoreceptor complex (Antipenko et al., 2003). They are normally expressed in tissues 

surrounding many peripheral nerves, constraining the growing axons on the correct path. They have 

a very important function in neuronal development, as for example Sema3A deficiency disrupt 

normal axon guidance in mice (Kitsukawa et al., 1997). Moreover, many transmembrane 

semaphorins can act also as a repellent on axon bundles to facilitate unbundling of individual axons. 

(Tran et al., 2007). Holoreceptor complexes can recruit also other receptors, as NCAM or other 

IgCAMs, to mediate repulsion by modulating actin cytoskeleton dynamics or disrupting adhesions 

(Fig.7A) (Zhou et al., 2008). The multimeric receptors and receptor complexes justify the diversity of 

signalling cascades that are activated downstream of semaphorins: the different receptor 

composition determines the binding but also its functional outcome, creating almost unique signalling 

events for specific responses and cell type-specific behaviours (Zhou et al., 2008; Kolodkin and 

Tessier-Lavigne, 2010). 

Netrins are a small family of phylogenetically conserved guidance cues. In mammals three secreted 

molecules (Netrin-1, -3, -4) and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins 

(Netrin G1, G2) have been identified (Moore et al., 2007). They can be secreted from cells and act 

as long-range guidance cues for hundreds of microns, or they can be immobilized on the cells 

producing them and thus act as short-range cues. GCs react to Netrins along a continuum of 

behaviours that range from repulsion to non-responsiveness to attraction, and this depends on the 

receptors present on the GC itself (Fig.7D) (Moore et al., 2007; Kolodkin and Tessier-Lavigne, 2010). 

The Deleted in Colorectal Cancer (DCC) receptor alone is responsible for engorgement in shape 

and area of the GC and for attraction, with DsCAM that might act as co-receptor in some systems 

(Shekarabe et al., 2002), whereas receptors of the UNC5 family (UNC5A-D) mediate repulsion alone 

(for short-range repulsion) or in combination with DCC (for long-range repulsion) (Hong et al., 1999; 

Keleman and Dickson, 2001; Moore et al., 2007). Netrins are expressed on and released from many 

neuronal and non-neuronal cell types. Netrin-1 is released from floor-plate cells where acts as a 

chemoattractant for spinal commissural axons creating a circumferential attractive gradient that 

make them to surpass midline in vertebrates spinal cord (Kolodkin and Tessier-Lavigne, 2010), but 

as a chemorepellent it directs axon extension by subsets of neurons like cranial, trochlear and spinal 

accessory motor-neurons (Moore et al., 2007).  

 Ephrins are a family of cell surface-bound signalling molecules that are divided in two sub-families: 

class A ephrins tethered to the cell membrane through GPI linkages, and class B ephrins that are 
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transmembrane proteins (Fig.7B). They exert an important role in development and axon guidance, 

ranging from topographic projections organization to synaptogenesis and trajectories pruning 

(Kullander and Klein, 2002; Fadheim and O’Leavy, 2010; Kolodkin and Tessier-Lavigne, 2010). They 

can act both as attractants and as repellent for specific axons subsets, but since they require 

clusterization and cell-cell contact to bind with receptors and activate, they act esclusively as short-

range guidance cues (Kullander and Klein, 2002). Unlike other guidance cues, they exhibit 

bidirectional signalling: 

- forward signalling through tyrosine kinase (TrK) receptors that auto-phosphorylate tyrosine 

residues in the cytoplasmic portion to activate through association of adaptor proteins like 

ephexin  which can modulate RhoGTPases of Integrin signalling thorugh molecules like R-

Ras or FAK (Kullander and Klein, 2002), fundamental for example to form the cortico-spinal 

tract, dependent on EphA4-Ephrin-B3 binding (Kullander et al., 2001); 

- reverse signalling, when Ephrins become receptors for many modulators like Grb4, that 

triggers a phosphorylation-dependent loss of polymerized actin structures and focal 

adhesions disruption, and is linked with the proper formation of the anterior commissure, 

Eph-B2-dependent (Henkemeyer et al., 2002); 

Slits are a family of large secreted proteins found originally in Drosophila that act through Robo 

receptors of the Ig superfamily (Fig.7C). They act as repulsive short-range cues that are important 

in axon repulsion at the midline crossing in vertebrates spinal cord (Brose and Tessier Lavigne, 

2000; Kolodkin and Tessier-Lavigne, 2010). Robo receptors are expressed on commissural axons, 

and act in concert with Netrin/DCC signalling to promote midline crossing and impede the re-crossing 

of midline by these axons (Andrews et al., 2007; Ypsilanti et al., 2010). Robo receptor family 

comprises four different isoforms (Robo1-4), expressed in central and peripheral nervous system 

(CNS and PNS), that can also bind homophilically to regulate de-fasciculation of axon bundles 

(Andrews et al., 2007). Heparin sulphate, a proteoglycan present in the ECM, can act as co-receptor 

both facilitating and abolishing Slit/Robo repulsive action (Hu et al., 2001; Ypsilanti et al., 2010). Slits 

can regulate other functions besides midline crossing: they regulate tangential migration in the 

forebrain, olfactory bulb and hindbrain (Ypsilanti et al., 2010), axonal migration and targeting (Brose 

and Tessier Lavigne, 2000), and promote axonal branching activity and secondary collateral 

branching after first axonal targeting (Brose and Tessier Lavigne, 2000; Ypsilanti et al., 2010).  
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BOX 1: Optical Manipulation as a tool to deliver localised stimuli. 

Cell guidance is a dynamics process that depends on the precise sensing of the directionality of the external stimuli by 

cell receptors (Raper and Mason, 2010). This is achieved through strict spatial and temporal control of chemical 

interactions: the specific sub-cellular expression of receptors and proteins realises the compartmentalisation needed 

for selective pathways activation (Komarova et al., 2005). Hence, a detailed study of these processes requires sub-

cellular manipulation and single-molecule approaches (Greulich et al., 2000; Jauffred et al., 2008). Cell signalling 

experiments are normally performed by pipetting the guidance molecule directly into the growth medium. Such an 

approach has several limitations in controlling the experimental condition and the stimulation amplitude and timing 

(Difato et al., 2013). Optical Manipulation (OM) 

significantly changes the situation: micro-vectors and 

small reservoirs carrying active molecules can be used 

to stimulate the cells with precise timing and sub-cellular 

precision. OM includes 3D particle trapping, 

manipulation via Optical Tweezers (OT) and photolysis 

of liposomes by laser ablation (Difato et al., 2013). 

Optical trapping via OT is the fundamental method for 

manipulation of small objects: an InfraRed (IR) laser 

beam is introduced to the experimental setup, and it can 

trap beads, carriers and vesicles, as well as single cells 

and even sub-cellular organelles (Ashkin et al., 1987(1); 

Ashkin et al., 1987(2); Amin et al., 2011; Pinato et al., 

2012). An optically trapped bead can be empolyed as a 

probe to measure the small forces exerted by different 

cell compartments under controlled stimuli or to apply 

small forces to the cell (Cojoc et al., 2007), as well as a 

mean to deliver chemical signals by functionalization with 

guidance molecules (Difato et al., 2013). This technique 

has the advantage of perfect localisation of the stimulus because there is no spillover of ligand from the site of contact 

since the molecules are covalently attached to the bead surface (Fig.B1). This is particularly important in neuronal 

studies: cellular responses are dependent on the precise localisation of the stimulus, due to the different receptor 

expression in different cell compartments (Gallo et al., 1997; D’Este et al., 2011). Local delivery of active molecules via 

micro-carrier manipulation brings forth new advantages. An Ultra-Violet laser is inserted for pulsed laser ablation of the 

lipid vesicle carriers that can trigger both chemical and electrical stimulation (Pinato et al., 2011(1); Difato et al., 2013; 

Iseppon et al., 2015). The ability to encapsulate a wide variety of molecules and the possibility of moving and dissecting 

single loaded capsules using optical techniques go along the capability of creating small, brief and precise gradients to 

which the cell can react (Dholakia et al., 2011; Pinato et al., 2011(2); Pinato et al., 2012; Iseppon et al., 2015). Properly 

mimicking the physiological process of release of guidance molecules that characterizes the fast diffusion in confined 

areas is particularly important for studying neuronal cells, which possess polarised structures specific for information 

processing and signal transmission (axons, dendrites, spines, and synapses). Considering the complex nature of cell 

signalling mechanisms, optical manipulation techniques can allow the investigation of specific pathways at single cell 

and single molecule resolution with unprecedented precision and easiness (Difato et al., 2013). 

Figure B1: Example of Optical Manipulation setup (low 

right) and single cell beads stimulation (top left). The 

IR laser (1064nm) is aligned with both bright and 

fluorescence light on the sample focal plane for particle 

trapping. (D’Este et al., 2012) 



20 
 

 

3. Growth Cone navigation: intracellular signalling mechanisms downstream 

guidance cues. 

As stated before, GC correct navigation is a fundamental step in network formation, and guidance 

cues gradients in the microenvironment play crucial role in controlling axonal direction acting through 

their receptors distributed in dynamic filopodia and lamellipodia in the P region of the GC. The side 

of the GC experiencing major cue concentration exhibits higher receptors occupancy: this 

asymmetry polarizes the entire GC providing the spatial bias in a given direction to grow towards 

(attraction) or against (retraction). The guidance receptors regulate various intracellular processes 

like cytoskeleton dynamics, adhesions, acto-myosin contractility and membrane and vesicles 

trafficking, by activating a plethora of different signalling cascades (Lowery and Van Vactor, 2009; 

Bashaw and Klein, 2010; Tojima et al., 2011; Dent et al., 2011). 

During GC protrusion the F-Actin cytoskeleton is potentiated by activation of nucleating and 

crosslinking proteins that stimulate filopodia and lamellipodia extension, in concert with disassembly 

proteins that provide fresh actin monomers. Moreover, adhesion strengthening and retrograde flow 

inhibition are important steps in GC outgrowth, and exocytosis of vesicles may provide the additional 

membrane layer required for directed engorgement. On the other hand, a repulsive stimulus triggers 

an increase of myosin-based contractility at the T zone of the GC that potentiates retrograde flow. 

Moreover internalization of integrin receptors by endocytosis, which enfeebles the adhesion 

strength, leads to collapse of the stimulated region which can then grow back again in another 

direction (Lowery and Van Vactor, 2009; Bashaw and Klein, 2010; Vitriol and Zheng, 2012). 

This polarisation of such complex dynamics is achieved by receptor-based intracellular generation 

of second messengers such as Ca2+ and cyclic nucleotides (Tojima et al., 2011). In this manner even 

a shallow extracellular gradient can be transformed into a steeply graded or compartmentalized 

signal that orchestrates the various dynamic changes stated before to execute effectively GC 

bidirectional turning (Fig.8). 
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Ca2+ signals are a key factor in regulating GC guidance: asymmetric Ca2+ elevations occur in the 

side of the GC facing the cue gradient, regardless the cue being attractive or repulsive. Its 

mechanisms resides on the gating of differential Ca2+ channels: high amplitude Ca2+ transients are 

further amplified by Calcium-Induced Calcium Release (CICR) by ryanodine (RyR) or inositol-1,4,5-

triphosphate (InsP3) receptors on the endoplasmic reticulum and mediates cue induced attraction. 

On the contrary repulsion is mediated by lower amplitude transients, mostly generated by membrane 

Ca2+ channels like transient receptor potential channels family C (TRPC) and L-type voltage-

dependent Ca2+ channels (VDCC). These differences can be recognized by various Ca2+ effectors 

like Ca2+/Calmodulin-dependent protein kinase II (CaMKII) or the Ca2+/Calmodulin-dependent 

protein phosphatase, calcineurin. The former has a higher affinity for Ca2+ and it diffuses into the 

cytoplasm, while the latter has a lower affinity for Ca2+ and is localised in the proximity of the 

Figure 8: Overview of signalling cascade in cue-mediated GC guidance. A Graded cue stimulus initiates second 

messengers signalling (1,2,3,4) that alters GC intracellular dynamics resulting in directional steering. B Examples of 

direct and indirect regulators of cytoskeleton, adhesion and trafficking dynamics. (Tojima et al., 2011). 
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endoplasmic reticulum, ready to trigger CICR in response to high amplitude attractive signals (Zheng 

and Poo, 2007; Tojima et al., 2011). BDNF and Netrin-1, for example, trigger depolarisation of the 

membrane with TRPC activation and rapid Ca2+ release from internal stores, whereas Sema3A 

signalling mediates hyperpolarisation and repulsion through Cyclic Nucleotides-Gated channels 

(CNG) activation and cross-regulation of Ca2+ through cyclic nucleotides (Nishiyama et al., 2008; 

Togashi et al., 2008; Bashaw and Klein, 2010). 

Cyclic nucleotides, mainly cyclic Adenosine MonoPhosphate (cAMP) and cyclic Guanosine 

MonoPhosphate (cGMP), can also mediate axon guidance. The asymmetrical changes in 

intracellular concentration, and the ratio between the two determines the nature of the cues 

response. cAMP facilitates activation of endoplasmic reticulus Ca2+ channels to mediate an attractive 

response, whereas cGMP blocks CICR to mediate repulsion. They modulate the gating of RyR and 

InsP3 receptors by phosphorylation by the cAMP and cGMP- dependent kinases PKA and PKG. 

Such regulation of the Ca2+ signal can be mutual, since Ca2+ in turn stimulates the production of 

cAMP by activating adenilate cyclases like AC1 and AC8, creating a positive feedback amplifying 

attractive signals (Bashaw and Klein, 2010; Tojima et al., 2011). Negative feedbacks, on the other 

hand, are generated by Ca2+ self-inhibition of channels opening probability and cyclic nucleotide-

dependent PhosphoDiEsterases (PDEs). Cyclic Nucleotides can also reciprocally inhibit themselves 

through activation of specific PDEs: this contributes to steeper intracellular gradients of second 

messengers. These gradient amplification mechanisms, referred to as “local augmentation” and 

“global inhibition” are fundamental in forcing the GC to a clear-cut decision between attraction and 

repulsion. cAMP rise on one side of the GC inhibits cGMP locally while increasing its concentration 

on the other side of the GC, blocking the generation of secondary Ca2+ transients and guidance 

impairment (Tojima et al., 2011).  

The second messengers dynamics and interplay are only one step of the complex signalling cascade 

leading to cue- mediated GC movement. Some of their key targets include the kinases and 

phosphatases, proteases and more importantly Rho-family GTPases and their regulators. These last 

ones act as key navigation signalling nodes to integrate the various upstream signals and coordinate 

the cytoskeletal rearrangements downstream (Lowery and Van Vactor, 2009; Bashaw and Klein, 

2010; Tojima et al., 2011). 
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4. The integration Step: RhoGTPases 

The Rho-family of p21 small GTPases is one of six sub-families of the Ras-GTPases, and consist of 

20 members, that can be classified into 8 sub-groups. They are best known for their roles in 

regulating cytoskeleton rearrangements, cell motility and polarity, axon guidance and cell cycle 

(Ridley, 2006). Their alteration leads to malignant transformation, neurological abnormalities and 

immunological diseases. They function as molecular switches that receives regulation from 

upstream signalling cascades and interact with downstream effectors to propagate the signal 

transduction. A single Rho-GTPase can activate a wide range of cellular responses, depending on 

the stimulus and cell type (Bourne et al., 1990; Nobes and Hall, 1995; Hall and Nobes, 2000; Govek 

et al., 2005; Hall and Lalli, 2010; Spiering and Hodgson, 2011; Hodge and Ridley, 2016). Within this 

plethora of signalling molecules, researchers have focused their attention on three, mainly for their 

prominent roles in regulating cytoskeletal dynamics: RhoA, Cdc42 and Rac1. 

4.1 Rho-GTPases cycle and regulation by upstream factors 

Most Rho-GTPases cycle between a GTP-bound active form and a GDP-bound inactive form 

(Bourne et al., 1990). When active, the Rho-GTPases localise to the cell membrane, where they can 

activate multiple effectors (Fig.9) (Nobes and Hall, 1995; Michaelson et al., 2001; Pertz, 2010). This 

cycling is mainly regulated by three protein types. Guanine Nucleotide Exchange Factors (GEFs) 

activate the GTPase by facilitating the GDP-to-GTP exchange, while GTPase-Activating Proteins 

(GAPs) inactivate the GTPase by increasing its intrinsic GTP hydrolysis rate. Guanine Nucleotide 

Dissociation Inhibitors (GDIs) sequester the GDP-bound GTPase in the cell cytosol, impeding their 

association with the membrane and activation by GEFs (Hodge and Ridley, 2016). The binding with 

GEFs and GAPs takes place at the same site for effector binding, and provokes slight conformational 

changes that act to displace the Mg2+ and release the bound GDP and insert a H2O molecule into 

the catalytic pocket of the Rho-GTPase to facilitate by 4000-fold the GTP hydrolysis, respectively 

(Spiering and Hodgson, 2011). GDIs extract membrane-bound GTPases that have a lipid moiety at 

the C-terminus, which inserts into the hydrophobic pocket of the GDIs. This interaction brings into 

contact the N-terminal regulatory portion of the GDI and the effector site of the Rho-GTPase, 

preventing any spurious binding (Spiering and Hodgson, 2011). The addition of a lipid moiety, which 

regulates GDI binding, is part of a variety of Post Translational Modifications (PTMs) that includes 

phosphorylation, ubiquitylation and sumoylation and adds a further complexity level in the Rho-

GTPases regulation (Hodge and Ridley, 2016).  
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Lipid modifications have a crucial role in determining the sub-cellular localisation of Rho-GTPases 

to distinct membrane compartments, thus influencing their interaction with specific GEFs and 

signalling pathways. Two types of lipid modifications involve RhoGTPases: C-terminal prenylation 

and S-palmitoylation. The former is an irreversible process in which a farnesyl or geranylgeranyl 

moiety is added at a Cys residue in the C-terminal of the RhoGTPase; chaperone proteins like Small 

GTPase Guanosine Diphosphate Dissociation Stimulator (SmgGDS) can regulate different 

prenylation pathways. The latter is a reversible process that enables RhoGTPases to interact with 

the membrane and potentiates their activity: as an example, it increases the stability of Rac1 in its 

activated state and furthermore, subsequent prenylation and palmitoylation of Cdc42 render the 

protein unable to bind GDIs (Hodge and Ridley, 2016). 

Phosphorylation regulates both the GTPase localisation on the membrane and the overall activity, 

when it occurs at the lipid modification or at the effector binding site, respectively. RhoA can be 

phosphorylated by PKA and PKG to inhibit its activation by increasing its binding with GDIs. This 

process is dual, because it inhibits RhoA but at the same time sequester it from the ubiquitin-

dependent degradation, revealing a complex dynamic that is required in leading edge actin 

protrusion. Rac1 is phosphorylated by Src, FAK or AKT, that inhibit its activity by creating a steric 

hindrance at the GTP-binding site which increases concentration of GDP-bound GTPase. GEFs and 

GAPs also can be phosphorylated, modification that results in an increased activity in the majority of 

the cases. GDI phosphorylation by various kinases like Src, PKCα, PAK1 promotes the its 

dissociation from the RhoGTPase and therefore GEF-dependent activation (Hodge and Ridley, 

2016). 

Figure 9: Overview of RhoGTPases cycling and 

regulation. GTP-GDP cycle of Rho-GTPases 

can be regulated by GEFs, GAPs and GDIs. a 

Expression levels can be controlled by 

transcriptional level. b PTMs can modulate 

activity levels. c Protein levels can be acutely 

regulated by degradation d All these regulation 

patterns ensure the appropriate spatio-

temporal regulation of Rho-GTPases (Hodge 

and Ridley, 2016). 
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Sumoylation is a PTM that is not necessary for the RhoGTPase activity but helps maintain the 

activated state, increasing its duration: for now Rac1 is the only GTPase known to undergo 

sumoylation (Spiering and Hodgson, 2011; Hodge and Ridley, 2016). 

Ubiquitylation is a three-step process that most GTPases, GEFs and GAPs share: it marks the 

proteins for degradation by the 26S proteasome, controlling their expression levels with precise sub-

cellular resolution. RhoA and Rac1 can ubiquitylated by different complexes: this is important for its 

regulation in different cell compartments and in response to different external signals (Hodge and 

Ridley, 2016). 

4.2 Rho-GTPases downstream targets 

RhoGTPases regulate many different downstream effectors that affect mainly the cytoskeletal 

dynamics. They include kinases, phosphatases, actin nucleators and cross-linkers, actin capping 

proteins, MT-binding proteins and other scaffolding molecules (Burridge and Wennerburg, 2004; 

Govek et al., 2005; Lowery and Van Vactor, 2009; Pertz, 2010; Spiering and Hodgson, 2011). These 

effectors can be specific for a single RhoGTPase or affected by different ones in different ways. 

Among all, some effectors has received extensive attention and their signalling cascade is clearer.  

Rho-associated protein kinase (ROCK) is the most known and studied effector downstream of RhoA 

(Luo, 2000; Burridge and Wennerburg, 2004; Govek et al., 2005; Hall and Lalli, 2010). It’s a 

serine/threonine kinase that, one activated, triggers phosphorylation of many actin-related proteins. 

It can phosphorylate the regulatory Myosin Light Chain (MLC) and inhibit the MLC Phosphatase 

(MLCP) to promote contractile activity and increase in retrograde flow both in GC and in migrating 

cells (Luo, 2000; Govek et al., 2005, Gallo, 2006). ROCK phosphorylates also LIMKinases (LIMK) 

that in turn inactivates by phosphorylation the actin filaments severing protein ADF/Cofilin: this 

stabilises actin filaments to allow focal adhesions and stress fibers formation in fibroblasts and 

cancer cells (Fig.10) (Nobes and Hall, 1995; Hall and Nobes, 2000; Luo, 2000; Burridge and 

Wennerburg, 2004; Hall and Lalli, 2010).  

A broader target of the RhoGTPases is the formin family of mDiaphanous proteins (mDia-1, 2, 3): in 

fact, while mDia-1 binds only to RhoA, mDia-2 binds to RhoA and Cdc42, and mDia-3 shows no 

preferences binding to all three major RhoGTPases (Govek et al., 2005). Formins are cross-linkers 

that produce long, unbranched filaments by binding profilin-bound actin monomers and adding to 

barbed ends of F-actin filaments: the binding with RhoGTPases relieve an auto-inhibitory interaction 

between the N-terminal and C-terminal domains and activates their function (Nobes and Hall, 1995; 

Burridge and Wennerburg, 2004; Spiering and Hodgson, 2011). Interestingly, mDia-1 has been 
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shown to stabilise also MT tips and adhesions by association with the capping complex EB1/APC 

(Fig.10)  (Spiering and Hodgson, 2011). 

Proteins of the p-21-Activated Kinase (PAK) family are one of the most known effectors downstream 

of Rac1 and Cdc42. PAK1 and 3 are activated by disruption of an autoinhibitory N-terminal domain: 

their activation can regulate various effectors. They activate LIMK to inhibit ADF/Cofilin like ROCK, 

but also inhibits MLCK lowering acto-myosin contractility. Their phosphorylation activates filamin, an 

F-actin cross-linker important in promoting ruffling events at the leading edge of cells, paxillin, a 

scaffolding protein important for cell adhesion, and also stathmin, which promotes MT growth 

(Burridge and Wennerburg, 2004, Govek et al., 2005). Its activation can trigger also a Cdk5-

dependent inhibition of PAK that is Rac-dependent and generates a negative feedback to modulate 

the duration of PAK activity. PAK proteins can also mediate the cross-talk with the other GTPases: 

PAK5, for example, is a Rac effector that inhibits RhoA activation, controlling the reciprocal Rho/Rac 

levels that are shown to be fundamental in persistent migration in fibroblasts (Fig.10) (Hall and 

Nobes, 2000; Burridge and Wennerburg, 2004; Govek et al., 2005; Hall and Lalli, 2010; Pertz, 2010).  

Another important effector of Cdc42 and Rac1 is the WASp family of proteins: WASp and its neuronal 

isoform N-WASp are Cdc42- and Rac-dependent, whereas WAVE1/2 are activated by Rac1 but 

require the previous binding of the GTPase with the adaptor protein IRSp53 (Burridge and 

Wennerburg, 2004, Govek et al., 2005; Lowery and Van Vactor, 2009; Spiering and Hodgson, 2011). 

The activation of these proteins results in actin filaments nucleation via the Arp2/3 complex: once 

active, WASP and WAVE proteins bind to the Arp2/3 complex and bring it to the side of the filament, 

which activates the nucleation and promotes dendritic actin network formation. This mesh network 

assembly, in concert with other nucleation promoting factors like IQGAP is important in the dynamics 

of lamellipodia and membrane ruffles (Fig.10) (Govek et al., 2005; Hall and Lalli, 2010; Pertz, 2010; 

Wallrabe et al., 2015). 

IRSp53 is not only an adaptor protein for Rac1-dependent WAVE activation, but is also a direct 

effector of Cdc42. Its activation localise the mammalian Ena (MEna) actin cross-linking proteins to 

the leading edge to trigger actin parallel bundles assembly and filopodia formation alongside mDia-

1 and other scaffolding proteins (Fig.10) (Govek et al., 2005; Ahmed and Goh, 2010; Goh et al., 

2012). 

4.3 Rho-GTPases localisation and role in motility and guidance 

Different RhoGTPases have a different localisation in the cell depending on the cell type and 

dynamics. Rac1 is predominantly localised in the plasma membrane, as well as Cdc42, that also 
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localises into the organelles membranes. RhoA, on the contrary, localises almost exclusively in the 

cytosol, that is indicative of a stable inactivation by GDIs. Upon GTP addition, all GTPases have 

been shown to translocate to the membrane (Michaelson et al., 2001).  

What is fundamental in mediating RhoGTPases cell location are their dynamics and their upstream 

regulatory proteins. Activation brings the GTPases to the membrane, whereas inactivation by GDIs 

sequester them in the cytosol (Nobes and Hall, 1995; Michaelson et al., 2001). The different PTMs, 

GEFs, GAPs, GDIs, all collaborate and antagonise each other in a cell compartment- and stimulus-

dependent manner to allow fine spatio-temporal regulation of RhoGTPases. (Spiering and Hodgson,  

2011; Hodge and Ridley, 2016). Thus, the most important question to be answered is the sub-cellular 

localisation of active GTPases, which in the last years have been addressed with live imaging 

techniques alongside mathematical models and analysis algorithms (Box 2). 

Most of the early work on RhoGTPases dynamics has been made in non-neuronal cells, studying 

their polarity, migration and leading edge motility. In actively migrating cells the polarity and direction 

is regulated by Rac1 and RhoA: the former is active at the leading edge of the cell promoting actin 

polymerisation via WAVE-dependent Arp2/3 nucleation, and the latter is active at the back of the 

cell, where it stimulates contractility of the cell rear through the ROCK-MLCK-MLC pathway. This 

antagonistic correlation is essential for correct directional migration (Itoh et al., 2002; Burridge and 

Wennerburg, 2004; Pertz, 2010; Ridley, 2011; Kutys and Yamada, 2014). However the scenario is 

much more complicated, because active Rac1 has been localised also at the trail back of the cell, 

active RhoA at the leading edge of protruding lamellae, and Cdc42 activation occurs at the leading 

edges and filopodia tips as well as the Golgi compartment. These results show that one GTPase 

can be activated simultaneously at multiple cell locations, where it regulates distinct functions 

through distinct pathways. Effector proteins, as well as GEFs and GAPs, can associate to form 

complexes that affect the tuning of localized active Rho-GTPases (Govek et al., 2005; Pertz, 2010). 

G-Protein βγ subunits locate a complex Pix/PAK/Cdc42 at the leading edge during neutrophil 

migration, similar to the complex IRSp53-Tiam1-Rac1-WAVE2 in the lamellipodia. These “signalling 

modules” are finely tuned both spatially and temporally and regulate not only Rho-GTPases 

localisation, but also their ability to transduce the signal downstream and control cross-talk (Luo, 

2000; Pertz, 2010; Martin et al., 2016). 

Since a neuronal GC is present many of the same morphological structures of a full, migrating cell 

that explores the environment, Rho-GTPases has been implicated in axonal outgrowth and guidance 

dynamics (Luo, 2000). Rac1 and Cdc42 are positive regulators of axonal and dendrite outgrowth 
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and branching, whereas RhoA inhibits elongation of both structures. The RhoGTPases localisation 

in hippocampal neurons changes with the cell maturation and is GTPase-dependent. Cdc42 is 

ubiquitous even in fully mature neurons, while Rac1 has the same pattern of Cdc42 until fully mature 

neurons, where it localises into axons and preferably those who run in close proximity to dendrites 

of other cells. RhoA also changes its patterns in fully mature neurons, localising only into the dendritic 

tree: RhoA and Rac, in fact does not co-localise into fully mature neurons (Da Silva et al., 2004). 

BOX 2: Imaging RhoGTPases spatio-temporal dynamics: FRET 

Imaging spatio-temporal activation of RhoGTPases has been intriguing since the discovery of their implication in 

cytoskeletal dynamics, cell migration and guidance. However, their localisation and low dynamics range are two major 

problems: the high cytosolic pool of GTPases impedes the correct visualisation of the active, membrane-bound fraction, 

that, in any case, is usually less than 5% of the total GTPase cell pool (Pertz, 2010). To enhance the signal-to-noise 

ratio, ratiometric probes based on Förster Resonance Energy Transfer (FRET) were designed that enable to specifically 

detect the localisation of active RhoGTPase. The most used are bi- and uni-molecular probes in which the RhoGTPase 

is fused with the donor fluorophore, and a Rho-Binding Domain (RBD) of a specific effector is fused with the acceptor 

fluorophore. When the GTPase is modulated by GEFs and GAPs an increase and decrease of the FRET ratio signal is 

detected, respectively (Fig.B2) (Pertz, 2010; Spiering and Hodgson, 2011). The uni-molecular probes, which maintain 

a 1:1 stoichiometry between donor and acceptor molecules, 

facilitate FRET efficiency quantification. The “Raichu” probes 

(Yoshizaki et al., 2003) have been extensively utilised for 

monitoring RhoGTPase activity and dynamics in different cell 

types for the imaging of different cell behaviours with or without 

stimulation (Itoh et al., 2002; Nakamura et al., 2005; Picard et 

al., 2009; Kunida et al., 2012; Myers et al., 2012). What emerged 

from these studies is that one RhoGTPase can be activated 

simultaneously at multiple cell locations, where it regulates 

distinct functions: thus the need to correlate the activation 

patterns of the RhoGTPases between each other and with the 

cytoskeleton and cell dynamics. This can be done either with 

mathematical modelling (Jilkine et al., 2007; Weiner et al., 2007; 

Holmes et al., 2012) or, since imaging multiple RhoGTPases 

activation in the same cell with FRET is nearly impossible,  by 

developing algorithms of analysis that allow the computational multiplexing of multiple RhoGTPase activities imaged in 

different cells and correlation with leading edge velocity (Machachek and Danuser, 2006; Machachek et al., 2009). This 

approach has been further optimized for studying the role of RhoGTPases during cell migration and even predicting 

their relative “weight” in modulating different migration behaviours (Yamao et al., 2015; Martin et al., 2016). The 

knowledge of the RhoGTPases dynamics and their regulation mechanisms is becoming clearer and clearer, especially 

with the help of high spatio-temporal resolution imaging techniques and local stimulation techniques that can deliver 

gradients to precise cell locations, mimicking better the in vivo environment. However, since fluctuations in RhoGTPase 

activities occurs with a seconds-to-minutes time scale, adequate dissection of these mechanisms will require tools that 

apply perturbations and allow imaging at these specific time scales (Pertz, 2010). 

A 

B 

Figure B2: FRET sensors designs. A  Uni-molecular 

sensor B Bi-molecular sensor (Pertz, 2010). 
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 Within the GC, active Rac1 localises widely into the P region, Cdc42 shows a gradual increase 

towards the leading edge and RhoA, when active, localises into the P and T regions of the GC where 

it can control actin depolymerisation and myosin-based contractility (Nakamura et al., 2005; Govek 

et al., 2005; Gallo, 2006). Rho-GTPases regulation is important also for neuronal polarization, as it 

was for non-neuronal cells. Tight Cdc42 regulation is required for axonal specification: it acts 

downstream of Rap1B GTPase that localises a complex mPar3/mPar6/aPKC that interacts with 

Cdc42 and Rac1 active forms. They promote a local actin depolymerisation required for initial axon 

formation, and their activation enhances PI3Kinase activity that can activate Rac1 thorugh the Tiam1 

GEF in a positive feedback loop that can help break the symmetry and polarise the cell (Govek et 

al., 2005; Hall and Lalli, 2010). Axon extension requires a precise spatio-temporal regulation of Rho-

GTPases and a balance between their activity levels. In cultured cerebellar granule cells SDF-1X 

promotes extension at low RhoA levels through mDia1 and Rac-dependent extension, while it inhibits 

growth at high RhoA levels through ROCK and increased contractility. Rac1 levels are also important 

for proper axon growth: too low levels result in overshooting beyond the proper synaptical target, 

whereas too high levels stall the axonal growth (Luo, 2000; Arakawa et al., 2003; Govek et al., 2005).  

RhoGTPases are important for regulating GC dynamics and guiding axon to their correct synaptic 

target (Fig.10). They are known to be downstream of every canonical guidance cue and many trophic 

factors (Govek et al., 2005; Hall and Lalli, 2010; Bashaw and Klein, 2010; Kolodkin and Tessier-

Lavigne, 2010). BDNF stimulates FAK and Src activation, which in turn activate Cdc42 via GEFs like 

p130Cas or GRAF in lamellipodia and filopodia in the P region of the GC (Myers et al., 2012). NGF 

stimulates protrusion and attractive turning via simultaneous Rac1 activation and RhoA inactivation. 

Its receptor, TrkA, localises and activates Ras-GTPase that activates in turn PI3K and then Rac1 

downstream. RhoA-ROCK pathway is inhibited by Rac1 activation, possibly through some specific 

effectors like PAK5, resulting in increased actin polymerisation and decreased contractility at the 

leading edge of the GC (Govek et al., 2005).  

GC collapse induced by Sema3A depends on Rac1 and RhoA activation. The former interacts 

directly with Plexin-A1 and Plexin-B1 receptors: this may be a form of sequestration of Rac, 

rendering its binding with GEFs unlikely, or a way to promote the receptor endocytosis required for 

Sema-3A mediated collapse (Bashaw and Klein, 2010: Hall and Lalli, 2010). Sema-3A can also 

trigger a localisation of RhoA mRNA translation to the developing axons and GCs upon stimulation, 

sufficient to trigger GC collapse (Hall and Lalli, 2010). RhoA is activated downstream of Sema-3A 

and Sema-4D by many GEFs like PDZ-RhoGEF. It enhances contractility through ROCK and 

promotes actin stabilisation through LIMK activation and subsequent ADF/Cofilin inhibition (Govek 
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et al., 2005: Hall and Lalli, 2010). Also in this case an antagonistic relationship between Rac and 

RhoA has been observed, highlighting the presence of conserved cross-talk mechanisms to allow 

fine directional regulation of axon extension (Govek et al., 2005; Bashaw and Klein, 2010). 

Ephrin-dependent GC collapse is mediated by an unbalance in Rho-GTPases activation levels. In 

the absence of stimulation ephexin1 is bound to the EphA4 receptor and activates all GTPases, but 

ephrin-induced receptor clustering promotes ephexin1 phosphorylation, which shifts the GEF activity 

toward RhoA causing local actin depolymerisation. Rac1 inactivation can be mediated also by the 

Rac GAP α-chimaerin that enhances RhoA activation. This yet again antagonistic relationship 

between RhoA and Rac1 is enhanced by the cooperative actions of the two GEFs, and sufficient to 

induce GC collapse and axon retraction. However, ephrin signalling can trigger local transient Rac1 

activation, important for mediating endocytosis and allow cell detachment during retraction (Govek 

et al., 2005; Bashaw and Klein, 2010). 

Slits act through Robo receptors to mediate repulsion at the midline of the nervous system, and 

increased Cdc42 and Rac1 activities cause deficiencies in axonal ability to cross the midline (Govek 

et al., 2005). Slit stimulation triggers the activation of specific Rac and Cdc42 GAPs called srGAPs 

that downregulate their activity and enhance RhoA activation. On the other hand, Dock is an adaptor 

protein that can bind PAK and Robo cytoplasmic domain. This binding increase modestly Rac1 

activity, probably through the dual Ras-RhoGEF Sos. The coordinated activities of GEFs and GAPs 

may promote precise spatio-temporal cycling of Rac activity, which may be more important than the 

overall levels of active Rac in the motile GC (Govek et al., 2005; Lowery and Van Vactor, 2009; 

Bashaw and Klein, 2010). 

Netrin-1 with its receptor DCC induces cytoskeletal rearrangements downstream of Rac1 and Cdc42 

that promotes both axon growth and attractive turning (Govek et al., 2005; Picard et al., 2009). Netrin 

induces the rapid activation of Rac1, Cdc42 and PAK1, maybe through the direct association of a 

dual GEF like Trio with the receptor. DOCK180 is another Rac GEF that is required for Netrin-

dependent axonal outgrowth that can interact with the DCC receptor. Rac1, Cdc42 and PAK1 

activation in the GC result in WASP and WAVE-dependent Arp2/3 recruitment and increase in actin 

polymerisation (Hall and Lalli, 2010; Bashaw and Klein, 2010).  

In conclusion, Rho-GTPases play a fundamental role in integrating many different external signals, 

both chemical and mechanical, with the superimposed intracellular machinery that steers GCs, 

extends axons and favours cell migration. The GTPase step is the bottleneck of many signalling 

cascades mediating so many different effects on cell dynamics that has to be regulated tightly in 
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both spatial and temporal manners. The discovery of the possible organisation of marco-complexes 

containing GEFs/GAPs, Rho-GTPases and effectors highlights a much more complex scenario than 

the simple receptor-GTPase-effector that was brought to light by early studies.  
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Figure 10: Scheme of RhoGTPases signalling cascade downstream of major guidance molecules. 
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5. Actin in Axon: waves, rings, trails and patches of actin regulate axonal extension 

and structure. 

In the neuronal axon, actin is enriched mainly at the GC site, where is involved in navigation, 

signalling and stabilisation upon target contact. In contrast, actin localisation in the axonal shaft has 

remained obscure and somewhat uninteresting. However, recent super-resolution and live-cell 

imaging studies have uncovered various peculiar modalities of actin organization and dynamics 

inside the axonal shaft. These newly discovered features are called waves, rings, patches and trails 

(Fig. 11) (Arnold and Gallo, 2014; Roy, 2016). 

  

5.1 Actin Waves 

Actin Waves (AWs) (Fig.11A) are growth cone-like structures that emerge at the base of neurites 

and travel towards the tip with a mean velocity of 2-3µm/min. Upon arrival in the proximity of the 

neurite tip, the GC retracts and fuses with the incoming AW creating a bigger and more dynamic GC 

that starts back neurite protrusion (Ruthel and Banker, 1998,1999; Flynn et al., 2009; Katsuno et al., 

2015; Winans et al., 2016). AWs appear in a stochastic manner in all neurites at early stages of 

neuronal development and then concentrate in the process that will become the axon. They have 

been observed also in non-neuronal cells, where they usually migrate along the cell perimeter and 

have been called “travelling (t-) waves” (Kunida et al., 2012; Allard and Molginer, 2013; Roy, 2016). 

The principal motor of AWs are the actin filaments, which fan out the neurite shaft, orientating at 

acute angles with the barbed ends towards the GC and with each filament undergoing directional 

treadmilling (Katsuno et al., 2015; Roy, 2016). Despite being critically dependent on actin dynamics, 

Figure 11: Actin structures in the axon. A Actin Waves (AWs). B Actin Rings (ARs) C Actin Patches (APs) in the 

proximal (i) and distal (ii) axon. D Actin Trails (ATs). (Adapted from Roy, 2016) 
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AWs are also disrupted by MT-depolymerising agents (Ruthel and Banker, 1998; Winans et al., 

2016). Single MTs enriched in doublecortin (cytoskeleton stabilising protein) extend into AWs, and 

their number is increased in and behind the proceeding wave, along with an increase in the neurite 

area: there may be a reciprocal interplay between actin and MT in the form of a positive feedback, 

where the widening of the neurite allows for more MTs to elongate (Ruthel and Banker, 1998; Tint 

et al., 2009; Winans et al., 2016; Roy, 2016).  

Actin and MTs are not the only constituents of AWs: many other proteins are found in AWS, like 

cortactin, shootin-1, ADF/cofilin, Arp2/3 complex, Rac1 and Cdc42. All these proteins cooperate to 

build the intracellular machinery that AWs use to migrate along the neurite shaft. Cortactin activates 

the Arp2/3 complex-dependent nucleation of actin filaments and branches inside the AWs, while 

ADF/cofilin produces fresh G-Actin monomers for elongation at the barbed ends of filaments. 

Shootin-1 slows down the retrograde movement by coupling filaments to L1-CAM adhesions to the 

substrate and Rac1 and Cdc42 coordinate all the various effectors (Flynn et al., 2009; Toriyama et 

al., 2013; Katsuno et al., 2015; Winans et al., 2016). It’s possible that Cdc42 spatio-temporal 

activation, found in and beyond the AWs, may be responsible for their constantly anterograde 

movement, whereas Rac1 may be its starting trigger at the soma-to-neurite junction (Flynn et al., 

2009; Winans et al., 2016). Another important player in the dynamics and impact of AWs on the 

neurite is myosin II: its inhibition reduces the retraction induced by proximity of the AW with the GC 

and increases filopodia dynamics and neurite outgrowth and branching, while decreasing the 

frequency of AW appearance (Flynn et al., 2009; Katsuno et al., 2015).  

AWs are observed also in vivo in cortical neurons as well as hippocampal neurons of the dentate 

gyrus and CA3, CA1 regions: they seem to retain the same characteristics and dynamics of the ones 

studied in vitro (Flynn et al., 2009; Katsuno et al., 2015). 

Consistent with their concentration on the axonal shaft upon polarisation and their impact on neurite 

growth both in vitro and in vivo, they have been implied in neurite outgrowth and symmetry breaking 

in early stages of neuron maturation: they promote competition between neurites generating large 

stochastic fluctuations in multiple neurites as they explore the environment for cues, while enhancing 

actin- and MT-based transport of axon-promoting factors to the tip of the neurite that will polarise 

into the final axon (Ruthel and Banker, 1998,1999; Flynn et al., 2009; Katsuno et al., 2015; Winans 

et al., 2016). 
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5.2 Actin Rings 

Actin Rings (ARs) (Fig.12B) are periodic, quasi-1D circumferential lattices of actin and spectrin 

underneath the axonal plasma membrane visible only by super-resolution microscopy (Xu et al., 

2013; D’Este et al., 2015; Roy, 2016; Leite and Sousa, 2016). F-Actin arranges in short filaments 

capped by adducin and aligned to form a circle, whereas spectrin proteins associate to form a 

tetrameric spacer between different rings, forming this coordinated network with a spatial period of 

about 190nm that is elastic and stable to give mechanical support to the plasma membrane (Xu et 

al., 2013; D’Este et al., 2015). Adducin has also the role of stabilising the structure by binding both 

to actin and spectrin: loss of this protein results in fact in increase in the ring diameter and axonal 

degeneration with major impairments in nerve formation (Leite et al., 2016). ARs interact also with 

MTs: in fact MT loss leads to ring structure loss in neurons, and this cross-talk may be important in 

creating periodic docking sites for the regulation of the myosin-based axonal transport (Zhong et al., 

2014; Leite and Sousa, 2016).  

ARs are firstly formed in early neurons at 2 Days In Vitro (DIV), into what will become the Axon Initial 

Segment (AIS): actin rings intercalate with neurofascin, a protein expressed exclusively in the AIS, 

and are assembled in a proximal to distal fashion (Xu et al., 2013; D’Este et al., 2015). Up to 5 DIV, 

they have spread to the entire axonal shaft and branches, with except of thin filopodia and synaptic 

boutons, where they remain during further maturation and can be observed even at 30 DIV. They 

are observed in particular in thicker axons in both the CNS and the PNS, but they recently have been 

observed also in a percentage of dendrites from 5 up to 17 DIV (D’Este et al., 2015). 

ARs seem to be not only a mechanical structure that stabilises the plasma membrane, but this 

precise periodicity implies also functions in regulating protein and vesicle transport and also in 

ordering important trans-membrane and membrane-bound proteins along the axon. As an example, 

the voltage-gated Na+ channels exhibit the same periodicity as actin filaments, with cross-linking 

proteins like ankyrin (which exhibits the same periodicity) binding them to the ARs (D’Este et al., 

2015; Leite and Sousa, 2016). 

5.3 Actin Patches and Trails 

Actin filaments in axons are not only at the cell membrane forming rings, but are also deep into the 

axonal lumen, when they assume diverse organisations.  

Actin Patches (APs) (Fig.11C) are mesh-like F-Actin assemblies similar to GC lamellipodia, but they 

are non protrusive structures (Loudon et al., 2006, Gallo, 2013; Arnold and Gallo, 2014). They can 

be distinguished based on their location along the axonal shaft:  
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- APs in the AIS are stable structures that co-localise with myosin Va and have the function of 

capturing cargos entering the axon and excluding non-axonal ones, and are regulated by 

PI3K signalling that forms micro-domains in the AIS (Ketschek and Gallo, 2010; Arnold and 

Gallo, 2014); 

- APs in the distal axon are dynamic structures that appear and disappear with a mean period 

of 20-30s. They co-localise with myosin II and require Arp2/3 complex, cortactin and WAVE 

to form and exert their function of precursors to the formation of axonal filopodia (Ketschek 

and Gallo, 2010; Arnold and Gallo, 2014). 

Actin Trails (ATs) (Fig.11D) are hotspots of Actin polymerisation and depolymerisation that appear 

in neurons from 7 to 10 DIV, with a spacing of about 3-4µm and a time period of about 30s (Ganguly 

et al., 2015, Roy, 2016). They are foci of rapid assembly, independent of MTs, from which long 

filaments elongate in a formin-dependent manner without clear polarisation. However, the overall 

frequency in anterograde oriented ATs is higher, implying a slow, biased actin transport in neurites. 

Moreover they co-localise with stationary endosomes, where the initial nucleation takes place, before 

formin-dependent assembly, implying another function as actin supplier for pre-synaptic boutons 

(Ganguly et al. 2015; Roy et al 2016).  
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RESULTS 

 

This section is the sum of experiments carried out by different people. 

For what concerns me: 

- In the first article I performed all the local stimulation and delivery experiments and 

corresponding data analysis and figures preparation; 

- In the second article I performed the FRET and Optical Tweezers setup validation, data 

analysis and figure preparation; 

- In the third article I carried out the part of the actin live cell imaging and inhibition of 

RhoGTPases, the immunofluorescence and corresponding data analysis and figures 

preparation. 

I actively participated in writing and designing all these works. 
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Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external

cues and intracellular signaling pathways that regulate growth cone (GC) motility.

Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas

RhoA induces GC collapse and neurite retraction through actomyosin contraction. In

this study we employed Förster Resonance Energy Transfer (FRET) microscopy to

study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local

Semaphorin-3A (Sema3A) stimulation obtained with lipid vesicles filled with Sema3A

and positioned near the selected GC using optical tweezers. We found that Cdc42

and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during

spontaneous cycles of protrusion and retraction, respectively. The release of Sema3A

brought to a progressive activation of RhoA within 30 s from the stimulus in the central

region of the GC that collapsed and retracted. In contrast, the same stimulation evoked

waves of Cdc42 activation propagating away from the stimulated region. Amore localized

stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active

waves that propagated in a retrograde manner with a mean period of 70 s, and followed

by GC retraction. Therefore, Sema3A activates both Cdc42 and RhoA with a complex

and different spatial-temporal dynamics.

Keywords: RhoA, Cdc42, FRET, local stimulation, Semaphorin-3A, GC retraction, NG108-15 cell line

Introduction

Axon outgrowth and guidance depend on the ability of growth cones (GCs) to detect molecular
guidance cues in their extracellular environment and to respond with a dynamic remodeling of
the cytoskeleton. It is well-established that repulsive GCs turning arises from the disruption and
loss of F-actin superstructures and actomyosin contraction, while attractive GC turning entails
asymmetrical incorporation of actin on the side of the GC close to the chemoattractant (Dent
et al., 2011). The Rho protein family members of small GTPases act as molecular switches to
control signal transduction pathways by cycling between a GDP-bound, inactive form, and a GTP-
bound, active form (Raftopoulou and Hall, 2004). In their active state, they have a key role in the
cytoskeleton reorganization as they act downstream of most guidance cue receptors (Hall, 1998;
Luo, 2000; Dickson, 2001; Jaffe and Hall, 2005). In neurons, the Rho family members RhoA and
Cdc42 regulate GC extension and axon outgrowth: RhoA triggers actin cytoskeleton rearrangement
to support GC collapse and neurite retraction (Thies and Davenport, 2003; Wu et al., 2005),
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whereas Cdc42 promotes neurite outgrowth and GC filopodia
formation (Ahmed et al., 2006; Hall and Lalli, 2010). However,
the activation of the RhoA pathway has growth-promoting effects
in cortical and hippocampal cell axons (Ahnert-Hilger et al.,
2004; Ohnami et al., 2008).

The secreted guidance cue is Semaphorin-3A (Sema3A), a
repulsive guidance molecule that generally causes GC collapse
in neurons through microtubule and actin reorganization
(Fan and Raper, 1995; Goshima et al., 2002; Tran et al.,
2007; Zhou et al., 2008), helping steer both axons and
migrating cells along the correct trajectory. Sema3A is thought
to act as a dimer (Wong et al., 1999) binding to the
complex of receptors neuropilin1/plexinA1, to initiate signal
transduction pathways (Adams et al., 1997; Takahashi et al.,
1997). Intracellular signaling of Sema3A has been extensively
studied, also quite recently (Jongbloets and Pasterkamp,
2014; Worzfeld and Offermanns, 2014). In DRG neurons,
Sema3A stimulation induces GC collapse of sensory neurons
through RhoA effector ROCK and intra-axonal translation
of RhoA mRNA, which, through an axonal 3′UTR targeting
element, is localized in developing axons and GCs (Wu
et al., 2005; Hengst et al., 2006). This local translation
is a condition necessary and sufficient to allow Sema3A-
mediated GC collapse. In contrast, the role of Cdc42 in
Sema3A collapse response is still unclear with reported
contradictory results (Jin and Strittmatter, 1997; Kuhn et al.,
1999).

Bath application of Sema3A has several drawbacks: the
entire neuron is exposed to Sema3A and the response could
involve both the entire neuron and the GC (Brown et al.,
2009). In the present study, we combined the sensitized
emission Förster Resonance Energy Transfer (FRET) technique
with local stimulation to observe the spatial and temporal
activation of RhoA and Cdc42 following localized stimulation
with Sema3A. We used two types of vectors for local delivery
of molecules: microbeads and micro-sized lipid vesicles. Silica
microbeads have been covalently functionalized on their surface
with Sema3A and placed on the GC of interest with a sub-
micrometric precision, allowing a more localized stimulation
for 30 s. Thus, Sema3A beads were able to induce a localized
response to Sema3A, although the guidance molecule was not
in its native form. We then used lipid vesicles encapsulating
Sema3A that were trapped with optical tweezers in front of
the exploring GC and broken with short UV laser pulse.
In this way we studied the delivery of Sema3A in its
native form but with a less precise spatial localization of its
delivery.

In this paper, we examine the role of RhoA and Cdc42
in NG108-15 neuroblastoma cells and we show that they
are both involved in Sema3A morphological changes with
specific spatio-temporal dynamics; we also show that
Cdc42 (but not RhoA) exhibits a complex wave behavior.
Although the existence of different models that prove
both a crosstalk and a negative feedback between the Rho
GTPases (Holmes et al., 2012; Marèe et al., 2012) is confirmed,
our data support a more dynamic pattern for Cdc42 that
reflects a higher degree of complexity for the Rho GTPase
signaling.

Materials and Methods

Cell Cultures and Transfection
NG108-15 neuroblastoma cells were purchased from Sigma
Aldrich and grown in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% (v/v) fetal bovine serum (FBS) (Invitrogen),
100µg/ml streptomycin and 100 units/ml in penicillin in a 5%
CO2atmosphere at 37◦C. For live cell imaging studies, cells
were seeded on glass coverslips, coated for 3 h with laminin
(50µg/ml, L2020 Sigma) in 12-multiwell plates. Cells were
transfected 24 h later with intermolecular RhoA/Cdc42 FRET
sensors (Murakoshi et al., 2011) using Metafectene reagent
(Biontex Laboratories) following the manufacturer’s protocol
and imaged 1 day after transfection. mEGFP-RhoA-C1 (Addgene
plasmid #29674), mEGFP-Cdc42-C1 (Addgene plasmid #29673),
mCherry-Rhotekin(8–89)-mCherry-C1 (Addgene plasmid
#29675) and mCherry-Pak3(60–113)/S74A/F84A-mCherry-C1
(Addgene plasmid #29676) were a gift from Ryohei Yasuda
(Murakoshi et al., 2011).

Immunofluorescence
All these steps were performed at room temperature (20–22◦C)
and coverslips were rinsed with phosphate-buffered saline
(PBS) between each step. Cells were fixed in freshly prepared
4% paraformaldehyde containing 0.15% picric acid in PBS,
permeabilized in 0.1% Triton X-100 for 10min and blocked with
0.5% BSA (all from Sigma-Aldrich, St.Louis, MO) in PBS for 1 h.
Cells were then incubated with primary goat polyclonal antibody
against neuropilin1 (Santa Cruz Biotechnology, Santa Cruz,
CA) and rabbit polyclonal antibody against plexinA1 (Santa
Cruz Biotechnology, Santa Cruz, CA) for 1 h. The secondary
antibodies were donkey anti-rabbit 488 and donkey anti-goat
594 Alexa (Invitrogen, Life Technologies, Gaithersburg, MD,
USA) and the incubation time was 30min. Nuclei were stained
with 2µg/ml Hoechst 33342 (Sigma-Aldrich, St.Louis, MO) in
PBS for 5min. Coverslips were inverted and mounted on the
glass side using Vectashield Mounting Medium and were then
examined on a Leica DM6000 microscope (Leica Microsystems
GmbH, Germany) using a 100× magnification and 1.42 NA oil-
immersion objective. Fluorescent images were processed using
Leica LCS Lite and Image J byW. Rasband (developed at the U.S.
National Institutes of Health and available at http://rsbweb.nih.
gov/ij/). For the colocalization analysis, each image was captured
applying the same exposure and gain settings per channel and
using Volocity 5.4 3D imaging software (PerkinElmer, Coventry,
UK).

Vesicle Preparation
Detailed experimental procedures are described in our
companion papers (Pinato et al., 2011, 2012). Single vesicles,
with a diameter of 1–5µm, were obtained with the lipid film
hydration method using a hydration solution containing BSA or
Sema3A, and were then identified, trapped and positioned at the
location of interest (Ichikawa and Yoshikawa, 2001).

Beads Functionalization and
Immunohistochemistry
1.5µm large silica beads coated with COOH groups (Kisker-
biotech, cat. PSi-1.5COOH) were functionalized using PolyLink
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Protein Coupling Kit (Bangs Laboratories Inc., cat. PL01N),
following the manufacturers protocol. Briefly, about 1.4 × 105

beads were incubated with 500 ng of Sema3A, in the presence
of 20µg/µL EDAC for 1 h, at room temperature and stored in
Storage Buffer at 4◦C.

Coated and un-coated microspheres were washed in PBS and
incubated for 1 h, at room temperature, with anti-Sema3A (1:50,
Sigma). Beads were then centrifuged, washed and incubated for
30min, at room temperature, with donkey anti-goat Alexa 594
(Invitrogen) and finally analyzed using Fluorescence Microscopy
(Nikon Eclipse TE-2000-E).

Optical Manipulation and FRET Microscopy
Setup
Local delivery was achieved by optical trapping andmanipulation
of single vesicles at a specific position nearby the cells, followed
by vesicles photolysis, to release active molecules. To increase
the localization of the stimulus, single beads were optically
trapped and maintained in contact with the GCs for 30 s.
RhoGTPases activation wasmonitored by FRETmicroscopy. The
setup, depicted in Figure 1, was developed around an inverted
microscope (Nikon Eclipse TE-2000-E) adding three modules:
(1) Infrared (IR) laser tweezers (custom built); (2) Ultraviolet
(UV) laser micro-dissection system (MMI- CellCut Plus, MMI,
Zurich, Switzerland); (3) Image splitter (OptoSplit II LS, Cairn
Research, UK).

The first two modules are described in detail in our
companion papers (Pinato et al., 2011, 2012). The trapping laser
beam, generated by a 1064 nm fiber laser, is aligned with the
micro-dissection UV beam and then focused on the sample
through the same lens (Nikon, 60X water immersion, numerical
aperture NA-1.2). The fluorescence path includes a 100W Hg

FIGURE 1 | Optical manipulation and FRET imaging setup. The IR laser

beam (1064 nm) is aligned to the UV laser micro-dissection beam (355 nm)

and then both are directed into the pupil of the microscope objective (60X -

1.2 NA). The sample is illuminated both by a white light source and a Hg

fluorescence lamp. The light coming from the Donor and the Acceptor

fluorophores in the sample is separated by a dual emission image splitter and

the two images are formed on the two halves of the sCMOS camera sensor.

Lamp, excitation filters for EGFP (445/30 nm, Chroma, USA) and
mCherry (550/30 nm). Light emitted by the sample is directed
to the image splitter, where a dichroic mirror (585 nm) splits
the light into Donor (EGFP) and Acceptor (mCherry) channels.
After passing through the emission filters (EGFP: 515/30 nm;
mCherry: 625/30 nm) each of the two beams is imaged on one of
the two halves of a sCMOS sensor (Orca Flash 4.0, Hamamatsu),
thus allowing the acquisition of the donor and of FRET emissions
simultaneously. All live cells and FRET microscopy experiments
were performed on the setup previously described. Imaging was
performed in a Ringer’s Solution and during the experiments cells
were kept at 37◦C, using a temperature controller (TempControl
37-2, PeCon, Germany). Experiments with the same coverslip
always lasted less than 60min. For bath applied stimulation
assays time-lapse DIC images were acquired every 500ms with a
Nikon, 20X (NA: 0.25) objective in case of population studies, and
with a Nikon, 60X (NA: 1.2) objective in case of single cell studies,
from 90 s before adding the Sema3A to 20min after it. For
local stimulation assays, we trapped the lipid vesicle or the bead
with the optical tweezers and we positioned it in front of, or in
contact with, the selected GC. We then acquired simultaneously
the Donor and Acceptor (FRET) channels for 15min after the
vesicle photolysis. All acquisitions were done with the sCMOS
sensor at 16-bit depth. The exposure time for the FRET channels
acquisition was 1 s at binning 4× 4.

Ratiometric Corrections and Image Analysis
Ratiometric corrections and ratio calculations to generate
activity images were performed using the Biosensors 2.1
MATLAB package (Danuser laboratory: http://lccb.hms.
harvard.edu/software.html). All images were sequentially
shading-corrected and background-subtracted; an optional
photobleaching correction was also applied. Binary masks, with
values equal to 1 inside the cells and 0 elsewhere, were extracted
by thresholding the EGFP image (since it presented the highest
signal-to-noise ratio). Control cells expressing either EGFP alone
or mCherry alone were used to obtain bleedthrough coefficients
necessary for the correction of the FRET image. The final ratio
image, obtained dividing the completely corrected FRET image
by the EGFP image, was used as a measure for the RhoA and
Cdc42 activity.

Further image analysis was performed by ImageJ and custom-
built codes were written in Matlab (Mathworks). To describe
RhoA and Cdc42 activation, rectangular areas (size 10 × 20
µm) were generated selecting regions of interest in the normal
direction with respect to the edge dynamics of the GCs;
montage images were then composed by taking one image
every 60 or 120 s for the entire duration of the experiment.
The quantification of the FRET ratio was performed in stalling,
protruding and retracting regions of the cell edge, and the
results were normalized by the mean intensity of the ratio in
the stalling regions. To measure the temporal dynamics of RhoA
and Cdc42, a square area of 4µm2 was selected in the region
of interest previously considered for image montages, so that no
movement of the edge could interfere with the measurements;
the intensity was calculated for every time point and then the
measurements were normalized using the following equation:
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1F =
F−F0
F0

, where F is the intensity at the time point t and
F0 is the intensity at the first frame. Cell edges were detected
for each frame by intensity-thresholding of the Ratio final image
and edge dynamics were calculated along the central line of
the rectangles, previously considered for the image montages.
Edge and RhoGTPases activation dynamics were then plotted
together in a graph, as a function of time. To measure the
period of the waves in the different cases, one or more areas
were selected in the retracting GCs, as previously described for
temporal dynamics measurements, and then the wave period was
calculated extrapolating the time between two maxima from the
intensity vs. time plots.

Statistical Analysis
All quantitative results have been obtained from at least three
independent experiments and expressed as the mean ± SEM.
Experimental data were analyzed by Student’s t-test and One-
Way analysis of variance (ANOVA). Differences among samples
were considered statistically significant when p < 0.05.

Results

The Spontaneous Dynamics of RhoA and Cdc42
in NG108-15 Cell Line
NG108-15 neuroblastoma cells are a good model system for
neuronal signaling and growth (Smalheiser, 1991a,b; Goshima
et al., 1993; Tsuji et al., 2011). In the absence of adherent
or diffusive signaling gradients, NG108-15 cells exhibit both a
complete collapse of the GC followed by a full or partial retraction
of the neurite and the transient collapse of the GC structures
(Rauch et al., 2013). Therefore, to measure the spontaneous
activity of RhoA and Ccd42 in GCs, we transiently overexpressed
in NG108-15 cells the intermolecular RhoA/Cdc42 probes
based on FRET (Murakoshi et al., 2011). These probes consist
of two components: wild type RhoA/Cdc42 tagged with
monomeric enhanced green fluorescent protein (mEGFP) and
their binding partner, Rho GTPase binding domain (RBD)

of Rhotekin/Pak3, doubly tagged with mCherry (mCherry-
RBD-mCherry) (Murakoshi et al., 2011). The expression of
the intermolecular RhoA/Cdc42 probes was carefully titrated
to levels that did not alter the normal neurite outgrowth.
GFP, mCherry and FRET images were captured 18-20 h
post-transfection using a Dual-view image splitting device.
After background and spectral bleed-through correction, the
GFP/mCherry ratio was measured and correlated with the
activation levels of RhoA and Cdc42 during spontaneous
protrusion and retraction events.

NG108-15 neuroblastoma cell line shows neurite outgrowth
when plated on glass slides that have been coated with
laminin. To examine the effect of RhoA and Cdc42 transfection
on NG108-15 cells, we compared the morphologies of cells
transfected with either RhoA or Cdc42 (Figures S1A,B).
Transfection of Cdc42 induced significant neurite outgrowth
compared with RhoA transfected cells that appeared more flatted
(Figures S1A–D). Furthermore, most of the Cdc42-transfected
cells were polarized with long neurite-like processes that were
generally branched and exhibited micro-spikes along their length
(Figures S1B–D).

In RhoA transfected cells, we observed that elevated RhoA
activity (Figures 2A,B; mean FRET ratio: 1.109) correlates with
edge retraction, whereas reduced RhoA activity (Figures 2A,B;
mean FRET ratio: 0.831) leads to edge protrusion. To investigate
how spontaneous RhoA activity relates to edge dynamics, we
scanned RhoA activity in both protrusion (Figures 2C,D) and
retraction regions (Figures 2C,E) of one representative cell at 60 s
intervals. This confirmed that edge retraction coincides with a
boost in RhoA activity compared with a protrusion event.

Cdc42 activity has been implicated in the regulation of
filopodia and lamellipodia extension in many cell types (Nobes
and Hall, 1995; Peng et al., 2003; Nalbant et al., 2004; Myers
et al., 2012). We then imaged Cdc42 transfected cells and we
found that membrane-ruffling and filopodia extension strongly
correlate with hot spots of Cdc42 activity (Figure 3B; mean FRET
ratio of 1.061) with respect to cell edges without protrusions

FIGURE 2 | Spontaneous RhoA dynamics in NG108-15 cells.

(A) Ratiometric FRET live imaging of a representative RhoA-FRET

neuroblastoma cell (n = six experiments). Consecutive frames were

taken every second (left: generation of a ratiometric image) for 15min.

Insets on the right show a time series (1 frame every 3min) of the

magnified region denoted by the white box in the left image. Arrows

indicate protrusion and retraction directions. The red line shows the

initial edge profile. Scale Bar: 20µm. (B) Quantification of mean RhoA

activity (FRET ratio) in 50 stalling, protruding and retracting sections

along the cell edge from RhoA neuroblastoma cells from two

experiments. **p < 0.01, ***p < 0.001 using ANOVA test (C–E) Montage

images showing the dynamics of RhoA activation in protruding (D)

and retracting sections (E) along the cell edge. (C) Images showing

the regions of interest selected for the montage (white boxes) (i,

protruding region; ii, retracting region). (D,E) Montage images

highlighting a low RhoA activity in protruding regions (D) and a higher

RhoA activity in retracting ones (E). Intensity scale on the right in (D)

applies to (A,C–E).
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FIGURE 3 | Spontaneous Cdc42 dynamics in NG108-15 cells.

(A) Ratiometric FRET live imaging of a representative Cdc42-FRET

neuroblastoma cell (n = six experiments). Consecutive frames were

taken every second (left: generation of a ratiometric image) for 15min.

Insets on the right show a time series (1 frame every 3min) of the

magnified region denoted by the white box in the left image. Arrows

indicate protrusion and retraction directions. The red line shows the

initial GC profile. Scale Bar: 20µm. (B) Quantification of mean Cdc42

activity (FRET ratio) in 30 stalling, protruding and retracting sections

along the cell edge from Cdc42 neuroblastoma cells from two

experiments. *p < 0.05, ***p < 0.001 using ANOVA test (C,D) Montage

images showing the dynamics of Cdc42 activation in a protruding

region of the cell. (C) Images showing the region of interest selected

for the montage (white boxes). (D) Montage images highlighting

hotspots of Cdc42 in the protruding region. Intensity scale on the

right in (D) applies to (A,C,D).

(Figure 3B; mean FRET ratio of 0.938) (Figure 3). Therefore,
these findings indicate that a selective activation of RhoA and
Cdc42 correlates spatially and temporally with retraction and
extension events in NG108-15 cell line.

Sema3A Induces GC Retraction in NG108-15 Cell
Line
In order to study the NG108-15 behavior after Sema3A
stimulation, we first observed the distribution of Sema3A
receptors neuropilin1 and plexinA1 using immunofluorescence
microscopy after double staining with antibodies against
neuripilin1 and plexinA1: both the Sema3A receptors were found
in GCs of NG108-15 cell line (Figure S1E). This observation
was consistent with the distribution of neuropilin1 and plexinA1
shown for hippocampal neurons (Pinato et al., 2012). Since
bath application of Sema3A could have several drawbacks
(Brown et al., 2009), we examined the effect of local stimulation
with Sema3A filled lipid vesicles on GC in NG108-15 cells.
We had previously demonstrated that local stimulation with
vesicles encapsulating guidance molecules can allow a controlled
spatiotemporal stimulation of hippocampal neurons that mimics
better the natural behavior of the guidance molecules themselves
(Pinato et al., 2012).

Lipid vesicles, with a diameter varying between 1 and
5µm, were encapsulated with 103–104 molecules of Sema3A
(Pinato et al., 2011, 2012). Local stimulation with lipid vesicles
encapsulating Sema3A led to a rapid collapse and retraction of
the GC (Figures 4A,C): retraction was already detectable at 100 s
after stimulation with Sema3A and reached a plateau between
5 and 6min. After local stimulation with BSA, no comparable
retraction was observed (Figures 4B,D).

Local Stimulation by Sema3A Induces RhoA
Activation Followed By the GC Retraction
To investigate the spatio-temporal activation of RhoA after
local stimulation with Sema3A, we combined FRET with
optical tweezers set-up to induce the local delivery of vesicles
encapsulating Sema3A (Figure 1-see Methods section). Local
application of Sema3A leads to an increase of RhoA activity in the

FIGURE 4 | GC behavior of NG108-15 cells stimulated with Sema3A.

(A,B) DIC images of a representative cell locally stimulated with lipid vesicles

encapsulating 1µM of Sema3A at 0 (A) and 900 s (B) from the delivery. The

red and green lines represent respectively the initial and final GC profile. The

pink cross with the arrow represents the position of the liposome. (C,D) The

same as in (A,B), but the representative cell is locally stimulated with lipid

vesicles encapsulating 1µM of BSA. Frames were taken every second for

15min in both cases. Contrast and brightness enhancement were applied to

all images, followed by bandpass filtering of the spatial frequencies to enhance

the edge contrast.

central region of the GC followed by GC collapse and retraction
(Figure 5A and Supplementary Movie 1). Ratiometric FRET
imaging highlighted that RhoA activity increases rapidly, within
30 s after Sema3A local stimulation, reaching the maximum value
within 400 s (Figures 5B,C). A more detailed analysis of the time
dependence of RhoA activity and GC edge retraction showed
that the GC begins to retract within 100–120 s after Sema3A
local stimulation, reaching a complete collapse and retraction
within 15min (Figure 5D; data from five experiments). The
delay between the increase of RhoA activity and the GC
retraction can be explainedwith the recruitment of RhoA binding
proteins necessary for cytoskeletal rearrangement. When we
stimulated RhoA transfected cells with vesicles encapsulating
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FIGURE 5 | RhoA activation dynamics upon local release of Sema3A.

(A) Ratiometric FRET live imaging of a representative RhoA-FRET

neuroblastoma cell upon Sema3A stimulation. Frames were taken every

second (left: generation of a ratiometric image) for 15min (the cross indicates

the position of the lipid vesicle filled with Sema3A). Insets on the right show a

time series (1 frame every 3min) of the magnified region denoted by the

white box in the left image. Arrow indicates the retraction direction. The red

line shows the initial edge profile. Scale Bar: 20µm. (B,C) Montage images

showing the dynamics of RhoA activation in the stimulated cell GCs.

(B) Images showing the region of interest selected for the montage (white

boxes). (C) Montage images highlighting a progressive increase of RhoA

activation in the retracting GC. Images were taken at 60 s intervals. Intensity

scale on the right in (C) applies to (A–C). (D) Plot of average RhoA activity

(1F/F0) from five experiments. RhoA dynamics was followed for 15min after

Sema3A stimulation. FRET ratio is represented as a blue line; edge retraction

is defined as a red line. Data are shown as Mean ± SEM.

BSA (Figures S2A–C), no comparable retraction (Figure 2) was
observed.

Thus, our results strongly suggest that Sema3A local
stimulation leads to an activation of RhoA associated to GC
collapse and retraction.

Cdc42 Activation Exhibits a Wave-like Behavior
We then determined the spatial and temporal dynamics
of activated Cdc42 in response to Sema3A local delivery
(Supplementary Movie 2). Ratiometric FRET imaging
showed that Cdc42 activity decreases within 60 s from
Sema3A stimulation almost in synchrony with the cell edge
retraction (Figures 6A,B,D,E and Figure S3; data from seven
experiments).

In 43% of cases, we observed that in the region far
from the stimulus Cdc42 activity increases within 120 s after
Sema3A stimulation followed by edge advancement, lamellipodia
ruffling and filopodia extension (Figures 6A–C,F). Plotting
Cdc42 activity against time showed waves of active Cdc42
between the front and back of the protruding region, with a mean
period of 155± 9 s (Figures 7C,E; data from three experiments).
The delay between Cdc42 activation and Sema3A stimulation
indicates that the protrusion event in the region far from the
local release of Sema3A is a reaction to the repulsive stimulus.

Consistently, BSA local stimulation seemed not to affect the
activity of Cdc42 in transfected cells (Figures S2D–F).

In order to better characterize Cdc42 activity in response
to Sema3A local stimulation, we used 1.5µm microbeads
coated with Sema3A that allow a more localized stimulation
(D’Este et al., 2011) (Figure S4). Live FRET imaging of GCs
transfected with Cdc42 and stimulated with Sema3A-beads
showed the appearance of recurring waves of active Cdc42
almost in synchrony with the retraction of the GC (Figure 7A).
Plotting Cdc42 intensity against time from three different
areas of the stimulated GC revealed a burst of Cdc42 activity
within 100–120 s from the local stimulation and highlighted
the propagation of Cdc42 traveling waves from the front to
the back of the retracting GC (Figure 7B). In spontaneous
GC collapse and retraction we observed again Cdc42 active
waves, but with a different periodicity (Beads: 70 ± 5 s vs.
Spontaneous: 110 ± 10 s) (Figures 7D,E). Indeed, we found
that Cdc42 active waves have different periods in all three
cases described herein (Lipid vesicles, Spontaneous, and Coated
Beads) reflecting the different cellular behavior in response
to the stimulus applied (Holmes et al., 2012; Marèe et al.,
2012).

Taken together, these findings show that (a) Cdc42 has a
traveling wave behavior with a different periodicity, highlighting
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FIGURE 6 | Cdc42 dynamics upon local delivery of Sema3A. (A) Cdc42

activity determined by ratiometric FRET live imaging. Frames were taken

every second (left: generation of a ratiometric image) for 15min after

stimulation (the cross indicates the position of the lipid vesicle encapsulating

Sema3A). Insets on the right show a time series (1 frame every 3min) of the

magnified region denoted by the white box in the left image. Arrows indicate

retraction and protrusion directions. The red line shows the initial edge

profile. Scale Bar: 20µm. (B–D) Montage images showing the dynamics of

Cdc42 activity in protruding and retracting regions of the cell. (B) Images

showing the regions of interest selected for the montage (white boxes)

(i, protruding region; ii, retracting region). (C,D) Montage images highlighting

a decrease of Cdc42 activity in the retracting region of the cell facing the lipid

vesicle filled with Sema3A (C) and an increase of Cdc42 activity in the

protruding region, away from the vesicle (D). Images are taken at 60 s

intervals. Intensity scale on the right in (D) applies to (A–D). (E) Plot of

average Cdc42 activity (1F/F0) vs. edge growth from seven experiments.

Negative values are defined as retraction. FRET ratio is represented as a blue

line; edge growth is defined as a red line. (F) The same as in (E), but in this

case data are obtained from three experiments. Positive values are defined

as edge protrusion. Data are shown as Mean ± SEM.

its complex spatio-temporal dynamic; (b) that, in all the
cases observed, a variation of Cdc42 activity upon Sema3A
stimulation is accomplished with a leading edge retraction in
the region of the stimulus; (c) that, in few cases, Sema3A
local release induces the formation of active Cdc42 waves away
from Sema3A stimulation that produced new lamellipodia and
filopodia.

Discussion

By combining FRET with local stimulation we have
demonstrated that local delivery of Sema3A induces an
activation of RhoA followed by a rapid GC retraction.
The use of two different approaches (beads and liposome
vesicles) for Sema3A local stimulation of Cdc42 transfected
cells, both based on optical manipulation, led to a better
characterization of Cdc42 wave behavior. Sema3A release from
the vesicles induced a decrease in Cdc42 activity followed
by an edge retraction. In regions distant from the stimulus,
active waves of Cdc42 resulted in a marked increase in cell
dynamic with lamellipodia-ruffling and filopodia extension.
Using 1.5-µm diameter Sema3A-immobilized microbeads,
we observed again Cdc42 active waves that here resulted
in GC retraction. In previous papers (Pinato et al., 2011,
2012), the local delivery was used to estimate the minimum

number of Sema3A and Netrin1 molecules necessary to induce
retraction and growth, respectively. The present study expands
previous observations by combining for the first time local
stimulation with the FRET technique underlying a fine spatial
and temporal regulation of RhoGTPase activities after Sema3A
stimulus.

RhoA and Cdc42 Have a Different Spontaneous
Activity in NG108-15 Neuroblastoma Cells
Rho GTPases are key molecular switches that affect multiple
cellular functions including cell migration and polarity, vesicle
trafficking, cytokinesis and endocytosis (Etienne-Manneville and
Hall, 2002; Govek et al., 2005; Boureux et al., 2007; Haesman
and Ridley, 2008; Pertz, 2010). They are important players in
the transmission and integration of signals that control the
cytoskeleton: in response to extracellular signals, they induce
changes in the organization of actin cytoskeleton to allow
different biological processes like morphogenesis, chemotaxis,
axonal guidance, and cell cycle progression (Ridley and Hall,
1992; Gallo and Letourneau, 2004; Sit and Manser, 2011;
Gomez and Letourneau, 2014). In N1E-115 neuroblastoma
cell line, Cdc42 promotes the formation of filopodia and
lamellipodia, whereas RhoA causes GC collapse and neurite
retraction (Kozma et al., 1997; van Leeuwen et al., 1997;
Sarner et al., 1997). Consistent with this view, on a laminin
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FIGURE 7 | Analysis of Cdc42 wave-like behavior. (A) Time series of

the active Cdc42 retrograde waves upon local stimulation with

Sema3A-coated beads (Representative of three experiments). (B) Plot of

average Cdc42 activity (1F/F0) in the regions defined by the colored

squares in the inset image at the top right. The analyzed cell is the

same shown in (A). Arrows indicate the temporal progression of the

oscillations. (C) Top: Time series (1 frame every 60 s) of the Cdc42

oscillatory behavior upon local stimulation with lipid vesicles filled with

Sema3A for the time defined by the dark red square in the bottom plot;

Bottom: Plot of average Cdc42 activity (1F/F0 ) in the region defined as

a black square in the image at the top right. (D) Top: Time series (1

frame every 60 s) of the Cdc42 wave behavior during spontaneous

motion for the time defined by the dark red square in the bottom plot.

Bottom: Plot of average Cdc42 activity (1F/F0) in the region defined as

a blue square in the image at the top right. (E) Quantification of the

period of the oscillations both during spontaneous motion and upon

local stimulation. Mean period ± SEM of 10 periods from 3 experiments

for bead stimulation, 10 periods from 2 experiments for spontaneous

motion and 10 periods from 3 experiments for lipid vesicles stimulation.

**p < 0.01, ***p < 0.01 using ANOVA test. Scalebars in (A,C,D): 10µm.

substrate, NG108-15 cells expressing Cdc42 exhibited long
processes with rather simple GCs and branched neurites with
several actin microspikes along their length. On the contrary,
expression of RhoA often resulted in cell rounding and
flattening without the appearance of stress fibers or focal contact
(Figure S1). Spatial and temporal monitoring of spontaneous
activity of RhoA and Cdc42 in NG108-15 cells allowed us to
directly compare cell motility with levels of active RhoA and
Cdc42. We found that filopodia and lamellipodia protrusions
correlate with Cdc42 activation in these subcellular domains
(Figure 3), whereas RhoA activity increases and decreases in
synchrony with cell leading edge retraction and protrusion
(Figure 2).

Local Release of Sema3A Induces a Rapid GC
Collapse and Retraction
The role of Rho-family GTPases in response to several guidance
cue stimulations has been extensively studied in order to
address their role in F-actin dynamics and organization that
determine axon guidance, GC behavior and axon extension
(Gallo and Letourneau, 2004). Attractive cues such as brain-
derived neurotrophic factor (BDNF) activate Cdc42 and Rac
(Yuan et al., 2003; Cheung et al., 2007; Myers et al., 2012;
Tep et al., 2012), whereas repulsive cues like Slit or Eph/ephrin
have been shown to induce a reduction of Cdc42 activity
at GC periphery and an activation of RhoA/ROCK pathway
respectively (Wahl et al., 2000; Myers et al., 2012; Takeuchi

et al., 2015). However, it is well-established that small GTPases
are important components of Semaphorin (Sema)/plexin axon
guidance signaling (Kruger et al., 2005; Tran et al., 2007).
The Sema family of secreted, transmembrane and GPI-linked
proteins is one of the largest families of axon guidance
cues and guides the growing axons by repelling them or
preventing them from entering certain regions (Yazdani and
Terman, 2006). The prototypic member of this family is
the diffusible repulsive guidance cue Sema3A that induces
collapse of GCs through the interaction with its receptor
plexinA1 (Fan and Raper, 1995; Nakamura et al., 2000;
Brown and Bridgman, 2009). In our experiments, Sema3A
local delivery leads to a rapid GC collapse and retraction
in NG108-15 neuroblastoma cell line (Figure 4) in agreement
with similar experiments in DRG neurons (Brown et al.,
2009).

Sema3A Local Stimulation Activates RhoA and
Cdc42 with Specific Spatio-temporal Dynamics
Previous findings have indicated an inhibitory role for
RhoA in inducing neurite extension (Kozma et al., 1997;
Dickson, 2001; Wu et al., 2005). Consistently, we found
that Sema3A local release leads to RhoA activation within
30 s, causing a delayed GC retraction (100–120 s from
stimulation) with a correlation between the levels of RhoA
activity and Sema3A-induced morphological changes
(Figure 5). This delay suggests that GC collapse and

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 August 2015 | Volume 9 | Article 333

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Iseppon et al. Cdc42-RhoA dynamics upon local Sema-3A stimulation

retraction could require RhoA recruitment of its binding
partners.

In Cdc42 transfected cells, local delivery of Sema3A caused
a decrease of Cdc42 activity within 60 s from the stimulation
(Figure 6). Cdc42 showed a wave behavior with a retrograde flow
that proceeded almost in synchrony with cell retraction toward
the repulsive cue (Figure 6). In a few cases, Sema3A local release
induced the formation of active Cdc42 propagating waves away
from Sema3A stimulation that generated new lamellipodia and
filopodia suggesting a role for Cdc42 as an important component
of actin t-waves (Lim et al., 2008; Flynn et al., 2009; Mori et al.,
2011; Allard and Mogilner, 2013) (Figure 6).

Local stimulation with Sema3A coated beads induced the
formation of active Cdc42 waves that propagated from the edge
of the GC to the center of the cell with a period of 70 s (Figure 7).
The same active Cdc42 waves were found in spontaneous
GC collapse and retraction in response to repellent signals
naturally occurring in neuronal cell culture, but with a mean
period of 110 s (Rauch et al., 2013). How differently Sema3A
stimulation can influence Cdc42 wave behavior is still an open
question. One possibility is that these different Cdc42 dynamic
wave patterns reflect the heterogeneity of the cell population
or differential activity states of the cell. Alternatively, bead
mechanical stimulation could induce calcium oscillations within
the cell that influence actin t-waves through the modulation
of Cdc42 activity (Wu et al., 2013). Although previous models
have highlighted a fine spatio-temporal crosstalk between Rho
GTPases that exhibit sustained polarization by a wave-pinning

mechanism (Mori et al., 2008; Holmes et al., 2012; Marèe
et al., 2012), our data show a wave-propagation mechanism
for Cdc42 but not for RhoA and provide clear evidence for a
higher degree of complexity in Rho GTPase signaling network
(Pertz, 2010).

Our findings clearly indicate that the combination
of the FRET technique with local stimulation provides
new tools for the study of cytoskeleton rearrangements
in response to guidance cue stimulations, highlighting
the dynamic spatial and temporal regulation of Rho
GTPases.
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Figure S1: Cdc42 and RhoA expression in NG108-15 cell line. NG108-15 

neuroblastoma cells were plated on laminin and transfected with either RhoA/Rhotekin 

(A) or Cdc42/Pak3 (B). The values in (C) and (D) represent the percentage of 

transfected cells that exhibit neurite (C) and the neurite lenght (D) of 500 cells from 

four experiments. *p<0.05; **p<0.01; ***p<0.001 using ANOVA test (E) 

Immunostaining of NG108-15 growth cones with antibodies for plexinA1 (green) and 

neuropilin1 (red). As shown in the merged image, NG108-15 cells express both 

subunits needed to form a functional Sema3A receptor widely in the growth cones.  

Scale Bar: 5µm. Co-localization percentage: 77%.  
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Figure S2: RhoA and Cdc42 dynamics in NG108-15 cells upon local stimulation 

with BSA-filled liposome. (A) RhoA activity determined by ratiometric FRET live 

imaging. Frames were taken every second (left: generation of a ratiometric image) for 

15 minutes after the stimulation (the cross indicates the position of the lipid vesicle 

encapsulating BSA). Insets on the right show a time serie (1 frame every 3 minutes) of 

the magnified region denoted by the white box in the left image. The red line shows the 

initial edge profile. Scale Bar: 20µm. (B and C) Montage images showing RhoA 

dynamics in the stimulated cell growth cones. (B) Images showing the region of interest 

selected for the montage (white boxes). (C) Montage images highlighting a slight 

increase of RhoA activity in the region of the growth cone that shows a mild collapse. 

(D) Cdc42 activity determined by ratiometric FRET live imaging. Frames were taken 

every second (left: generation of a ratiometric image) for 15 minutes after the 

stimulation (the cross indicates the position of the lipid vesicle encapsulating BSA). 

Insets on the right show a time serie (1 frame every 3 minutes) of the magnified region 

denoted by the white box in the left image. The red line shows the initial edge profile. 

Scale Bar: 20µm. (E and F) Montage images showing Cdc42 activation dynamics in 

the stimulated cell growth cones. (E) Images showing the region of interest selected for 

the montage (white boxes). (F) Montage images highlighting a higher activation in the 

growing filopodium. Intensity scales on the right in (C, F) apply to (A – F). 
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Figure S3: Cdc42 activity in a cell neurite upon stimulation with lipid vesicles 

encapsulating Sema3A.  (A) Cdc42 activity determined by ratiometric FRET live 

imaging. Frames were taken every second (left: generation of a ratiometric image) for 

15 minutes after the stimulation (the cross indicates the position of the lipid vesicle 

encapsulating Sema3A). Insets on the right show a time serie (1 frame every 3 minutes) 

of the magnified region denoted by the white box in the left image. Arrows indicate 

retraction directions. The red line shows the initial edge profile. Scale Bar: 20µm. (B 

and C) Montage images showing Cdc42 activity in the retracting region. (B) Images 

showing the region of interest selected for the montage (white boxes). (C) Montage 

images highlighting a decrease of Cdc42 activity in the retracting region of the cell 

facing the lipid vesicle filled with Sema3A. Images are taken at 60s intervals. In this 

case we observed a strong decrease of Cdc42 activity within 60 seconds from Sema3A 

delivery that proceeds simultaneously with the growth cone retraction. (D) Plot of 

average Cdc42 activity (F/F0) versus edge growth from the area selected in (B).  

Negative values are defined as retraction. FRET ratio is represented as a blue line; edge 

growth is defined as a red line. (E) Legend as in (A), but the time span is 120 seconds. 

Black line indicates the area selected for kymograph analysis in (F) that highlights 

Cdc42 wave behavior. Intensity scales on the right in (C), (E), (F) apply to (A), (B), 

(C), (E) and (F). (G) Plot of average Cdc42 activity (ΔF/F0) in the regions defined by 

the colored squares in the inset image on the top right. The analyzed cell is the same 

shown in (E). Arrows indicate the temporal progression of the waves. 
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Figure S4. Sema3A-coated beads. Immunofluorescence images of Sema3A-beads (B) 

and of un-functionalized beads (D) incubated with the anti-Sema3A antibody following 

the protocol indicated in the Materials and Methods section. (A) and (C) are DIC 

images of the beads. Scale bar 5m. 

 
 
 
Supplementary Movie 1: Sema3A local stimulation leads to an activation of 

RhoA followed by growth cone collapse and retraction. 
This movie shows the RhoA activation dynamics upon local stimulation by breaking 

of a lipid vescicle (magenta cross in the image) filled with 1 µM of Sema3A. 

Frame interval: 4 s. Duration of original sequence: 15 min. Frames are color-coded 8 

bit: warm colors represent higher activation and cold colors represent lower 

activation. 

 

Supplementary Movie 2: Sema3A local stimulation induces an activation of 

Cdc42 in the region opposite to the stimulus 
This movie shows the Cdc42 activation dynamics upon local stimulation by breaking 

of a lipid vescicle (magenta cross in the image) filled with 1 µM of Sema3A. 

Frame interval: 4 s. Duration of original sequence: 15 min. Frames are color-coded 8 

bit: warm colors represent higher activation and cold colors represent lower 

activation. 
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ABSTRACT: 

Local stimulation with optical tweezers has been used to mimic natural stimuli that occur in biological 

processes such as cell migration or differentiation. Carriers (beads and lipid vesicles) with sizes 

down to 30 nm can be manipulated with a high spatial and temporal resolution: they are positioned 

with a sub-micrometric precision on a specific cell compartment and the beginning of the stimulation 

can be triggered with millisecond precision. RhoGTPase are a Ras-related family of proteins that 

regulate many different functions including cell polarity, microtubule dynamics and membrane 

transport pathways. Here we combine local stimulation with FRET technique to study RhoGTPase 

spatial and temporal activation following guidance cue local stimulation. We used two different 

vectors for local delivery: silica micro-beads and micro-sized lipid vesicles. The experimental 

methods associated with neuronal growth cone local stimulation are discussed in detail, as well as 

the analysis methods. Here we present a protocol that enables to study neuronal growth cone 

cytoskeleton rearrangements in response to a gradient of molecules in a way that better mimics 
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physiological conditions, and it can be similarly applied to each secreted molecule involved in cell 

signalling. 

 

KEYWORDS:  

FRET, growth cones, guidance molecules, local stimulation, Optical Tweezers. 

 

BACKGROUND:  

RhoGTPases are a Ras-related family of proteins that play a major role in many physiological 

processes including cell polarity, microtubule dynamics, membrane transport pathways and 

transcription factor activity. They act as molecular switches that cycle between two conformational 

states: one bound to GTP (“active” state); the other one bound to GDP (“inactive” state)[1]. In the 

activated form, they bind different effector proteins leading to the activation of myriad downstream 

signals[2]. The best-characterized function of Rho GTPases is in the regulation of F-actin dynamics 

in both non-neuronal cells and neuronal growth cones [3,4]. During axon guidance, RhoGTPases 

translate signals from extracellular cues into growth-cone movement and axon guidance:  RhoA 

increases the actomyosin contractility, whereas Rac1 and Cdc42 induce the polymerization of actin 

to form lamellipodial and filopodial protrusions, respectively [5,6]. RhoGTPases ability to regulate so 

many different functions, in highly dynamic cellular contexts, implies that they are tightly regulated 

at the spatio-temporal level. This has led to the development of fluorescent probes for the direct 

monitoring of their activation state in living cells based on the principle of Förster Resonance Energy 

Transfer (FRET) [7-9].  

Most of the in vitro neuron stimulation experiments employ bath or micropipette administration of 

molecules to change the cell environment [10]. Hence, new strategies to address specific 

compartments of neuronal cells with spatial and temporal gradients of molecules, which better reflect 

cellular physiological conditions, should be considered [11]. Focal stimulation of neurons using 

optical tweezers and single micro-beads functionalized with a secretory molecule, the neurotrophin 

brain-derived neurotrophic factor (BDNF), demonstrated to induce focal increase of calcium 

signaling in the stimulated dendrite, with a specific activation of the TrkB receptor pathway and 

influenced the development of growth cones [12]. An elegant demonstration of the role of molecular 

gradients for cell stimulation has been reported for neutrophils by using optically manipulated 

microsources releasing soluble molecules that act as chemoattractants or perturb the actin 

cytoskeleton [13]. Another type of optically manipulated carriers are the lipid micro-vesicles 

encapsulating active molecules which are released by photolysis of the vesicle membrane using a 

laser pulse [14]. An optimization of this technique allowed to study the effect of a very small number 
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of different guidance cues on hippocampal neurons [15]. In principle, the number of molecules can 

be scaled down to a single molecule for a micron size vesicle at 1 nM concentration. Stimulation can 

be triggered with very high temporal precision, providing steep gradients over length scales from 

sub-micrometer to tens of micrometers and at time-scales from milliseconds to seconds. 

Here, we present an experimental protocol that combines the FRET technique with local stimulation 

to observe the spatial and temporal activation of RhoA and Cdc42 following localized stimulation 

with Sema3A, a negative secreted guidance cue that steers a growth cone by inducing partial or 

local collapse [16,17]. We used two different vectors for Sema3A local delivery: silica micro-beads 

and micro-sized lipid vesicles. The former were covalently functionalized with Sema3A and placed 

on the selected neuronal growth cone for a controlled time (30 s); the latter were trapped with optical 

tweezers in front of the exploring Growth Cone and broken with short UV laser pulse, releasing the 

Sema3A in its native form. The combination of FRET technique with local stimulation provides new 

tools for the study of the cytoskeleton rearrangements in response to guidance cues stimulation, 

underlying the dynamic spatial and temporal activation of RhoGTPases.  

 

MATERIALS: 

 

Cells: 

- NG108-15 Neuroblastoma cell line (Sigma-Aldrich, cat # 88112302) 

 

Reagents: 

- Bicinchoninic Acid Protein Assay kit (Sigma-Aldrich, cat # BCA1) 

- Biomag Plus carboxyl coupling kit (Bangs Laboratories Inc., cat # BP611) 

- CaCl2 (Sigma-Aldrich, cat # C1016) 

- DMEM (Thermofisher Scientific, cat # 31966-021) 

- Ethanol (Sigma-Aldrich, cat # 02860) 

- Fetal Bovine Serum (FBS) (Sigma-Aldrich, cat # F6178) 

- Glass Coverslips (12mm round) (Chemglass, cat # 89167-106) 

- Glucose (Sigma-Aldrich, cat # G0350500) 

- HCl (Sigma-Aldrich, cat # 318949) 

- HEPES (Sigma-Aldrich, cat # H3375) 

- KCl (Sigma-Aldrich, cat #P9333) 

- Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane (Sigma-

Aldrich, cat # L2020) 

http://www.sigmaaldrich.com/catalog/product/sigma/88112302


68 
 

- Liposome Kit (Sigma-Aldrich, cat # L4395) 

- mCherry-Pak3(60-113)/S74A/F84A-mCherry-C1 (Addgene, plasmid # 29676) 

- mCherry-Rhotekin(8-89)-mCherry-C1 (Addgene, plasmid # 29675) 

- mEGFP-Cdc42-C1 (Addgene, plasmid # 29673) 

- mEGFP-RhoA-C1 (Addgene, plasmid # 29674) 

- Metafectene Easy + transfection reagent (Biontex Laboratories, cat # T090) 

- MgCl2 (Sigma-Aldrich, cat # M8266) 

- NaCl (Sigma-Aldrich, cat # S9888) 

- PBS 10X, pH 7,4 (Thermofisher Scientific, cat # 70011044) 

- Penicillin/Streptomycin (Biochrom AG, cat # A2213) 

- Sucrose (Sigma-Aldrich, cat # S0389) 

 

Recipes: 

- NG108-15 culture medium: Add FBS and Penicillin-Streptomycin to respectively 10% and 

1% of volume of DMEM. Store at 4°C for up to 8 weeks. 

- Ringer Solution: Add NaCl 145 mM, KCl 3 mM, CaCl2 1.5 mM, MgCl2 1 mM, Glucose 5 mM, 

HEPES10 mM to 1L of MilliQ Water. Adjust the pH to 7,4. 

 

Equipment: 

- Cell culture incubator (humidified, 5% CO2) 

- Biological hood with laminar flow 

- Cell counter chamber  

- Nikon Eclipse inverted fluorescence microscope (Nikon) 

- IR laser 1064nm (IPGphotonics) 

- UV laser 355nm (Molecular Machines & Industries) 

- Donor Filterset (Ex: 455/30, DM: 495LP) (Chroma Technology) 

- Acceptor Filterset (Ex: 530/20, DM: 585LP) (Chroma Technology) 

- Dual View FRET Filterset (DM: 585LP, Em1: 515/30, Em2: 625/30) (Chroma Technology) 

- Emission/Excitation filter cube for 25mm filters (Cairn Research, cat # P290/000/200) 

- Optosplit II LS Image Splitter (Cairn Research, cat # P280/210/MLS) 

- ORCA-Flash 4.0 LT Digital CMOS camera (Hamamatsu, cat # C11440-42U) 

- MATLAB Software (Mathworks) (download Biosensors 2.1 package from http://lccb.hms. 

harvard.edu/software.html) 
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PROCEDURE: 

 

1. Preparation of coverslips  

1.1 Wash glass coverslips overnight in 0,5 N hydrochloric acid (HCl) in a dedicated glass jar or 

beaker.  

1.2 Remove the coverslips from HCl and wash twice in deionized water, then put them in 70% 

ethanol for 1,5 hr. 

1.3 Separate the coverslips and sterilize them in a laminar flow hood or biosafety cabinet for 3 

hours at 180 °C. 

1.4 Place the coverslips in a 12-well plate and coat them with 2 µg/cm2 of Laminin for 2-3 hr. Rinse 

them twice with 1 ml of pre-warmed cell culture medium. Leave the coverslips in 1 ml of pre-

warmed medium. 

 

NOTES: Grow and maintain NG108-15 neuroblastoma cell line following standard protocols. All cell 

incubations are performed at 37°C, 5% CO2 incubator. Equipment and reagents coming into contact 

with cell line must be sterile. 

 

2. Cell transfection 

NOTES: This protocol has been optimized for the transfection of Cdc42 and RhoA inter-molecular 

FRET probes developed by Murakoshi et al. [18] using Metafectene Easy+ reagent.  Single probe 

transfection is required for the image correction (Step 6). 

2.1 Seed 0.2 X 105 cells into the coverslips in DMEM medium supplemented as described above 

and leave them in the incubator for 24 hr.  

2.2 Prepare Buffer Solution 1X in sterile H2O. Calculate 100 µl of buffer solution for each coverslip 

to be transfected. Add 1 g of plasmid DNA for each transfection. 

2.3 Put 2.5 µl of transfection reagent in each tube and mix gently. Remember to Vortex the reagent 

before adding it to the DNA-buffer solution.  

2.4 After 15 min incubation at RT, add the transfection mixture dropwise to the cells. Leave them 

in the incubator for 18-24 hr to ensure the complete protein expression. 

 

3. Beads Functionalization 

3.1 Dilute 3 µl of bead stock solution in 1.8 ml Coupling Buffer. 

3.2 Pipette 60 µl of the diluted beads in a polypropylene micro-centrifuge tube. 

3.3 Centrifuge for 10 min at 1000 x g. 
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3.4 Discard the supernatant and suspend the pellet in 100 µl of Coupling Buffer. 

3.5 Centrifuge for 10 min at 1000 x g. 

3.6 Discard the supernatant and suspend the pellet in 50 µl of Coupling Buffer. 

3.7 Prepare a 200 mg/ml 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC) solution in 

Coupling Buffer and add 10 µl of this solution to the beads suspension. 

3.8 Mix gently and leave to rest at RT for 1 hr. 

3.9 Add the protein of choice at saturation. For the right amount of protein calculate 20-500 µg of 

protein for each mg of particles. 

3.10 Leave to rest for 1 hr at RT with gentle mixing. 

3.11 Centrifuge for 10 min at 1000 x g, then remove the supernatant and suspend the pellet in 400 

µl of Wash/Storage Buffer. Repeat this washing procedure twice. 

3.12 Store the particles at 4 °C for up to two weeks. 

 

NOTES (Step 3.11): Keep the supernatant for the calculation of the amount of protein linked to the 

bead with the BCA protein assay. 

NOTES:This protocol is optimized for the BioMag Plus Carboxyl Coupling Kit. 

 

4. Lipid Vesicles Preparation 

4.1 Prepare a 6 ml solution of chloroform:methanol in proportion 2:1 (v/v). 

4.2 Add the chloroform:methanol solution to the liposome kit vial. Saturate the vial with N2 (lipid 

vials can be stored at -20 °C until expiration date). 

4.3 Put 50 µl of the lipid solution in a glass vial and proceed to the lipid desiccation in the vacuum 

oven (18 hr).  

4.4 Remove the glass vial from the oven and immediately saturate with N2. Proceed with the lipid 

film rehydration preparing a solution (Solution A) with 20 µl PBS + 5 µl Sucrose at 1M 

concentration for each lipid film to rehydrate. 

4.5 Prepare a 25 µl solution in sterile PBS containing the protein of choice at the desired 

concentration (Solution B) for each lipid film to rehydrate. We used 1 µM Sema-3A final 

concentration [17,19]. 

4.6 Mix well together Solution A and Solution B (50 µl in total). Add gently the 50µl rehydrating 

solution to each glass vial containing the lipid film.  

4.7 Vortex for about 1 minute and leave them overnight at 4 °C.  

4.8 The day after, prepare a 100 mM Glucose washing solution in PBS. 

4.9 Add 500 µl of washing solution in a 500 µl micro-centrifuge tube. 
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4.10 Add gently 10 µl of the lipid vesicles solution previously prepared on the surface. 

4.11 Pellet the lipid vesicles in a table top centrifuge for 3 min at 1500 x g. Add 500 µl of washing 

solution and repeat this process again. 

4.12 Resuspend the final pellet in 50µl of washing solution. Add the lipid vesicles directly in the plate 

to perform the local stimulation experiments. 

 

TIPS (Step 4.11): Be cautious when removing the supernatant because the pellet is not visible and 

very delicate. 

 

5. Local Stimulation and FRET imaging 

NOTES: For these experiments the setup is equipped with an InfraRed (IR) and an UltraViolet (UV) 

laser together with an image splitter to record both channels needed for FRET at the same time. The 

microscope needs to be equipped also with two filtersets: a filterset with Donor excitation and no 

emission, since the image splitter will have both Donor and FRET channels, and a filterset with 

Acceptor excitation for FRET crosstalk correction (Fig.1). 

5.1 Prepare the Ringer’s solution at pH 7.4: NaCl 145 mM, KCl 3 mM, CaCl2 1.5 mM, MgCl2 1 mM, 

Glucose 5 mM, HEPES10 mM. 

5.2 Record a set of 30-50 images with no light and then another set of 30-50 images with the 

fluorescence light ON and Donor molecule excitation but no sample to use in the following 

offline correction steps (see 6.3-6.4 step). 

5.3 Carefully remove the coverslip with the sample cells from the plate and place it into the 

recording chamber. Fill the recording chamber with Ringer’s solution and put it under the 

microscope onto the pre-heated stage at 37°C.  

5.4 Focus the cells under the microscope and search for a transfected one. 

NOTES (Step 5.4): The optimal transfection efficiency is around 40-60%. For these experiments 

search for an isolated cell with neurite-like protrusions and growth cones. 

5.5 Put 5-8 µl of lipid vesicles or beads into the sample medium and wait for them to sink, then 

turn the InfraRed (IR) laser ON. 

5.6 To stimulate with lipid vesicles adopt the following procedure. 

5.6.1 Move the focus upwards with respect to the cell level, find the focal point of the IR laser and 

then follow a lipid vesicle until it’s trapped into the IR laser’s focal point. 

5.6.2 Gently move the trapped vesicle in the proximity (10-20 µm) of the cell compartment to 

stimulate.  (Fig.2 A-C). 

5.6.3 When all is set up, acquire a fluorescence video of about 90 sec to assess the viability of the 
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cell and its basal dynamics. 

5.6.4 Acquire a video in Differential Interference Contrast (DIC) of the lipid vesicle breaking and 

perform it by giving pulses of 50-100 msec with an UltraViolet (UV) laser. 

5.6.5 Acquire a fluorescence video of the cell after the stimulation for 15 min. 

5.7 To stimulate with beads adopt the following procedure. 

5.7.1 Acquire a fluorescence video of about 90 sec to assess the viability of the cell and its basal 

dynamics. 

5.7.2 Move the focus upwards with respect to the cell level, find the focal point of the IR laser and 

then trap a bead into the IR laser’s focal point. 

5.7.3 Gently move the bead onto the cell compartment to stimulate it, then move slowly the bead 

downwards until it touches the cell membrane. In this case move the bead to the central part 

of the growth cone or onto filopodia and lamellipodia (Fig.2 D-F). 

5.7.4 Leave the trap ON for the time of the stimulation, while acquiring a video in DIC, then turn the 

IR laser OFF. For this protocol we stimulated the cells for 30 sec. 

5.7.5 Acquire a fluorescence video of the cell after 15 min stimulation. 

 

NOTES: For these experiments, all the videos were acquired with binning X4 and 1 sec of 

exposure time. 

 

CAUTION: This protocol involves the use of class 3b lasers and will require proper training and safety 

guidelines to be followed.  

 

6. Offline Image Processing, Correction and Ratio Analysis 

NOTES: FRET imaging data can be analysed offline at any time after the experiment using most 

imaging software dedicated to microscopy. Here is described the protocol using a custom Matlab 

software for processing together with the Biosensors 2.1 Matlab package for correction and ratio 

analysis. This process involves offline correction of technical noise from the camera together with 

noise coming from uneven illumination and specific noise of the FRET technique. The final ratio 

between the corrected Acceptor channel and the Donor channel (upon Donor excitation) reflects the 

amount of activated protein. 

6.1 Split the two channels from the raw sample video into Donor and FRET channels, then align 

them to match perfectly. This step uses custom-made Matlab software for the channels 

separation and alignment. 

6.2 Carry out the following correction steps using Biosensors 2.1 Matlab package. 
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6.3 Correct the dark current noise with the control images taken with no light at step 5.2. 

6.4 Correct for the uneven illumination with the control images taken with the fluorescence light 

ON at step 5.2. 

6.5 Threshold the image to create a mask of the cell contour. It can be done automatically by 

choosing one of the algorithms in the programs or by manually setting up the threshold. 

6.6 Subtract the background from the selected mask. 

6.7    Subtract the bleed-through and crosstalk noises using the following method: 

6.7.1 Open the images of all the channels of the cells transfected with only the single DNAs for either 

Donor or Acceptor. For this part use ImageJ software. 

6.7.2 Select at least 3 Regions of Interest (ROIs) of the cells in all the channels and calculate the 

average intensity. 

6.7.3 In case of cells transfected only with the Donor fluorophore, calculate the bleed-through 

coefficient by dividing the mean ROI intensity of the FRET channel and the one of the Donor 

channel. 

6.7.4 Calculate the crosstalk coefficient by dividing, for the cells transfected only with the Acceptor 

fluorophore, the mean ROI intensity of the FRET channel and the one of the Acceptor channel. 

6.7.5 Insert these coefficients in the Biosensors package to eliminate bleed-through and crosstalk 

noises. 

6.8 Calculate and correct the photobleaching by choosing one of the algorithms in the package. 

6.9 Calculate the ratio between corrected channels (FRET / Donor) and then create a file .tiff with 

the obtained result. 

 

ANTICIPATED RESULTS:  

Local stimulation based on optically manipulated carriers containing active molecules is a flexible 

technique easy to integrate with the optical microscope for live cell analysis. Different imaging 

techniques can thus be used in parallel with optical manipulation, as phase contrast, fluorescence, 

or FRET microscopy. Micro-carriers are generally employed since it is easier to observe and monitor 

them by bright field imaging inside the sample chamber. Both carriers used in this work (beads and 

lipid vesicles) can deliver any type of active proteins, which makes them practical for a very wide 

range of applications. 

By using the method described herein, we were able to stimulate neuronal growth cones by 

mimicking the natural stimuli that lead to neuronal cell migration. We observed morphological 

rearrangements within the growth cones upon local Sema3A release. 
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Figure 4 shows an example of the morphological changes occurred in NG108-15 cells upon Sema3A 

local stimulation with beads (Fig. 3 A and B) and lipid vesicles (Fig. 3 C and D) in comparison with a 

cell that is not stimulated (Fig. 3 E and F). The plot of the mean edge growth of stimulated cells 

shows that both local stimulation methods are effective ways to trigger growth cone collapse and 

retraction, since there is no significant difference in the morphological response to either stimulation 

methods (Fig. 3 G). 

The combination of FRET imaging with local stimulation allows the monitoring of the spatial and 

temporal activation of signaling molecules (e.g. RhoGTPases) in response to local extracellular 

stimuli (e.g guidance cues). The dynamics of the ratio between Donor and FRET channels reflect 

the spatio-temporal activation of the proteins studied. 

Figure 4 shows that Sema3A repulsive stimulus triggers an activation of RhoA in both the center of 

the growth cone that diffuses to the leading edge and in filopodia causing growth cone collapse and 

retraction. The dynamic changes can be further investigated by using image montages (Fig. 5 A-C) 

or by performing Area Intensity Analysis to plot the ratio changes versus the leading edge dynamics 

(Fig. 5 D). 

In summary, this methodology can be used to study the dynamic growth cone rearrangement in 

response to different guidance cues, and has been recently defined as a very promising method for 

guidance cues delivery [20]. Since a great variety of FRET probes have been created to study the 

dynamics of many proteins [21-24], this combination provides a very useful tool for investigating 

intra-cellular signalling pathways at the basis of major cell dynamics.  

However, the development of new vectors - for which the molecules release can be timely tuned - 

and of more sensitive FRET probes will represent important optimizations of this technique in the 

future to broaden even more its potential applications. 

 

TROUBLESHOOTING: 

Table 1 presents issues and problems that are most likely to be encountered during this procedure 

and some hints and solutions to solve them. The setup configuration, alongside IR and UV relative 

alignment are the most delicate and should be always checked and addressed carefully, since a 

misalignment between the two beams brings to impossibility in trapping the beads and breaking the 

lipid vesicles.  
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Step Problems Causes Suggestions 

2 Poor 

transfection 

efficiency 

DNA quantity is too 

low 

Modify the transfection reagent/DNA ratio by 

adding more DNA to the mixture.  

2 Low cell 

viability 

- DNA quantity is 

too high 

- Incubation time is 

too high 

- Decrease the amount of transfection 

solution and DNA added to the cells  

- Decrease the incubation time. NOTE: 

longer incubation times may result in higher 

efficiency but higher toxicity also. 

3 Low BCA result Low protein linked to 

the bead 

Check that the amount of protein added is at 

saturation for the linker reaction to successfully 

take place 

4 No lipid 

vesicles  

detected in the 

solution 

- No lipid vesicles 

present 

- Wrong molarity 

of the solutions 

- Be careful in all the washing procedures 

 

- Check the correct molarity of the glucose 

and sucrose solutions 

5 No 

fluorescence 

intensity is 

detected in the 

FRET channel 

FRET signal is very 

low 

Increase the exposure time or the light intensity; 

this may bring to excessive photobleaching or 

phototoxicity, adjust these parameters to 

optimize the image acquisition. 

5 Lipid vesicles 

and beads 

cannot be 

trapped 

- IR laser is out of 

focus 

- IR laser power is 

too low 

- Check the IR laser focus and align the beam 

 

- Increase the laser power 

 

5 Lipid vesicles 

cannot be 

broken 

UV an IR laser are 

not overlapping 

Check the UV and IR laser relative position and 

focus and align the beam 
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6 Biosensors 2.1 

package 

doesn't run 

MATLAB version 

does not support it 

This package works on MATLAB 2012b or 

below. 

Table 1: Troubleshooting. 
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Figure 1: Schematic representation of the optical manipulation and FRET imaging setup. The 

InfraRed (IR) laser used for trapping micro-particles is aligned with the UltraViolet (UV) laser used 

for photolysis and then they are both directed into the objective pupil (60X, 1.2 NA). The sample is 

illuminated both by a white light source and a Hg fluorescence lamp. The light coming from the 

excited sample is then separated into the two emissions of the Donor and Acceptor fluorophores for 
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FRET imaging by the beam splitter (DM4, 585 LP) and directed onto the two halves of the camera 

sensor. 

 

 

Figure 2: Schematic representation of the local stimulation protocols. (A) Pipette 5-8 µl of solution 

containing lipid vesicles into the imaging chamber, wait for them to sink and trap one of them by 

focusing the IR laser in the center of the vesicle. (B) Gently move the trapped lipid vesicle in the 

proximity (10-20 µm) of the cell compartment (growth cone in this case) to stimulate, with an angle 

between 0-90°. (C) Break the lipid vesicle to release its content and locally deliver the protein to the 

growth cone. In this case, a repulsive cue triggers collapse and retraction from the source. (D) Same 

as in (A), but pipette 5-8 µl of coated beads into the chamber. (E) Gently move the trapped bead 

over the cell compartment (central part of the growth cone in this case) to stimulate and leave it there 

for the chosen amount of time. (F) In this case, a repulsive cue mediates collapse and retraction of 

the stimulated region. 
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Figure 3: Representative results of a repulsive local stimulation experiment on NG108-15 cells. (A,B) 

DIC images of a cell undergoing spontaneous motion at 0s (A) and after 900s from the acquisition 

(B). The green line represents the initial profile (0s) and the red line represents the final profile (after 

900s). (C,D) DIC images of a cell during local repulsive stimulation with Sema3A-coated beads (the 

blue arrowhead indicates the bead position). (C) Stimulated cell at the beginning of the stimulation. 

(D) Stimulated cell after 900s from the stimulation. The green line represents the initial profile (0s) 

and the red line represents the final profile (after 900s). (E,F) DIC images of a cell during local 

delivery of 1µM of Sema3A (the blue cross and arrow indicate the position of the lipid vesicle). (E) 

Stimulated cell at the breaking of the lipid vesicle. (F) Stimulated cell after 900s from the breaking. 

The green line represents the initial profile (0s) and the red line represents the final profile (after 

900s). Scale Bars: 20 µm. (G) Plot of the mean edge growth of cells undergoing spontaneous motion 

(circle), and cells stimulated locally with a repulsive stimulus with beads (triangle) and lipid vesicles 

(square). There is a significant difference between the non-stimulated cells ((n=12) mean edge 

growth: 1.1±1.4 µm) and the cells stimulated with beads ((n=6) mean edge growth: -5.7±1.1 µm) and 

lipid vesicles ((n=12) mean edge growth: -5.4±1.0 µm). 

 

 

Figure 4: Representative results of FRET imaging of RhoA after local repulsive stimulation. (A) 

Example images of EGFP (green) and mCherry (red) fluorescence channels that are separated and 

corrected offilne to obtain the final ratiometric video (mCherry/EGFP). (B) DIC image of the growth 

cone undergoing local delivery of 1 µM Semaphorin-3A. The blue cross and arrow indicate the 

position of the lipid vesicle. (C) Ratiometric FRET live imaging of a representative cell transfected 

with RhoA inter-molecular probe. The insets show a time series (1 frame every 3 minutes) for 900s 

after the stimulation. The white arrow highlights the increase of FRET signal in the center of the 
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growth cone subsequent to its retraction. The red line shows the initial edge profile. The intensity 

scale on the right applies to all the images. (D) Same as in (A). (E) Same as in (B), but the cell is 

locally stimulated by a Semaphorin-3A-coated bead. The arrowhead indicates the position of the 

bead. (F) Raw FRET signal for a representative cell transfected with RhoA inter-molecular probe. 

The white arrow here indicates a peak of RhoA activity. Scale Bars: 20 µm. 

 

 

Figure 5: Further analysis of FRET ratiometric images. (A,B) Example FRET ratiometric images of 

the cell in Figure 4 (A), (B), (C) taken at 0s (A) and 900s (B) from the stimulation. The white box in 

both images refers to the area used in the image montage in (C). Scale Bar in (B) refers to (A) and 

(B): 20 µm. (C) Image montage of the region highlighted by the white box in (A) and (B). Images are 

taken every 60s. The intensity scale in (C) refers to (A), (B) and (C). (D) Plot of the RhoA activity 

(DF/F0) in the edge region highlighted by the black square in (C) vs. edge retraction that shows the 

increase of RhoA activity as the growth cone retracts. FRET ratio is represented as a blue line: edge 

retraction is defined as a red line. 
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ABSTRACT 

 

Actin Waves (AWs) are growth cone–like structures that emerge at the base of developing neurites 

and migrate up to the tip and contribute to growth cone (GC) dynamics. Using live-cell imaging, we 

have identified new dynamical properties of AWs: when AWs approach the distal neurite, GCs retract 

several microns fusing with the incoming AWs. Subsequently, following the arrival of the AW the GC 

advances. This “pulling” effect is abolished by addition of blebbistatin, an inhibitor of myosin II. 

Treatment with ß-cyclodextrin, a compound responsible for cholesterol extraction from the 

membrane and reducing the membrane tension of the neurite, abolishes the growth cone-like shape 

of AWs and influence their dynamicity. Inhibition of both Rac1 and Cdc42 decreased the waves’ 

frequency and velocity affecting the dynamics of actin travelling waves along the neurite shaft as 

well. Taken together, our results suggest a major role of both myosin II and membrane cholesterol 

in the morphology and the dynamics of AWs and confirm an important role of the RhoGTPases in 

AWs inception and propagation along the neurite shaft. 

 

 

INTRODUCTION 

 

The actin cytoskeleton is a highly dynamical system that facilitates the transduction of mechanical 

signals and generates the intracellular forces required for many cellular functions like cell motility, 

mailto:torre@sissa.it
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polarization, active cell shape control, neurite outgrowth and exocytosis (Madden and Snyder, 1998; 

Morales et al., 2000; Pollard and Borisy, 2003; Lowery and Van Vactor, 2009). A characteristic 

feature of all these processes is the dynamics and assembly of filamentous actin (F-actin) from its 

subunits (G-actin) that undergoes a constant and rapid reshaping of actin network. Actin filaments 

arise and grow through a complex and well-understood process (Devreotes and Horwitz, 2015) in 

which the Arp2/3 complex has a key role in nucleating actin branches that are seen in broad 

protrusions (Insall and Machesky, 2009). In cell migration, contraction forces generated by Myosin 

II motor proteins are needed mainly to promote retrograde movement of actin filaments away from 

the zone of active actin polymerization in the lamellipodium (Devreotes and Horwitz, 2015).  

Different types of wave phenomena have been observed in the actin system of motile cells (Vicker, 

2002; Gerisch et al., 2004; Weiner et al., 2007; Bretschneider T et al., 2009). Actin Waves (AWs) 

are growth cone–like structures that emerge at the base of neurites, migrating slowly up to the tip 

with a speed of ∼2–3 µm/min, flaring the plasma membrane during transit and capable of changing 

directions (Fig. 1; Ruthel and Banker, 1998,1999; Flynn et al., 2009; Katsuno et al., 2015). They 

have been found more prevalent in early neurons compared to mature neurons and are present in 

cultured organotypic slices as well as primary hippocampal neurons (Flynn et al., 2009; Katsuno et 

al., 2015; Ruthel and Banker, 1998). Waves are critically dependent on actin dynamics, but are also 

disrupted by microtubule-depolymerizing agents (Ruthel and Banker,1998). Indeed, it has been 

proposed that they promote anterograde and kinesin-based transport driving neurite extension 

(Winans AM et al., 2016).  

In previous works, signalling proteins such as the Rho family members of small GTPases (Rac, 

RhoA, and Cdc42) have been considered as putative Nucleation Promoting Factors (NPFs) (Holmes 

et al., 2012; Weiner OD, 2007) that modulate actin filament nucleation. The Rho GTPases act as 

molecular switches to control signal transduction pathways by cycling between a GDP-bound, 

inactive form, and a GTP- bound, active form (Raftopoulou and Hall, 2004).  They act on a number 

of effectors that regulate cytoskeleton machinery: Rac and Cdc42 regulate actin polymerization via 

Arp2/3; RhoA activates ROCK leading to Myosin II stimulation (Ridley 2006, 2011; Heasman and 

Ridley, 2008). Machacek et al (Machacek et al, 2009) provided quantitative evidence for the 

correlation of Cdc42, Rac1, and RhoA wave dynamics with F-actin mediated edge protrusion and in 

(Wu M et al., 2013), waves of Cdc42 were shown to be correlated in both space and time with waves 

of F-actin. 

Here, we use live-cell imaging to investigate the dynamic of AWs and of AWs constituent proteins in 

hippocampal neurons and provide evidence for a direct role of the actomyosin complex in the AWs’ 

generation. Our results show that as an AW approaches the distal neurite, the growth cone retracts 

several microns to fuse with the wave and advances following the AW arrival. Furthermore, when 

we treated cells with either Blebbistatin, a cell permeant inhibitor of myosin II (Kovàcs et al., 2004), 

or ß-Cyclodextrin, a drug that reduces the cholesterol concentration in biological membrane 
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(Vladislav I et al., 2013), the AWs lose their characteristic growth-cone like shape and the “pulling 

effect” is completely abolished, suggesting that both myosin II and membrane surface tension have 

a major role in the travelling of AWs along the neurite shaft. We also investigated the cross-talk 

between AWs and RhoGTPases and our data support the idea that cytoskeletal dynamics and 

Rac1/Cdc42 activities are tightly coupled at sub-cellular levels.  

 

 

RESULTS 

 

The dynamic of Actin Waves (AWs) 

We performed long-term live cell imaging of AWs on rat hippocampal cells using mCherry-LifeAct 

that selectively labels F-actin (Riedl et al., 2008). Individual neurons were imaged at 10 s intervals 

for 10 hours to have a complete picture of the wave phenomena. Consistent with previous studies 

(Ruthel and Baker, 1998; Flynn et al., 2009; Katsuno et al., 2015; Winans et al., 2016), the AWs 

exhibit a growth-cone like morphology and behavior forming filopodia and lamellipodia on one or 

both sides of the neurite shaft and travel mainly in an anterograde fashion in our DIV2 imaging 

window (Figure 1A). They are generated at a median frequency of 2-3 AWs per hour and move at 

an average speed of 2-3 µm/min. An analysis of edge dynamics highlighted that, when an AW 

approaches the distal neurite, the GC retracts several microns so to approach the incoming AW, 

then fuses with it and advances following the AW arrival (Figure 1B-1C). The continuous AW arrival 

generates retraction/growth cycles that do not result in a net neurite elongation in our culture 

conditions, although it increases its size and dynamicity (Figure 1C, Figure S1). 
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Figure 1: AWs dynamics. (A) Fluorescence image of F-actin showing a wave advancing down a neurite with its 

characteristic growth-cone like shape (white square). The insert shows a higher magnification of the growth-cone like AW. 

(B) Time-lapse images of the F-actin expressing primary hippocampal neurite showed in A). When an AW approaches the 

distal neurite, the growth cone retracts several microns to reach the wave, then fuses with it and advances following the 

wave arrival. White arrows indicate AW direction. Images were taken every 10 s. Scale bar refers to (A) and (B)= 20µm. 

(C) Plot showing the progression of several AWs (red) along the neurite shaft of the cell in (A). The edge trace (light blue) 

shows the retraction of the GC at the arrival of the AW. The mean velocity of AWs is 2,2 ± 0,4 μm/min. 

 

The role of myosin and membrane tension  

Myosin IIA and IIB are the most prominent type II myosin molecules expressed in migrating neurons 

within the CNS (Golomb et al., 2004): myosin IIB is required for maintaining normal growth cone 

shape and traction force, polarization size, and actin organization (Bridgman et al., 2001). We 

therefore employed two-colour STED nanoscopy (Gottfert et al., 2013) to verify whether and where 

myosin IIB is present in AWs (Figure 2) with a sub-diffraction resolution. All three colour channels 

(see Materials and Methods) were bright and well resolved, with the respective structures identified 

unequivocally (Figure 2). Actin and myosin IIB images were acquired via STED nanoscopy, whereas 

β-III tubulin image was collected by confocal microscopy (Figure 2A). Previous reports have localized 

myosin II mainly to the T zone and the C domain of the GC and in the contractile node region 
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(Burnette et al., 2008; Loudon et al., 2006; Rochlin et al., 1995). A comparison between STED 

images of an AW and of a GC on the same neurite showed that myosin IIB appeared as fluorescent 

spots localized in the transition and central regions of the GC, with a semi-circular organization 

corresponding to contractile acto-myosin arcs. A similar localization was found in AWs, where 

myosin IIB is mostly present at the sides of the neurite shaft from where erupt the lamellipodia and 

filopodia forming the wave (Figure 2B-2C). We also observed spots of myosin IIB along actin bundles 

in the thicker filopodia structures. A line-scan analysis of Myosin IIB fluorescence intensity over 

distance highlighted that myosin IIB is prominent at the rear of all the proceeding actin waves 

suggesting that its activity strongly correlates with actin wave organization and dynamics (Figure 

2D).  

 

 

 

Figure 2: STED microscopy reveals Myosin IIB in AWs. (A) Representative single-channel STED images of rat 

hippocampal neurons at 1 DIV stained with actin (phalloidin), non-muscle myosin IIB and ß-III tubulin show the presence 

of myosin IIB in the growth-cone like waves. Scalebars in (A) and (B) = 10µm. White arrowheads indicate the AW; white 

asterisks indicate the GC. (B) A comparison between the actin growth-cone like wave (yellow square) and the growth-cone 

itself (white square) highlighting that in both cases myosin IIB is brightest in the central regions of the cone and in the rear 

region of the AW. Myosin IIB can be also seen more peripherally along actin bundles in filopodia. (C) Averaged line scans 

(see Methods) show that myosin IIB is highly concentrated at the rear of advancing actin wave. Dashed line indicates AW 

front, and black arrow highlights wave direction. N=16 neurites. Measurements are taken from STED images. All traces 

were normalized by mean intensity and smoothed before averaging (Winans et al., 2016). Data are shown as Mean ± SEM 

 

To test this hypothesis, we treated our DIV2 hippocampal cultures with the cell permeant inhibitor 

blebbistatin, which inhibits the ATP activity of the A and B isoforms of non-muscle myosin II (Kovàcs 

et al., 2004). Blebbistatin treatment (20µM) abolished the growth-cone like shape of the AWs without 

affecting their area, indicating a rearrangement of the actin assembly after myosin inhibition (Figure 

3B, 3F). Live-cell imaging experiments highlighted also the disappearing of the GC retraction 

preceding the wave arrival, together with a significant increase of neurons outgrowth 30 min after 

blebbistatin addition (Figure 3C). Finally, consistent with the data of Flynn et al. (2009) and Katsuno 

et al. (2015), blebbistatin increased significantly the frequency of wave appearance and, at the same 

time, reduced AWs velocity (Figures 3D, 3E). Taken as a whole, these data suggest a strong 
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involvement of myosin II in both structural and dynamical organization of AWs. Further analysis of 

the dynamicity of AWs showed that blebbistatin treatment affects both the velocity and the frequency 

of the AWs: the former decreases by about 20%, whereas the latter increases by about 10%.  

  

 

Figure 3. Blebbistatin treatment abolishes growth-cone like actin waves. (A, B) Live-cell images of a growth cone-like AW 

before (A) and after (B) Blebbistatin treatment (20µM). Insets on the right represent a magnified view of the AWs showed 

in (A) and (B). Blebbistatin treatment changes dramatically the morphology of the wave that loses the characteristic growth-

cone shape. Scale bar in (A): 20 µm. Scalebar in (B) = 10 µm (C) Plot highlighting the progression of the AWs (red) showed 

in (A) and (B) along the neurite. The black arrowhead indicates blebbistatin addition: myosin II inhibition abolishes the 

average retraction distance. The edge trace (light blue) highlights the disappearing of the GC retraction upon the AW arrival 

after the Blebbistatin treatment. (D) Quantification of the AWs frequency calculated on neurons treated with or without 

blebbistatin for 4 hours and imaged like in (A) and (B). N = 4 neurites (E) Quantification of the AWs velocity (μm/min) 

calculated on neurons treated with or without blebbistatin for 4 hours and imaged like in (A) and (B). N = 18 AWs. (F) 

Quantification of the AWs mean area (μm2) calculated on neurons treated with or without blebbistatin for 4 hours and 

imaged like in (A) and (B). N= 18 AWs. Student’s and U-Man Whitney tests were performed for histograms: *P<0.05. 

 

As inhibition of myosin II alters the shape of AW, the surface tension of the membrane surrounding 

the wave could have a role in its dynamics. A high cholesterol concentration increases the membrane 

tension and therefore its reduction has been demonstrated to reduce the stiffness of the cellular 

membrane enveloping the actin filament network (Amin L et al., 2012). To further verify the effect of 

the cholesterol depletion in the AWs dynamic, we treated the hippocampal neurons with the ß-

cyclodextrin that has been reported to be the most efficient compound in extracting cholesterol from 

membranes (Vladislav I et al., 2013). Live-cell imaging showed a loss of the growth-cone like shape 

of the AW after adding the ß-cyclodextrin compound (Figures 4A, 4B) and a significant reduction of 

the AWs area of about 60% (Figure 4F). Further analysis highlighted that ß-cyclodextrin addition 

affects also AW dynamics: both velocity and frequency of AWs decreased after the treatment, of 

about 10% and 50% respectively (Figure 4D, 4E). These results clearly indicate that membrane has 
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a strong role in AWs structure and dynamicity, especially in in F-actin polimerization required for 

AWs initiation.  

 
Figure 4. ß-cyclodextrin treatment affects AWs structure. (A, B) Live-cell images of a growth cone-like AW before (A) and 

after (B) ß-cyclodextrin treatment (250 µM). On the right, magnified views of the AWs showed in (A) and (B) before and 

after ß-cyclodextrin treatment that abolishes completely the growth-cone like shape. Scale bar in (A): 20 µm. Scalebar in 

(B) = 5 µm (C). Plot highlighting the progression of the AWs (red) showed in (A) and (B) along the neurite. The black 

arrowhead indicates ß-cyclodextrin addition. The edge trace (light blue) highlights that the GC retraction upon AW arrival 

seems unaffected. (D) Quantification of the AWs frequency calculated on neurons treated with or without ß-cyclodextrin 

for 4 hours and imaged like in (A) and (B). N = 4 neurites. (E) Quantification of the AWs velocity (μm/min) calculated on 

neurons treated with or without ß-cyclodextrin for 4 hours and imaged like in (A) and (B). N = 16 AWs. (F) Quantification 

of the AWs mean area (μm2) calculated on neurons treated with or without ß-cyclodextrin for 4 hours and imaged like in 

(A) and (B). N = 16 AWs. Student’s and U-Man Whitney tests were performed for histograms: *P<0.05. 

 

The role of small Rho-GTPases 

In order to evaluate the role of small RhoGTPases in the AWs, we used Cdc42 and Rac1 selective 

guanine nucleotide binding inhibitors (ML141 and EHT1864, respectively) to provide a reversible 

and non-competitive inhibition (Shutes A et al., 2007; Surviladze Z et al., 2010). DIV2 hippocampal 

neurons incubated with or without ML141 (10µM) were imaged at a 10 s time resolution (Figures 5A, 

5B). We first sought to determine if Cdc42 inhibition changed growth cone-like shape of AWs 

affecting their dynamic. Live cell imaging experiments (Figure 5B) together with a measure of the 

Actin Wave Area (Figure 5F) revealed that Cdc42 inhibition decreased AWs size of 40% that 

appeared also less dynamic. As already observed after Blebbistatin treatment, ML141 addition led 

to an increase of neurite outgrowth suggesting a role for Cdc42 in controlling AWs merging with GC 

and neurite outgrowth (Figure 5C).  

We then determined the frequency of the AWs calculating the numbers of complete waves (i.e waves 

able to reach the tip of the growth cone) in an hour. In control neurons, growth-cone like structures 

travelling from the base of the neurite to the tip were clearly visible with a frequency of almost 2 

waves for hour (Figure 5D). Instead, neurons exposed to 10 µM of ML141 showed a 75% decrease 
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of the AWs frequency (Figure 5C,5D) 50 minutes after drug addition. When we added ML141 at 30 

µM, we observed an almost complete depletion of the wave phenomena (Supplementary Figure S2). 

Furthermore, to evaluate the neurite dynamicity, we measured the velocity of the AWs, calculated 

as the time taken by the wave to reach the tip of the growth cone, normalized for the length of the 

axon (Tilve S, 2015). Neurons exposed to 10 µM of ML141 showed a 25% decrease in the velocity 

of AWs (Figure 5D).  

A recent report has demonstrated that Rac1 activity is sufficient to generate an AW (Winans et al., 

2016). As already showed for Cdc42 inhibition, the addition of EHT1864 at 10 µM caused Rac1 

inhibition with a completely lost of the growth-cone like shape (Figure 6B) and a significant reduction 

of the Actin Wave Area (Figure 6F). Moreover, a reduction of 75% in AWs frequency (Figure 6D) 

together with a 50% decrease in the AWs velocity (Figure 6E) assessed an important role for Rac1 

in modulating positively the actin polymerization required for the AWs generation.  

Taken together these data support the hypothesis that Cdc42 and Rac1 have an important role in 

the AW architecture and dynamics and suggest a strongest role of Cdc42 in AW inception and of 

Rac1 in AW travelling. 

 

 

 

Figure 5. Cdc42 inhibition affects AW dynamicity. (A, B) Live cell imaging of DIV2 rat hippocampal neurons before (A) and 

after (B) addition of ML141 (10µM). White boxes indicate the growth-cone like AW. On the right, magnified views of the 

AW showed in (A) and (B) before and after ML141 treatment. Scale bar in (A): 20 µm. Scalebar in (B) = 10 µm. (C) Plot 

showing the progression of several AWs (red) along the neurite shaft. The edge trace (light blue) highlights a transient 

increase in neurite elongation after the ML141 treatment. Black arrowhead indicates ML141 addition. (D) Quantification of 

the AWs frequency calculated on neurons treated with or without ML141for 4 hours and imaged like in (A) and (B). N=10 

neurites. (E) Quantification of the AWs velocity (μm/min) calculated on neurons treated with or without ML141for 4 hours 

and imaged like in (A) and (B). N=14 AWs. (F) Quantification of the AWs mean area (μm2) calculated on neurons treated 

with or without ML141for 4 hours and imaged like in (A) and (B). N= 9AWs. Student’s test was performed for all histograms: 

**P<0.01;***P<0.001. 
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Figure 6. Rac1 inhibition affects actin wave propagation. (A, B) Live cell imaging of DIV2 rat hippocampal neurons before 

(A) and after (B) addition of EHT1864 (10µM). White boxes indicate the growth-cone like AW. On the right, magnified views 

of the AW showed in (A) and (B) before and after EHT1864 treatment. Scale bar in (A): 20 µm. Scalebar in (B) = 10 µm. 

(C) Plot showing the progression of several AWs (red) along the neurite shaft. The edge trace (light blue) highlights a 

stabilization of neurite length, concurrent with AWs propagation defects after EHT1864 treatment. Black arrowhead 

indicates EHT1864 addition. (D) Quantification of the AWs frequency calculated on neurons treated with or without 

EHT1864 for 4 hours and imaged like in (A) and (B). N=10 neurites. (E) Quantification of the AWs velocity (μm/min) 

calculated on neurons treated with or without EHT1864 for 4 hours and imaged like in (A) and (B). N=10 AWs. (F) 

Quantification of the AWs mean area (μm2) calculated on neurons treated with or without EHT1864 for 4 hours and imaged 

like in (A) and (B). N= 10 AWs. Student’s test was performed for all histograms: **P<0.01;***P<0.001. 

 

 

DISCUSSION  

 

In this study we have analysed the dynamics of AWs and AW constituent proteins to unravel the 

mechanism of wave inception and propagation. Using live cell imaging and STED, we have 

characterized their growth-cone like morphology and motility and we provide evidence that myosin 

II, membrane tension, as well as small RhoGTPases act as critical components of AW dynamics. 

Our study suggests the existence of a cross-talk between actin cytoskeleton and its upstream 

regulators such as RhoGTPases, the motor protein myosin and the cellular membrane integrity. 

These interactions are necessary to translocate the actin and associated proteins along the neurite.  

The waves investigated herein are generated at a frequency of 1-2 waves per hour, propagate with 

an average speed of ∼2–3 µm/min and travel from the base of the neurites to the growth cone. They 

resemble the GC in size and appearance and present a mix of lamellipodia and filopodia structures 

that project outward from the neurite shaft, characteristic of the GCs. STED nanoscopy revealed the 

AWs ultrastructure with a sub-diffraction resolution. As in the GC, the F-actin is present in filopodia 
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(bundled F-actin) and lamellipodia (meshwork of F-actin) with spots of Myosin IIB along thicker 

filament bundles and in lamellipodia, where they appeared diffusely distributed. Moreover, myosin 

IIB appeared concentrated in the region close to the neurite shaft: in GCsthis pattern is critical to 

form the contractile arcs, and in AWs it may have a similar function. An averaged line scan analysis 

of STED images highlighted an enrichment of Myosin IIB at the rear and inside the wave with Tubulin 

behind it (Figure 2) suggesting a role for Myosin IIB in the morphological dynamic remodelling of the 

actin cytoskeleton. Furthermore, live cell imaging data showed that as an AW approaches the distal 

neurite, the growth cone retracts several microns to fuse with the incoming wave and advances 

following the AW arrival. After the treatment with Blebbistatin, retrograde flow is completely abolished 

with a significant neurite outgrowth (Figure 3). These findings strongly suggest that Myosin IIB 

activity normally regulates the rate of retrograde flow that pulls the neurite backward: its absence 

triggers a strong increase in actin-bundle length. This observation is consistent with the data of 

Medeiros and co-workers who hypotesized that the “push” of actin assembly and the “pull” of myosin 

combine to drive retrograde flow (Medeiros et al., 2006). Based on this scenario the AWs described 

herein could have a role in the maintenance of a dynamic equilibrium between all the growing 

neurites that is more like a competition, with large fluctuations in search for signals that would define 

the “winning” process that will became the axon. Indeed, the AWs bear more impact, in terms of 

growth promotion, to the maturating axon and their frequency is elevated in the axonal process after 

the polarization (Flynn et al., 2009; Katsuno et al., 2015). It is worth noticing that Blebbistatin leads 

to a complete destruction of the GC instead the AWs lose in part their actin-wave shape (i.e. no 

significant change in the GC area in observed before and after the blebbistatin treatment), while AW 

velocity and frequency are affected underlying differences in the intracellular machinery 

organization.   

Actin has long been known to be associated with membranes and there have been a number of 

theoretical studies that focus on the interrelationships between the protrusive forces generated by 

actin polymerization and the dynamics of the membrane-bound activators. Indeed, F-actin network 

assembly, organization and dynamics are controlled by the spatial and temporal regulation of the 

activity of actin-binding proteins that are associated with the membrane in a multifaceted way 

(Bezanilla et al., 2015). To explore the influence of the membrane on the AWs’ dynamic, we treated 

our DIV2 hippocampal cells with ß-cyclodextrin, responsible for the depletion of cholesterol from the 

membrane (Amin L et al. 2012). Consistent with a role of the membrane in the AWs’ structure, the 

elimination of cholesterol slows down AWs’ area and causes a loss of the growth-cone shape. 

Interestingly, ß-cyclodextrin affects not only the morphology, but also the dynamics of wave 

phenomena: both frequency and velocity of AWs decreased after ß-cyclodextrin addition, suggesting 

a role for the membrane that goes beyond AW shape maintenance. Our data seem to suggest that 

the membrane may be important for the correct localization of actin filaments and actin-associated 

proteins in the propagating AWs, and any perturbation affects the dynamics of the signalling 
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pathways involved in F-Actin polymerization/depolymerisation. The same morphological effect was 

observed when selective inhibitors of the RhoGTPases Rac1 and Cdc42 were added to the cellular 

medium. Indeed, the Rho-family GTPases represent a key node for connecting extracellular signals 

to regulated actin dynamics and, by stimulating actin dynamics, they induce plasma membrane 

protrusion like lamellipodia and filopodia (Burridge and Wennerberg, 2004; Hall and Nobes, 2000). 

Recently Winans and co-authors demonstrated that Cdc42 exhibited a higher activity in front of an 

AW and that Rac1 activity is sufficient to initiate AWs (Winans et al., 2016). We observed that Cdc42 

inhibition induced a burst in the neurite outgrowth suggesting that it could contribute to the 

actomyosin contractility required for modulation of the neurite outgrowth (Wilkinson et al., 2005). 

Moreover, we found that the frequency and the velocity of the AWs, used as parameters of neurite 

dynamicity, were decreased in the presence of both the RhoGTPases inhibitors. This significant 

decrease in AW initiation capacity and propagation kinetics can be explained with a putative role of 

these two RhoGTPases in the regulation of both actin polymerization and assembly through the 

Arp2/3 complex or formins and adhesions strength through an increase in shootin-1 phosphorylation 

that has been shown to mediate the linkage between F-actin retrograde flow and cell adhesion in 

GCs (Kubo et al., 2015). A cascade downstream of Cdc42, Rac and subsequently PAK1 can be 

accounted responsible to modulation of the balance between adhesion strength and myosin 

mediated retrograde flow in maintaining anterograde stable unidirectional motion. Taken together 

these results seem to indicate that Cdc42 and Rac1 could promote AWs migration toward the leading 

edge and could be involved in the assembly and disassembly of F-actin network.  

Our study provides evidence for a holistic picture of the AW phenomena by demonstrating that AW 

dynamic is a consequence not only of the actin polymerization dynamics, but also of the interplay 

between the membrane itself, the activators that reside on it like the RhoGTPase proteins and the 

contractility of the motor protein myosin II. In conjugation with previous studies, our results argue 

that a combination of F-actin polimerization and F-actin retrograde flow, both “orchestrated” by 

multiple cytoskeletal and membrane effectors, play a crucial role in the mechanism that allows the 

neurite to explore the surrounding space. The data presented here underscore the importance of 

analyzing the organization and dynamics of the AWs into a holistic picture that takes into account 

the membrane-actin system. 

 

 

MATHERIALS AND METHODS 

 

DNA constructs 

mCherry-Lifeact-7 was a gift from Micheal Davidson (Addgene plasmid #54491) and was verified by 

full-length sequencing. 
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Primary culture and hippocampal neurons transfection 

Hippocampal neurons from Wistar rats (P2-P3) were prepared in accordance with the guidelines of 

the Italian Animal Welfare Act, and their use was approved by the Local Veterinary Service, the 

SISSA Ethics Committee board and the National Ministry of Health (Permit Number: 2848-III/15) in 

accordance with the European Union guidelines for animal care (d.1.116/92; 86/609/C.E.). The 

animals were anaesthetized with CO2 and sacrificed by decapitation, and all efforts were made to 

minimize suffering. The coverslips were coated with 50μg/ml poly-L-ornithine (Sigma-Aldrich, St. 

Louis, MO, USA) overnight and with Matrigel just before cells seeding (Corning, Tewksbury MA, 

USA). Dissociated cells were plated at a concentration of 4 × 104 cells/ml in minimum essential 

medium (MEM) with GlutaMAXTM supplemented with 10% foetal bovine serum (FBS, all from 

Invitrogen, Life Technologies, Gaithersburg, MD, USA), 0.6% D-glucose, 15mM Hepes, 0.1mg/ml 

apo-transferrin, 30μg/ml insulin, 0.1μg/ml D-biotin, 1 μM vitamin B12 (all from Sigma-Aldrich), and 

2.5 μg/ml gentamycin (Invitrogen). The neuronal cultures were maintained in an incubator at 37°C, 

5% CO2 and 95% relative humidity. Hippocampal neurons were transfected 24h later with the LifeAct 

plasmid using Lipofectamine 3000® reagent (Invitrogen) following the manufacturer’s protocol and 

imaged 1 day after transfection.  

 

Drug Application 

Blebbistatin and ß-cyclodextrin were used at a final concentration of 20 µM and 250 µM respectively. 

ML141 (TOCRIS bioscience) was used at a final concentration of 10µM for low concentration and 

30µM for high concentration experiments; EHT1864 (TOCRIS) was used at a final concentration of 

10µM concentration. 

 

STED 

Cells were washed with PBS and fixed in 4% PFA and 0.25% Glutaraldehyde in PHEM buffer (60 

mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2, pH 6.9) for 20 min at room temperature, 

quenched with ammonium chloride and glycine (100 mM each) for 5 min, permeabilized with 0.1% 

Triton X-100 for another 5 min and blocked in PBS supplemented with 1% BSA for 30 min. Primary 

antibodies against β-III Tubulin (Abcam, cat. ab7759), Myosin-IIB (Sigma, cat. M 7939) and actin 

(Phalloidin) were incubated in PBS for 1 hour or overnight at 4 °C. Secondary antibodies (sheep 

anti-mouse, Dianova, cat. 515-005-003; goat-anti-rabbit, Dianova, cat. 111-005-003) were labeled 

with STAR580 (Abberior, cat. 1-0101-005-2), or Atto490LS (Attotech, cat. AD 490LS-31). Phalloidin 

was coupled to STAR635 (Abberior, cat. 2-0205-002-5). Both secondary antibody, and phalloidin 

incubations were performed in PBS for 1 hour at room temperature or overnight at 4 °C. Samples 

were then mounted in Mowiol supplemented with DABCO. Imaging was performed on a two-color 

Abberior STED 775 QUAD scanning microscope (Abberior Instruments GmbH, Göttingen, Germany) 
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equipped with 488 nm, 561 nm, and 640 nm pulsed excitation lasers, a pulsed 775 nm STED laser, 

and a 100x oil immersion objective lens (NA 1.4). 

 

Live Cell Imaging 

Live imaging experiments were performed on an epi-fluorescence microscope (Olympus IX-83, 

Olympus) equipped with LED illumination (λ = 590 nm, Thorlabs). During all imaging cells were kept 

at 37°C, 5,0% CO2, 95% humidity by using an imaging chamber incubator (Okolab). Time-lapse 

images were taken every 10s with 1s exposure up to 10 hours using a 40X oil immersion objective 

(Olympus, NA=1.3), and all acquisitions were done with a CCD sensor at 12bit depth (ORCA-D2, 

Hamamatsu). All inhibitors used were added after about 60-90 minutes imaging, and the acquisition 

continued for at least 90 minutes after addition at the conditions previously stated.  

 

Image Analysis 

Image analysis was performed using ImageJ software (NIH) and custom-build MATLAB codes 

(Mathworks). 

 

Morphological analysis of actin waves and growth cones 

For the morphological analysis of the AW, the area was determined manually at different time-points 

of the wave progression along the neuritis, both before and after the drug addition. The mean AW 

area throughout the neuritis was then obtained by averaging the areas previously collected. For the 

morphological analysis of the GCs, the area was determined manually at different time-points of the 

wave progression and also every minute for about 5-10 minutes after the arrival and fusion of the 

AW with the growth cone. The mean GC areas were then obtained by averaging the areas previously 

calculated. 

 

Intensity Line Scans 

Line scans were performed with ImageJ software. Images were background subtracted and 

thresholded to select the neurite of interest, and then a line was traced in the neurite to have an 

intensity profile trace. Traces were then aligned to the half-maximum value of the front of the actin 

wave (oriented towards the growth cone). Half maximum values were determined by manual 

identification of the maximum actin signal on the front half of the actin curve. Traces were then 

computationally aligned using a custom-built Matlab software. 

 

Analysis of the actin wave position along the neuritis, velocity and frequency. 

The analysis of the AW position was performed using a custom-built MATLAB code. Time-lapse 

sequences were background corrected and thresholded to select the neurite of interest. The position 

of the soma and of the end of the neurite was tracked automatically, whereas the AW position along 
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the neurite was tracked manually. The distances calculated from the soma were then extrapolated 

and plotted as a function of time. The time-points when no wave is travelling along the neurite were 

eliminated. The velocity of the AW was calculated by extracting the distance travelled and the time 

taken from the position data previously described and dividing distance over time. The frequency of 

AW was calculated as AW per hour by manually counting all the AW events before and after the 

drug addition. 

 

Statistical Analysis 

All results have been obtained from at least three independent experiments and expressed as the 

mean ± S.E.M. Experimental data were analysed by Paired t-test or U-Mann Whitney test using 

SigmaPlot 10.0 software (Systat Software Inc.). Differences among samples were considered 

statistically significant when p < 0.05. 
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SUPPLEMENTARY 

 

Figure S1. 

 

 

 

Wave arrival affects GC morphology. Histogram showing a significant increase in GC area after the arrival and fusion of 

an AW. Student’s test was performed for histograms: **P<0.01. 

 

Figure S2. 

 

 

 

 

Cdc42 inhibition affects AW dynamicity. (A) Time-lapse live cell imaging of DIV2 rat hippocampal neurons before (left) and 

after (right) addition of ML141 (30µM). White arrow indicates the growth-cone like AW. The asterisk indicates the GC. 

Scale bars = 20µm. (B) Plot showing the progression of several AWs (red) along the neurite shaft. The edge trace (light 

blue) highlights neurite retraction concurrent with complete AW disappearing after the ML141 treatment. Black arrow 

indicates ML141 addition. (C) Quantification of the AWs frequency calculated on neurons treated with or without ML141 

for 4 hours and imaged like in (A) and (B). N= 9AWs. Student’s test was performed for histograms: **P<0.01. 
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RESULTS DISCUSSION AND FUTURE PROSPECTS 

During these years of PhD I concentrated on investigating the spatio-temporal dynamics of neuronal 

cells and their response to localised chemical signals. The Growth Cone (GC) is one of the most 

studied structure of the neuronal cell, since it guides the growing axon to find its correct synaptic 

target. GC motility depends on the cytoskeleton dynamics that in turn are modulated by intracellular 

signalling cascades triggered by guidance cue receptors on the cell surface. One of the nodes of 

almost all pathways regulating actin cytoskeleton dynamics are the Rho family of GTPases, the 

principal focus of my research.  

In the last 15 years a lot of effort was put into studying Rho-GTPases dynamics both in neuronal and 

non-neuronal cells (Itoh et al., 2002; Nakamura et al., 2005; Machachek et al., 2009): one of the 

major breakthrough was the production of probes to follow their activation cycling in live cells with a 

high spatio-temporal resolution via Förster Resonance Energy Transfer (FRET) (Yoshizaki et al., 

2003). In this way it’s been possible to observe in real time the compartmentalisation of Rho-

GTPases activation during both spontaneous and evoked migration in fibroblasts and neutrophils 

(Machachek et al., 2009; Yamao et al., 2015), providing many insights on cell dynamics that are 

much more complex than what was previously thought (Pertz, 2010). Many studies focused also on 

the importance of Rho-GTPases in guidance-mediated signal processing, unraveling their 

importance in regulating cytoskeleton upstream of all the canonical guidance cues known so far.  

The majority of these studies tended to use a global approach to stimulate the cells with guidance 

signals (Picard et al.,2009). However, in vivo, both neuronal and non-neuronal cells respond better 

to localised gradients of molecules, either by contact on the cell surface or secreted by distant targets 

and sensed by specific membrane-bound receptors. The signal, stimulating only specific cell 

locations, gives directionality to the cell movement. That’s why I tried an approach that allowed me 

to localise the source of the stimulus and limit the guidance cue exposure to specific compartments. 

Different carriers can be utilised for local optical manipulation, like micro-beads or lipid vesicles. The 

former provide both a precise sub-cellular localisation of the stimulus, since the mean contact area 

with the cell is less than 1 µm, and control over the concentration of the stimulating molecule. The 

latter procure even more control over the molecule concentration, and with a mean vesicle volume 

of about 1 fL (for a 1 µm diameter lipid vesicle) gives the chance to deliver a very small number of 

molecules to precise sub-cellular locations (D’Este et al., 2011; Pinato et al., 2012). Optical 

manipulation of such micro-carriers containing active molecules provides thus both the sub-cellular 

precision and the versatility to operate in a more physiological manner on the cells object of study 
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(Pinato et al., 2012; Difato et al., 2013). Moreover different imaging techniques can be used in 

parallel with optical manipulation to monitor protein dynamics: phase contrast, fluorescence, or even 

FRET microscopy.  

Hence I combined for the first time FRET imaging with optical manipulation to provide a strong tool 

to study dynamics of intracellular signalling molecules upon local delivery of chemical attractants 

and repellents. The precision of both techniques allowed me to evaluate the fine spatio-temporal 

regulation of the Rho-GTPases RhoA and Cdc42 in response to Semaphorin-3A (Sema-3A). Sema-

3A is a repulsive secreted guidance cue that interacts with receptors on filopodia and lamellipodia of 

neuronal GCs. It is known to provoke retraction and affect RhoA and Rac1 activity in a variety of 

non-neuronal and neuronal cells (Burridge and Wennerberg, 2004). NG108-15 neuroblastoma cells 

responded to locally delivered Sema-3A with collapse and retraction of the GC. The nature of the 

carrier used (bead or lipid vesicle) did not affect the morphological response of the cells stimulated, 

indicating that both are effective ways to trigger local responses. FRET imaging highlighted, as 

expected, a rapid activation of RhoA in the central region of the GC within 30 seconds from the 

stimulation. This activation preceded the induced retraction by about 90s and activated RhoA levels 

correlated perfectly with the induced morphological changes.  

On the other hand, an increase in Cdc42 activity is commonly correlated with growth and positive 

turning downstream of attractive molecules like Netrin-1 or Brain Derived Neurotrophic Factor 

(BDNF), whereas repulsion usually induces Cdc42 activity decrease, although Cdc42 is not yet 

clearly correlated with Sema-3A-dependent repulsion (Lowery and Van Vactor, 2009; Hall and Lalli, 

2010). Consistent with this view, local delivery of Sema-3A triggered a rapid decrease of Cdc42 

activity within 60s from the stimulation, concurrent with cell repulsion. Interestingly, the decrease in 

Cdc42 activation followed a wave-like behaviour that was almost in synchrony with the leading edge 

ruffling during retraction. Moreover, in few cases, Sema-3A release triggered a delayed increase in 

Cdc42 activation levels in the cell compartment away from the stimulus. Its activity propagated in a 

wave-like manner and generated new lamellipodia and filopodia structures to trigger growth away 

from the repulsive source.  

Local repulsive stimulation with coated beads exerted active Cdc42 continuous waves propagating 

from the leading edge backwards with a period of about 70 s, similar to waves found in some cases 

of spontaneous GC collapse and retraction following repulsive stimuli spontaneously occurring in 

vitro (110 s period). If, and how these differences in Cdc42 activation dynamics are triggered by 

Sema-3A is still an open question. Besides reflecting the intercellular heterogeneity normally 

occurring in culture, there is a possibility that contact chemical stimulation with beads brings an 
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intrinsic and unavoidable mechanical component that affects intracellular dynamics. It is known that 

mechanical stimulation can induce Ca2+ oscillation that modify the travelling dynamics of actin and 

maybe its molecules upstream (Wu et al., 2013), exceeding the fact that Ca2+ modulates 

RhoGTPases dynamics by affecting upstream regulators (Tojima et al., 2011). 

Although previous models described a precise spatio-temporal crosstalk between different Rho-

GTPases that exhibit sustained polarisation by a wave-pinning mechanisms (Jilkine et al., 2007), our 

results clearly show a wave-like behaviour only for Cdc42, indicating that there can be diverse 

crosstalk pathways for reciprocal Rho-GTPases regulation. This higher degree of complexity and 

signal compartmentalisation was unravelled thanks to the combination of high spatio-temporal 

resolution of FRET imaging and high subcellular precision of local manipulation. 

 Rho-GTPases have been considered as Nucleation Putative Factors (NPFs) for actin cytoskeleton 

dynamics in various mathematical models (Holmes et al., 2012). These assumptions fit perfectly with 

the observed behaviour of Cdc42, that reminds stereotypical activation waves or wave-trains 

described in literature (Jilkine et al., 2007; Holmes et al., 2012). The wave-like nature of certain actin 

cytoskeletal structure can be correlated to the propagation of the oscillation of these NPFs and actin 

may possess feedback pathways to influence their activation levels. Propagating actin waves have 

been observed in a wide variety of neuronal and non-neuronal cells. Usually in non-neuronal cells 

the actin waves migrate along the leading edge causing local disassembly and reconstruction of the 

cytoskeleton to maintain the dynamicity of the cell in search for cues to direct its migration (Kunida 

et al., 2012).  

In neuronal cells, waves of actin travelling along the neurites shaft were discovered in the late 90’s 

(Ruthel and Banker, 1998,1999). These Actin Waves (AWs) have a GC-like appearance, and 

originate at the boundary between soma and neurite. They proceed along the shaft in an anterograde 

fashion to reach the GC. When they arrive at close proximity to the neurite tip, the GC rapidly retracts 

and the two structures fuse together to form a new, bigger and more dynamic GC that protrude again 

(Flynn et al., 2009; Katsuno et al., 2015).  

We characterised the morphology and dynamics of AWs and investigated the role Rho-GTPases in 

the inception and propagation of AWs in neuronal cells. The waves observed in hippocampal 

neurons have a GC-like morphology and dynamics similar to the ones previously described. They 

occur stochastically in all growing neurites with a mean frequency of 1-2 waves per hour and travel 

at a mean velocity of 2-3 µm/min. Our imaging setup allows the observation of single cells for multiple 

hours without disturbing the growth and retraction cycles of living cells. Thanks to that we were able 
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to highlight that, in early stages of neuron development, the arrival of AWs coincides with an increase 

of size and dynamicity of the growth cone, that may result in a more effective exploration of 

surrounding environment in search for directional cues. However, there was no evident increase in 

neurite length, even after 9 hours of imaging, whereas the elongation-retraction cycles caused by 

continuous AWs was clearly visible. This effect, that appears to go in contrast with previously 

reported work, can be explained with the early development stage of neurons used in our 

experiment. At 24-48 hours after plating most neurons have not yet polarised, and so AW occurrence 

is a stochastic process that randomly elongates neurites to explore the environment in the search 

for cues that will help break the symmetry to grow the axon (Winans et al., 2016).  

STED images revealed a strong presence of myosin-II in the AWs, in particular at the rear of the 

wave, with some myosin molecules spreading in the AW periphery, into thicker filopodia. This 

localisation recalls the one in the GC, where myosin-II is mostly present in the actin arcs at the 

transition zone, and suggests the presence of myosin-dependent contraction and filament 

disassembly. This contractility appears to be important for AWs morphology and dynamics, since 

the inhibition of myosin-II by blebbistatin disrupts their GC-like structure and abolish completely the 

pulling effect on the GC.  

F-Actin network assembly and regulation is known to be associated with membranes and membrane 

dynamics, that control the compartmentalisation and activity of the plethora of membrane-associated 

actin-binding proteins in a multi-faceted manner (Bezanilla et al. 2015). Therefore, treatment with ß-

cyclodextrin, which lowers membrane tension by sequestration of cholesterol (Amin et al., 2012), 

strongly affects AW morphology and dynamics. Indeed the AW mean area decreases after addition, 

as well as frequency and velocity, markers we used for neurite dynamicity. These results suggest a 

role of the membrane that goes beyond shape maintenance, such as regulator of the correct 

assembly of actin network and localisation of actin-associated signalling in propagating AWs. 

Rho-GTPases represent, as stated before, a key node for the regulation of intracellular actin 

cytoskeleton, inducing both filopodia and lamellipodia and controlling every aspect of actin filaments 

dynamics (Nobes and Hall, 1995). Recent work showed high activity of Cdc42 and Rac in the 

travelling AWs. Active Cdc42 level was higher also in front of the propagating AW, and optical 

activation of Rac molecules was sufficient to trigger AW inception (Winans et al., 2016). We observed 

that both the frequency and the velocity of AWs, taken as parameters of dynamicity, were decreased 

in presence of inhibitors for both GTPases. Rac1 inhibition seems to affect the velocity parameter in 

particular, whereas Cdc42 inhibition has a more prominent effect on the AW frequency, with a 

complete stop of the waves initiation upon high inhibitor dosage. This effect on AW kinetics can be 
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explained postulating a role of these Rho-GTPases in the modulation of actin polymerisation and 

network assembly through the Arp2/3 complex and molecules of the formin family. Another 

explanation can derive from recent work describing a particular outgrowth pathway in neuronal GCs 

dependent on adhesions strength through activation of shootin-1 (Toriyama et al., 2013). The 

mechanism, by which GCs elongate their structure in response to attractive cues like Netrin-1 that 

phosphorylate shootin-1, a molecules that links the actin filaments to adhesion molecules like L1-

CAM, involves the same players recently found fundamental also in AW anterograde movement 

(Kubo et al., 2015, Katsuno et al., 2015). A cascade downstream of Cdc42, Rac1 and subsequently 

PAK1, may be responsible for the modulation of the balance between adhesion strength and myosin-

dependent retrograde flow in to assure the movement a stable directionality towards the neurite tip. 

Taken together these results indicate that Cdc42 and Rac1 have a pivotal role AWs morphology and 

anterograde movement through fine spatio-temporal regulation of the actin cytoskeleton dynamics. 

In conclusion, this work as a whole explores the importance of the RhoGTPases as one of the key 

switches that help regulate cell migration, motility and directional growth. Although the knowledge of 

these mechanisms is becoming clearer and clearer, especially with the help of high spatio-temporal 

resolution techniques, adequate dissection of these kinetics requires further study and technical 

improvements. First, we should explore the activation dynamics of all Rho-GTPases in AWs with 

FRET imaging, coupled with inhibition of single players to dissect the fine GTPases spatial and 

temporal regulation and highlight crosstalk and feedback mechanisms. Furthermore, in order to 

better understand their role in guidance-dependent dynamics, it seems necessary to couple imaging 

with local stimulation to evaluate the AW and GC changes upon chemical cues delivery and gain a 

better understanding of the processes that act together to build the complex network that is the 

nervous system. 
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