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Introduction

Molecular polymorphism, the observation of di�erent crystal structures made up of

the same molecules, has been a central problem standing in the way of a�ordable

and reliable crystal structure prediction which would greatly accelerate the devel-

opment of new materials for applications in solid state chemistry, material science

and pharmaceutical science [1]. In summary, the key challenges for ab initio crystal

structure prediction of molecular crystals include i) the computational cost of ther-

modynamical exploration of a rich polymorphic phase space; ii) the accuracy needed

to resolve the similarly-low energies among polymorphs [2]; and iii) the fact that the

crystallization procedure is controlled by kinetic factors rather than thermodynamic

ones [3].

The last decade has witnessed these challenges being tackled by the scienti�c

community and the progress can be followed through the blind tests organized

yearly by the Cambridge Crystallographic Data Centre [4, 5, 6, 7, 8]. The exponen-

tial growth in the hardware performance and new, e�cient algorithms tailored for

molecular crystals have allowed a wider region of the phase space to be explored.

The increased computational performance also enabled a transition from empirical

interatomic potentials to more accurate but time consuming quantum mechanical

techniques, mainly Density Functional Theory (DFT). However, this transition did

not guarantee an increase in the predictive power in all cases [9]: the standard DFT

functionals do not describe properly van der Waals (vdW) interactions. This fact

forces crystal structure prediction studies to employ the approximate semi-empirical

corrections. These approximations to the vdW interactions strongly a�ect the en-

ergy ordering of the explored structures, which is a core information in predicting

polymorphism. Hence, to render crystal structure prediction reliable, a fully ab

initio method that is able to obtain an accurate lattice energy including the vdW

interactions has been highly desirable.

Recently a breakthrough in the description of vdW interactions in DFT has

been made: many new non-local functionals that accurately describe the dispersion
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interactions have been proposed and demonstrated unprecedented success in a wide

range of systems from molecules, molecular crystals to layered materials, with a

computational cost comparable to that of standard functionals [10, 11]. Even in

di�cult cases such as glycine crystals, where polymorphs show energy di�erences as

little as 1 kcal/mol, new non-local functionals can yield the correct stability ordering

as well as the accurate pressure evolution [12].

Encouraged by these results we combine this critical progress in DFT with recent

developments in evolutionary crystal structure prediction [13], speci�cally adapted

for molecular structure search [9], and perform a fully ab initio crystal structure pre-

diction search on glycine crystals, without semi empirical corrections in the energy

description, using neither information on cell geometry nor the symmetry of the

experimentally observed polymorphs. Thus it gives us the right to assess whether

state-of-the-art ab initio crystal structure prediction can pass the challenging blind

test of exploring the phase space of polymorphic glycine. In this study, we obtain,

without prior empirical input, all known phases of glycine, as well as the structure of

the previously unresolved ζ phase after a decade of its experimental observation [14].

The search for the well-established α phase instead reveals the remaining challenges

in exploring a polymorphic landscape. We also propose several low-energy structures

of glycine, some of which are more stable than the experimental structures.

The study of crystal structure prediction for cholesterol is motivated by a med-

ical application: a solid state nuclear magnetic resonance experiment reports that

di�erent pathologies of human gallbladder result in cholesterol gallstones with di�er-

ent polymorphs [15]. These polymorphs show distinct nuclear magnetic resonance

(NMR) spectra and a phase which associates to gallbladder cancer, has not been

structurally determined yet. Important information on the growth of gallstones

associated to di�erent diseases can be revealed if the crystal structure of the un-

known phase is identi�ed. In this work, we use evolutionary algorithm in the case

of molecular crystal in the USPEX code [9] combined with a classical force-�eld.

This force-�eld was designed speci�cally for cholesterol and its success in determin-

ing the crystal structure of cholesterol polymorphs has been reported [16]. Later in

our study we discuss the validation of the classical force �eld as a primary selection
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method. After using accurate DFT calculations within non-local van der Waals

functional the lowest energy predicted structure is identi�ed with the experimental

one based on their good agreements for crystal structure parameters as well as NMR

spectra. We also propose a few low-energy structures of cholesterol and characterize

them by their NMR spectra.

The layout of the thesis is as follow: In Chapter 1, we present the theoreti-

cal background of DFT, Projector-Augmented-Wave (PAW) and Gauge-Including

Projector-Augmented-Wave (GIPAW) methods. In Chapter 2, we introduce the

crystal structure prediction problem and present evolutionary algorithms as one so-

lution to perform crystal structure search for molecular crystals. Chapter 3 and

Chapter 4 are dedicated to the detailed results when using evolutionary algorithm

in crystal structure search for the studies of glycine and cholesterol respectively.





Chapter 1

Ab-initio Electronic Structure

Calculation

From the theoretical point of view, in order to understand the properties of any

system, all one needs to know is its wavefunction. It does not represent any physical

quantity but at any given time, its square modulus is interpreted as the probability

density of �nding a particle at a given point in space. If the wavefunction is known,

other observable quantities are easily calculated and the system is well-understood.

This wavefunction is the solution of the well-known Schrödinger equation with the

general form of the Hamiltonian

H = −
∑
i

~2

2m
52
i−
∑
α

~2

2Mα
52
α+

1

2

∑
i 6=j

e2

|ri − rj |
+

1

2

∑
α 6=β

ZαZβe
2

|Rα −Rβ|
−
∑
i,α

Zαe
2

|ri −Rα|
,

(1.1)

where {ri} and {Rα} are the Cartesian coordinates of electrons and nuclei. The

�rst (second) term is the kinetic energy of the electrons (nuclei) while the third and

fourth terms are the Coulomb interactions between electrons and nuclei, respectively.

The �nal term corresponds to the electron-nucleus attraction.

In general, because of the large number of independent variables (growing with

the number of electrons and nuclei), the exact solution to this equation can not

be found. Fortunately, since electrons and nuclei are very di�erent, one can treat

them separately in the Born-Oppenheimer (or adiabatic) approximation [17, 18].

The physical basis of this approximation comes from the fact that electron mass

is much smaller than the nuclear one. Therefore the electronic time scale is much

shorter than the nuclear one and a good approximation can be obtained by keeping

the nuclei �xed and determining the ground state of electrons as a function of
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static nuclear positions. Within this approximation, one just needs to solve the

Schrödinger equation for the electrons with the Hamiltonian that reduces to the

three terms

H = −
∑
i

~2

2mi
52
i +

1

2

∑
i 6=j

e2

|ri − rj |
−
∑
i,α

Zαe
2

|ri −Rα|
. (1.2)

However, even with this simpli�cation, the problem for electrons remains too compli-

cated and still is a many-body problem. Solving it is the main task of computational

electronic structure.

In 1964, a breakthrough was made by Hohenberg and Kohn [19] in which the

problem is simpli�ed using density functional theory (DFT). The main advantage

of DFT with respect to wavefunction methods is the use of electronic charge density

as a fundamental variable, therefore greatly reducing the number of variables in the

calculation.

1.1 Density Functional Theory

Hohenberg and Kohn have proven two theorems that are the basis for DFT [18, 19].

The �rst theorem states, �For any system of interacting particles in an external

potential Vext(r), the potential is determined uniquely, except for a constant, by

the ground state particle density n0(r).� Since the ground state density determines

the external potential Vext(r) and so the Hamiltonian for a given system, it follows

that the wavefunctions of all states (ground-states and excited-ones) are determined.

Thus in general, all properties of the system are completely determined given only

the ground state density. Mathematically, any property of a many-body interacting

particles can be viewed as a functional of the ground state density. The total energy

now reads

E[n(r)] = T [n(r)] + Uee[n(r)] + Uext[n(r)] = F [n(r)] +

∫
Vext(r)n(r)dr, (1.3)

where Uext[n(r)] =
∫
Vext(r)n(r)dr is the interaction energy of the electrons with an

external �eld Vext(r), T [n(r)] and Uee[n(r)] are the kinetic energy and the electron-

electron interaction energy respectively. Since F [n(r)] = T [n(r)]+Uee[n(r)] requires
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no explicit knowledge of Vext(r), it is an universal functional of the density (only

in the meaning that it does not depend on the external �eld). The second theorem

states that: the ground state energy is a functional of n0(r) and satis�es a varia-

tional principle, i.e n0(r) minimizes the total energy E[n(r)]. The consequences of

the Hohenberg-Kohn theorems lead to a considerable conceptual advance. If the

universal functional F [n] is known, one can �nd the ground state electronic den-

sity for any system. Unfortunately those theorems give no information about this

functional.

In 1965, Kohn and Sham developed a good approximation for the functional

F [n] by introducing an auxiliary non-interacting electron system which has the

same ground state density as the interacting one [18, 20]. With this assumption,

the interacting electron problem is mapped onto an equivalent non-interacting one

which is easier to solve. In this way, the functional F [n] can be written as

F [n] = Ts[n] +
1

2

∫
n(r)n(r')

|r− r'|
drdr'+ Exc[n], (1.4)

where the �rst term Ts[n] is the independent particle kinetic energy, the second one

is the classical Coulomb interaction energy of the electron density n(r) (the Hartree

energy). The last one is the exchange-correlation energy Exc that can be written as

Exc[n] = T [n]− Ts[n] + Uee[n]− 1

2

∫
n(r)n(r')

|r− r'|
drdr'. (1.5)

In this form, one can see that all many-body e�ects are included in Exc. Remember

that one needs to require the integration of the density giving the correct number

of electrons
∫
n(r)dr = N . Minimizing the energy functional E[n], given in eq.

(1.3), with this constraint is equivalent to solve a set of self-consistent Kohn-Sham

equations{
−1

2
52 +VKS(r)− εi

}
ψi(r) = 0,

VKS(r) = Vext(r) + VH(r) + Vxc(r),

VH(r) =

∫
n(r')

|r− r'|
dr', Vxc(r) =

δExc[n(r)]

δn(r)
,

n(r) =
∑
i∈occ
|ψi(r)|2. (1.6)
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This is a nonlinear self-consistent system of equations because the Kohn-Sham po-

tential VKS(r) depends on the solutions {ψi}. If the functional Exc[n] is explic-

itly de�ned, the Kohn-Sham equations can be solved self-consistently by numerical

methods.

So far DFT has been presented as a formal mathematical framework for view-

ing electronic structure from the perspective of the electron density. The major

problem is that the exact functionals for exchange and correlation are unknown,

but approximations can be introduced to permit quite accurate calculations. These

approximations have to re�ect the physics of electronic structure and do not come

from the mathematical properties of DFT.

The simplest approximation for the exchange-correlation functional is the Local

Density Approximation (LDA) which has a quasilocal form

ELDA
xc [n(r)] =

∫
εxc(r; [n(r̃)])n(r)dr, (1.7)

where εxc(r; [n(r̃)]) represents the exchange-correlation energy per particle at point

r. The idea of LDA is that for regions where the charge density varies slowly, the

exchange correlation energy can be considered the same as that of a locally uniform

electron gas of the same charge density. In practical use of LDA, the exchange term

takes the simple analytic form for the homogeneous electron gas while the correlation

energy is parameterized from accurate Quantum Monte Carlo data [21]. A typical

limitation of LDA is that it underestimates ionisation energies but overestimates

the binding energies. LDA also gives inaccurate descriptions for strongly correlated

systems.

The Generalized Gradient Approximations (GGAs) are semilocal and take into

account the gradient of the density at the same point

EGGA
xc [n(r),∇n(r)] =

∫
εxc(n(r),∇n(r))n(r)dr, (1.8)

which in many cases improve on LDA, especially for cohesive and dissociation en-

ergies. The �rst GGA functional was introduced by Perdew and Wang in 1992 [22].

Many di�erent forms of GGA functionals were proposed and the most widely use

till now is named PBE from Perdew, Burke and Ernzerhof [23].
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It is well known that the lack of dispersion force is one of the biggest challenges

of standard approximate DFT. The van der Waals interaction energy depends on

atoms separation R as EvdW ∝ R−6 [24] and neither LDA nor GGA can describe this

behavior correctly. In LDA, long-range interactions are described by an exponential

decay whereas GGA makes corrections to the local approximation of LDA but is

still unable to describe the van der Waals interaction behavior.

In recent years, many approaches have been proposed to deal with van der

Waals interactions. Calculations using exact-exchange (EXX) and random-phase ap-

proximation (RPA)-correlation energies within the adiabatic connection �uctuation-

dissipation theorem formalism have demonstrated to describe correctly the long-

range van der Waals interaction [25, 26, 27]. Unfortunately, its high computational

cost limits its practical use. A simple idea to account for van der Waals interactions

is to add an empirical dispersion-energy term to the total DFT energy. Several meth-

ods using this idea have been introduced, for example DFT-D2 [28], DFT-D3 [29] of

Grimme et al., and vdW-TS of Tkatchenko and Sche�er [30]. These methods need

some predetermined input parameters to calculate the van der Waals interaction.

Their limitation is that the complex many-body interactions are treated outside

the DFT framework and therefore the ground state wavefunction and ground state

density do not contain non-local correlation e�ects.

In other approaches, termed non-local correlation functionals, the dispersion

interaction is obtained directly from the electron density. In these approaches, a

non-local correlation term

Enl
c =

∫ ∫
dr1dr2n(r1)n(r2)φ(n(r1), n(r2), |r1 − r2|), (1.9)

is included in the correlation functionals [10]. In eq. (1.9), n(r) is the electron

density and φ(n(r1), n(r2), |r1 − r2|) is the integration kernel with a 1/|r1 − r2|6

asymptotic behavior. The computational cost of the original formulation is quite

demanding, especially in a plane-wave approach. Only after Román-Pérez and Soler

[31] proposed an interpolation scheme to improve the scaling, these non-local func-

tionals are widely used. Several non-local functionals were suggested and promising

results have been obtained. In the original vdW-DF functional, revPBE functional
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is applied for the exchange part [32]. Some other functionals are the same as vdW-

DF except that other exchange functionals are employed instead of the revPBE, for

example optB88-vdW and optB86b-vdW [33], c09-vdW [34], cx-vdW [35]. A second

version of vdW-DF functional, named vdW-DF2 [36], with modi�ed exchange and

non-local correlation was suggested to improve the descriptions of the binding energy

and equilibrium spacings between weakly-bound complexes. The VV10 functional

[11] proposes a di�erent functional form for the kernel φ(n(r1), n(r2), |r1 − r2|) and

can depict accurate interaction energies of van der Waals system, not only near the

minima but also far from equilibrium. It also gives accurate covalent bond lengths

and atomization energies. Its revised version, known as rVV10 [37], allows the use

of the Román-Pérez and Soler scheme and therefore makes the computation less

expensive while keeping the outstanding precision of the original VV10. Recently, it

was found that changing the b parameter of the rVV10 functional (from its original

value 6.3 to 9.3) gives a better description of structural properties in �rst-principles

molecular dynamics of liquid water [38].

In this thesis, we use the vdW-DF functional in studies of glycine and cholesterol.

In the case of glycine polymorphs at ambient condition, the performances of rVV10

and rVV10-b9.3 functionals are also given for comparison.

1.2 GIPAW Method

The main concern of this thesis is crystal structure prediction. Moreover, in the

study of cholesterol, we also characterize the predicted structures by their NMR

spectra using the GIPAW method. In this section, we introduce very brie�y the

Projector-Augmented-Wave (PAW) and Gauge-Including Projector-Augmented-Wave

(GIPAW) methods. The details of these methods can be found in the original papers

[39, 40, 41].

1.2.1 Projector-Augmented-Wave

One problem of DFT is the behavior of the Kohn-Sham one electron wavefunction.

This wavefunction is fairly smooth in the bonding regions far from the nuclei whereas
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close to the nuclei, because of the large electron-nuclear Coulomb attraction, it has

rapid oscillations. For solving Kohn-Sham equation in a plane-wave basis set, this

behavior requires a very large set to describe the wavefunction accurately.

The use of pseudopotentials is one way to overcome this problem [42]. Since

the shape of the wavefunction in the vicinity of the nuclei does not a�ect much

the electronic properties of the material, the rapidly oscillating wavefunction can be

replaced by a smoother function. However, because of the way the pseudopotential

is constructed, the information about the full wavefunction close to the nuclei is lost.

As a result, the pseudopotential method cannot describe correctly properties that

depend directly on the core electrons (such as X-ray photoelectron spectroscopy) or

the electron density near the nuclei (such as NMR shielding and coupling constant).

In another approach, namely augmented plane-wave (APW) method [43, 44],

one also divides the space into two regions. Inside the atom-centered augmentation

spheres, the wavefunctions are expanded in atom-like partial waves. In the bonding

region outside these spheres, some smooth envelope functions are used. At the

boundary of the spheres, the partial waves and envelope functions are matched.

The projector-augmented wave (PAW) method [39] is a generalization of the

pseudopotential and APW ones. Its idea is that all-electron Koln-Sham single par-

ticle wavefunctions |ψ〉 can be built from the �ctitious pseudo wavefunctions |ψ̃〉

through a linear transformation operator T . Since |ψ̃〉 and |ψ〉 di�er only in the

regions close to the nuclei, T can be written as T = 1 +
∑

R T̂R, where T̂R is non-

zero only within some spherical augmentation region ΩR enclosing the atoms. The

transformation operator T can be de�ned as

T = 1 +
∑
Rn

(
|φRn〉 − |φ̃Rn〉

)
〈pRn|, (1.10)

where n refers to atomic-state quantum numbers; |φRn〉 and |φ̃Rn〉 are the all-

electron partial waves and pseudo partial waves, respectively; |pRn〉 are projector

functions (which are localized in the region ΩR) satisfying the orthonormal con-

ditions: 〈pRn|φ̃R′m〉 = δRR′δmn. In this representation, all-electron operators are

transformed into new operators, named �pseudo-operators�, Ã = T †ÂT . For quasilo-
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cal operators, the pseudo-operators can be written as

Ã = Â+
∑

R,n,m

|pRn〉
(
〈φRn|Â|φRm〉 − 〈φ̃Rn|Â|φ̃Rm〉

)
〈pRm|. (1.11)

The advantage of PAW method is that all-electron observable quantities can be

calculated using the pseudo wavefunctions without the need to explicitly store all-

electron wavefunctions in memory. This is important for the calculation of properties

that directly depend on the core electrons or the electron density near the nuclei

such as NMR.

1.2.2 Gauge-Including Projector-Augmented-Wave

It is known that nuclei that have spin one-half (for example 1H, 13C ...) can have

two possible spin states (which are degenerate) with magnetic quantum numbers

mS = ±1/2. If the nucleus is placed in an external magnetic �eld B, the interaction

between the nuclear magnetic moment and the external �eld determines an energy

di�erence between the two states ∆E = γ~|B|, where γ is the gyromagnetic ratio

that depends on the nuclear mass and charge. Since the two states no longer have

the same energy, transition between spin states can be induced. This phenomenon

is known as Larmor precession with the so-called Larmor frequency being ω0 =

∆E/~ = γ|B|.

Consequently, one can expect that all nuclei of the same nuclear mass (which

have the same γ) would have very similar NMR frequency since the frequency de-

pends only on γ and the magnetic �eld B. However, this is not the case. In fact,

the core and valence electrons also interact with the magnetic �eld and contribute

a �shielding� e�ect to the NMR frequency. Therefore one observes di�erent frequen-

cies for di�erent nuclei depending on their chemical environment. This shift in the

NMR frequency is called NMR chemical shift.

The chemical shielding tensor is determined as

Bin = −−→σ (r)B, (1.12)

where Bin is the induced magnetic �eld. This magnetic �eld is generated by the

electronic currents that are induced in the material by the external �eld. Bin can
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be calculated as

Bin =
1

c

∫
dr′ j(1)(r′)× r− r′

|r− r′|3
, (1.13)

where j(1) is the �rst-order induced electric current. From this formula, it is clear

that the calculation of the induced magnetic �eld requires an accurate description

of the induced current close to the nucleus. Therefore the PAW formalism is needed

to reconstruct the wavefunction behavior close to the nuclei.

It is known that, in an uniform magnetic �eld, a �eld-dependent phase factor is

created in any wavefunction when translating the whole system by a vector t

〈r|ψ′n〉 = exp[(i/2c)r.t×B]〈r− t|ψn〉. (1.14)

A di�culty of the PAW method, when applied to systems in magnetic �eld, is that a

huge number of projectors would be needed to describe this wavefunction correctly.

The use of a �eld-dependent transformation operator

TB = 1 +
∑
Rn

exp[(i/2c)r.R×B]
(
|φRn〉 − |φ̃Rn〉

)
〈pRn| exp[−(i/2c)r.R×B]

(1.15)

can solve this problem. This transformation operator de�nes a new method which

is called gauge-including projector-augmented-wave (GIPAW).

The details of GIPAW method can be found in the original papers [40, 41] and

can be schematized as follows

|ψ(0)〉 → |ψ(1)〉 → j(1)(r′)→ Bin. (1.16)

First one determines the eigenstate |ψ(0)〉 of the unperturbed Hamiltonian in the

absence of the magnetic �eld then calculates its linear variation |ψ(1)〉. The �rst-

order induced electric current can be written as the sum of three terms, a bare

contribution, a paramagnetic operator and a diamagnetic one. Next step is to

obtain the induced magnetic �eld Bin using eq. (1.13) and the shielding tensor −→σ

arcording to eq. (1.12). Finally the isotropic chemical shielding is given by its trace:

σiso = Tr[−→σ ]/3.





Chapter 2

Molecular crystal structure

prediction with evolutionary

algorithms

In this chapter, we will brie�y introduce the crystal structure prediction problem

and describe the challenges in crystal structure prediction of molecular crystals. We

then present evolutionary algorithms as one solution to perform crystal structure

search for molecular crystals. The detailed applications of evolutionary algorithm

and their results in the search for low-energy structures of glycine and cholesterol

are given in Chapter 3 and Chapter 4 respectively.

2.1 Introduction to atomic crystal structure prediction

Crystal structure is one of the most important information about a system since it

determines material properties. Di�erent arrangements of even the same atoms can

result in completely di�erent properties of the material. For example, graphite and

diamond are both made of carbon atoms but with di�erent structures. In graphite,

the atoms stay in layers with a hexagonal lattice while diamond has a tetrahedral

form. In term of properties, graphite is a dark, soft material and is a good electrical

conductor while diamond is transparent, the hardest material known up to now, and

is an insulator. Thanks to the development of computational simulations, one can

now determine a huge number of interesting properties of materials, assuming that

their crystal structure is known. But if the crystal structure is unknown, one can

gain very little information about the material.
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Crystal structure is usually determined using experimental data from single-

crystal X-ray Di�raction (XRD) and/or NMR spectra. Unfortunately, in many

cases, the quality of the experimental data is poor, for example at some experimental

conditions of high pressures and/or high temperatures; and the positions of hydrogen

atoms are not measurable in standard XRD experiments. In these cases, crystal

structure prediction has a leading role in the determination of the crystal structure

of the material. Crystal structure prediction is also a good approach to investigate

materials at extreme conditions (e.g ultrahigh pressure) that cannot or are di�cult

to be studied with today's experimental techniques. In searching for new materials,

computational crystal structure prediction is usually much easier and cheaper than

experiments.

There is no doubt that crystal structure prediction is extremely challenging and

it was even stated that crystal structures are unpredictable [45, 46]. The main task

in crystal structure prediction is to �nd the global minimum in a multi-dimensional

space. For a structure with N atoms in the unit-cell, the dimensionality of the space

is 3N + 3 (3N − 3 for the atomic coordinates plus 6 for the unit-cell parameters).

This space is huge and noisy with the number of possible structures increasing

exponentially with the number of atoms in the unit-cell. Until now there is no

method that can guarantee to �nd the global minimum successfully.

Several methods have been proposed to overcome the di�culty of searching a

complex energy-landscape: data mining [47], metadynamic [48, 49], basin hopping

[50], simulated annealing [51, 52] minima hopping [53] and evolutionary algorithms

[13]. All of them work based on the assumption that one needs to explore only

the most promising regions in a huge energy-landscape. The idea of data mining is

simple: one has databases that contain a huge number of known crystal structures;

in order to �nd the structure of a new material, one can search in the databases

the structures which have chemical composition similar to the one of the system

that one wants to study. Then ionic substitutions are used and the structures are

optimized with the expectation that the lowest energy structure found will be the

ground state one. In metadynamic, basin hopping, simulated annealing and minima

hopping methods, one starts from an initial structure which can be chosen in a
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�good� region of the energy-landscape. and then modi�es it by some perturbations

in the cell parameters and/or atom coordinates. The optimization is performed

with the hope that the structure will move to a new local minima. The scheme of

evolutionary algorithms will be presented in the Section 2.4.

The so-called random sampling method in principle can explore many regions

of the energy-landscape. The idea of this method is that candidate structures are

created randomly and local optimization are performed for these structures. The

search is then terminated when the lowest energy structure has been found several

times. This method has been used for predicting crystal structure of some sim-

ple systems and the results were very promising. However this method can work

e�ciently for small systems up to around 12 atoms only [54].

2.2 Introduction to molecular crystal structure predic-

tion

Prediction of the crystal structure at the molecular level is essential since molecular

crystal can be used in many �elds such as pharmaceuticals, optoelectronic materials,

pigments, explosives, molecular electronics and metal-organic frameworks [3, 55].

In general, di�erent polymorphic forms of a certain compound have signi�cantly

di�erent properties. Therefore in order to understand the properties of molecular

crystals for industrial applications, knowing the molecular crystal structures and the

condition at which they are stable is compulsory. To obtain the phase diagram of a

molecular crystal, it requires the calculation of �nite-temperature thermodynamic

contributions and the understanding of the competition between thermodynamics

and kinetics in packing determination. These issues are beyond the aim of this

thesis. In this study, we only focus on �nding the most thermodynamically stable

molecular arrangements at 0 K.

The traditional way to do crystal structure prediction for molecular crystal is to

�rst rank the energies of all generated structures using classical force-�eld. Those

structures are created randomly from a given molecular conformations. The num-

ber of generated structures may be as huge as 107 and the force-�eld rules out a
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signi�cant number of the worse structures. Then accurate DFT calculations are

used to estimate the stability of all the short-listed candidate structures. There

are several global optimization algorithms that can be extended from simple atomic

crystal structure prediction to search for molecular crystal structure. Promising re-

sults have been obtained by several studies using, for example metadynamic [56, 57],

minima hopping [58, 59] and evolutionary algorithms [9, 60, 56].

2.3 Challenges in crystal structure prediction of molec-

ular crystal

When doing crystal structure prediction for molecular crystals, an important aspect

must be noticed. In general, the molecular crystal of certain molecule is thermo-

dynamically less stable than the individual simple molecules that can be obtained

from the chemical decomposition of the molecule of interest. For example, glycine

(C2H5NO2) polymorphs maybe less stable than the combinations of H2O, CO2,

CH4, NH3, H2, N2, NO2... Therefore in order to search for the crystal structure

of molecular crystals, it is a good idea to �x the intramolecular connectivity of the

molecule. It is not a limitation but in fact an advantage that reduces the search

space and the number of degrees of freedom in the system.

Even when the whole molecule is used as the unit, the crystal structure prediction

of molecular crystals remains di�cult. The key challenges for ab initio crystal

structure prediction of molecular crystals can be summarized as: i) the search space

is huge; ii) addressing the relative stability of polymorphs is di�cult.

2.3.1 The search space is huge

In molecular crystals, each molecule in the unit-cell is characterized by the coor-

dinates of the molecule center and the angles of its orientation. In principle, for a

certain number of a given molecule, there is an in�nite number of possible structures

that can be formed. Among them, only the ones with lowest energies (or enthalpies

if non-zero pressure is considered) are likely to be found experimentally. Predicting

the lowest energy structures in such a huge energy-landscape is a big challenge.
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For �exible molecules, there are usually more than one inequivalent molecules

in the unit-cell. In this case, the number of degrees of freedom becomes even larger;

and it is a good idea to use several types of molecules to describe possible di�erent

conformations [61, 62]. We will do so in the study of cholesterol molecule which has

a �exible hydrocarbon tail.

The development of crystal structure prediction methods is aimed at making the

search in the energy-landscape more e�cient. Although several searching algorithms

have been proposed with encouraging results [58, 59, 9, 60], currently there is no

single method that can prove to address the general global minimum search success-

fully. For the lowest energy structure found by any algorithms, there is no way to

know if it really is the ground state structure or just a local minima. What one can

do is to compare the lowest energy structures with the available experimental data.

2.3.2 Addressing the relative stability of polymorphs is di�cult

All structures created by crystal structure prediction methods need to be optimized

to estimate their energies (or enthalpy if at non-zero pressure). The lowest energy

structure found is assumed to be the ground state one. There is no doubt that

predicting the right energy ordering is a prerequisite to �nd the global minimum

successfully.

In comparison with the atomic crystal, molecular crystal structure prediction is

more challenging because of the accuracy needed to resolve similarly low energies

among polymorphs. In molecular crystals the molecules are held together by van

der Waals interactions and the energy di�erences between structures are small. In

some cases these energy di�erences are even smaller than the typical numerical error

of the simulation. Therefore a good treatment of long-range dispersion interactions

is deeply needed.

Many crystal structure prediction studies for molecular crystal use classical force-

�eld as the local optimization due to its favorable computational cost compared with

DFT calculations in quantum chemistry. Unfortunately, empirical potential energy-

landscape often gives unphysical minima [63, 64]. Inaccurate force-�eld parameter-

ization can lead to signi�cant distortion of the molecule and wrong energy ranking
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of the candidate structures. Flexible molecules not only add more complexity in the

energy-landscape but also make the accuracy of classical force-�eld become more

uncertain. It is known that there is usually considerable noise that may give rise

to many local minima in the hypersurface of the force-�eld. Structures that are

optimized with this force-�eld may be trapped in these local minima [61].

2.4 Evolutionary algorithm in the case of molecular crys-

tal

Evolutionary algorithm is one of the methods that are well suited for structure pre-

diction. It requires very little information as input. For molecular crystal structure

prediction, only the molecular geometry and the number of molecules in the unit-cell

are needed. The evolutionary algorithm works based on the idea of natural competi-

tion and the survival of the �ttest. Its scheme, as implemented in the USPEX code

for molecular crystal, is sketched in Fig.2.1(a) and summarized in the following

Figure 2.1: (a) The scheme of evolutionary algorithm for predicting crystal structure

of molecular crystal with the sequence of the steps that are performed; (b) sketch of

how heredity, coordinate mutation and rotational mutation operators create a child

structure: heredity combines slices of two parent structures in a new structure; co-

ordinate mutation moves some molecules in a random direction; rotational mutation

rotates the molecules by a random angle. This picture is reproduced from Ref. [9].
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2.4.1 Initialization

First, the code starts with some initial structures that are usually created randomly

from an unit which is the whole molecule, instead of individual atoms as in the case of

atomic crystal. The diversity of this generation guarantees the success of the search.

In the USPEX code, instead of putting molecules at completely random positions,

the structures are built from a space group that is chosen randomly. Experience

shows that by doing so, the �rst generation is proved to get higher diversity [9].

For large systems with a huge volume and a huge number of molecules in the

unit-cell, the randomly generated structures are very similar to a disordered system

and the �unit-cell splitting� technique [65] could be used. The large cell is split into

subcells which contain smaller number of molecules. In the subcell, the molecules

are placed randomly. This technique was shown to produce more diverse structures

for large systems [65].

Some constraints can be applied at this initial step. One may need to set a min-

imum distance between molecules to avoid molecules overlap. If any experimental

information (cell parameters or crystal structure space group symmetry) is known,

it can be used to make the search more e�cient. If any structure is already known

(from the studied compound or other related materials) it can also be included as

template in the USPEX code (the Seed technique).

The use of space group information can be of great help in crystal structure

prediction [66]. From the experimental organic crystal structure database, known

crystals mostly belong to P21/c, P1, P212121, C2/c, P21 and Pbca space groups. In

the study of glycine, we will show that the use of this information allows to explore

the energy-landscape more e�ciently.

2.4.2 Local optimization

At any generation, the created structures need to be optimized. The optimization

process not only gives an estimate of the energy of the candidate structures in order

to �nd the lowest ones but also reduces the dimensionality of the energy-landscape.

In some cases, structures that look very di�erent at the beginning become the same
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after relaxing with di�erences just due to numerical noise.

Using accurate DFT in the local optimization would be a very desirable option.

The advantage of ab initio calculations over the empirical force-�eld ones is that

ab initio can give accurate results in all regions of the energy-landscape while the

results of force-�eld are good only near the regions where force-�eld parameters were

�tted. Therefore ab initio calculations can be used in the study of new materials

where no experimental data are known. However insu�ciently dense k-point sam-

pling and/or bad pseudopotentials can produce inaccurate minima [54] and since

molecules interact with each others by van der Waals interactions, the functional

used must include this long-range interaction. In the study of glycine, we use DFT

calculation in the local optimization and the vdW-DF functional [10, 32], which pre-

dicts correct energy ordering for simple organic crystals [12]. The k-point sampling

and pseudopotentials are carefully checked.

When the number of atoms in the unit-cell is large, the use of DFT in the local

optimization step is too demanding and the use of classical force-�eld is needed.

In this case a good force-�eld is required. Great improvements of the force-�eld

have been made so far. The all-atom force-�eld is usually parameterized from DFT

calculations in which dispersion interaction is included. Excellent agreements with

experiments and/or quantum mechanical calculations have been achieved, even for

�exible molecules [61, 67, 62]. Indeed if the force-�eld can be designed correctly,

they are much appropriated for crystal structure prediction [4, 5, 6, 7, 8]. In the

study of cholesterol, we will use a classical force-�eld in the local optimization,

whose successful determination of the crystal structure of cholesterol polymorphs

has been reported [16]. Good candidate structures are then relaxed better using

accurate DFT calculations with non-local van der Waals functional. One thing

must be noticed as mentioned in Ref. [61]. Even a good force-�eld may still have

a noisy energy hypersurface, therefore with a good force-�eld, the best strategy is

to optimize the structure three times: �rst step is done with the force-�eld in the

crystal structure prediction search; the obtained structures are then relaxed with

an accurate DFT method; and �nal one is relaxed with the force-�eld again. If the

latter optimization with force-�eld produces a lower energy than the previous one,
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the structure has escaped a local minima. We will also do this check.

2.4.3 Selection

It can happen that in one generation, one structure is found many times and the

same parent structures are likely to create very similar children. Therefore if a

repeated structure is included when choosing parents structures for the next gen-

eration, this may result in a waste of resource in the repeated optimization of the

same structure. This duplication also reduces the diversity of the generation and

makes it di�cult for the algorithm to escape from local minima.

It is non-trivial to identify equivalent structures since there are many ways to

represent a structure and numerical noise makes the problem more complicated. In

principle one can not distinguish structures from their energy and volume alone [68].

In the USPEX code, the structures are classi�ed by comparing their �ngerprints.

This function is related to the radial distribution function and di�raction spectrum.

Details of the �ngerprint function in USPEX are given in Ref. [69, 70]. There

is a technical issue when calculating the �ngerprint for molecular crystals. The

intramolecular contributions, which are the same for all molecules with di�erent

orientation, are neglected [9]. The molecule is then treated as a single object with

the coordinates of the molecular center.

Based on the desired property, di�erent selection rules can be applied: if one

looks for the most stable structure then all the structures are ranked by their energy.

The worst structures with highest energy are discarded and the lowest ones are likely

to be chosen as parents to create the new generation.

2.4.4 Variation operators

When the parent structures are selected, the children ones are created by applying

some variation operators. Some operators are shown in Fig2.1(b). Typically it is

a good idea to keep some of the best structures from the previous generation to

make sure that the generations don't go worse. These best structures are required

to have signi�cantly di�erent �ngerprints. For coordinate mutation operator, the
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molecules are moved in random directions and the rotational mutation operator

chooses to rotate a certain number of molecules by a random angle. More details

about mutation operators can be found in the original paper [9]. The diversity of

the population is guaranteed by adding new random structures at each generation.

Heredity operator is an essential part of the evolutionary algorithm. Without it,

evolutionary algorithm becomes very similar to other random search methods. For

other operators, the child structure is created from one single parent while for hered-

ity, two structures act as parents. The heredity operator cuts planar slices from the

two parents structures and combine them together to generate a child structure.

One thing must be noticed in this case: if two good parents are very di�erent the

child structure can be very bad [71]. The reason is that the child structure falls into

the high barrier region between two good local minima. In order to avoid this, in

USPEX, the parents for heredity operators must have �ngerprints that are not too

di�erent.

2.4.5 Convergence conditions

At each generation, the conditions for the convergence prede�ned by the user are

checked. One may want to stop the calculation when it reaches a speci�ed maximum

number of generations, or when after a given number of consecutive generations, no

better structures are found. The later condition is inspired by the fact that at a

certain generation, if no better structure is found, the parents would be the same as

in the previous one and therefore the generation has more chance to be repeated.

2.4.6 Further notes

In the evolutionary algorithm, several parameters can have an impact on the e�ec-

tiveness of the search. One has to deal with incompatible requests: the diversity of

the population and the convergence to the optimal solution. With higher diversity,

one can explore the energy-landscape better however the chances to search in the

most promising regions are lower. On the other hand, reducing diversity helps to

investigate a given region but increases the risk of missing the global optimum. In
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general, one seeks for a balance between diversity and convergence. Detailed study

about this aspect can be found in Ref. [72].

There are advantages and disadvantages in evolutionary algorithms over other

crystal structure prediction methods. The power of evolutionary algorithms is that

they don't require previous system knowledge (except its chemical composition),

which is good for the prediction of new materials. In each generation, the best

structures are selected to �procreate� and, through new generations, increasingly

better structures are found. However, in evolutionary algorithms, no information

on mechanisms of phase formation is given. This information can be found from

other methods, for example metadynamic [48, 49], basin hopping [50], simulated

annealing [51, 52] and minima hopping [53]. While phase transition mechanisms

can be simulated with such methods, real mechanisms present in experiments can be

much more complicated and di�cult to treat. Comparison of evolutionary algorithm

with metadynamic and minima hopping can be found in Ref. [56] and Ref. [73, 74]

respectively.





Chapter 3

Molecular crystal structure

prediction of glycine

In this chapter, we tackle the challenge of crystal structure prediction in the di�cult

case of the repeatedly studied, abundantly used aminoacid glycine that hosts still

little-known phase transitions [14, 75, 76] and illustrate the current state of the

�eld through this example. First, we introduce glycine polymorphs and describe the

method used in this study. By using clustering technique, the result of evolutionary

algorithm is analyzed. We identify all experimentally known structures of glycine as

well as the hitherto unresolved ζ phase. The challenge in exploring a polymorphic

landscape is exposed in the case of α-glycine. We suggest a simple way to explore

the energy-landscape more e�ciently. Finally, we propose several new low-energy

structures of glycine.

3.1 Introduction

Glycine, H3N+CH2COO− as shown in Fig. 3.1(a), the smallest aminoacid, is an

excellent test case for organic crystal structure prediction studies as its already rich

polymorphism under ambient conditions is ampli�ed and becomes less understood

at higher pressure (see Fig. 3.1 (b)). At ambient conditions, three polymorphs

of glycine are known: α, β, and γ. The form readily obtained by evaporation of

aqueous solutions is α-glycine, which for long was believed to be the most stable

phase instead of the later discovered ground-state phase γ. However, the energy

di�erence between the two phases is pretty small, about 0.27 kJ/mol per molecule

[77]. The γ-form appears if the crystallization is performed in acidi�ed solutions [78]
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Figure 3.1: (a) Glycine molecule with numbering of the atoms; (b) Glycine poly-

morphism under pressure. Stability order of polymorphs at ambient pressure , α,

β, γ with indicated Z molecules in unit cell, is given. When the pressure increases,

while phases β and γ transform into phases δ and ε respectively, α-glycine is still

stable up to at least 23 GPa. The ζ-glycine is formed on decompression of phase ε

at 0.62 GPa. However its crystal structure has not been resolved yet.

or by using compounds that prevent the growth of α-glycine [79]. β-glycine can be

obtained in the crystallization from aqueous solution with slow di�usion of ethanol

[80]. Nevertheless, it is unstable and usually transforms spontaneously into either

α or γ polymorphs [81].

Pressure evolution of ambient pressure phases shows that while γ and β phases

quickly lose single crystal nature or undergo a phase transition within a few GPa,

α phase stays stable up to 23 GPa, the highest pressure reached in experiments. A

reversible, hysteresis-free single-crystal to single-crystal transition occurs from β to

δ phase at 0.76 GPa. Single crystals of the γ phase undergo instead an extended

polymorphic transformation in the wide range from 1.9 GPa to 7.6 GPa, to a high-

pressure polymorph, the ε phase, accompanied with the fragmentation of single

crystals into powder. Upon decompression, the ε phase is stable down to 0.62 GPa,
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where a new, irreversible phase transition occurs to the ζ phase, a new polymorph

which is reported to be stable at ambient conditions for at least three days [14].

Interestingly, despite its stability, and at least three crystal structure prediction

studies devoted to glycine so far [9, 60, 82], a decade after its observation, the ζ

phase has not been structurally resolved yet. In the study of the low-temperature

heat capacity of β-glycine, a second order phase transition was observed at 252 K

[75]. However, the crystal structure of this new β′′ phase has not been reported so

far and its existence has even been dismissed in subsequent work of the same group.

In Ref. [76], glycine phases were studied when aqueous solutions were frozen, then

the subsequent heating under di�erent conditions resulted in an unknown X-glycine

at 209-216 K. As temperature increases, this phase quickly transforms into the β-

polymorph. The crystal structure of X-glycine is also not fully determined, the

experimental and calculated di�raction patterns do not entirely agree. Motivated

by the unknown structures, we perform the crystal structure prediction for glycine

to search for possible low-energy structures and illustrate the current state of the

�eld through this example.

3.2 Method

3.2.1 Evolutionary search

The complex polymorphism of glycine highlights the importance of performing an

extensive search in phase space, while practical concerns limit any crystal structure

prediction study to explore primarily the lowest energy structures. In this study,

we use evolutionary algorithms as implemented in the USPEX package to address

this interplay e�ciently [9]. We perform three test suits with Z=2, 3 or 4 glycine

molecules in the crystal unit cell. At the �rst generation, 30 structures are created

randomly. After energy ordering, the 20% of the population that is energetically

least favorable is discarded. Among the remaining structures, a �ngerprint analysis

is performed and potential parents whose �ngerprint is within a threshold distance of

0.01 from any lower energy structure are also discarded. The so-determined unique

structures are eligible as parents and are allowed to procreate. The structures of the
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new generation are created from parents through the following operations: heredity

(cross-over of two structures) (40%), softmutation (translation and rotation based

on an estimate of soft vibrational modes) (20%) and rotation of the molecule (20%).

The diversity of the population is guaranteed by addition of new random structures

(20%) at each generation, while the three best parents are directly cloned to the

next generation. The highest computational cost in this work�ow is due to the ab

initio geometry optimization of each structure considered. To keep this cost well

within the capacity of modern high-performance computing technologies and within

the budget of academic as well as industrial research, we limit the evolution to 20

generations at most.

3.2.2 ab initio calculations

For every structure generated by USPEX, the geometry and cell relaxation is per-

formed using vdW-DF functional [10, 32] which was implemented in the QUANTUM

ESPRESSO package [83]. A kinetic energy cuto� of 80 Ryd and a charge density

cuto� of 560 Ryd are used. The Brillouin zone sampling resolution was gradually

increased in three steps during relaxation: resolution of 2π×0.12 Å−1, 2π×0.10 Å−1

and 2π × 0.08 Å−1 respectively. Energies and geometries of the last step with the

densest k-point are used throughout the study. PAW pseudopotentials are taken

from the PSLibrary project [84]. By using this setup all structures are fully relaxed

within a convergence of less than 0.1 mRy for absolute total energy, 0.5 mRy/a.u.

for the forces on atoms and less than 0.005 GPa for the stress tensor.

3.2.3 Cluster analysis

A cluster analysis of the structures generated during the crystal structure prediction

runs is performed by using single linkage clustering, where two structures with �n-

gerprint distance less than a distance threshold, d, are considered to belong to the

same cluster. Since USPEX de�nition of �ngerprint does not include any informa-

tion on the enthalpy of the structure, a constraint is added such that two structures

with enthalpy di�erence more than 0.5 kJ/mol are not allowed to form a cluster.
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This constraint is found necessary only when the clustering analysis is performed for

all the encountered structures, while when limiting the analysis to the low enthalpy

region, such constraint was not necessary as each cluster was successfully identi�ed

with the distance only.

3.3 Results

3.3.1 Performances of several van der Waals functionals

First, we show the results of several van der Waals functionals to the structural and

energetic properties of the three known polymorphs of glycine that are stable at

ambient pressure. Four functionals are chosen in this study: the vdW-DF functional

with revPBE for exchange part [32]; the rVV10 functional [37] which is the revised

version of the VV10 functional [11] with the optimized parameter b = 6.3; the rVV10

functional with a modi�ed parameter b = 9.3 as suggested in [38]; and the semi-

empirical PBE+D one [28]. We use the notation rVV10-b6.3 and rVV10-b9.3 to

indicate the rVV10 functional with the parameter b set to 6.3 and 9.3, respectively.

Table 3.1 shows the optimized lattice parameters at zero pressure for α, β and

γ phases with the four van der Waals functionals. The experimental lattice pa-

rameters of these structures, are also given. The PBE+D and rVV10-b6.3 give the

best descriptions of the cell parameters; changing parameter b to 9.3 makes the

rVV10-b9.3 give slightly worse cell parameters than rVV10-b6.3; while vdW-DF too

overestimates the cell parameters.

Next, we study the performance of these functionals in reproducing the structure

of the single molecules in the crystal. In Table 3.2, we compare the bond lengths

and torsion angle for α-glycine at ambient pressure. Changing parameter b from

6.3 to 9.3 of rVV10 functional doesn't make any e�ect in terms of bond lengths.

The rVV10-b6.3, rVV10-b9.3 and PBE+D give very good values for bond lengths

while vdW-DF again overestimates the bond lengths, especially the C1-C2 and C2-N

bonds. In terms of torsion angles, PBE+D and rVV10-b6.3 give the best comparisons

with experiment while vdW-DF and rVV10-b9.3 overestimate these angles.

In term of energetic properties, we compare the relative energies of glycine poly-
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Table 3.1 Optimized cell parameters and the unit cell volume per molecule V0 (Å
3)

at zero pressure for glycine phases that are stable at ambient pressure. The results

are shown for di�erent van der Waals functionals and the experimental data are also

given.

a (Å) b (Å) c (Å) β (deg) V0

α-glycine

Exp.[85](77K) 5.069 11.801 5.448 111.7 75.70

vdW-DF 5.240 12.283 5.565 111.1 83.73

rVV10-b6.3 5.113 11.695 5.500 111.3 76.68

rVV10-b9.3 5.144 11.856 5.510 110.7 78.54

PBE+D 5.053 11.778 5.465 112.6 75.10

β-glycine

Exp.[85](77K) 5.077 6.145 5.374 113.2 77.05

vdW-DF 5.212 6.409 5.500 112.4 84.74

rVV10-b6.3 5.091 6.119 5.437 113.3 76.68

rVV10-b9.3 5.117 6.210 5.439 112.6 79.77

PBE+D 5.039 6.107 5.406 113.8 76.11

γ-glycine

Exp.[85](77K) 6.985 6.985 5.483 90.0 76.87

vdW-DF 7.233 7.232 5.587 90.0 84.34

rVV10-b6.3 6.985 6.986 5.523 90.0 77.82

rVV10-b9.3 7.057 7.057 5.540 90.0 79.65

PBE+D 6.919 6.919 5.491 90.0 75.87
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Table 3.2 Optimized bond lengths (Å) and torsion angle (degree) for α-glycine at

zero pressure. The results are shown for di�erent van der Waals functionals and the

experimental data are also given.

Bonds Exp.[85] vdW-DF rVV10-b6.3 rVV10-b9.3 PBE+D

C1-O1 1.25 1.27 1.27 1.27 1.26

C1-O2 1.25 1.27 1.27 1.27 1.27

C2-N 1.48 1.51 1.49 1.49 1.48

C1-C2 1.52 1.55 1.53 1.53 1.53

C2-H1 1.05 1.09 1.10 1.10 1.10

C2-H2 1.04 1.09 1.09 1.09 1.10

N-H3 1.03 1.04 1.05 1.05 1.05

N-H4 1.09 1.06 1.06 1.06 1.06

N-H5 1.09 1.03 1.04 1.04 1.04

Torsion

N-C2-C1-O1 18.6 23.1 22.5 23.2 22.5

Table 3.3 Relative energies (in kcal/mol per molecule) for the glycine polymorphs

at zero pressure. The results are shown for di�erent van der Waals functionals and

the experimental data are also given.

Functionals α β γ

Exp. [77] 0.064 0.142 0

vdW-DF 0.016 0.264 0

rVV10-b6.3 -0.107 0.295 0

rVV10-b9.3 0.013 0.231 0

PBE+D 0.223 0.758 0

morphs at ambient pressure and the pressure values for the β-δ and γ-ε phase tran-

sitions. As seen in Table 3.3, rVV10-b6.3 predicts a wrong energy ordering between

α and γ phases; PBE+D gives right stability ordering, but the energy di�erences

are too much overestimated; vdW-DF and rVV10-b9.3 are the ones which agree very

well with experiment. Table 3.4 shows the pressure values at which the two known
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phase transitions from β to δ and from γ to ε occur experimentally and those pre-

dicted by van der Waals functionals. While rVV10-b6.3 (PBE+D) underestimates

(overestimates) these pressure values; vdW-DF and rVV10-b9.3 agree very well with

experiment.

Among the functionals used in this study, we show that the ones that give a

better description of the structural properties, give worse results for the energetic

properties and vice versa. These results show that signi�cant room for improvement

of the van der Waals functionals still remains. For crystal structure prediction, the

energy ordering is the most important aspect, therefore we choose to use the vdW-

DF functional.

Table 3.4 The pressure phase transitions (in GPa) from β-δ and γ-ε of glycine

polymorphs. The results are shown for di�erent van der Waals functionals, and the

experimental data are also given.

Phase transition Exp. vdW-DF rVV10-b6.3 rVV10-b9.3 PBE+D

β-δ 0.76 [86] 1.5 0.15 1.1 1.25

γ-ε 1.90 [87] 1.8 1.00 1.8 2.54

3.3.2 Results of evolutionary algorithm

The results of crystal structure prediction can be visualized through the distribu-

tion of energy as a function of volume for the structures encountered during the

search. Despite the exploration of a wide region in phase space (see left panel of

Fig.3.2), about 40 % of all the structures lies within 4 kJ/mol of the experimentally

known ground state structure, γ. Focusing on this region of the energy-landscape

as shown in the right panels of Fig.3.2, we see structures forming islands with vary-

ing sizes and shapes. This feature illustrates the added complication in the case

of molecular crystal structure prediction with respect to standard inorganic solids

where well-de�ned, isolated minima would be observed for each phase. The shape

and �nite size of the islands can be understood considering that Glycine is very

soft, therefore structures that are far o� from the equilibrium lattice parameters are

thermodynamically penalized only slightly as demonstrated in the inset of Fig.3.2.
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Figure 3.2: Results of ab initio crystal structure search for Glycine with

cluster analysis. Left panel: Enthalpy vs volume distribution of all encountered

structures for 2 molecules per cell shows that CSP with evolutionary algorithm al-

lows a wide energy range to be explored while �survival of the �ttest� algorithm

keeps the focus on the thermodynamically low lying structures. Right panels: Ex-

panded view of all explored structures compatible with 2, 3 and 4 molecules per

cell in the lowest 4 kJ/mol range. All known phases of glycine are identi�ed with

the right energy ordering along with a number of low-lying alternative polymorphs,

including our prediction for the hitherto unresolved ζ phase. As shown in the inset

of the Z=4 panel, crowding around each polymorph, when compared with its equa-

tion of state, is compatible with numerical noise due to incomplete relaxation. The

�ngerprint-and-energy based clustering techniques adopted here are however well

suited to separate and identify the di�erent low lying polymorphs even in presence

of noise.

This e�ect, combined with the numerical noise in geometry optimization, as well

as an increased number of degrees of freedom in molecular crystals, is enough to

give rise to crowding around each polymorphic minimum. Nevertheless islands are

well separated and a clear assignment of polymorphs can be made for most of them.

This is in stark contradiction with a very recent crystal structure prediction study



42 Chapter 3. Molecular crystal structure prediction of glycine

for glycine with empirical corrections for intermolecular interactions, which reported

that the obtained energy-volume points were not well separated enough to clearly

identify each polymorph, thus underlining the challenge of polymorphism for or-

ganic crystal structure prediction [60]. In this study instead the separation between

several islands are well represented down to very small energy di�erences (inset of

Fig.3.2). We believe this stems from the leap in accuracy and precision reached

by the use of fully ab initio energetics together with last generation evolutionary

algorithm tools.

3.3.3 Clustering algorithm

Reliable energetics from ab initio calculations is necessary but not su�cient to guar-

antee a reliable structure classi�cation in crystal structure prediction. More than

one polymorph can be present within a given extended island; or what appears to

be two adjacent islands due to insu�cient sampling and/or relaxation, may actually

correspond to the same packing order. Indeed the most human-time consuming part

of a crystal structure prediction procedure is known to be the stage where the output

structures are comparatively examined in order to successfully separate the essen-

tial data from the crowd of repetitions [1]. Although not utilized to their full extent

within crystal structure prediction, concepts from data mining, mainly clustering

techniques, can be of great help in this stage of the analysis, as we demonstrate in

the following.

We used the clustering technique to identify the unique polymorphs among all

the structures obtained with crystal structure prediction. In this clustering analy-

sis, a bottom-up distance-based hierarchical clustering approach with single linkage

is used. In distance-based approaches, a similarity metric is de�ned so that a dis-

tance can be measured between data points, and clusters are constructed based on

proximity.
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Figure 3.3: The number of clusters as a function of the distance threshold, d, for all

structures (green curve) and low-energy structures within approximately 4 kJ/mol

above the ground state (blue curve) for the case of Z = 2. Insets show the enthalpy

(kJ/mol) as a function of volume (Å3
) per molecule for di�erent values of d =

0.01, 0.08, 0.2, 0.35. Di�erent colors and point types in each inset correspond to

di�erent clusters. The value of d = 0.052 − 0.10 can distinguish di�erent clusters

successfully.
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Figure 3.4: The number of clusters as a function of the distance threshold, d, for all

structures (green curve) and low-energy structures within approximately 4 kJ/mol

above the ground state (blue curve) for the case of Z = 3. Insets show the enthalpy

(kJ/mol) as a function of volume (Å3
) per molecule for di�erent values of d =

0.01, 0.08, 0.15, 0.25. Di�erent colors and point types in each inset correspond to

di�erent clusters. The value of d = 0.05 − 0.09 can distinguish di�erent clusters

successfully.
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Figure 3.5: The number of clusters as a function of the distance threshold, d, for all

structures (green curve) and low-energy structures within approximately 4 kJ/mol

above the ground state (blue curve) for the case of Z = 4. Insets show the enthalpy

(kJ/mol) as a function of volume (Å3
) per molecule for di�erent values of d =

0.01, 0.08, 0.2, 0.26. Di�erent colors and point types in each inset correspond to

di�erent clusters. The value of d = 0.07 − 0.09 can distinguish di�erent clusters

successfully.
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In this study we use as the metric, the �ngerprint-based cosine distance [9, 69, 70]

de�ned in the evolutionary algorithm code USPEX [13]:

Dcosine(µ, ν) =
1

2

(
1− Fµ ∗ Fν
|Fµ| |Fν |

)
, (3.1)

where individual structure �ngerprints are de�ned as

FAB(R) =
∑
Ai,cell

∑
Bj

δ(R−Rij)
4πR2

ij
NANB
V ∆

− 1, (3.2)

where the double sum runs over all ith molecules of type A within the unit cell and

all jth molecules of type B within a distance Rmax; δ(R−Rij) is a Gaussian-smeared

delta function; Rij is the distance measured from the centers of molecules i and j;

V is the unit cell volume; the function FAB(R) is discretized over bins of width ∆;

NA and NB are the numbers of molecules of type A and B, respectively.

In Figs. 3.3, 3.4 and 3.5, we display a step by step clustering analysis in the

cases Z = 2, 3, 4 respectively. In these �gures, the green (blue) curve is for the

case in which the whole data set (the low-energy structures within 4.2 kJ/mol of the

ground state) are considered. The distance threshold used to de�ne whether two

data points belong to the same cluster is then monotonically increased. As a result

the cluster population evolves from the situation where every data point forms a

distinct cluster to the situation in which all data points belong to the same global

cluster, revealing the bottom-up and hierarchical nature of the approach. The most

impressive feature of these �gures is that the behavior of a rapid drop in the number

of clusters is followed by a more or less constant plateau before the number of clusters

eventually dies o�. This behavior is quite general and applies to all cases of Z = 2, 3,

4 and when the whole data set or low-energy structures are considered. Translated

to the crystal structure prediction problem, this data mining approach transforms

the challenge of identi�cation of unique polymorphs from the visual comparison of

all structures into an easier decision on the value of the distance-threshold to be

adopted. The optimal distance threshold is such that each data cluster matches

a unique physical polymorph. In the case of glycine a distance threshold around

0.08 is found to be appropriate to identify the low energy polymorphs successfully.

The so-determined optimal threshold can serve in advanced supervised learning
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Figure 3.6: a. Comparison of simulated x-ray di�raction patterns for ε-, γ- and ζ

- glycine at 2 GPa with experimental data taken from [14] at 0.2 GPa. The XRD

of proposed ζ-glycine can explain most of the unassigned peaks that were marked

in the experimental spectrum, especially the ones highlighted in the purple boxes.

The theoretical data is calculated at higher pressure to o�set the overestimation of

the ground state volume in ab initio calculations. b. Enthalpy per molecule as a

function of pressure for ε-glycine and ζ-glycine with respect to the γ phase up to 5

GPa. The black arrows indicate the phase transitions observed in the experiment

[14]: Under pressure, the γ phase undergoes a phase transition to ε-glycine. The

decompression of ε-glycine instead results in the ζ phase.

techniques and be fed back in the crystal structure prediction procedure to increase

considerably the e�ciency by reducing the generation of replicas of already explored

structures.

3.3.4 Identi�cation of ζ-glycine

The cluster analysis outlined above identi�es all experimentally observed phases

of glycine compatible with 2, 3 or 4 molecules per cell, as well as suggests oth-
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ers, hereon named according to their enthalpy-per-molecule ordering. Phases 1 to

11 lie within approximately 2 kJ/mol of the experimentally most stable phase, γ.

Among them one of the lowest energy polymorphs (phase 2) can be identi�ed with

ζ-glycine based on the excellent agreement with XRD results (Fig.3.6(a)) as well

as its pressure evolution (Fig.3.6(b)). The structural identi�cation of the ζ phase,

previously experimentally observed but not resolved up to now, marks an important

achievement for crystal structure prediction and is a key result of our study.

3.3.5 Challenges in exploring α-glycine

The search for α-glycine proved very demanding despite it being the experimentally

most readily formed polymorph at ambient conditions. In this study the α phase

could not be found even after 20 generations with the standard settings in USPEX.

The detailed results of these searches are given in the Appendix in Figs. A.1, A.2,

A.5 for Z = 2,3,4 respectively. We also performed two other simulations. One

simulation allows to dynamically depopulate the enthalpy valley of the best parents

found in the simulation while still keeping them in the list of eligible parents for the

next generation. No experimental information is used in this simulation. The other

simulation is done using the experimental parameters of α-glycine as de�ned by the

non-standard space group P21/n (equivalent to P21/c) 1. Their results are shown

in Fig. A.8 and A.9 respectively. These simulations fail to �nd the α phase. This

di�culty revealed one of the remaining challenges of crystal structure prediction:

the e�ective exploration of the topology of an erratic and vast con�guration space.

Indeed if more system speci�c information is available it can be used to further

constrain and guide the phase-space search: limiting the search to the experimentally

known, P21/c, space group of α-glycine, or �xing the cell shape to its experimental

value, resulted in its identi�cation at the 15th and 8th generations, respectively.

Combining the two constraints resulted in an even quicker discovery at the third

1 In experiment, it has been noticed that a large lattice parameter β would give increased

correlation between parameters with respect to the a and c axes, and therefore makes re�nement

becomes less stable [88]. Thus, in some cases, the non-standard space group P21/n which has

smaller value of β than the one of the P21/c, is used.
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generation.

In the case of α-glycine, it is noteworthy that the crystal building block can

be seen as a glycine dimer, with head to tail orientation. This feature is not seen

in other ambient pressure polymorphs of glycine [89], and it can be speculated

to be one of the reasons for the α phase not being readily connected with other

phases in the energy-landscape. This correlates with the di�culty of generating the

structure during the evolutionary algorithm procedure, as well as with its exceptional

stability under pressure. Instead, if the dimer unit is taken as building block in a

crystal structure prediction search, the α phase is found at the third iteration and

new low-energy phases such as phase 8, phase 14, phase 24 and phase 38 are also

discovered. The detailed result of the crystal structure search of glycine in the case

of 4 molecules/cell using glycine dimer as a building block is given in Fig. A.7.

In the results present above, we showed that α-glycine can be found only if

experimental information are used. To improve on this aspect we weighted the

random selection of the space group of the candidate structures according to the

frequency distribution appearing in known organic crystal structure database [P21/c

(36.59 %), P1 (16.92 %), P212121 (11.00 %), C2/c (6.95 %), P21 (6.35 %) and Pbca

(4.24 %)]. Fig. A.6 shows the result of this simulation. This procedure successfully

produced the α phase at the 14th generation, demonstrating that incorporation

of even mild and system unspeci�c experimental knowledge in the search strategy

may have a signi�cant impact to overcome the e�ectiveness challenge in the most

demanding cases.

The di�culty of exploring the α phase as well as the �nding of new phases only

after a dimer unit is employed, underline the remaining challenges of crystal struc-

ture prediction and call for even more e�cient methods for exploring new structures

and innovative data analysis applications to guide the search for a full optimization

of resources.

3.3.6 Notes on the γ-glycine

We also checked the procedure that uses information of space group symmetry from

crystal structure database, in the case of 3 molecules/cell. Fig. A.3 shows the



50 Chapter 3. Molecular crystal structure prediction of glycine

results of this search. The most impressive feature in this case is that: structures

with a much wider variety are found with respect to the simulation where all space

groups were sampled with equal probability (see Fig. A.2). Again, it shows the

e�ectiveness of the search using information learned from nature.

However in this case, the γ phase is not found within 20 generations. We per-

formed another simulation with the same setting and γ-glycine was created randomly

at the �rst generation. We notice that for the search with Z=3 using standard setting

in USPEX (result shows in Fig. A.2), γ-glycine is also found by random generation.

This can be interpreted as suggesting that in the energy-landscape, phase γ is also

well separated from other phases (like phase α). In the case Z=3, the separation

of γ-glycine from the other structures as shown in the inset of Fig. 3.4 can be seen

as an evidence that supports this statement. Fortunately in this case the random

generation operator can produce the γ-glycine.

3.3.7 New low-energy structures of glycine

Table 3.5 shows the list of low-enthalpy structures of glycine found in this study.

Among them, phase-1 has a lower enthalpy than the β-glycine which exists at ambi-

ent pressure; the phase-2, which is identi�ed with the ζ-glycine, also has an enthalpy

very similar to β-glycine. The phases 3 to 8 have higher enthalpy than β-glycine,

but lower than that of the high-pressure phase ε-glycine. Phases 9 to 11 have en-

thalpy in the region between the ε phase and δ phase. Other phases have higher

enthalpy than δ-glycine. Several trends can be predicted based on the volume of

the new structures.

Structures that are unstable at high pressure

The structures which have higher volume than the others, likely become unstable

at high pressure. Fig. 3.7 (a) shows the crystal structure of a few large volume

structures: phase-1, phase-6, phase-8, phase-12, and the enthalpies as functions of

pressure for these phases are correspondingly shown as red curves in Fig. 3.7 (b)

along with the enthalpies of α − ε phases. For phase-6, the unit-cell contains 4

molecules and can be seen as the combination of two subcells, each of which is the

unit-cell of the β phase. However, they are combined to make an angle in space.
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Table 3.5 Volume/molecule (Å3) and enthalpy/molecule (kJ/mol) for all low-

enthalpy structures found by USPEX at zero pressure. Enthalpy per molecule is

calculated with respect to the γ phase. The number of molecules per unit-cell, Z,

as identi�ed by USPEX code is also given.

phases Volume Enthalpy Z phases Volume Enthalpy Z

γ 84.477 0 3 phase-21 85.549 2.727 4

α 83.515 0.084 4 phase-22 84.722 2.759 4

phase-1 87.217 0.718 4 phase-23 89.497 2.778 4

β 85.083 1.055 2 phase-24 88.580 2.858 4

phase-2(ζ) 84.305 1.070 1 phase-25 85.198 2.870 4

phase-3 84.780 1.172 3 phase-26 85.068 2.956 4

phase-4 84.464 1.189 2 phase-27 85.206 3.214 3

phase-5 83.923 1.288 3 phase-28 91.409 3.296 4

phase-6 88.186 1.525 4 phase-29 86.274 3.309 4

phase-7 84.780 1.691 3 phase-30 87.840 3.311 4

phase-8 85.828 1.785 4 phase-31 85.496 3.348 3

ε 83.172 1.832 2 phase-32 84.023 3.465 2

phase-9 85.295 1.858 3 phase-33 85.408 3.489 3

phase-10 83.768 1.882 3 phase-34 90.527 3.504 4

phase-11 84.075 1.899 4 phase-35 88.294 3.677 2

δ 84.171 2.019 4 phase-36 86.005 3.745 4

phase-12 94.038 2.071 4 phase-37 85.786 3.870 4

phase-13 83.662 2.197 3 phase-38 86.106 3.915 4

phase-14 85.343 2.319 4 phase-39 84.416 3.985 4

phase-15 85.580 2.368 2 phase-40 85.552 4.020 4

phase-16 84.712 2.520 4 phase-41 86.031 4.022 4

phase-17 88.645 2.567 4 phase-42 88.915 4.062 2

phase-18 85.078 2.585 3 phase-43 87.309 4.064 3

phase-19 85.051 2.615 4 phase-44 85.975 4.109 2

phase-20 85.272 2.653 4
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There are two dimers in the crystal structure of phase-8. This phase has a two-

layer structure, each layer is a chain that is made of dimers. Phase-1 and phase-12,

instead, have a 3D hydrogen bond network in their crystal structure. As the pressure

increases, these phases quickly become unstable. Phase-12 is even less stable than

all experimental structures in the whole range of pressure from 0 to 20 GPa; while at

high pressure, phase-1, phase-6 and phase-8 all have higher enthalpy than β-glycine.

Candidates for high pressures structures

The structures which have a small volume, become good candidates for high pres-

sures phases. Fig. 3.8(a) shows the crystal structure of several such structures while

their pressure evolution is shown in Fig. 3.8(b). Phase-2, which is identi�ed with

the ζ-glycine, has only one molecule in the unit-cell. Phase-9 and phase-10 have

single-layer structures connected by hydrogen bonds. Phase-3 has three layers in its

structure, but two of them are nearly the same. At high pressure, the enthalpy of

these phases are lower or comparable with the one of β-glycine. However until 20

GPa, none of them become more stable than any known high pressure phases δ or

ε.

Fig. 3.9(b) shows the pressure evolutions of two structures, that are the most

stable at high pressure among the new structures. Their crystal structures are shown

in Fig. 3.9(a). There are three layers in these structures. For phase-5, there is also

a dimer in its structure. Phase-13 and δ-glycine have very similar enthalpy until 2

GPa and as the pressure increases, phase-13 becomes more stable. In this study,

phase-5 has lower enthalpy than δ-glycine in the whole range of pressure from 0 to

20 GPa.

3.4 Conclusion

In conclusion, we presented a fully blind, fully ab initio crystal structure prediction

(CSP) of glycine, a system that has been examined several times in the past yet

never fully grasped. A remarkable precision and a broad sampling is obtained in

an a�ordable computational time thanks to last generation van der Waals density

functionals and evolutionary algorithms at the leading edge. The comparison of our
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Figure 3.7: (a). Crystal structure of phase-1 (above, left), phase-6 (above, right),

phase-8 (below, right) and phase-12 (below, left). (b). Enthalpy/molecule with

respect to the α phase as functions of pressure for phases shown in (a) are plotted

as red curves correspondingly. The curves for known experimental structures are

also given for comparison.
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results with existing experimental studies enabled us to resolve the so-far unidenti-

�ed ζ phase a decade after its �rst experimental observation. Further analysis of the

results of the blind test allowed us to propose several new thermodynamically plausi-

ble structures with varying volume, compressibility and polarization. To address the

experimentally well established but CSP-wise challenging α phase, we introduced

an intuitive sampling strategy based on crystal structure relative frequency found

in nature. This strategy successfully found this challenging phase and allowed us

further insight in the energy-landscape. Overall, the results of our blind test shows

that a reliable crystal structure prediction procedure is possible with incorporation

of several complementary recipes to reach success, emphasizing that one-size-�ts-all

solutions are yet to be discovered. Fortunately, the leap in precision and sampling

capability we have demonstrated with these new generation tools open new paths

for crystal structure prediction with data processing procedures such as clustering

algorithms. Hence we strongly believe ab initio crystal structure prediction as pre-

sented here has come a long way and that a new standard for structure prediction for

molecular crystals is set, and an interdisciplinary horizon for computational science

within this �eld is now open.
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Figure 3.8: (a). Crystal structure of phase-2 (above, left), phase-3 (below, left),

phase-9 (above, right) and phase-10 (below, right). (b). Enthalpy/molecule with

respect to the α phase as functions of pressure for phases shown in (a) are plotted

as red curves correspondingly. The curves for known experimental structures are

also given for comparison.



56 Chapter 3. Molecular crystal structure prediction of glycine

Figure 3.9: (a). Crystal structure of phase-5 (left panel) and phase-13 (right panel).

(b). Enthalpy/molecule with respect to the α phase as functions of pressure for

phases shown in (a) are plotted as red curves correspondingly. The curves for

known experimental structures are also given for comparison.



Chapter 4

Molecular crystal structure

prediction of cholesterol

In this chapter, the results of structure prediction in the challenging case of choles-

terol molecular crystal are shown. First, we brie�y introduce cholesterol polymorphs

and our motivation for this study. Then we show the complexity of the energy-

landscape of cholesterol. Next we describe the method that we used. In the results

part, we provide the results of evolutionary search and the validation of the classical

force-�eld used in this study. We also identify the experimental structure of ChAl,

one known polymorph of cholesterol. Finally some new low-energy structures of

cholesterol found in our simulation and their NMR characterizations are presented.

4.1 Introduction

Cholesterol, an organic molecule with chemical formula C27H46O, is a sterol biosyn-

thesized by all animal cells and serves as a precursor for the biosynthesis of steroid

hormones, bile acids, and vitamin D. The structure of cholesterol molecule is shown

in Fig. 4.1(a). It is formed by four linked hydrocarbon rings forming the bulky

steroid structure. The two ends of the steroid are terminated by a hydrocarbon tail

and a hydroxyl group which is able to form hydrogen bonds in cholesterol solutions

and/or in cholesterol crystal structures.

In nature, three polymorphs of cholesterol are known: Cholesterol Monohydrate

(ChM) [90], Anhydrous Cholesterol - Low-Temperature Phase (ChAl) [91, 92], and

Anhydrous Cholesterol - High-Temperature Phase (ChAh) [93, 94]. There are two

types of cholesterol molecules in these phases as shown in Fig. 4.1(b). The �rst
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Figure 4.1: (a) Cholesterol molecule with the numbering of carbon atoms; (b) two

types of cholesterol molecule found in cholesterol polymorphs. Hydrogen atoms are

not shown.

molecule has a twisted tail while the other has a straight one. All three known

polymorphs of cholesterol have triclinic cells with P1 space group symmetry. Fig.

4.2 sketches the crystal structures of the known polymorphs of cholesterol: (a) ChM,

(b) ChAl and (c) ChAh.

The �rst known polymorph of cholesterol is ChM. It contains 8 cholesterol

molecules and 8 water molecules in the unit-cell. The experimentally determined

cell parameters are a = 12.39Å, b = 12.41Å, c = 34.36Å, α = 91.9◦, β = 98.1◦,

and γ = 100.8◦. In the crystal structure of ChM, there are two nearly identical

but di�erently oriented subcells with translation (a, b/2) and (b/2, a). The proton

positions of ChM were not determined until the work of Frincu et al. [95].

The ChAl polymorph has 8 cholesterol molecules in the unit-cell. The cell pa-

rameters are a = 14.172Å, b = 34.209Å, c = 10.481Å, α = 94.64◦, β = 90.67◦, and

γ = 96.32◦. In its crystal structure, there are two layers with two independent hy-

drogen bond chains that are parallel to the c-axis. Unlike ChM, there is no parallel

packing in ChAl, the long molecule shows considerable variation in direction. For

this phase, only positions of non-hydrogen atoms were reported experimentally. The

procedure to add hydrogen atoms into this structure was suggested in Ref. [16].

At 304.8 K, the ChAl undergoes a reversible phase transition to the new phase

ChAh. This phase has 16 molecules in the unit-cell with cell parameters a =

27.565Å, b = 38.624Å, c = 10.748Å, α = 93.49◦, β = 90.90◦, and γ = 117.15◦.
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Figure 4.2: The three known polymorphs of cholesterol are shown: (a) ChM, (b)

ChAl and (c) ChAh. Hydrogen atoms are omitted in the case of ChAh while for

ChM and ChAl, they are not experimentally determined. The cell is shown in the

separate layers for clarity.

The ChAh phase can be described as a doubling of the a-axis of the ChAl one, and

therefore it also has a layered structure. For this polymorph, the crystal structure

including proton positions has been fully determined [94].

Besides these three identi�ed structures, cholesterol is suspected to have an-

other crystalline phase that has been experimentally observed but not structurally

resolved: In Ref. [15], a 13C solid state NMR experiment was conducted on human

gallbladder stones made up of cholesterol, and a distinct NMR spectrum, unlike the

known phases of cholesterol, was observed. Moreover this new phase could be associ-

ated to a speci�c gallbladder pathology, i.e. gallbladder cancer, as statistically more

patients with this pathology had gallbladder stones with the new NMR signature,

while patients with benign diseases such as chronic cholecystitis or xanthogranulo-

matous cholecystitis often had stones that yielded an NMR signature similar to the
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Figure 4.3: The two layers in the crystal structure of (a) ChAl-1 (b) ChAl-2. Only

hydrogen atoms connected to oxygen ones are shown. The molecules are symbolized

by their number. In each layer, the unit-cell is duplicated to display the hydrogen

bond chains more clearly.

one of ChM phase. This association of histopathology of gallbladder to the poly-

morphic structure of cholesterol stones reveals the importance of understanding the

cholesterol polymorphism, which is the main motivation behind our work. Such bet-

ter understanding of the cholesterol polymorphism, combined with the studies on in

vitro crystal growth [95] holds the key to understanding the gallbladder conditions

that favor the formation of such crystals and ultimately shed light on �rst steps of

prevention strategies.

4.2 The complexity of the energy-landscape of ChAl

Before discussing the crystal structure prediction of cholesterol, we �rst show the

complexity of the energy-landscape of this system examining ChAl, an experimental

known polymorph of cholesterol with 8 molecules in the unit-cell. The cell param-

eters and atomic positions of carbon and oxygen atoms are experimentally well

determined. However the positions of hydrogen atoms are not measurable in X-ray

di�raction experiments [91, 92]. Theoretically, hydrogen positions are often assigned
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Figure 4.4: The calculated 13C GIPAW spectra for ChAl-1 (blue curve) and ChAl-2

(red curve). The experimental NMR spectrum is shown as black curve for compar-

ison.

by randomly distributing them in the neighborhood of the heavy atoms according

to the expected coordination and then by relaxing the structure in order to obtain a

fully optimized structure. This procedure works very well in some cases, for example

cellulose polymorphs [96], �urbiprofen polymorphs [97], thymol polymorphs [98].

By using this method, the structure ChAl-1, which is shown in Fig. 4.3(a), was

found in Ref. [16]. For a convenient discussion, we identify the molecules in the

cell by their number as indicated in Fig. 4.3: the molecule with the number i is

named as moli where i = 1, 2, ..., 8. The NMR spectrum of this structure is shown

as the blue curve in Fig. 4.4. In this section, the NMR spectra are calculated

by GIPAW method described in section 4.3.3 from the structure optimized at a

very tight threshold level (relax2 level speci�ed in section 4.3.2). We can notice

that there is some disagreements between the experimental NMR spectrum and

the calculated one. Some peaks of the calculated NMR spectrum, shown in the

green boxes, are not present in the experimental one. Also, in comparing with
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experimental spectrum, the isolated regions of C3 in the calculated spectrum is too

spread. The reason for this disagreement is due to the inaccurate position of two

hydrogen atoms in mol1 and mol2 in layer1. Notice that the hydrogen bond chain

between cholesterol molecules is broken between mol1 and mol4.

We modi�ed these hydrogen positions restoring the hydrogen bond connectivity

and relaxed again, obtaining the new structure named ChAl-2 (shown in Fig. 4.3(b))

Its NMR spectrum is presented as the red curve in Fig. 4.4 and is in better agreement

with the experimental one not only at the peaks which are shown in the green box

but also at the C3 peak. This improvement also implies the sensitivity of the NMR

spectra to the structural details. The ChAl-2 structure has lower energy than the

ChAl-1 one (5.84 kJ/mol per molecule). From this simple example one can see that

in the energy-landscape of ChAl, there are many local minima and one can easily

get stuck at these minima when exploring the energy-landscape.

Table 4.1 Enthalpy of all structures found by USPEX at ambient GPa.

Polymorphs a (Å) b (Å) c (Å) α (deg.) β (deg.) γ (deg.) Volume(3)

Exp. ChAl 14.172 34.209 10.481 94.64 90.67 96.32 5032.772

ChAl-1 14.141 34.178 10.539 94.54 90.41 97.32 5035.469

ChAl-2 14.231 34.110 10.458 94.53 90.20 97.50 5017.026

It is quite unexpected that the inaccurate position of hydrogen atoms connected

to oxygen can a�ect the chemical environment near carbon C6 which is in the

second carbon ring far from the oxygen atom. In order to understand the relation

between structural properties and NMR chemical shifts, the two structures ChAl-1

and ChAl-2 are compared in more details in terms of cell-parameters, bond-lengths

and angles. We show, in Table 4.1, the optimized cell parameters of those structures.

In both cases they agree very well with the experimental ones with a di�erence in

volume of +0.054 % and -0.313 %, respectively. ChAl-2 has a lower volume than

the ChAl-1 probably because the hydrogen bond makes the structure become more

�compressed�. Interestingly, it was reported that the vdW-DF functional usually

overestimates the cell volume [12], however in the case of ChAl-2, we found that
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Figure 4.5: Average bond lengths (in Å) and angles (in deg.) for ChAl-1 and ChAl-

2 and the bond lengths (in Å) and angles (in deg.) for experimental structure are

shown in (a) and (b), respectively. For experimental structure, the bond lengths

(angles) belonging to all 8 molecules are shown for a given bond (angle) index. The

bond index is given in Fig.4.6(a).

the optimized volume obtained with this functional is slightly smaller than the

experimental one.

The results of the averages of bond lengths and angles of ChAl-1 and ChAl-2

are shown in Fig. 4.5. The experimental data for all 8 molecules are also given

for comparison. The bond index is shown in Fig. 4.6(a) while the angle index is

not shown. The most impressive feature of Fig. 4.5 is that on average, the bond

lengths and angles of ChAl-1 and ChAl-2 are very similar and they are all very well

in the range of experimental measurements. It looks like the structural di�erences

between ChAl-1 and ChAl-2 are not large and the calculation of averages does not
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Figure 4.6: The di�erences in bond lengths (in Å) (a) and angles (in deg.) (b)

between ChAl-1 and ChAl-2 for all 8 molecules are shown. The bond index is given

in (a).

tell where NMR di�erences come from.

The detailed di�erences in bond lengths and angles for the 8 molecules of two

structures are shown in Fig. 4.6. They come mostly from the molecules in layer1

a�ected by the change in the hydrogen bond network. In this layer, mol3 is less

a�ected by the �wrong� hydrogen bond network since the hydrogen (oxygen) atom

in this molecule still makes the correct hydrogen bond with the surrounding oxygen

(hydrogen) atom. As a result, the di�erences between the two structures are pretty

small in mol3. In layer2, the largest di�erences between the two structure are found

in mol6 probably because it is the one closest to the mol2 of layer1.

Another feature that we can notice in Fig. 4.6 is that the largest di�erences

belong to bond lengths and/or angles of the oxygen atoms and/or the carbon atoms
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Figure 4.7: The details calculated NMR spectra of ChAl-1 and ChAl-2 of 8 molecules

at the peaks of C1, C2, C3, C4, C5, C6, C7 and C10.

around oxygen. The largest di�erences in bond lengths are those with the index 0

(O-C1 bond), 1 (C2-C3 bond), 2 (C1-C2 bond), 3 (C3-C4 bond), 4 (C4-C5 bond),

5 (C5-C6 bond), 6 (C6-C7 bond) and 10 (C1-C10 bond). The largest di�erences in

angles belong to those with index 0 (O-C3-C2 angle), 1 (O-C3-C4 angle) and 8 (C10-

C5-C6 angle). It is interesting to notice that the e�ect of the wrong assignment of

the hydrogen bond network can be long ranged involving chains of carbon atoms C1-

C2-C10 and C3-C4-C5-C6-C7 connected to the oxygen. Also, the bond length with

index 5, which is the double bond, is not a�ected much by the �wrong� hydrogen

bond network. For others distances and angles, the di�erences are smaller than

0.004 Å and 0.5 deg. respectively.

The di�erences in crystal structure induce signi�cant di�erences in NMR spectra

of the two structures as shown in Fig.4.4. We also show, in Fig.4.7, the details of

the calculated NMR spectra of the 8 molecules for the carbon atoms which have

the largest di�erences between the two spectra. Among them, the di�erences of C6

are seen also in the full spectrum in Fig.4.4 while although C2 and C4 also display
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huge di�erences between the two spectra, they are all in the �crowded� region of the

spectrum, and therefore can not be seen easily in Fig.4.4.

The results in this part show that the assignment of proton positions, which are

not measurable in the XRD experiments, is non-trivial. Inaccurate determination

of proton positions can result in di�erent structure from the ground state one. The

complexity of the energy-landscape of ChAl and the sensitivity of NMR spectra to

the structural details are also revealed.

4.3 Method

4.3.1 Evolutionary search

In this study we used evolutionary algorithm in the USPEX code to search for

possible low-energy structures of cholesterol with 8 molecules/cell. We choose this

number for easy comparison with the experimental structure of the well-known

phase ChAl. Since the number of atoms in the unit-cell in this case is huge (592

atoms/cell), the use of a primary energy screening with a classical force-�eld is

needed. We use the all-atom force-�eld as parameterized in Ref. [16]. All the

classical molecular dynamic calculations are done using the LAMMPS code [99].

The structural relaxation process is done in three steps. In the �rst step of the

relaxation, the cell is allowed to change while in the second one, only the atom

coordinates are optimized. The last step is a molecular dynamics calculations with

a Langevin thermostat where the temperature is kept at 0 K for 25 ns with a time

step of 0.5 fs. All calculations are performed at zero pressure, and the search is

continued up to 40 generations.

Motivated by the fact that in the experimental structure of ChAl, there are

two types of cholesterol molecules, we consider two di�erent molecular conforma-

tions as shown in Fig. 4.1(b). The crystal structure prediction is performed for

structures containing i molecule(s) of type1 and 8 − i molecule(s) of type2 where

i = 0, 1, 2, ..., 8. The �rst generation consisting of 30 structures was created ran-

domly. New generations were created 20% randomly and 80% through heredity

(40%), soft mutation (20%) and transmutation (20%) from the remaining struc-
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tures after discarding 40% of the energetically less stable structures.

4.3.2 ab initio calculations

When the USPEX calculation is �nished, some best structures are relaxed us-

ing DFT with the vdW-DF exchange-correlation functional as implemented in the

QUANTUM ESPRESSO package [83]. A kinetic energy cuto� of 45 Ryd, a charge

density cuto� of 220 Ryd and PAW pseudopotentials from Ref. [100, 101] are used.

In this work, two levels of relaxation are discussed. The relax1 has a convergence

of less than 0.1 mRy for total energy and less than 0.0005 Ry/a.u. for the forces

on atoms and less than 0.005 GPa for the stress tensor. The relax2 is the same as

relax1, except that the forces on atoms are less than 0.00025 Ry/a.u.

4.3.3 GIPAW calculations

The theoretical chemical shielding tensor is calculated using the GIPAW code in

Quantum Espresso package. The isotropic chemical shifts is related to the isotropic

chemical shielding by using the secondary reference scheme to improve comparison

with experimental data [100, 101] δiso = σref − c − σiso. In this work we used

σref = 167.5 ppm and the correction values c are di�erent for di�erent local chemical

environments of carbon atoms, as used in Refs. [100, 101]. The theoretical spectra

are drawn using normalized Lorentzian distribution centered at the chemical shifts

with an arbitrary broadening corresponding to a FWHM of 0.5 ppm.

4.4 Results

4.4.1 Results of evolutionary algorithm

First we emphasize again that for crystal structure prediction, the use of accurate

DFT calculations in the relaxation step is a very good option. In this study however

since the number of atom in the unit-cell is huge, we have to use classical force-

�elds as a primary energy screening. The crystal structure prediction as described

in section 4.3.1, is done for di�erent combinations of two cholesterol molecules.
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Notation (i, j) is used for structures with i molecule(s) of type1 and j molecule(s)

of type2. In this study, the number of molecules in the unit-cell is Z=8, i.e. i+j = 8

and nine simulations (corresponding to i = 0 to 8) are performed.

The results of crystal structure prediction can be analyzed through the distri-

bution of energy as a function of volume for the structure encountered during the

search as shown in Fig. 4.8. In contrast to the study of glycine in Fig. 3.2 in which

the structures forming isolated islands, the energy-volume points are not well sep-

arated enough to identify di�erent structures. One reason for this problem is that

the energy-landscape of the classical force-�eld is quite noisy. Another reason is the

variation of the hydrogen bond network. As shown in section 4.2, di�erent hydrogen

bond networks can result an energy di�erence of 1.4 kcal/mol per molecule.

4.4.2 Validation of the classical force-�eld

The ability of the force-�eld to describe accurately the properties of cholesterol

crystals must be veri�ed in order to do crystal structure prediction successfully. A

force-�eld that can give good energy ordering for cholesterol crystals is desired.

All lowest energy structures in each case in Fig. 4.8 are optimized at level of

relax1 using DFT with the vdW-DF functionals. [10, 32]. In order to compare the

energy-landscapes of the force-�eld and DFT, some low-lying energy structures for

each (i, j) pair are also relaxed. We show in Fig. 4.9(a) the DFT energies (Ryd) as a

function of the force-�eld energies E1 (kcal/mol) for di�erent structures of di�erent

(i, j). The line in the �gure shows the correlation between DFT energies and force-

�eld ones (the conversion between Ryd and kcal/mol). If the force-�eld and DFT

had the same energy hypersurface, all structures would be on this line. In this case,

we notice that the distribution of the structures is kind of �disordered� and it seems

that force-�eld and DFT energies have no correlation at all, i.e. the potential-energy

hypersurfaces of the force-�eld and of DFT are very di�erent.

However as mentioned in Sec. 2.3.2, the no correlation between force-�eld and

DFT may be due to a very noisy potential-energy hypersurface as illustrated in

Fig. 4.9(b). Even when these hypersurfaces of the force-�eld and of DFT are very

similar, there usually is some noise that produces many local minima in the energy-
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Figure 4.8: Energy vs. volume distribution of all evolutionary searches in the lowest

40 kcal/mol range. The number of molecules in the unit-cell is Z=8 and the searches

are done for di�erent combinations of two cholesterol molecules (see text).

landscape of the force-�eld. The structures optimized with this force-�eld may get

stuck at these local minima; and switching to the DFT minimization can result in

a signi�cant energy change. To examine this aspect, the optimized structures at

DFT level were relaxed again with the force-�eld. The force-�eld energies E1 then

changed to E2. Fig. 4.9(c) shows the force-�eld energies E2 as a function of force-

�eld energies E1. We notice that most structures after this second optimizing with

the force-�eld have E2 < E1, sometimes signi�cantly so and the overall picture is

very similar to Fig. 4.9(a). More interestingly, we show in Fig. 4.9(d) the DFT

energies as a function of the new force-�eld energies E2. The structures show rather

good correlation meaning that the energy hypersurfaces of the force-�eld and of
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Figure 4.9: For di�erent structures (i, j), DFT energies (with vdW-DF functional)

as a function of force-�eld energies E1 and E2 shown in (a) and (d), respectively,

The dependence of force-�eld energies E2 on E1 is presented in (c). The similarity

of the hypersurfaces of the force-�eld and DFT is schematized in (b).

DFT (with vdW-DF functional) are very similar and we can use the force-�eld as a

primary energy screening.

It is worth mentioning that in Fig. 4.9 the (4,4) structures show good correlations

in all cases. The reason is the classical force-�eld used in this study is designed for

the experimental structure ChAl which has 4 molecules of each type (type1 and

type2) in the unit-cell.
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4.4.3 Relations between levels of relaxation, structural properties

and NMR spectra

In order to determine whether two structures (namely µ and ν) are the same or not

we compare the mean deviation between bond lengths (MDBL) and mean deviation

between angles (MDA) de�ned as

MDBL(µ, ν) =

∑Nbond
i=1 |d(µ)i − d

(ν)
i |

Nbond
, MDA(µ, ν) =

∑Nangle

i=1 |α(µ)
i − α

(ν)
i |

Nangle
,

(4.1)

where Nbond and Nangle are the number of bond-lengths and angles in the structure,

d
(µ)
i and α

(µ)
i are the bond-length and angle of the index i in the structure µ,

respectively. The bond-lengths and angles are calculated for non-hydrogen atoms

only.

Before discussing the relations between levels of relaxation, structural proper-

ties and NMR spectra of cholesterol structures, we need to quantify the di�erences

between two calculated NMR spectra. A similar technique as in the comparison of

bond lengths and angles, can be used. The mean deviation between NMR spectra

of structure µ and structure ν is de�ned as

MDNMR(µ, ν) =

∑Npeak

i=1 |δ(µ)i − δ
(ν)
i |

Npeak
, (4.2)

where Npeak is the number of carbon atoms in the unit-cell; the {δ(µ)i }, which are

sorted in ascending order, are the calculated 13C chemical shielding values of the

structure µ.

First the structures are optimized at the level of relax1 and the NMR spectra are

calculated correspondingly. We only show the results for three structures (namely

struc-1, struc-2 and struc-3) in the lowest energy region in Fig. 4.9(d) obtained in

the (4, 4) simulation. Table 4.2 shows the MDBL, MDA and MDNMR for these

structures.

In term of structural properties at optimization of relax1, struc-1 and struc-

2 are very similar while the di�erences between struc-1 (struc-2) and struc-3 are

signi�cantly larger. As a result, the NMR spectra of struc-1 and struc-2 shown in

Fig. 4.10(a), are nearly identical with a MDNMR of 0.0807 ppm per carbon atom
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Table 4.2 MDBL, MDA and MDNMR for struc-1, struc-2, struc-3 at the levels of

relax1 and relax2

MDBL

relax1 relax2

struc-1 struc-2 struc-3 struc-1 struc-2 struc-3

struc-1 0.0000 0.0004 0.0028 struc-1 0.0000 0.0002 0.0020

struc-2 0.0000 0.0027 struc-2 0.0000 0.0020

struc-3 0.0000 struc-3 0.0000

MDA

relax1 relax2

struc-1 struc-2 struc-3 struc-1 struc-2 struc-3

struc-1 0.0000 0.0974 0.8541 struc-1 0.0000 0.0515 0.6516

struc-2 0.0000 0.8660 struc-2 0.0000 0.6563

struc-3 0.0000 struc-3 0.0000

MDNMR

relax1 relax2

struc-1 struc-2 struc-3 struc-1 struc-2 struc-3

struc-1 0.0000 0.0807 0.2995 struc-1 0.0000 0.0591 0.1428

struc-2 0.0000 0.2864 struc-2 0.0000 0.1434

struc-3 0.0000 struc-3 0.0000

whereas MDNMR of struc-1 and struc-3 is 0.2995 ppm per carbon atom. The other

quantity that can be considered is the maximum di�erence between corresponding

chemical shieldings δmax = max{i}|δ
(µ)
i − δ(ν)i |. For the comparison of struc-1 and

struc-2, δmax is 0.32 ppm which is smaller than typical numerical error in the cal-

culation of the chemical shielding. In the case of struc-1 and struc-3, δmax is 1.22

ppm which is signi�cant. Therefore in Fig. 4.10(a) struc-3 shows a di�erent NMR

spectrum compared with the others two. All NMR spectra of the chosen structures

do not agree very well with the experimental one.

We did the calculations again using the relax2 level in the relaxation. The better
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Figure 4.10: The calculated NMR spectra of struc-1 (green curve), struc-2 (blue

curve) and struc-3 (red curve) (see text) are shown at the level of relax1 in (a) and

relax2 in (b). The experimental spectrum is also given for comparison.

optimization improves not only the structural properties but also the NMR spectra.

As shown in Table 4.2, at relax2 level, the values of MDBL, MDA, MDNMR for all

structures are smaller when compared with those at relax1 level. We notice that in

Fig. 4.10(b) the di�erences in NMR spectra between struc-3 and struc-1 (struc-2)

are smaller than those in Fig. 4.10(a). For struc-1 and struc-3 comparison, δmax is

now 0.5 ppm which is the typical numerical error in the calculation of the chemical

shielding. Therefore we conclude that struc-1, struc-2 and struc-3 are indeed the

same structure although a tighter relaxation would be necessary to bring struc-3 to

approach the other two structures to a similar degree. Another important result is

that since cholesterol is a complex molecule with a noisy energy-landscape and the

NMR spectrum is very sensitive to structural changes, a rather tight convergence
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condition is required to identify the crystal structure and the corresponding NMR

spectrum.

4.4.4 Identifying the experimental structure of ChAl

The lowest energy structure found at the level of relax2 is struc-1 which is later

named [4, 4], i.e. the lowest energy structure found in the simulation (4, 4). Its

optimized cell parameters are a = 14.220Å, b = 34.158Å, c = 10.457Å, α = 94.46◦,

β = 90.36◦, γ = 96.89◦ and the cell volume is 5026.494 Å3. These parameters are

very close to those of the structure ChAl-2 in Table 4.1. They both agree very well

with the cell parameters of the experimental structure.

We show in Table 4.3 the comparison of MDBL and MDA for three structures:

the experimental structure (Exp. ChAl) [91, 92], the ChAl-2 one obtained in this

study after restoring the hydrogen bond network as explained earlier and the struc-1

found by USPEX. The MDBL and MDA of ChAl-2 and struc-1 are pretty small.

They are much smaller than those values for struc-1 (or ChAl-2) and Exp. ChAl.

The reason is that ChAl-2 and struc-1 are optimized using the same functional with

a tight convergency condition. In term of structural properties, the agreement of

struc-1 and the Exp. ChAl is fairly good. Their crystal structures are shown in Fig.

4.11.

The NMR spectrum of struc-1 agrees very well with the experimental one, as

shown in Fig. 4.10(b) (the green curve). We also compare the calculated NMR

spectra of struc-1 and ChAl-2. The MDNMR of struc-1 and ChAl-2 is 0.1069 while

δmax = 0.47 ppm which is smaller than the typical numerical error in the calculation

of the chemical shielding.

From the results obtained in this section we can conclude that the crystal struc-

ture prediction simulation by USPEX with the adopted force-�eld was indeed able

to identify the experimental ChAl structure successfully.
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Figure 4.11: The two layers in the crystal structure of (a) struc-1 and (b) exper-

imental structure. Only hydrogen atoms connected to oxygen ones are shown in

the struc-1. In each layer, the unit-cell is duplicated to display the hydrogen bond

chains more clearly.

Table 4.3 MDBL and MDA for struc-1, Exp. ChAl , ChAl-2 at the levels of relax2

Structure µ Structure ν MDBL (Å) MDA (deg.)

Exp. ChAl ChAl-2 0.038956 2.695331

Exp. ChAl struc-1 0.038938 2.693725

ChAl-2 struc-1 0.000325 0.093429

4.4.5 Prediction of new structures of cholesterol and their NMR

spectra

The successful identi�cation of the experimental ChAl structure is an important

result that validates our approach. Our simulations allow us to identify other low-

lying structures that might be relevant in the interpretation of experiments [15]. We

suggest some low-energy structures as below.

We use notation [i, j] for the lowest energy structure found in the simulation
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Figure 4.12: Three low-energy structures found by USPEX: [0,8], [1,7], and [3,5] are

shown in (a), (b), and (c) respectively. Only hydrogen atoms connected to oxygen

ones are shown.

(i, j), i.e. for structures having i molecule(s) of type1 and j molecule(s) of type2

(see section 4.4.1). Particularly low-energy structures are found in the case (0,8),

(1,7), and (3,5). We show the crystal structures of structures [0,8], [1,7], and [3,5]

in Fig. 4.12 (only hydrogen atoms which contribute to hydrogen bonds are shown).

One thing can be noticed. The structures are generated from two types of melecules

with di�erent tails as shown in Fig. 4.1(b). However, in the relaxation process

the molecular shapes are allowed to change, therefore, the resulted structures at

the end may have di�erent molecular conformations as seen in structure [1,7]. The

[1,7] and [3,5] display cholesterol molecules organized in a single layer connected

by periodically broken hydrogen bond chains, in contrast with the experimentally

known structure ChAl which has a bilayer structure. The [0,8] also has a bilayer

structure and is shown in Fig. 4.12(a) with cell parameters a = 12.468Å, b =

11.812Å, c = 34.972Å, α = 89.53◦, β = 84.87◦, γ = 94.52◦ and cell volume is

5113.331 Å3. The structure [1, 7] in Fig. 4.12(b) has cell parameters a = 12.588Å,

b = 25.627Å, c = 33.927Å, α = 94.95◦, β = 96.24◦, γ = 27.75◦ and cell volume

is 5064.438 Å3. Fig. 4.12(c) shows the structure [3, 5] with cell parameters a =

12.455Å, b = 25.203Å, c = 34.561Å, α = 97.80◦, β = 95.92◦, γ = 28.41◦ and cell
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Figure 4.13: Calculated NMR spectra of three lowest energy structures found by

USPEX: [4,4], [0,8], [1,7], and [3,5]. These spectra show distinct features.

volume is 5110.447 Å3. In term of energy, structures [0, 8], [1, 7], and [3, 5] are 0.173

(kJ/mol) per atom, 0.183 (kJ/mol) per atom, and 0.228 (kJ/mol) per atom higher

than the experimental ChAl-2, respectively.

Fig. 4.13 shows the calculated NMR spectra of the 4 lowest energy structures

found by USPEX: [4,4], [0,8], [1,7], and [3,5]. It is clear that each structure shows

distinct NMR features that could be used in the comparison with experimental

spectra to detect whether structures [0,8], [1,7], and [3,5] can exist experimentally.

4.5 Conclusion

In this chapter, we presented a crystal structure search for cholesterol polymorphs.

First we show the complexity of the energy-landscape of cholesterol: the strong

e�ect of an inaccurate determination of the proton positions in the hydrogen bond

network leading to unsuccessfully �nding the true ground state structure of ChAl;

and the level of sensitivity of the NMR spectra with respect to the structural details.

In the search for low-energy structures of cholesterol, we �rst validate the classical

force-�eld used in this study and suggest an e�cient scheme for crystal structure

prediction of large molecule using classical force-�eld. We then identify the lowest

energy structure found in the USPEX simulation as the experimental structure ChAl
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by comparing their structures and the corresponding NMR spectra. We also propose

a few new low-energy structures of cholesterol and characterize them by their NMR

spectra.



Chapter 5

Summary and Outlook

The present work has focused on the ab initio crystal structure prediction of molec-

ular crystal using evolutionary algorithm. Promising results have been obtained in

two di�erent cases: a simple molecule with rich polymorphism in the case of glycine

and the cholesterol molecule, which is long, �exible, with a noisy energy-landscape.

In both cases, the use of last generation van der Waals density functionals allows us

to obtain stability ordering correctly.

In the study of glycine, clustering technique is used to analyze the results of

evolutionary algorithms more e�ectively. In order to explore the energy-landscape

e�ciently, we propose an intuitive sampling strategy based on crystal structure

symmetry relative frequency found in nature. This strategy successfully address

the experimentally well-established α-glycine, which a simulation using standard

setting could not. The comparison of our calculations with available experimental

data identi�es ζ-glycine, a metastable phase that is experimentally observed but

whose crystal structure was not resolved yet. We also propose several new low-

energy structures of glycine at ambient and high pressure. Through this example,

we believe that the ab initio structure prediction of molecular crystal has come a long

way toward a new standard. The situation is now such that polymorphs stability-

order can be successfully addressed thanks to last generation van der Waals density

functionals; and the energy-landscape can be e�ciently explored thanks to recent

developments in evolutionary crystal structure search.

The crystal structure prediction problem of cholesterol is more challenging be-

cause of two reasons. First the number of atoms in the unit-cell is huge and therefore

the computational time would be too long for the optimization of candidate struc-

tures to be done using accurate DFT methods. The second one comes from the
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nature of the molecule. Since cholesterol is a �exible molecule, cholesterol poly-

morphs usually have more than one inequivalent molecular conformation in the

unit-cell and therefore the energy-landscape is more complicated. In this study, to

overcome the second issue, we use two molecular types and the simulations are done

for di�erent conformations that are made from these two types. The use of classical

force-�eld can be a good solution to the �rst problem if the force-�eld can describe

�reasonably well� the energy ordering. We therefore validated the force-�eld used

in this study as a primary selection method. Then accurate DFT calculations with

a functional that includes van der Waals interaction, were used to obtain higher

accuracy in the descriptions of structural and energetic properties. The predicted

lowest-energy structure is identi�ed with the experimental ChAl one based on their

good agreement for crystal structure parameters as well as NMR spectra. In this

study, a few more low-energy structures of cholesterol are proposed and their NMR

features are characterized.



Appendix A

Detailed results of evolutionary

algorithm searches for low-energy

structure of glycine

In this appendix, we present the detailed results of all search attempts for the low-

enthalpy structures of glycine at zero pressure for Z = 2, Z = 3 and Z = 4. These

�gures are mentioned in sections 3.3.5 and 3.3.6.
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Appendix A. Detailed results of evolutionary algorithm searches for

low-energy structure of glycine

Figure A.1: Enthalpy as a function of volume for ab initio crystal structure search of

Glycine in the case of 2 molecules/cell without using any experimental information.

The simulation is run for 18 generations with settings described in Section 3.2. The

clusters are labeled according to Table 3.5.
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Figure A.2: Enthalpy as a function of volume for ab initio crystal structure search of

Glycine in the case of 3 molecules/cell without using any experimental information.

The simulation is run for 15 generations with settings described in Section 3.2. The

clusters are labeled according to Table 3.5.
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Appendix A. Detailed results of evolutionary algorithm searches for

low-energy structure of glycine

Figure A.3: Enthalpy as a function of volume for ab initio crystal structure search

of Glycine in the case of 3 molecules/cell. For the structures generated randomly

at each generation, the space group is selected according to the frequency distribu-

tion appearing in known organic crystal structure database [P21/c (36.59 %), P1

(16.92 %), P212121 (11.00 %), C2/c (6.95 %), P21 (6.35 %), Pbca (4.24 %), and

uniform otherwise]. The simulation is run for 20 generations with settings described

in Section 3.2. The clusters are labeled according to Table 3.5. This simulation fails

to �nd the most stable structure compatible with Z=3, γ-glycine, while structures

with a much wider variety are found with respect to the simulation where all space

groups were sampled with equal probability (see Fig. A.2).
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Figure A.4: Enthalpy as a function of volume for ab initio crystal structure search

of Glycine in the case of 3 molecules/cell. For the structures generated randomly at

each generation, the space group are selected according to the frequency distribu-

tion appearing in known organic crystal structure database [P21/c (36.59 %), P1

(16.92 %), P212121 (11.00 %), C2/c (6.95 %), P21 (6.35 %), Pbca (4.24 %), and

uniform otherwise]. The simulation �nds γ-glycine at the �rst generation by random

generation and is stopped subsequently at the second generation. The clusters are

labeled according to Table 3.5.
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Appendix A. Detailed results of evolutionary algorithm searches for

low-energy structure of glycine

Figure A.5: Enthalpy as a function of volume for ab initio crystal structure search of

Glycine in the case of 4 molecules/cell without using any experimental information.

The simulation is run for 20 generations with settings described in Section 3.2. The

clusters are labeled according to Table 3.5. This simulation fails to �nd the most

stable structure compatible with Z=4, α glycine.
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Figure A.6: Enthalpy as a function of volume for ab initio crystal structure search

of Glycine in the case of 4 molecules/cell. For the structures generated randomly

at each generation, the space group are chosen according to the frequency distribu-

tion appearing in known organic crystal structure database [P21/c (36.59 %), P1

(16.92 %), P212121 (11.00 %), C2/c (6.95 %), P21 (6.35 %), Pbca (4.24 %), and

uniform otherwise]. The simulation is run for 16 generations with settings described

in Section 3.2. The clusters are labeled according to Table 3.5.
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Appendix A. Detailed results of evolutionary algorithm searches for

low-energy structure of glycine

Figure A.7: Enthalpy as a function of volume for ab initio crystal structure search

of Glycine in the case of 4 molecules/cell using glycine dimer as a building block,

instead of the single molecule. The simulation is run for 7 generations with settings

described in Section 3.2. The clusters are labeled according to Table 3.5. Note that

some of these structures (phase 15, 24) were also encountered in other simulations

for Z=4. Hence both the vastness of the phase space and poor connectivity between

valleys around the α phase can contribute to the challenge of �nding this phase in

evolutionary search.



89

Figure A.8: Enthalpy as a function of volume for ab initio crystal structure search of

Glycine in the case of 4 molecules/cell without using any experimental information

but with modi�ed criterion for the selection of suitable parents: As described in

main text, once the energetically unfavorable structures are discarded from the list

of potential parents, a �ngerprint analysis is performed for the remaining candidates.

The potential parents whose �ngerprint is within a threshold distance of 0.01 from

any lower energy structure are discarded as well. In this simulation, we double this

threshold value at each generation when one of the low energy structures is found

to be a clone from the previous generations. This simple modi�cation allows to dy-

namically depopulate the enthalpy valley of the best parents found in the simulation

while still keeping them in the list of eligible parents for the next generation. The

simulation is run for 5 generations with settings described in Section 3.2, for the

rest of the parameters. The clusters are labeled according to Table 3.5.
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Appendix A. Detailed results of evolutionary algorithm searches for

low-energy structure of glycine

Figure A.9: Enthalpy as a function of volume for ab initio crystal structure search

of Glycine in the case of 4 molecules/cell. The cell parameters of the randomly

generated structures are taken from the experimental structure as de�ned by the

non-standard space group P21/n. The simulation is run for 14 generations with

settings described in Section 3.2, for the rest of the parameters. The clusters are

labeled according to Table 3.5.
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