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Chapter 1

Introduction

In this dissertation we study the problem of integrability of bundles with low regu-

larities. It is organized into the next three chapters:

• Chapter 2 is a co-authored paper with Stefano Luzzatto and Sina Türeli which

is published in Ergodic Theory and Dynamical Systems. In this Chapter we

investigate the integrability of 2-dimensional invariant distributions (tangent

sub-bundles) which arise naturally in the context of dynamical systems on

3-manifolds. In particular we prove unique integrability of dynamically dom-

inated and volume dominated Lipschitz continuous invariant decompositions

as well as distributions with some other regularity conditions.

• Chapter 3 is also a co-authored paper with Stefano Luzzatto and Sina Türeli

and is accepted for publication in J. Reine. [Crelle’s Journal]. We give new

sufficient conditions for the integrability and unique integrability of contin-
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uous tangent sub-bundles on manifolds of arbitrary dimension, generalizing

Frobenius’ classical Theorem for C1 sub-bundles. Using these conditions we

derive new criteria for uniqueness of solutions to ODE’s and PDE’s and for the

integrability of invariant bundles in dynamical systems. In particular we give

a novel proof of the Stable Manifold Theorem and prove some integrability

results for dynamically defined dominated splittings.
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Chapter 2

Integrability of dominated

splittings

2.1 Introduction and Statement of Results

Let M be a smooth manifold and E ⊂ TM a distribution of tangent hyperplanes.

A basic question concerns the (unique) integrability of the distribution E, i.e. the

existence at every point of a (unique) local embedded submanifold everywhere tan-

gent to E. For one-dimensional distributions it follows from classical results on the

existence and uniqueness of solutions of ODE’s that regularity conditions suffice:

existence is always guaranteed for continuous distributions and uniqueness for Lip-

schitz continuous distributions. For higher dimensional distributions the situation

is more complicated and regularity conditions alone cannot guarantee integrability,
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indeed there exists arbitrarily smooth distributions which are not integrable [36].

It turns out however, that if the distributions are realized as Dϕ-invariant distri-

butions for some diffeomorphisms ϕ then some conditions can be formulated which

imply integrability. More precisely, let M be a Riemannian 3-manifold, ϕ : M →M

a C2 diffeomorphism and E ⊕F a continuous Dϕ-invariant tangent bundle decom-

position. For definiteness we shall always assume, without loss of generality, that

dim(E) = 2 and dim(F ) = 1. We state our results in the following subsections.

2.1.1 Dynamical domination and robust transitivity

A Dϕ-invariant decomposition E ⊕ F is dynamically dominated if there exists a

Riemannian metric such that

‖Dϕx|Ex‖
‖Dϕx|Fx‖

< 1 (2.1.1)

for all x ∈M . Then we have the following result.

Theorem 1. Let M be a Riemannian 3-manifold, ϕ : M →M a volume-preserving

or transitive C2 diffeomorphism and E⊕F a Dϕ-invariant, Lipschitz, dynamically

dominated, decomposition. Then E is uniquely integrable.

Remark 2.1.1. Our dynamical domination condition is usually referred to in the

literature simply as domination, we use this non-standard terminology to avoid con-

fusion in view of the fact that we will introduce below another form of domination.

We remark also that the dynamical domination condition is usually formulated

with the co-norm m(Dϕx|Fx) := minv∈F,v 6=0 ‖Dϕx(v)‖/‖v‖ instead of ‖Dϕx|Fx‖ but
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of course the two definitions are equivalent when F is one-dimensional, as here. We

will also occasionally call E, the dominated bundle.

Remark 2.1.2. Under the stronger assumption that ϕ is robustly transitive (i.e. ϕ

is transitive and any C1 sufficiently close diffeomorphism is also transitive) instead

of just transitive, the dynamical dominated condition is automatically satisfied [20]

and so integrability follows under the additional assumption that the decomposition

is Lipschitz.

Remark 2.1.3. We could replace the transitivity assumption in Theorem 1 by

chain recurrence or even just the absence of sources, see Section 2.2.2.

2.1.2 Volume domination

We will obtain Theorem 1 as a special case of the following more general result which

replaces the volume preservation/transitivity and dynamical domination conditions

with a single “volume domination” condition. A Dϕ-invariant decomposition E⊕F

is volume dominated if there exists a Riemannian metric such that

|det(Dϕx|Ex)|
|det(Dϕx|Fx)|

< 1 (2.1.2)

for all x ∈M . Then we have the following result.

Theorem 2. Let M be a Riemannian 3-manifold, ϕ : M →M a C2 diffeomorphism

and E⊕F a Dϕ-invariant, Lipschitz continuous, volume dominated decomposition.

Then E is uniquely integrable.
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Theorems 1 and 2 extend analogous statements in [37] obtained using different

arguments, in arbitrary dimension but under the assumption that the decomposition

is C1. They also extend previous results of Burns and Wilkinson [16], Hammerlindl

and Hertz-Hertz-Ures [27, 55] and Parwani [44] who prove analogous results1 for

respectively C2, C1 and Lipschitz distributions under the assumption of center-

bunching or 2-partial hyperbolicity :

‖Dϕx|Ex‖2

‖Dϕx|Fx‖
< 1 (2.1.3)

for every x ∈ M . In the 3-dimensional setting condition (2.1.3) clearly implies

volume domination and is therefore more restrictive. In Section 2.1.3 we sketch an

example of a diffeomorphism and an invariant distribution E which does not satisfy

condition (2.1.3) but does satisfy the dynamical domination and volume domina-

tion assumptions we require in Theorem 2. This particular example is uniquely

integrable by construction and so is not a “new” example, but helps to justify

the observation that our conditions are indeed less restrictive than center-bunching

1In some of the references mentioned, the relevant results are not always stated in the same form

as given here but may be derived from related statements and the technical arguments. In some

cases the setting considered is that of partially hyperbolic diffeomorphisms with a tangent bundle

decomposition of the form Es ⊕ Ec ⊕ Eu where Es is uniformly contracting and Eu uniformly

expanding. In this setting, one considers the integrability of the sub-bundles Esc = Es ⊕ Ec and

Ecu = Ec ⊕ Eu and it is not always completely clear to what extent the existence of a uniformly

expanding sub-bundle is relevant to the arguments. We emphasize that the setting we consider

here does not require the invariant distribution E to contain any further invariant sub-bundle.
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(2.1.3).

The techniques we employ here are similar to those of Parwani but to relax the

center-bunching condition one needs a more careful analysis of the behaviour of

certain Lie brackets, this is carried out in Section 2.3.

A more sophisticated version of our arguments also yields an alternative suffi-

cient condition for integrability which is related to bundles which are Lipschitz along

a transversal direction. Since the conditions are somewhat technical and it is not

completely clear if they are satisfied by any natural examples we have “relegated”

the precise formulation and proof to the Appendix. We do think nevertheless that

both the statement and the techniques used are of some independent interest and

discuss this further below.

Remark 2.1.4. The assumption that the diffeomorphisms in the Theorems above

are C2 is necessary for the arguments we use in the proofs. In the proof of Theorem

2, we need to be able to compute the Lie brackets of iterates of certain sections from

E by Dϕ. For this reason Dϕ needs to be C1 to keep the regularity of a section

along the orbit of a initial point p.

Remark 2.1.5. A stronger version of volume domination exists in some previous

related literature. A decomposition E ⊕ F with dim(E) = 2, dim(F ) = 1 is called

volume hyperbolic if there exists some constants C > 0 and r < 1 such that for all

k ∈ Z+ and x ∈M

|det(Dϕkx|Ez)| ≤ Crk ||Dϕ−kx |Fx|| < Crk.
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Volume hyperbolicity is clearly stronger than volume domination. This property

may also be obtained from other topological properties of the map ϕ in some generic

setting, for example C1 generically non-wandering maps are volume hyperbolic, see

for example [21, 7, 56] for this and other related results. It is not clear to what

extent the results in the cited papers may improve this chapter’s results since we

require our maps to be C2, however we mention them as it seems interesting that

weaker forms of partial hyperbolicity seem to be relevant in different settings.

2.1.3 Volume Domination versus 2-Partially Hyperbolic

In this section we are going to sketch the construction of some non-trivial examples

which satisfy the volume domination condition (2.1.2) but not the center-bunching

condition (2.1.3). This is a variation of the “derived from Anosov” construction due

to Mañé [41] (see [9] for the volume preserving case, which is what we use here).

We are very grateful to Raúl Ures for suggesting and explaining this construction

to us. Consider the matrix 
−3 0 2

1 2 −3

0 −1 1


This matrix has determinant 1 and has integer coefficients therefore induces a vol-

ume preserving toral automorphism on T3. It is Anosov since its eigenvalues are

r1 ∼ −0.11, r2 ∼ 3.11, r3 ∼ −3.21. Note that r1r2/r3 < 1 but r2
2/r3 > 1. Hence

(2.1.2) is satisfied but (2.1.3) is not. Now take a fixed point p and a periodic point q
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and a neighbourhood U of p so that forward iterates of q never intersect U . One can

apply Mané’s construction to perturb the map on U as to obtain a new partially hy-

perbolic automorphism of T3 which is still volume preserving. Such a perturbation

is not a small one and therefore one can not claim integrability of the new system

trivially by using standard theorems as in [33]. Since the perturbation is performed

on U and orbit of q never intersects U , the perturbation does not change the split-

ting and the contraction and expansion rates around q and in particular (2.1.3)

is still not satisfied on the orbit of q. Yet the new example is volume preserving

therefore it is necessarily the case that (2.1.2) is satisfied.

2.2 Strategy and overview of the proof

We will first show that Theorem 1 is a special case of Theorem 2. We will consider

the volume preserving setting and the transitive setting separately. We then discuss

the proof of Theorem 2.

2.2.1 Volume preserving implies volume domination

We show that when ϕ is volume preserving, dynamical domination implies vol-

ume domination. Indeed, notice that |det(Dϕx|Fx)| = ‖Dϕx|Fx‖ since F is one-

dimensional, so the difference between dynamical domination and volume domi-

nation consists of the difference between ‖Dϕx|Ex‖ and |det(Dϕx|Ex)|. These two

quantities are in general essentially independent of each other; indeed considering
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the singular value decomposition of Dϕx|Ex and letting s1 ≤ s2 denote the two sin-

gular values (since we assume E is 2-dimensional), we have that ‖Dϕx|Ex‖ = s2 and

|det(Dϕx|Ex)| = s1s2. If ‖Dϕx|Ex‖ = s2 < 1 then we have a a straightforward in-

equality |det(Dϕx|Ex)| = s1s2 < s2 = ‖Dϕx|Ex‖ but this is of course not necessarily

the case in general. However there is a relation in the volume preserving setting as

this implies |detDϕx|E| · |detDϕx|F | = 1 and so (2.1.1) implies |detDϕx|F | > 1 (ar-

guing by contradiction, |detDϕx|F | = ‖Dϕx|F‖ ≤ 1 would imply |detDϕx|E| ≥ 1 by

the volume preservation, and this would imply ‖Dϕx|E‖/‖Dϕx|F‖ ≥ 1 which would

contradict (2.1.1)). Dividing the equation |detDϕx|E| · |detDϕx|F | = 1 through by

(|detDϕx|F )2| we get (2.1.2).

2.2.2 Transitivity implies volume domination

We show that when ϕ is transitive (or, as mentioned in Remark 2.1.3 when ϕ is

chain-recurrent or just ϕ has no sources), dynamical domination implies volume

domination. We are grateful to the referee for pointing out this fact and explaining

the proof. The argument is based on the following Lemma whose proof we sketch

below and which follows closely arguments in [6, 18].

Lemma 2.2.1. Let Λ be a compact invariant set with a continuous splitting E⊕F

with dimE = 2 and dimF = 1. Then the splitting is volume dominated if and

only if the Lyapunov exponents λ1 ≤ λ2 ≤ λ3 of any invariant ergodic measure µ

satisfy λ1 + λ2 ≤ λ3 − a for some uniform value of a (depending on the constants

10



of domination).

Sketch of proof. One direction is trivial: if the splitting is volume dominated clearly

the condition on the Lyapunov exponents satisfies the stated bounds. The other

direction is non-trivial and we argue by contradiction. Suppose that Λ is not volume

dominated, this means that there exists a sequence of points xn and a sequence

kn →∞ such that for every 0 ≤ j ≤ kn one has

|det(Dϕj|E(xn))| ≥ 1

2
‖Dϕj|F (xn)‖. (2.2.1)

Now consider the sequence of probability measures

µn =
1

kn

kn−1∑
i=0

δϕi(xn).

Up to passing to a subsequence if necessary, we can assume that µn is convergent

to an invariant probability measure µ. Since the splitting is continuous we have∫
log(det(Dϕ|E)dµn →

∫
log(det(Dϕ|E))dµ

and, ∫
log(‖Dϕ|F‖)dµn →

∫
log(‖Dϕ|F‖)dµ.

Since the determinant is multiplicative and F is one dimensional, the integrals

with respect to µn are Birkhoff sums and therefore converge exactly to the sum of

Lyapunov exponents (in the E case) and the Lyapunov exponent (in the F case).

Using the ergodic decomposition and (2.2.1) it follows that there is an ergodic

invariant measure with λ1 + λ2 ≥ λ3. This contradicts the assumption and does

proves that Λ is volume dominated.
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To complete the proof of volume domination, notice that dynamical domina-

tion implies λ2 < λ3 − a for all invariant ergodic probability measures for some a

independent of µ. Assume by contradiction that ϕ is transitive and dynamically

dominated but not volume dominated. Then, by Lemma 2.2.1, it admits a measure

µ such that λ1 +λ2 ≥ λ3−a. But dynamical domination implies λ2 < λ3−a and so

we get λ1 > 0. Thus all Lyapunov exponents of µ are strictly positive and therefore

µ is supported on a source, contradicting transitivity (or chain-recurrence, or that

f does not have sources).

2.2.3 Volume domination implies integrability

From now on we concentrate on Theorem 2 and reduce it to a key technical Proposi-

tion. Therefore the assumptions are that E⊕F is Lipschitz and volume dominated.

We don’t require or use dynamical domination for any of the propositions that we

prove here. We fix an arbitrary point x0 ∈ M and a local chart (U , x1, x2, x3) cen-

tered at x0. We can assume (up to change of coordinates) that ∂/∂xi, i = 1, 2, 3 are

transverse to E and thus we can define linearly independent vector fields X and Y ,

which span E and are of the form

X =
∂

∂x1
+ a

∂

∂x3
Y =

∂

∂x2
+ b

∂

∂x3
.

where a and b are Lipschitz functions. Notice that it follows from the form of the

vector fields X, Y that at every point of differentiability the Lie bracket is well

12



defined and lies in the x3 direction, i.e.

[X, Y ] = c
∂

∂x3

for some L∞ function c. In Section 2.3 we will prove the following

Proposition 2.2.2. There exists C > 0 such that for every k > 1 and x ∈ U , if

the distribution E is differentiable at x then we have

‖[X, Y ]x‖ ≤ C
|det(Dϕkx|Ex)|
|det(Dϕkx|Fx)|

.

Substituting the volume domination condition (2.1.2) into the estimate in Propo-

sition 2.2.2, we get that the right hand side converges to 0 as k →∞, and therefore

‖[X, Y ]x‖ = 0 and so the distribution E is involutive at every point x at which it is

differentiable. Theorem 2 is then an immediate consequence of the following gen-

eral result of Simić [58] which holds in arbitrary dimension and a generalization of

a well-known classical result of Frobenius proving unique integrability for involutive

C1 distributions.

Theorem ([58]). Let E be an m dimensional Lipschitz distribution on a smooth

manifold M . If for every point x0 ∈ M , there exists a local neighbourhood U and

a local Lipschitz frame {Xi}mi=1 of E in U such that for almost every point x ∈ U ,

[Xi, Xj]x ∈ Ex, then E is uniquely integrable.

Remark 2.2.3. We mention that there are some versions of Proposition 2.2.2 in

the literature for C1 distributions and giving an estimate of the the ‖[X, Y ]x‖ ≤

13



|Dϕkx|Ex|2/m(Dϕx|Fx), , see e.g. [55, 44],. For this quantity to go to zero, one needs

the center bunching assumption (2.1.3). In our proposition, through more careful

analysis, we relax the condition of center bunching (2.1.3) to volume domination

(2.1.2).

2.3 Lie bracket bounds

This section is devoted to the proof of Proposition 2.2.2, which is now the only

missing component in the proof of Theorems 1 and 2. As a first step in the proof,

we reduce the problem to that of estimating the norm of a certain projection of

the bracket of an orthonormal frame. More specifically, let π denote the orthogonal

projection (with respect to the Lyapunov metric which orthogonalizes the bundles

E and F ) onto F .

Lemma 2.3.1. There exists a constant C1 > 0 such that if {Z,W} is an orthonor-

mal Lipschitz frame for E and differentiable at x ∈ U then we have

‖[X, Y ]x‖ ≤ C1‖π[Z,W ]x‖.

Proof. Notice that since F and ∂
∂x3

are transverse to E, then one has that K1 ≤

||π ∂
∂x3
|| ≤ K2 for some constantsK1, K2 > 0. Moreover since ‖π[X, Y ]‖ = |c|.‖π∂/∂x3‖

and ‖[X, Y ]‖ = |c| then it is sufficient to get an upper bound for ‖π[X, Y ]‖. Writing

X, Y in the local orthonormal frame {Z,W} we have

X = α1Z + α2W and Y = β1Z + β2W.

14



By bilinearity of the Lie bracket and the fact that π(Z) = π(W ) = 0 since π is a

projection along E, straightforward calculation gives

‖π[X, Y ]‖ = |α1β2 − α2β1|.‖π[Z,W ]‖

By orthonormality of {Z,W}, we have |αi| ≤ ‖X‖, |βi| ≤ ‖Y ‖ and since these are

uniformly bounded, the same is true for |α1β2−α2β1| and so we get the result.

By Lemma 2.3.1 it is sufficient to obtain an upper bound for the quantity

‖π[Z,W ]‖ for some Lipschitz orthonormal frame. In particular we can (and do)

choose Lipschitz orthonormal frames {Z,W} of E such that for every x ∈ U and

every k ≥ 1 we have

‖DϕkxZ‖‖DϕkxW‖ = |det(Dϕk|E)|.

For these frames will we prove the following.

Lemma 2.3.2. There exists C2 > 0 such that for every k ≥ 1 and x ∈ U , if the

distribution E is differentiable at x we have

‖π[Z,W ]x‖ ≤ C2
|det(Dϕk|Ex)|
||Dϕk|Fx||

.

Combining Lemma 2.3.2 and Lemma 2.3.1 and letting C = C1C2 we get:

‖[X, Y ]x‖ ≤ C1‖π[Z,W ]x‖ ≤ C1C2
|det(Dϕkx|Ex)|
‖Dϕkx|Fx‖

= C
|det(Dϕkx|Ex)|
|det(Dϕkx|Fx)|

which is the desired bound in Proposition 2.2.2 and therefore completes its proof.
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To prove Lemma 2.3.2, observe first that for every y ∈M there exist 2 orthonor-

mal Lipschitz vector fields Ay, By that span E in a neighborhood of y and by com-

pactness we can suppose that we have finitely many pairs, say (A1, B1), ..., (A`, B`)

of such vector fields which together cover the whole manifold. We denote by Ui the

domain where the vector fields Ai, Bi are defined and let

C2 := sup{|π[Ai, Bi](x)| : 1 ≤ i ≤ l and almost every x ∈ Ui}.

Note this constant C2 is finite. In fact, by the standard fact that Lipschitz functions

have weak differential which is essentially bounded ( or L∞ ), then for every i ∈

{1, ..., l} the function |[Ai, Bi]| is bounded. To complete the proof we will use the

following observation.

Lemma 2.3.3. For any Lipschitz orthonormal local frame {Z,W} for E which is

differentiable at x ∈M , we have

|π[Z,W ]| ≤ C2

Proof. Write Z = α1Ai +α2Bi and W = β1Ai +β2Bi for some 1 ≤ i ≤ `. Using the

bilinearity of the Lie bracket and the fact that π(Ai) = π(Bi) = 0 we get |π[Z,W ]| =

|α1β2 − α2β1||π[Ai, Bi]|. Since {Ai, Bi} and {Z,W} are both orthonormal frames,

we have |α1β2 − α2β1| = 1, and so we get result.

Proof of lemma 2.3.2. For k > k0 and x ∈ U such that E is differentiable at x, Let

Z̃(ϕkx) =
DϕkxZ

‖DϕkxZ‖
and W̃ (ϕkx) =

DϕkxW

‖DϕkxW‖
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Recall that Dϕkx(Ex) = Eϕk(x). Therefore, since Z,W span E in a neighborhood of

x, then Z̃, W̃ span E in a neighbourhood of ϕk(x) and in particular π(Z̃) = π(W̃ ) =

0. Therefore we get

‖π[DϕkZ,DϕkW ]‖ = |det(Dϕk|E(k))|‖π[Z̃, W̃ ]‖ (2.3.1)

Note that ‖π[DϕkZ,DϕkW ]‖ = ‖πDϕk[Z,W ]‖. Then by the invariance of the

bundles we have

‖πDϕk[Z,W ]‖ = ‖Dϕkπ[Z,W ]‖. (2.3.2)

Since F is one dimensional,

‖Dϕkπ[Z,W ]‖ = ‖Dϕk|F‖‖π[Z,W ]‖ (2.3.3)

Combining (3.2.16) and (2.3.3) we get

‖Dϕk|F‖‖π[Z,W ]‖ = ‖πDϕk[Z,W ]‖.

Putting this into equation (3.2.11) and using the fact that ‖π[Z̃, W̃ ]‖ is uniformly

bounded by lemma 2.3.3 one gets

‖π[Z,W ]‖ ≤ C2
|det(Dϕk|E)|
‖Dϕk|F‖

This concludes the proof of Lemma 2.3.2.

2.4 Sequential transversal regularity

A counter example in [54] shows that the Lipschitz regularity condition in our

Theorems cannot be fully relaxed, without additional assumptions, in order to

17



guarantee unique integrability. Nevertheless the kind of techniques we use lead

naturally to the formulation of a somewhat unorthodox regularity condition, which

we call “sequentially transversal Lipschitz regularity”. The main reason that we

choose to present this result is that the techniques used in the proof, especially those

in Section 2.4.4, generalize naturally to yield continuous Frobenius-type theorems,

such as those given in forthcoming papers [39, 63]; we also believe that there are

some interesting questions to be pursued regarding the relation between Lipschitz

regularity and transversal Lipschitz regularity, we discuss these in Section 2.4.2

below. We will give a “detailed sketch” of the arguments concentrating mostly on

techniques which are novel, the full arguments can be found in a previous version

of this paper [38].

2.4.1 Definition and statement of result

As above, let M be a 3-manifold, ϕ : M →M be a C2 diffeomorphism, and E ⊕ F

a continuous Dϕ-invariant tangent bundle decomposition with dim(E) = 2. We

say that E is sequentially transversally Lipschitz if there exists a C1 line bundle Z,

everywhere transverse to E, and a C1 distribution E(0) such that the sequence of

C1 distributions {E(k)}k>1 given by

E(k)
x = Dϕ−k

ϕkx
E

(0)

ϕkx
,∀x ∈M,k > 1 (2.4.1)

are equi-Lipschitz along Z, i.e. there exists K > 0 such that for every x, y ∈ M

close enough and belonging to the same integral curve of Z, and every k ≥ 0, we
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have ](E
(k)
x , E

(k)
y ) ≤ Kd(x, y).

Theorem 3. Let M be a Riemannian 3-manifold, ϕ : M →M a C2 diffeomorphism

and E ⊕ F a Dϕ-invariant, sequentially transversally Lipschitz, dynamically and

volume dominated, decomposition. Then E is uniquely integrable.

2.4.2 Relation Between Lipschitzness and Transversal Lip-

schitzness

Before starting the sketch of the proof of Theorem 3 we discuss some general ques-

tions concerning the relationships between various forms of Lipschitz regularity. We

say that a sub-bundle E is transversally Lipschitz if there exists a C1 line bundle Z,

everywhere transverse to E, along which E is Lipschitz. The relations between Lip-

schitz, transversally Lipschitz, and sequentially transversally Lipschitz are not clear

in general. For example it is easy to see that sequentially transversally Lipschitz

implies transversally Lipschitz but we have not been able to show that transversally

Lipschitz, or even Lipschitz, implies sequentially transversally Lipschitz. Neverthe-

less certain equivalence may exist under certain forms of dominations for bundles

which occur as invariant bundles for diffeomorphisms. We formulate the following

question:

Question 1. Suppose E ⊕ F is a Dϕ-invariant decomposition satisfying (2.1.3).

Then is E transversally Lipschitz if and only if it is Lipschitz ?
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One reason why we believe this question is interesting is that that transversal

Lipschitz regularity is a-priori strictly weaker than full Lipschitz regularity. Thus a

positive answer to this question would imply that transversal Lipschitzness of center-

bunched dominated systems becomes in particular, by Theorem 2, a criterion for

their unique integrability. More generally, a positive answer to this question would

somehow be saying that one only needs some domination condition and transversal

regularity to prevent E from demonstrating pathological behaviours such as non-

integrability or non-Lipschitzness.

The notion of sequential transversal regularity and the result of Theorem 3

may play a role in a potential solution to the question above. Indeed, if E is

sequentially transversally Lipschitz and volume dominated, then by Theorem 3 it

is uniquely integrable. Then, under the additional assumption of centre-bunching,

by arguments derived from theory of normal hyperbolicity (see [33]) it is possible

to deduce that E is Lipschitz along its foliation F . We also know that there is a

complementary transversal foliation given by integral curves of Z along which E is

sequentially Lipschitz and therefore Lipschitz. This implies that E is Lipschitz.

Thus center-bunching and sequential transverse regularity implies Lipschitz.

The missing link would just be to show that if E is transversally Lipschitz along

a direction then it is also sequentially transversally Lipschitz along that direction.

This would yield a positive answer to the question.
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2.4.3 General philosophy and strategy of proof

Since our distribution is no longer Lipschitz we are not able to apply any existing

general involutivity/integrability result, such as that of Simić quoted above2. In-

stead we will have to essentially construct the required integral manifolds more or

less explicitly “by hand”.

The standard approach for this kind of construction is the so-called graph trans-

form method, see [33], which takes full advantage of certain hyperbolicity condi-

tions and consists of ”pulling back” a sequence of manifolds and showing that the

sequence of pull-backs converges to a geometric object which can be shown to be a

unique integral manifold of the distribution. This method goes back to Hadamard

and has been used in many different settings but, generally, cannot be applied in

the partially hyperbolic or dominated decomposition setting where the dynamics is

allowed to have a wide range of dynamical behaviour and it is therefore impossible

to apply any graph transform arguments to Esc under our assumptions. This is

perhaps one of the main reasons why this setting has proved so difficult to deal

with.

The strategy we use here can be seen as a combination of the Frobenius/Simić

involutivity approach and the Hadamard graph transform method. Rather than

approximating the desired integral manifold by a sequence of manifolds we ap-

2Some notion of Lie bracket can be formulated in lower regularity, see for example [13, Propo-

sition 3.1], but it is not clear to us how to obtain a full unique integrability result using these

ideas.
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proximate the continuous distribution E by a sequence {E(k)} of C1 distributions

obtained dynamically by ”pulling back” a suitably chosen initial distribution. Since

these approximate distributions are C1, the Lie brackets of C1 vector fields in E(k)

can be defined. If the E(k) were involutive, then each one would admit an integral

manifold E (k) and it is fairly easy to see that these converge to an integral manifold

of the original distribution E. However this is generally not the case and we need

a more sophisticated argument to show that the distributions E(k) are ”asymptoti-

cally involutive” in a particular sense which will be defined formally below. For each

k we will construct an ”approximate” local center-stable manifoldW(k) which is not

an integral manifold of E(k) (because the E(k) are not necessarily involutive) but is

”close” to being integral manifolds. Further estimates, using also the asymptotic

involutivity of the distributions E(k), then allow us to show that these manifolds

converge to an integral manifold of the distribution E. We will then use a separate

argument to obtain uniqueness, taking advantage of a result of Hartman.

2.4.4 Almost involutive approximations

In this section we state and prove a generalization of Proposition 2.2.2 which for-

malizes the meaning of “almost” involutive. We consider the sequence of C1 distri-

butions {E(k)}k>1 as in the definition of sequential transverse regularity in (2.4.1).

We fix a coordinate system (x1, x2, x3,U) so that ∂/∂xi are all transverse to E and

therefore to E(k) for k large enough since E(k) → E uniformly in angle. Then thanks
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to this transversality assumption we can find vector fields defined on U of the form

X(k) =
∂

∂x1
+ a(k) ∂

∂x3
and Y (k) =

∂

∂x2
+ b(k) ∂

∂x3
. (2.4.2)

that span E(k) and converge to vector fields of the form

X =
∂

∂x1
+ a

∂

∂x3
and Y =

∂

∂x2
+ b

∂

∂x3
. (2.4.3)

that span E for a(k), a, b(k), b everywhere non-vanishing functions. Moreover we can

choose ∂/∂x3 to be the direction where sequential transversal Lipschitzness holds

true (since it is already transversal to E) so we have the property that there exists

C > 0 ∣∣∣∣∂a(k)

∂x3

∣∣∣∣ < C and

∣∣∣∣∂b(k)

∂x3

∣∣∣∣ < C (2.4.4)

for all k. It is easy to check that [X(k), Y (k)] lies in the ∂/∂x3 direction. As before

we will have some estimates about how fast the Lie brackets of these vector fields

decay to 0. For the following let F (k) be the continuous bundle which is orthogonal

to E(k) with respect to Lyapunov metric on E so that F (k) goes to F in angle (since

F is orthogonal to E with respect to the Lyapunov metric). We have the following

analogue of Proposition 2.2.2

Proposition 2.4.1. There exists C > 0 such that for every k > 1 and x ∈ U , we

have

‖[X(k), Y (k)](x)‖ ≤ C
|det(Dϕkx|E(k)

x
)|

‖Dϕkx|F (k)
x
‖

.

Sketch of proof. The proof of Proposition 2.4.1 is very similiar to that of Proposition

2.2.2 and it is not hard to get the result with the difference that E and F in the right
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hand side of the estimate in Proposition 2.2.2 are replaced by E(k) and F (k). In this

case we choose our collection of C1 orthonormal collection of frames {Z(k),W (k)}

of E(k) so that ||DϕkZ(k)||||DϕkW (k)|| = det(Dϕk|E(k)) Then exactly as in lemma

2.3.3, to get an upper bound on |[X(k), Y (k)]|, it is enough to bound [Z(k),W (k)].

The proof of the inequality ‖[Z(k),W (k)]‖ ≤ det(Dϕk|E(k))/‖Dϕk|F (k)‖ follows quite

closely the proof of lemma 2.3.2 where the projection π is replaced by π(k) which

the projection to F (k) along E(k) at relevant places.

The next, fairly intuitive but in fact quite technical, step is to replace the esti-

mates on the approximations with estimates on the limit bundle.

Proposition 2.4.2. There exists C > 0 such that for every k > 1 and x ∈ U , we

have

|det(Dϕkx|E(k)
x

)| ≤ C|det(Dϕkx|Ex)| (2.4.5)

and

‖Dϕkx|F (k)
x
‖ ≥ C‖Dϕkx|Fx‖ (2.4.6)

Sketch of proof. (2.4.6) is fairly easy since for any vector v /∈ E, |Dϕkv| ≥ CDϕkx|Fx|v|

(since F has dimension 1). The real technical estimate is (2.4.5). One first needs to

make the observation that there exists a cone C(α) of angle α around E such that

DϕkE(k) ⊂ C(α). This is the main observation that allows to relate two determi-

nants independent of k. Indeed given a basis vk1 , u
k
1 of E(k), then K|det(Dϕkx|E(k)

x
)| =

|Dϕkxvk1 ∧ Dϕkxuk1| = |Λ(Dϕkx)v
k
1 ∧ uk1| where Λ(Dϕkx) is the induced action of Dϕkx
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on TM ∧ TM . But then Λ(Dϕkx) allows a dominated splitting of TM ∧ TM

whose invariant spaces are E1 = E ∧ E, E2 = E ∧ F where E1 is dominated

by E2. We have that for all k, E
(k)
1 = span(vk1 ∧ uk1) is a space which is in-

side a cone C(α) around E1. Therefore usual dominated splitting estimates give

that |Λ(Dϕkx)|E(k)
1 (x)
| ≤ K|Λ(Dϕkx)|E1(x)| which proves the claim about determinants

since |Λ(Dϕkx)|E1(x)| = |det(Dϕkx|Ex)|.

2.4.5 Almost Integral Manifolds

We will use the local frames {X(k), Y (k)} to define a family of local manifolds which

we will then show converge to the required integral manifold of E. We emphasize

that these are not in general integral manifolds of the approximating distribution

E(k). We will use the relatively standard notation etX
(k)

to denote the flow at time

t ∈ R of the vector field X(k). Then we let

W(k)
x0

(t, s) := etX
(k) ◦ esY (k)

(x0).

This map is well defined for all sufficiently small s, t so that the composition of

the corresponding flows remains in the local chart U in which the vector fields

X(k), Y (k) are defined. Since the vector fields X(k), Y (k) are uniformly bounded in

norm, choosing ε sufficiently small the functions W(k)
x0 can be defined in a fixed

domain Uε = (−ε, ε)× (−ε, ε) independent of k such thatW(k)
x0 (Uε) ⊂ U . By a direct

application of the chain rule and the definition ofW(k)
x0 , for every (t, s) ∈ Uε we have

X̃(k)(t, s) =
∂W(k)

x0

∂t
(t, s) = X(k)(W(k)

x0
(t, s))
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and

Ỹ (k)(t, s) =
∂W(k)

x0

∂s
(t, s) = (etX

(k)

)∗Y
(k)(W(k)

x0
(t, s)).

where for two vector fields V, Z and t ∈ R, (etV )∗Z denotes that pushforward of Z

by the flow of V defined by

[(etV )∗Z]p = DetVe−tV (p)Ze−tV (p).

The following lemma gives a condition for this family of maps to have a convergent

subsequence whose limits becomes a surface tangent to E:

Lemma 2.4.3. If X̃(k) → X and Ỹ (k) → Y then the images of W(k)
x0 are embedded

submanifolds and this sequence of submanifolds has a convergent subsequence whose

limit is an integral manifold of E.

Proof. Since X and Y are linearly independent by assumption of convergence, the

differential of the map W(k)
x0 is invertible at every point (t, s) ∈ Uε, i.e. the partial

derivatives ∂W(k)
x0 /∂s and ∂W(k)

x0 /∂t are linearly independent for every (t, s) ∈ Uε.

Thus the mapsW(k)
x0 are embeddings and define submanifolds through x0 (which are

not in general integral manifolds of E(k)). Moreover, since X(k), Y (k) have uniformly

bounded norms, it follows by Proposition 2.4.4 that DW(k)
x0 has bounded norm

uniformly in k and therefore the family {W(k)
x0 } is a compact family in the C1

topology. By the Arzela-Ascoli Theorem this family has a subsequence converging

to some limit

Wx0 : Uε → U . (2.4.7)
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We claim that Wx0(Uε) is an integral manifold of E. Indeed, as k → ∞, X(k) →

X, Y (k) → Y and {X, Y } is a local frame of continuous vector fields for E, in

particular X, Y are linearly independent and span the distribution E. Moreover,

by Proposition 2.4.4, the partial derivatives ∂W(k)
x0 /∂t and ∂W(k)

x0 /∂s are converging

uniformly to X and Y and therefore

∂Wx0

∂t
= X and

∂Wx0

∂s
= Y.

This shows that Wx0(Uε) is a C1 submanifold and its tangent space coincides with

E and thus Wx0(Uε) is an integral manifold of E, thus proving integrability of E

under these assumptions.

It therefore just remains to verify the assumptions of Lemma 2.4.3, i.e. to show

that the vectors X(k) and (etX
(k)

)∗Y
(k) converge to X and Y . The first convergence

is obviously true. Thus it remains to show the latter which we show in the next

result, thus completing the proof of the existence of integral manifolds.

Proposition 2.4.4. For all t ∈ (−ε, ε) we have

lim
k→∞
‖(etX(k)

)∗Y
(k) − Y (k)‖ = 0.

Proof. To obtain this proposition one uses the following standard property of the

pushforward (see proof of Proposition 2.6 in [1] for instance):

d

dt
[(etX

(k)

)∗Y
(k) − Y (k)] = (etX

(k)

)∗[X
(k), Y (k)] (2.4.8)

together with the following proposition:
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Proposition 2.4.5. There exists C > 0 such that for every k ≥ 1, x ∈ U and

|t| ≤ ε, we have

||(etX(k)

)∗
∂

∂x3
|x‖ = exp

∫ t

0

∂a(k)

∂x3
◦ e−τX(k)

(x)dτ

This latter proposition follows by integrating the equality

d

dt
((etX

(k)

)∗
∂

∂x3
|x) =

(
etX

(k)
)
∗

[X(k),
∂

∂x3
]|x

Once this is established since we know that ∂a(k)/∂x3 is uniformly bounded (2.4.4),

we obtain that the effect of (etX
(k)

)∗ on ∂/∂x3 is bounded. Since [X(k), Y (k)] is a

vector in this direction whose norm goes to 0 we directly obtain by equation (2.4.8)

that d
dt

[(etX
(k)

)∗Y
(k) − Y (k)] goes to 0 uniformly and hence by mean value theorem

that |(etX(k)
)∗Y

(k) − Y (k)| goes to 0 which is the proposition.

Remark 2.4.6. From the proof, it is seen that the most crucial ingredient is for

the approximations to satisfy the pushforward bound in Proposition 2.4.4. One

can generalize this observation to get geometric theorems about integrability of

continuous sub-bundles, not just those arising in dynamical systems, with some

additional assumptions such as the Lie brackets going to 0.

2.4.6 Uniqueness

To get uniqueness of the integral manifolds we will take advantage of a general

result of Hartman which we state in a simplified version which is sufficient for our

purposes.
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Theorem 4 ([30], Chapter 5, Theorem 8.1). Let X =
∑n

i=1 X
i(t, p) ∂

∂xi
be a continu-

ous vector field defined on I×U where U ⊂ Rn and I ⊂ R. Let ηi = X i(t, p)dt−dxi.

If there exists a sequence of C1 differential forms ηki such that |ηki − ηi|∞ → 0 and

dηki are uniformly bounded then X is uniquely integrable on I × U . Moreover on

compact subset of U × I the integral curves are uniformly Lipschitz continuous with

respect to the initial conditions.

We recall that a two form being uniformly bounded is equivalent to each of its

component is being uniformly bounded.

Corollary 2.4.7. Vector fields X and Y defined in (2.4.3) are uniquely integrable.

Proof. We will give the proof for X, that for Y is exactly the same. Since X has

the form

X =
∂

∂x1
+ a

∂

∂x3
,

its solutions always lie in the ∂
∂x1
, ∂
∂x3

plane. Therefore given a point (x1
0, x

2
0, x

3
0),

it is sufficient to consider the restriction to such a plane. Then the C1 differential

1-forms defined in Theorem 4 are

η1 = dt− dx1 η2 = a(x)dt− dx3

where x = (x1, x2
0, x

3), and for the approximations we can write

ηk1 = dt− dx1 ηk2 = a(k)(x)dt− dx3

where a(k)(x) are functions given in equation (2.4.2), again for some fixed x2
0. But

then by sequential transversal Lipschitz assumption and choice of coordinates we
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have that |∂a(k)
∂x3
| < C for all k and

dηk1 = 0 dηk2 =
∂a(k)

∂x3
dx3 ∧ dt

(since we restrict to x2 = const planes) and the requirements of Theorem 4 are

satisfied which proves that X is uniquely integrable.

Now we have that X and Y are uniquely integrable at every point. Assume

there exist a point p ∈ U such that through p there exist two integral surfaces

W1,W2. This means both surfaces are integral manifolds of E and in particular the

restriction of X and Y to their tangent space are uniquely integrable vector fields.

Therefore there exists ε1 such that the integral curve etX(p) for |t| ≤ ε1 belongs to

both surfaces. Now consider an integral curve of Y starting at the points of etX(p),

that is esY ◦ etX(p). For ε1 small enough, there exists ε2 small enough such that for

every |t| < ε1 and |s| < ε2 this set is inside both surfaces since Y is also uniquely

integrable (εi only depend on norms |X|, |Y | and size of Wi and therefore can be

chosen uniformly independent of point). This set is a C1 disk and therefore W1

andW2 coincide on an open domain. Applying this to every point p ∈ U we obtain

that through every point in U there passes a single local integral manifold. This

concludes the proof of the uniqueness.
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Chapter 3

Integrability of continuous bundles

3.1 Introduction and statement of results

In this chapter we address the question of integrability and unique integrability of

continuous tangent sub-bundles on Cr manifolds with r ≥ 1. A continuous m-

dimensional tangent sub-bundle (or a distribution) E on a m + n dimensional Cr

manifold M is a continuous choice of m-dimensional linear subspaces Ep ⊂ TpM at

each point p ∈ M . A C1 sub-manifold N ⊂ M is a local integral manifold of E

if TpN = Ep at each point p ∈ N . The distribution E is integrable if there exists

local integral manifolds through every point, and uniquely integrable if these integral

manifolds are unique in the sense that whenever two integral manifolds intersect,

their intersection is relatively open in both integral manifolds.

The question of integrability and unique integrability is a classical problem that
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goes back to work of Clebsch, Deahna and Frobenius [17, 19, 24] in the mid 1800’s.

Besides their intrinsic geometric interest, integrability results have many appli-

cations to various areas of mathematics including the existence and uniqueness of

solutions for systems of ordinary and partial differential equations and to dynamical

systems. The early results develop conditions and techniques to treat cases where

the sub-bundles, or the corresponding equations, are at least C1 and, notwithstand-

ing the importance and scope of these results, it has proved extremely difficult to

relax the differentiability assumptions completely. Some partial generalizations have

been obtained by Hartman [29] and other authors [60, 42, 52] but all still require

some form of weak differentiability, e.g. a Lipschitz condition.

The main point of our results is to formulate new integrability conditions for

purely continuous equations and sub-bundles. We apply these conditions to obtain

results for examples which are not more than Hölder continuous and for which the

same statements cannot be obtained by any other existing methods. Our Main

Theorem which contains the most general version of our results is stated in Section

3.1.5. All other results are essentially corollaries and applications of the Main

Theorem and are stated in separate subsections of the introduction. We begin with

the results for ODE’s and PDE’s which are of independent interest and easy to

formulate.
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3.1.1 Uniqueness of solutions for ODE’s

In this section we consider continuous ordinary differential equations of the form

dyi

dt
= F i(t, y(t)), (t0, y(t0)) ∈ V (3.1.1)

where i = 1, ..., n and F = (F 1(t, y), ..., F n(t, y)) : V ⊂ Rn+1 → Rn is a continuous

vector field. By Peano’s theorem, an ODE with a continuous vector field always

admits solutions and by Picard-Lindelöf-Cauchy-Lipschitz theorem, an ODE with

Lipschitz vector fields admits unique solutions through every point. The Lipschitz

condition is however not necessary and a lot of work exists establishing weaker reg-

ularity conditions which imply uniqueness, see [2] for a comprehensive survey. One

such condition is Osgood’s criterion (see Theorem 1.4.2 in [2]) where the modulus

of continuity w (we give the precise definition below) with respect to the space

variables satisfies

lim
ε→0

∫ ε

0

1

w(s)
ds <∞. (3.1.2)

This condition, albeit much weaker than Lipschitz, is also not necessary as there

are examples of uniquely integrable ODE’s that do not satisfy Osgood’s criterion,

such as the case F (t, x) = et + xα for α < 1 which was studied in [3]. We give

here a new condition for uniqueness of solutions for continuous ODE’s and a simple

example of an ODE which satisfies our conditions, and thus is uniquely integrable,

but does not satisfy any previously known condition for uniqueness.

Definition 3.1.1. Let w : R+ → R+ be an increasing, continuous function such that
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lims→0w(s) = 0. A function F : U ⊂ Rn = (ξ1, ..., ξn)→ Rm is said to have modulus

of continuity w with respect to variable ξi if there exists a constant K > 0 such that

for all (ξ1, ..., ξn) ∈ U and for all s small enough so that (ξ1, ..., ξi + s, ..., ξn) ∈ U ,

|F (ξ1, ..., ξi + s, ..., ξn)− F (ξ1, ..., ξn)| ≤ Kw(|s|).

We say that F has modulus of continuity w if it has modulus of continuity w

with respect to all variables. We denote by Cr+w functions whose rth order partial

derivatives have modulus of continuity w (in the case r = 0 they will simply be

functions with modulus of continuity w).

We denote the extended version of the vector-field F (t, x) by

F̃ =
∂

∂t
+

n∑
i=1

F i(t, y)
∂

∂xi
=

n+1∑
i=1

F̃ i(ξ)
∂

∂ξi

where (ξ1, ..., ξn+1) is a collective tag for the coordinates t and (y1, ..., yn). Note

that F̃ (ξ) 6= 0 for all ξ since F̃ 1 = 1.

Theorem 5. Consider the ODE in (3.1.1) with F : V ⊂ Rn+1 a continuous function

with modulus of continuity w1. Let ξ ∈ V and i ∈ {1, ..., n + 1} be such that

F̃ i(ξ) 6= 0 and suppose that F̃ has modulus of continuity w2 with respect to variables

(ξ1, ..., ξi−1, ξi+1, ...ξn+1) and

lim
s→0

w1(s)ew2(s)/s = 0. (3.1.3)

Then the ODE (3.1.1) with initial condition (t0, ξ) has a unique solution.
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Example 3.1.2. Consider the ODE

F (t, x, y) =

(
dx

dt
,
dy

dt

)
= (−tlog(tβ)− xlog(xγ), 1 + yα − xlog(xδ)) (3.1.4)

for 0 < β, γ, δ < α < 1 (the requirement that they are less than 1 is not necessary

but we only impose it to make the examples non-Lipschitz and therefore more

interesting). As far as we know, the uniqueness of solutions for (3.1.4) cannot be

verified by any existing method except ours. In particular, Osgood criterion does

not hold due to the term yα and the main result of [3] would require the right hand

side to be Lipschitz with respect to x and t which is not the case.

To see that (3.1.4) satisfies the assumptions of Theorem 5 we will use certain

elementary properties of the modulus of continuity, which for convenience we collect

in 3.5.1 in the Appendix. Notice first of all that F (0, 0, 0) = (0, 1) so that its

y component is non-zero. Moreover by items 4 and 5 of Proposition 3.5.1, F 1

has modulus of continuity −slog(sβ) with respect to variable t for s ≤ 1
e

and

has modulus of continuity −slog(sγ) with respect to variable x for s ≤ 1
e

and is

constant with respect to y; F 2 has modulus of continuity −slog(sδ) for s ≤ 1
e

with

respect to variable x and has modulus of continuity sα with respect to variable y

and is constant with respect to t. Therefore by Item 7 of proposition 3.5.1, letting

σ = max{β, γ, δ} < α, F has modulus of continuity sα with respect to y, modulus

of continuity w2(s) = −slog(sσ) with respect to x and t, and finally by Item 6 of

proposition 3.5.1 and the fact that sα ≥ −slog(sσ) for |s| ≤ 1, and sα is convex, F

has modulus of continuity w1(s) = sα. Since lims→0w1(s)ew2(s)/s = lims→0Kx
α−σ =
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0, it has unique solutions by Theorem 5.

Remark 3.1.3. Theorem 5 and Example 3.1.2 also describe a qualitative way in

which regularities between variables can be traded. If a vector field F has its ith

component non-zero then you can decrease the vector field’s regularity with respect

to the ith variable as long as you increase the others in a way described by equation

(3.1.3). It is a more flexible criterion than both Osgood and that of [3]. Condition

(3.1.3) is satisfied for example if the vector field is only Hölder continuous overall,

i.e. w1(s) = sα, but, restricting to all but one variables is just a little bit better

than Hölder continuous, such as for example w2(s) = −slog(sβ) for some β ∈ (0, α).

Remark 3.1.4. Part of the interest in condition (3.1.3) lies in the fact that two

different regularities w1, w2 to come into play. Clearly we always have w2 ≤ w1

and therefore Theorem 5 holds under the stronger condition obtained by using the

overall regularity, i.e. letting w = w1 = w2 to get

lim
s→0

w(s)ew(s)/s = 0. (3.1.5)

Thus, as an immediate corollary of Theorem 5, a vector field F with modulus of

continuity w such that w satisfies equation (3.1.5) is uniquely integrable. In view

of this, it is natural to search for, and try to describe and characterize, functions

w satisfying condition (3.1.5) and in particular to compare this condition with

Osgood’s. One can check that many functions w verify both (3.1.2) and (3.1.5),

such as w1(s) = slog1+s(s) or w1(s) = sloglog....(s), and many others satisfy neither

36



condition, such as w1(s) = sαlog(s) for α < 1. So far we have not however been

able to show that the two conditions are equivalent nor to find any examples of

functions which satisfy one and not the other. In any case, this simplified version

also gives an interesting way to replace Osgood’s criterion with a relatively easy

limit condition, at least for the most relevant examples that we know.

Question 3.1.5. Are conditions (3.1.2) and (3.1.5) equivalent?

3.1.2 Uniqueness of solutions for PDE’s

In this section we consider linear partial differential equations of the form

∂yi

∂xj
= F ij(x, y(x)), (x, y(x)) ∈ V (3.1.6)

where i = 1, ..., n, j = 1, ...,m and F ij : V ⊂ Rn+m → R are continuous functions.

Note that the ODE (3.1.1) is a special case of (3.1.6), the case where m = 1. We

again denote the collective coordinates (ξ1, ..., ξn+m) = (x1, ..., xm, y1, ..., yn). In this

case we define the n× (m+ n) matrix extension F̂ of the n×m matrix F ij by

F̂ ij(ξ) = δij for 1 ≤ i ≤ n, 1 ≤ j ≤ m

and

F̂ ij(ξ) = F ij(ξ) for 1 ≤ i ≤ n,m+ 1 ≤ j ≤ m+ n.

Given any set of indices I = (i1, ..., in), we denote the submatrix of F̂ (ξ) which

corresponds to the i1, ..., in’th columns by F̂ I(ξ).
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The existence of solutions for PDE’s is not automatic as it is in the ODE setting,

and in particular is not a direct consequence of their regularity, and so the following

result concerns the uniqueness of solutions while assuming their existence. Our most

general results below also give conditions for existence of solutions, but they require

a more geometric “involutivity” condition which is independent of the regularity and

thus not so easy to state in this setting.

Theorem 6. Consider the PDE in (3.1.6) with F ij continuous with modulus of

continuity w1. Let ξ ∈ V be a point such that for some I = (i1, ..., in), det(F̂ I(ξ)) 6=

0 and suppose that F ij has modulus of continuity w2 with respect to the variables

{ξi1 , ..., ξin} and that

lim
s→0

w1(s)ew2(s)/s = 0. (3.1.7)

Then if the PDE (3.1.6) admits a solution at ξ, that solution is unique.

Remark 3.1.6. Notice that if I = (m + 1, ...,m + n) then det(F̂ I(ξ)) = 1 6= 0

and therefore if F ij(x, y) has modulus of continuity w2 with respect to variables

(y1, ..., yn) so that (3.1.7) is satisfied, then the solutions of (3.1.6), whenever they

exists, are unique.

Constructing examples of PDE’s satisfying our conditions is more complicated

than constructing examples of ODE’s because of the problem of existence of solu-

tions mentioned above. We therefore formulate our example within a special class

of equations for which existence can be verified directly. Suppose the functions F ij
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are of the form

F ij(x, y) = Gi(y
i)
∂Hi

∂xj
(x) (3.1.8)

with (x, y) ∈ V = V1 × V2, for continuous functions Gi : Ui ⊂ R → R, Hi : V2 ⊂

Rm → R for j = 1, ...,m, i = 1, ..., n, V1 = U1 × ... × Un. In this case the next

proposition (proved in Section 3.4) tells us that we can get existence of solutions

with no additional regularity assumptions.

Proposition 3.1.7. Consider a partial differential equation (3.1.6) where the func-

tions F ij are of the form (3.1.8). Then (3.1.6) admits solutions through every point.

This allows us to give examples of PDE’s to which we can apply our uniqueness

criterion.

Example 3.1.8. Consider the PDE

∂yi

∂xj
(x, y) = −(xj)αijyilog((yi)βi) (3.1.9)

for parameters 0 < βi, αij < 1 and also β = maxi βi < α = mini,j αij. This equation

can be written in the form (3.1.8) with

Hi(x) =
n∑
j=1

(xj)αij+1

αij + 1
and Gi(y

i) = −yilog((yi)βi)

Therefore by Proposition 3.1.7 it admits solutions. For uniqueness, we have that

the regularity of the Hi’s is C1+w3 with w3(s) = sα and the regularity of the Gi’s

is Cw2 with w2(s) = −slog(sβ). Therefore, letting w1(s) = max{w2(s), w3(s)}, we

have lims→0w1(s)ew2(s)/s = lims→0Kx
α−β = 0 and using Theorem 6 we have that

this system has unique solutions.
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Example 3.1.9. Consider the PDE

∂y1

∂x1
(x, y) = (1− x1ln((x1)α11))((y1)β1 + 1)

∂y1

∂x2
(x, y) = (x2)α12(1 + (y1)β1)

∂y2

∂x1
(x, y) = y2ln((y2)β2)x1ln((x1)α21)

∂y2

∂x2
(x, y) = −y2ln((y2)β2)(x2)α22

with 0 < α12, α22, β1 < α11, α21, β2 < 1. Set α = max{α11, α21, β2} and β =

min{α12, α22, β1}. The right-hand side again has the form (3.1.8) and so the PDE

has solutions by Proposition 3.1.7. For the uniqueness, one considers the matrix

Fij at (x, y) = (0, 0), which is  1 0 1 0

0 1 0 0


and so the sub-matrix corresponding to columns i1 = 2 and i2 = 3 is invertible. But

then with respect to variables ξ2 = x2 and ξ3 = y1, F ij has modulus of continuity

w2(s) = −sln(sα) and in general has modulus of continuity w1(s) = sβ. But w1(s)

and w2(s) satisfy condition (3.1.7) and so, by Theorem 6, the PDE has unique

solutions in a neighborhood of the origine (0, 0).

These are only two particularly simple examples one can construct using Propo-

sition 3.1.7. Here the forms of Hi(y) are quite simple in the sense that Fi(y) =∑
j Gij(y

j) and more complicated examples can be achieved with more work.
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3.1.3 Unique Integrability of Continuous Bundles

We will derive the results above on existence and uniqueness of solutions for ODE’s

and PDE’s from more general and more geometric results about the integrability

and unique integrability of tangent bundles on manifolds. In this section we state

Theorem 7 which can be seen as a mid step between the ODE and PDE theorems

stated in the previous sections and the more general results in Theorem 8 and the

Main Theorem in the following sections. Throughout this section we assume that

E is a continuous tangent sub-bundle on a manifold M . First we need to generalize

certain classical definitions of modulus of continuity to bundles.

Definition 3.1.10. A bundle E of rank m is said to have modulus of continuity

w, where w is a continuous, increasing function w : I ⊂ R+ → R+ such that

lims→0w(s) = 0, if in every sufficiently small neighbourhood, it can be spanned by

linearly independent vector fields X1, ..., Xm such that in local coordinates |Xi(p)−

Xi(q)| ≤ w(|p − q|). E is said to have transversal modulus of continuity w if for

every x0 ∈ M , there exists a coordinate neighbourhood (V, (x1, ..., xm, y1, ..., yn))

around x0 so that E is transverse to span{ ∂
∂yi
}ni=1 and with respect to coordinates

{y1, ..., yn} E has modulus of continuity w(s).

Theorem 7. Let E be a rank n bundle with modulus of continuity w1 and transversal

modulus of continuity w2. Assume E is integrable and

lim
s→0

w1(s)ew2(s)/s = 0 (3.1.10)
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Then E is uniquely integrable.

The scope of Theorem 7 is possibly limited because integrability is assumed.

However we have stated it here because it gives uniqueness as a result of a natural

regularity condition and in general existence is a highly non trivial property which

cannot be reduced to any regularity condition. We will show that Theorem 7 is a

corollary of the more general results below which address the problem of existence

as well as uniqueness, and that it easily implies Theorems 5 and 6.

3.1.4 Asymptotic involutivity and exterior regularity

We now formulate the special case of our most general result, addressing the problem

of existence and uniqueness of integral manifolds for continuous tangent bundle

distributions. Since integrability of tangent bundles is a local property, we assume

from now on that U is a Euclidean ball in Rn+m and E is a continuous tangent bundle

distribution of rank n on U . We let | · | denote the (induced) Euclidean norm on

sections of the tangent bundle and of k-differential forms for all 0 ≤ k ≤ n+m. | · |∞

denotes the sup-norm over U , which gives the aforementioned sections a Banach

space structure. We also employ , point-wise, tangent vectors with the induced

Euclidean metric. Letting A1(E) denote the space of all 1-forms η defined on U

with E ⊂ ker(η), the distribution E is completely described by any set {ηi}ni=1

of n linearly independent 1-forms in, i.e. any basis of, mathcalA1(E). If the

distribution E is differentiable, the forms {ηi}ni=1 can also be chosen differentiable
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and the classical Frobenius theorem [17, 19, 24] states that E is uniquely integrable

if, for any basis of differentiable 1-forms {ηi}ni=1 of A1(E), the involutivity condition

|η1 ∧ · · · ∧ ηn ∧ dηi(p)| = 0 (3.1.11)

holds for all i = 1, ..., n and p ∈ U . Several generalizations of this Theorem exist in

the literature, including results which weaken the differentiability assumption, we

mention for example results by Hartman [29], Simic [58] and other authors [42, 52],

but which still essentially use the fact that the exterior derivative dηi exists, for

example if E is Lipschitz then the ηi are differentiable almost everyhere and dηi

exists almost everywhere, and therefore such results can be formulated in essentially

the same way as Frobenius, using condition (3.1.11).

One of the first stumbling blocks in obtaining some integrability criteria for gen-

eral continuous distributions is that the exterior derivatives of the forms {ηi}ni=1

which define E do not in general exist and it is thus not even possible to state

condition (3.1.11). Our strategy for resolving this issue is to consider a sequence

{ηki }ni=1 of C1 differential forms, for which therefore the exterior derivatives dηki ’s

do exist, which converge to {ηi}ni=1 and satisfy certain conditions which we define

precisely below and which imply that the sequence is in some sense “asymptotically

involutive” and which will allow us to deduce that E is integrable without having

to define an involutivity condition directly on E. A quite interesting by-product of

this approach is a clear distinction between the involutivity conditions required for

integrability and the regularity conditions required for unique integrability. In the
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C1 case these regularity conditions are automatically satisfied and thus the invo-

lutivity condition (3.1.11) is sufficient to guarantee both integrability and unique

integrability.

Definition 3.1.11. A continuous tangent sub-bundle E of rank n is strongly asymp-

totically involutive if there exist a basis {ηi}ni=1 of A1(E), a constant ε0 > 0, and a

sequence of C1 differential 1-forms {ηki }ni=1 such that maxi |ηki −ηi|∞ → 0 as k →∞

and

max
j
|ηk1 ∧ ...ηkn ∧ dηkj |∞eε0 maxi |dηki |∞ → 0 as k →∞. (3.1.12)

Definition 3.1.12. A continuous tangent sub-bundle E of rank n is strongly exte-

rior regular if there exist a basis {βi}ni=1 of A1(E), a constant ε1 > 0, and a sequence

of C1 differential 1-forms {βki }ni=1 such that

max
j
|βkj − βj|∞eε1 maxi |dβki |∞ → 0 as k →∞. (3.1.13)

We note that we refer to these conditions as “strong” since we will define some

more general versions below.

Theorem 8. Let E be a continuous tangent subbundle. If E is strongly asymptoti-

cally involutive then it is integrable. If E is integrable and strongly exterior regular

then it is uniquely integrable.

Notice that if E is C1, the strong exterior regularity is trivially satisfied by

choosing βki = ηi and the Frobenius involutivity condition (3.1.11) is equivalent

to the strong asymptotic involutivity condition (3.1.12) by choosing ηki = ηi. We
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remark that a version of Theorem 8 in dimension ≤ 3 was obtained in [39] by using

different arguments.

Remark 3.1.13. One can also combine the asymptotic involutivity condition of

Theorem 8, which gives integrability, with the condition on the modulus of conti-

nuity of E in Theorem 7 which then gives uniqueness (indeed, we will show below

that the condition of Theorem 7 implies exterior regularity) as this last condition

may be easier to check in some situations. As we discuss in more details below,

conditions such as those of asymptotic involutivity and exterior regularity, which

are based on a sequence of approximations, are actually quite natural. It would also

be interesting however to know whether there is any way to formulate the existence

conditions without recourse to approximations, directly in terms of properties of

the bundle E (or A1(E) to be more precise).

Question 3.1.14. Can the strong asymptotic involutivity condition in Theorem 8

be replaced by a condition that can be stated only in terms of geometric and analytic

properties of the bundle E rather than a sequence of approximations?

An answer to this question would be a natural form of Peano’s Theorem in

higher dimensions.

3.1.5 The Main Theorem

In this section we state our most general theorem, which contains Theorem 8 as a

special case and also implies all the other results stated above. This more general
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result will be important for applications to the tangent bundles which arise in the

context of Dynamical Systems.

Let U ⊂ Rm+n. Given two tangent bundles E1 and E2 on U , for x ∈ U , we

denote by ∠(E1
x, E

2
x) the maximum angle between all possible rays R1 ⊂ E1, R2 ⊂

E2 orthogonal to E1
x ∩ E2

x (with respect to the induced point-wise metric at x). A

sequence of bundles {Ek} is said to converge to E1 in angle if supx∈U ∠(E1
x, E

k
x)→ 0

as k →∞. This also means that the Haussdorff distance between the unit spheres

inside Ek
x and E1

x goes to zero for all x.

Now assume we are given E a continuous tangent bundle of rank n on U . We

choose a coordinate system (x1, ..., xm, y1, ..., yn) in U so that the yi coordinates

are transverse to E and if Ek is any sequence of bundles of rank n which converge

in angle to E, then we can assume without loss of generality that they are also

transverse to the yi coordinates. We denote the subspace

Yp := span

{
∂

∂y1
, ...,

∂

∂yn

}
|p.

By the transversality condition, we can span E by vectors of the form

Xi =
∂

∂xi
+

n∑
j=1

aij(x, y)
∂

∂yj

for some C0 functions aij(x, y), and if Ek is a sequence of C1 bundles converging to

E then each Ek can be spanned by vectors of the form

Xk
i =

∂

∂xi
+

n∑
j=1

akij(x, y)
∂

∂yj

for some sequence of C1 functions akij(x, y) so that Xk
i converges to Xi as k →∞.
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Note that a basis of sections {αk1, ..., αkn} of A1(Ek) defined on U , gives a non-

vanishing section of the frame bundle F (A1(Ek)) of A1(Ek). We denote this section

by Ak, which in local coordinates is the matrix of 1-forms whose jth row is αkj . More

explicitly if evaluated at a point p it is the map Akp : Rm+n → Rn defined by

Akp(v) := (αk1(v), ..., αkn(v))|p.

Sometimes if we evaluate it along a curve γ then we denote Aks = Akγ(s). By our

assumptions Akp has rank n (since it has n rows made from a linearly independent

set of 1-forms) and ker(Akp) = Ek
p . Therefore restricted to Yp which is transverse to

Ek
p these maps are invertible and we write

A−kp := (Ak|Yp)−1.

In the statement and proof of the theorem, we will use a sequence of open covers

{Uk,i}ski=1 of U associated to sequence Ek of approximating bundles and a corre-

sponding sequence of sections {Ak,i}ski=1 defined on the elements of these covers. We

will use the notation A−k,jp := (Ak,j|Yp)−1. Since the elements of these covers overlap

we will need the following compatibility condition.

Definition 3.1.15. A finite open cover {Uk,i}ski=1 of U is a compatible cover for

non-vanishing sections {Ak,i}ski=1 of the frame bundle F (A1(Ek)) defined on Uk,i if

for all i, j = 1, ..., sk, p ∈ Uk
i ∩ Uk

j we have

||Ak,ip ◦ A−k,jp || = 1.
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Given a compatible cover, we also define the maps dAk,i : R2(n+m) → Rn by

dAk,ip (u, v) = (dαk,i1 (u, v), ..., dαk,in (u, v))|p

for u, v ∈ Rn+m. We denote by dAk,i|Ekp the restriction of this map to Ek
p ×Ek

p . We

also define the following constant depending on k and i

Mk,i
A := sup

v∈E,w∈Rn
|v|=|w|=1

p∈Uk,i

|dAk,ip (A−k,ip w, v)|. (3.1.14)

Definition 3.1.16. A continuous tangent subbundle E on U ⊂ Rn+m is asymp-

totically involutive if there is a sequence of C1 subbundles Ek that converge to E,

ε > 0 and, for all k, a compatible open cover {Uk,i}ski=1 of U with non-vanishing

sections {Ak,i}ski=1 of F (A1(Ek)) defined on Uk,i such that

max
i,j,`∈{1,...,sk}

||dAk,i|Ek ||∞ ||A−k,j||∞ eεM
k,`
A → 0 as k → 0.

Definition 3.1.17. A continuous tangent subbundle E on U ⊂ Rn+m is exterior

regular if there is a sequence of C1 bundles Ek that converge to E, ε > 0 and,

for all k a compatible open cover {Uk,i}ski=1 of U and non-vanishing sections Bk,i of

F (A1(Ek)) defined on Uk,i such that

max
i,j,`∈{1,...,sk}

‖Bk,i|E‖∞ ||B−k,j||∞ eεM
k,`
B → 0 as k → 0.

Main Theorem. Let E be a continuous tangent subbundle. If E is asymptotically

involutive then E is integrable. If E is integrable and exterior regular then it is

uniquely integrable
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Remark 3.1.18. The proof of Theorem 8 consists of verifying that the strong

asymptotic involutivity and strong exterior regularity conditions are simply special

cases of their more general versions given here. There are two main differences

which make the general versions more general, and more applicable, than the strong

versions. The first is that in the general versions of asymptotic involutivity and

exterior regularity the forms defining the sub-bundles are only defined locally. The

second, more important, difference is that in the the strong versions, the differential

forms {ηk1 , ..., ηkn} are assumed to converge to a set of linearly independent forms,

whereas this is not required by the general version. Indeed, multiplying a form by a

constant or even by a function, does not change its kernel and thus does not change

the bundle that it defines, and what one really needs is the convergence of a sequence

of approximating bundles not necessarily the forms defining these bundles. Thus

assuming the convergence of the forms, while allowing for a tidier formulation of

the conditions, is an unnecessary restriction. This more general formulation allows

us in particular to obtain an application to dynamical systems, including the well

known Stable Manifold Theorem, which would not follow from Theorem 8.

3.1.6 Stable Manifold Theorem

A rich supply of continuous, integrable and non-integrable distributions come from

dynamical systems where some dynamically defined tangent bundles occur natu-

rally. The integrability (or not) of these subbundles has implications for the study
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of statistical and topological properties of such systems [27, 28] and there is a rich

literature going back to Hadamard and Perron [25, 45, 46] concerning techniques

for studying the problem, see also [14, 33, 35, 48] for classical results going back to

the 1970’s and [12, 28, 49, 53] for an overview of recent approaches. We give here

a fairly general class of dynamical systems, which in particular includes classical

uniform hyperbolic systems and certain partially hyperbolic systems, for which the

assumptions of the Main Theorem can be readily verified. This gives a unification

of many results, which have so far been proved by a variety of techniques, as a

direct corollary of a single abstract Frobenius type integrability result.

Throughout this section M denotes an (n + m)-dimensional compact manifold

and φ : M → M denotes a C2 diffeomorphism. The diffeomorphism φ is said to

admit a dominated splitting if there exists a Dφ-invariant continuous decomposition

E ⊕ F of TM such that

sup
x∈M
‖Dφx|Ex‖ < inf

x∈M
m(Dφx|Fx). (3.1.15)

Here m(·) denotes the conorm of an operator, that is m(Dφ|F (x)) = infv∈F (x)
|Dφv|
|v| .

Note that (3.1.15) is a purely dynamical condition and there is no a priori

reason why such condition, or any other similar dynamical condition, should have a

bearing on the question of integrability. However, remarkably, stronger domination

conditions such as uniform hyperbolicity, where ‖Dφ|E‖ < 1 < m(Dφ|F ), do imply

integrability of both subbundles [33], though there are counterexamples which show

that weaker dominated splittings as in (3.1.15) do not [62, 65] and also that systems
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with dominated splitting may be integrable but not uniquely [54]. We give here a

sufficient condition for unique integrability for a class of systems with dominated

splitting which contains the uniformly hyperbolic diffeomorphisms but significantly

relaxes the contraction of the subbundle E to allow for neutral or mildly expanding

behavior (including, for example, the time one map of uniformly hyperbolic flows).

Definition 3.1.19. E is called at most linearly growing for φ if there exists con-

stants C,D such that |Dφk|E(x)| ≤ kC +D for all x ∈M and k ≥ 0.

Theorem 9. Let φ : M →M be a C2 diffeomorphism with an invariant dominated

splitting E ⊕ F . If E is at most linearly growing then E is uniquely integrable.

A particular case of diffeomorphisms with dominated splitting are partially hy-

perbolic systems, which have a Dφ-invariant splitting Es ⊕ Ec ⊕ Eu where

‖Dφ|Es‖ < 1 < m(Dφ|Eu) and ‖Dφ|Es‖ < m(Dφ|Ec) ≤ ‖Dφ|Ec‖ < m(Dφ|Eu).

Corollary 3.1.20. Let φ : M → M be a C2 partially hyperbolic diffeomorphism

then if Ec grows at most linearly for φ and φ−1 then it is uniquely integrable.

Corollary 3.1.20 generalizes a result in [11] that gives unique integrability for

Ec under the stronger assumption that φ is center-isometric, i.e ‖Dφv‖ = ‖v‖ for

every v ∈ Ec. Note that partially hyperbolic systems are special cases of dominated

splitting in (3.1.15) where E = Es ⊕Ec and F = Eu or E = Es and F = Ec ⊕Eu.

Therefore Corollary 3.1.20 is a direct application of Theorem 9, by showing that

both Es ⊕ Ec and Ec ⊕ Eu are uniquely integrable.
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3.1.7 Philosophy and overview of the paper

Our main result is the Main Theorem, whose proof will occupy Sections 3.2 and

3.3, and all other results are, directly or indirectly, corollaries of the Main Theorem

and will be proved in Section 3.4. In the Appendix we prove some basic lemmas

required from analysis. The proof of the Main Theorem can be divided, as usual,

into two parts: The existence of integral manifolds, which will be proved in Section

3.2, and the uniqueness, which will be proved in Section 3.3.

The key idea in the proof of existence is the following. Given a set of m lin-

early independent differentiable vector fields X1, ..., Xm, there is a canonical way of

constructing an m-dimensional manifold W by successive integration of the vector

fields, see (3.2.3). In the case where the Frobenius involutivity (3.1.11) is satisfied,

W can be shown to define an integral manifold of the span of X1, ..., Xm, and this is

indeed one possible strategy to prove Frobenius theorem. Our main idea is to give

a quantitative estimate of how “non-integrable” the manifold W is in the general

case in terms of certain quantities which come into our definition of asymptotic

involutivity, see Proposition 3.2.1. We then apply Proposition 3.2.1 to our sequence

Ek to get that the corresponding manifolds W k are getting closer to being integral

manifold and we show that the limit defines an integral manifold, see Section 3.2.3.

The proof of Proposition 3.2.1 relies on the crucial observation that the involu-

tivity is essentially related to the pushforward of vector fields along flows. Indeed,

one way to write the involutivity of a bundle E is that there is a choice of vec-
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tor fields X1, ..., Xm that span E such that [Xi, Xj] = 0 or, equivalently, that the

pushforward along the flow of Xi leaves Xj invariant, i.e

[Xi, Xj] = 0⇐⇒ DetXiXj = Xj

where etXi denotes the flow ofXi. The quantitative measurement of non-integrability

of E mentioned above is thus essentially given by the quantity DetXiXj −Xj. This

difference can further be expressed by the pushforward of the Lie bracket [Xi, Xj]

along the flow of Xi, see (3.2.7), which reduces the problem of that of estimating

the norm of the pushforward.

The method by which we achieve this is perhaps the main technical innovation

in the paper. Standard techniques give estimates of the form

||DetXp ||∞ . et|X|C1 . (3.1.16)

However this is not useful when X approximates a continuous vector field, as in our

case, since the C1 norm of X might blow-up. In certain settings, using the notation

of differential forms, there is a better estimate by Hartman (see section 9 of chapter

5 in [29]), who gives

||DetXp || . et|dη|∞ (3.1.17)

where X ∈ ker η. It is easy to see that (3.1.16) is much weaker than (3.1.17). For

example we consider the simple case where X = ∂x + b∂y and η = dy− bdx. In this

case, |X|C1 involves both | ∂b
∂x
|∞ and | ∂b

∂y
|∞ whereas |dη|∞ involves only | ∂b

∂y
|∞ since

dη = ∂b
∂y
dx ∧ dy. Another example is where η = df for some C1 function f and X
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is any vector field in the kernel of η, in this case (3.1.17) is always satisfied while

(3.1.16) may not even make sense since X may not be differentiable. In our case,

see Proposition 3.2.2, we obtain an even weaker condition,

||DetXp ||∞ . etM (3.1.18)

where M is dη evaluated at two specific directions, one in ker(η) and the other in

the transverse subspace of ker(η), see (3.1.14). In particular, the fact that dη is

evaluated at a vector in the kernel of η plays an important role in bounding the

value of M in specific applications.

The bound (3.1.18) also comes into play in the proof of uniqueness under the

exterior regularity condition. The key point of the proof is first of all to reduce

the problem to that of uniqueness of solutions for ODE’s, as we show below. To

prove the uniqueness for ODE’s we use an innovative argument based on Stoke’s

Theorem rather than the more standard approach based on Gronwall’s inequality.

To present a brief conceptual overview of the argument, we consider for simplicity

a vector field X on a surface.

For smooth vector fields we can define a change of coordinates that straightens

out the integral curves and we can define a differential 1-form α withX ∈ ker(α) and

dα = 0. Uniqueness of solutions is then an easy consequence of Stoke’s Theorem:

the integration of α along any closed curve is zero and so, by contradiction, if X is

not uniquely integrable at a point there is a closed curve γ formed by two integral

curves of X and a curve λ transversal to X (as in Figure 3.2). The integral of α
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along γ is non-zero because α(X) = 0 and only one piece, λ, of γ is transverse to X,

and thus we get a contradiction. In the case of continuous vector fields we consider

a sequence of smooth approximations Xk of X and corresponding differential 1-

forms αk (which do not necessarily have to converge to α). Integrating these forms

αk along the very same closed curve γ we cannot apply the exact same argument

because we may have αk(X) 6= 0 but, using Equation (3.1.18), we can show that

|αk(X)| → 0 as k →∞ and we then show that this is sufficient to obtain uniqueness

for X.

3.2 Existence of Integral Manifolds

In this section we are going to prove the existence of integral manifolds under the

asymptotic involutivity, thus proving the first part of the Main Theorem. The

general strategy is quite geometric and intuitive. We construct a sequence of local

integral manifolds W k and show that they converge to a manifold which is an

integral manifold of the distribution E. The approximating manifolds W k will be

constructed in terms of the approximating C1 distributions Ek but are of course

in general not integral manifolds of these distributions since the Ek are not in

general integrable. We can measure how far these manifolds are from being integral

manifolds by comparing their tangent spaces to the distributions Ek and the key

step in the proof will consist of relating this “distance” to the quantities involved

in the definition of asymptotic involutivity in terms of the forms which define Ek
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and their derivatives.

To emphasize the generality of our approach, we work first in the context of an

arbitrary C1 distribution. In section 3.2.1 we define a C1 manifoldW associated to

this distribution, and state the key estimate in Proposition 3.2.1 which bounds the

“non-integrability” ofW . We reduce the proof of Propositon 3.2.1 to that of a more

technical Proposition 3.2.2 which uses the pushforward of vector-fields insides this

distribution. In Subsection 3.2.2 we prove Proposition 3.2.2 and then in Subsection

3.2.3 we apply the estimates to our sequence of approximations.

3.2.1 Almost integral manifolds

Let ∆ be a C1 m-dimensional bundle on an open set U ⊂ Rn+m for m,n ≥ 1. Fix a

point x0 ∈M . We can choose a coordinate system (x1, ..., xm, y1, ..., yn, U) centered

at x0 ∈ U so that ∆ is spanned by vector fields of the form

Xi :=
∂

∂xi
+

n∑
j=1

aij
∂

∂yj
(3.2.1)

for some C1 functions aji for i = 1, ...,m. For later on use we also define

Yp := span

{
∂

∂y`
|p, ` = 1, ..., n

}
(3.2.2)

One of the most useful properties of such vector-fields is that [Xi, Xj]p ∈ Yp for all

i, j = 1, ...,m and p ∈ U . This property will be used repeatedly all through out the

paper.
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Since the vector fields Xi are C1 in U , they are uniquely integrable and we let

etXi(p) denote the flow associated to Xi starting at the point p. Then, for ε1 > 0

sufficiently small, we define the map W : (−ε1, ε1)m → U by

W (t1, ..., tm) = etmXm ◦ · · · ◦ et1X1(x0). (3.2.3)

The set

W := W ((−ε1, ε1)m)

is our candidate manifold that ”integrates” the set of vector fields {Xi, i = 1, ...,m}.

In general it is not an integral manifold of ∆.

Let {Ui}`i=1 be any open cover of U , ηi1, ..., η
i
n a basis of sections of A1(∆) on Ui

and let Ai be the section of the F (A1(∆)) on Ui formed by these sections. We adopt

all the notations given in section 3.1.5 for these objects (but we drop the index k).

We also denote by A−1,i
p the inverse of Aip restricted to Yp

Proposition 3.2.1. For every t = (t1, ..., tm) ∈ (−ε1, ε1)m and i = 1, ...,m we have∣∣∣∣∂W∂ti (W (t))−Xi(W (t))

∣∣∣∣ ≤ mε1 sup
r,s,j∈{1,...,`}

||dAr|∆||∞||A−1,s||∞emε1M
j
A . (3.2.4)

Notice that if the distribution ∆ satisfies the usual Frobenius involutivity condi-

tion then dAr|∆ = 0 for all r and then Proposition 3.2.1 implies that ∂W/∂ti = Xi

which implies thatW is an integral manifold of ∆. In our setting, the distributions

Ek are not involutive but the weak asymptotic involutivity condition implies that

they are increasingly “almost involutive” and thus, by Proposition 3.2.1, “almost

integrable”. In Section 3.2.3 we will show that this implies that we can pass to
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the limit and obtain an integral manifold for our initial distribution E of the Main

Theorem.

Proposition 3.2.1 follows from the next proposition which we prove in Sec-

tion 3.2.2.

Proposition 3.2.2. Let ∆ be a C1, rank m distribution on U , X1, ..., Xm a basis

of ∆ of the form (3.2.1) and Y the complementary distribution of the form (3.2.2).

Let {Ui}qi=1 be an open cover of U , {ηi1, ..., ηin} basis of sections of A1(∆) defined on

Ui and Ai be the section of F (A1(∆)) on Ui formed by these differential 1-forms so

that they form a compatible cover. Then for all (t1, ..., tm) ∈ (−ε1, ε1)m and Y ∈ Y

we have

|DetmXm ◦ ... ◦Det1X1
x0

Y | ≤ sup
s∈{1,...,`}

|Aix(Y )|||A−jxm||e
mε1Ms

A (3.2.5)

where xm = etmXm ◦ ... ◦ et1X1(x0) and i, j are such that x0 ∈ Ui, xm ∈ Uj.

Proof of Proposition 3.2.1 assuming Proposition 3.2.2. Observe first that by the chain

rule, for i = 1, ...,m, we have

∂W

∂ti
= (DetmXm ◦ ... ◦Deti+1Xi+1)Xi. (3.2.6)

where DetiXi denotes the differential of the flow with respect to the spatial coor-

dinates (to simplify the notation we omit the base points at which the derivatives

are calculated because our estimates will be uniform in U and so the specific base

points do not matter). By a relatively standard result on the calculus of vectors
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(see [1, Chapter 2]), for any two vector fields Z,X on U we have

(DetZX)(x)−X(x) =

∫ t

0

(DesZ [X,Z])(x)ds. (3.2.7)

Thus, for t = (t1, ..., tm), using (3.2.6) and (3.2.7), we have

∂W

∂ti
(W (t))−Xi(W (t)) = (DetmXm ◦ ... ◦Deti+1Xi+1)Xi −Xi

=
m∑

j=i+1

DetmXm ◦ ... ◦Detj+1Xj+1
(
DetjXjXi −Xi

)
=

m∑
j=i+1

DetmXm ◦ ... ◦Detj+1Xj+1

∫ tj

0

DesXj [Xi, Xj]ds

=
m∑

j=i+1

∫ tj

0

DetmXm ◦ ... ◦Detj+1Xj+1DesXj [Xi, Xj]ds

Then taking norms on both sides we get∣∣∣∣∂W∂ti (W (t))−Xi(W (t))

∣∣∣∣ ≤ mε1 max
(tm,...,t1)∈[−ε1,ε1]m

s,r∈{1,...,m}

|DetmXk
m ◦ ... ◦Det1Xk

1 [Xs, Xr]|∞

(3.2.8)

Note that by the choice of Xi, the brackets [Xs, Xr] lie in Y so we can apply

Proposition 3.2.2 with Y replaced by [Xs, Xr] to get

|DetmXm ◦ ... ◦Det1X1
x [Xs, Xr]| ≤ sup

s,r,j∈{1,...,`}
|Aix([Xs, Xr])| ||A−r||∞emε1M

j
A (3.2.9)

Then using Cartan’s formula

|Aix([Xs, Xr])| = |dAix(Xs, Xr)|

we get

|DetmXm ◦ ... ◦Det1X1
x [Xs, Xr]| ≤ sup

s,r,j∈{1,...,`}
||dAs|∆||∞||A−r||∞emε1M

j
A . (3.2.10)

By inserting Equation (3.2.10) into Equation (3.2.8) we get Proposition 3.2.1.
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3.2.2 Proof of Proposition 3.2.2

Proposition 3.2.2 is the technical heart of the proof of existence of integral manifolds

where we use the exterior derivative of the annihilator differential forms to control

the push forwards of our vector-fields. We first define a non-autonomous flow which

corresponds to flowing along a direction Xi and then switching to Xi+1 and so on.

Let (t1, ..., tm) ∈ (−ε1, ε1)m and Ti =
∑i

`=1 |t`|. We define the non-autonomous

piecewise smooth vector field

Xt := σ(ti)Xi if Ti ≤ t < Ti+1

where σ is the sign function. Its associated non-autonomous flow is denoted by

φ(t). With this notation we have that for any Ti < t < Ti+1

φ(t) = eσ(ti)(t−Ti)Xi ◦ ... ◦ eσ(t1)T1X1(x),

Yt = Dφ(t)Y = Des(ti)(t−|ti|)Xi ◦ ... ◦Det1X1
x Y.

Let φ be the piecewise smooth curve which is the image of the map φ : [0, Tm]→ U .

Recall now that we had a cover {Ui}qi=1 of U . We can take the intersection of φ

with these open sets and consider the connected components of these intersections,

which are curves in φ, and which we denote by {Ij}uj=1. By shrinking and reindexing

Ii we can assume that Ii+1 = φ([si, si+1]) with s0 = 0, su = Tm, si < si+1 and that

each Ii is inside one of the elements U`i of the covering {Ui}qi=1. We let {A`i}ui=1

denote restrictions of the sections of F (A1(∆)) defined on the U`i ’s.
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Lemma 3.2.3. For every i = 1, ..., u, si > s ≥ si−1 and Y ∈ Y we have

A`is (Ys) = A`isi−1
(Ysi−1

) +

∫ s

si−1

dA`i(Xτ , Yτ )(φ(τ))dτ (3.2.11)

Proof of Proposition 3.2.2 assuming Lemma 3.2.3. Equation 3.2.11 can be rewrit-

ten as

A`is (Ys) = A`isi−1
(Ysi−1

) +

∫ s

si−1

dA`iτ (Xτ , A
−1,`i
τ ◦ A`iτ Yτ )(φ(τ))dτ (3.2.12)

This tells us that A`it (Yt) is the solution of the ODE

dF

dt
= dA`it (Xt, A

−1,`i
t ◦ Ft) for si−1 < t < si

with initial condition

F (si−1) = A`isi−1
(Ysi−1

).

This ODE is linear and piecewise C1 in t and C1 in other variables so has unique

solutions. Let Gi
t be the fundamental matrix of this ODE which satisfies (see [29]

for instance)

|Gi
t| ≤ e|t−si| ||dA

`i (Xt,A
−1,`i
t ·)||∞ ≤ e|si+1−si|M

`i
A . (3.2.13)

Moreover

A`isi(Ys) = Gs ◦ A`isi−1
(Ysi−1

),

and so we have

Ys = A−1,`i
si
◦Gs ◦ A`isi−1

(Ysi−1
). (3.2.14)

So repeatedly applying (3.2.14) and using (3.2.13), we get

|Ysu| ≤ ||A−1,`u
su || |A`1s0(Y )|

u−1∏
i=2

||A`isi ◦ A
−1,`i−1
si

||
u∏
i=1

||Gi
si+1
||. (3.2.15)
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But now, by assumption of compatible cover we get ||A`isi ◦ A
−1,`i−1
si || = 1, and by

(3.2.13) we get
u∏
i=1

||Gi
si+1
|| ≤ emε1M

`i .

We remind the reader that s0 = 0, su = Tm, Y0 = Y , YTm = DetmXm ◦ ...◦Det1Xmx Y ,

and so from equation (3.2.15) we get

|DetmXm ◦ ... ◦Det1Xmx Y | ≤ sup
s∈{1,...,`}

||A−1,`u
xm |||A`1x (Y )|emε1Ms

A

To prove Lemma 3.2.3, first note that

A`is (Ys) = (η`i1 (Ys), ...., η
`i
n (Ys)) and dA`is (Xs, Ys) = (dη`i1 (Xs, Ys), ...., dη

`i
n (Xs, Ys)).

So it is sufficient to prove (3.2.11) for a fixed differential form η`ij defined on U`i .

For convenience in this part we will drop the index `i and denote the evaluation

points as subscripts. Therefore we need to prove

η(Ys)φ(s) = η(Ysi−1
)φ(si−1) +

∫ s

si−1

dη(Xτ , Yτ )(φ(τ))dτ. (3.2.16)

We will first consider the case when the flow φ(t) is obtained from a single vector

field, that is φ(t) = etXi(x). The general case will be deduced from this one.

Lemma 3.2.4. For every x ∈ U , Y ∈ Y and |ti| small enough so that xi =

etiXi(x) ∈ U we have

ηj(De
tiXi
x Y )xi = ηj(Y )x +

∫ ti

0

dηj(Xi, De
sXi
x Y )esXi (x)ds

for all i = 1, ...,m, j = 1, ..., n.
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Proof. Let γ be a curve defined on [0, t̃] such that γ(0) = x, γ′(0) = Y and

etiXi(γ) ⊂ U . Note that Xi is always transverse to γ. Denote y = γ(t̃). Define the

parameterized surface Γ by

r(s1, s2) = es2Xj ◦ γ(s1)

for 0 < s1 ≤ t̃ and 0 < s2 ≤ ti. Then the boundary of Γ is composed of the curve γ

and the following piecewise smooth curves (see Figure 3.1):

ξ1(s) = esXi(x) ξ2(s) = esXi(y) β(s) = etiXi ◦ γ(s).

Since ηj(Xi) = 0 for all i, j, using Stoke’s theorem we have

Figure 3.1: Applying Stoke’s Theorem

∫
β

ηj −
∫
γ

ηj =

∫
Γ

dηj

which gives∫ t̃

0

ηj(β
′(s1))ds1 =

∫ t̃

0

ηj(γ
′(s1))ds1+∫ t̃

0

∫ ti

0

dηj(
∂r

∂s1

,
∂r

∂s2

)(s1, s2)ds1ds2.

(3.2.17)
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Differentiating (3.2.17) with respect to t̃ at t̃ = 0 we have

ηj(β
′(0)) = ηj(γ

′(0)) +

∫ ti

0

dηj(
∂r

∂s1

,
∂r

∂s2

)(0, s2)ds2.

Using chain rule we have

β′(0) = DetiXiY |x γ′(0) = Y

and

∂r

∂s1

(0, s2) = Des2XiY |x
∂r

∂s2

(0, s2) = Xi(e
s2Xi(x))

one can write the equality (3.2.17) as

ηj(De
tiXi
x Yxi) = ηj(Y )x +

∫ ti

0

dηj(De
s2Xi
x Y,Xs2)r(0,s2)ds2

which concludes the proof of the lemma.

Our next step is to generalize Lemma 3.2.4 for the composition of differentials.

Lemma 3.2.5. For every (t1, ..., tm) ∈ (−ε1, ε1)m, Y ∈ Y and j = 1, ..., n we have

ηj(De
tmXm◦· · ·◦Det1X1Y )xm = ηj(Y )x0+

m∑
i=1

∫ ti

0

dηj(Xi, De
sXi◦· · ·◦Det1X1Y )(xi(s))ds

where xm = etmXm ◦ · · · ◦ et1X1(x0) and xi(s) = esXi ◦ · · · ◦ et1X1(x0).

Lemma 3.2.5 will follow by successive applications of Lemma 3.2.4. However we

need to check first that the pushforward of the flows leaves the Y subspace invariant.
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Lemma 3.2.6. For every i = 1, ...,m, p ∈ U , |ti| < ε1 and Y ∈ Y we have

DetiXip Y ∈ Y .

Proof. Let p = (x1
0, ..., x

m
0 , y

1
0, ..., y

n
0 ). Recall that Xi = ∂

∂xi
+
∑n

j=1 a
ij(x, y) ∂

∂yj
and so

the flow of this vector field is etXi(x1
0, ..., x

m
0 , y

1
0, ..., y

n
0 ) = (x1

0, ..., x
i
0+t, ..., xm0 , y

1(t, x0, y0)

, ..., yn(t, x0, y0)) where yi(t, x, y) are functions C1 in their variables. Since the dif-

ferential has the form

D(etXi)|(x,y) =

 Idm×m 0m×n

An×m Bn×n


for some matrices A and B, the invariance of vectors in Y follows directly.

Proof of Lemma 3.2.5. Let (t1, ..., tm) ∈ (−ε1, ε1)m and Y ∈ Y , we first carry out

the proof for t1, t2 ≥ 0, tj = 0 for j > 2. First note that by Lemma 3.2.6 Det1X1
p Y ∈

Y . So applying Lemma 3.2.4 twice, one has that

ηj(De
t2X2 ◦Det1X1Y )x2 = ηj(Y )x2 +

∫ t1

0

dηj(X1, De
sX1Y )(x1(s))ds

+

∫ t2

0

dηj(X2, De
sX2 ◦Det1X1

p Y )(x2(s))ds.

The general case follows in the same way, by applying Lemma 3.2.4 repeatedly.

3.2.3 Convergence to Integral Manifolds

In this section we show that an asymptotic involutive bundle is integrable, thus

proving the first part of the Main Theorem. We suppose that the asymptotic
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involutivity in Definition 3.1.16 is satisfied, in particular we have the sequences of

differential forms {ηk,i1 , ..., ηk,in } defined on open sets Uk
i of the covering of U and the

sequence of bundles Ek defined on U which converges to the continuous bundle E.

As before we can choose a coordinate system (x, y) independent of k where Ek and

E are spanned by vector fields of the form (3.2.1) (though for E the vector fields

are only continuous). We recall that A−k,ip denotes the inverse of Ak,ip restricted to

Yp. For k > 1, let W k be the analogous of the map defined in (3.2.3) for ∆. By

Proposition 3.2.1, for every k > 1 we have

∣∣∣∣∂W k

∂ti
(W k(t))−Xk

i (W (t))

∣∣∣∣ ≤ mε1sups,r,j∈{1,...,`}||dAk,s|∆||∞||A−k,r||∞emε1M
k,j
A

Choosing ε1 small enough so that ε1m ≤ ε and using asymptotic involutivity we

have

lim
k→0

∣∣∣∣∂W k

∂ti
(W k(t))−Xk

i (W (t))

∣∣∣∣ = 0.

In particular we have uniformly sized manifolds Wk whose tangent spaces converge

to E in angle as k → ∞. This is enough to show that these manifolds converge

to some manifold W and that this is an integral manifold of E. This fact is quite

intuitive but we give a proof of such a statement in a more abstract setting for

completeness.

Proposition 3.2.7. Let E be a continuous tangent subbundle of rank m defined on

U and Ek be a C1 approximation of E. Let Vk ⊂ U be a sequence of C1 manifolds

of dimension m and of uniform size with a point p in common. Assume that
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lim
k→0

sup
q∈Vk

∠(TqVk, Ek
q ) = 0 (3.2.18)

Then there exists a subsequence of submanifolds Wk ⊂ Vk, which converges to an

m-dimensional manifold W, which is an integral manifold of E passing through p.

Proof. We choose coordinates (x1, ..., xm, y1, ..., yn) so that Ep = span{ ∂
∂xi
}mi=1 and

denote Y = span{ ∂
∂yi
}ni=1. We shrink U if necessary so that each Eq is transverse

to Yq for all q ∈ U . Since Ek converges to E,

lim
k→0

sup
q∈Vk

∠(TqVk, Eq) = 0.

Along with this, one has that Vk have uniform size so for k large enough we have

submanifoldsWk ⊂ Vk which can be written as graphs of functions Gk : V ⊂ Ep →

U . Thus we can write Wk as the images of the functions:

W k(x1, ..., xm) = (x1, ..., xm, Gk(x1, ..., xm))

where

Xk
i =

∂W k

∂xi
=

∂

∂xi
+

m∑
j=1

∂Gk
j

∂xi
∂

∂yj

span the tangent space of Wk. Note first that the differential DW k has Xk
i as

its columns which are linearly independent so Wk are C1 embedded manifolds.

Since the tangent space of Wk converges in angle to E, which is transverse to Y ,
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one has that supk,i |Xk
i |∞ ≤ C1 for some constant C1 > 0. Since the differential

DW k is a matrix whose columns are Xk
i , we get that supk,i |DW k

i |∞ ≤ C2 for some

constant C2 > 0. Therefore the sequence of functions W k
i is equi-Lipschitz and equi-

bounded and so up to choosing a subsequence, converges to a continuous function

W : V → U .

We are left to prove thatW := W (V ) is a C1 m-dimensional manifold tangent to

E. For this it is sufficient to prove that Xk
i ’s converges to some linearly independent

Xi’s that span E. This implies that DW k is a matrix which converges to another

matrix, say A whose columns are Xi. Thus we have that p ∈ Wk for all k, W k → W

and DW k → A. Therefore in fact W : V → U is a C1 function whose derivative is

a matrix whose columns are Xi. Therefore W is a C1 manifold that is tangent to

E and passes through p.

To prove the convergence of Xk
i ’s, we first observe that span{Xk

i }mi=1 at qk =

W k(x1, ..., xm) converges to E at q = W (x1, ..., xm). Moreover E can be spanned

by vector fields of the form

Xi =
∂

∂xi
+

m∑
j=1

Hij(x, y)
∂

∂yj
.

Since the tangent space ofWk converges to E, there exist vector fields Y k
i inside the

tangent space that converges to each Xi. But Y k
i =

∑n
j=1 a

k
ijX

k
j and by the form

of Xi we see that akii → 1 while akij → 0 for j 6= i as k → ∞. And so in particular

|Xk
i − Y k

i |∞ → 0 as k →∞ which implies that Xk
i converges to Xi.
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3.3 Uniqueness of Local Integral Manifolds

In the previous section we have proven that asymptotic involutivity implies inte-

grability of E. In this section we assume that E is integrable and show that if E

is exterior regular then it is uniquely integrable which will then conclude the proof

of the Main Theorem. We remind that uniquely integrable means the following:

When ever two integral manifolds of E intersect, they intersect in a relatively open

(in both) set. First we reduce the question of unique integrability to the following:

Proposition 3.3.1. Assume E is integrable and exterior regular then E is spanned

by a linearly independent set of vector fields Xi which are uniquely integrable.

This immediately implies uniqueness for the integral manifolds.

Proof of Uniqueness part of Main Theorem assuming Proposition 3.3.1. Assume that

there exist two integral manifolds W1,W2 of E such that z ∈ W1 ∩ W2. By

assumption we have that E is spanned by uniquely integrable vector fields Xi.

Moreover since Wj for j = 1, 2 are integral manifolds of E, for any qj ∈ Wj

Xi(qj) ∈ TqjWj for all i and j. Now for ε small enough the m-dimensional surface

W = {etmXm ◦ ... ◦ et1X1(z) : |ti| ≤ ε} is well defined. Moreover by unique integra-

bility of Xi restricted to each Wj, W is a subset of both surfaces. This means that

the intersection of W1 with W2 is relatively open in both surfaces.

To prove Proposition 3.3.1 we define quite explicitly the linearly independent

vector fields Xi which span E and show that they are uniquely integrable. We
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first introduce some notation which we will need for the argument. Note that the

assumption of exterior regularity means that there exists a sequence of approxima-

tions Ek of E defined on U and for each k > 0, there exists a covering {Uk
i }

nk
i=1 of

U , a basis of sections {βk,ij }nj=1 of A1(Ek) defined on each Uk
i and the section Bk,i

of F (A1(Ek)) formed by these differential 1-forms. As in the previous sections we

can find {Xk
i }mi=1 a basis of vector fields which span Ek such that they converge to

{Xi}mi=1 which is a basis of vector fields for E such that they have the form

Xk
i =

∂

∂xi
+

n∑
j=1

bi,kj
∂

∂yj
and Xi =

∂

∂xi
+

n∑
j=1

bij
∂

∂yj
.

Note that these approximations Ek and Xk
i may be different from the ones used in

the previous sections. Let i ∈ {1, ...,m} and x0 ∈ U and consider integral curves of

Xi passing through x0 = (x1
0, ..., x

m
0 , y

1
0, ..., y

n
0 ). Due to the form of Xi, any integral

curve γ(t) can be written as

γ(t) = (x1
0, ..., x

i
0 + t, ..., xm0 , y

1(t), ..., yn(t))

where yj(t) are differentiable functions in t. In particular if an integral curve passes

through the point x0 then it necessarily always remains inside the n+1 dimensional

plane Pi = {xj = xj0 for j 6= i}, x0 ∈ Pi passing through x0. Therefore it is

sufficient just to prove uniqueness restricting to each such subspace. So given such

an x0 and Pi we restrict Xk
i , Xi, {βk,ij }nj=1, U

k,i, Bk,i to Vi = U ∩Pi with coordinates

(xi, y1, ..., yn). For simplicity we will omit the index i. Note that {βkj }nj=1 are all

non-vanishing and linearly independent and Xk
i is in the kernel of βkj ’s. Moreover Bk

and Xk restricted to these subspaces still satisfy the exterior regularity conditions.
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3.3.1 A Condition for Unique Integrability of X

We can now start the proof of the proposition. By contradiction, we assume X

admits two integral curves γ1(t), γ2(t) ⊂ U with 0 ≤ t ≤ t1 which intersect but

whose intersection is not relatively open. Under this assumption, without loss of

generality we can assume that γ1(0) = γ2(0) = x0 for some x0 ∈ Vi and that

γ1(t) 6= γ2(t) for 0 < t ≤ t1. Notice that for 0 ≤ t ≤ t1, γ1(t) and γ2(t) have the

form

γ1(t) = (t, y1
1(t), ..., yn1 (t)) and γ2(t) = (t, y1

2(t), ..., yn2 (t))

and so in particular the end points γ1(t1), γ2(t1) have the same x coordinate. There-

fore they can be connected to each other by a straight line segment of the form

λ(t) = γ1(t1) + vt which lies inside the plane Y that passes through (t1, 0, ..., 0).

Here v is the unit vector in the direction (0, y1
2(t1)− y1

1(t1), ..., yn2 (t1)− yn1 (t1)). Let

`(·) denote the length. We will show that `(λ) > 0 leads to a contradiction thus

proving the proposition.

We first prove a lemma which gives sufficient conditions, in terms of the existence

of a family of differential forms, to ensure `(λ) = 0. Then in the following sections

we will show that such a family can be constructed.

Lemma 3.3.2. Assume {αk}k is a sequence of C1 differential forms defined on

some domain Ṽ ⊂ V containing the curves γ1, γ2, λ, a constant c > 0 such that for
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Figure 3.2:

every k:

1. αk(Xk) = 0 (3.3.1)

2. dαk = 0 (3.3.2)

3. min
t
αk(λ̇(t)) ≥ c (3.3.3)

4. lim
k→∞
|αk(Xk −X)|∞ = 0 (3.3.4)

Then `(λ) = 0.

Proof. Let S be a surface in Ṽ bounded by the curves γ1, γ2, λ (whose union forms

a simple, closed, piecewise smooth curve, see Figure 3.2). By Stoke’s Theorem we

have ∫
γ1

αk +

∫
λ

αk −
∫
γ2

αk =

∫
S

dαk

and so

|
∫
λ

αk| ≤ |
∫
γ2

αk −
∫
γ1

αk +

∫
S

dαk|.
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Since |
∫
λ
αk| ≥ mint α

k(λ̇(t))`(λ) we can write this as

min
t
αk(λ̇(t))`(λ) ≤ |

∫
γ2

αk|+ |
∫
γ1

αk|+ |
∫
S

dαk| (3.3.5)

Using Equations (3.3.2), (3.3.3) and (3.3.5) we have

`(λ) ≤ 1

c
(|
∫
γ2

αk|+ |
∫
γ1

αk|) (3.3.6)

and using Equation (3.3.1) and γ̇1(t) = X(γ1(t)) we get

|
∫
γ1

αk| = |
∫ t1

0

αk(X)(γ1(s))ds| = |
∫ t1

0

αk(Xk −X)(γ1(s))ds|

which implies

|
∫
γ1

αk| ≤ 2t1|αk(Xk −X)|∞. (3.3.7)

The same applies to γ2. Then plugging Equation (3.3.7) into (3.3.6), we get that

for all k

`(λ) ≤ 1

c
|αk(Xk −X)|∞

which, due to (3.3.4), goes to 0 as k goes to ∞.

3.3.2 Definition of αk

To construct αk satisfying conditions of Lemma 3.3.2, we are going to define a

change of coordinates that straightens flow of each Xk. Since the image of the flow

is a straight lines of the form ∂
∂t

, then it will also be nullified by constant differential

forms of the form dzj. Pulling back these constant differential forms will give us

the required differential forms αk(see Figure 3.5). Now we make this more precise.
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Let ε1 > 0 be small enough such that the box U1 = (−ε1, ε1)n+1 centered at 0

is in V . Let ε2 < ε1 be small enough so that for U2 = (−ε2, ε2)n+1, etX
k
(U2) ⊂ U1

for all |t| ≤ ε2. We decrease t1 if necessary so that γ` for ` = 1, 2 are in U2 and

t1 < ε2 and denote the line p(t) = (t, 0, 0, ..., 0). Given some t ≤ ε2, we denote the

subspaces:

Pt = {x = t} ∩ U2 ' [ε2, ε2]n and Dk
ε2

=
⋃

0≤t<ε2

etX
k

(Pt1).

The domains Dk
ε2

will be the domains on which we will define the forms αk. The

assumptions of of Lemma 3.3.2 require that they should contain the curves γ1, γ2, λ.

This is proven in the next lemma.

Lemma 3.3.3. There exists an open subset Ṽ ⊂ ∩∞k=1D
k
ε2

such that for t1 small

enough, it contains the curves γ1, γ2 and λ.

Proof. Fix δ ≤ ε2/2. Choose t1 small enough so that for ` = 1, 2,

d(γ`(t), p(t)) = |(0, y1
` (t), ..., y

n
` (t))| ≤ δ

for all 0 ≤ t ≤ t1 and that esX
k
(Pt1)∩ V2 contains a box [− ε2

2
, ε2

2
]n ⊂ Pt1+s centered

at p(t1 + s) for all |s| ≤ t1. These conditions are possible to obtain since the Xk

are uniformly bounded in norm which guarantees that λ and γ`([0, t1]) are in Dk
ε2

and that Dk
ε2

all contain a uniformly sized box centered at the axis y = 0 (see

Figure 3.3).

Note that each Pt is a codimension one subspace of U2. Since Pt1 is transverse

to Xk, Dk
ε2

is an n+ 1 dimensional open subset of U1. Let φ : [−ε2, ε2]n → Pt1 be a
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Figure 3.3: The domains

parametrization of Pt1 with coordinate representation φ(z1, ..., zn). We can assume

that Dφ ∂
∂zi

= ∂
∂yi

for all i = 1, ..., n. Then we define the change of coordinates :

ψk : [−ε2, ε2]n+1 → Dk
ε2
⊂ U1

by

ψk(t, z
1, ..., zm) = etX

k

(φ(z1, ..., zm)).

This simply takes points of Pt1 and flows them by an amount equal to t.

Lemma 3.3.4. The maps ψk are diffeomorphisms onto their image.

Proof. We will show that these maps are diffeomorphisms by showing that they

are local diffeomorphisms and that they are injective. To show that it is a local

diffeomorphism, it is enough to show that the columns of Dψk are everywhere
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linearly independent. One of the columns is:

∂ψk
∂t

= Xk

while the others are of the form

∂ψk
∂ỹi

= DetX
k ∂

∂yi
.

By Lemma 3.2.6, for t small enough, DetX
k

preserves Y and Y is transverse to Xk.

Therefore Dψk is invertible at every point and therefore is a local diffeomorphism.

So it remains to show it is injective. If it is not injective then there exists two integral

curves ξ1, ξ2 that start at Pt1 and intersect at their final point. By uniqueness of

solutions, this means that ξ1 ◦ ξ−1
2 is an integral curve of Xk that starts at Pt1 and

comes back to Pt1 (see Figure 3.4). This either means that the x component of

ξ1 ◦ ξ−1
2 first increases and then decreases or first decreases then increases. Neither

is possible due to the form of the vector fields Xk = ∂
∂x

+ ... which implies that the

x component is monotone.

Now we are ready to define αk. First, for every j = 1, ..., n, let

αkj = (ψ−1
k )∗dzj.

In the next subsection, we will show that for some fixed i0, the differential forms

{αki0} are the required differential forms.
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Figure 3.4: Injectivity

3.3.3 Choosing αk
i0

Lemma 3.3.5. For some choice of i0, the differential 1-forms αki0 satisfy the con-

ditions given in Lemma 3.3.2.

Proof. First of all

αkj (X
k) = (ψ−1

k )∗dzj(Xk) = dzj(Dψ−1
k Xk) = dzj(

∂

∂t
) = 0

and

dαkj = d(ψ−1
k )∗dzj = (ψ−1

k )∗ddzj = 0

which prove that conditions (3.3.1) and (3.3.2) hold for all j and k.

To check the remaining conditions, we need to calculate the inverse of ψk ex-

plicitly. One can by direct calculation check that the inverse of ψk is given by

ψ−1
k (xi, y1, ..., ym) = (x− t1, φ−1 ◦ e−(x−t1)Xk

(x, y1, ..., yn))
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straight.png

Figure 3.5:

Therefore ψ−1
k (x, y1, ..., ym) is like flowing the y coordinates of (x, y1, ..., yn) by the

amount −(x− t1) and replacing the first coordinate by the amount of time required

to get there from Pt1 . For simplicity we denote T = φ−1 : Vi → [−ε2, ε2]n, s =

−(x− t1) and (x, y1, ..., yn) = (x, y).

To prove (3.3.3), note that (ψ−1
k )∗ in coordinates is the (n+ 1)× (n+ 1) matrix

which transpose of the differential D(ψ−1
k ). One has
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D(ψ−1
k )|(x,y) =



0 . . 0

[DT ◦ DesX
k
(x, y)]n×n+1


+



1 0 . . 0

pq 0 0 . .

0 0 0 .

−DT (Xk) . . . .

xy 0 . . 0


(3.3.8)

For x = t1 we have s = 0 and by the property De0Xk
= Id, we get

(ψ−1
k )∗|x=t1(dz

j) = dyj − [DT (Xk)]jdx
j. (3.3.9)

We will now show that for some i0 all αki0 satisfy Equation (3.3.3) (at least up to

changing some orientations), i.e we will show that for some i0, we have αki0(λ̇)(λ(s)) >

c > 0 for all s. To show this, tote that the curve λ is of the form λ(s) = sv for a

fixed unit vector v that lies inside Y and therefore since λ̇(s) = v =
∑n

j=1 v
j ∂
∂yj

and

λ ⊂ Pt1 , we have by Equation (3.3.9) for all k

αkj (λ̇(s)) = (ψ−1
k )∗|x=t1(dy

j)(λ̇(s)) = vj.

Since |v| = 1, there exists a constant c > 0 and i0 such that |vi0| > c. By reversing

the orientation of the loop formed by γ1, γ2, λ if necessary and therefore reversing

the direction of λ, we can assume vi0 is positive, that is

αki0(λ̇(s)) > c

for all k, which proves (3.3.3).
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Finally to prove (3.3.4), we will relate the quantity |αk(Xk−X)|∞ to the quantity

given in the definition of exterior regularity (see Definition 3.1.17), which goes to 0

by assumption. Note that αk = (ψ−1
k )∗dzi0 . Therefore

αk(Xk −X) = dzi0(Dψ−1
k (Xk −X))

But Xk − X =
∑n

i=1(bi,k − bi) ∂
∂yi
∈ Y and looking at the form of Dψ−1

k given in

equation (3.3.8) we see that

‖Dψ−1
k |(x,y)(X

k −X)‖ = ‖DesXk

(Xk −X)‖

where s = −(x− t1). By Proposition 3.2.2, denoting y = esX
k
(x) we have

|DesXk

x (Xk −X)|∞ ≤ sup
s,r,j∈{1,...,sk}

|Bk,s(Xk −X)|∞||B−k,r||∞emε1M
k,j
B

≤ sup
s,r,j∈{1,...,sk}

‖Bk,s|E‖‖B−k,r‖∞emε1M
k,j
B

where the last inequality is given by the fact that Xk annihilates Bk,i. This quantity

goes to 0 by the exterior regularity condition which gives (3.3.4).

3.4 Applications

In this section we will prove Theorems 5 to 9. Theorems 8 and 9 are direct ap-

plications of our Main Theorem and Theorem 8 implies Theorem 7 which implies

Theorem 6 which implies Theorem 5.
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3.4.1 Proof of Theorem 9

We first start by recalling some standard properties of dominated splittings, for

details one can consult the book [49] and the article [38].

Let E0 be a C1 subbundle transverse to F , then by the domination of the

splitting the sequence of subbundles Ek := φ−k∗ E0 = Dφ−kE0 converges in angle

to E as k → ∞. Now fix any p ∈ M and a neighborhood U of p, we suppose

that coordinates systems (x1, ..., xm, y1, ..., yn) are defined in U and all the other

notations in Section 3.1.5 are also adapted to this present Section relatively to the

sequence of distributions {Ek, k ≥ 1} and its limit E.

Let {Vj}Nj=1 be a cover of M by open balls such that for each j ∈ {1, ..., N},

A1(E0) admits an orthonormal frame Cj. Notice that for each k > 1, {φ−k(Vj)}lj=1

is an open cover of M and {Ck,j = (φk)∗Cj}lj=1 is a frame of A1(Ek) such that for

j = 1, ..., l, Ck,j is defined in φ−k(Vj). Let {Uk,i}nki=1 be the open cover of U given

by the connected components of U ∩ φ−k(Vj). Notice that for each Uk,i there is a

frame Ak,i of A1(Ek) which is the restriction of the relevant Ck,j.

We are going to check that the open cover {Uk,i}nki=1 and the corresponding

sections {Ak,i}nki=1 satisfy asymptotic involutivity and exterior regularity. From the

definition of the Ck,j’s we have that

Ak,ip = C`i
φk(p)
◦Dφkp.

To check the compatibility of the cover we first observe that, by standard estimates

for dominated splittings, we have that φkpYp is converging to F and so in particular
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φkpYp is transverse to E0. Then we can write

(Ak,ip |Yp)−1 = (Dφkp)
−1 ◦ (C`i

φk(p)
|φk∗Yp)

−1

which implies

‖Ak,ip ◦ (Ak,jp |Yp)−1‖ = ‖C`i
φk(p)
◦ (C

`j
φk(p)
|φk∗Yp)

−1‖.

The compatibility follows from the fact that C1 := C`i and C2 := C`j |φk∗Y are

orthonormal and therefore C1, C2 : (E0)⊥ → Rn are isometries. Let v ∈ Rn and

u = C−1
2 (v) and we write u = u1 + u2 with u1 ∈ E0 and u2 ∈ (E0)⊥. Then we have

C1(u) = C1(u2) and C2(u2) = v and using that C1|(E0)⊥ and C2|(E0)⊥ are isometries

we have

‖C1 ◦ C−1
2 (v)‖ = ‖C1(u)‖ = ‖C1(u2)‖ = ‖u2‖ = ‖C2(u2)‖ = ‖v‖

which gives that ‖C1 ◦ C−1
2 ‖ = 1 which then implies the compatibility.

Therefore it remains to prove asymptotic involutivity and exterior regularity.

For both cases we need to estimate

‖(Ak,ip |Yp)−1‖ =
1

‖Ak,ip |Yp‖
.

Since Yp is transverse to Ep, again by standard estimates for dominated splittings,

there exists a constant C > 0 such that for all p ∈ M and for any v ∈ Yp with

|v| = 1

|Dφkpv| ≥ Cm(Dφk|Fp).
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Therefore ||Ak,ip |Yp || ≥ Cm(Dφk|Fp) and so

‖(Ak,ip |Yp)−1‖ ≤ 1

Cm(Dφk|Fp)
. (3.4.1)

Another common term for both asymptotic involutivity and exterior regularity is

Mk,i which we estimate as follows. For X ∈ Rn, Y ∈ Ek we have

|dAk,i(A−k,iX, Y )| = |dC`i(Dφk ◦Dφ−k ◦ C−1,iX,DφkY )| = |dC`i(C−1,iX,DφkY )|.

Notice that ‖dC li‖ is uniformly bounded then we can estimate the right hand side

by the product of the norms of the two vectors. Since ‖C−1,iX‖ is also uniformly

bounded we have

Mk,i = sup
X∈Rn,Y ∈Ek

|dAk,i(A−k,iX, Y )| ≤ C‖Dφk|Ek‖.

To estimate the last remaining term for the asymptotic involutivity, notice that if

X, Y ∈ Ek then

|dAk,i(X, Y )| = |dC`i(DφkX,DφkY )| ≤ C‖Dφk|Ek‖2,

which implies that

‖dAk,i|Ek‖ ≤ C‖Dφk|E‖2.

So using these last three estimates we have

‖dAk,i|Ek‖∞‖A−k,j‖∞eεM
k,i ≤ ‖Dφ

k|Ek‖2

m(Dφk|F )
eε‖Dφ

k|
Ek
‖.

By the domination, there exists r < 1 such that for k large enough we have

sup
p∈M
{‖Dφkp|Ekp‖} < rk inf

p∈M
{m(Dφk|Fp)}.

83



Moreover by the definition of Ek, the linear growth assumption holds also for Ek,

and therefore choosing ε small enough, the right hand side goes to zero as k → ∞

and so the asymptotic involutivity is satisfied.

Similarly, to estimate the last remaining term of the exterior regularity condition,

notice that we have

|Ak,i(Xk
i −Xi)| = |C`i(Dφk(Xk−X)| ≤ ‖DφkXk‖+‖DφkX‖ ≤ 2 max{‖Dφk|Ek‖, ‖Dφk|E‖}

which implies that

|Ak,i(Xk
i −Xi)|∞‖A−k,j‖ekM

k,`| ≤ 2 max{‖Dφk|Ek‖, ‖Dφk|E‖}
m(Dφk|F )

eε‖DΦk|
Ek
‖

which also goes to 0 for ε small enough, giving exterior regularity.

3.4.2 Proof of Theorem 8

The proof consists of checking that strong asymptotic involutivity and strong ex-

terior regularity imply asymptotic involutivity and exterior regularity respectively,

therefore Theorem 8 follows directly from the Main Theorem.

First of all, we replace the covering {Uk
i }

sk
i=1 with the whole neighbourhood U

so that sk ≡ 1 and the compatibility condition is automatically satisfied. Then

Ak simply becomes the matrix formed by the 1-forms {ηk1 , ..., ηkn} given by the

strong asymptotic involutivity and Bk becomes the matrix formed by the 1-forms

{βk1 , ..., βkn} given by the strong exterior regularity assumption. Moreover, by the

strong version of asymptotic involutivity and exterior regularity, the sequences of 1-

forms ηki and βki converge to a basis ηi and βi ofA1(E) and therefore ‖Ak‖∞, ‖Bk‖∞, ‖A−k‖∞, ‖B−k‖∞
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are uniformly bounded in k. Then it is easy to check that ||dAk||∞ ≤ C maxi{|dηki |},

‖dBk‖∞ ≤ C maxi{|dβki |} for some constant C > 0 and for all k. Therefore from

the definition of Mk(we omit the superscript ` since sk ≡ 1) we have (using C as a

generic constant)

Mk
A ≤ ‖dAk‖ · ‖A−k‖ ≤ C max

i
{|dηki |} and Mk

B ≤ ‖dBk‖ · ‖B−k‖ ≤ C max
i
{|dβki |}.

Moreover, using the fact that Ek ⊂ ker(ηi) for all i, we have ‖dηkj |Ek‖ ≤ C‖ηk1 ∧

... ∧ dηkj ‖ which implies that ‖dAk|Ek‖ ≤ C supj ‖ηk1 ∧ ... ∧ dηkj ‖. Combining these

observations, we have

‖dAk|Ek‖ · ‖A−k‖eεM
k
A ≤ C sup

j
‖ηk1 ∧ ... ∧ dηkj ‖eCεmaxi{|dηki |}

which converges to zero by strong asymptotic involutivity.

For the exterior regularity, we observe that for all k, j we have

‖Bk|E‖ = ‖(Bk −B)|E‖ ≤ C max
j∈{1,...,n}

|βkj − βj|∞

where the first equality is true because E annihilates B. Combining this with the

bound on Mk
B, we get the exterior regularity.

and sups∈{1,...,m} |Bk,i(Xk
s −Xs)|∞ ≤ C sups∈{1,...,n} |βks −βs|∞ since the maximal

angle between Ek and E is proportional to that between A1(Ek) and A1(E). Com-

bining these observations one gets that conditions given in Theorem 8 imply those

in the Main Theorem.
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3.4.3 Proof of Theorem 7

We will prove Theorem 7 assuming Theorem 8. Recall that E has modulus of

continuity w1(s) and has modulus of continuity w2(s) with respect to the vari-

ables y`, which means that it has some basis of sections Zi =
∑m

`=1 bi`(x, y) ∂
∂xi

+∑n
j=1 cij(x, y) ∂

∂yj
where bi` and cij have modulus of continuity w1(s) and have mod-

ulus of continuity w2(s) with respect to the variables y`. We can also find a basis

of E of the form

Xi =
∂

∂xi
+

n∑
j=1

aij(x, y)
∂

∂yj
.

We claim that aij(x, y) has modulus of continuity w1(s) and has modulus of continu-

ity w2(s) with respect to the variables y`. To prove this claim, we write Xi as linear

combinations of Zi where the coefficients in the combinations are obtained from bi`

and cij by summing, dividing (whenever non-zero) and multiplying. These coeffi-

cients are aij and by proposition 3.5.1 they have the same modulus of continuity

properties as bi` and cij.

Now we are going to prove that each Xi is uniquely integrable. As in section 3.3,

givenXi, it suffices to prove uniqueness restricted to the plane span{ ∂
∂xi
, ∂
∂y1
, ..., ∂

∂yn
}.

Define the 1-forms

ηj = dyj − aij(x, y)dxi

so that Xi ⊂ ∩nj=1ker(ηj). These 1-forms also have the modulus of continuity

properties as above.

To prove that Xi is uniquely integrable, it is sufficient, by Theorem 8, to prove
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that ηj are exterior regular in this plane.

Lemma 3.4.1. ηj are strongly exterior regular.

Proof. Let aεij(x, y) be mollifications of aij (see (3.5.1) in the Appendix). Then

define

ηεj = dyj − aεij(x, y)dx and dηεj = −
n∑
i=1

∂aεij
∂yi

(x, y)dyi ∧ dx.

By proposition 3.5.2

|
∂aεij
∂yi
|∞ ≤ K sup

|s|≤ε

w2(s)

s
and |aεij − aij|∞ ≤ K sup

|s|≤ε
w1(s)

for all i, j and ε, for some K > 0. Therefore setting

ηkj = dyj − a
1
k
ij(x, y)dx

we have that

|ηkj − ηj|∞e|dη
k
j |∞ ≤ K sup

|s|≤ε
w1(s)ew2(s)/s

which goes to 0, which gives the strong exterior regularity.

This completes the proof of Theorem 7.

3.4.4 Proof of Theorem 6

Now we will prove that Theorem 7 implies Theorem 6. To apply Theorem 7, note

that the problem of integrating a system of first order PDEs into a problem of
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integrating a bundle, i.e. solving the PDE (3.1.6) is equivalent to integrating the

differential forms

ηi = dyi −
n∑
j=1

F ij(x, y)dxj.

Consider the matrix F̂ I(ξ) (see section 3.1.2 and Theorem 6 for the definition) and

its inverse B(ξ). Let E = ∩mi=1ker(ηi) so that A1(E) = span{ηi}mi=1. Let

α` =
m∑
j=1

B`j(ξ)ηj

which forms a basis for A(1(E)). Since B is the inverse of F̂ I(ξ) and F̂ I(ξ) corre-

sponds to the columns i1, ..., in of the matrix F̂ , the new differential forms are of

the form

α` = dξi` +
n∑

j /∈i1,...,in

gij(ξ)dξ
j

Note that gij(ξ) are Cw1(s) functions that have modulus of continuity w2(s) with

respect to variables {ξi} for i ∈ {i1, ..., in}. Indeed the functions fij satisfy these

properties and so do the entries of the matrix F̂ I(ξ). Therefore the matrix B(ξ)

whose entries are formed by taking quotients, products and sums of elements of

F̂ I(ξ) have the same properties, by Proposition 3.5.1. Since gij are obtained by

products and sums of entries from B(ξ) and fij and 1’s they also have the same

property, again by Proposition 3.5.1. Defining the vector-fields for ` /∈ i1, ..., in

X` =
∂

∂ξ`
+

∑
j∈i1,...,in

g`j(ξ)
∂

∂ξj
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we see that E is spanned by X`, and so is transverse to { ∂
∂ξj
} for j ∈ i1, ..., in. And

in particular with respect to variables {ξj} for j ∈ {i1, ..., in}, E has modulus of

continuity w2(s) and in general it has modulus of continuity w1(s) where w1(s), w2(s)

satisfy (3.1.3). And so by theorem 7, E is uniquely integrable.

This completes the proof of theorem 6.

Proof of proposition 3.1.7. Note that solving the PDE given in the proposition is

equivalent to integrating the system of differential forms

ηi = dyi −Gi(y
i)

m∑
j=1

∂Hi

∂xj
(x)dxj.

We will prove that these differential forms satisfy strong asymptotic involutivity

and strong exterior regularity.

Let Gε
i and Hε

i be mollifications of Hi and Gi. Then denote

ηki = dyi −G1/k
i (yi)

m∑
j=1

∂H
1/k
i

∂xj
(x)dxj.

Note that |ηki − ηi|∞ → 0. This is because by proposition 3.5.2, if a function H

is C1, and Hε are its mollifications, then derivatives of Hε converge to derivative

of H. Denoting the differential form αki =
∑m

j=1

∂H
1/k
ij

∂xj
(x)dxj, this system can be

written as

ηki = dyi −G1/k
i (yi)αki .
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Let dx be the exterior differentiation with respect to only x coordinates. Then

αki = dxH
1/k
i , so dαki = d2

x(H
1/k
i ) = 0. Therefore

dηki = −∂G
1/k
i

∂yi
(yi)dyi ∧ αki .

Now lets show strong asymptotic involutivity:

ηk1 ∧ ... ∧ ηkn ∧ dηk` = −
n∧
i=1

(dyi −Gi1/k(yi)αki ) ∧ (
∂G

1/k
`

∂y`
dy` ∧ αk` )

Note that αk` ∧ αk` = 0 therefore the expression above reduces to

= −dy` ∧
∧
i 6=`

(dyi −Gi1/k(yi)αki ) ∧ (
∂G

1/k
`

∂y`
dy` ∧ αk` )

However the expression above now contains a term of the form

dy` ∧ ∂G
1/k
`

∂y`
dy`

which is 0. therefore

ηk1 ∧ ... ∧ ηkn ∧ dηk` = 0.

So by Theorem 8 this system is integrable. This proves Proposition 3.1.7.

3.4.5 Proof of Theorem 5

Now we show how Theorem 6 implies Theorem 5. We want to show uniqueness

of solutions for the ODE given in equation (3.1.1). We will prove Theorem 5 by
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showing that it is a special case of Theorem 6 with m = 1 (so that there is no j

index for F̂ ). First note that it can be written as the PDE:

∂yi

∂t
= F i(t, y) (3.4.2)

Then the matrix F̂ (ξ) defined in Theorem 6, specialised to the case of Theorem

5, is the n×(n+1) matrix which is obtained by adjoining n×n identity matrix with

the column vector formed from F (ξ). We recall that F̃ = (F, 1). The condition

F̃ i(ξ) 6= 0 with i = 1, 2, ..., n + 1 in Theorem 5 is equivalent to the condition

det(F̂ I(ξ)) 6= 0 with I = (1, 2, ..., i− 1, i+ 1, ..., n+ 1) in Theorem 6. And moreover

the condition 3.1.7 given in Theorem 6 is equivalent to the condition 3.1.3 given in

Theorem 5.

This finishes the proof of Theorem 5.

3.5 Appendix

In the appendix we prove or cite some properties of modulus of continuities and

mollifications that we use in section 3.4.

3.5.1 Modulus of continuity

Proposition 3.5.1. Let f, g : U ⊂ Rn → Rm be function with modulus of continuity

wf (s), wg(s). Let K = max{sups f(s), sups g(s)} and c = infs{g(s)}. Then

1. Then f + g has modulus of continuity wf (s) + wg(s).
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2. If K ≤ ∞, f.g has modulus of continuity wf (s) + wg(s)

3. If c > 0 then f
g

has modulus of continuity wf (s) + wg(s)

4. The function −xln(x) has modulus of continuity −xln(x) for 0 < x < 1
e

5. The function xα for 0 < α < 1 has modulus of continuity xα.

6. Assume f(x1, ..., xn) has modulus of continuity wi(s) with respect to each vari-

able. Let w(s) be a bounded, convex function such that wi(s) ≤ w(s) for all s.

Then f(x) has modulus of continuity w(
√

2s).

7. Assume f = (f 1(x1, ..., xn), ..., fm(x1, ..., xn)) is such that each f i has modulus

of continuity wij with respect to variable xj. Let wj(s) be such that wij(s) ≤

wj(s) for all i. Then f has modulus of continuity wj(s) with respect to variable

xj.

Proof. For the first one

|f(x)+g(x)−f(y)−g(y)| ≤ |f(x)−f(y)|+ |g(x)−g(y)| ≤ wf (|x−y|)+wg(|x−y|)

For the second one

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(y)g(x)|+ |f(y)g(x)− f(y)g(y)|

≤ K(wf (|x− y|) + wg(|x− y|))

For the third one note that f
g

= f 1
g

and that

|1
g

(x)− 1

g
(y)| = |g(y)− g(x)

g(y)g(x)
| ≤ 1

c2
w(|x− y|)
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For the fourth and the fifth one see [2]. For the sixth one consider the case f =

f(x1, x2),

|f(x1, x2)− f(y1, y2)| ≤ |f(x1, x2)− f(y1, x2)|+ |f(y1, x2)− f(y1, y2)|

≤ w1(|x1 − y1|) + w2(|x2 − y2|) ≤ w(|x1 − y1|+ |x2 − y2|)

Since |x1 − y1|+ |x2 − y2| ≤
√

2|(x1, x2)− (y1, y2)| we get

|f(x1, x2)− f(y1, y2)| ≤ w(
√

(2)|(x1, x2)− (y1, y2)|)

The last one is also almost direct, indeed

|f(x1, ..., xj + t, ..., xn)− f(x1, ..., xj, ..., xn)|2 =
m∑
i=1

|f i(..xj + t...)− f i(...xj...)|2

≤
m∑
i=1

Kw2
ij(|t|) ≤ K ′w2

j (|t|).

3.5.2 Mollifications

In this section we investigate the modulus of continuity of the standard sequence

of mollifications. We recall that, for a continuous function f(x1, ..., xn), the family

of mollifiers of f , {f ε}ε>0 is defined by

f ε(x) =

∫
B(x,ε)

φε(y)f(x− y)dy (3.5.1)

where φε(y) = ε−neε
2/(|y−x|2−ε2)/In for |y − x| < ε and In =

∫
B(x,ε)

eε
2/(|y−x|2−ε2)dy.

The following properties of mollifications are similar to those used in [59] but are

formulated here in terms of modulus of continuity rather than the Hölder norm.
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Proposition 3.5.2. Assume f(x1, ..., xn) is a continuous function with modulus of

continuity w and, for j = 1, ..., n, let wj be the modulus of continuity of f with

respect to the variable xj. Then there exists a constants K > 0 such that for all

j = 1, ..., n and ε > 0 we have

|f ε − f |∞ ≤
K

εn

∫
|s|≤ε

sn−1w(s)ds and |∂f
ε

∂xj
| ≤ K

εn+1

∫
|s|≤ε

sn−1wj(s)ds.

Proof. For the first inequality we have

|f ε(x)− f(x)| =
∫
B(0,ε)

|φε(x)|f(x− y)− f(x)|dy ≤ |φε|∞
∫
B(0,ε)

w(|y|)dy.

To get the bound in the statement, we first observe that |φε| ≤ ε−n and the bound of∫
B(0,ε)

w(|y|)dy follows from a standard change of coordinates by passing to polar co-

ordinates (r, θ1, ..., θn−1) for which the volume form is dV = rn−1f(θ)drdθ1...dθn−1.

For the second inequality, first note that for every j = 1, ..., n we have

∫
B(0,ε)

∂φε
∂xj

= 0 (3.5.2)

and

∂φε
∂xj

(x) =
1

εn+1

∂φ

∂xj
(
x

ε
) (3.5.3)

where φ(x) = e1/(|x|2−1) for |x| < 1. Moreover, letting ŷi = (y1, ..., yi−1, 0, yi+1, ..., yn)

we have

|
∫
B(0,ε)

∂φε
∂xj

(y)f(x− ŷi)dy| = 0 (3.5.4)

as can be seen beywriting the integral as a multiple integral with respect to the

coordinates and noticing that with respect to the i’th coordinate, the function
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f(x−ŷi) is a constant function. Therefore it comes out of the integral and multiplies∫
B(0,ε)

∂φε
∂xj

(y)dy which is equal to zero by (3.5.2). From (3.5.4), we can write

|∂f
ε

∂xi
(x)| = |

∫
B(0,ε)

∂φε
∂xj

(y)f(x− y)dy| = |
∫
B(0,ε)

∂φε
∂xj

(y)(f(x− y)− f(x− ŷj)dy|

Bounding ∂φε
∂xj

by |Dφε|∞ and using the modulus of continuity of f with respect to

the j’th coordinate we have

|∂f
ε

∂xi
(x)| ≤ |Dφε|∞

∫
B(0,ε)

wj(|y|)dy ≤ |Dφ|∞
1

εn+1

∫
|s|≤ε

sn−1wj(s)ds

where the last inequality is again achieved by passing to polar coordinates and using

equation (3.5.3). This finishes the proof of the proposition.
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[60] S. Simić. Codimension-one Anosov flows and a conjecture of Verjovsky. Ergod.

Th. & Dynam. Sys., 17, (1997), 1869-1877.
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