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Abstract

Department of Theoretical Particle Physics

Doctor of Philosophy

Integrable Models and Geometry of Target Spaces from the Partition

Function of N = (2, 2) theories on S2

by Petr Vasko

In this thesis we analyze the exact partition function for N = (2, 2) supersymmetric theories

on the sphere S2. Especially, its connection to geometry of target spaces of a gauged linear

sigma model under consideration is investigated. First of all, such a model has different phases

corresponding to different target manifolds as one varies the Fayet-Iliopoulos parameters. It is

demonstrated how a single partition function includes information about geometries of all these

target manifolds and which operation corresponds to crossing a wall between phases. For a

fixed phase we show how one can extract from the partition function the I function, a central

object of Givental’s formalism developed to study mirror symmetry. It is in some sense a more

fundamental object than the exact Kähler potential, since it is holomorphic in the coordinates

of the moduli space (in a very vague sense it is a square root of it), and the main advantage is

that one can derive it from the partition function in a more effective way. Both these quantities

contain genus zero Gromov–Witten invariants of the target manifold. For manifolds where mirror

construction is not known (this happens typically for targets of non-abelian gauged linear sigma

models), this method turns out to be the only available one for obtaining these invariants. All

discussed features are illustrated on numerous examples throughout the text.

Further, we establish a way for obtaining the effective twisted superpotential based on studying

the asymptotic behavior of the partition function for large radius of the sphere. Consequently,

it allows for connecting the gauged linear sigma model with a quantum integrable system by

applying the Gauge/Bethe correspondence of Nekrasov and Shatashvili. The dominant class of

examples we study are ”ADHM models“, i.e. gauged linear sigma models with target manifold

the moduli space of instantons (on C2 or C2/Γ). For the case of a unitary gauge group we were

able to identify the related integrable system, which turned out to be the Intermediate Long

Wave system describing hydrodynamics of two layers of liquids in a channel. It has two interest-

ing limits, the Korteweg–deVries integrable system (limit of shallow water with respect to the

wavelength) and Benjamin–Ono integrable system (deep water limit). Another integrable model

that naturally enters the scene is the (spin) Calogero–Sutherland model. We examine relations

among energy eigenvalues of the latter, the spectrum of integrals of motion for Benjamin–Ono

and expectation values of chiral correlators in the ADHM model.
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Introduction

Exact results in Quantum Field Theory (QFT) are quite rare and thus very valuable,

since they can explore strongly coupled regions in the parameter space, which are in-

accessible by perturbation theory. Completing such a calculation amounts to summing

all perturbative corrections as well as non-perturbative ones induced by instantons. A

rather hopeless task for a general QFT and still a big challenge even for special (but

large enough) families of theories. Nevertheless, examples of theories exist, where ex-

act results for particular classes of observables are achieved. There are different non-

perturbative methods, but especially in more than two dimensions they require some

amount of supersymmetry. We will concentrate on a specific technique going under the

name of supersymmetric localization. As the name suggests it applies only to theories

which posses some supersymmetry. Indeed, our viewpoint about simplicity of a QFT

has evolved in the last decades. Nowadays, most of the researchers in this field would

point to the N = 4 super-Yang–Mills as being the simplest (interacting) QFT in four

dimensions, instead of the scalar φ4 theory that used to play this role in the past. What

makes supersymmetric theories special in the space of all QFTs and why are they com-

putationally more accessible? The general principle says that more symmetry always

implies simplicity and gives hope for solving the theory completely (even at the expense

of introducing more fields leading to, at first sight, more complicated Lagrangians). The

other, more concrete, reasons are:

(i) supersymmetry equips the target manifold with canonical geometrical structures

which are rigid and thus can be often uniquely fixed

(ii) states that saturate the BPS bound (BPS protected operators) form representa-

tions of the supersymmetry algebra with smaller dimension than states that do

not saturate this bound, so these different classes of representations can not mix

under renormalization; typically BPS protected operators have highly constrained

quantum corrections, which are feasible to compute

1



Introduction 2

(iii) symmetry between bosons and fermions implies cancellations occurring in pertur-

bation theory, requiring thus to compute just a very small part of the spectrum of

bosonic and fermionic differential (kinetic) operators

(iv) path integrals for supersymmetric theories are independent of a certain class of

deformations, which allows us to use this invariance to simplify the computation

drastically and eventually to evaluate the path integral exactly

It is the last point that is crucial in derivation of the supersymmetric localization formula.

However, from a historical point of view, localization techniques have been known before

to mathematicians in the realm of finite dimensional integrals. It is the statement that

for a certain class of integrals the saddle point approximation leads to a precise answer.

The main results in this field have been collected in a couple of localization theorems by

Duistermaat–Heckman [1], Berline–Vergne [2] and Atiyah–Bott [3], which are dated in

the early 80’s. Soon after, these ideas have been generalized to the infinite dimensional

setting by Witten and applied to path integrals of supersymmetric field theories, though

at first exclusively to topological ones [4, 5]. This is so because interesting quantities like

partition functions, Wilson loops and other observables suffer from infra-red divergences

that need to be regularized. A convenient way to do it is by considering the theory on

a compact manifold instead of flat space. However, at that time topological twisting

was the only way how to define a supersymmetric theory on a rather general curved

manifold.

A substantial renaissance of supersymmetric localization techniques appeared after the

work of Pestun [6] in 2007. The method of localization actually stayed unchanged,

what got significantly enriched was the class of theories to which it could have been

applied. People learned how to define supersymmetric theories on curved manifolds

without performing topological twisting. It consists of deforming the Lagrangian as well

as supersymmetry variations by terms proportional to the curvature of the manifold,

while keeping the action invariant under some amount of supersymmetry. At first, it

was done by hand, on a case by case basis, just later got partially systematized in a

series of papers initiated by [7] based on supergravity considerations. The new invention

opened a bright window for obtaining new results and indeed their number grew fast.

Many different theories were considered on various curved manifolds (mostly spheres

or orbifolds of them) and diverse observables were computed for them. After eight

years the literature is already vast, so we do not attempt to provide a list of references

here. Special volumes of review papers have been dedicated to this topic, the reader is

suggested to see [8] for a rich list of references.

Let us explore the contents of point (iv) by deriving the supersymmetric localization

formula and later we explain what are the results good for. Suppose that we want to
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compute a vacuum expectation value of some operator O[Φ], which is a functional of

the set of fields Φ in the theory

〈O〉 =

∫
{DΦ}e−S[Φ]O[Φ]. (1)

One selects a localizing supercharge Q, i.e. a (suitably chosen) linear combination of

conserved supercharges. The supersymmetry algebra implies {Q,Q} = B, where B
is some bosonic symmetry (even generator in the superalgebra). A necessary condi-

tion for the localization theorem to hold is invariance of the operator O[Φ] under the

localizing supercharge Q, QO[Φ] = 0, as well as of the action, which holds by assump-

tion of supersymmetry. Then one can deform the action S[Φ]→ S[Φ] + tSdef [Φ], where

Sdef [Φ] = QV [Φ] with V [Φ] a fermionic functional and t a real parameter. The deforma-

tion action Sdef [Φ] should be positive-semidefinite and should not change the asymptotic

behavior of the original action S[Φ] at infinity of field space. Then one can show, under

the condition QSdef [Φ] = 1
2BV [Φ] = 0, the independence of the path integral of such a

deformation

〈O〉 =

∫
{DΦ}e−S[Φ]O[Φ] =

∫
{DΦ}e−(S[Φ]+tSdef [Φ])O[Φ]. (2)

The argument goes as follows

d

dt
〈O〉 = −

∫
{DΦ} (QV [Φ])O[Φ]e−(S[Φ]+tSdef [Φ])

= −
∫
{DΦ}Q

(
V [Φ]O[Φ]e−(S[Φ]+tSdef)

)
= 0, (3)

which vanishes by application of an analog of Stokes’ theorem for the Q-exact integrand.

Having this freedom of deformations at our disposal, we can evaluate the path integral at

any value of t we like. Obviously, the choice t→∞ facilitates the computation essentialy,

since in this limit the exact result is obtained by the saddle point approximation around

the extrema of Sdef [Φ]. By our assumption on semi-positive definiteness of Sdef [Φ] the

extrema are achieved on the localization locus L = {Φ∗ | QV [Φ∗] = 0}. Then the final

result is obtained just by computing the quadratic fluctuations around the localization

locus

〈O〉 =

∫
L
{DΦ∗}O[Φ∗]e

−S[Φ∗]

[
sdet

(
δ2Sdef
δΦ2

[Φ∗]

)]−1

, (4)

where sdet(·) denotes the super-determinant (Berezinian). The most powerful conclu-

sions can be drawn from this formula, when the localization locus L degenerates to

constant field configurations. In that case we end up with a finite dimensional integral

and the problem is reduced to solving a matrix model. Supersymmetry enters (4) twice
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in a crucial way. First of all, due to (iv), it allows us to write an equality sign instead of

an asymptotic equality, which would happen in a general QFT! And then, by applying

(iii), it significantly facilitates the computation of sdet(·). One can concentrate only a

very small part of the spectrum of bosonic/fermionic kinetic terms that does not cancel.

Such a simplification turns out to be priceless for practical purposes on a general curved

manifold.

Let us comment about the dependence of the correlator 〈O〉 on running coupling pa-

rameters. We can split the original action into a Q-exact piece and the rest, S(σ, τ) =

SQ−ex(σ) + Snot Q−ex(τ) 1; here σ, τ are two sets of coupling parameters. As we just

showed the output of path integration does not depend on Q-exact terms in the action,

therefore the correlator will depend only on the couplings τ . In particular, it might

happen that the quantity under consideration will be independent of running coupling

parameters (or depend only on those which undergo just a one-loop renormalization).

In that case we have found a renormalization group invariant. Such observables are very

powerful, since we can evaluate them at an arbitrary energy scale and we are guaran-

teed that they stay constant along the renormalization group flow (or behave in a very

controlled manner). Of course, the natural thing to do is to perform the calculation at

a point where the theory has a weakly coupled description.

Now we arrived at the question of applications. The major use is found in the very diffi-

cult branch of investigations, namely testing of various duality conjectures. In general, a

duality is a map between different QFTs. Genuinely, it maps strongly coupled regions to

weakly coupled ones and vice versa, thus is really hard to prove. Exact results obtained

by supersymmetric localization come to rescue, however one should keep in mind that

we are testing only a narrow class of observables. To illustrate this topic better let us

sketch two very famous examples.

Seiberg–Witten solution and electric-magnetic duality conjectures. The exact

low energy effective action for a four dimensional gauge theory with eight supercharges

was obtained by Seiberg and Witten some time ago [9]. It is described in terms of a

single holomorphic function F(a) called the prepotential, where a are coordinates on the

moduli space of vacua in the Coulomb branch. This function is fixed by a geometrical

structure on the target manifold going under the name of special Kähler geometry, an

instance that we saw in point (i). Their derivation was crucially based on the conjecture

of electric-magnetic duality, exchanging the coupling as τ−1
IR ↔ τ̃IR. So it was of great

value when Nekrasov confirmed this result by computing the exact partition function Z

for these theories using localization [10] and relating it to the prepotential of Seiberg and

1Actually, SQ−ex is often a convenient choice for Sdef .
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Witten as F(a) = − limε1,ε2→0 ε1ε2 logZ(a|ε1, ε2) [11]; ε1, ε2 are regulating parameters

characterizing the Ω-background and the limit reduces this background to R4.

Precision tests of gauge/holography (AdS/CFT like) dualities. The most strik-

ing checks were performed in the original AdS/CFT setting [12], claiming equivalance

between a gauge theory and a superstring theory. On the gauge theory side one consid-

ers a U(N) N = 4 super-Yang–Mills theory living on the boundary of an AdS5 space

while on the gravity side one has a type IIB superstring theory on AdS5 × S5. It is

in the limit of infinite rank gauge group, where checks can be done. This corresponds

to free strings (gs → 0, α′ stays finite) and in this regime both sides are supposed to

be integrable. For a very readable introduction to these topics see [13]. Since N = 4

SYM is just a special case of N = 2 gauge theories, one can enlarge this equivalence

and test different exact results for N = 2 theories against generalized holography pre-

dictions. The AdS/CFT correspondence has evolved in many different directions since

its discovery. Thus a similar way of thinking applies at present time to theories with

various amount of supersymmetry in diverse dimensions.

It would feel incomplete not to mention a relation between the partition function of

Nekrasov for a four dimensional gauge theory with eight supercharges and a non-

supersymmetric conformal field theory in two dimensions, the Liouville theory. This

is known as the AGT correspondence. Pestun computed an exact partition function for

N = 2 theories on S4 [6], which is tightly connected to Nekrasov’s function as

ZS4 =

∫
da|Z(a)|2. (5)

Then we can state the AGT correspondence in a way relating the full 4-point correlator

in Liouville theory with the partition function of N = 2 SU(2) gauge theory with four

fundamental hypermultiplets on S4

〈e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0)〉 ∝ ZS4(m1, . . . ,m4|τ), (6)

where the proportionality constant is known and there is a dictionary among parame-

ters on both sides. Since we are going to meet Nekrasov partition functions and their

deformations in following chapters, we felt obliged to briefly introduce this important

part of the story.

Maybe somewhat surprisingly, the exact results stemming from supersymmetric local-

ization proved to be equally useful in more mathematical subjects like geometry of

moduli spaces, knot theory, topological invariants and further topics. In this thesis we

concentrate on one concrete piece of the bigger mosaic. The exact partition function
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of N = (2, 2) theories on S2 obtained by supersymmetric localization in [14, 15] is

thoroughly analyzed.

Outline of the thesis

In Chapter 1 we lay down the basics of N = (2, 2) supersymmetric theories in flat space.

Chapter 2 shows how to deform them in order to keep invariance under four supercharges

on S2. Then we briefly review the localization computation to arrive at the result for

the partition function on the sphere2. At the end of this chapter we comment about the

possibility of reducing the number of supercharges, defining thus the analog ofN = (0, 2)

theories from flat space on the sphere. This is interesting because the partition function

would allow us to study their properties which are still unknown to a great extent.

However, it seems rather challenging to put these theories on S2.

Shortly before we started this project, it was suggested that the partition function com-

putes exactly the Kähler potential of the target space and hence contains the genus zero

Gromov–Witten invariants of the target manifold [17]. In Chapter 3 we pursue this di-

rection further and connect the partition function with Givental’s formalism developed

to study mirror symmetry. We also show how a single partition function encompasses

different phases of the gauged linear sigma model (GLSM) and their target space geome-

tries as one varies the Fayet-Iliopoulos parameters. In Chapter 4 we observe that the

effective twisted superpotential for a GLSM under consideration can be extracted from

the partition function as well, studying its asymptotics for large radius of S2. Then by

the Nekrasov–Shatashvili correspondence one can associate a quantum integrable system

to it.

One model, the ADHM GLSM, which recurs throughout the whole body of this thesis

and by means of which we illustrate the main features of techniques we developed is a

GLSM with target space the moduli space of instantons. Chapter 5 defines these models

for all classical gauge groups, the corresponding partition functions are computed and

Bethe equations of associated quantum integrable systems are listed. Only for the case

of a unitary gauge group we were able to identify the related integrable model. In that

event it is the Intermediate Long Wave (ILW) integrable system. The unitary ADHM is

analyzed in detail in Chapter 6, both from the point of view of the geometry of its target

space and the integrability point of view. Chapter 7 studies a further generalization of

the unitary ADHM, allowing for instantons on asymptotically locally Euclidean spaces.

Luckily, also an appropriate generalization of ILW was available in the literature. It

turns out that a spin Calogero–Sutherland model is linked to these topics as well, so we

2The final result for the partition function holds as well for an ellipsoid as was shown in [16], even if
the action and supersymmetry variations get changed.
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comment on connections among these three models. Appendices are reserved for more

technical issues and proofs of some statements.



Chapter 1

N = (2, 2) Supersymmetry basics

In the rest of this thesis we will focus exclusively on supersymmetric quantum field

theories in two dimensions with four real supercharges, two of positive chirality while

the remaining two of negative chirality. Such theories will be said to posses N = (2, 2)

supersymmetry. This section is intended to summarize the elementary facts to make the

text self contained. Many more details can be found in various beautiful review papers

or books, in particular we are following the exposition given in [18]. Readers who are

familiar with these topics can skip this section if desired. In the following, we introduce

the concept of superspace, whose symmetries define the (graded) algebra of symmmetry

generators. Studying its representation theory provides us with basic building blocks,

the field multiplets. These can be conveniently packaged within the superfield formalism;

the components of a superfield furnish a representation of the N = (2, 2) supersymmetry

algebra. Next, we move to construct supersymmetric actions and provide a list of basic

models.

1.1 Superspace and superfields

Let us consider a field theory on R2 with coordinates {x0, x1}. Besides these usual

bosonic coordinates we introduce additional complex Graßmann (fermionic) coordinates

θ+, θ−, θ+, θ−,

which are related to each other by complex conjugation, (θ±)
∗

= θ±. The ± index refers

to the chirality (spin) under a Lorentz transformation in case of a Lorentz signature while

to holomorphic (anti-holomorphic) supercoordinates in case of Euclidean signature. The

fermionic nature of these coordinates means that they anticommute. Then the (2, 2)

superspace is the space equipped with a coordinate system {x0, x1, θ±, θ±}.

8
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Superfields are functions on superspace. Any such function can be expanded in mono-

mials of the Graßmann coordinates and such expansion terminates as a consequence of

the anticommutativity of these; indeed a general function contains 24 = 16 terms. We

will see that individual supersymmetry multiplets will be obtained by imposing certain

shortening conditions on this general function.

In order to express supersymmetry variations and define different kinds of superfields,

it is useful to introduce two sets of differential operators on superspace. The first set

being

Q± =
∂

∂θ±
+ iθ±∂± (1.1)

Q± = − ∂

∂θ±
− iθ±∂±, (1.2)

where ∂± is a differentiation with respect to x± := x0 ± x1. They satisfy the anti-

commutation relations {Q±,Q±} = −2i∂±; all other anti-commutators vanish. The

second set is

D± =
∂

∂θ±
− iθ±∂± (1.3)

D± = − ∂

∂θ±
+ iθ±∂±. (1.4)

These operators anti-commute with the Q,Q system and satisfy their own relations

{D±, D±} = 2i∂±, where other combinations again vanish. This algebra admits an

automorphism group U(1)L × U(1)R, or by regrouping the generators, U(1)V × U(1)A.

These are the vector and axial R-rotations and act on a superfield like

eiαFV : F(xµ, θ±, θ±) 7−→ eiαqV F(xµ, e−iαθ±, eiαθ±) (1.5)

eiβFA : F(xµ, θ±, θ±) 7−→ eiβqAF(xµ, e∓iβθ±, e±iβθ±) (1.6)

with qV and qA the vector and axial R-charge of the superfield F , respectively. Then

the supersymmetric variation is defined as

δ := ε+Q− − ε−Q+ − ε+Q− + ε−Q+. (1.7)

By assumption, a supersymmetric action is invariant under this transformation. Apply-

ing the Noether procedure, we find four conserved supercurrents Gµ±, G
µ
± given by

δ

∫
d2xL =

∫
d2x

(
∂µε+G

µ
− − ∂µε−G

µ
+ − ∂µε+G

µ
− + ∂µε−G

µ
+

)
. (1.8)
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Integrating their time component on a fixed time slice yields the corresponding conserved

supercharges

Q± =

∫
dx1G0

± (1.9)

Q± =

∫
dx1G0

±. (1.10)

In addition, as in any Poincare invariant quantum field theory, there are also conserved

charges

H, P, M

corresponding to time translations, spatial translations and rotations. Moreover if the

action is invariant under vector and axial R-symmetries, there are Noether charges

FV , FA

as well.

Finally, the time has come to spell out the N = (2, 2) superalgebra in full detail. The

conserved charges of the theory satisfy the relations

Q2
+ = Q2

− = Q2
+ = Q2

− = 0

{Q±, Q±} = H ± P

{Q+, Q−} = Z, {Q+, Q−} = Z∗

{Q−, Q+} = Z̃, {Q+, Q−} = Z̃∗

[iM,Q±] = ∓Q±,
[
iM,Q±

]
= ∓Q±

[iFV , Q±] = −iQ±,
[
iFV , Q±

]
= iQ±

[iFA, Q±] = ∓iQ±,
[
iFA, Q±

]
= ±iQ±

as long as Z, Z̃ are central, i.e. they commute with all other generators in the theory.

Hence they are called central charges. An immediate consequence of the algebra is that

Z must vanish if FV is conserved and on the other hand Z̃ is forced to vanish whenever

FA is conserved. The above algebra is invariant under a Z2 outer automorphism acting

on the generators as

Q− ←→ Q−, FV ←→ FA, Z ←→ Z̃

and keeping all other fixed. A pair of N = (2, 2) quantum field theories is defined to

be mirror if the isomorphism of Hilbert spaces exchanges the generators by the above

automorphism.
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Now, we move to study representations of the N = (2, 2) superalgebra. For instance

take an operator φ satisfying
[
Q±, φ

]
= 0. Then, acting by other generators

ψ± := [iQ±, φ] , F := {Q+, [Q−, φ]}

we can construct a representation (φ, ψ+, ψ−, F ) called a chiral multiplet. All the com-

ponents can be merged into a single object called a chiral superfield. So let us provide

a list of superfields that will be used for building actions invariant under N = (2, 2)

supersymmetry.

Chiral superfield Φ is a superfield that satisfies the constraint

D±Φ = 0 (1.11)

and can be expanded into components

Φ(xµ, θ±, θ±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F (y±), (1.12)

where y± = x± − iθ±θ±. To be explicit we can expand further around the point

x± with the result

Φ = φ− iθ+θ+∂+φ− iθ−θ−∂−φ− θ+θ−θ−θ+∂+∂−φ

+ θ+ψ+ − iθ+θ−θ−∂−ψ+ + θ−∂−ψ− − iθ−θ+θ+∂+ψ− + θ+θ−F. (1.13)

A product of two chiral superfields is again a chiral superfield and a supersym-

metric variation of a chiral superfield is still chiral, which consistently implies

transformation rules for individual component fields

δφ = ε+ψ− − ε−ψ+

δψ± = ±2iε∓∂±φ+ ε±F (1.14)

δF = −2iε+∂−ψ+ − 2iε−∂+ψ−.

The complex conjugate Φ of a chiral superfield obeys the equation

D±Φ = 0 (1.15)

and is called an anti-chiral superfield.

Twisted chiral superfield Y is defined by the condition

D+Y = D−Y = 0 (1.16)
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and has the form

Y (xµ, θ±, θ±) = v(ỹ±) + θ+χ+(ỹ±) + θ−χ−(ỹ±) + θ+θ−E(ỹ±)

= v − iθ+θ+∂+v + iθ−θ−∂−v + θ+θ+θ−θ−∂+∂−v

+ θ+χ+ + iθ+θ−θ−∂−χ+ + θ−χ− − iθ−θ+θ+∂+χ− + θ+θ−E,

(1.17)

where ỹ = x± ∓−θ±θ±. In a similar fashion, twisted chiral superfields are closed

under multiplication and supersymmetric variation. The transformation rules for

components read

δv = ε+χ− − ε−χ+

δχ+ = 2iε−∂+v + ε+E

δχ− = −2iε+∂−v + ε−E

δE = −2iε+∂−χ+ − 2iε−∂+χ−. (1.18)

The complex conjugate Y of a twisted chiral superfield satisfies the constraints

D+Y = D−Y = 0 (1.19)

and is called a twisted anti-chiral superfield.

With these two kinds of superfields introduced, we are already at a stage where it is

appropriate to construct supersymmetric actions. First, consider the expression

S =

∫
d2xd4θK(Fi), (1.20)

where K is an arbitrary smooth function of the general superfields Fi, called the Kähler

potential. This action is invariant under the supersymmetry variation δ and is denoted

as a D-term. Next, we can write down an F-term∫
d2xdθ−dθ+W (Φi)

∣∣∣∣
θ±=0

. (1.21)

Here Φi are chiral superfields and moreover dW must be a closed holomorphic one form,

i.e. W is locally a holomorphic function called the superpotential. If these conditions

are met, the supersymmetry variation vanishes as well. There is an analogous term for

twisted chiral superfields called the twisted F-term given by∫
d2xdθ−dθ+W̃ (Yi)

∣∣∣∣
θ+=θ−=0

, (1.22)
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where W̃ (Yi) is a locally holomorphic function of the twisted chiral superfields going

under the name twisted superpotential.

We can classify the theories according to the terms that appear in the action. If only the

Kähler potential is present, thus the (twisted) superpotential is vanishing, we call such

a model a sigma model. When the metric derived from this Kähler potential describes a

flat space it is referred to as a linear sigma model while if the target space metric is non-

trivial it is a non-linear sigma model. Once we also turn on a (twisted) superpotential

then we will be speaking about a Landau–Ginzburg (LG) model.

The next natural step is the procedure of gauging, which leads us to introduce vector

superfields. We focus here only on the abelian case. Indeed, consider a canonical D-term

for a single chiral superfield ∫
d2xd4θΦΦ. (1.23)

This action has a symmetry Φ→ eiαΦ with α constant. Now we promote α to a chiral

superfield A(xµ, θ±, θ±). Then the term ΦΦ transforms to Φe−iA+iAΦ, which breaks

invariance of the action. It is restored by introducing a vector superfield V transforming

in such a way

V → V + i(A−A) (1.24)

to cancel the unwanted term. Finally, the modified action∫
d2xd4θΦeV Φ (1.25)

turns out to be invariant again. We also see that V has to be real by consistency with

the transformation rule.

Vector superfield is a real superfield that transforms according to (1.24). The gauge

transformation can be used to eliminate some components, so that we can write

for V in the Wess-Zumino gauge

V = θ−θ−(v0 − v1) + θ+θ+(v0 + v1)− θ−θ+σ − θ+θ−σ

+ iθ−θ+(θ−λ− + θ+λ+) + iθ+θ−(θ−λ− + θ+λ+) + θ−θ+θ+θ−D, (1.26)

where v0, v1 are one-form fields, σ is a complex scalar, λ± and λ± define a Dirac

fermion field and D is a real scalar field. There is still a residual gauge symmetry

with A = α(xµ) transforming

vµ(x)→ vµ(x)− ∂µα(x), (1.27)
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while keeping all other component fields fixed. A supersymmetry variation does

not preserve the Wess–Zumino gauge, thus we have to perform a further gauge

transformation to bring δV back to this gauge. In this way, the variations of

component fields are fixed. However, we will not list them here. Just note that the

chiral superfield is charged under the gauge transformation and so the variations

of its components get modified as well.

The superfield

Σ := D+D−V (1.28)

is invariant under the transformation (1.24) and is denoted as the superfield strength

of V . One can easily check that it satisfies

D+Σ = D−Σ = 0 (1.29)

and hence is a twisted chiral superfield. In this case it has the expansion

Σ = σ(ỹ) + iθ+λ+(ỹ)− iθ−λ−(ỹ) + θ+θ− [D(ỹ)− iv01(ỹ)] , (1.30)

where v01 is the field strength of vµ, v01 := ∂0v1−∂1v0. Naturally, we can construct

twisted F-terms out of Σ. Provided the gauge group contains a U(1) factor (and

since our discussion here is for abelian gauge groups, this is just the case), there

is one distinguished twisted F-term, where the superfield strength enters linearly

W̃FI,θ = −tΣ (1.31)

with t = ξ − iθ a complex number; ξ is a Fayet-Iliopoulos term and θ is called a

theta angle.

Having introduced this last building block, we can write down a supersymmetric La-

grangian for a vector multiplet minimally coupled to a charged chiral multiplet

L =

∫
d4θ

(
ΦeV Φ− 1

2e2
ΣΣ

)
+

1

2

(
−t
∫
dθ−dθ+Σ + c.c

)
. (1.32)

Such a model will be refered to as a gauged linear sigma model (GLSM). Here it was

shown for an abelian gauge group only.

With this Lagrangian we finish our very basic introduction toN = (2, 2) supersymmetry.

Of course, much more could have been said, interested readers can consult appropriate

references, for instance [19] or [18], where a detailed treatment is presented. To conclude,

it is worth mentioning thatN = (2, 2) supersymmetry in two dimensions can be obtained

by dimensionally reducing N = 1 theories in four dimensions.



Chapter 2

N = (2, 2) supersymmetry on S2

and the exact partition function

The aim of this chapter is to review the results that were derived in [14, 15]. The

authors have shown that an N = (2, 2) supersymmetric theory can be placed on a two

sphere S2 while still preserving four real supercharges. After defining the theory on

S2, they computed the exact partition function using localization technique. Below, we

want to summarize the main steps and formulae that will be important later. We wish

to stress that the exact partition function on S2 will be the main character for further

developments.

2.1 N = (2, 2) supersymmetry on S2

The two sphere S2 of radius r (as any two dimensional pseudo-Riemannian manifold)

is conformally flat. The global superconformal algebra in two dimensions osp(2|2,C) is

parametrized by four conformal Killing spinors1. They are complex Dirac spinors while

a minimal spinor in Euclidean signature is a complex Weyl spinor, which results in eight

conserved superconformal charges. Two out of the four conformal Killing spinors are

positive

Dµε =
i

2r
γµε, (2.1)

while the remaining two are negative Dµε = − i
2rγµε. We make a choice and focus on

the positive ones. The other alternative is also allowed and would define a consistent

theory.

1Let us remind that S2 does not admit any Killing spinors, however admits conformal Killing spinors.

15
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The subalgebra of the superconformal algebra generated by the positive conformal

Killing spinors is osp∗(2|2) ' su(2|1), i.e. a compact real form of osp(2|2,C). We

define this simple su(2|1) superalgebra as N = (2, 2) Euclidean supersymmetry algebra

on S2. Its bosonic subalgebra is su(2)⊕ u(1)R, where the su(2) factor generates isome-

tries of S2 and u(1)R is the vector R-symmetry. As opposed to flat space it is part of

the algebra, not an automorphism of it. All supersymmetry variations can be obtained

from the known superconformal algebra by restricting to the positive conformal Killing

spinors only.

2.1.1 Details about the N = (2, 2) superalgebra on S2

This subsection is intended for readers who wish to see a detailed construction of this

superalgebra. It is also a prerequisite to Section 2.4, where we comment about the

possibility to reduce the number of supercharges to two instead of four. However, both

these sections are rather independent of the main text of the thesis and might be skipped

when desired.

In [15] the N = (2, 2) supersymmetry algebra on S2 was constructed as follows. As we

already mentioned the sphere S2 is locally conformally flat. So one starts with the global

(finite dimensional) part of the two-dimensional superconformal algebra (see [20], p.375).

This is generated in the left-moving sector by even generators {L−1, L0, L+1;J0} and

odd generators {G+
− 1

2

, G+
+ 1

2

, G−− 1
2

, G−
+ 1

2

} 2. There is also an independent (commuting)

right-moving sector, whose generators we denote by the same symbols just marked by

tilde. We write out the graded commutation relations for the left-moving generators

[L0, G
+
+ 1

2

] = −1

2
G+

+ 1
2

[L0, G
−
+ 1

2

] = −1

2
G−

+ 1
2

[L0, G
+
− 1

2

] = +
1

2
G+
− 1

2

[L0, G
−
− 1

2

] = +
1

2
G−− 1

2

[L+1, G
+
− 1

2

] = +G+
+ 1

2

[L−1, G
+
+ 1

2

] = −G+
− 1

2

[L+1, G
−
− 1

2

] = +G−
+ 1

2

[L−1, G
−
+ 1

2

] = −G−− 1
2

[J0, G
+
+ 1

2

] = +G+
1
2

[J0, G
−
+ 1

2

] = −G−1
2

[J0, G
+
− 1

2

] = +G+
− 1

2

[J0, G
−
− 1

2

] = −G−− 1
2

2Note, that we are working in the Neveu–Schwartz sector, so the modes of the fermionic supercurrents
are labeled by half-integers.
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[L0, L+1] = −L+1 {G+
+ 1

2

, G−
+ 1

2

} = 2L+1

[L0, L−1] = +L−1 {G+
− 1

2

, G−− 1
2

} = 2L−1

[L−1, L+1] = −2L0 {G+
+ 1

2

, G−− 1
2

} = 2L0 + J0

{G+
− 1

2

, G−
+ 1

2

} = 2L0 − J0

with all other brackets vanishing. This algebra is actually isomorphic to sl(2|1). The

isomorphism to the Cartan–Weyl basis of sl(2|1) (see [21], p.77) is explicitly given as

L0 = −H G+
+ 1

2

= F+

L+1 = −iE+ G+
− 1

2

= −iF−

L−1 = −iE− G−
+ 1

2

= −2iF̄+

J0 = 2Z G−− 1
2

= 2F̄−.

So we have

global 2D superconformal algebra = sl(2|1)⊕ sl(2|1)

and the A-type N = (2, 2) supersymmetry algebra on S2 was defined as a non-trivial

embedding in it3. It is generated by even generators {J0, J+, J−;Rv}, where J0, J+, J−

form the standard so(3) ' su(2) isometries of S2 while Rv is the vector R-charge, and

by odd supercharges Q1, Q2, S1, S2. The embedding reads

J0 = L0 − L̃0 Q1 =
1√
2

(
−iG−

+ 1
2

− G̃−− 1
2

)
J+ = i

(
L−1 + L̃+1

)
Q2 =

1√
2

(
G−− 1

2

+ iG̃−
+ 1

2

)
J− = i

(
L+1 + L̃−1

)
S1 =

1√
2

(
G+

+ 1
2

+ iG̃+
− 1

2

)
Rv = J0 + J̃0 S2 =

1√
2

(
iG+
− 1

2

+ G̃+
+ 1

2

)
.

Since the left- and right- moving global superconformal generators form sl(2|1) super-

algebras and they commute between each other, it is evident that also the N = (2, 2)

supersymmetry algebra on S2 will be isomorphic to sl(2|1). Here we really refer to the

compact real form, with even algebra su(2)⊕u(1). Explicit relation to the Cartan–Weyl

basis of sl(2|1) has the form

{E+ = J+, E− = J−, H = J0, Z =
1

2
Rv}∪{F+ = cS2, F− = cS1, F̄+ =

1

c
Q2, F̄− = −1

c
Q1}

(2.2)

3The only other non-equivalent possibility, the B-type superalgebra, is just a different embedding.
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with c ∈ C. A required feature of the N = (2, 2) supersymmetry algebra on S2 is that it

reduces to the ordinary Poincaré supersymmetry algebra after taking the flat space limit.

This is achieved by the İnönü–Wigner contraction. Indeed, let us define the rescaled

generators

M = −H

P+ = − i
r
E+

P− = − i
r
E−

Fv = −2Z

Q+ =
e−i

π
4

√
r
F+

Q̄+ =
e−i

π
4

√
r
F̄+

Q− =
e+iπ

4

√
r
F−

Q̄− =
e+iπ

4

√
r
F̄−,

(2.3)

where r represents the radius of the sphere. Substituting the above dictionary to commu-

tation relations of sl(2|1) and taking afterwards the flat space limit r → ∞ reproduces

the N = (2, 2) supersymmetry algebra on R2 without central charges. The notation

should be standard; P+, P− generate translations in the light-cone directions, M gen-

erates SO(2) rotations of R2 while Fv the vector R-transformations and Q’s are the

supercharges, two of each chirality.

2.2 Supersymmetric actions on S2

Theories of prime interest for us will be gauged linear sigma models (GLSMs) on S2.

They are specified by fixing the gauge group G, assigning representations of G to the

matter fields and giving a superpotential W determining interactions among chiral mul-

tiplets. These models describe coupling of vector and chiral multiplets

vector multiplet: (Aµ, σ, η, λ, λ,D) (2.4)

chiral multiplet: (φ, φ, ψ, ψ, F, F ), (2.5)

where (σ, η,D) are real scalar fields, (φ, φ, F, F ) complex scalar fields and (λ, λ, ψ, ψ)

complex Dirac spinors. Whenever the gauge group contains an abelian factor we include

a complexified Fayet–Iliopoulos term, i.e. a twisted F-term for the abelian superfield

strength Σ.

The most general renormalizable lagrangian density that preserves N = (2, 2) Euclidean

supersymmetry reads

L = Lvec + Lchiral + LW + LFI , (2.6)
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where Lvec describes the pure super Yang–Mills theory

Lvec =
1

g2
Tr

{
1

2

(
F12 −

η

r

)2
+

1

2

(
D +

σ

r

)2
+

1

2
DµσD

µσ +
1

2
DµηD

µη − 1

2
[σ, η]2

+
i

2
λγµDµλ+

i

2
λ[σ, λ] +

1

2
λγ3[η, λ]

}
.

(2.7)

Lchiral includes the kinetic term of a chiral multiplet with R-charge q as well as its

minimal coupling to the vector multiplet

Lchiral =DµφD
µφ+ φσ2φ+ φη2φ+ iφDφ+ FF +

iq

r
φσφ+

q(2− q)
4r2

φφ

− iψγµDµψ + iψσψ − ψγ3ηψ + iψλφ− iφ λψ − q

2r
ψψ,

(2.8)

whereas LW provides the matter couplings encoded in the superpotential F-term

LW =
∑
j

∂W

∂φj
Fj −

∑
j,k

1

2

∂2W

∂φj∂φk
ψjψk (2.9)

and LFI is the Fayet–Iliopoulos term

LFI = Tr

[
−iξD + i

θ

2π
F12

]
. (2.10)

Depending on the choice of matter fields, the Lagrangian might be invariant under a

global (flavor) group GF . In that situation one can introduce twisted masses for chiral

multiplets by weakly gauging GF , then minimally coupling the chiral multiplets to the

vector multiplet of GF , and finally giving a vacuum expectation value σext, ηext to the

two real scalars in the vector multiplet of GF . Supersymmetry on S2 requires σext and

ηext to be constant and in the Cartan subalgebra of GF . In the following we will set

ηext = 0. The twisted mass terms can be obtained by substituting σ → σ+σext in (2.8).

2.3 Localization and the exact partition function

Before we review the full computation in a supersymmetric theory on S2, we would

like to illustrate the idea of equivariant localization on a very simple finite dimensional

integral.
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2.3.1 Equivariant localization: A toy model example

Idea: reduce multidimensional integration to summation over “fixed points” (similar to

residue theorem in complex analysis).

The only ambition of this short section is to build some intuition for what equivariant

integration really means. Intuition is gained best by practising with simple examples

where one has full control even by just using elementary techniques. In other words we

want to uncover the secret why for some class of integrals we can write down the result

in a simple way, without really doing the integration (as in the residue theorem).

As a starting point, let us remind the stationary phase method developed for asymptotic

expansions of integrals. Consider the integral

I(s) =

∫
Rn
dnx eisf(x)g(x). (2.11)

With some mild assumptions on the functions (in this section we are not going to

technical details, rather want to emphasize the ideas) the asymptotic expansion for

large s reads

I(s)
s→∞∼

∑
i: x∗i extremum

of f(x)

g(x∗i )e
isf(x∗i )

(
2π

s

)n
2 ei

π
4
σi

|det (Hess[f ](x∗i ))|
1
2

, (2.12)

where σi is the difference between the numbers of positive and negative eigenvalues of

Hess[f ](x∗i ). Generally, it is only an asymptotic expansion, therefore not exact. But

sometimes it happens to give an exact answer. We want to understand those instances.

For now we content ourselves with an example.

Example: Let us focus on the two sphere with unit radius. The function f will be chosen

as the height function f(x, y, z) = z while g is set to one. We wish to compute

I(s) =

∫
S2

ω eisz (2.13)

with ω the standard volume form on S2. The critical points of f are the north pole

(z∗N = 1) and the south pole (z∗S = −1). Around the north pole f behaves like f ∼
1− 1

2(x2 +y2) while at the south pole f ∼ −1+ 1
2(x2 +y2), which yields for the Hessians

Hess[f ](N) =

(
−1 0

0 −1

)
; Hess[f ](S) =

(
1 0

0 1

)
(2.14)
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From the definition of σ follows σN = −2, σS = 2 and we can write the asymptotic

formula for the integral

I(s)
s→∞∼ eis(+1)

(
2π

s

) 2
2 ei

π
4

(−2)

|1|︸ ︷︷ ︸
N

+ eis(−1)

(
2π

s

) 2
2 ei

π
4

(+2)

|1|︸ ︷︷ ︸
S

. (2.15)

Direct integration leads to the exact result

I(s) = 2π
eis − e−is

is
. (2.16)

Comparing the two we see that the leading order term in the asymptotic expansion

actually gives the full answer. This is not just a coincidence, as we will see, we secretly

integrated a very special differential form.

Equivariant forms

Consider an integration domain D of even dimension 2m with a group action G y D.

Focus on the maximal torus of G

T (ξ) = ei
∑rk(G)
i=1 ξiti (2.17)

and pick a 1-parameter soubgroup in it T̃ (ξ) = eiξt. Act on a point x ∈ D, where we

think of x as X = x0 + δx with x0 a fixed point of this action and δx small. We have

T̃ (ξ) y x = T̃ (ξ) y x0︸ ︷︷ ︸
x0

+ T̃ (ξ) y δx︸ ︷︷ ︸
Rij(ξ)δx

j

. (2.18)

Here Rij(ξ) is a 2m× 2m matrix and by a change of basis we can always bring it to the

form

R =



 ; 2× 2 blocks :

(
cos(νiξ) sin(νiξ)

− sin(νiξ) cos(νiξ)

)
(2.19)

So in the new coordinates (with a slight abuse of notation)(
δxi(ξ)

δyi(ξ)

)
=

(
cos(νiξ) sin(νiξ)

− sin(νiξ) cos(νiξ)

)(
δxi

δyi

)
; i = 1, . . . ,m (2.20)
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which defines a vector field generating the action

v =
m∑
i=1

νi

(
yi

∂

∂xi
− xi

∂

∂yi

)
. (2.21)

The integers νi are called indices of the vector field.

We are ready to give the definition of an equivariant differential form. Consider a

manifold M of dimension dimM = n. Then an equivariant (with respect to the maximal

torus action, here we consider S1 ' U(1) ' SO(2)) form α(ξ) ∈
∧
T ∗M

⊗
Cξ

α(ξ) =

n∑
j=0

αj(ξ); αj(ξ) ∈ Ω(j)(M)⊗ Cξ (2.22)

with Cξ the space of smooth functions on the maximal torus, satisfies the condition

Lvαj(ξ) = 0 ∀ j, (2.23)

where Lv is the Lie derivative with respect to v. It tells us that component forms αj of

all degrees are invariant under the action of the maximal torus generated by the vector

field v. The definition can be restated in a more elegant manner after introducing an

equivariant differential

dS1 = d+ iξιv; d2
S1 = iξLv. (2.24)

Then an equivariant differential form is such that d2
S1α(ξ) = 0. Since the equivari-

ant differential on the space of equivariant forms mimics all the properties of a usual

external differential we can also here define closed and exact equivariant forms. This

naturally leads to the notion of equivariant cohomology, which is just standard de Rham

cohomology but with respect to the new equivariant differential.

Let us study the constraints that a closed equivariant form has to satisfy

0 = dS1α(ξ) = iξα1(ξ)[v] + dαn−1(ξ) +
n−1∑
k=1

dαk−1(ξ) + iξαk+1(ξ)[v], (2.25)

which imposes the conditions

α1(ξ)[v] = 0 (2.26)

dαn−1(ξ) = 0 (2.27)

dαk−1(ξ) + iξαk+1(ξ)[v] = 0; k = 1, . . . , n− 1. (2.28)

For manifolds of even dimension n = 2m they connect the top form α2m with the lowest

degree form (function) α0. This will prove to be the essence of the localization formula.
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Localization formula [3, 22]:

For a closed equivariant form α(ξ) on a manifold M of dimension 2m holds∫
M
α(ξ) =

(
2π

iξ

)m ∑
p: v(p)=0

(α0(ξ)) (p)

ν1(p) · · · νm(p)
. (2.29)

To the left hand side clearly contributes just the top form
∫
M α2m(ξ) whereas the right

hand side contains only α0(ξ). The sum runs over fixed points of the circle action or

equivalently over zeroes of the generating vector field.

Example revisited: Now the reader already suspects what was so special about the

differential form appearing in our first example. Indeed, it was a closed equivariant

form with respect to the natural U(1) action on the sphere generated by v = ∂
∂ϕ . It is

moreover integrated over an even dimensional manifold, thus the localization theorem

can be applied. Let us construct the equivariant form. The top form is prescribed

α2(ξ) = eiξ cos θd(cos θ) ∧ dϕ = ωeiξz. (2.30)

The condition d ∂
∂ϕ
α(ξ) = 0 yields

α(ξ) = −eiξ cos θ + f(θ)dθ + eiξ cos θd(cos θ) ∧ dϕ. (2.31)

The top form α2(ξ) integrates to

I(ξ) =
2π

iξ

(
eiξ

(+1)
+
e−iξ

(−1)

)
(2.32)

while using the localization formula one gets

2π

iξ

(
α0(ξ)(N)

ν1(N)
+
α0(ξ)(S)

ν1(S)

)
(2.33)

Remember that the fixed points are the north (θ = 0) and south (θ = π) pole, hence

α0(ξ)(N) = −eiξ and α0(ξ)(S) = −e−iξ. For the indices of the vector field v we get

ν1(N) = −1 and ν1(S) = +1 as is sketched in Figure 2.1. Once put all together, it of

course matches the left hand side. Now we know why it was sufficient to include the

contribution only from the critical points in this case.

Sketch of proof for the localization theorem [4]:

(I) Choose an S1-invariant metric on M and define a 1-form η = g(v, ·); v is as usual

the vector field generating the S1-action. This form is S1-equivariant, d2
S1η = 0,
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Figure 2.1: The integral of a closed equiavriant form receives contributions only from
the fixed points: the north and south pole.

since the metric is S1-invariant. Near a fixed point it has the behavior

η ≈ −1

2

m∑
k=1

νk (xkdyk − ykdxk) . (2.34)

Then define an equivariantly exact form β(ξ) = dS1η, near the fixed point it reads

β(ξ) ≈ −
m∑
k=1

νkdxk ∧ dyk +
iξ

2

m∑
k=1

ν2
k(x2

k + y2
k) (2.35)

Further notice that the equivariant form

eisβ(ξ) − 1 =

∞∑
n=1

(is)n

n!
(dξη)n = dξ

( ∞∑
n=1

(is)n

n!
η (dξη)n−1

)
(2.36)

is equivariantly exact. Finally, focus on the original problem; integration of a

closed equivariant form α(ξ). We have∫
M
α(ξ)

(
eisβ(ξ) − 1

)
=

∫
M
α(ξ)dξ

(
· · ·
)

=

∫
M
dξ

[
α(ξ)

(
· · ·
)]

= 0 (2.37)

and hence the key relation follows∫
M
α(ξ) =

∫
M
α(ξ)eisβ(ξ). (2.38)

(II) The integral is obviously independent of s (it only depends on the cohomology

class [α]). So we can compute the right hand side in the limit s → ∞ for which

the leading order term in the asymptotic expansion is exact. The leading order

measure coming from the exponential is
∏m
k=1(−isνk)dxk∧dyk, which implies that

just the α0 part of α(ξ) contributes, higher degree components give a subleading
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contribution in s. All in all, we end up with the expression

∑
p: fixed points

[α0(ξ)] (p)
m∏
k=1

(−isνk)
∫
dxkdyke

− tξ
2

∑m
k=1 ν

2
k(x

2
k+y2

k), (2.39)

which after straightforward Gaussian integration gives the localization theorem.

2.3.2 Exact partition function on the sphere

Employing the technique of equivariant localization [23] the partition function of a GLSM

on S2 can be computed exactly, see [14, 15]. In order to localize the path integral we

focus on the (non-simple) subalgebra of the full N = (2, 2) supersymmetry algebra on

the two sphere, generated by Q2, S1, which obey the relations 4(up to gauge and flavor

transformations)

{Q2, S1} = M +
R

2
, (Q2)2 = (S1)2 = 0. (2.40)

Here M is the angular momentum that generates U(1) rotations along a Killing vector

field that vanishes at two opposite points on the sphere, which we mark as the north

and south pole, respectively. R is the R-charge generator. The supercharge with respect

to which localization will be performed is then constructed as a sum Q = Q2 + S1

and as a consequence of the above equations generates the (non-simple) subalgebra

su(1|1) ⊂ su(2|1) (again up to gauge and flavor transformations)

Q2 = M +
R

2
. (2.41)

It turns out that Lvec,Lchiral,LW are all Q exact terms. Since the path integral is

invariant under deformations by Q exact terms, we know that the partition function

will not depend on any coupling constants included in these terms. However, it is

affected by the constraints on R-charges imposed by the superpotential. On the other

hand it depends on couplings in the twisted superpotential (in our case this is just the

complexified Fayet-Iliopolous parameter t) as well as twisted masses allowed by global

symmetries.

Now we want to compute the exact partition function on the sphere

ZS
2

=

∫
Dϕ e−S[ϕ]. (2.42)

We know that the action S[ϕ] is Q-closed, since it is supersymmetric by construction.

The strategy is to deform the action by a Q-exact term, such that it does not spoil the

4For more details about the supersymmetry algebra, the reader should consult the next section.
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convergence of the path integral and does not change the asymptotic behavior of the

action at infinity in the field space. As we already pointed out the partition function is

invariant under such a deformation

ZS
2

=

∫
Dϕ e−S[ϕ] =

∫
Dϕ e−(S[ϕ]+sSdef[ϕ]) (2.43)

We are allowed to take the limit s → ∞, where the exact result is given just by the

saddle point analysis of Sdef[ϕ]. At this point the localization computation splits into

two branches, differing by the choice of the deformation action Sdef[ϕ].

Localization on the Coulomb branch

The Q-exact deformation term Sdef[ϕ] is chosen to be Svec + Schiral. Since the corre-

sponding Lagrangians Lvec +Lchiral are a sum of squares, the extremization is equivalent

to finding field configurations on which Lvec + Lchiral vanishes. This happens on the

localization locus

Φ = Φ = F = F = 0 (2.44)

F12 −
η

r
= D +

σ

r
= Dµσ = Dµη = [σ, η] = 0. (2.45)

The second line implies that the scalars in the vector multiplet σ, η are constant and in

the Cartan subalgebra h of the gauge group G. So, the solutions are parametrized by

expectation values of fields in the vector multiplet and that is the reason why we denote

the space of solutions as a Coulomb branch. On account of the quantization condition

for the magnetic flux through the sphere

1

2π

∫
S2

F = 2r2F12 = m (2.46)

with m in the dual weight lattice Λ∗W corresponding to the gauge group G, in other

words {m ∈ h | w(m) ∈ Z ∀w ∈ ΛW }. Using this fact one gets

F12 =
m

2r2
, η =

m

2r
. (2.47)

To reach the final result for the partition function it remains to evaluate the classical

action on the localization locus and compute the one loop determinants around the

latter. All Q-exact terms in the classical action vanish on solutions to (2.44),(2.45). The

only term that is not Q-exact is the Fayet–Iliopoulos term, which gives the contribution

SFI = 4πirξrenTr(σ) + iθrenTr(m), (2.48)
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where the parameters undergo renormalization according to

ξren = ξ − 1

2π

∑
l

Ql log(rM), θren = θ + (rk(G)− 1)π. (2.49)

M is a supersymmetry invariant ultraviolet cutoff and Ql are charges of chiral fields with

respect to the abelian part of the gauge group. Note, that whenever the target space is

Calabi–Yau, the sum of abelian charges has to vanish and thus ξren = ξ.

The one loop determinants around saddle points given by (2.44),(2.45) were computed

for vector and chiral multiplets with the result

Z1L
vec =

∏
α∈∆+

(
r2α(σ)2 +

α(m)2

4

)
(2.50)

Z1L
Φ =

∏
w∈R(G)

∏
w̃∈R(GF )

Γ
(
q
2 − ir

[
w(σ) + w̃(σext)

]
− w(m)

2

)
Γ
(

1− q
2 + ir [w(σ) + w̃(σext)]− w(m)

2

) , (2.51)

where ∆+ is the set of positive roots of Lie(G), w and w̃ are weights of representations

R(G) and R(GF ) of the gauge and flavor groups in which Φ transforms, while q is the

R-charge of the chiral multiplet Φ.

Before we give the final expression for the partition function let us introduce some

notations. By |WG| we mean the order of the Weyl group corresponding to G, then

define the integers mi, i = 1, . . . , rk(G) as mi = (βi,m), where {βi} is the orthonormal

basis of h∨ seen as a vector space, see Appendix A for details. The master formula for

the exact partition function of an N = (2, 2) GLSM on S2 reads

ZS
2
(G) =

1

|WG|
∑
m1∈Z

· · ·
∑

mrk(G)∈Z

∫
Rrk(G)

rk(G)∏
s=1

d(rσs)

2π

 e−SFIZ1L
vec(σ,m)

∏
Φ

Z1L
Φ (σ,m;σext).

(2.52)

An immediate fact evident from this form is that the original path integral was reduced

to a matrix model defined on the Cartan subalgebra of Lie(G). Apart from this obvious

observation there are many more beautiful and deep connections of this partition func-

tion with other areas of mathematics and theoretical physics. They will be explored and

(partly) uncovered in the remaining chapters.

Localization on the Higgs branch

When one performs integration in (2.52) for concrete examples, it is always possible to

manipulate the partition function to a form of a sum of factorized terms, one factor comes

from the north pole while the other from the south pole of S2. Is this a general pattern
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and can it be seen already at the path integral level during the procedure of localization?

The answer is positive. It was shown in [14, 15] by choosing a different deformation

action Sdef[ϕ], which changes the localization locus. To the original deformation action

Sdef[ϕ] = Svec + Schiral a new Q-closed and Q-exact term was added

SH =

∫
QTr

[
ε†+λ− λ†ε+

2i

(
φφ† − χI

)]
, (2.53)

where χ is a free parameter and φ contains all chiral fields. We can evaluate Sdef and

further integrate out the D field. The path integral over D is Gaussian (after completing

the square and shifting thus D), it contributes a term 1
2Tr(φφ†−χI)2, while the equation

of motion for the shifted D field reads

D +
σ

r
+ i
(
φφ† − χI

)
= 0. (2.54)

The bosonic part of Sdef becomes after this simple integration

Ldef

∣∣∣
bos

= Tr

{
1

2

[
sin θ

(
F12 −

η

r

)
+ cos θD1η

]2
+

1

2
(D2η)2 +

1

2
(Dµσ)2 − 1

2
[σ, η]2

+
1

2

[
φφ† − χI + cos θ

(
F12 −

η

r

)
− sin θD1η

]2
}

+ Lchiral

∣∣∣
bos
, (2.55)

where θ ∈ [0, π] is the latitude coordinate on S2. Notice that it is a sum of squares

(Lchiral

∣∣
bos

has this property as well), therefore the extrema coincide with configurations

where Ldef

∣∣
bos

= 0. The solutions divide into three categories5:

1. Higgs branch parametrized by solutions to

F12 − η
r = 0, Dµσ = 0, Dµη = 0, [σ, η] = 0 ← coming from Lvec

φφ† − χI = 0 ← coming from LH
F = 0, Dµφ = 0, ηφ = 0,

(
σ + σext

)
φ = 0 ← coming from Lchiral

(2.56)

In [14] it was argued that for general twisted masses the solutions of the above set

of equations consist of some number of isolated points (Higgs vacua), depending

on the sign of χ.

2. Coulomb branch. In the same reference it was shown that the result of path

integration is exponentially suppressed either in the limit χ → +∞ or χ → −∞,

5In this whole section we assume that all chiral fields have vanishing R-charge. Since the partition
function is holomorphic in the combination (twisted mass) + i

2
(R-charge), we can obtain non-zero R-

charges by analytic continuation.
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depending on the matter content of the theory. This is the limit of interest, where

Higgs branch configurations dominate.

3. Singular vortex solutions existing only at the north pole (θ=0) and anti-vortex at

the south pole (θ = π).

Let us provide some details about the vortex solutions. Focus on the north pole (the

derivation for the south pole works along the same lines). Setting θ = 0 in (2.55) we get

L(N)
def

∣∣∣
bos

=
1

2
(Dµη)2+

1

2
(Dµσ)2−1

2
[σ, η]2+

1

2

[
φφ† − χI + F12 −

η

r

]2
+L(θ=0)

chiral

∣∣∣
bos
. (2.57)

The Lagrangian for chiral fields at the north pole L(θ=0)
chiral

∣∣
bos

vanishes on the following

configurations

ηφ = 0, (σ + σext)φ = 0, D−φ = 0, F = 0 (2.58)

with D− = D1 + iD2. Instead the rest of (2.57) vanishes for

Dµη = 0, Dµσ = 0, [σ, η] = 0, F12 −
η

r
+ φφ† − χI = 0. (2.59)

Now consider the equation of motion for the D-field (2.54) restricted to the localization

locus (D + σ
r = 0 on the localization locus in order to extremize the vector multiplet

bosonic Lagrangian), so we have

φφ† = χI. (2.60)

Multiplying this equation by η and recalling that ηφ is forced to vanish by (2.58), we

conclude that η = 0. Therefore, summarizing the non-trivial equations, we have

(NP) : F12 + φφ† − χI = 0, D−φ = 0, (σ + σext)φ = 0. (2.61)

These are the vortex equations at the north pole. A similar analysis would reveal the

system of anti-vortex equations at the south pole

(SP) : F12 − φφ† + χI = 0, D+φ = 0, (σ + σext)φ = 0. (2.62)

The conclusion of this analysis is that for each solution to (2.56), i.e. each Higgs vacuum,

we have a moduli space of vortices at the plane attached to the north pole

p ∈ Higgs vac. → Mvort
p =

∞⋃
k=0

Mvort
p,k ; k =

1

2π

∫
R2

TrF, (2.63)

where k denotes the vorticity number. The same holds at the south pole, just vortices

get substituted by anti-vortices. In the localization computation we need to integrate
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over these moduli spaces. The full moduli space of localization equations on S2 in the

Higgs branch (χ→ ±∞) takes the form [15]

MH =
⊔

p∈Higgs vac.

( ∞⋃
k=0

Mvort
p,k

)
⊕

(∞⋃
l=0

Manti-vort
p,l

)
(2.64)

The vortex/anti-vortex partition functions at the poles are partition functions of N =

(2, 2) theory in the R2 planes attached to the poles but deformed by an U(1)ε equivariant

action, i.e. living in Ω-background. The reason is that the localizing supercharge on

S2 satisfies Q2 = M + R
2 and the right-hand side is precisely the generator of U(1)ε

rotations in the Ω-background. The equivariant parameter ε gets identified with the

radius of the sphere as ε = 1
r . These partition functions were studied in [24] and admit

the representation

Zvortex(p; z; . . .) =

∞∑
k=0

zk
∫
Mvort

p,k

eω, (2.65)

where ω is the U(1)ε-equivariant closed form onMvort
p,k , such that the integral computes

the equivariant volume of the moduli space Mvort
p,k .

The final result obtained for the partition function on S2 within the Higgs branch local-

ization scheme is therefore given as a sum over the Higgs vacua of contributions from

the north/south pole R2
ε patches glued together

ZS
2
(z, z̄) =

∑
Higgs vacua

ZclassZ1LZvortex(z)Zanti-vortex(z̄), (2.66)

with Z1L being the gluing factor. The crucial new terms are the vortex partition function

Zvortex(z) and the anti-vortex one Zanti-vortex(z̄). In some cases, this factorization of the

S2 partition function can produce expressions for vortex partition functions when they

are not known by other methods. We will illustrate the described factorization on many

examples in following chapters. The vortex partition function and especially its close

cousin Zv introduced at the end of Section 3.1 will turn out to be objects of primary

importance.

2.4 Comments on the possibility to have less than N =

(2, 2) supersymmetry on S2

In this section we wish to explore whether a consistent supersymmetric theory with less

than four supercharges can be defined on S2. Namely, we have in mind the generalization

of N = (0, 2) theories that exist in flat space. If these theories could be consistently

defined on the sphere, then the exact partition function would give a refinement of the
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superconformal index, providing thus a new tool for studying trialities among N = (0, 2)

theories discovered recently [25].

Unfortunately, at least in a particular setting, the answer to this question seems to

be negative. However, we are not giving any kind of no-go theorem, just a couple

of comments disfavoring a certain scenario that we describe now. Details about the

superalgebra for N = (2, 2) supersymmetry on S2 necessary to understand the following

discussion were presented in Section 2.1.1. As we showed the supersymmetry algebra

is isomorphic to the compact real form of sl(2|1). The strategy will be to look for a

sub-superalgebra, where the even part is formed by the full isometry algebra so(3) of

S2 while the odd part forms a two dimensional representation of it, i.e. there are two

supercharges.

The only non-trivial simple sub-superalgebra of sl(2|1) is osp(1|2). Again, we are refer-

ring to the compact real form with even algebra usp(2) ' su(2) ' so(3) to ensure that

it agrees with isometries of S2.6 We denote the generators in the Cartan–Weyl basis

{Ĥ, Ê+, Ê−}even ∪ {F̂+, F̂−}odd and their commutation relations are listed in [21], p.76.

The embedding of osp(1|2) into sl(2|1) expressed in terms of generators of the N = (2, 2)

supersymmetry algebra on S2 reads

{Ĥ = J0, Ê+ = J+, Ê− = J−} ∪ {F̂+ =
1

2
(Q2 + S2) , F̂− =

1

2
(Q1 + S1)}. (2.67)

Let us remark here that a supercharge formed as a general linear combination

Q = aF̂+ + bF̂−; a, b ∈ C (2.68)

squares to a bosonic symmetry

Q2 =
a2

4
J+ −

b2

4
J− +

ab

2
J0 (2.69)

=
a2 − b2

4
J1 + i

a2 + b2

4
J2 +

ab

2
J0, (2.70)

which is neither hermitian nor skew-hermitian for any choice of a and b (except for the

trivial case a = b = 0). This is perhaps also connected with the fact that the vector field

generating this symmetry, in the vielbein basis expressed as

v1 =
r

4

(
a2eiφ + b2e−iφ

)
(2.71)

v2 =
ir

2

(
−ab sin θ +

a2

2
eiφ cos θ − b2

2
e−iφ cos θ

)
(2.72)

6The other real forms describe spheres in spaces with pseudo-Riemannian signatures, i.e. dS/AdS
spaces.
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has no zeros, i.e. there are no fixed points. This behavior is in strong contrast with

the situation of N = (2, 2) supersymmetry on S2, where Q2 was carefully chosen to

generate U(1) rotations of the sphere with the north and south pole fixed But this

difference has at the end nothing to do with consistency of the theory itself, at most can

create problems in the course of a localization computation.

Nevertheless, from our point of view, there is a more severe obstruction for the existence

of the theory itself. For the N = (2, 2) supersymmetry algebra on S2 we have fixed

the scaling of the generators (2.3) in order to reproduce the N = (2, 2) supersymmetry

algebra on R2 in the flat space limit r → ∞. The osp(1|2) generators are expressed by

those of sl(2|1) by means of (2.67) and (2.2), hence the scaling remains fixed. Taking

now the flat space limit does not reproduce the N = (0, 2) algebra on R2

sl(2|1)
İnönü–Wigner−→

contraction
N = (2, 2) on R2, no central charges

⊂

osp(1|2)
İnönü–Wigner−→

contraction
NOT N = (0, 2) on R2

or in other words putting to zero supercharges of a given chirality is not consistent with

commutation relations of the sl(2|1) superalgebra

sl(2|1)
İnönü–Wigner−→

contraction
N = (2, 2) on R2

6⊂ Q−=0 ←
− Q̄−=0

not a subalgebra ←− N = (0, 2) on R2

.

These are few observations we wanted to mention about the issue of reducing the number

of supercharges from four to two on S2. The arguments are not general enough to claim

that it is not possible to define a theory with just two supercharges on the sphere.

However, they already highlight some difficulties one encounters on the route towards

that objective.



Chapter 3

Quantum cohomology of target

spaces from the S2 partition

function

A gauge theory (GLSM) flows in the infra-red to a non-linear sigma model (NLSM)

with a corresponding target manifold. The control parameters for such flows are the

Fayet-Iliopolous terms. Therefore the space of FI couplings gets divided into chambers,

each chamber connected to a different target manifold. We present two main sections

below. In the first one, the phase of the model will be fixed and we study the quantum

cohomology of the related target manifold using the partition function on S2. The

second part is devoted to the analysis of transitions between distinct phases and how is

this aspect encoded at the level of the partition function. Recall, that ZS
2

is associated

with the UV description of the theory, i.e. the GLSM, and as such has to encompass

the geometry of all target manifolds which arise in the infrared. This is certainly true

and we show which operation on the partition function is related to crossing a wall in

the chamber diagram. All introduced concepts will be clarified by a rather rich list of

examples.

3.1 Quantum cohomology of a target manifold

A good starting point is to define a target manifold M. We mean by it the manifold of

classical supersymmetric vacua, that is the space of scalar fields (modulo the action of

a gauge group G) on which the scalar potential vanishes. Since the scalar potential is

33
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quadratic in the F - and D-terms we may equivalently write

M =

{
{scalar fields}

∣∣ F = 0, D = 0
}/

G. (3.1)

M is a Kähler manifold as a consequence of working with a theory that has four con-

served supercharges. The one-loop beta function of the NLSM is proportional to the

Ricci tensor, β1L
µν = 1

2πRµν ; µ, ν = 1, . . . ,dimM. Moreover on a Kähler manifold the

Ricci curvature determines the first Chern class c1(M) of the manifold. There are three

possibilities that can arise classified by the sign of the beta function

• β1L
µν > 0: The theory is asymptotically free, c1(M) is positive definite in which

case the target space is a Fano manifold.

• β1L
µν = 0: The theory is scale invariant, while the target manifold (Kähler with

vanishing Ricci curvature) is Calabi–Yau. This will show as quite a distinguished

situation on which we comment the most.

• β1L
µν < 0: The theory is not UV complete, there is an ultraviolet singularity.

Moduli spaces of Calabi–Yau target manifolds

The most interesting option from our perspective is the Calabi–Yau target manifold,

specifically a Calabi–Yau threefold. A fruitful setup in string theory is to factor the

spacetime as M4 × CY3 and compactify on the threefold. Doing so provides us with

an effective four dimensional theory on M4 that captures the low energy dynamics of

string theory. In that case, the NLSM is a superconformal field theory (SCFT). It can

be deformed by marginal operators from the chiral and twisted chiral ring, respectively.

From the target space point of view this corresponds to metric deformations, which split

into two categories:

(i) complexified Kähler class deformations ←→ chiral ring operators

(ii) complex structure deformations ←→ twisted chiral ring operators

Thus, locally, the moduli space of metric deformations has the product form MCY =

MCS
CY ×MK

CY . The dimensions of the two components are governed by the non-trivial

Hodge numbers of the threefold, dimMCS
CY = h2,1 while dimMK

CY = h1,1. In addition

both of them can be shown to be projective (local) special Kähler manifolds (these kind

of spaces appear as target manifolds relevant for theories with eight supercharges, but

we are not going to explore this connection any further). As such they certainly admit
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a Kähler potential for the metric, gmn̄ = ∂m∂n̄K. For the moduli space MK
CY of Kähler

class deformations with coordinates ta, a = 1, . . . , h1,1, the formula around the large

volume point reads [17]

e−K
K(ta,t̄a) = − i

6

∑
l,m,n

κklm(tl − t̄l)(tm − t̄m)(tn − t̄n) +
ζ(3)

4π3
χ(M)

+
2i

(2πi)3

∑
η∈H2(M,Z)

η 6=0

Nη

(
Li3(qη) + Li3(q̄η)

)

− i

(2πi)2

∑
η,l

Nη

(
Li2(qη) + Li2(q̄η)

)
ηl(t

l − t̄l), (3.2)

where Nη are the (integral) genus zero Gromov–Witten invariants of the Calabi–Yau

threefold M, χ(M) is its Euler characteristic and the polylogarithms are defined by

Lik(q) =

∞∑
n=1

qn

nk
, qη = e2πi

∑
l ηlt

l
. (3.3)

Rougly speaking, the Gromov–Witten invariants were designed to count the number of

pseudo-holomorphic curves from a Riemann surface to the Calabi–Yau manifold. We

concentrate only on the genus zero Riemann surface (topology of S2), that is why we

speak about genus zero G–W invariants. The connection with quantum cohomology

comes from the quantum cup product ?∫
M

(a ? b)A ∪ c = GWM,A
0,3 (a, b, c), (3.4)

where a, b, c ∈ H∗(M) and A ∈ H2(M). On the right hand side we have a genus

zero 3-point Gromov–Witten invariant. Classical cohomology arises as a contribution of

constants maps only, that is A = 0 sector in quantum cohomology. We have

a ? b =
∑

A∈H2(M)

(a ? b)A e
A = (a ? b)0︸ ︷︷ ︸

a∪b

+
∑
A 6=0

(a ? b)A e
A (3.5)

with eA a formal exponential often introduced in e.g. theory of characters to deal

with convergence issues. From physics point of view, G–W invariants are coefficients of

worldsheet instanton corrections to three point functions (Yukawa couplings) in A-twist

NLSM.

Changing to the moduli space MCS
CY of complex structure deformations, the Kähler

potential can be expressed this time in terms of the special projective coordinates XI

and their conjugates FI , I = 0, . . . , h2,1 as

KCS(ξi, ξ̄i) = − log i
(
XIFI −XIFI

)
. (3.6)
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with ξi, i = 1, . . . , h2,1 being the coordinates on MCS
CY . The XI and FI are collectively

called periods and can be computed as integrals of the holomorphic 3-form over the basis

of 3-cycles and their duals

Π(ξ) =
(
XI(ξ),FJ(ξ)

)
=

(∫
AI

Ω(ξ),

∫
BJ

Ω(ξ)

)
. (3.7)

The conjugate periods FJ may be written as gradients of a potential function

FJ(X) =
∂F(X)

∂XJ
, (3.8)

where F(X) is called the prepotential.

ComputingKK is a very difficult problem since non-perturbative corrections are involved.

However, in some situations, mirror symmetry comes to rescue. Having a pair of mirror

Calabi–Yau manifolds Y and Ŷ , the mirror theorem states MK(Y ) ' MCS(Ŷ ), where

the isomorphism is described by a mirror map, see Figure 3.1.

  

Figure 3.1: Isomorphisms between moduli spaces of a mirror pair of Calabi–Yau

manifolds Y, Ŷ . The right side shows isomorphism between Kähler moduli space of Y

and complex structure moduli space of its mirror Ŷ . Canonical coordinates on both
spaces are defined and the isomorphism is expressed by a mirror map. The right side
is captured by the partition function on S2 computed using the su(2|1)A algebra while
the left side is related to the su(2|1)B algebra. In this thesis we are dealing with the

right side.
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This powerful statement evades the hard non-perturbative analysis on MK(Y ) by trans-

ferring it to a manageable calculation within classical geometry on MCS(Ŷ ). The out-

lined strategy assumes that the mirror manifold Ŷ as well as the mirror map are known.

This is true only for some families of C–Y manifolds like complete intersections in toric

manifolds and a handful of other exceptional examples, yet by far not in general.

Kähler potential from partition function on S2

In [17] a conjecture for computing KK directly, without ever referring to mirror symme-

try, was put forward. The proposal is based on the sphere partition function of a GLSM

with target M. Then for the Kähler potential of MK(M) holds

e−K
K(zl,z̄l) = ZS

2
(zl, z̄l) (3.9)

where zl are related to the FI couplings as

zl = e−2πξl+iθl (3.10)

with l running over abelian factors in the gauge group. The conjecture does not just

give a formula for the Kähler potential. It also allows for extracting the mirror map,

giving thus handle on mirror symmetry itself, in situations where standard constructions

do not work. A proof was provided later (at the physics level of rigor) in [16] (see also

[26]) using result of [27] that determines the Kähler potential in terms of a vacuum to

vacuum amplitude in the associated NLSM. So the chain of equalities reads

ZS
2 [16]

= 〈 0 | 0 〉 [27]
= e−K

K
. (3.11)

The idea is the following. As we already know, ZS
2

is independent of the gauge cou-

pling and thus invariant under the renormalization group flow. This is required as we

are matching a quantity in the GLSM with its counterpart in the NLSM. The next cru-

cial input being the independence of the partition function of squashing the sphere to

ellipsoids. Thus we can deform the sphere to a cigar geometry, where the path integral

selects the vacuum states.

A natural question emerges at this stage. For now we treated the Kähler potential

on the moduli space of Kähler class deformations, what about the Kähler potential on

moduli space of complex structure deformations? We can not resist to make this small

detour. As we shortly commented when building N = (2, 2) supersymmetry algebra

on S2, there was a choice involved. We fixed a particular subalgebra su(2|1), but there

exists an inequivalent choice, related to the first one by a mirror (outer) automorphism.
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Let us distinguish these two inequivalent N = (2, 2) supersymmetry algebras on S2 by

subscripts A,B. In [28] it was demonstrated that the S2 partition function with respect

to the su(2|1)B algebra computes KCS. As a summary we have

ZS
2

A = e−K
K

ZS
2

B = e−K
CS
. (3.12)

A general picture summing up the ongoing discussion is presented in Figure 3.2. In the

Figure 3.2: A scheme for computing exact Kähler potentials for Kähler class and
complex structure deformations of a Calabi–Yau manifolds using the partition function

of N = (2, 2) gauge theories on S2.

following we will concentrate on ZS
2

A , therefore the Kähler potential on the moduli space

of Kähler class deformations.

Givental’s formalism and partition function on S2

We developed in [29] a connection between the partition function on S2 and Givental’s

approach to mirror symmetry [30] as well as its generalization to non-abelian quotients

[31]. Except for the original paper a readable review of Givental’s theory can be found

in [32] or even with more details in the PhD. thesis of Tom Coates [33], alternatively in

the book [34] (Chapters 10, 11 in particular). Here we give just a very brief introduction

to this topic before moving to a large number of examples that will hopefully illustrate

the quite abstract constructions a bit better.
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The correspondence between the partition function on S2 and Kähler potential intro-

duced in [17] holds for Calabi–Yau target manifolds. Here we generalize to Fano mani-

folds as well. Our construction enables us to treat compact and non-compact spaces at

the same footing, in the non-compact case we work in equivariant cohomology, which is

effectively achieved by incorporating twisted masses for global symmetries at the level

of the partition function.

Introducing Givental I- and J -functions. These two functions are the fundamental

objects in the theory, so we need to mention their basic properties. First we give a

rough general picture. They are cohomology valued functions related to each other by

normalization (equivariant mirror map) and a change of variables (mirror map). The

I-function is a generating function for solutions to the Picard–Fuchs system on the

mirror manifold M̂ and will be more elementary from the perspective of the partition

function. It encodes the mirror and equivariant mirror maps, thus allowing to obtain

the J -function, which stores the Gromov–Witten potential.

Let us introduce the flat sections Va of the Gauss-Manin connection on the vacuum

bundle of the theory and satisfying [35, 36]

(~Daδ
c
b + Ccab)Vc = 0. (3.13)

where Da is the covariant derivative on the vacuum line bundle and Ccab are the coeffi-

cients of the OPE in the chiral ring, φaφb = Ccabφc. The observables {φa} provide a basis

for the vector space of chiral ring operators H0(M)⊕H2(M) with a = 0, 1, . . . , b2(M),

φ0 being the identity operator. The parameter ~ is the spectral parameter of the Gauss-

Manin connection. Setting b = 0 in (3.13), we find that Va = −~DaV0 which means that

the flat sections are all generated by the fundamental solution J := V0 of the equation

(~DaDb + CcabDc)J = 0 (3.14)

The metric on the vacuum bundle is given by a symplectic pairing of the flat sections

gāb = 〈ā|b〉 = V t
āEVb and in particular the vacuum-vacuum amplitude, that is the the

spherical partition function, can be written as the symplectic pairing

〈0̄|0〉 = J tEJ (3.15)

for a suitable symplectic form E [35] that will be specified later.

The J -function can be reconstructed from the I-function, which is a function of hy-

pergeometric type. It depends on the spectral parameter ~, coordinates on the moduli

space and cohomology generator(s). Givental’s formalism has been developed originally
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for abelian quotients, more precisely for complete intersections in quasi-projective toric

varieties. In this case, the I-function is the generating function of solutions to the

Picard-Fuchs equations for the mirror manifold M̂ of M. It can be expanded as a

polynomial in the cohomology generator(s) with coefficients satisfying the Picard–Fuchs

system.

This formalism has been extended to non-abelian GLSM in [37, 38]. The Gromov-

Witten invariants for the non-abelian quotient are conjectured to be expressible in terms

of the ones of the corresponding abelian quotient twisted by the Euler class of a vector

bundle over it. The corresponding I-function is obtained from the one associated to

the abelian quotients by multiplying it with a suitable factor depending on the Chern

roots of the vector bundle. The first example of this kind was the quantum cohomology

of the Grassmanian discussed in [39]. This was rigorously proved and extended to flag

manifolds in [37]. As we will see, our results give evidence of the above conjecture in

full generality, though a proof is missing.

In order to calculate the equivariant Gromov-Witten invariants from the above func-

tions, one has to consider their asymptotic expansion in ~. Let us demonstrate the

transition between the I and J functions on the simplest example. Consider a Calabi–

Yau threefold Y with a single coordinate t on MK(Y ), i.e. h1,1(Y ) = 1. This also

implies b2(Y ) = 1 (remind h2,0 = h0,2 = 0), thus there is a single cohomology generator

H ∈ H2(Y ). The top form is H3 while all higher powers vanish for dimensional reasons.

For the moment assume Y to be compact such that there is no need to introduce equiv-

ariant parameters. Then the 1
~ expansion (in this case equivalent to H expansion) of the

J -function terminates (the constant term is set to one due to a particular normalization)

J (H; ~; t) = 1 +

(
H

~

)
t+

(
H

~

)2

J (2)(t) +

(
H

~

)3

J (3)(t). (3.16)

The components of the J function J (2), J (3) are a formal power series in the t-coordinate,

which is related to the worldsheet instanton counting parameter q as q = e2πit. The co-

efficient of the ~−2 term in this expansion is directly related to the genus zero Gromov-

Witten prepotential F . In particular J (2)(t) = ηtt∂tF , where ηtt is the inverse topological

metric. When we have more Kähler moduli with their correposnding cohomology gen-

erators, the components of the J function become vectors. In this situation the above

relation gets generalized to J (2)l({t}) = ηlk∂kF ({t}). Higher order terms in the ~−1

expansion are related to gravitational descendant insertions.

Now we turn to the problem how to construct the J -function starting from the I-

function that is contained in the two-sphere partition function. Again one has to consider
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the expansion in ~−1

I(H; ~; z) = I(0)(z) +

(
H

~

)
I(1)(z) +

(
H

~

)2

I(2)(z) +

(
H

~

)3

I(3)(z). (3.17)

Comparing coefficients of the two expansions we arrive at the mirror map1

t(z) =
I(1)(z)

I(0((z)
= log z + f (hol)(z) (3.18)

and at the same time we see that the I and J functions are related as

J (t) =
I(z)

I(0)(z)

∣∣∣∣
z=z(t)

, (3.19)

where z(t) is the inverse mirror map.

Further assume we elaborate our setting and deal with a non-compact Y . This implies

presence of equivariant parameters (twisted masses from gauge theory point of view)

on top of the cohomology generators. For simplicity assume still a single cohomology

generator H and also a single equivariant parameter E. Focus on the ~−1 order of the

expansion for the I function, it gets changed to

H

~
I(1)(z) −→ H

~
I(1)(z) +

E

~
I(1)

eq (z) (3.20)

In such a scenario we have to perform an equivariant mirror map (normalization of the

I function), which effectively removes the term containing the equivariant parameter at

order ~−1 in addition to the usual mirror map. As a result the J function is given as

J (t) = exp

{
−E

~
I

(1)
eq

I(0)

}
I
I(0)

∣∣∣∣∣
z=z(t)

. (3.21)

We are now ready to reveal the connection between Givental’s formalism and the spher-

ical partition function on S2. As a first step we can factorize ZS
2

in a similar fashion to

(2.66) even before integration [17, 29]

ZS
2

=

∮
dλZ1l

(
z−r|λ|Zv

)(
z̄−r|λ|Zav

)
(3.22)

with dλ =
∏rk(G)
s=1 dλs and |λ| =

∑
s λs, whereas z = e−2πξ+iθ is the vortex counting

parameter. The factors zz̄−r|λ| come from the classical action. Zv (resp. Zav) is a close

1The log z term is due to a normalization factor z
H
~ contained in the I function multiplying a power

series in z, which constant term is one. It is a trivial factor that may or may not be included. On
the gauge theory side it corresponds to the (holomorphic piece of) classical action evaluated at the
localization locus. We will comment on this later on.
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relative to the equivariant vortex partition function Zvort (resp. anti-vortex partition

function Zanti-vort), see (2.66), that are localized at the north (resp. south) pole. Z1l is

the remaining one-loop measure.

Dictionary. Our claim is that Zv is to be identified with Givental I-function2 of the

target manifold M upon identifying the vortex counting parameter zl = e−2πξl+iθl with

the natural coordinates of the I function (for a C–Y manifolds Y these are the co-

ordinates on the complex structure moduli space MCS(Ŷ ) of the mirror manifold Ŷ ).

Next, λs get identified with the cohomology generators, twisted masses with equivariant

parameters in cohomology and finally the radius of the sphere with the spectral param-

eter, r = 1
~ . To extract Gromov-Witten invariants from the spherical partition function

one has then to implement the procedure outlined above to compute the J -function.

The range of FI parameters determines integration contours corresponding to a given

chamber of the GLSM. The one-loop term Z1l has to be properly normalized in order to

reproduce classical intersection numbers on the target space. It can also be interpreted

as the symplectic pairing introduced in (3.15).

Time has come to expose the theoretical constructions on some examples. We divide

them into two categories classified by the gauge group of the underlying gauge theory.

First we study abelian models and later we move to more complicated non-abelian

theories. For a class of non-abelian models we also comment on certain dualities.

3.2 Abelian GLSMs

3.2.1 Projective spaces

Let us start with the basic example, that is CPn−1. As a first step we need to design a

GLSM whose classical vacuum manifold given by (3.1) is isomorphic to CPn−1. For this

particular example the construction is easy and we check that the claim we make in a

moment is indeed correct. However, in general this can be a hard problem and we do

not provide a general recipe.

Consider a sigma model with matter content consisting of n chiral superfields Φ1, . . . ,Φn

of charge 1 with respect to the U(1) gauge group. The Lagrangian of this model takes

the form

L =

∫
d4θ

(
n∑
i=1

Φ̄ie
V Φi −

1

2e2
Σ̄Σ

)
+

1

2

(
−τ
∫
d2θ̃Σ + c.c

)
(3.23)

2Or we can include also the term z−r|λ| in the definition of the I-function. As we already commented
it is responsible for the log z term in the mirror map. The effect of this factor can be reintroduced at
any stage, so we may omit it for simplicity.
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with τ = iξ+ θ
2π the complexified Fayet-Iliopoulos parameter. In general, the FI param-

eter ξ runs [15]; in our case

ξren = ξ − n

2π
log(rM) (3.24)

with M a SUSY-invariant ultraviolet cut-off3.

The potential energy computed from this Lagrangian reads

U =
n∑
i=1

|σ|2|φi|2 +
e2

2

(
n∑
i=1

|φi|2 − ξ

)2

(3.25)

For ξ > 0 the classical vacua (U = 0) are achieved for σ = 0 and

n∑
i=1

|φi|2 = ξ (3.26)

Therefore the vacuum manifold takes the desired form{
φ1, . . . , φn

∣∣∣ ∑n
i=1 |φi|2 = ξ

}/
U(1) ' S2n−1/S1 ' CPn−1. (3.27)

Now that we have showed that our model has a correct target manifold, we can just

use equation (2.52) to write down the corresponding S2 partition function. The gauge

group is U(1), that is an abelian rank one group. Therefore, we have a single sum over

magnetic fluxes as well as a single integration over the Cartan subalgebra. Moreover

the order of the Weyl group is just one. We need to evaluate the on-shell classical

action (2.48), contribution from the vector multiplets (2.50) containing the roots drops

out and further we are only left with one-loop determinants for the chiral fields (2.51).

We assume that R-charges for all chiral fields vanish (we can do that since there is

no superpotential), the weights for the representations of the chiral fields in (2.51) are

just the abelian charges, so +1 for all fields. This finishes the discussion of all needed

ingredients, the resulting formula for ZS
2

reads

ZPn−1 =
∑
m∈Z

∫
R

d(rσ)

2π
e−4πiξrenrσ−iθm

(
Γ
(
−irσ − m

2

)
Γ
(
1 + irσ − m

2

))n . (3.28)

Further we can perform a change of variables, defining τ = −irσ the partition function

becomes

ZPn−1 =
∑
m∈Z

∫
iR

dτ

2πi
e4πξrenτ−iθrenm

(
Γ
(
τ − m

2

)
Γ
(
1− τ − m

2

))n . (3.29)

Pn−1 is associated to the phase ξren > 0. The term e4πξrenτ governs the asymptotic

behavior of the integrand. We see that it gets suppressed in the left τ plane, so we can

3Notice that in the Calabi-Yau case the sum of the charges is zero, therefore ξren = ξ.
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evaluate the integral by closing the contour by a big circle in the left half-plane in order

to use residue theorem. After doing it, we need to study the poles of the integrand.

Remind that Γ(x) has a simple pole for x = 0,−1,−2, . . .. Therefore the factors in the

numerator will provide us with poles while those in the denominator with zeroes; their

location is

poles: τ − m
2 = −k, k ∈ Z≥0 −→ τ = −k + m

2

zeroes: 1− τ − m
2 = −k̃, k̃ ∈ Z≥0 −→ τ = 1 + k̃ − m

2 .

Clearly they tend to cancel. Setting the two expressions equal we get a range where

the zeroes do cancel the poles. This happens for k ≤ m − 1, then the complementary

interval k ≥ m specifies the surviving poles. Taking into account the original restriction

k ∈ Z≥0 as well, we obtain the true positions of the poles

τpole = −k +
m

2
, k ≥ max(0,m). (3.30)

By residue theorem we get a sum over these poles. However, we do not evaluate the

residue, rather just rewrite it by Cauchy theorem as a contour integral, the contour

being a small circle around the given pole, see Figure 3.3.

Figure 3.3: The figure shows the poles and zeroes of the integrand for a fixed value

of m = 5
2 . In (a) the cancellation of poles with zeroes is displayed, together with the

original integration contour (blue line). In (b) we see the true poles, enclosed by a
closed contour. The contribution of the big circle vanishes due to asymptotic behavior
of the integrand selected by the FI term ξ > 0. Part (c) shows the reduction to a sum

of Cauchy integrals, with small contours around individual poles.

The integration variable on these small circles is denoted by λ. This is the trick how

to get the function Zv in (3.22). Instead the true vortex partition function Zvortex,

equation (2.66), does not contain any λ and is obtained after evaluating these Cauchy

integrals. However, remind that Zv gets identified with the I function and there λ plays

an important role as it serves as the cohomology generator. So in summary, we started

with an integral over a real line, exploiting the asymptotic behavior of the integrand
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we noticed that it might be transformed to a contour integral closing it by a big half

circle. Further this single contour integral was reduced to a sum of contour integrals,

with small contours going around the poles enclosed in the original big contour. The

logic of this procedure is summed up in Figure 3.3. The outlined steps are achieved,

starting from (3.29), by setting

τ = τpole + rMλ, (3.31)

where M is just an inverse length scale to keep λ dimensionless. Finally, one ends up

with the following formula

∑
m∈Z

∑
k≥max(0,m)

∮
d(rMλ)

2πi
e4πξren(τpole+rMλ)

(
Γ
(
τpole − m

2 + rMλ
)

Γ
(
1− τpole − m

2 − rMλ
))n . (3.32)

At this stage we have to handle the double summation. The lattice over which the sum

runs is visualized in Figure 3.4, from where it is not difficult to see that the following

Figure 3.4: The figure shows the summation lattice of (3.32). The blue line fixes
m ∈ Z and sums over k ≥ max(0,m), while the red line fixes k ≥ 0 and sums over

m ≤ k. Finally, the purple line fixes L = k −m ≥ 0 and sums over K ≥ 0.



Chapter 3. Quantum cohomology of target spaces from the S2 partition function 46

schematic chain of equalities holds

∑
m∈Z

∑
k≥max(0,m)

(· · · ) =
∑
k≥0

∑
m≤k

(· · · ) =

∣∣∣∣∣ K = k

L = k −m

∣∣∣∣∣ =
∑
K≥0

∑
L≥0

(· · · ) . (3.33)

Plugging to (3.32) the positions of the poles τpole from (3.30) and the definition of the

renormalized FI term (3.24), followed by changing the summation variables to K, L as

indicated in (3.33), we arrive at

ZPn−1 =

∮
d(rMλ)

2πi
(rM)−2nrMλ

∑
L≥0

[(rM)nz]L
(

1

Γ (1 + L− rMλ)

)n
∑
K≥0

[(rM)nz̄]K
(

Γ (−K + rMλ)
)n
. (3.34)

In the above expression a new variable z has been defined as

z = e−2πξ+iθ. (3.35)

The ultimate step to be done consists of simplifying the Gamma functions using the

following Pochhammer identities

Γ(a+ k) = Γ(a)(a)k, Γ(a− k) = Γ(a)
(−1)k

(1− a)k
; k ∈ Z≥0, (3.36)

where the Pochhammer symbol (a)k is defined as

(a)k =


∏k−1
i=0 (a+ i) for k > 0

1 for k = 0∏−k
i=1

1

a− i
for k < 0

. (3.37)

The final form of the partition function (3.29) then becomes

ZPn−1 =

∮
d(rMλ)

2πi
ZPn−1

1l ZPn−1

v ZPn−1

av , (3.38)

where

ZPn−1

1l = (rM)−2nrMλ

(
Γ(rMλ)

Γ(1− rMλ)

)n
ZPn−1

v = z−rMλ
∑
l≥0

[(rM)nz]l

(1− rMλ)nl

ZPn−1

av = z̄−rMλ
∑
k≥0

[(−rM)nz̄]k

(1− rMλ)nk
.

(3.39)
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The I-function is given by ZPn−1

v , and coincides with the one given in the mathematical

literature4

IPn−1(H, ~; t) = e
tH
~
∑
d≥0

[(~)−net]d

(1 +H/~)nd
(3.40)

if we identify ~ = 1
rM , H = −λ, t = ln z. The antivortex contribution is the conjugate

I-function, with ~ = − 1
rM , H = λ and t̄ = ln z̄. The hyperplane class H satisfies

Hn = 0; in some sense the integration variable λ satisfies the same relation, because the

process of integration will take into account only terms up to λn−1 in Zv and Zav.

Complete intersections in Pn−1 of type (q0, . . . , qm), qj > 0 can be obtained by adding

chiral fields of charge (−q0, . . . ,−qm). This means that the integrand in (3.29) gets

multiplied by
m∏
j=0

Γ
(
Rj
2 − qjτ + qj

m
2

)
Γ
(

1− Rj
2 + qjτ + qj

m
2

) . (3.41)

The poles are still as in (3.31), but now

ZPn−1

1l = (rM)−2rM(n−|q|)λ
(

Γ(rMλ)

Γ(1− rMλ)

)n m∏
j=0

Γ
(
Rj
2 − qjrMλ

)
Γ
(

1− Rj
2 + qjrMλ

)
ZPn−1

v = z−rMλ
∑
l≥0

(−1)|q|l[(rM)n−|q|z]l
∏m
j=0(

Rj
2 − qjrMλ)qj l

(1− rMλ)nl

ZPn−1

av = z̄−rMλ
∑
k≥0

(−1)|q|k[(−rM)n−|q|z̄]k
∏m
j=0(

Rj
2 − qjrMλ)qjk

(1− rMλ)nk
,

(3.42)

where |q| =
∑n

j=0 qj and Rj is the R-charge of the j-th field. Notice that, if we want

to describe a bundle over a space, we should set Rj = 0 and add twisted masses in the

contributions coming from the fibers, since we want to separate the different cohomol-

ogy generators (i.e. the different integration variables); we will do this explicitly when

needed. On the other hand, complete intersections do not require and do not allow

twisted masses, because the insertion of the superpotential breaks all flavor symmetry;

moreover, since the superpotential must have R-charge 2, we will need some Rj 6= 0 (see

the example of the quintic below).

3.2.1.1 Equivariant projective spaces

The same computation can be repeated in the more general equivariant case, with twisted

masses turned on. In this case, the partition function reads (rescaling the twisted masses

4This was already observed in this particular case in [40].
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as ai →Mai in order to have dimensionless parameters)

Zeq
Pn−1 =

∑
m∈Z

∫
dτ

2πi
e4πξrenτ−iθrenm

n∏
i=1

Γ
(
τ − m

2 + irMai
)

Γ
(
1− τ − m

2 − irMai
) . (3.43)

We perform a change of variables to shift the poles to λ = 0

τ = −k +
m

2
− irMaj + rMλ (3.44)

in order to arrive at

Zeq
Pn−1 =

n∑
j=1

∮
d(rMλ)

2πi
ZPn−1

1l, eqZ
Pn−1

v, eq Z
Pn−1

av, eq, (3.45)

where

ZPn−1

1l, eq = (zz̄)irMaj (rM)−2nrMλ
n∏
i=1

Γ(rMλ+ irMaij)

Γ(1− rMλ− irMaij)

ZPn−1

v, eq = z−rMλ
∑
l≥0

[(rM)nz]l∏n
i=1(1− rMλ− irMaij)l

ZPn−1

av, eq = z̄−rMλ
∑
k≥0

[(−rM)nz̄]k∏n
i=1(1− rMλ− irMaij)k

(3.46)

and aij := ai − aj . Since there are just simple poles due to the equivariant weights, the

integration can be easily performed

Zeq
Pn−1 =

n∑
j=1

(zz̄)irMaj

n∏
i 6=j=1

1

irMaij

Γ(1 + irMaij)

Γ(1− irMaij)∑
l≥0

[(rM)nz]l∏n
i=1(1− irMaij)l

∑
k≥0

[(−rM)nz̄]k∏n
i=1(1− irMaij)k

.

(3.47)

In the limit rM → 0 the one-loop contribution (see the first line of (3.47)) provides the

equivariant volume of the target space

Vol(Pn−1
eq ) =

n∑
j=1

(zz̄)irMaj

n∏
i=1
i 6=j

1

irMaij
=

n∑
j=1

e−4πiξrMaj

n∏
i=1
i 6=j

1

irMaij
. (3.48)

Using the fact that

lim
r→0

n∑
j=1

e−4πiξrMaj

(4ξ)n−1

n∏
i=1
i 6=j

1

irMaij
=

πn−1

(n− 1)!
(3.49)
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we find the non-equivariant volume

Vol(Pn−1) =
(4πξ)n−1

(n− 1)!
. (3.50)

3.2.1.2 Weighted projective spaces

Another generalization consists in studying the weighted projective space Pw = P(w0, . . . , wn),

which has been studied from the mathematical point of view in [41]. This can be ob-

tained by considering a U(1) gauge theory with n+ 1 fundamentals of (positive) integer

charges w0, . . . , wn. The partition function reads

Z =
∑
m

∫
dτ

2πi
e4πξrenτ−iθrenm

n∏
i=0

Γ(wiτ − wi m2 )

Γ(1− wiτ − wi m2 )
(3.51)

so one would expect n+ 1 towers of poles at

τ =
m

2
− k

wi
+ rMλ , i = 0 . . . n (3.52)

with integration around rMλ = 0. Actually, in this way we might be overcounting some

poles if the wi are not relatively prime, and in any case the pole τ = 0 is always counted

n+ 1 times. In order to solve these problems, we will set

τ =
m

2
− k + rMλ− F (3.53)

where F is a set of rational numbers defined as

F =
{ d

wi
/ 0 ≤ d < wi , d ∈ N , 0 ≤ i ≤ n

}
(3.54)

and every number has to be counted only once. Let us explain this better with an

example: if we consider just w0 = 2 and w1 = 3, we find the numbers (0, 1
2) and

(0, 1
3 ,

2
3), which means F = (0, 1

3 ,
1
2 ,

2
3); the multiplicity of these numbers reflects the

order of the pole in the integrand, so we will have a double pole (counted by the double

multiplicity of d = 0) and three simple poles.

The partition function then becomes

Z =
∑
F

∮
d(rMλ)

2πi
Z1l Zv Zav (3.55)
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with integration around rMλ = 0 and

Z1l = (rM)−2|w|rMλ−2
∑n
i=0(ω[wiF ]−〈wiF 〉)

n∏
i=0

Γ(ω[wiF ] + wirMλ− 〈wiF 〉)
Γ(1− ω[wiF ]− wirMλ+ 〈wiF 〉)

Zv = z−rMλ
∑
l≥0

(rM)|w|l+
∑n
i=0(ω[wiF ]+[wiF ])zl+F∏n

i=0(1− ω[wiF ]− wirMλ+ 〈wiF 〉)wil+[wiF ]+ω[wiF ]

Zav = z̄−rMλ
∑
k≥0

(−rM)|w|k+
∑n
i=0(ω[wiF ]+[wiF ])z̄k+F∏n

i=0(1− ω[wiF ]− wirMλ+ 〈wiF 〉)wik+[wiF ]+ω[wiF ]
.

(3.56)

In the formulae we defined 〈wiF 〉 and [wiF ] as the fractional and integer part of the

number wiF , so that wiF = [wiF ] + 〈wiF 〉, while |w| =
∑n

i=0wi. Moreover,

ω[wiF ] =

{
0 for 〈wiF 〉 = 0

1 for 〈wiF 〉 6= 0.
(3.57)

This is needed in order for the J function to start with one in the rM expansion. The

twisted sectors in (3.54) label the base of the orbifold cohomology space.

Once more, we can also consider complete intersections in Pw of type (q0, . . . , qm). The

integrand in (3.51) has to be multiplied by

m∏
j=0

Γ
(
Rj
2 − qjτ + qj

m
2

)
Γ
(

1− Rj
2 + qjτ + qj

m
2

) (3.58)

The poles do not change, and

Z1l = (rM)−2(|w|−|q|)rMλ−2
∑n
i=0(ω[wiF ]−〈wiF 〉)−2

∑m
j=0〈qjF 〉

n∏
i=0

Γ(ω[wiF ] + wirMλ− 〈wiF 〉)
Γ(1− ω[wiF ]− wirMλ+ 〈wiF 〉)

m∏
j=0

Γ(
Rj
2 − qjrMλ+ 〈qjF 〉)

Γ(1− Rj
2 + qjrMλ− 〈qjF 〉)

Zv = z−rMλ
∑
l≥0

(−1)|q|l+
∑m
j=0[qjF ](rM)(|w|−|q|)l+

∑n
i=0(ω[wiF ]+[wiF ])−

∑m
j=0[qjF ]zl+F

∏m
j=0(

Rj
2 − qjrMλ+ 〈qjF 〉)qj l+[qjF ]∏n

i=0(1− ω[wiF ]− wirMλ+ 〈wiF 〉)wil+[wiF ]+ω[wiF ]

Zav = z̄−rMλ
∑
k≥0

(−1)|q|k+
∑m
j=0[qjF ](−rM)(|w|−|q|)k+

∑n
i=0(ω[wiF ]+[wiF ])−

∑m
j=0[qjF ]z̄k+F

∏m
j=0(

Rj
2 − qjrMλ+ 〈qjF 〉)qjk+[qjF ]∏n

i=0(1− ω[wiF ]− wirMλ+ 〈wiF 〉)wik+[wiF ]+ω[wiF ]
.

(3.59)

Notice that the non linear sigma model to which the GLSM flows in the IR is well defined

only for |w| ≥ |q|, which means for manifolds with c1 ≥ 0.
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3.2.2 The Quintic threefold

We will now consider the most famous compact Calabi-Yau threefold, i.e. the quintic.

The corresponding GLSM is a U(1) gauge theory with five chiral fields Φa of charge +1,

one chiral field P of charge −5 and a superpotential of the form W = PG(Φ1, . . . ,Φ5),

where G is a homogeneous polynomial of degree five. We choose the vector R-charges

to be 2q for the Φ fields and (2− 5 · 2q) for P such that the superpotential has R-charge

2. The quintic threefold is realized in the geometric phase corresponding to ξ > 0.

For details of the construction see [19] and for the relation to the two-sphere partition

function [17]. Here we want to investigate the connection to the Givental formalism.

For a Calabi-Yau manifold the sum of gauge charges is zero, which implies ξren = ξ, and

θren = θ holds because the gauge group is abelian. The spherical partition function is

Z =
∑
m∈Z

∫
iR

dτ

2πi
z−τ−

m
2 z̄−τ+m

2

(
Γ
(
q + τ − m

2

)
Γ
(
1− q − τ − m

2

))5
Γ
(
1− 5q − 5τ + 5m2

)
Γ
(
5q + 5τ + 5m2

) . (3.60)

Since we want to describe the phase ξ > 0, we have to close the contour in the left half

plane. We use the freedom in q to separate the towers of poles coming from Φ’s and

from P . In the range 0 < q < 1
5 the former lie in the left half plane while the latter in

the right half plane. So we pick only the poles corresponding to Φ’s given by

τk = −q − k +
m

2
, k ≥ max(0,m) (3.61)

Then the partition function turns into a sum of residues and we express each residue by

the Cauchy contour integral. Finally we arrive at

Z = (zz̄)q
∮
C(δ)

d(rMλ)

2πi
Z1l(λ, rM)Zv(λ, rM ; z)Zav(λ, rM ; z̄), (3.62)

where the contour C(δ) goes around λ = 0 and

Z1l(λ, rM) =
Γ(1− 5rMλ)

Γ(5rMλ)

(
Γ(rMλ)

Γ(1− rMλ)

)5

Zv(λ, rM ; z) = z−rMλ
∑
l≥0

(−z)l (1− 5rMλ)5l

[(1− rMλ)l]5

Zav(λ, rM ; z̄) = z̄−rMλ
∑
k≥0

(−z̄)k (1− 5rMλ)5k

[(1− rMλ)k]5
.

(3.63)

The vortex function Zv(λ, rM ; z) reproduces the known Givental I-function

I(H, ~; t) =
∑
d≥0

e(H/~+d)t (1 + 5H/~)5d

[(1 +H/~)d]5
(3.64)
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after identifying

H = −λ , ~ =
1

rM
, t = ln(−z). (3.65)

The I-function is valued in cohomology, where H ∈ H2(P4) is the hyperplane class in

the cohomology ring of the embedding space. Because of dimensional reasons we have

H5 = 0 and hence the I-function is a polynomial of order four in H

I = I0 +
H

~
I1 +

(
H

~

)2

I2 +

(
H

~

)3

I3 +

(
H

~

)4

I4. (3.66)

This is naturally encoded in the explicit residue evaluation of (3.62), see eq.(3.69). Now

consider the Picard-Fuchs operator L. It can be easily shown that {I0, I1, I2, I3} ∈
Ker(L) while I4 /∈ Ker(L). L is an order four operator and so I = (I0, I1, I2, I3)T form a

basis of solutions. There exists another basis formed by the periods of the holomorphic

(3, 0) form of the mirror manifold. In homogeneous coordinates they are given as Π =

(X0, X1, ∂F
∂X0 ,

∂F
∂X1 )T with F the prepotential. Thus there exists a transition matrix M

relating these two bases

I = M ·Π (3.67)

There are now two possible ways to proceed. One would be fixing the transition matrix

using mirror construction (i.e. knowing explicitly the periods) and then showing that

the pairing given by the contour integral in (3.62) after being transformed to the period

basis gives the standard formula for the Kähler potential in terms of a symplectic pairing

e−K = iΠ† ·Σ ·Π (3.68)

with Σ =

(
0 1

−1 0

)
being the symplectic form. The other possibility would be to use

the fact that the two sphere partition function computes the Kähler potential [17] and

then impose equality between (3.62) and (3.68) to fix the transition matrix. We follow

this route in the following. The contour integral in (3.62) expresses the Kähler potential

as a pairing in the I basis. It is governed by Z1l which has an expansion

Z1l =
5

(rMλ)4
+

400 ζ(3)

rMλ
+ o(1) (3.69)

and so we get after integration (remember that H/~ = −rMλ)

Z = −2χζ(3)I0Ī0 − 5(I0Ī3 + I1Ī2 + I2Ī1 + I3Ī0)

= I† ·A · I,
(3.70)
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where

A =


−2χζ(3) 0 0 −5

0 0 −5 0

0 −5 0 0

−5 0 0 0

 (3.71)

gives the pairing in the I basis and χ = −200 is the Euler characteristic of the quintic

threefold. From the two expressions for the Kähler potential we easily find the transition

matrix as

M =


1 0 0 0

0 1 0 0

0 0 0 − i
5

−χ
5 ζ(3) 0 − i

5 0

 . (3.72)

Finally, we know that the mirror map is given by

t =
I1

2πiI0
, t̄ = − Ī1

2πiĪ0
(3.73)

so after dividing Z by (2πi)2I0Ī0 for the change of coordinates and by a further 2π for

the normalization of the ζ(3) term, we obtain the Kähler potential in terms of t, t̄, in a

form in which the symplectic product is evident.

3.2.3 Local Calabi–Yau: O(p)⊕O(−2− p)→ P1

Let us now study the family of spaces Xp = O(p) ⊕ O(−2 − p) → P1 with diagonal

equivariant action on the fiber. We will find exact agreement with the I functions

computed in [42], and we will show how the quantum corrected Kähler potential for the

Kähler moduli space can be computed when equivariant parameters are turned on.

Here we will restrict only to the phase ξ > 0, which is the one related to Xp. The case

ξ < 0 describes the orbifold phase of the model; this will be studied in the following

sections.

3.2.3.1 Case p = −1

First of all, we have to write down the partition function; this is given by

Z−1 =
∑
m∈Z

e−imθ
∫

dτ

2πi
e4πξτ

(
Γ
(
τ − m

2

)
Γ
(
1− τ − m

2

))2(
Γ
(
−τ − irMa+ m

2

)
Γ
(
1 + τ + irMa+ m

2

))2

. (3.74)

The poles are located at

τ = −k +
m

2
+ rMλ (3.75)
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so we can rewrite (3.74) as

Z−1 =

∮
d(rMλ)

2πi
Z1lZvZav, (3.76)

where

Z1l =

(
Γ(rMλ)

Γ(1− rMλ)

Γ(−rMλ− irMa)

Γ(1 + rMλ+ irMa)

)2

Zv = z−rMλ
∑
l≥0

zl
(−rMλ− irMa)2

l

(1− rMλ)2
l

Zav = z̄−rMλ
∑
k≥0

z̄k
(−rMλ− irMa)2

k

(1− rMλ)2
k

.

(3.77)

Notice that our vortex partition function coincides with the Givental function given in

[42]

IT−1(q) = e
H
~ ln q

∑
d≥0

(1−H/~ + λ̃/~− d)2
d

(1 +H/~)2
d

qd (3.78)

after the usual identifications

H = −λ , ~ =
1

rM
, λ̃ = ia , q = z. (3.79)

Now, expanding IT−1 in rM = 1/~ we find

IT−1 = 1− rMλ log z + o((rM)2) (3.80)

which means the mirror map is trivial and the equivariant mirror map absent, i.e. IT−1 =

J T−1. What remains to be specified is the normalization of the 1-loop factor. As explained

in [43], this normalization is fixed by requiring the cancellation of the Euler-Mascheroni

constants appearing in the Weierstrass form of the Γ-function, further by requiring that

it reproduces the classical intersection numbers and starts from 1 in the rM expansion;

in our case, the factor

(zz̄)−irMa/2

(
Γ(1 + irMa)

Γ(1− irMa)

)2

(3.81)

does the job. We can now integrate in rMλ and expand in rM , obtaining (for rMa = iq)

Z−1 =
2

q3
− 1

4q
ln2(zz̄) +

[
− 1

12
ln3(zz̄)− ln(zz̄)(Li2(z) + Li2(z̄))

+ 2(Li3(z) + Li3(z̄)) + 4ζ(3)
]

+ o(rM).

(3.82)
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The terms inside the square brackets reproduce the Kähler potential we are interested

in, once we multiply everything by 1
2π(2πi)2 and define

t =
1

2πi
ln z , t̄ = − 1

2πi
ln z̄. (3.83)

3.2.3.2 Case p = 0

In this case case, the spherical partition function reads

Z0 =
∑
m∈Z

e−imθ
∫

dτ

2πi
e4πξτ

(
Γ
(
τ − m

2

)
Γ
(
1− τ − m

2

))2
Γ (−irMa)

Γ (1 + irMa)

Γ
(
−2τ − irMa+ 2m2

)
Γ
(
1 + 2τ + irMa+ 2m2

) .
(3.84)

The poles are as in (3.75), and usual manipulations result in

Z1l =

(
Γ(rMλ)

Γ(1− rMλ)

)2 Γ (−irMa)

Γ (1 + irMa)

Γ(−2rMλ− irMa)

Γ(1 + 2rMλ+ irMa)

Zv = z−rMλ
∑
l≥0

zl
(−2rMλ− irMa)2l

(1− rMλ)2
l

Zav = z̄−rMλ
∑
k≥0

z̄k
(−2rMλ− irMa)2k

(1− rMλ)2
k

.

(3.85)

Again, we recover the Givental function

IT0 (q) = e
H
~ ln q

∑
d≥0

(1− 2H/~ + λ̃/~− 2d)2d

(1 +H/~)2
d

qd (3.86)

of [42] under the map (3.79); its expansion in rM gives

IT0 = 1− rMλ

[
log z + 2

∞∑
k=1

zk
Γ(2k)

(k!)2

]
− irMa

∞∑
k=1

zk
Γ(2k)

(k!)2
+ o((rM)2), (3.87)

which implies that the mirror map is (modulo (2πi)−1)

t = log z + 2
∞∑
k=1

zk
Γ(2k)

(k!)2
(3.88)

while for the equivariant mirror map we get

t̃ =
1

2
(t− log z) =

∞∑
k=1

zk
Γ(2k)

(k!)2
. (3.89)
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The J function can be recovered by inverting the equivariant mirror map and changing

coordinates accordingly, that is

J T0 (t) = eirMat̃(z)IT0 (z)
∣∣∣
z=z(t)

= eirMat̃(z)Zv(z)
∣∣∣
z=z(t)

. (3.90)

A similar job has to be done for Zav. The normalization for the 1-loop factor is the same

as (3.81) but in t coordinates, which means

(tt̄)−irMa/2

(
Γ(1 + irMa)

Γ(1− irMa)

)2

. (3.91)

Finally, integrating in rMλ and expanding in rM we find

Z0 =
2

q3
− 1

4q
(t+ t̄)2 +

[
− 1

12
(t+ t̄)3 − (t+ t̄)(Li2(et) + Li2(et̄))

+ 2(Li3(et) + Li3(et̄)) + 4ζ(3)
]

+ o(rM).

(3.92)

As it was shown in [42], this proves that the two Givental functions J T−1 and J T0 are the

same, as well as the Kähler potentials; the I functions look different simply because of

the choice of coordinates on the moduli space.

3.2.3.3 Case p ≥ 1

In the general p ≥ 1 case, we have

Zp =
∑
m∈Z

e−imθ
∫

dτ

2πi
e4πξτ

(
Γ
(
τ − m

2

)
Γ
(
1− τ − m

2

))2

Γ
(
−(p+ 2)τ − irMa+ (p+ 2)m2

)
Γ
(
1 + (p+ 2)τ + irMa+ (p+ 2)m2

) Γ
(
pτ − irMa− pm2

)
Γ
(
1− pτ + irMa− pm2

) . (3.93)

There are two classes of poles, given by

τ = −k +
m

2
+ rMλ (3.94)

τ = −k +
m

2
+ rMλ− F + irM

a

p
, (3.95)

where F = {0, 1
p , . . . ,

p−1
p } and the integration is around rMλ = 0. This can be un-

derstood from the fact that actually the GLSM (3.93) describes the canonical bundle

over the weighted projective space P(1,1,p), which has two chambers. The regular one,

associated to the poles (3.94), corresponds to the local O(p)⊕O(−2−p)→ P1 geometry

Z(0)
p =

∮
d(rMλ)

2πi
Z

(0)
1l Z

(0)
v Z(0)

av (3.96)
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with

Z
(0)
1l =

(
Γ(rMλ)

Γ(1− rMλ)

)2 Γ(−(p+ 2)rMλ− irMa)

Γ(1 + (p+ 2)rMλ+ irMa)

Γ(p rMλ− irMa)

Γ(1− p rMλ+ irMa)

Z(0)
v = z−rMλ

∑
l>0

(−1)(p+2)lzl
(−(p+ 2)rMλ− irMa)(p+2)l

(1− rMλ)2
l (1− p rMλ+ irMa)pl

Z(0)
av = z̄−rMλ

∑
k>0

(−1)(p+2)kz̄k
(−(p+ 2)rMλ− irMa)(p+2)k

(1− rMλ)2
k(1− p rMλ+ irMa)pk

.

(3.97)

The second chamber, associated to (3.95), is an orbifold one

Z(F )
p =

p−1∑
δ=0

∮
d(rMλ)

2πi
Z

(F )
1l,δZ

(F )
v,δ Z

(F )
av,δ, (3.98)

where F = δ
p . The explicit expression for Z(F ) in the above formula can be recovered

from (3.59), adding the twisted masses in the appropriate places. Notice that (3.98) can

be easily integrated, since there are just simple poles.

3.3 Non-abelian GLSM

In this section we apply our methods to non-abelian gauged linear sigma models and give

new results for some non-abelian GIT quotients. These are also tested against results

in the mathematical literature when available.

The first case that we analyse are complex Grassmannians. On the way we also give

an alternative proof for the conjecture of Hori and Vafa which can be rephrased stating

that the I-function of the Grassmannian can be obtained from that corresponding to a

product of projective spaces after acting with an appropriate differential operator.

One can also study a more general theory corresponding to holomorphic vector bundles

over Grassmannians. These spaces arise in the context of the study of BPS Wilson

loop algebra in three dimensional supersymmetric gauge theories. In particular we will

discuss the mathematical counterpart of a duality proposed in [44] which extends the

standard Grassmannian duality to holomorphic vector bundles over them.

We also study flag manifolds and more general non-abelian quiver gauge theories for

which we provide the rules to compute the spherical partition function and the I-

function.
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3.3.1 Grassmannians

The sigma model for the complex Grassmannian Gr(s, n) (in our notation we mean the

set of s-dimensional subspaces in Cn) contains n chirals in the fundamental representa-

tion of the U(s) gauge group. Its partition function is given by

ZGr(s,n) =
1

s!

∑
m1,...,ms

∫ s∏
i=1

dτi
2πi

e4πξrenτi−iθrenmi

s∏
i<j

(
m2
ij

4
− τ2

ij

)
s∏
i=1

(
Γ
(
τi − mi

2

)
Γ
(
1− τi − mi

2

))n .
(3.99)

As usual, we can write it as

ZGr(s,n) =
1

s!

∮ s∏
i=1

d(rMλi)

2πi
Z1lZvZav, (3.100)

where

Z1l =
s∏
i=1

(rM)−2nrMλi

(
Γ(rMλi)

Γ(1− rMλi)

)n s∏
i<j

(rMλi − rMλj)(−rMλi + rMλj)

Zv = z−rM |λ|
∑
l1,...,ls

[(rM)n(−1)s−1z]l1+...+ls

(1− rMλ1)nl1 . . . (1− rMλs)nls

s∏
i<j

li − lj − rMλi + rMλj
−rMλi + rMλj

Zav = z̄−rM |λ|
∑

k1,...,ks

[(−rM)n(−1)s−1z̄]k1+...+ks

(1− rMλ1)nk1
. . . (1− rMλs)nks

s∏
i<j

ki − kj − rMλi + rMλj
−rMλi + rMλj

.

(3.101)

We normalized the vortex and antivortex terms in order to have them starting from one

in the rM series expansion and we defined |λ| = λ1 + . . .+ λs. The resulting I-function

Zv coincides with the one given in [37]

IGr(s,n) = e
tσ1
~

∑
(d1,...,ds)

~−n(d1+...+ds)[(−1)s−1et]d1+...+ds∏s
i=1(1 + xi/~)ndi

s∏
i<j

di − dj + xi/~− xj/~
xi/~− xj/~

(3.102)

if we match the parameters as we did in the previous cases. Here the λ’s are interpreted

as Chern roots of the tautological bundle.

3.3.1.1 The Hori-Vafa conjecture

Hori and Vafa conjectured [39] that IGr(s,n) can be obtained by IP, where P =
∏s
i=1 P

n−1
(i) ,

by acting with a differential operator. This has been proved in [37]; here we remark that

in our formalism this is a simple consequence of the fact that the partition function of

non-abelian vortices can be obtained from copies of the abelian ones upon acting with

a suitable differential operator [45]. In fact we note that ZGr(s,n) can be obtained from
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ZP simply by dividing by s! and identifying

ZGr1l =
s∏
i<j

(rMλi − rMλj)(−rMλi + rMλj)Z
P
1l

ZGrv (z) =
s∏
i<j

∂zi − ∂zj
−rMλi + rMλj

ZP
v (z1, . . . , zs)

∣∣∣
zi=(−1)s−1z

ZGrav (z̄) =
s∏
i<j

∂z̄i − ∂z̄j
−rMλi + rMλj

ZP
av(z̄1, . . . , z̄s)

∣∣∣
z̄i=(−1)s−1z̄

.

(3.103)

3.3.2 Holomorphic vector bundles over Grassmannians

The U(N) gauge theory with Nf fundamentals and Na antifundamentals flows in the

infra-red to a non-linear sigma model with target space given by a holomorphic vec-

tor bundle of rank Na over the Grassmannian Gr (N,Nf ). We adopt the notation

Gr (N,Nf |Na) for this space.

One can prove equality of ZS
2

for Gr (N,Nf |Na) and Gr (Nf −N,Nf |Na) after a precise

duality map in a certain range of parameters. This will be specified in Appendix B.

At the level of I-functions this proves the isomorphism among the relevant quantum

cohomology rings conjectured in [44]. In analysing this duality we follow the approach

of [14], where also the main steps of the proof were outlined. However we will detail

their calculations and note some differences in the explicit duality map, which we refine

in order to get a precise equality of the partition functions.

The partition function of the Gr (N,Nf |Na) GLSM is

Z =
1

N !

∑
{ms∈Z}Ns=1

∫
(iR)N

N∏
s=1

dτs
2πi

z
−τs−ms2
ren z̄

−τs+ms
2

ren

N∏
s<t

(
m2
st

4
− τ2

st

)
N∏
s=1

Nf∏
i=1

Γ
(
τs − iai~ −

ms
2

)
Γ
(
1− τs + iai~ −

ms
2

) N∏
s=1

Na∏
j=1

Γ
(
−τs + i

ãj
~ + ms

2

)
Γ
(

1 + τs − i ãj~ + ms
2

) ,
(3.104)

while the one of Gr (Nf −N,Nf |Na) reads

Z =
1

ND!

∑
{ms∈Z}N

D
s=1

∫
(iR)N

D

ND∏
s=1

dτs
2πi

(zDren)−τs−
ms
2 (z̄Dren)−τs+

ms
2

ND∏
s<t

(
m2
st

4
− τ2

st

)

ND∏
s=1

Nf∏
i=1

Γ
(
τs + i

aDi
~ −

ms
2

)
Γ
(

1− τs − i
aDi
~ −

ms
2

) ND∏
s=1

Na∏
j=1

Γ

(
−τs − i

ãDj
~ + ms

2

)
Γ

(
1 + τs + i

ãDj
~ + ms

2

) Nf∏
i=1

Na∏
j=1

Γ
(
−iai−ãj~

)
Γ
(

1 + i
ai−ãj

~

) .
(3.105)
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The proof of the equality of the two is shown in detail in Appendix B to hold under the

duality map

zD = (−1)Naz (3.106)

aDj
~

= −aj
~

+ C (3.107)

ãDj
~

= − ãj
~
− (C + i), (3.108)

where

C =
1

Nf −N

Nf∑
i=1

ai
~
. (3.109)

3.3.3 Flag manifolds

Let us consider now a linear sigma model with gauge group U(s1)× . . .×U(sl) and with

matter in the (s1, s̄2)⊕ . . .⊕ (sl−1, s̄l)⊕ (sl, n) representations, where s1 < . . . < sl < n.

This flows in the infrared to a non-linear sigma model whose target space is the flag

manifold Fl(s1, . . . , sl, n). The partition function is given by

ZFl =
1

s1! . . . sl!

∑
~m(a)

a=1...l

∫ l∏
a=1

sa∏
i=1

dτ
(a)
i

2πi
e4πξ

(a)
renτ

(a)
i −iθ

(a)
renm

(a)
i ZvectorZbifundZfund

Zvector =
l∏

a=1

sa∏
i<j

(
(m

(a)
ij )2

4
− (τ

(a)
ij )2

)

Zbifund =
l−1∏
a=1

sa∏
i=1

sa+1∏
j=1

Γ

(
τ

(a)
i − τ (a+1)

j −
m

(a)
i

2
+
m

(a+1)
j

2

)

Γ

(
1− τ (a)

i + τ
(a+1)
j −

m
(a)
i

2
+
m

(a+1)
j

2

)

Zfund =

sl∏
i=1


Γ

(
τ

(l)
i −

m
(l)
i

2

)

Γ

(
1− τ (l)

i −
m

(l)
i

2

)

n

. (3.110)

After performing the change of variables

τ
(a)
i =

m
(a)
i

2
− k(a)

i + rMλ
(a)
i (3.111)
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we obtain

ZFl =
1

s1! . . . sl!

∮ l∏
a=1

sa∏
i=1

d(rMλ
(a)
i )

2πi
Z1-loopZvZav, (3.112)

where

Z1-loop =(rM)−2rM[
∑l−1
a=1(|λ(a)|sa+1−|λ(a+1)|sa)+n|λ(l)|]

l∏
a=1

sa∏
i<j

(rMλ
(a)
i − rMλ

(a)
j )(rMλ

(a)
j − rMλ

(a)
i )

l−1∏
a=1

sa∏
i=1

sa+1∏
j=1

Γ
(
rMλ

(a)
i − rMλ

(a+1)
j

)
Γ
(

1− rMλ
(a)
i + rMλ

(a+1)
j

) sl∏
i=1

 Γ
(
rMλ

(l)
i

)
Γ
(

1− rMλ
(l)
i

)
n

Zv =
∑
~l(a)

(rM)
∑l−1
a=1(|l(a)|sa+1−|l(a+1)|sa)+n|l(l)|

l∏
a=1

(−1)(sa−1)|l(a)|z|l
(a)|−rM |λ(a)|
a

l∏
a=1

sa∏
i<j

l
(a)
i − l

(a)
j − rMλ

(a)
i + rMλ

(a)
j

−rMλ
(a)
i + rMλ

(a)
j

l−1∏
a=1

sa∏
i=1

sa+1∏
j=1

1

(1− rMλ
(a)
i + rMλ

(a+1)
j )

l
(a)
i −l

(a+1)
j

sl∏
i=1

1[
(1− rMλ

(l)
i )

l
(l)
i

]n
Zav =

∑
~k(a)

(−rM)
∑l−1
a=1(|k(a)|sa+1−|k(a+1)|sa)+n|k(l)|

l∏
a=1

(−1)(sa−1)|k(a)|z̄|k
(a)|−rM |λ(a)|

a

l∏
a=1

sa∏
i<j

k
(a)
i − k

(a)
j − rMλ

(a)
i + rMλ

(a)
j

−rMλ
(a)
i + rMλ

(a)
j

l−1∏
a=1

sa∏
i=1

sa+1∏
j=1

1

(1− rMλ
(a)
i + rMλ

(a+1)
j )

k
(a)
i −k

(a+1)
j

sl∏
i=1

1[
(1− rMλ

(l)
i )

k
(l)
i

]n .
(3.113)

In the formulae above, k’s and l’s are non-negative integers. This result can be compared

with the one in [38]. Indeed our fractions with Pochhammers at the denominator are

equivalent to the products appearing there and we find perfect agreement with the

Givental I-function under the, by now familiar, identification ~ = 1
rM , λ = −H in Zv

and ~ = − 1
rM , λ = H in Zav.

3.4 Phase transitions and Gromow–Witten theory

In this section we want to show how the analytic structure of the partition function

encodes all the classical phases of an abelian GLSM. These are given by the secondary
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fan, which in our conventions is generated by the columns of the charge matrix Q. In

terms of the partition function these phases are governed by the choice of integration

contours, namely by the structure of poles we are picking up. The contour can be closed

either in the left half plane (for ξ > 0) or in the right half plane (ξ < 0)5. The transition

between different phases occurs when some of the integration contours are flipped and

the corresponding variable is integrated. To summarize, a single partition function

contains the I-functions of geometries corresponding to all the different phases of the

GLSM. These geometries are related by minimally resolving the singularities by blow-

up until the complete smoothing of the space takes place (when this is possible). Our

procedure consists in considering the GLSM corresponding to the complete resolution

and its partition function. Then by flipping contours and doing partial integrations one

discovers all other, more singular geometries. In the following we illustrate these ideas

on an example.

3.4.1 KPn−1 vs. Cn/Zn

Let us consider a U(1) gauge theory with n chiral fields of charge +1 and one chiral

field of charge −n. The secondary fan is generated by two vectors {1,−n} and so

has two chambers corresponding to two different phases. For ξ > 0 it describes a

smooth geometry KPn−1 , that is the total space of the canonical bundle over the complex

projective space Pn−1, while for ξ < 0 the orbifold Cn/Zn. The case n = 3 will reproduce

the results of [46, 47, 48]. The partition function reads

Z =
∑
m

∫
iR

dτ

2πi
e4πξτ−iθm

(
Γ(τ − m

2 )

Γ(1− τ − m
2 )

)n Γ(−nτ + nm2 + irMa)

Γ(1 + nτ + nm2 − irMa)
. (3.114)

Closing the contour in the left half plane (i.e. for ξ > 0) we take poles at

τ = −k +
m

2
+ rMλ (3.115)

and obtain

Z =

∮
d(rMλ)

2πi

(
Γ(rMλ)

Γ(1− rMλ)

)n Γ(−nrMλ+ irMa)

Γ(1 + nrMλ− irMa)∑
l≥0

z−rMλ(−1)nlznl
(−nrMλ+ irMa)nl

(1− rMλ)nl∑
k≥0

z̄−rMλ(−1)nkz̄nk
(−nrMλ+ irMa)nk

(1− rMλ)nk
.

(3.116)

5This is only true for Calabi-Yau manifolds; for c1 > 0, i.e.
∑
iQi > 0, the contour is fixed.
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We thus find exactly the Givental function for KPn−1 . To switch to the singular geometry

we flip the contour and do the integration. Closing in the right half plane (ξ < 0) we

consider

τ = k +
δ

n
+
m

2
+

1

n
irMa (3.117)

with δ = 0, 1, 2, . . . , n− 1. After integrating over τ , we obtain

Z =
1

n

n−1∑
δ=0

(
Γ( δn + 1

n irMa)

Γ(1− δ
n −

1
n irMa)

)n
1

(rM)2δ

∑
k≥0

(−1)nk(z̄−1/n)nk+δ+irMa(rM)δ
( δn + 1

n irMa)nk
(nk + δ)!∑

l≥0

(−1)nl(z−1/n)nl+δ+irMa(−rM)δ
( δn + 1

n irMa)nl
(nl + δ)!

(3.118)

as expected from (3.59). Notice that when the contour is closed in the right half plane,

vortex and antivortex contributions are exchanged. We can compare the n = 3 case

corresponding to C3/Z3 with [48], given by

I = x−λ/z
∑
d∈N
d≥0

xd

d!zd

∏
0≤b< d

3

〈b〉=〈 d
3
〉

(
λ

3
− bz

)3

1〈 d
3
〉 (3.119)

which in a more familiar notation becomes

I = x−λ/z
∑
d∈N
d≥0

xd

d!

1

z3〈 d
3
〉
(−1)3[ d

3
]

(
〈d
3
〉 − λ

3z

)3

[ d
3

]

1〈 d
3
〉. (3.120)

The necessary identifications are straightforward.



Chapter 4

Quantum integrable systems from

the partition function on S2

The connection between the partition function ZS
2

and quantum integrable models will

be established in two steps. First, we introduce the concept of a mirror Landau–Ginzburg

model [39], which is described by a twisted superpotential. Once having such an object

at our disposal, the Bethe/Gauge correspondence [49, 50] can be applied to obtain the

Yang–Yang function and Bethe equations of the associated integrable system.

As was shown in [16], the mirror Landau–Ginzburg theory to a given GLSM can be

obtained naturally from the partition function on S2, even for non-abelian gauged linear

sigma models generalizing thus [39]. The GLSM is constructed of chiral and vector

multiplets coupled together. Suppose that at low energies it flows to a NLSM with

target space a Calabi–Yau manifold. The associated mirror Calabi–Yau manifold is

captured by the mirror Landau–Ginzburg model to the GLSM. As we mentioned in

Section 1 when introducing N = (2, 2) supersymmetry, mirror symmetry acts at the

level of field theories by exchanging chiral and twisted chiral multiplets. So the mirror

Landau–Ginzburg model is build out of twisted chiral fields Y . Although twisted chiral

fields can not couple directly to vector multiplets, they can couple to the field strength Σ

of a vector field, since it is a twisted chiral field. That is how the original vector multiplets

reappear on scene. Recall that the lowest component of the superfield strength is the

complex scalar field (with real part σ, while imaginary η) from the vector multiplet.

Moreover, on the saddle point locus of the vector multiplet, the imaginary part of this

scalar is quantized, see (2.47). Thus we have

Σs = σs − iηs = σs − i
ms

2r
; s = 1, . . . , rk(G), (4.1)

64
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where we slightly abuse notation when denoting by Σ the lowest component of the

superfield strength. Then the Landau–Ginzburg theory is fully specified by the twisted

superpotential W̃(Y,Σ). The procedure how to recover this function from ZS
2

was found

in [16]; basically one has to rewrite every ratio of Gamma functions appearing in the

partition function by an integral identity

Γ(−irΣ)

Γ(1 + irΣ)
=

∫
dY dY

2π
exp

{
−e−Y + irΣY + eY + irΣY

}
. (4.2)

The resulting form of the partition function after completing this procedure comes out

as

ZS
2

=

∣∣∣∣∫ dY dΣ e−W̃(Y,Σ)

∣∣∣∣2 , (4.3)

such that one can read off W̃(Y,Σ) easily.

To recover the effective low energy description on the Coulomb branch one has to in-

tegrate out massive Y and vector fields (W-bosons). The equations of motion for Y, Y

are

Y = − ln(−itΣ), Y = − ln(irΣ), (4.4)

so that in the semiclassical approximation we arrive at

Γ(−irΣ)

Γ(1 + irΣ)
∼ exp

{
ω(−irΣ)− 1

2
ln(−irΣ)− ω(irΣ)− 1

2
ln(irΣ)

}
(4.5)

with ω(x) = x(lnx − 1). The outcome of integrating out massive “W-bosons” turns

out to be a shift in the theta angle, θ → θren = θ + (rk(G) − 1)π. The same result

can be obtained by a slightly different reasoning. Starting from the Coulomb branch

expression for the partition function (2.52), we write the integrand as as an exponential

of some argument. Subsequently we perform an asymptotic expansion of that argument

for large radius of the sphere r → ∞. Using the Stirling formula for logarithms of

Gamma functions

Γ(z)
z→∞∼ ω(z)− 1

2
ln z +

1

2
ln 2π +O(z−1)

Γ(1 + z)
z→∞∼ ω(z) +

1

2
ln z +

1

2
ln 2π +O(z−1) (4.6)

while keeping leading as well as next to leading order terms gives the desired result.

The leading order terms ω(Σ) enter the effective twisted superpotential W̃eff, whereas

the next to leading logarithm terms form an integration measure µmsr(Σ). All in all, we

end up with the following expression

ZS
2 r→∞∼

∣∣∣∣∫ dΣµmsr(Σ)e−W̃eff(Σ)

∣∣∣∣2 . (4.7)
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The effective twisted superpotential W̃eff is given quite in general (having quiver theories

in mind) by the following formula

W̃eff(Σ) =

#nodes∑
a=1

2πtren
a

ka∑
I=1

irΣ
(a)
I

+
∑

Φ

∑
w∈RGg

Φ

∑
w̃∈RGf

Φ

ω
[
− irw(Σ)− irw̃(Σext)

]
. (4.8)

We focused on a situation where the quiver diagram is composed of nodes corresponding

to unitary gauge groups, each having an associated complexified FI parameter tren
a ; the

pairing w̃(Σext) is prescribing twisted masses and is fixed by the representation of the

flavor group corresponding to the field Φ. Generalization to other situations is fairly

straightforward.

Having extracted the effective twisted superpotential from a given gauge theory, we

reached the stage when Gauge/Bethe correspondence can be applied. W̃eff(Σ) is to be

identified with a Yang–Yang function of an associated quantum integrable system. The

equations for supersymmetric vacua

∂W̃eff(Σ)

∂(irΣs)
= 2πins, ns ∈ Z (4.9)

coincide with Bethe ansatz equations (BAE). The spectrum of the commuting integrals of

motion (IMs) in the integrable model can be expressed in terms of the gauge observables

Tr (Σn) evaluated at the solution to BAE

spectrum of IMs←→ Tr (Σn)
∣∣∣
solution BAE

, (4.10)

however the functional relation is not given by the correspondence and is difficult to

establish. Typically it comes as an observation when both sides are known.

We can also study the saddle point approximation to (4.7). The contribution from a

given Bethe root Σ
(a)
∗ , a = 1, . . . , (#solutions to BAE) yields

ZS
2

(a) ≈

∣∣∣∣∣∣e−W̃eff(Σ)µmsr(Σ)

(
det

∂2W̃eff(Σ)

∂Σs∂Σt

)− 1
2

∣∣∣∣∣∣
2

Σ=Σ
(a)
∗

. (4.11)

The complete partition function is then the sum of contributions from all saddle points

ZS
2 ≈

#sol. BAE∑
a=1

ZS
2

(a). (4.12)
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In many situations it holds true that the norm of the Bethe eigenstate Ψ(a) is expressed

(up to to term |e−W̃eff(Σ∗)(a) |2) using the semiclassical approximation

1

〈Ψ(a)|Ψ(a)〉
=

∣∣∣∣∣∣µmsr(Σ)

(
det

∂2W̃eff(Σ)

∂Σs∂Σt

)− 1
2

∣∣∣∣∣∣
2

Σ=Σ
(a)
∗

. (4.13)

To get more familiar with the Gauge/Bethe correspondence we first investigate a simple

example–the O(4)-sigma model. However, the master example of this thesis–a gauge the-

ory with target manifold the moduli space of instantons for a classical gauge group–will

be introduced in the next chapter. All concepts introduced thus far (quantum coho-

mology, quantum integrability) will be analyzed and in a certain sense unified for this

class of theories. The associated integrable system will turn out to be rather interesting!

But simple things first, we finish our small advertisement here, and move to the current

example.

Example: SO(4)-sigma model

The physical significance of the SO(4)-sigma model rests in the fact that it is a toy model

for studying integrability of AdS/CFT correspondence. Indeed, it is a reduction of the

sigma model in AdS5×S5 background to a subsector of strings moving in R×S3. This

model is formulated in terms of a SU(2) principal chiral field g =
∑4

a=1Xaσ
a, where

σa = (I, iτ1, iτ2, iτ3) with τ i the usual Pauli matrices and the constraint
∑4

a=1X
2
a = 1

holds in order to make g SU(2) valued. The action is given as

S = const.

∫
dσdτ

[
1

2
Tr
{(
g−1∂Ag

)2}
+ (∂AX0)2

]
. (4.14)

Here A = σ, τ while X0 is a coordinate of R (global time in the original AdS5 space)

and Xa are the embedding coordinates of S3 in R4. The action has a global SU(2)L ×
SU(2)R ' SO(4) symmetry.

We start from a formulation of this model as an integrable system specified by its Bethe

equations and design a corresponding GLSM. We do not intend to describe this model

in detail or attempt to solve it, our goal is only to write down the Yang–Yang function

and interpret it from a gauge theory perspective. The quantum state of this model

is described by a system of L particles in SO(4) vector representation (or SU(2)L ×
SU(2)R bi-fundamental) of mass m0 on a circle of radius L; it is convenient to define

a dimensionless parameter µ = m0L. The number of SU(2)L excitations (spin flips)

is Ju while the number of SU(2)R excitations is Jv. The scattering of the particles is
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governed by the following set of Bethe equations [51]

1 = eiµ sinh(πθα)
L∏
β=1
β 6=α

S2
0(θα − θβ)

Ju∏
j=1

θα − uj + i
2

θα − uj − i
2

Jv∏
k=1

θα − vk + i
2

θα − vk − i
2

; α = 1, . . . , L

1 =
L∏
β=1

uj − θβ + i
2

uj − θβ − i
2

Ju∏
i=1
i 6=j

uj − ui − i
uj − ui + i

, j = 1, . . . , Ju

1 =

L∏
β=1

vk − θβ + i
2

vk − θβ − i
2

Jv∏
l=1
l 6=k

vk − vl − i
vk − vl + i

, k = 1, . . . , Jv, (4.15)

where the factor S0(θ) is given by ratios of Gamma functions

S0(θ) = i
Γ
(
− θ

2i

)
Γ
(

1
2 + θ

2i

)
Γ
(
θ
2i

)
Γ
(

1
2 −

θ
2i

) . (4.16)

Exactly because of this factor the Bethe equations are quite unusual and at the same

time interesting. We have three different types of Bethe roots X := (θ, u, v), so already

at this stage we can predict that the quiver diagram of the gauge theory will have three

gauge nodes. Taking the logarithm of (4.15) and denoting the resulting right hand sides

collectively as RI , I = (α, j, k) one can show that the associated 1-form R = RIdX
I

is closed, i.e. ∂JRI − ∂IRJ = 0, and therefore a potential function Y (θ, u, v) exists,

such that R = dY (at least locally). The function Y is called the Yang–Yang function.

However, beware since a small warning is in order. The Bethe equations were presented

in a form such that R was closed. But inverting e.g. the second set of Bethe equations for

the u-roots leads to a perfectly valid system of BAE, though the condition of closedness

breaks down. Indeed the form of Bethe equations in (4.15) differs slightly from the

ones presented in [51] by such equivalence operations. The take away message is that

in general one has to do some easy manipulations on the BAE before trying to look for

the potential Y .

In order to make contact with gauge theory, specifically to arrive at the particular

structure for the Yang–Yang function in (4.15), one has to use a product formula for the

Gamma function

Γ(x) =
1

x

∞∏
n=1

(
1 + 1

n

)x
1 + x

n

. (4.17)

Employing this identity we have (remember that we are working with log BAE)

L∑
β=1

logS0(θα − θβ) =
3

2
iπL+

∞∑
n=1

L∑
β=1

log
θαβ − i(2n− 1)

−θαβ − i(2n− 1)
+ log

θαβ + i2n

−θαβ + i2n
, (4.18)
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where θαβ := θα − θβ. The explicit expressions for the components of the 1-form R can

be stated after minor algebraic manipulations as

Rα = iµ sinh(πθα) + iπ(1 + 3L+ Ju + Jv) +

Ju∑
j=1

log
θα − uj + i

2

−(θα − uj) + i
2

(4.19)

+

Jv∑
k=1

log
θα − vk + i

2

−(θα − vk) + i
2

+ 2

∞∑
n=1

L∑
β=1

[
log

θαβ − i(2n− 1)

−θαβ − i(2n− 1)
+ log

θαβ + i2n

−θαβ + i2n

]

Rj = iπ(1 + L+ Ju) +

L∑
β=1

log
uj − θβ + i

2

−(uj − θβ) + i
2

+

Ju∑
l=1

log
ujl − i
−ujl − i

(4.20)

Rk = iπ(1 + L+ Jv) +
L∑
β=1

log
vk − θβ + i

2

−(vk − θβ) + i
2

+

Jv∑
l=1

log
vkl − i
−vkl − i

. (4.21)

A standard procedure results in the potential function Y (θ, u, v), i.e. the Yang–Yang

function of the integrable model or the effective twisted superpotential for a related

gauge theory

Y (θ, u, v) = iπ(1 + 3L+ Ju + Jv)
L∑
α=1

θα + iπ(1 + L+ Ju)

Ju∑
j=1

uj

+ iπ(1 + L+ Jv)

Jv∑
k=1

vk +
i

π
µ

L∑
α=1

cosh(πθα)

+
L∑
α=1

Ju∑
j=1

[
ω

(
θα − uj +

i

2

)
+ ω

(
−(θα − uj) +

i

2

)]

+
L∑
α=1

Jv∑
k=1

[
ω

(
θα − vk +

i

2

)
+ ω

(
−(θα − vk) +

i

2

)]

+ 2

∞∑
n=1

L∑
α,β=1

[
ω (θαβ − i(2n− 1)) + ω (θαβ + i2n)

]

+

Ju∑
j,m=1

ω(ujm − i) +

Jv∑
k,l=1

ω(vkl − i) + const. (4.22)

Let us extract from this function the gauge theory content. As anticipated, the gauge

group has three factors G = U(Ju)×U(Jv)×U(L). The first two lines fix the FI terms

associated to the individual unitary groups. Actually, the cosh(·) term does not have the

desired structure, but for the purpose of this example let us just assume the particles

to be massless (m0 = 0), such that this term vanishes. The third line represents a

contribution from a bifundamental field with respect to U(Ju)×U(L) with twisted mass
i
2 , while the fourth is a bifundamental for U(Jv) × U(L) and the same twisted mass.

The fifth line corresponds to an infinite number of adjoint fields for U(L), there are two

fields with a twisted mass −i(2n − 1) and two fields with i(2n), n = 1, . . . ,∞. Finally
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the last line realizes contributions of U(Ju) (resp. U(Jv)) adjoint fields with twisted

mass −i. The quiver diagram of this theory is shown in Figure 4.1.

Figure 4.1: Quiver diagram for a gauge theory associated to the O(4)-sigma model.



Chapter 5

N = (2, 2) GLSMs with target

spaces the k-instanton moduli

spaces for classical gauge groups

ADHM construction of instanton moduli spaces

We do not attempt to give here a thorough overview of constructions of instanton moduli

spaces. Merely, this introduction should serve as a basic summary of important facts.

The interested reader is encouraged to check other references, which are good in our

opinion [52, 53, 54]. The elementary data entering the ADHM construction can be

found in Table 5.1. We have two auxiliary vector spaces V and W together with maps

G GD V W

U(N) U(k) Ck CN
O(N) Sp(k) C2k RN
Sp(N) O(k) Rk C2N

Table 5.1: Summary of ADHM data for classical gauge groups G.

(B1, B1, I, J) between them defined as

x = (B1, B2, I, J) ∈ Sk,N := Hom(V, V )⊕Hom(V, V )⊕Hom(W,V )⊕Hom(V,W ).

The group action of G and GD on a point x ∈ Sk,N is as follows

(B1, B2, I, J) 7→
(
gD ·B1 · g−1

D , gD ·B2 · g−1
D , g · I · g−1

D , gD · J · g−1
)
.

The scheme of vector spaces together with maps between them as well as natural group

actions is visualized in Figure 5.1

71
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Figure 5.1: Quiver diagram for the ADHM construction encoding maps between
vector spaces.

The essential part of the construction is the introduction of moment maps

µC = IJ + [B1, B2] (5.1)

µR =
[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J, (5.2)

which are covariant under the group action. This presentation is valid for unitary groups.

However, other classical groups can be embedded into this formalism choosing suitably

the rank and as a next step imposing additional constraints on the maps. We will list

these when handling various cases. Then the moduli space of k G-instantons can be

represented as a quotient of the space of solutions to the moment maps by the dual

group GD

Mk,N = {x ∈ Sk,N | (µC = 0) ∧ (µR = 0)}/GD

GLSM point of view

Now, we would like to construct a gauged linear sigma model such that Mk,N is inter-

preted as a vacuum manifold of this model. Hence, it is necessary to give a definition of

the vacuum manifold, possibly of the same nature as in the construction ofMk,N . Luck-

ily, there is one precisely fitting our purpose. The space X of supersymmetric vacua on

the Higgs branch is given by the constant vacuum expectation values (VEVs) for bosonic

fields minimizing the scalar potential, i.e. solving the F - and D- term equations, modulo

the action of the gauge group GGLSM
gauge (we will relate it to G and GD very soon). So,

when we denote dynamic scalar fields collectively as Φ, the definition reads

X = {〈Φ〉 | F = 0 ∧D = 0}/GGLSM
gauge .
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At this point the relation of these two constructions should be pretty clear. To sum up,

let us provide a dictionary in Table 5.2.

ADHM GLSM

space of fields Φ space of maps S

G flavor group GGLSM
F

GD gauge group GGLSM
gauge

µC F -term

µR D-term

Table 5.2: Dictionary between ADHM and GLSM constructions.

In particular, we see that the constraint coming from the moment map µC will be

imposed by a superpotential in the Lagrangian of the GLSM. Technically, this is done

by introducing a Lagrange multiplier χ, i.e. a non-dynamical field that does not occur

in the space of maps in the ADHM construction. Concretely, we add a superpotential

term to the Lagrangian of the form

W = TrV (χµC) . (5.3)

The relation between D-terms and the real moment map still needs to be discussed. The

claim is

µR = DcT [L(ω1)]
c , (5.4)

where

• Dc are the D-terms, c = 1, . . . ,dim Lie(GD)

• T [L(ω1)]
c are generators of Lie(GD) in the standard representation L(ω1) ' V cor-

responding to the fundamental weight ω1

Once constructed the two dimensional N = (2, 2) auxiliary GLSMs, corresponding to

G-instanton moduli spaces, the ultimate goal is to write down the S2 partition function

(2.52) for them. This is a fairly easy task, since it is determined purely by the group

theory data just indicated. Now, we move to individual classical groups and make

explicit the program outlined above.
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5.1 GLSM with target the U(N) k-instanton moduli space

There is no need to impose constraints in this case, the construction goes through

precisely as described. However, it is worth mentioning that we work with a deformed

real moment map. Instead of forcing it to vanish we require

µR = ξI. (5.5)

Hermiticity of µR implies ξ ∈ R. On the GLSM side ξ corresponds to turning on a

Fayet-Iliopoulos term1. The purpose of this deformation is to cure non-compactness of

the moduli space caused by so called point-like instantons (region of topological instanton

charge shrinking to zero size). In the original four dimensional gauge theory, it means

to consider instantons on a non-commutative spacetime R4, where the amount of non-

commutativity is measured by ξ [55].

5.1.1 Brane construction in type II string theory

The analysis of the instanton moduli space Mk,N for unitary gauge groups is based on

[43]. It can be described by a system of k Dp – N D(p + 4) branes in type II string

theory on C2 × T ∗S2 ×C [56, 57]. The cotangent bundle of the two-sphere T ∗S2 comes

equipped with an asymptotically lovally Eucledian metric, forming thus the Eguchi–

Hanson space, which can bee also seen as resolution of the singularity at the fixed point

of C2/Z2. Specifically, the Higgs branch of the moduli space of classical supersymmetric

vacua for such a theory coincides with Mk,N as a manifold. We will focus on the case

when p = 1, i.e. we work with a system of D1-D5 branes.

The D5 branes are extended along C2 and they also wrap the sphere S2 while the D1

branes are wrapping S2. We will (almost exclusively) study the low energy effective

theory on the D1 branes, which naturally leads to a sigma model on S2. The main tool

for investigating this GLSM will be the partition function on S2 (2.52). As we showed in

previous chapters, it captures the equivariant quantum cohomology of the target space

and also provides a connection to quantum integrable systems.

Let us work out the matter content of the low energy U(k) gauge theory on the D1 branes.

The fields in the GLSM on S2 arise from open strings stretching between D1 – D1 and

D1 – D5 branes. From the dynamics of D1 branes arises a vector multiplet and adjoint

chiral multiplets B1, B2. In addition there are N fundamental and N antifundamental

1This indeed implies that we are dealing with a semisimple Lie algebra AN−1 ⊕ u(1), where ξ corre-
sponds to the u(1) part.
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chiral multiplets emerging from strings connecting D1 with D5 branes. In order to

impose the complex moment map condition (5.1), we need to introduce a superpotential

W = TrV
{
χ ([B1, B2] + IJ)

}
, (5.6)

where χ is a non-dynamical field in the adjoint and serves merely as a Lagrange mul-

tiplier. The field content is conveniently summarized in Table 5.3. The R-charge as-

χ B1 B2 I J

D-brane sector D1/D1 D1/D1 D1/D1 D1/D5 D5/D1

Ggauge
GLSM = GD = U(k) Ad Ad Ad k k

GF = G× U(1)2 = U(N)× U(1)2 1(−1,−1) 1(1,0) 1(0,1) N( 1
2
, 1
2

) N( 1
2
, 1
2

)

twisted masses ε1 + ε2 −ε1 −ε2 −aj − ε
2 aj − ε

2

R-charge 2− 2q q q q + p q − p

Table 5.3: Matter content of the ADHM GLSM with target space the instanton
moduli space of U(N) instantons.

signment clearly satisfies the requirement for the superpotential to have total charge 2

and is chosen in order to move poles away from the real axes in the expression for the

partition function. For the purpose of separation of poles we impose 1 > q > p > 0.

Later on we will be quite sloppy about this technical detail, but one should keep in mind

that it is needed to appropriately define the contour integrals.

5.1.2 S2 partition function for U(N)-ADHM GLSM

The partition function for this model is given by

ZS
2

U(k) =
1

k!

∑
{m1,...,mk}∈Zk

∫
Rk

k∏
s=1

d(rσs)

2π
e−4πiξrσs−iθrenmsZVMZJZIZχZB1ZB2 (5.7)

and the contributions from individual fields can be easily worked using Appendix A.

Using the notation ε = ε1 +ε2, σst = σs−σt and similarly mst = ms−mt the expressions

are

ZVM =

k∏
s<t

(
m2
st

4
+ r2σ2

st

)
(5.8)

ZI =

k∏
s=1

N∏
j=1

Γ
(
−irσs + ir(aj + ε

2)− ms
2

)
Γ
(
1 + irσs − ir(aj + ε

2)− ms
2

) (5.9)
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ZJ =

k∏
s=1

N∏
j=1

Γ
(
irσs + ir(−aj + ε

2) + ms
2

)
Γ
(
1− irσs − ir(−aj + ε

2) + ms
2

) (5.10)

Zχ =

k∏
s,t=1

Γ
(
1− irσst − irε− mst

2

)
Γ
(
irσst + irε− mst

2

) (5.11)

ZB1 =
k∏

s,t=1

Γ
(
−irσst + irε1 − mst

2

)
Γ
(
1 + irσst − irε1 − mst

2

) (5.12)

ZB2 = ZB1

∣∣∣
ε1→ε2

. (5.13)

Let us study now the point like limit r → 0, when the sphere shrinks to zero size. In

this situation a D(−1) – D3 brane system remains, which is a setting considered in

[10, 11]. Therefore our expectation is that in the point like limit the partition function

ZS
2

reduces to the instanton partition function for pure super Yang–Mills (SYM) theory

based on unitary gauge group

Z inst
k (U(N)) =

1

k!

εk

(2πiε1ε2)k

∮ k∏
s=1

dσs
P (σs)P (σs + ε)

k∏
s<t

σ2
st(σ

2
st − ε2)

(σ2
st − ε21)(σ2

st − ε22)
, (5.14)

where we have defined P (σs) =
∏N
j=1(σs − aj − ε

2). Analyzing the Laurent expansion

of ZS
2

around r = 0 one discovers that the leading order term really gives the wanted

result

ZS
2

U(k)
r→0∼ 1

r2kN
Z inst
k (U(N)) + higher order terms in r (5.15)

We will reveal that for an arbitrary classical group, the power of the radius for the

reduced partition function is r−2h∨k, where h∨ is the dual Coxeter number of the group

G. For unitary, symplectic and orthogonal groups these numbers take the following

values: h∨(U(N)) = N,h∨(Sp(N)) = N + 1, h∨(O(N)) = N − 2. So if we introduce a

formal counting parameter Λ6 and define ZS
2

tot =
∑

k Λk6Z
S2

k (ZS
2

k was denoted ZS
2

GD
) we

have

ZS
2

tot
r→0∼

∑
k

Λk6r
−2h∨kZ inst

k =
∑
k

Λ2h∨k
4 Z inst

k := Z inst. (5.16)

For this to hold the scaling Λ6 = (rΛ4)2h∨ has to be imposed.

Next we move to study the opposite region, the flat space limit. As was discussed in

Chapter 3, the asymptotic expansion around r → ∞ provides us in particular with

the effective twisted superpotential of the associated mirror Landau–Ginzburg model.

Keeping also the next-to-leading term yields

ZS
2

U(N)
r→∞∼ 1

k!

(
ε

rε1ε2

)k ∣∣∣∣∣∣
∫ k∏

s=1

d(rΣs)

2π

(∏k
t6=sD(Σst)∏k
s=1Q(Σs)

) 1
2

e−W̃eff(Σ)

∣∣∣∣∣∣
2

(5.17)
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with the integration measure

Q(Σs) = r2N
N∏
j=1

(
Σs − aj −

ε

2

)(
−Σs + aj −

ε

2

)
, D(Σst) =

(Σst)(Σst + ε)

(Σst − ε1)(Σst − ε2)
.

(5.18)

The formula for the effective twisted superpotential reads

W̃eff(Σ) =
(

2πt− i(k − 1)π
) k∑
s=1

irΣs

+

k∑
s=1

N∑
j=1

[
ω
(
irΣs − iraj − ir

ε

2

)
+ ω

(
−irΣs + iraj − ir

ε

2

)]

+

k∑
s,t=1

[
ω
(
irΣst + irε

)
+ ω

(
irΣst − irε1

)
+ ω

(
irΣst − irε2

)]
. (5.19)

Identifying this potential with the Yang–Yang function one arrives to the Bethe ansatz

equations (4.9)

N∏
j=1

(
Σs − aj −

ε

2

) k∏
t=1
t6=s

(Σst − ε1)(Σst − ε2)

(Σst)(Σst − ε)

= e−2πt
N∏
j=1

(
−Σs + aj −

ε

2

) k∏
t=1
t6=s

(−Σst − ε1)(−Σst − ε2)

(−Σst)(−Σst − ε)
. (5.20)

The proposal of [58] states that the above Yang–Yang function and Bethe equations

describe the gl(N) periodic Intermediate Long Wave system. Here we expose just few

basic features, much more will be said in the next chapter. It is a system of hydrody-

namic type and has two very interesting limits governed by the control parameter t (the

exponential of it usually stands for a twist parameter in the integrability vocabulary).

For t → ±∞ we get the Benjamin–Ono limit (BO). In this limit the BAE are actually

easy to solve as will be explained later. The other branch is when t → 0, then one

finishes in the Korteweg–de Vries limit (KdV). The KdV point in the parameter space

is much harder to analyze.

5.2 GLSM with target the Sp(N) k-instanton moduli space

The ADHM construction for symplectic groups of rank N can be embedded into the one

for unitary groups for rank 2N . Further, we have to impose some constraints. In this



Chapter 5. GLSMs for ABCD instanton moduli spaces 78

case they are given as

J =

K
K̃

 ; I† =

−K̃∗
K∗

 ;
K : N × k matrix

K̃ : N × k matrix

B1, B2 : k × k symmetric matrices,

where we mean complex conjugation by star. Inserting these expressions into (5.1) and

(5.2) yields

µC = KT K̃ − K̃TK + [B1, B2] (5.21)

µR = KTK∗ −K†K + K̃T K̃∗ − K̃†K̃ + [B1, B
∗
1 ] + [B2, B

∗
2 ] (5.22)

The GLSM is defined by the following matter content summarized in Table 5.4 together

GGLSM
gauge = GD = O(k) GF = G× U(1)2 = Sp(N)× U(1)2

χ Ad =
∧2 L(ω1) 1(−1,−1)

B1 Sym2L(ω1) = L(2ω1)⊕
∧2 L(ω1) 1(1,0)

B2 Sym2L(ω1) = L(2ω1)⊕
∧2 L(ω1) 1(0,1)

I L(ω1) [L(ω1) ∩ L(ω1)]( 1
2
, 1
2)

J L(ω1) [L(ω1) ∩ L(ω2N−1)]( 1
2
, 1
2)

Table 5.4: Field content forming a GLSM with target space the Sp(N)-instanton
moduli space.

with a superpotential of the form

W = TrV

{
χ
(
KT K̃ − K̃TK + [B1, B2]

)}
. (5.23)

The second column for I and J in Table 5.4 needs perhaps some comments. We are

looking at Sp(N) as Sp(N) ' Sp(2N,C)∩U(2N,C). Hence the first entry in the square

bracket is the standard representation for CN . For I, also the second one is the standard

(fundamental) representation L(ω1) ' W for A2N−1 ⊕ u(1) while for J it is the dual

(anti-fundamental) representation W ∗ '
∧2N−1W ' L(ω2N−1). The weights for L(ω1)

of CN are {β1, . . . , βN︸ ︷︷ ︸,−β1, . . . ,−βN}. On the other hand for W they are given as

{β1, . . . , βN︸ ︷︷ ︸, βN+1, . . . , β2N} and for W ∗ as {−β1, . . . ,−βN ,−βN+1, . . . ,−β2N}. So in

summary, as a result of the intersection, we are using the weights {β1, . . . , βN} for I and

{−β1, . . . ,−βN} for J , respectively.

To make sure that the proposed field content works fine we should check whether the

resulting D-terms are really correct, i.e. we want to test (5.4). Clearly, µR is a k × k
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matrix, moreover skew symmetric and purely imaginary, hence Hermitian. This implies

µR ∈ Lie(O(k)) with respect to the symmetric bilinear form that defines the canonical

scalar product on V . Thus, it can be indeed expanded in a basis of O(k) generators as

claimed in (5.4). The generators are skew symmetric and we choose them to be purely

imaginary and so the coordinates Dc are real, accordingly. In the first step the check

will be provided for I, J and then for B1,2. First of all, the completeness relation tells

us

Dc =
1

λ
TrV

(
µRT

c
[V ]

)
(5.24)

with TrV

(
T

[V ]
a T

[V ]
b

)
= λδab. λ will be fixed by computing the index of the standard

representation L(ω1), i.e. a relative normalization of quadratic bilinear products taken

in different representations. Normalizing Tr
(
T

(Ad)
a T

(Ad)
b

)
= δab as is customary, the

index formula gives us the answer

Tr
(
T [L(ω1)]
a T

[L(ω1)]
b

)
=

dimL(ω1)

dim g
(ω1, ω1 + 2ρ)︸ ︷︷ ︸

=2 for g=Bl, Dl

δab ⇒ λ = 2. (5.25)

In the above formula ρ is the Weyl vector. Applying these formulae to D-terms corre-

sponding to I, J fields yields

Dc(I) =
1

2
TrV

(
II†T c[V ]

)
=

1

2
TrW

(
I†T c[V ]I

)
(5.26)

Dc(J) = −1

2
TrV

(
J†JT c[V ]

)
= −1

2
TrW

(
JT c[V ]J

†
)
. (5.27)

Thinking of K (the same for K̃) as

K =


KT

1

KT
2
...

KT
N


︸ ︷︷ ︸

k

(5.28)

the above D-term equations can be simplified further

Dc(I) =
1

2

N∑
A=1

K̃†AT
c
[V ]K̃A +K†AT

c
[V ]KA (5.29)

Dc(J) = −1

2

N∑
A=1

K̃T
AT

c
[V ]K̃

∗
A +KT

AT
c
[V ]K

∗
A = [Dc(I)]∗ , (5.30)

(5.31)
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where in the second equality for Dc(J) we used that T c[V ] are purely imaginary. This is

the expected form of D-terms for I, J as we wanted to show.

At this moment it is time to analyse the contribution of B1,2. The derivation is the same

for both, therefore we drop the index for neater notation. It was already emphasized that

B has to be symmetric, thus we can expand it in a basis of k×k symmetric matrices SI

as B = BIS
I , I = 1, . . . , k(k+1)

2 . Moreover, we choose SI to be real, so the coordinates

BI are complex. Then the real moment map can be expressed as

µR = [B,B∗] = BI
(
BJ
)∗ [

SI , SJ
]

(5.32)

while the D-term contribution is of the form

Dc
(
T [L(ω1)]
c

) j
i

=
(
BJ
)∗ (

T c
[Sym2L(ω1)]

) I
J
BI︸ ︷︷ ︸

Dc

(
T [L(ω1)]
c

) j
i
. (5.33)

To proceed further it is essential to simplify the object
(
T c

[Sym2L(ω1)]

) I
J

(
T

[L(ω1)]
c

) j
i

. This

expression is real and skew symmetric in the pairs of indices (I, J) and (i, j), respectively.

Consequently, it is fixed uniquely by these symmetries (up to normalization)(
T c

[Sym2L(ω1)]

) I
J

(
T [L(ω1)]
c

) j
i

=
(
SI
) k
i

(SJ) jk − (SJ) ki
(
SI
) j
k

=
[
SI , SJ

] j
i
, (5.34)

which leads us to the conclusion

Dc
(
T [L(ω1)]
c

) j
i

= BI
(
BJ
)∗ [

SI , SJ
] j
i

= (µR) ji . (5.35)

This finishes the proof.

The above discussion justified the specification of the model given in Table 5.4 together

with (5.23). We explicitly validated that the F - and D-terms agree with (5.1) and (5.2).

This implies we have constructed our model in a correct way, specifically with a vacuum

manifold the moduli space of k Sp(N)-instantons.

5.2.1 S2 partition function for Sp(N)-ADHM GLSM

In this subsection we are going to study the S2 partition function for this model. It

naturally splits into two cases

ZS
2

O(k) =


ZS

2

Dl
for k = 2l

ZS
2

Bl
for k = 2l + 1
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Note, that we are marking the partition function by O(k), i.e. the gauge group of the two

dimensional gauged linear sigma model. As one can see from equation (2.52) it is fully

specified by data contained in Table 5.4 together with basic input on Lie algebra theory

summarized in Appendix A. The twisted masses (equivariant weights) of the maximal

torus of GF = G × U(1)2 will be denoted as (aj ; ε1, ε2). Their values for individual

fields can be read off from the second column of Table 5.4. We have ε = ε1 + ε2 as usual

and further define ε+ = ε1+ε2
2 . Regarding the R-charges we have, roughly speaking, the

assignment (I, J, χ,B1, B2) = (0, 0, 2, 0, 0). With these information at hand, it is easy

to write down the S2 partition function.

Even orthogonal gauge group

In this case the form of the partition function is governed by the Dl series

ZS
2

Dl
=

1

2l−1l!

∑
{m1,...,ml}∈Zl

∫
Rl

l∏
s=1

d(rσs)

2π
ZVMZIZJZχZB1ZB2 , (5.36)

where the contributions from various fields are listed below

ZVM =
l∏
s<t

[
(rσs − rσt)2 +

(ms −mt)
2

4

][
(rσs + rσt)

2 +
(ms +mt)

2

4

]
(5.37)

ZI =

N∏
j=1

l∏
s=1

Γ
(
−irσs − ir (aj + ε+)− ms

2

)
Γ
(
1 + irσs + ir (aj + ε+)− ms

2

) Γ
(
irσs − ir (aj + ε+) + ms

2

)
Γ
(
1− irσs + ir (aj + ε+) + ms

2

)
(5.38)

ZJ =
N∏
j=1

l∏
s=1

Γ
(
−irσs − ir (−aj + ε+)− ms

2

)
Γ
(
1 + irσs + ir (−aj + ε+)− ms

2

) Γ
(
irσs − ir (−aj + ε+) + ms

2

)
Γ
(
1− irσs + ir (−aj + ε+) + ms

2

)
(5.39)

Zχ =
l∏

s=1

Γ(1 + irε)

Γ(−irε)

l∏
s<t

{
Γ
(
1− ir(σs − σt) + irε− ms−mt

2

)
Γ
(
ir(σs − σt)− irε− ms−mt

2

)
×

Γ
(
1 + ir(σs − σt) + irε+ ms−mt

2

)
Γ
(
−ir(σs − σt)− irε+ ms−mt

2

) Γ
(
1− ir(σs + σt) + irε− ms+mt

2

)
Γ
(
ir(σs + σt)− irε− ms+mt

2

)
×

Γ
(
1 + ir(σs + σt) + irε+ ms+mt

2

)
Γ
(
−ir(σs + σt)− irε+ ms+mt

2

) } (5.40)

ZB1 =
l∏

s=1

Γ(−irε1)

Γ(1 + irε1)

l∏
s<t

{
Γ
(
−ir(σs − σt)− irε1 − ms−mt

2

)
Γ(
(
1 + ir(σs − σt) + irε1 − ms−mt

2

)
×

Γ
(
ir(σs − σt)− irε1 + ms−mt

2

)
Γ(
(
1− ir(σs − σt) + irε1 + ms−mt

2

) Γ
(
−ir(σs + σt)− irε1 − ms+mt

2

)
Γ(
(
1 + ir(σs + σt) + irε1 − ms+mt

2

)
×

Γ
(
ir(σs + σt)− irε1 + ms+mt

2

)
Γ(
(
1− ir(σs + σt) + irε1 + ms+mt

2

)}
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×
l∏

s=1

Γ(−ir2σs − irε1 −ms)

Γ(1 + ir2σs + irε1 −ms)

Γ(ir2σs − irε1 +ms)

Γ(1− ir2σs + irε1 +ms)
(5.41)

ZB2 = ZB1 |ε1→ε2 . (5.42)

Odd orthogonal gauge group

As opposed to the previous situation, now we are dealing with the Bl algebra, which

amounts just to take into account extra contributions arising from additional roots (±βi)
and a zero weight for the standard representation L(ω1). If we write

ZS
2

O(2l) =
∑
~m∈Zl

∫
Rl

l∏
s=1

d(rσs)

2π
zO(2l) (σ|~a, ε1, ε2) (5.43)

then

zO(2l+1) (σ|~a, ε1, ε2) =
{

extra
}
· zO(2l) (σ|~a, ε1, ε2) . (5.44)

Contributions from individual fields to
{

extra
}

are listed hereafter

VM :
l∏

s=1

[
(rσs)

2 +
m2
s

4

]
extra positive roots β1, . . . , βl

I :

N∏
j=1

Γ (−ir(aj + ε+))

Γ (1 + ir(aj + ε+))
extra zero weight for L(ω1)

J :
Γ (−ir(−aj + ε+))

Γ (1 + ir(−aj + ε+))
extra zero weight for L(ω1)

χ :
l∏

s=1

Γ
(
1− irσs + irε− ms

2

)
Γ(
(
irσs − irε− ms

2

) Γ
(
1 + irσs + irε+ ms

2

)
Γ(
(
−irσs − irε+ ms

2

) extra roots ± β1, . . . ,±βl

B1 :
Γ(−irε1)

Γ(1 + irε1)︸ ︷︷ ︸
extra zero weight for L(ω1)

l∏
s=1

Γ(
(
−irσs − irε1 − ms

2

)
Γ
(
1 + irσs + irε1 − ms

2

) Γ(
(
irσs − irε1 + ms

2

)
Γ
(
1− irσs + irε1 + ms

2

)︸ ︷︷ ︸
extra roots ±β1,...,±βl

B2 : B1|ε1→ε2

|W | : 1

2
extra factor in the order of the Weyl group
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In summary, we can certainly combine the two cases explored above and write a compact

form for O(k)

ZS
2

O(k) =
1

2b
k
2c−1

⌊
k
2

⌋
!

∑
~m∈Zb k2c

∫
Rb k2c

b k2c∏
s=1

d(rσs)

2π
{extra}kmod 2 zO(2l) (σ|~a, ε1, ε2)

∣∣
l=b k2c

.

(5.45)

The important thing to explain next is the limit when the radius of S2 approaches zero.

By the same arguments given for unitary groups, we expect the S2 partition function to

reduce to the instanton part of Nekrasov partition function for four dimensional N = 2

pure SYM theory based on Sp(N) gauge group [59]. Performing the asymptotic expan-

sion around r → 0, the leading order term in fact provides the predicted observation

ZS
2

O(k)
r→0∼ 1

r2k(N+1)
Z inst
k (Sp(N)) + higher order terms in r (5.46)

Note that the factor r−2k(N+1) is the same as in the 4D limit of 5D instanton partition

function on C2 × S1
r compactified on the circle.

On the other hand, investigating the r →∞ asymptotic expansion allows us to obtain the

associated mirror Landau–Ginzburg model or more precisely its effective IR description,

which is encoded in the effective twisted superpotential. Using the Stirling formula for

Gamma functions it can be easily computed with the result (we remind the definition

ω(x) = x(log x− 1))

W̃eff = kmod 2

[ b k2c∑
s=1

ω(−irΣs + irε) + ω(irΣs + irε) + ω(−irΣs − irε1)

+ ω(irΣs − irε1) + ω(−irΣs − irε2) + ω(irΣs − irε2)

]

+

b k2c∑
s=1

N∑
j=1

{
ω(−irΣs − ir(aj + ε+)) + ω(irΣs − ir(aj + ε+))

+ ω(−irΣs − ir(−aj + ε+)) + ω(irΣs − ir(−aj + ε+))
}

+

b k2c∑
s<t

{
ω(−ir(Σs − Σt) + irε) + ω(ir(Σs − Σt) + irε)

+ ω(−ir(Σs + Σt) + irε) + ω(ir(Σs + Σt) + irε)
}

+

b k2c∑
s<t

{
ω(−ir(Σs − Σt)− irε1) + ω(ir(Σs − Σt)− irε1)

+ ω(−ir(Σs + Σt)− irε1) + ω(ir(Σs + Σt)− irε1)
}
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+

b k2c∑
s=1

{
ω(−ir2Σs − irε1) + ω(ir2Σs − irε1)

}

+

b k2c∑
s<t

{
ω(−ir(Σs − Σt)− irε2) + ω(ir(Σs − Σt)− irε2)

+ ω(−ir(Σs + Σt)− irε2) + ω(ir(Σs + Σt)− irε2)
}

+

b k2c∑
s=1

{
ω(−ir2Σs − irε2) + ω(ir2Σs − irε2)

}
. (5.47)

If we assume that the interpretation of the effective twisted superpotential as a Yang–

Yang function of some integrable system still holds, the corresponding Bethe equations

derived from W̃eff as

∂W̃eff

∂irΣs
= 2πins; ns ∈ Z (5.48)

have the form (s = 1, . . . ,
⌊
k
2

⌋
being the free index labeling individual equations of the

system)

[
Σs + ε

Σs − ε
Σs − ε1
Σs + ε1

Σs − ε2
Σs + ε2

]kmod 2 2Σs − ε1
2Σs + ε1

2Σs − ε2
2Σs + ε2

N∏
j=1

Σs − (aj + ε+)

Σs + (aj + ε+)

Σs − (−aj + ε+)

Σs + (−aj + ε+)

=

b k2c∏
t=1

Σs − Σt − ε
Σs − Σt + ε

Σs − Σt + ε1
Σs − Σt − ε1

Σs − Σt + ε2
Σs − Σt − ε2

b k2c∏
t=1
t6=s

Σs + Σt − ε
Σs + Σt + ε

Σs + Σt + ε1
Σs + Σt − ε1

Σs + Σt + ε2
Σs + Σt − ε2

.

(5.49)

Remark. There is no twist parameter present in the Bethe equations. It is so because in

the GLSM we are dealing with a gauge group that has a simple Lie algebra, therefore

does not admit a Fayet-Iliopoulus term. In the language of the ILW hydrodynamical

integrable system studied before this means the model is frozen in the “KdV like phase”.

5.3 GLSM with target the O(N) k-instanton moduli space

As opposed to the previous case of symplectic groups, now we are doing the embedding

for GD, concretely Sp(k) ⊂ U(2k). Constraints needed to be imposed on the maps take

the following form

J =
(
K , K̃

)
; I† =

(
−K̃∗ , K∗

)
; K, K̃ : N × k matrices



Chapter 5. GLSMs for ABCD instanton moduli spaces 85

B1,2 =

(
P1,2 Q̃1,2

Q1,2 P T1,2

)
; Q1,2, Q̃1,2 : k × k skew symmetric matrices.

Writing the moment maps in block form

µC,R =

(
RC,R S̃C,R

SC,R −RTC,R

)

and inserting the above expressions into (5.1) and (5.2) results in

RC = [P1, P2] + Q̃1Q2 − Q̃2Q1 − K̃TK (5.50)

SC = Q1P2 − P T2 Q1 + P T1 Q2 −Q2P1 +KTK (5.51)

S̃C = Q̃1P
T
2 − P2Q̃1 + P1Q̃2 − Q̃2P

T
1 − K̃T K̃ (5.52)

for the complex moment map, while

RR =
2∑

a=1

([
Pa, P

†
a

]
+Q∗aQa − Q̃aQ̃∗a

)
+ K̃T K̃∗ −K†K (5.53)

SR =

2∑
a=1

(
QaP

†
a − P ∗aQa + Q̃∗aPa − P Ta Q̃∗a

)
−KT K̃∗ − K̃†K (5.54)

S̃R =

2∑
a=1

(
Q̃aP

∗
a − P †aQ̃a +Q∗aP

T
a − PaQ∗a

)
− K̃TK∗ −K†K̃ (5.55)

for the real. Note that SC,R, S̃C,R are symmetric k×k matrices. Therefore, µC,R ∈ Lie(Sp(2k,C))

with respect to the skew symmetric form

(
0 +I
−I 0

)
on V.

Let us motivate the field content, which will be summarized shortly. For instance, focus

on B1. Looking at the block form given above, we can count the number of independent

components; it is k2 + k(k−1)
2 + k(k−1)

2 = k(2k − 1). So, if we want to figure out the

representation of Sp(k) in which B1 transforms, we know that its dimension must be

equal to this number. Further, for Sp(k) all irreducible representations are included

in the tensor algebra of the standard representation V (unlike for orthogonal groups,

where we have also spin representations). It is not hard to guess that the appropriate

representation should be
∧2 V , indeed the dimension is 2k(2k−1)

2 = k(2k − 1) as was

required. Now we are ready to define the gauged linear sigma model, its matter fields

are encoded in Table 5.5. The notation for the weights of I and J with respect to GD in

the first column is analogous to that given in the symplectic case for G. One just needs

to replace N by k in those arguments, so we will not repeat them here. Except for the
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GGLSM
gauge = GD = Sp(k) GF = G× U(1)2 = O(N)× U(1)2

χ Ad = Sym2L(ω1) 1(−1,−1)

B1
∧2 L(ω1) = L(ω2)⊕ C 1(1,0)

B2
∧2 L(ω1) = L(ω2)⊕ C 1(0,1)

J [L(ω1) ∩ L(ω1)] L(ω1)( 1
2
, 1
2)

I [L(ω1) ∩ L(ω2k−1)] L(ω1)( 1
2
, 1
2)

Table 5.5: Field content forming a GLSM with target space the O(N)-instanton
moduli space.

specified matter content also a superpotential term has to be included

W = TrV
{
χ (IJ + [B1, B2])

}
(5.56)

in order to impose the complex moment map condition µC = 0.

To dispel any doubts a strict reader still might have about choosing the right field

content, let us work out the D-terms. Using just the cyclicity of trace we arrive promptly

to equations for I and J (note that the trace is over different vector spaces)

Dc(I) =
1

2
TrV

(
II†T c[V ]

)
=

1

2
TrW

(
I†T c[V ]I

)
(5.57)

Dc(J) = −1

2
TrV

(
J†JT c[V ]

)
= −1

2
TrW

(
JT c[V ]J

†
)
. (5.58)

Writing K, K̃ as in (5.28) while T c[V ] in the block form

T c[V ] =

(
A B

C −AT

)
; B, C : symmetric k × k matrices

these can be expressed explicitly as

Dc(I) = (Dc(I))T =
1

2

N∑
a=1

{KT
a AK

∗
a +KT

a BK̃
∗
a − K̃T

a CK
∗
a + K̃T

a A
T K̃∗a}

Dc(J) = −1

2

N∑
a=1

{KT
a AK

∗
a +KT

a BK̃
∗
a + K̃T

a CK
∗
a − K̃T

a A
T K̃∗a}. (5.59)

The more interesting part of the argument appears to be the contribution from B1, B2.

They are the same, so we drop the index and expand B in a basis of 2k × 2k matrices

M I as B = BIM
I , I = 1, . . . , k(2k − 1). Recall that we already did the counting

of independent entries in B, therefore the range of the index I should be no surprise.
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Directly from the definition of the real moment maps follows

µR(B) = BI
(
BJ
)∗ [

M I ,M †J

]
=⇒

[
M I ,M †J

]
∈ Lie(Sp(2k,C)) (5.60)

since µR is in the Lie algebra of the symplectic group as we already saw. On the other

hand, the canonical form of the D-term contribution corresponding to B looks like

Dc(B)
(
T [V ]
c

) j
i

=
(
BJ
)∗ (

T c
[
∧2 V ]

) I
J
BI︸ ︷︷ ︸

Dc(B)

(
T [V ]
c

) j
i
. (5.61)

Consequently, we need to figure out what
(
T c

[
∧2 V ]

) I
J

(
T

[V ]
c

) j
i

is. This is not so hard,

think of it as a set of matrices with (i, j)-indices labeled by (I, J). Certainly we know

that each matrix of this set is in the Lie algebra of the symplectic group since
(
T

[V ]
c

) j
i

is. Hence we have to build the right hand side out of the set {MI ,M
†
I } keeping this

condition. However, there is only one possible combination of the M matrices being in

Lie(Sp(2k,C)), namely
[
M I ,M †J

] j
i

! We could have proceeded also in a different way to

show this relation. Contracting by T a[V ] and taking the trace yields

(
T a

[
∧2 V ]

) I
J

=
1

2
TrV

(
M †JT

a
[V ]M

I −M IT a[V ]M
†
J

)
. (5.62)

Then it is enough to check that this expression indeed furnishes a representation,

T a
[
∧2 V ]

T b
[
∧2 V ]

= fabcT
c
[
∧2 V ]

. We are leaving this as an exercise for a persistent reader.

In either case, we are lead to conclude

Dc(B)
(
T [V ]
c

) j
i

= [µR(B)] ji , (5.63)

which finishes the discussion of D-terms and shows that the field content of the model

produces the desired equations for classical vacua.

5.3.1 S2 partition function for O(N)-ADHM GLSM

Employing the basic facts about Lie algebras given in Appendix A, we can easily write

down the partition function on S2 for this model

ZS
2

Sp(k) =
1

2kk!

∑
{m1,...,mk}∈Zk

∫
Rk

k∏
s=1

d(rσs)

2π
ZVMZJZIZχZB1ZB2 . (5.64)

As an example let us work out the weights for B1. It transforms in the representation∧2 V , where V ' C2k is the standard representation of Ck with weights ±βi, i = 1, . . . , k.
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Hence the weights of
∧2 V are the pairwise sums of distinct weights of V , explicitly

wights of
∧2

V = {βi − βj ,−(βi − βj), βi + βj ,−(βi + βj)| 1 ≤ i < j ≤ k} ∪ {0, . . . , 0︸ ︷︷ ︸
k−times

}

and so the contribution from B1 is precisely as given below in the list of contributions

of individual fields

ZVM =
k∏
s=1

[
(2rσs)

2 +
(2ms)

2

4

] k∏
s<t

[
(rσs − rσt)2 +

(ms −mt)
2

4

] [
(rσs + rσt)

2 +
(ms +mt)

2

4

]
(5.65)

ZJ =
k∏
s=1

[
Γ
(
−irσs − irε+ − ms

2

)
Γ
(
1 + irσs + irε+ − ms

2

)]Nmod 2 bN2 c∏
j=1

{
Γ
(
−irσs − ir (aj + ε+)− ms

2

)
Γ
(
1 + irσs + ir (aj + ε+)− ms

2

)
×

Γ
(
−irσs − ir (−aj + ε+)− ms

2

)
Γ
(
1 + irσs + ir (−aj + ε+)− ms

2

)} (5.66)

ZI =
k∏
s=1

[
Γ
(
irσs − irε+ + ms

2

)
Γ
(
1− irσs + irε+ + ms

2

)]Nmod 2 bN2 c∏
j=1

{
Γ
(
irσs − ir (aj + ε+) + ms

2

)
Γ
(
1− irσs + ir (aj + ε+) + ms

2

)
×

Γ
(
irσs − ir (−aj + ε+) + ms

2

)
Γ
(
1− irσs + ir (−aj + ε+) + ms

2

)} (5.67)

Zχ =
k∏
s=1

Γ(1 + irε)

Γ(−irε)

k∏
s=1

Γ (1− ir2σs + irε−ms)

Γ (ir2σs − irε−ms)

Γ (1 + ir2σs + irε+ms)

Γ (−ir2σs − irε+ms)

×
k∏
s<t

{
Γ
(
1− ir(σs − σt) + irε− ms−mt

2

)
Γ
(
ir(σs − σt)− irε− ms−mt

2

) Γ
(
1 + ir(σs − σt) + irε+ ms−mt

2

)
Γ
(
−ir(σs − σt)− irε+ ms−mt

2

)
×

Γ
(
1− ir(σs + σt) + irε− ms+mt

2

)
Γ
(
ir(σs + σt)− irε− ms+mt

2

) Γ
(
1 + ir(σs + σt) + irε+ ms+mt

2

)
Γ
(
−ir(σs + σt)− irε+ ms+mt

2

) } (5.68)

ZB1 =
k∏
s=1

Γ(−irε1)

Γ(1 + irε1)

k∏
s<t

{
Γ
(
−ir(σs − σt)− irε1 − ms−mt

2

)
Γ(
(
1 + ir(σs − σt) + irε1 − ms−mt

2

)
×

Γ
(
ir(σs − σt)− irε1 + ms−mt

2

)
Γ(
(
1− ir(σs − σt) + irε1 + ms−mt

2

) Γ
(
−ir(σs + σt)− irε1 − ms+mt

2

)
Γ(
(
1 + ir(σs + σt) + irε1 − ms+mt

2

)
×

Γ
(
ir(σs + σt)− irε1 + ms+mt

2

)
Γ(
(
1− ir(σs + σt) + irε1 + ms+mt

2

)} (5.69)

ZB2 = ZB1 |ε1→ε2 . (5.70)

It is interesting to study the two important limits as before, i.e. the point like limit when

the sphere shrinks to zero size or the flat space limit when the radius is sent to infinity.

At first we do the point like limit, where the leading order term in the asymptotic

expansion around r → 0 is supposed to capture the instanton partition function for pure
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SYM with orthogonal group as a gauge group. This is indeed what happens, we obtain2

ZS
2

Sp(k)
r→0∼ 1

r2k(N−2)

[
(−1)kN24k

]
Z inst
k (O(N)) + higher order terms in r. (5.71)

The power of the radius is the same as would come from compactification of a 5D

instanton partition function to 4D on a circle of radius r.

Next, let us concentrate on the flat space limit. The by now familiar argument tells us

that we are thus obtaining the mirror LG description in the infra-red, which is encoded

in the effective twisted superpotential W̃eff . We write the integrand of the S2 partition

function as an exponential of some argument, subsequently perform the leading asymp-

totic expansion for r → ∞ of this argument, which results in a sum of holomorphic

and anti-holomorphic piece. The holomorphic part is W̃eff that we were looking for.

Applying the Stirling formula for Gamma functions the outlined computation yields

W̃eff = Nmod 2

[
k∑
s=1

ω(−irΣs − irε+) + ω(irΣs − irε+)

]

+
k∑
s=1

bN2 c∑
j=1

{
ω(−irΣs − ir(aj + ε+)) + ω(−irΣs − ir(−aj + ε+))

+ ω(irΣs − ir(aj + ε+)) + ω(irΣs − ir(−aj + ε+))
}

+
k∑
s=1

{
ω(−ir2Σs + irε) + ω(ir2Σs + irε)

}
+

k∑
s<t

{
ω(−ir(Σs − Σt) + irε) + ω(ir(Σs − Σt) + irε)

+ ω(−ir(Σs + Σt) + irε) + ω(ir(Σs + Σt) + irε)
}

+
k∑
s<t

{
ω(−ir(Σs − Σt)− irε1) + ω(ir(Σs − Σt)− irε1)

+ ω(−ir(Σs + Σt)− irε1) + ω(ir(Σs + Σt)− irε1)
}

+

k∑
s<t

{
ω(−ir(Σs − Σt)− irε2) + ω(ir(Σs − Σt)− irε2)

+ ω(−ir(Σs + Σt)− irε2) + ω(ir(Σs + Σt)− irε2)
}
. (5.72)

By the Gauge/Bethe correspondence W̃eff is supposed to give the Yang–Yang function

of some integrable system. It is natural to claim that this will be a deformation of the

ILW integrable system, a version that is based on orthogonal groups instead of unitary.

2The factor in the square brackets depends to which reference one compares. See e.g. [59], [54]. The
factor 24k comes essentially from the roots 2βi of the Ck Lie algebra and seems to be missing in [59]
while present in [54]. Nevertheless, we compared with [59].
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The Bethe equations derived in a standard way read this time

[
Σs − ε+
Σs + ε+

]Nmod 2 2Σs + ε

2Σs − ε

bN2 c∏
j=1

Σs − (aj + ε+)

Σs + (aj + ε+)

Σs − (−aj + ε+)

Σs + (−aj + ε+)

=
k∏
t=1

Σs − Σt − ε
Σs − Σt + ε

Σs − Σt + ε1
Σs − Σt − ε1

Σs − Σt + ε2
Σs − Σt − ε2

k∏
t=1
t6=s

Σs + Σt − ε
Σs + Σt + ε

Σs + Σt + ε1
Σs + Σt − ε1

Σs + Σt + ε2
Σs + Σt − ε2

.

(5.73)

Once again, there is no twist parameter and thus the model is settled in the “KdV-like

regime”.



Chapter 6

Unitary ADHM Gauged Linear

Sigma Model unveiled

6.1 Quantum cohomology and equivariant Gromov–Witten

invariants

We set up the route towards finding the I-function for the instanton moduli space

Mk,N (in this chapter we always mean for a unitary group). In order to do that one

needs to examine the structure of the integral defining the partition function (5.7). The

parameter that controls the behavior of the integrals is the FI parameter ξ. Notice that

the constraints on the maps in the ADHM construction

µC = IJ + [B1, B2] = 0 (6.1)

µR =
[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J = ξ1 (6.2)

are invariant under

(ξ → −ξ) and


(B1, B2, I, J)→

(
B†1, B

†
2,−J†, I†

)
(B1, B2, I, J)→

(
B†2, B

†
1, J
†, I†

) . (6.3)

So we are free to choose the phase ξ > 0. Then the defining integrals over real lines can

be thought of as contour integrals closed by big circles in the lower half planes. The

contribution from these big circles is guaranteed to vanish because of an exponential

damping factor precisely when ξ > 0. Consequently, the computation will be performed

using the residue theorem.

91
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The explicit evaluation of the partition function (5.7) relies on classification of poles in

the integrand. We now show that these are labeled by Young tableaux, just like for the

Nekrasov partition function [10]. More precisely, we find a tower of poles above each

box of the Young tableaux labeled by a positive integer n. Following the discussion of

[14, 17], let us summarize the possible poles and zeros of the integrand (n ≥ 0):

poles (σ(p)) zeros (σ(z))

I σ
(p)
s = aj − i

r (n+ |ms|
2 ) σ

(z)
s = aj + i

r (1 + n+ |ms|
2 )

J σ
(p)
s = aj − ε+ i

r (n+ |ms|
2 ) σ

(z)
s = aj − ε− i

r (1 + n+ |ms|
2 )

χ σ
(p)
st = −ε− i

r (1 + n+ |mst|
2 ) σ

(z)
st = −ε+ i

r (n+ |mst|
2 )

B1 σ
(p)
st = ε1 − i

r (n+ |mst|
2 ) σ

(z)
st = ε1 + i

r (1 + n+ |mst|
2 )

B2 σ
(p)
st = ε2 − i

r (n+ |mst|
2 ) σ

(z)
st = ε2 + i

r (1 + n+ |mst|
2 )

Poles from J do not contribute, being in the upper half plane. Consider now a pole

for I, say σ
(p)
1 ; the next pole σ

(p)
2 can arise from I,B1 or B2, but not from χ, because

in this case it would be cancelled by a zero from J . Moreover, if it comes from I, σ
(p)
2

should correspond to a twisted mass aj different from the one for σ
(p)
1 , or the partition

function would vanish (as explained in full detail in [14]). In the case σ
(p)
2 comes from

B1, consider σ
(p)
3 : again, this can be a pole from I,B1 or B2, but not from χ, or it would

be cancelled by a zero of B2. This reasoning takes into account all the possibilities, so

we can conclude that the poles are classified by N Young tableaux {~Y }k = (Y1, . . . , YN )

such that
∑N

j=1 |Yj | = k, which describe colored partitions of the instanton number k.

These are the same as the ones used in the pole classification of the Nekrasov partition

function, with the difference that to every box is associated not just a pole, but an infinite

tower of poles, labeled by a positive integer n; i.e., we are dealing with three-dimensional

Young tableaux.

These towers of poles can be dealt with by rewriting near each pole

σs = − i
r

(
ns +

|ms|
2

)
+ iλs (6.4)

In this way we resum the contributions coming from the “third direction” of the Young

tableaux, and the poles for λs are now given in terms of usual two-dimensional partitions.

The change of variables allows us to show the factorization of the partition function

before performing the integral over λs, see (3.22).

Defining z = e−2πξ+iθ and ds = ns + ms+|ms|
2 , d̃s = ds −ms brings the double sum over

magnetic fluxesms and residues in the tower ns
∑

ms∈Z
∑

ns≥0 to the form
∑

d̃s≥0

∑
ds≥0.

Finally, we obtain the following expression

ZS
2

k,N =
1

k!

∮ k∏
s=1

d(rλs)

2πi
(zz̄)−rλsZ1lZvZav (6.5)
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where

Z1l =

(
Γ(1− irε)Γ(irε1)Γ(irε2)

Γ(irε)Γ(1− irε1)Γ(1− irε2)

)k k∏
s=1

N∏
j=1

Γ(rλs + iraj)Γ(−rλs − iraj + irε)

Γ(1− rλs − iraj)Γ(1 + rλs + iraj − irε)

k∏
s 6=t

(rλs − rλt)
Γ(1 + rλs − rλt − irε)Γ(rλs − rλt + irε1)Γ(rλs − rλt + irε2)

Γ(−rλs + rλt + irε)Γ(1− rλs + rλt − irε1)Γ(1− rλs + rλt − irε2)

(6.6)

Zv =
∑

d̃1,...,d̃k ≥ 0

((−1)Nz)d̃1+...+d̃k

k∏
s=1

N∏
j=1

(−rλs − iraj + irε)d̃s
(1− rλs − iraj)d̃s

k∏
s<t

d̃t − d̃s − rλt + rλs
−rλt + rλs

(1 + rλs − rλt − irε)d̃t−d̃s
(rλs − rλt + irε)d̃t−d̃s

(rλs − rλt + irε1)d̃t−d̃s
(1 + rλs − rλt − irε1)d̃t−d̃s

(rλs − rλt + irε2)d̃t−d̃s
(1 + rλs − rλt − irε2)d̃t−d̃s

(6.7)

Zav =
∑

d1,...,dk ≥ 0

((−1)N z̄)d1+...+dk

k∏
s=1

N∏
j=1

(−rλs − iraj + irε)ds
(1− rλs − iraj)ds

k∏
s<t

dt − ds − rλt + rλs
−rλt + rλs

(1 + rλs − rλt − irε)dt−ds
(rλs − rλt + irε)dt−ds

(rλs − rλt + irε1)dt−ds
(1 + rλs − rλt − irε1)dt−ds

(rλs − rλt + irε2)dt−ds
(1 + rλs − rλt − irε2)dt−ds

(6.8)

The Pochhammer symbol (a)d is defined as

(a)d =


∏d−1
i=0 (a+ i) for d > 0

1 for d = 0∏|d|
i=1

1

a− i
for d < 0

(6.9)

Notice that this definition implies the identity

(a)−d =
(−1)d

(1− a)d
(6.10)

We observe that the 1
k! in (6.5) is cancelled by the k! possible orderings of the λs, so in

the rest of this paper we will always choose an ordering and remove the factorial.

As was discussed in Chapter 3, the function Zv given in (6.7) provides us with a conjec-

tural expression for the I-function of the instanton moduli space Mk,N

Ik,N =
∑

d1,...,dk ≥ 0

((−1)Nz)d1+...+dk

k∏
s=1

N∏
j=1

(−rλs − iraj + irε)ds
(1− rλs − iraj)ds

k∏
s<t

dt − ds − rλt + rλs
−rλt + rλs
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(1 + rλs − rλt − irε)dt−ds
(rλs − rλt + irε)dt−ds

(rλs − rλt + irε1)dt−ds
(1 + rλs − rλt − irε1)dt−ds

(rλs − rλt + irε2)dt−ds
(1 + rλs − rλt − irε2)dt−ds

.

(6.11)

The λs should be interpreted as Chern roots of the tautological bundle overMk,N . From

the above formula we find the expansion in ~

Ik,N = 1 +
I(N)

~N
+ . . . (6.12)

Therefore, I(0) = 1 for every k,N , while I(1) = 0 when N > 1; this implies that the

equivariant mirror map is trivial, namely Ik,N = Jk,N , for N > 1. The N = 1 case will

be discussed in detail in the following subsections.

A final remark is that in the limit ε → 0, all world-sheet instanton corrections to ZS
2

k,N

vanish (i.e. Zv = 1+O(ε)) [43], which is in agreement with general results on equivariant

Gromov–Witten theory for the instanton moduli space [60].

6.1.1 Cotangent bundle of the projective space

As a first example, let us consider the case M1,N ' C2 × T ∗CPN−1. The integrated

spherical partition function has the form

Z1,N =

N∑
j=1

(zz̄)irajZ
(j)
1l Z

(j)
v Z(j)

av . (6.13)

The j-th contribution comes from the Young tableau (• , . . . , , . . . , •), where the box

is in the j-th position; this means we have to consider the pole λ1 = −iaj . Explicitly

one arrives at

Z
(j)
1l =

Γ (irε1) Γ (irε2)

Γ (1− irε1) Γ (1− irε2)

N∏
l=1
l 6=j

Γ (iralj) Γ (−iralj + irε)

Γ (1− iralj) Γ (1 + iralj − irε)

Z(j)
v = NFN−1


{
irε, (−iralj + irε)Nl=1

l 6=j

}
{

(1− iralj)Nl=1
l 6=j

} ; (−1)N z



Z(j)
av = NFN−1


{
irε, (−iralj + irε)Nl=1

l 6=j

}
{

(1− iralj)Nl=1
l 6=j

} ; (−1)N z̄

 (6.14)
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with pFq the generalized hypergeometric function

pFq

(
{a1, . . . , ap}
{b1, . . . , bq}

; z

)
=
∞∑
n=0

zn

n!

(a1)n · · · (ap)n
(b1)n · · · (bq)n

. (6.15)

Let us set N = 2 to focus in more detail on M1,2. In this case the instanton moduli

space reduces to C2×T ∗P1 and is isomorphic to the moduli space of the Hilbert scheme

of two pointsM1,2 'M2,1. In order to match the equivariant actions on the two moduli

spaces, we identify

a1 = ε1 + 2a , a2 = ε2 + 2a (6.16)

so that a12 = ε1 − ε2. Then we have

Z1,2 = (zz̄)ir(2a+ε1)Z
(1)
1l Z

(1)
v Z(1)

av + (zz̄)ir(2a+ε2)Z
(2)
1l Z

(2)
v Z(2)

av , (6.17)

where

Z
(1)
1l =

Γ (irε1) Γ (irε2)

Γ (1− irε1) Γ (1− irε2)

Γ (−irε1 + irε2) Γ (2irε1)

Γ (1 + irε1 − irε2) Γ (1− 2irε1)
(6.18)

Z(1)
v = 2F1

(
{irε, 2irε1}

{1 + irε1 − irε2}
; z

)
(6.19)

Z(1)
av = 2F1

(
{irε, 2irε1}

{1 + irε1 − irε2}
; z̄

)
. (6.20)

The other contribution is obtained by exchanging ε1 ↔ ε2. Identifying Z
(1)
v as the

Givental I-function, we expand it in r = 1
} in order to find the equivariant mirror map.

This gives

Z(1)
v = 1 + o(r2), (6.21)

which means there is no equivariant mirror map and I = J . The same reasoning applies

to Z
(2)
v .

Thus it only remains to properly normalize the symplectic pairing given by Z1l. This

issue is related to the regularization scheme for the 1-loop determinants (2.50) and

(2.51). To compute them the ζ-regularization scheme was used. We will fix the properly

normalized pairing Znorm
1l by requiring

• vanishing coefficient of the Euler–Mascheroni constant γ in Znorm
1l , referring here

to the Weierstrass form of the Gamma function

1

Γ(x)
= xeγx

∞∏
n=1

(
1 +

x

n

)
e−

x
n (6.22)
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• correct intersection numbers in classical cohomology

• the constant term in the r expansion of Znorm
1l is 1, so that the equivariant volume

of the target space is not changed

Clearly it is rather a case by case analysis, nevertheless can be done with some practice.

Looking at (6.18) we notice that the coefficient of γ is 4ir(ε1 + ε2) and the normalization

must cancel it. In this case the normalization that satisfies all the three criteria turns

out to be

(zz̄)−2ira

(
Γ(1− irε1)Γ(1− irε2)

Γ(1 + irε1)Γ(1 + irε2)

)2

. (6.23)

Expanding the normalized partition function in r up to order r−1, we obtain 1

Znorm
1,2 =

1

r2ε1ε2

[ 1

2r2ε1ε2
+

1

4
ln2(zz̄)− ir(ε1 + ε2)

(
− 1

12
ln3(zz̄)− ln(zz̄)(Li2(z) + Li2(z̄))

+ 2(Li3(z) + Li3(z̄)) + 3ζ(3)
)]

(6.24)

The first term in (6.24) correctly reproduces the Nekrasov partition function ofM1,2 as

expected, while the other terms compute the H2
T (M1,2) part of the genus zero Gromov-

Witten potential in agreement with [61]. We remark that the quantum part of the

Gromov-Witten potential turns out to be linear in the equivariant parameter ε1 + ε2 in

accord with general results.

6.1.2 Hilbert scheme of points

Let us now turn to theMk,1 case, which corresponds to the Hilbert scheme of k points.

This case was analysed in terms of Givental formalism in [62]. It is easy to see that

(6.11) reduces for N = 1 to their results.

As remarked after equation (6.11) in the N = 1 case there is a non-trivial equivariant

mirror map to be implemented. As we will discuss in a moment, this is done by defining

the J function as J = (1+z)irkεI, which corresponds to normalizing by the equivariant

mirror map; in other words, we have to normalize the vortex part by multiplying it with

(1 + z)irkε, and similarly for the antivortex. In the following we will describe in detail

some examples and extract the relevant Gromov-Witten invariants for them. As we will

see, these are in agreement with the results of [63].

1Notice that the procedure outlined above does not fix a remnant dependence on the coefficient of

the ζ(3) term in ZS
2

. In fact, one can always multiply by a ratio of Gamma functions whose overall
argument is zero; this will have an effect only on the ζ(3) coefficient. This ambiguity does not affect the
calculation of the Gromov-Witten invariants.



Chapter 6. Unitary ADHM GLSM: details 97

For k = 1, the only Young tableau ( ) corresponds to the pole λ1 = −ia. This case is

simple enough to be written in a closed form; we find

ZS
2

1,1 = (zz̄)ira
Γ(irε1)Γ(irε2)

Γ(1− irε1)Γ(1− irε2)
(1 + z)−irε(1 + z̄)−irε. (6.25)

From this expression, it is clear that the Gromov-Witten invariants are vanishing.

Actually, we should multiply (6.25) by (1 + z)irε(1 + z̄)irε in order to recover the J -

function. Instead of doing this, we propose to use Z1,1 as a normalization for Zk,1 as

follows

Znorm
k,1 =

ZS
2

k,1

(−r2ε1ε2ZS
2

1,1)k
(6.26)

In this way, we go from I to J functions and at the same time we normalize the 1-loop

factor in such a way to erase the Euler-Mascheroni constant. The factor (−r2ε1ε2)k is

to make the normalization factor to start with 1 in the r expansion. In summary, we

obtain

Znorm
1,1 = − 1

r2ε1ε2
(6.27)

Let us make a comment on the above normalization procedure. The z dependent part

of the normalization (except for the trivial factor zira), which corresponds to the equiv-

ariant mirror map is (1 + z)irkε. Actually a remarkable combinatorial identity proved in

[62] ensures that e−
I(1)

~ = (1 + z)
ikε
~ making thus this procedure consistent.

Let us now turn to the M2,1 case. There are two contributions, (col) and (row),

coming respectively from the poles λ1 = −ia, λ2 = −ia−iε1 and λ1 = −ia, λ2 = −ia−iε2.

Notice once more that the permutations of the λs are cancelled against the 1
2! in front

of the partition function (5.7). We thus have

ZS
2

2,1 = (zz̄)ir(2a+ε1)Z
(col)
1l Z(col)

v Z(col)
av + (zz̄)ir(2a+ε2)Z

(row)
1l Z(row)

v Z(row)
av , (6.28)

where

Z
(col)
1l =

Γ(irε1)Γ(irε2)

Γ(1− irε1)Γ(1− irε2)

Γ(2irε1)Γ(irε2 − irε1)

Γ(1− 2irε1)Γ(1 + irε1 − irε2)

Z(col)
v =

∑
d̃≥0

(−z)d̃
d̃/2∑
d̃1=0

(1 + irε1)d̃−2d̃1

(irε1)d̃−2d̃1

(irε)d̃1

d̃1!

(irε1 + irε)d̃−d̃1

(1 + irε1)d̃−d̃1

(2irε1)d̃−2d̃1

(d̃− 2d̃1)!

(1− irε2)d̃−2d̃1

(irε1 + irε)d̃−2d̃1

(irε)d̃−2d̃1

(1 + irε1 − irε2)d̃−2d̃1

Z(col)
av =

∑
d≥0

(−z̄)d
d/2∑
d1=0

(1 + irε1)d−2d1

(irε1)d−2d1

(irε)d1

d1!

(irε1 + irε)d−d1

(1 + irε1)d−d1

(2irε1)d−2d1

(d− 2d1)!

(1− irε2)d−2d1

(irε1 + irε)d−2d1

(irε)d−2d1

(1 + irε1 − irε2)d−2d1

.

(6.29)
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Here we defined d = d1 + d2 and changed the sums accordingly. The row contribution

can be obtained from the column one by exchanging ε1 ↔ ε2. We can then expand

Z
(col, row)
v in r as

Z(col, row)
v = 1 + 2irεLi1(−z) +O(r2). (6.30)

Finally, we invert the equivariant mirror map by replacing

Z(col, row)
v −→ e−2irεLi1(−z)Z(col, row)

v = (1 + z)2irεZ(col, row)
v

Z(col, row)
av −→ e−2irεLi1(−z̄)Z(col, row)

av = (1 + z̄)2irεZ(col, row)
av . (6.31)

Now we can prove the equivalenceM1,2 'M2,1: by expanding in z, it can be shown that

Z
(1)
v (z) = (1 + z)2irεZ

(col)
v (z) and similarly for the antivortex part; since Z

(1)
1l = Z

(col)
1l

we conclude that Z(1)(z, z̄) = (1 + z)2irε(1 + z̄)2irεZ(col)(z, z̄). The same is valid for Z(2)

and Z(row), so in the end we obtain

ZS
2

1,2(z, z̄) = (1 + z)2irε(1 + z̄)2irεZS
2

2,1(z, z̄) (6.32)

Taking into account the appropriate normalizations, this implies

Znorm
1,2 (z, z̄) = Znorm

2,1 (z, z̄) . (6.33)

Some further examples for higher k,N illustrating the outlined procedure can be found

in [43].

6.2 The Intermediate Long Wave system

In the previous chapter we derived Bethe equations associated to the mirror Landau–

Ginzburg model of the unitary ADHM GLSM. It turned out that those Bethe equations

correspond to the gl(N) periodic Intermediate Long Wave system (ILW for N = 1;

otherwise ILWN ). Now we shall review some properties of this integrable model of

hydrodynamic type and later on we provide more details about the correspondence with

gauge theory.

The (non-periodic) ILW equation [64]

ut = 2uux +
1

δ
ux + T [uxx] (6.34)

is an integro-differential equation for u(x, t) that describes dynamics of a thin layer

of fluid on top of a thick layer of fluid that flows through a channel in a constant

gravitational field; the total height of the fluids is h := h1 + h2,
h1
h2
� 1. The amplitude
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A of the waves is assumed to be small (A � h1), while their wavelength λ is large

(h1 � λ). The parameter δ entering the ILW equation is effectively δ = h
λ and the

integral operator T is defined as

T [f ](x) = P.V.

∫
coth

(
π(x− y)

2δ

)
f(y)

dy

2δ
, (6.35)

where P.V. means the principal value prescription. For a more solid set up of the model

see for instance the book [65] and references therein.

This equation has two essential limits (or a historically more correct statement is that

it was designed to interpolate between the two already known integrable systems)2. For

δ → 0 (shallow water with respect to the wavelength) one recovers the Korteweg–de

Vries (KdV) equation

ut = 2uux +
δ

3
uxxx, (6.36)

while for δ →∞ (deep water) ILW reduces to the Benjamin–Ono (BO) equation

ut = 2uux +H[uxx], (6.37)

where H is the integral operator of Hilbert transform on the real linear

H[f ](x) = P.V.

∫
1

x− y
f(y)

dy

π
. (6.38)

We will be actually interested in the periodic version of ILW, where one imposes the

identification x ∼ x+ 2π. It is obtained by modifying the integral kernel T to

T [f ](x) =
1

2π
P.V.

∫ 2π

0

θ′1
θ1

(
y − x

2
, q

)
f(y)dy, (6.39)

where q = e−δ and θ1 denotes the Jacobi theta function. A prime on it means a derivative

with respect to the argument, not the nome q.

The ILW equation (6.34) is Hamiltonian with respect to the Poisson structure

{u(x), u(y)} = δ′(x− y) (6.40)

and can be writen as

ut(x) = {I2, u(x)}, (6.41)

where I2 =
∫

1
3u

3 + 1
2uT [ux] is the corresponding Hamiltonian. The other conserved

quantities (integrals of motion) have the form I1 =
∫

1
2u

2 and the higher Hamiltonians

2ILW can be seen as an integrable deformation of KdV and in [66] it was shown that the requirement
of integrability fixes the integration kernel T (6.35).
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In =
∫

1
nu

n+ . . . with n > 3 can be fixed by the involution condition {In, Im} = 0. They

have been computed explicitly in [67].

The generalization to ILWN is described in [68] by a system of N coupled integrable

integro-differential equations in N fields; more explicit formulae for the gl(2) case can

be found in [58].

Solitons. They form an important class of solutions to non-linear partial differential

equations describing physical systems. A solitonic wave has a time independent profile

localized in space while traveling at constant velocity. Scattering of solitons does not

change them, just introduces a phase shift. The stability of such solutions is strongly

related to itegrability of the underlying PDEs.

A N -soliton for the BO system can be described by a rational function whose poles

evolve in time according to the N -particle trigonometric Calogero–Sutherland (tCS)

system [69]. In [70] it has been generalized to N -soliton solutions of ILW; in that case

the dynamics of poles is governed by the elliptic Calogero–Sutherland (eCS) model with

N particles. Let us review the reasoning here.

The Hamiltonian of eCS system for N particles is defined as

HeCS =
1

2

N∑
j=1

p2
j +G2

∑
i<j

℘(xi − xj ;ω1, ω2), (6.42)

where ℘ is the elliptic Weierstrass ℘-function and the periods are chosen as 2ω1 = L

and 2ω2 = iδ; sometimes we set L = 2π for convenience. For notational simplicity, from

now on we suppress the periods in all elliptic functions. The Hamilton equations read

ẋj = pj

ṗj = −G2∂j
∑
k 6=j

℘(xj − xk), (6.43)

which can be recast as a second order equation of motion

ẍj = −G2∂j
∑
k 6=j

℘(xj − xk). (6.44)
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It can be shown (see Appendix C for detailed derivation) that equation (6.44) is equiv-

alent to the following auxiliary system 3

ẋj = iG

{
N∑
k=1

θ′1
(
π
L(xj − yk)

)
θ1

(
π
L(xj − yk)

) −∑
k 6=j

θ′1
(
π
L(xj − xk)

)
θ1

(
π
L(xj − xk)

)}

ẏj = −iG

{
N∑
k=1

θ′1
(
π
L(yj − xk)

)
θ1

(
π
L(yj − xk)

) −∑
k 6=j

θ′1
(
π
L(yj − yk)

)
θ1

(
π
L(yj − yk)

)}. (6.45)

In the limit δ →∞ (q → 0), the equation of motion (6.44) reduces to

ẍj = −G2
(π
L

)2
∂j
∑
k 6=j

cot2
(π
L

(xj − xk)
)
, (6.46)

while the auxiliary system goes to

ẋj = iG
π

L

{
N∑
k=1

cot
(π
L

(xj − yk)
)
−
∑
k 6=j

cot
(π
L

(xj − xk)
)}

ẏj = −iGπ
L

{
N∑
k=1

cot
(π
L

(yj − xk)
)
−
∑
k 6=j

cot
(π
L

(yj − yk)
)}

. (6.47)

Thus one regains the BO soliton solutions derived in [69]. In analogy with [69] we can

define a pair of functions which encode particle positions as simple poles

u1(z) = −iG
N∑
j=1

θ′1
(
π
L(z − xj)

)
θ1

(
π
L(z − xj)

)
u0(z) = iG

N∑
j=1

θ′1
(
π
L(z − yj)

)
θ1

(
π
L(z − yj)

) (6.48)

and also introduce their linear combinations

u = u0 + u1, ũ = u0 − u1. (6.49)

These satisfy the differential equation

ut + uuz + i
G

2
ũzz = 0, (6.50)

as long as xj and yj are governed by the dynamical equations (6.45). The details of the

derivation can be found in the Appendix C. Notice that, when the lattice of periodicity

3Actually, the requirement that this system should reduce to (6.44) is not sufficient to fix the form of

the functions appearing. As will be clear from the derivation below, we could as well substitute
θ′1( πL z)
θ1( πL z)

by ζ(z) and the correct equation of motion would still follow. However, we can fix this freedom by taking
the trigonometric limit (δ →∞) and requiring that this system reduces to the one in [69].
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is rectangular, (6.50) is nothing but the ILW equation. Indeed, under the condition

xi = ȳi one can show that ũ = −iT u [67]. To recover (6.34) one has to further rescale

u → Gu and t → −t/G and shift u → u + 1/2δ. We observe that (6.50) does not

explicitly depend on the number of particles N and holds also in the hydrodynamical

limit N,L→∞, with N/L fixed.

Quantization. The periodic ILW can be canonically quantized; this is done by expand-

ing the periodic function u(x) into Fourier modes {αk}k∈Z and subsequently promoting

them to creation/annihilation operators. From (6.40) one can deduce that the obey the

Heisenberg algebra

[αk, αl] = kδk+l,0. (6.51)

One can get the quantum Hamiltonians În by employing an appropriate quantization

procedure which has to deal with normal ordering ambiguities [58]. For the lowest

Hamiltonians one gets (the oscillators are rescaled with respect to [58]; we will comment

on it momentarily)

Î1 = 2

∞∑
k=1

α−kαk −
1

24
(6.52)

Î2 =
Q

2

∞∑
k=1

k
(−q)k + 1

(−q)k − 1
α−kαk +

∞∑
k,l=1

[
ε1ε2αk+lα−kα−l

]
− Q

2

(−q) + 1

(−q)− 1

∞∑
k=1

α−kαk,

(6.53)

where we introduced a complexification of the δ parameter as 2πt = δ − iθ; the relation

to q is given by q = e−2πt.

Quantization of ILWN is based on the algebra H ⊕WN with H the Heisenberg algebra

and W2 the Virasoro algebra while WN is a generalization of it for N > 3. The case N =

2 corresponding to H ⊕ V ir was studied in [58]. For instance one has the Hamiltonian

Î2 =
∑
k∈Z
k 6=0

L−kak + 2iQ
∞∑
k=1

k
1 + qk

1− qk
a−kak +

1

3

∑
n,m,k∈Z
n+m+k=0

anamak;
ak ∈ H
Lk ∈ V ir

. (6.54)

The Virasoro generators Lk can be rewritten in terms of a second set of Heisenberg

generators ck, [ck, cl] = k
2δk+l,0, as

Lk =
∑
n∈Z
n6=0,k

ck−ncn + i(kQ− 2P )ck. (6.55)
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Once this is done we can further relate ak and ck to the Baranovsky operators α
(1)
k , α

(2)
k

[71] by a change of basis
ak = − i

√
ε1ε2

α
(1)
k + α

(2)
k

2
, ck = − i

√
ε1ε2

α
(1)
k − α

(2)
k

2

a−k = i
√
ε1ε2

α
(1)
−k + α

(2)
−k

2
, c−k = i

√
ε1ε2

α
(1)
−k − α

(2)
−k

2

; k ∈ Z+. (6.56)

Plugging these relations into (6.54) ones arrives at (the momentum P is set to zero here)

Î2 =
i

2
√
ε1ε2

∑
n,k>0

[ε1ε2α
(1)
−nα

(1)
−kα

(1)
n+k − α

(1)
−n−kα

(1)
n α

(1)
k + ε1ε2α

(2)
−nα

(2)
−kα

(2)
n+k − α

(2)
−n−kα

(2)
n α

(2)
k ]

+
iQ

2

∑
k>0

k[α
(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + 2α

(2)
−kα

(1)
k ]

+ iQ
∑
k>0

k
qk

1− qk
[α

(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + α

(1)
−kα

(2)
k + α

(2)
−kα

(1)
k ].

(6.57)

6.3 Quantum cohomology for Mk,1 in oscillator formalism

and connection to ILW

In the previous two sections we studied quantum cohomology of the instanton moduli

space on one side and the Intermediate Long Wave integrable system on the other.

One can already suspect a link between these two concepts since both of them arose

from a single unitary ADHM gauge theory on S2. The purpose of this section is to even

strengthen the bridge between these topics. In order to do it we need to introduce a Fock

space formalism for multiplication in quantum cohomology of the instanton moduli space

Mk,1 that was developed in [63]. We want to show two things: first of all that the Fock

space formalism correctly reproduces the Gromov–Witten potential forM2,1 computed

in (6.24) and after that we observe that the operators on the Fock space responsible for

quantum multiplication in cohomology are the Hamiltonians of quantized ILW.

In [61, 63] the quantum cohomology of the Hilbert scheme of points on C2, i.e. Mk,1,

was described using oscillator formalism. One introduces creation-annihilation operators

αk, k ∈ Z obeying the Heisenberg algebra

[αp, αq] = pδp+q. (6.58)

Positive modes annihilate the vacuum

αp|∅〉 = 0 , p > 0 (6.59)
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and the natural basis of the Fock space is given by

|Y 〉 =
1

|Aut(Y )|
∏
i Yi

∏
i

α−Yi |∅〉, (6.60)

where |Aut(Y )| is the order of the automorphism group of the partition Y =
∑`(Y )

i=1 Yi.

The number of boxes of the Young tableau is counted by the eigenvalue of the energy

operator

K =
∑
p>0

α−pαp. (6.61)

Fix now the subspace Ker(K − k) with k ∈ Z+ and allow linear combinations with

coefficients being rational functions of the equivariant weights. This space is identified

with the equivariant cohomology H∗T (Mk,1,Q). Explicitly

|Y 〉 ∈ H2k−2`(Y )
T (Mk,1,Q) , (6.62)

where `(Y ) denotes the number of parts of the partition Y .

According to [63], the generator of the small quantum cohomology is given by the state

|D〉 = −|2, 1k−2〉 describing the divisor which corresponds to the collision of two point-

like instantons. The operator generating the quantum product by |D〉 is given by the

quantum Hamiltonian

HD := (ε1 + ε2)
∑
p>0

p

2

(−q)p + 1

(−q)p − 1
α−pαp +

∑
p,q>0

[
ε1ε2αp+qα−pα−q − α−p−qαpαq

]
− ε1 + ε2

2

(−q) + 1

(−q)− 1
K. (6.63)

The basic three-point function 〈D|HD|D〉 can be obtained once the scalar product on

the Fock space is fixed. We define it by

〈Y |Y ′〉 =
(−1)K−`(Y )

(ε1ε2)`(Y ) |Aut(Y )|
∏
i Yi

δY Y ′ . (6.64)

The computation of 〈D|HD|D〉 then yields

〈D|HD|D〉 = (ε1+ε2)

(
(−q)2 + 1

(−q)2 − 1
− 1

2

(−q) + 1

(−q)− 1

)
〈D|α−2α2|D〉 = (−1)(ε1+ε2)

1 + q

1− q
〈D|D〉,

(6.65)

where we have used 〈D|α−2α2|D〉 = 2〈D|D〉. By (6.64), we finally get

〈D|HD|D〉 =
ε1 + ε2

(ε1ε2)k−1

1

2(k − 2)!

(
1 + 2

q

1− q

)
. (6.66)
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Rewriting 1 + 2 q
1−q = (q∂q)

3
[

(lnq)3

3! + 2Li3(q)
]
, we obtain the genus zero prepotential

F 0 = F 0
cl +

ε1 + ε2

(ε1ε2)k−1

1

2(k − 2)!

[
(lnq)3

3!
+ 2Li3(q)

]
. (6.67)

The above formula matches the prepotential one can extract from (6.24). In [43] it was

extended also for k = 3, 4.

Now we can make the link between quantum cohomology of the Hilbert scheme of points

Mk,1 and the quantized ILW explicit. We observe that the operator of multiplication in

quantum cohomology HD (6.63) agrees with the quantum Hamiltonian Î2 of ILW (6.53)

once the identification Q = ε1 + ε2 is imposed; the number of points k is given by the

eigenvalue of the energy operator (6.61), which corresponds to Î1 (6.52). Notice that

the complexified parameter 2πt = δ− iθ represents the Kähler parameter 2πt = ξ− iθ of

the Hilbert scheme of points Mk,1. The BO limit t→ ±∞ is translated to cohomology

of the instanton moduli space as a reduction from the quantum to classical equivariant

cohomology.

The generalization of the Fock space formalism to the rank N ADHM instanton moduli

space was given by Baranovsky in [71] in terms of N copies of Nakajima operators as

βk =
∑N

i=1 α
(i)
k . For example, in the N = 2 case the quantum Hamiltonian becomes

(modulo terms proportional to the quantum momentum) [60]

HD =
1

2

2∑
i=1

∑
n,k>0

[ε1ε2α
(i)
−nα

(i)
−kα

(i)
n+k − α

(i)
−n−kα

(i)
n α

(i)
k ]

− ε1 + ε2
2

∑
k>0

k[α
(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + 2α

(2)
−kα

(1)
k ]

− (ε1 + ε2)
∑
k>0

k
qk

1− qk
[α

(1)
−kα

(1)
k + α

(2)
−kα

(2)
k + α

(2)
−kα

(1)
k + α

(1)
−kα

(2)
k ].

(6.68)

Comparing this expression with the Hamiltonian Î2 for ILW2 (6.57), we conclude that

they match.

6.4 Correspondence between ILW and ADHM gauge the-

ory: details

In Chapter 4 we derived the mirror LG description of the ADHM gauge theory. It is

described by the effective twisted superpotential, which is identified as a Yang–Yang

function of an integrable model by the Gauge/Bethe correspondence. The correspond-

ing Bethe equations were obtained in (5.20). They appeared in [58] and were claimed
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to describe the ILWN integrable system. In the previous sections we have prepared the

ground to motivate this correspondence. One can explicitly compute the spectrum for

a couple of lowest quantum Hamiltonians În of ILWN at the BO point of parameter

space q = 0. The crucial conclusion is that the eigenvalues are expressed as symmet-

ric functions of solutions to the Bethe equations (5.20), as we will review in the next

subsection.

The BO point is chosen here for a simple reason. It is the only point in the q space where

we know how to solve the BAE exactly. However, one can build a perturbation theory

around q = 0 and therefore get the Bethe roots in a power expansion in q. Consequently

also the eigenvalues of the Hamiltonians as well as the eigenvectors are supposed to have

a form of a series in q. This expansion together with some other properties of the ILW

Bethe equations is summarized in Appendix D. Here we present just the solutions to

BAE at the BO point. They are classified by N -tuples of partitions ~Y = (Y (1), . . . , Y (N))

such that
∑N

l=1 |Y (l)| = k. Then the Bethe roots are given as

Σ(l)
m = al −

ε

2
− (I − 1)ε1 − (J − 1)ε2, m = 1, . . . , |Y (l)|, (6.69)

where I and J run over columns and rows of the Young diagram Y (l). These solutions

exactly match the poles appearing in the instanton partition function of Nekrasov [10].

We can as well provide information about the norm of the eigenstates |Ψ(q)〉. The

formula for the norm was proposed in [58]

1

〈Ψ(q)|Ψ(q)〉
=

∣∣∣∣∣∣
(

ε

rε1ε2

) k
2

(∏k
s=1

∏k
t6=sD(Σst)∏k

s=1Q(Σs)

) 1
2
(

det
∂2W̃eff

r2∂Σs∂Σt

)− 1
2

∣∣∣∣∣∣
2

Σ=Σ∗(q)

.

(6.70)

By Σ∗(q) we mean the solutions to Bethe equations (5.20), further recall the definitions:

W̃eff is given in (5.19) while D and Q are defined in (5.18). From the gauge theory point

of view this is derived as a saddle point approximation to (5.17) as was explained in

Chapter 3 around equation (4.13).

6.4.1 Quantum ILW Hamiltonians

As was noted in (4.10), we expect a relation between quantum Hamiltonians of ILW and

the observables Tr(Σn) 4

spectrum of ILW quantum Hamiltonians ←→ Tr Σn(q)
∣∣∣
solution BAE

. (6.71)

4For a more detailed exposition of these topics as well as further generalizations, especially regarding
the AGT correspondence, the reader is suggested to check [72].
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Consider the following generating function for TrΦn [73]

Tr eβΦ =

N∑
l=1

eβal − e−β ε1+ε2
2 (1− eβε1)(1− eβε2)

|Y (l)|∑
m=1

eβΣm(q)

 . (6.72)

Σm(q) are solutions of the Bethe equations (5.20) and β is just a formal counting pa-

rameter. Setting N = 2, expanding in β and collecting terms with common powers gives

the few lowest terms (here a := a1 = −a2 and the two partitions Y (1), Y (2) are denoted

as λ, µ)

TrΦ2

2
= a2 − ε1ε2

 |λ|∑
m=1

1 +

|µ|∑
n=1

1


TrΦ3

3
= −2ε1ε2

 |λ|∑
m=1

Σm +

|µ|∑
n=1

Σn


TrΦ4

4
=
a4

2
− 3ε1ε2

 |λ|∑
m=1

Σ2
m +

|µ|∑
n=1

Σ2
n

− ε1ε2 ε21 + ε22
4

 |λ|∑
m=1

1 +

|µ|∑
n=1

1


TrΦ5

5
= −4ε1ε2

 |λ|∑
m=1

Σ3
m +

|µ|∑
n=1

Σ3
n

− ε1ε2(ε21 + ε22)

 |λ|∑
m=1

Σm +

|µ|∑
n=1

Σn

 .

(6.73)

Note that only very simple symmetric polynomials of the Σs appear in the relation.

If we think of Σ as a k × k matrix with N = 2 blocks corresponding to the pair of

partitions (λ, µ), we can say that the right hand side depends only on Tr(Σn) restricted

to a subspace of a given partition.

In the Benjamin–Ono limit q → 0 (or q → ∞) we know that the solutions of BAE are

given by (6.69), so in that case the generating function (6.72) reduces to the generating

function of chiral ring observables in a four dimensional U(N) SYM [74, 75]

TrΦn+1 =
N∑
l=1

an+1
l +

N∑
l=1

`(Y (l))∑
j=1

[ (
al + ε1Y

(l)
j + ε2(j − 1)

)n+1
−
(
al + ε1Y

(l)
j + ε2j

)n+1

− (al + ε2(j − 1))n+1 + (al + ε2j)
n+1

]
,

(6.74)

where `(Y (l)) is the length of the partition Y (l) (in our conventions the number of boxes

in the first column) while Y
(l)
j is the number of boxes in the j-th row. At the BO point

we can explicitly show that the chiral observables (6.74) are related to the spectrum of

quantum BO Hamiltonians. Let us still focus on N = 2, therefore we have a pair of

Young diagrams (λ, µ) such that |λ|+ |µ| = k. The eigenvalues for the BO Hamiltonians

În can be expressed as linear combinations of eigenvalues for Hamiltonians of two coupled
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trigonometric Calogero–Sutherland models [58, 76]

h
(n)
λ,µ = h

(n)
λ (a) + h(n)

µ (−a), (6.75)

where the function h
(n)
λ (a) is defined as

h
(n)
λ (a) = ε2

`(λ)∑
j=1

[(
a+ ε1λj + ε2

(
j − 1

2

))n
−
(
a+ ε2

(
j − 1

2

))n]
. (6.76)

Then the following relation between the U(2) chiral observables (6.74) and the above

eigenvalues holds

TrΦn+1

n+ 1
=
an+1 + (−a)n+1

n+ 1
−

n∑
i=1

1 + (−1)n−i

2

n!

i!(n+ 1− i)!

(ε2
2

)n−i
h

(i)
λ,µ. (6.77)

For illustration we list a couple of examples for low n

TrΦ2

2
= a2 − ε1ε2k ,

TrΦ3

3
= −h(2)

λ,µ

TrΦ4

4
=
a4

2
− h(3)

λ,µ −
ε22
4
ε1ε2k ,

TrΦ5

5
= −h(4)

λ,µ −
ε22
2
h

(2)
λ,µ.

(6.78)

Notice that the term ε1ε2k is nothing but the lowest tCS eigenvalue h
(1)
λ,µ.

Finally, relations (6.73) allow us to express the functions h
(n)
λ in terms of Bethe roots

Σm corresponding to the partition λ

h
(1)
λ = ε1ε2

|λ|∑
m=1

1

h
(2)
λ = 2ε1ε2

|λ|∑
m=1

Σm

h
(3)
λ = 3ε1ε2

|λ|∑
m=1

Σ2
m + ε1ε2

ε21
4

|λ|∑
n=1

1

h
(4)
λ = 4ε1ε2

|λ|∑
m=1

Σ3
m + ε1ε2ε

2
1

|λ|∑
n=1

Σm .

(6.79)

All the above discussion was made at the BO point since this is the only situation

when we know how to solve the Bethe equations exactly. Nevertheless, presumably the

formulae remain valid also for ILW provided one replaces the Bethe roots Σ(q = 0) by

Σ(q). However, to get them is rather a hard task. A first step in this direction was

accomplished in Appendix D, where the first order correction in q is given.
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In this section we treated just the N = 2 case. A generalization to higher rank case can

be found in Appendix E.



Chapter 7

Generalizations of ADHM GLSM

for unitary groups

In previous chapters we discussed in detail some properties of the auxiliary GLSM on S2

realizing the k-instanton moduli space of a U(N) gauge theory on C2 as its target space.

A possible generalization of this setting consists in replacing the Euclidean space C2 by

an asymptotically locally Euclidean (ALE) space C2/Γ, where Γ is a finite subgroup of

SU(2) [77]. Such theories are described by Nakajima quiver varieties and the quiver

defines for us a quiver gauge theory on S2. One can write down the partition function

ZS
2

and the tools developed precedently for studying Gromov-Witten theory or making

connection with integrable systems can be applied step by step.

In the following we will focus only on the situation Γ = Zp, i.e. on the ALE space of

type Ap−1. Moreover, we discuss just the integrability part of the story, for results about

quantum cohomology as well as comments about the ALE space of type Dp−1 see [29?

].

7.1 The Ap−1 type ALE space: GLSM on S2

We want to study the k-instanton moduli space M(~k, ~N, p) of a U(N) gauge theory on

Ap−1 ALE space. The data for the ADHM-like construction are neatly summarized in

an affine quiver diagram of type Âp−1 with framing at all nodes, see Figure 7.1. The

vector ~k = (k0, k1, . . . , kp−1) (resp. ~N = (N0, N1, . . . , Np−1)) prescribes the dimensions

of vector spaces corresponding to the nodes (resp. the framing vector spaces); the extra

node of the affine diagram is marked by the subscript zero. These two vectors are not

110



Chapter 7. Generalizations of ADHM GLSM for unitary group 111

Figure 7.1: (a) Âp−1 affine Dynkin diagram with framing encoding data for ADHM-
like construction on ALE spaces of type Ap−1. (b) The corresponding decorated quiver

defining the GLSM on S2.

really independent since they are linked by the equation for the first Chern class of the

gauge bundle, which we assume to be fixed (usually vanishing).

From the defining quiver diagram we can extract the characteristics of the corresponding

GLSM on S2. It is a gauge theory with gauge group G =
∏p−1
α=0 U(kα), flavor group

GF = U(1)2 ×
∏p−1
α=0 U(Nα) and a matter content summarized in Table 7.1. To get

χ(α) B(α,α+1) B(α,α−1) I(α) J (α)

gauge G Ad(α) (k(α),k(α+1)) (k(α),k(α−1)) k(α) k(α)

flavor GF 1(−1,−1) 1(1,0) 1(0,1) N
(α)(

1
2 ,

1
2

) N
(α)(

1
2 ,

1
2

)
twisted mass ε = ε1 + ε2 ε1 ε2 −a(α)

j −
ε
2 a

(α)
j −

ε
2

R-charge 2 0 0 0 0

Table 7.1: Matter content of a GLSM with target space M(~k, ~N, p).

the correct ADHM-like equations definingM(~k, ~N, p) as equations of classical vacua we

need to include the following superpotential (labeling of nodes is modulo p)

W =

p−1∑
α=0

TrV (α)

[
B(α,α+1)B(α+1,α) −B(α,α−1)B(α−1,α) + I(α)J (α)

]
. (7.1)



Chapter 7. Generalizations of ADHM GLSM for unitary group 112

This fully specifies all data needed in equation (2.52) to write down the partition function

ZS
2

~k, ~N,p
=

1

k0! · · · kp−1!

∑
(~m(0),..., ~m(p−1))∈Zk0+...+kp−1

×
∫
R|~k|

p−1∏
α=0

kα∏
s=1

d(rσ
(α)
s )

2π
e−4πiξ(α)rσ

(α)
s −iθ(α)m

(α)
s ZvecZadjZbifZf/af. (7.2)

We included the shifts in the θ-angles to Zvec. Individual contributions to the integrand

take the form

Zvec =

p−1∏
α=1

kα∏
s 6=t

Γ

(
1− ir(σ(α)

s − σ(α)
t )− m

(α)
s −m

(α)
t

2

)
Γ

(
ir(σ

(α)
s − σ(α)

t )− m
(α)
s −m

(α)
t

2

) (7.3)

Zadj =

p−1∏
α=1

kα∏
s,t=1

Γ

(
1− ir(σ(α)

s − σ(α)
t )− irε− m

(α)
s −m

(α)
t

2

)
Γ

(
ir(σ

(α)
s − σ(α)

t ) + irε− m
(α)
s −m

(α)
t

2

) (7.4)

Zbif =

p−1∏
α=0

kα∏
s=1

kα−1∏
t=1

Γ

(
−irσ(α)

s + irσ
(α−1)
s + irε1 − m

(α)
s
2 +

m
(α−1)
t
2

)
Γ

(
1 + irσ

(α)
s − irσ(α−1)

s − irε1 − m
(α)
s
2 +

m
(α−1)
t
2

)
Γ

(
irσ

(α)
s − irσ(α−1)

s + irε2 + m
(α)
s
2 − m

(α−1)
t
2

)
Γ

(
1− irσ(α)

s + irσ
(α−1)
s − irε2 + m

(α)
s
2 − m

(α−1)
t
2

)
(7.5)

Zf/af =

p−1∏
α=0

kα∏
s=1

Nα∏
j=1

Γ
(
−irσ(α)

s + ir(a
(α)
j + ε

2)− m
(α)
s
2

)
Γ
(

1 + irσ
(α)
s − ir(a(α)

j + ε
2)− m

(α)
s
2

)
Γ
(
irσ

(α)
s + ir(−a(α)

j + ε
2) + m

(α)
s
2

)
Γ
(

1− irσ(α)
s − ir(−a(α)

j + ε
2) + m

(α)
s
2

) .
(7.6)

7.2 Connection between generalized qILW integrable sys-

tem, instanton counting on ALE spaces and spin CS

model

In [78] the quantum Intermediate Long Wave integrable system of type (N, p), qILW(N, p)

for short, was introduced (see discussion around (1.7) there). The central object of this

model are the Bethe equations, which govern the common spectrum of commuting in-

tegrals of motion Ik, k = 1, 2 . . .. A couple of important observations was made by the

authors. We summarize them schematically in Figure 7.2.
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Figure 7.2: Diagram showing connections among qILW, spin CS model and instanton
counting on ALE spaces

7.2.1 Correspondence between qILW(N, p) and instanton counting on

ALE spaces

Let us comment about the first arrow. For a study in a similar spirit, i.e. relating

instanton counting problem on ALE spaces C2/Zp for unitary groups with conformal

coset theories see also [79]. As a first step on the gauge theory side, we perform the

r → ∞ expansion of the partition function (7.2), obtaining thus the effective twisted

superpotential. A computation leads to (recall the definition Σ
(α)
s = σ

(α)
s − i

2rm
(α)
s )

ZS
2

~k, ~N,p

r→∞∼
p−1∏
α=0

(rε)kα

kα!

∣∣∣∣∣∣∣∣∣∣
∫ p−1∏

α=0

kα∏
s=1

d(rΣ
(α)
s )

2π

(
p−1∏
α=0

kα∏
s=1

∏kα
t6=sD(Σ

(α)
s − Σ

(α)
t )

Q(Σ
(α)
s )

∏kα−1

t=1 F (Σ
(α)
s − Σ

(α−1)
t )

) 1
2

︸ ︷︷ ︸
µmsr(Σ)

e−W̃eff(Σ)

∣∣∣∣∣∣∣∣∣∣

2

.

(7.7)

The functions forming the integration measure µmsr(Σ) read

D(Σ(α)
s − Σ

(α)
t ) = r2

(
Σ(α)
s − Σ

(α)
t

)(
Σ(α)
s − Σ

(α)
t + ε

)
(7.8)

F (Σ(α)
s − Σ

(α−1)
t ) = r2

(
Σ(α)
s − Σ

(α−1)
t − ε1

)(
Σ(α)
s − Σ

(α−1)
t − ε2

)
(7.9)

Q(Σ(α)
s ) =

Nα∏
j=1

r2
(

Σ(α)
s − a

(α)
j −

ε

2

)(
Σ(α)
s − a

(α)
j +

ε

2

)
(7.10)

and the expression for the effective twisted superpotential is

W̃eff(Σ) = 2π

p−1∑
α=0

kα∑
s=1

irt(α)Σ(α)
s +

p−1∑
α=1

kα∑
s,t=1
s 6=t

[
ω
(
irΣ(α)

s − irΣ
(α)
t

)
+ ω

(
irΣ(α)

s − irΣ
(α)
t + irε

) ]
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Figure 7.3: a) Quiver diagram corresponding to instanton counting on ALE spaces:
k U(N)-instantons on C2/Zp. b) Auxiliary quiver which leads to qILW(N, p) Bethe

equations.

+

p−1∑
α=0

kα∑
s=1

Nα∑
j=1

[
ω
(
irΣ(α)

s − ira
(α)
j − ir

ε

2

)
+ ω

(
−irΣ(α)

s + ira
(α)
j − ir

ε

2

)]

+

p−1∑
α=0

kα∑
s=1

kα−1∑
t=1

[
ω
(
irΣ(α)

s − irΣ
(α−1)
t − irε1

)
+ ω

(
−irΣ(α)

s + irΣ
(α−1)
t − irε2

) ]
.

(7.11)

Then one can apply (4.9) and derive the Bethe equations from W̃eff(Σ). The statement

is that Bethe equations determined from quiver gauge theory associated to instanton

counting on Ap−1 ALE spaces precisely match those of qILW(N, p) in a certain region

of parameter space on both sides of the correspondence. Actually, at this point we

adopt the CFT notation used in [78], where the BAE appeared for the first time. The

dictionary is established comparing Figure 7.3(a) with Figure 7.3(b). We can write these

equations in a rather elegant form

dk∏
a=1

x
(k)
j + iP

(k)
a + i

2V
(k)

x
(k)
j + iP

(k)
a − i

2V
(k)

= eiθ
(k)

p∏
l=1

Nl∏
i=1

(l,i)6=(k,j)

x
(k)
j − x

(l)
i + Ckl

x
(k)
j − x

(l)
i −Clk

;
k = 1, . . . , p

j = 1, . . . , Nk

(7.12)
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with V (k) = −iQ, eiθ
(k)

= −(qk)
−1 and C the adjacency matrix of the quiver graph

C =



Q −b 0 . . . 0 −b−1

−b−1 Q −b . . . 0 0

0 −b−1 Q
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

... −b−1 Q −b

−b . . . . . . . . . −b−1 Q



(7.13)

In general, this system of equations is extremely hard to solve. However, significant

simplification appears in the limit (q1, . . . , qp) = (0, . . . , 0). Note that this is a general-

ization of the BO limit for ILW. Though, it is very subtle to take this limit, one has to

redistribute1 terms first in a precise way. The resulting form of the equations becomes

0 =

dk∏
l=1

(
x

(k)
j −

Q

2
+ iP

(k)
l

) Nk∏
i=1
i 6=j

1(
x

(k)
j − x

(k)
i

)(
x

(k)
j − x

(k)
i −Q

)
×
Nk+1∏
i=1

(
x

(k)
j − x

(k+1)
i − b

)Nk−1∏
i=1

(
x

(k)
j − x

(k−1)
i − b−1

)
. (7.14)

In this case solutions can be actually expressed explicitly in terms of N -tuples of Young

diagrams whose boxes are colored by p colors, the total number of boxes being k =∑p
r=1Nr. To give an example we set N = p = 2 for simplicity (here we associate white

color with the first node and black with the second one). As a next step one has to

specify the parameters of qILW(N, p) to match instanton counting. This depends on

1And even multiply the equation by one in a special form 1 =
∏Nk
i=1
i 6=j

x
(k)
j −x

(k)
i

x
(k)
j −x

(k)
i

. The denominator

stays, while the numerator is brought to the other side and killed by the limit.
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the level k and splits into two branches, integer and half-integer level, respectively

k ∈ Z≥0 : (d1, d2) = (2, 0)

(N1, N2) = (k, k)

k ∈ Z≥0 + 1
2 : (d1, d2) = (0, 2)

(N1, N2) =
(
k − 1

2 , k + 1
2

)
At each level we have a corresponding system of equations (7.14). We list the first four

non-trivial contributions in Figure 7.4. Exactly in the same way are labeled fixed points

on the moduli space of U(2) instantons on C2/Z2.

7.2.2 Correspondence between qILW(N, p) and spin Calogero–Sutherland

model

Next, we focus on the second arrow in Figure 7.2. To begin with, let us explain the

notations on the Integrable System side. We are considering a generalized spin Calogero–

Sutherland model sCS(N, p, k), where N denotes the number of copies of ordinary spin

Calogero–Sutherland models, k the number of particles on the circle and p the number of

spin degrees of freedom for each particle. The spin projections are labeled by r = 1, . . . , p

and the number of particles in a given projection r is Nr, so that k =
∑p

r=1Nr is the

total number of particles. The proposal put forward in [78] is that the integral of motion

I2 for qILW(1, p) coincides in the limit (q1, . . . , qp) = (0, . . . , 0) with the Hamiltonian of

sCS(1, p, k). Moreover, the spectrum of I2 can be written using the roots of the Bethe

equations in the following form

I2 ∼
2i

p

N1∑
j=1

x
(1)
j . (7.15)

In other words the sum runs just over Bethe roots corresponding to the first node of the

quiver. In this limit, as we discussed, the roots are labeled by colored Young diagrams,

where the i-th node of the quiver is colored by (i−1)-th color. In the language of colored

Young diagrams we sum only over boxes colored by 0 (it is customary to choose the p

different colors as 0, . . . , p− 1; rules for coloring the diagram can be found e.g. in [79]).

In the following we do not show the correspondence in full generality, rather concentrate

on a special case p = 2 which we treat in full detail. The difficulty of generalizing to

p arbitrary will be explained in the course of upcoming discussion. So, the plan is to
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Figure 7.4: Solutions for qILW(2, 2) up to level k = 2. The level equals the power of
the instanton counting parameter in the instanton partition function.

take equation (7.15) and compare it to eigenvalues of the sCS(1, p, k) Hamiltonian. The

spectrum of sCS(1, p, k) was computed in [80]. For convenience we quote just the results

that will be needed in a moment. First of all recall the normalized Hamiltonian

Hβ,p = W−βHβ,pW
β, (7.16)

where W =
∏k
i<j sin π

L(yi − yj) and Hβ,p equals

Hβ,p = −1

2

k∑
i=1

∂2

∂y2
i

+
π2

2L2

k∑
i 6=j

β (β + Pij)

sin2 π
L (yi − yj)

. (7.17)
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In the above formulae yi are the coordinates of k particles placed on a circle of length

L, β is the coupling constant and Pij the spin exchange operator for particles i and j.

Then the spectrum of Hβ,p reads

Eβ,p =
k∑
i=1

K̄2
i + β

k∑
i=1

(2i− k − 1) K̄i +
β2k

(
k2 − 1

)
12

. (7.18)

We have to pause a bit to explain the meaning of K̄i. Clearly, they label the state whose

eigenvalue we are computing. Pick a strictly decreasing sequence K = (K1, . . . ,Kk),

Ki > Ki+1. This object labels the eigenstates. In a next step decompose it in a unique

way as K =
¯
K−pK̄, where

¯
K ∈ {1, . . . , p}k and K̄ ∈ Zk. For some readers the following

form might be more illuminating

¯
Ki = 1 + (Ki − 1)mod p (7.19)

K̄i = −
⌊
Ki − 1

p

⌋
. (7.20)

The crucial step in the construction is the introduction of a vacuum state K0. At the

same time it is also the obstacle we mentioned above. This vacuum was given only for

p = 2 in [80] and has the form

K0 = (M,M − 1, . . . ,M − k + 1) , M =
k

2
+ 1. (7.21)

By the integrality requirement, this makes sense only for k even. Moreover the solution

to the minimization problem (with constraints stated above) is unique only for k = 4l+2

while for k = 4l it can be chosen consistently in this form. For k odd the vacuum state is

never unique, nevertheless by practicing with examples we collected evidence that there

is always a choice supporting the results derived below. Once we have the vacuum, we

define K = σ+K0. From the definitions given above it follows that σ is a non-increasing

sequence. By restricting σ to Zk≥0 we obtain a partition λ. In the rest we are going to

focus only on states which are labelled by partitions. The coloring of the partition (0-

coloring when the box in the first row and first column is colored by 0 and 1-coloring

when it is colored by 1) is dependent on k. For k = 4l + 1 and k = 4l + 2 we have to

apply 0-coloring while k = 4l and k = 4l + 3 requires 1-coloring. In the following we

focus on k = 4l + 2, where we have a unique vacuum and a 0-coloring. However, the

conclusions remain valid for k general, one just needs to do appropriate changes in the

derivation. We will study the normalized energy eigenvalue for states corresponding to
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partitions

Eβ.p(λ) = Eβ,p(K)−Eβ,p(K0) =

k∑
i=1

(
K̄i − K̄0

i

) (
K̄i + K̄0

i

)
+β

k∑
i=1

(2i− k − 1)
(
K̄i − K̄0

i

)
(7.22)

and show that it can be matched with the spectrum of I2. At this point we need to

introduce some characteristics of colored Young diagrams. First, consider the number

of boxes colored by 0 in the i-th row. We denote this as C
(0)
i (λ). Drawing a colored

diagram and looking at it for sufficient time, we can write a formula

C
(0)
i (λ) = 1 +

⌊
λi − 1− (i− 1)mod p

p

⌋
. (7.23)

On the other hand, using (7.20), we have an expression for K̄i − K̄(0)
i

K̄i − K̄(0)
i = −

⌊
λi +K

(0)
i − 1

p

⌋
+

⌊
K

(0)
i − 1

p

⌋
(7.24)

and plugging in (7.21) while setting p = 2 at the same time yields a simple relation

K̄i − K̄(0)
i = −C(0)

i (λ). (7.25)

Still, we need to build three more quantities out of C
(0)
i (λ)

|C(0)(λ)| =
#rows(λ)∑
i=1

C
(0)
i (λ) (7.26)

n(0)(λ) =

#rows(λ)∑
i=1

(i− 1)C
(0)
i (λ) (7.27)

n(0)(λt) =

#rows(λt)∑
i=1

(i− 1)C
(0)
i (λt), (7.28)

where λt is the transposed Young diagram. It will be useful to have a formula for n(0)(λt)

just in terms of data related to the original partition λ

n(0)(λt) =

#rows(λ)∑
i=1

C
(0)
i (λ)∑
j=1

[
(i− 1)mod p + (j − 1) p

]

=

#rows(λ)∑
i=1

C
(0)
i (λ)

[
(i− 1)mod p +

p

2

(
C

(0)
i (λ)− 1

)]
. (7.29)
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Equipped with these information we can rewrite the normalized energy eigenvalue (7.22)

just using characteristics of a colored Young diagram. The essential ingredient is equa-

tion (7.25) which implies p = 2. After some algebra, combining (7.25)–(7.29), we finally

arrive at2

Eβ.p=2(λ) = n(0)(λt)− (2β + 1)n(0)(λ) +

[
k

2
(2β + 1)− β

]
|C(0)(λ)|. (7.30)

To accomplish the comparison we just have to write the spectrum of I2 (7.15) in terms

of (7.26)–(7.28). Remind that all the above discussion assumes N = 1, so only one of

the nodes in the quiver contains a single fundamental/antifundamental pair. We mark

this node by a star. Then we have (we freely change between the gauge theory notation

and CFT notation: Q↔ ε, b↔ ε1, b−1 ↔ ε2)

contribution from
ε

2
− iP (∗)

1 :
( ε

2
− iP (∗)

1

)
|C(0)(λ)|

contribution from ε2 : 0 · C(0)
1 (λ) + 1 · C(0)

2 (λ) + · · ·+ (#rows(λ)− 1) · C(0)
#rows(λ)(λ)

contribution from ε1 : 0 · C(0)
1 (λt) + 1 · C(0)

2 (λt) + · · ·+
(
#rows(λt)− 1

)
· C(0)

#rows(λt)(λ
t)

Consequently, it is straightforward to conclude

I2 ∼
2i

p

[( ε
2
− iP (∗)

1

)
|C(0)(λ)|+ ε2n

(0)(λ) + ε1n
(0)(λt)

]
. (7.31)

Note that this equation holds for general p. Now one has to decide in which sense

to match (7.30) with (7.31). Recall that the BO Hamiltonian of rank n was given by

linear combinations of (scalar) CS Hamiltonians up to this rank. Transferring the same

reasoning to the current situation means that we can not securely compare the term

proportional to |C(0)(λ)| since its coefficient gets shifted by some multiple of the lower

rank Hamiltonian I1 (whose eigenvalue is proportional to |C(0)(λ)|). Therefore we can

compare only the relative normalization of n(0)(λ) and n(0)(λt) in (7.30) versus (7.31),

which leads to a map among parameters

ε2
ε1

= − (2β + 1) . (7.32)

As in the relation between eigenvalues of Hamiltonians of BO and ILW, also here we

expect equation (7.15) to remain valid in the ILW(N, p) case. Just the Bethe roots will

not be given by a simple expression anymore, instead as a series in the q parameters.

2This formula appears in [80], but there are typos present.



Appendix A

Lie algebra basics: classical series

For convenience, positive roots, weights for the standard representation L(ω1) corre-

sponding to the fundamental weight ω1 as well as the order of the Weyl group are listed.

This will allow us to build the weights of all representations entering the ADHM GLSM

constructions for classical gauge groups and thus express the S2 partition function. Write

βi for the orthonormal basis, (βi, βj) = δij . The material can be found in any book on

Lie algebra theory, in particular [81].

A.1 Al series

Order of the Weyl group: |W | = (l + 1)!

Positive roots: ∆+ = {βi − βj | i, j = 1, . . . , l + 1, i < j}

Weights of the standard representation1: µL(ω1) = {βi, i = 1, . . . , l + 1}

A.2 Bl series

Order of the Weyl group: |W | = 2ll!

Positive roots: ∆+ = {βi, βi − βj , βi + βj | i, j = 1, . . . , l, i < j}

Weights of the standard representation: µL(ω1) = {0, ±βi, i = 1, . . . , l}

A.3 Cl series

Order of the Weyl group: |W | = 2ll!

1Actually, we have in mind u(l + 1), so the constraint
∑l+1
i=1 µi = 0 is not imposed.
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Positive roots: ∆+ = {2βi, βi − βj , βi + βj | i, j = 1, . . . , l, i < j}

Weights of the standard representation: µL(ω1) = {±βi, i = 1, . . . , l}

A.4 Dl series

Order of the Weyl group: |W | = 2l−1l!

Positive roots: ∆+ = {βi − βj , βi + βj | i, j = 1, . . . , l, i < j}

Weights of the standard representation: µL(ω1) = {±βi, i = 1, . . . , l}



Appendix B

Duality

Gr
(
N,Nf |Na

)
' Gr

(
Nf −N,Nf |Na

)
The Grassmannian Gr (N,Nf |Na) is defined as a U(N) gauge theory with Nf funda-

mentals and Na antifundamentals, so we can write the partition function in the form

Z =
1

N !

∑
{ms∈Z}Ns=1

∫
(iR)N

N∏
s=1

dτs
2πi

z
−τs−ms2
ren z̄

−τs+ms
2

ren

N∏
s<t

(
m2
st

4
− τ2

st

)
N∏
s=1

Nf∏
i=1

Γ
(
τs − iai~ −

ms
2

)
Γ
(
1− τs + iai~ −

ms
2

) N∏
s=1

Na∏
j=1

Γ
(
−τs + i

ãj
~ + ms

2

)
Γ
(

1 + τs − i ãj~ + ms
2

) ,
(B.1)

where ~ relates to the radius of the sphere and the renormalization scale M as ~ = 1
rM

and aj , ãj are the dimensionless (rescaled by M−1) equivariant weights for fundamentals

and antifundamentals respectively. The renormalized Kahler coordinate zren is defined

as

zren = e−2πξren+iθren = ~Na−Nf (−1)N−1z. (B.2)

since we have

ξren = ξ − 1

2π
(Nf −Na) log(rM) , θren = θ + (N − 1)π (B.3)

From now on we are setting M = 1. We close the contours in the left half planes, so

that we pick only poles coming from the fundamentals. We need to build an N -pole to

saturate the integration measure. Hence the partition function becomes a sum over all

possible choices of N -poles, i.e. over all combinations how to pick N objects out of Nf .

Now the proposal is that duality holds separately for a fixed choice of an N -pole and its
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corresponding dual. For simplicity of notation let us prove the duality for a particular

choice of an N -pole and its (Nf −N)-dual

(2, . . . ,2︸ ︷︷ ︸
N

, •, . . . , •︸ ︷︷ ︸
Nf−N

)
dual←→ (•, . . . , •︸ ︷︷ ︸

N

,2, . . . ,2︸ ︷︷ ︸
Nf−N

), (B.4)

where boxes denote the choice of poles forming the N -pole.

B.0.1 Gr (N,Nf |Na)

The poles are at positions

τs = −ks +
ms

2
+
λs
~

(B.5)

and it still remains to be integrated over λ’s around λs = ias, where s runs from 1 to N .

This fully specifies from which fundamental we took the pole. Plugging this into (B.1),

the integral reduces to the following form

Z =

∮
M

{ N∏
s=1

dλs
2πi~

}
Z1l

(
λs
~
,
ai
~
,
ãj
~

)
z−

∑N
s=1

λs
~ Ĩ

(
(−1)Naκz,

λs
~
,
ai
~
,
ãj
~

)
×z̄−

∑N
s=1

λs
~ Ĩ

(
(−1)Na κ̄z̄,

λs
~
,
ai
~
,
ãj
~

)
,

(B.6)

where we defined κ = ~Na−Nf (−1)N−1, κ̄ = (−~)Na−Nf (−1)N−1. Here we are integrating

over a product of circles M =
⊗k

r=1 S
1(iar, δ) with δ small enough such that only the

pole at the center of the circle is included. From this form we can read of the I function

for Gr (N,Nf |Na) as

I = z−
∑N
s=1

λs
~

∑
{ls≥0}Ns=1

(
(−1)Naκz

)∑N
s=1 ls

N∏
s<t

λst − ~lst
λst

N∏
s=1

∏Na
j=1

(
−λs+iãj

~

)
ls∏Nf

i=1

(
1 + −λs+iai

~

)
ls

,

(B.7)

where xst := xs − xt. Now we integrate over λ’s in (B.6), which is straightforward since

Z1l contains only simple poles and the rest is holomorphic in λ’s. Finally, we get

Z(2,...,2,•,...,•) = ZclassZ1lZvZav, (B.8)

where the individual pieces are given as follows

Zclass =
N∏
s=1

(
~2(Na−Nf )zz̄

)− ias~
(B.9)

Z1l =

N∏
s=1

Nf∏
i=N+1

Γ
(
iasi
~
)

Γ
(
1− iasi

~
) N∏
s=1

Na∏
j=1

Γ
(
− i(as−ãj)

~

)
Γ
(

1 +
i(as−ãj)

~

) (B.10)
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Zv =
∑

{ls≥0}Ns=1

(
(−1)Naκz

)∑N
s=1 ls

N∏
s<t

(
1− ~lst

iast

) N∏
s=1

∏Na
j=1

(
−ias−ãj~

)
ls∏Nf

i=1

(
1− iasi~

)
ls

(B.11)

Zav = Zv [κz → κ̄z̄] (B.12)

To prove the duality it is actually better to manipulate Zv to a more convenient form

(combining the contributions of the vectors and fundamentals by using identities between

the Pochhammers)

Zv =
∞∑
l=0

[
(−1)Na+N−Nf κz

]l
Zl (B.13)

with Zl given by

Zl =
∑

{ls≥0|
∑N
s=1 ls=l}

N∏
s=1

∏Na
j=1

(
−ias−ãj~

)
ls

ls!
∏N
i 6=s
(
iasi~ − ls

)
li

∏Nf
i=N+1

(
iasi~ − ls

)
ls

. (B.14)

B.0.2 The dual theory Gr (Nf −N,Nf |Na)

Going to the dual theory not only the rank of the gauge group changes to Nf −N , but

there is a new feature arising. New matter fields M i
j̄

appear, they are singlets under the

gauge group and couple to the fundamentals and antifundamentals via a superpotential

WD = φ̃µj̄M i
j̄
φµi. So the partition function gets a new contribution from the mesons M

(we set ND = Nf −N)

Z =
1

ND!

∑
{ms∈Z}N

D
s=1

∫
(iR)ND

ND∏
s=1

dτs
2πi

(zDren)−τs−
ms
2 (z̄Dren)−τs+

ms
2

ND∏
s<t

(
m2
st

4
− τ2

st

)

ND∏
s=1

Nf∏
i=1

Γ
(
τs + i

aDi
~ −

ms
2

)
Γ
(

1− τs − i
aDi
~ −

ms
2

) ND∏
s=1

Na∏
j=1

Γ

(
−τs − i

ãDj
~ + ms

2

)
Γ

(
1 + τs + i

ãDj
~ + ms

2

) Nf∏
i=1

Na∏
j=1

Γ
(
−iai−ãj~

)
Γ
(

1 + i
ai−ãj

~

) ,
(B.15)

where the last factor is the new contribution of the mesons (note that it depends on the

original equivariant weights, not on the dual ones). All the computations are analogue

to the previous case, so we give the result right after integration

Z(•,...,•,2,...,2) = ZDclassZ
D
1lZ

D
v Z

D
av, (B.16)
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where the building blocks are

ZDclass =

Nf∏
s=N+1

(
~2(Na−Nf )zDz̄D

)− iaDs~
(B.17)

ZD1l =

Nf∏
s=N+1

Nf∏
i=N+1

Γ
(
iaDsi
~

)
Γ
(

1− iaDsi
~

) Na∏
j=1

Γ

(
− i(aDs −ãDj )

~

)
Γ

(
1 +

i(aDs −ãDj )

~

) Nf∏
i=1

Na∏
j=1

Γ
(
−iai−ãj~

)
Γ
(

1 + i
ai−ãj

~

) (B.18)

ZDv =

∞∑
l=0

[
(−1)Na−N (κz)D

]l
ZDl (B.19)

ZDav =

∞∑
k=0

[
(−1)Na−N (κ̄z̄)D

]k
ZDk (B.20)

with ZDl given by

ZDl =
∑

{ls≥0|
∑Nf
s=N+1 ls=l}

Nf∏
s=N+1

∏Na
j=1

(
−ia

D
s −ãDj
~

)
ls

ls!
∏Nf
i=N+1
i 6=s

(
i
aDsi
~ − ls

)
li

∏N
i=1

(
i
aDsi
~ − ls

)
ls

. (B.21)

B.0.3 Duality map

We are now ready to discuss the duality between the two theories. The statement

is the following. For Nf ≥ Na + 2, there exists a duality map zD = zD(z) and

aDj = aDj (aj), ã
D
j = ãDj (ãj) under which the partition functions for Gr (N,Nf |Na)

and Gr (Nf −N,Nf |Na) are equal.1 In the first step we will construct the duality map

and then we will show that (B.9–B.14) indeed match with (B.17–B.21). The partition

function is a double power series in z and z̄ multiplied by Zclass. In order to achieve

equality of the partition functions, Zclass have to be equal after duality map and then the

power series have to match term by term. Moreover we can look only at the holomorphic

piece Zv, for the antiholomorphic everything goes in a similar way. The constant term

is Z1l, which is a product of gamma functions with arguments linear in the equivariant

weights. This implies that the duality map for the equivariant weights is linear. But

then the map between the Kahler coordinates can be only a rescaling since a constant

term would destroy the matching of Z1l. So we arrive at the most general ansatz for the

duality map

zD = sz (B.22)

aDi
~

= −Eai
~

+ C (B.23)

1We will see the reason for this range later.
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ãDj
~

= −F ãj
~

+D (B.24)

Matching the constant terms Z1l gives the constraints

E = F = 1, D = −(C + i). (B.25)

Imposing further the equivalence of Zclass fixes C to be

C =
1

Nf −N

Nf∑
i=1

ai
~
. (B.26)

We are now at a position where Zclass and Z1l match, while the only remaining free

parameter in the duality map is s. We fix it by looking at the linear terms in Zv and

ZDv . Of course this does not assure that all higher order terms do match, but we will

show that this is the case for Nf ≥ Na + 2.2 So taking only k = 1 contributions in Zv

and ZDv we get for s

s = (−1)N−1N
D
, (B.27)

where

N =
N∑
s=1

∏Na
j=1

(
−ias−ãj~

)
∏N
i 6=s
(
−iasi~

)∏Nf
i=N+1

(
1− iasi~

) (B.28)

D =

Nf∑
s=N+1

∏Na
j=1

(
1 + i

as−ãj
~

)
∏N
i=1

(
1 + iasi~

)∏Nf
i=N+1
j 6=s

(
−iasi~

) . (B.29)

The proposal is that for Nf ≥ Na + 2

s = (−1)Na . (B.30)

Out of this range s is a complicated rational function in the equivariant parameters.

This completes the duality map for Nf ≥ Na + 2 and suggests that there is no duality

map for Nf < Na + 2.

2A direct computation for a handful of examples suggests that higher order terms do not match for
s obtained as just outlined if Nf < Na + 2.
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B.0.4 Proof of equivalence of the partition functions

By construction of the duality map we know that Zclass, Z1l and moreover also the linear

terms in Zv match. Now we will prove (d.m. is the shortcut for duality map)

Zv = ZDv |d.m. (B.31)

for Nf ≥ Na + 2. Looking at (B.13) and (B.19) we see that this boils down to

Zl = (−1)NalZDl |d.m.. (B.32)

The key to prove the above relation is to write Zl as a contour integral

Zl =

∫
Cu

l∏
α=1

dφα
2πi

f

(
φ, ε,

a

~
,
ã

~

) ∣∣∣
ε=1

, (B.33)

where Cu is a product of contours having the real axes as base and then are closed in

the upper half plane by a semicircle. The integrand has the form

f =
1

εll!

l∏
α<β

(φα − φβ)2

(φα − φβ)2 − ε2

l∏
α=1

∏Na
j=1

(
i
ãj
~ + φα

)
∏N
i=1

(
φα + iai~

)∏Nf
i=N+1

(
−iai~ − ε− φα

) . (B.34)

It is necessary to add small imaginary parts to ε and ai, ε→ ε+ iδ, −iai → −iai + i~δ′

with δ > δ′. The proof of (B.33) goes by direct evaluation. First we have to classify the

poles. Due to the imaginary parts assignments, they are at 1

φα = −iai
~
, α = 1, . . . , l, i = 1, . . . , N (B.35)

φβ = φα + ε, β ≥ α (B.36)

We have to build an l-pole, which means that the poles are classified by partitions of l

into N parts, l =
∑N

I=1 lI . The I-th Young tableau Y T (lI) with lI boxes can be only

1-dimensional (we choose a row) since we have only one ε to play with. To illustrate

what we have in mind, we show an example of a possible partition

(︸ ︷︷ ︸
l1

, •, , , . . . , , •︸︷︷︸
lN

). (B.37)

1One has to assume ai to be imaginary at this point. The general result is obtained by analytic
continuation after integration.
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Residue theorem then turns the integral into a sum over all such partitions and the poles

corresponding to a given partition are given as

φInI = −iaI
~

+ (nI − 1)ε+ λInI , (B.38)

where I = 1, . . . , N labels the position of the Young tableau in the N -vector and nI =

1, . . . , lI labels the boxes in Y T (lI). Substituting this in (B.33) we get (the l! gets

cancelled by the permutation symmetry of the boxes)

Zl =
1

εl

∑
{lI≥0|

∑N
I=1 lI=l}

∮
M

N∏
I=1
lI 6=0

lI∏
nI=1

dλInI
2πi

×
N∏
I 6=J

lI 6=0,lJ 6=0

lI∏
nI=1

lJ∏
nJ=1

(
−iaIJ~ + nIJε+ λI,JnI ,nJ

)
(
−iaIJ~ + (nIJ − 1)ε+ λI,JnI ,nJ

) N∏
I=1
lI 6=0

lI∏
nI 6=nJ

(
nIJε+ λI,InI ,nJ

)
(

(nIJ − 1)ε+ λI,InI ,nJ

)

×
N∏
I=1
lI 6=0

lI∏
nI=1

∏Na
j=1

(
i
ãj
~ − i

aI
~ + (nI − 1)ε+ λInI

)
∏N
r=1

(
−iaIr~ + (nI − 1)ε+ λInI

)∏Nf
r=N+1

(
−iaIr~ − nIε− λInI

) ,
(B.39)

where we integrate overM =
⊗l

r=1 S
1(0, δ). The computation continues as follows. We

separate the poles in λ’s (there are only simple poles), the rest is a holomorphic function,

so we can effectively set the λ’s to zero there. Eventually, we obtain

Zl =
1

εl

∑
{lI≥0|

∑N
I=1 lI=l}

∮
M

N∏
I=1
lI 6=0

{(
lI∏

nI=1

dλInI
2πi

)(
1

λI1

lI−1∏
nI=1

1

λI,InI+1,nI

)}
×

N∏
I 6=J

(
1 + iaIJ~ε − lI

)
lJ(

1 + iaIJ~ε
)
lJ

N∏
I=1
lI 6=0

εlI−1

lI

×

∏N
I=1

∏Na
j=1 ε

lI

(
i
ãj
~ +aI
ε

)
∏N
I=1

∏N
r 6=I ε

lI
(
−iaIr~ε

)∏N
I=1
lI 6=0

εlI−1 (lI − 1)!
∏N
I=1

∏Nf
r=N+1 ε

lI
(
−iarI~ε

) ,

(B.40)

where the integration gives [. . .] = 1. We are left with products of ratios including

the equivariant parameters, which we express as Pochhammer symbols and after heavy

Pochhammer algebra we finally arrive at (B.14), which proves (B.33).
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Now, if the integrand f does not have poles at infinity, which happens exactly for

Nf ≥ Na + 2, we can write

∫
Cu

l∏
α=1

dφα
2πi

f

(
φ, ε,

a

~
,
ã

~

)
= (−1)l

∫
Cd

l∏
α=1

dφα
2πi

f

(
φ, ε,

a

~
,
ã

~

)
(B.41)

with Cd having the same base as Cu but is closed in the lower half plane by a semicircle.

Both contours are oriented counterclockwise. The lovely fact is that the r.h.s. of the

above equation gives the desired result

(−1)l
∫
Cd

l∏
α=1

dφα
2πi

f

(
φ, ε,

a

~
,
ã

~

) ∣∣∣
ε=1

= (−1)NalZDl |d.m. (B.42)

after direct evaluation of the integral, completely analogue to that of (B.33).

B.0.5 Example: the Gr(1, 3) ' Gr(2, 3) case

Let us show this isomorphism explicitly in a simple case: we will consider Gr(1, 3) and

Gr(2, 3) in a completely equivariant setting.

Let us first compute the equivariant partition function for Gr(1, 3):

ZGr(1,3) =
∑
m

∫
dτ

2πi
e4πξrenτ−iθrenm

3∏
j=1

Γ(τ + irMaj − m
2 )

Γ(1− τ − irMaj − m
2 )

=
3∑
i=1

((rM)6zz̄)irMai

3∏
j=1
j 6=i

Γ(−irMaij)

Γ(1 + irMaij)

∑
l≥0

[(rM)3z]l∏3
j=1(1 + irMaij)l

∑
k≥0

[(−rM)3z̄]k∏3
j=1(1 + irMaij)k

(B.43)

Here we defined aij = ai − aj , and the twisted masses have been rescaled according to

ai → Mai, so they are now dimensionless. For Gr(2, 3) we have (with θ̃ren = θ̃ + π =
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θ̃ + 3π, being θ̃ −→ θ̃ + 2π a symmetry of the theory)

ZGr(2,3) =
1

2

∑
m1,m2

∫
dτ1

2πi

dτ2

2πi
e4πξ̃ren(τ1+τ2)−iθ̃ren(m1+m2)

(
−τ2

12 +
m2

12

4

) 2∏
r=1

3∏
j=1

Γ(τr + irMãj − mr
2 )

Γ(1− τr − irMãj − mr
2 )

=

3∑
i<j

((rM)6z̃ ˜̄z)irM(ãi+ãj)
3∏

k=1
k 6=i,j

Γ(−irMãik)

Γ(1 + irMãik)

Γ(−irMãjk)

Γ(1 + irMãjk)

∑
l1,l2≥0

[(−rM)3z̃]l1+l2∏3
k=1(1 + irMãik)l1

∏3
k=1(1 + irMãjk)l2

l1 − l2 + irMãi − irMãj
irMãi − irMãj∑

k1,k2≥0

[(rM)3 ˜̄z]k1+k2∏3
k=1(1 + irMãik)k1

∏3
k=1(1 + irMãjk)k2

k1 − k2 + irMãi − irMãj
irMãi − irMãj

(B.44)

In both situations, we are assuming a1 + a2 + a3 = 0 and ã1 + ã2 + ã3 = 0. Consider

now the partition (•, •,2) for Gr(1, 3) and the dual partition (2,2, •) for Gr(2, 3); we

have respectively

Z
(•,•,2)
Gr(1,3) = ((rM)6zz̄)irMa3

Γ(−irMa31)

Γ(1 + irMa31)

Γ(−irMa32)

Γ(1 + irMa32)∑
l≥0

[(rM)3z]l

l!(1 + irMa31)l(1 + irMa32)l∑
k≥0

[(−rM)3z̄]k

k!(1 + irMa31)k(1 + irMa32)k

Z
(2,2,•)
Gr(2,3) = ((rM)6z̃ ˜̄z)irM(ã1+ã2) Γ(−irMã13)

Γ(1 + irMã13)

Γ(−irMã23)

Γ(1 + irMã23)∑
l1,l2≥0

[(−rM)3z̃]l1+l2∏2
i=1 li!

∏3
j 6=i(1 + irMãij)li

l1 − l2 + irMã1 − irMã2

irMã1 − irMã2∑
k1,k2≥0

[(rM)3 ˜̄z]k1+k2∏2
i=1 ki!

∏3
j 6=i(1 + irMãij)ki

k1 − k2 + irMã1 − irMã2

irMã1 − irMã2

(B.45)

Since

∑
l1,l2≥0

[(−rM)3z̃]l1+l2∏2
i=1 li!

∏3
j 6=i(1 + irMãij)li

l1 − l2 + irMã1 − irMã2

irMã1 − irMã2
=

=
∑
l≥0

[(−rM)3z̃]l

l!(1 + irMã13)l(1 + irMã23)l
cl

(B.46)
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and

cl =
l∑

l1=0

l!

l1!(l − l1)!

(1 + irMã23 + l − l1)l1(1 + irMã13 + l1)l−l1
(irMã12 − l + l1)l1(−irMã12 − l1)l−l1

= (−1)l = (−1)3l

we can conclude that Z
(•,•,2)
Gr(1,3) = Z

(2,2,•)
Gr(2,3) if we identify ai = −ãi and ξ = ξ̃, θ = θ̃ (i.e.,

z = z̃). It is then easy to prove that ZGr(1,3) = ZGr(2,3).



Appendix C

Details on the proof of (6.45) and

(6.50)

C.1 Proof of (6.45)

First of all we pass to the ζ-function representation of (6.45) by employing the identity

θ′1
(
π
Lz
)

θ1

(
π
Lz
) = ζ(z)− 2η1

L
z. (C.1)

The dependence on η1 is immaterial as it drops out in the resulting equations of motion.

After doing so and computing ẍj from (6.45) we get

ẍj = −G2 (L1 + L2 + L3) , (C.2)

where

L1 =−
N∑
k=1

℘(xj − yk)
[ N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl) +
N∑
l=1

ζ(yk − xl)−
∑
l 6=k

ζ(yk − yl)
]

+
∑
k 6=j

℘(xj − xk)
[ N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl)−
N∑
l=1

ζ(xk − yl) +
∑
l 6=k

ζ(xk − xl)
]

(C.3)

L2 =
2η1

L

{
−
∑
k 6=j

(
℘(xj − xk) +

2η1

L

)[∑
l

(xj − yl)−
∑
l 6=j

(xj − xl)−
∑
l

(xk − yl) +
∑
l 6=k

(xk − xl)
]

+
∑
k

(
℘(xj − yk) +

2η1

L

)[∑
l

(xj − yl)−
∑
l 6=j

(xj − xl) +
∑
l

(yk − xl)−
∑
l 6=k

(yk − yl)
]}

(C.4)

133
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L3 =
2η1

L

{
−
∑
k

[∑
l

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl) +
∑
l

ζ(yk − xl)−
∑
l 6=k

ζ(yk − yl)
]

+
∑
k 6=j

[∑
l

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl)−
∑
l

ζ(xk − yl) +
∑
l 6=k

ζ(xk − xl)
]}
.

(C.5)

Now we show that L2 and L3 actually vanish. For L2 it is straightforward, since [. . .]

in the first row vanishes for all k 6= j and [. . .] in the second row vanishes for all k,

respectively. Both facts follow easily just by writing the sums as
∑

l 6=k,j(. . .) + [rest].

Slightly more involved is vanishing of L3. Collecting sums with common range as above,

we finally arrive at a relation

L3 =
2η1

L

{[∑
k 6=j

{
ζ(xj−xk)+

∑
l 6=k

ζ(xk−xl)
}]

+
[
(yj−yk)

]
−
[
(xj−yk)

]
−
[
(yj−xk)

]}
.

(C.6)

which vanishes term by term since

∑
k 6=j

{
ζ(uj − vk) +

∑
l 6=k

ζ(vk − ul)
}

=
∑
k 6=j

{
ζ(uj − vk) + ζ(vk − uj) +

∑
l 6=k,j

ζ(vk − ul)
}

=
∑
k 6=j

∑
l 6=k,j

ζ(vk − ul) =
∑

pairs(m,n),m 6=n
(m,n)6=j

[
ζ(vm − un) + ζ(un − vm)

]
= 0, (C.7)

where we used that ζ is odd. Summarizing, we have ẍj = −G2L1 which matches (6.44)

in force of the following identity between Weierstrass ℘ and ζ functions

0 =
∑
k 6=j

℘′(xj − xk)

+

N∑
k=1

℘(xj − yk)
[ N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl) +

N∑
l=1

ζ(yk − xl)−
∑
l 6=k

ζ(yk − yl)
]

−
∑
k 6=j

℘(xj − xk)
[ N∑
l=1

ζ(xj − yl)−
∑
l 6=j

ζ(xj − xl)−
N∑
l=1

ζ(xk − yl) +
∑
l 6=k

ζ(xk − xl)
]
.

(C.8)

We prove this identity using Liouville’s theorem. Let us denote the right hand side by

R
(
xj ; {xk}k 6=j , {yk}Nk=1

)
. R is a symmetric function under independent permutations

of {xk}k 6=j and {yk}Nk=1, respectively. Next, we show double periodicity in all variables.

Although the ζ’s introduce shifts, these cancel each other1, so double periodicity follows

immediately. The non-trivial step is to show holomorphicity. First, the relation should

1All ζ’s appear in pairs, where a given variable appears with positive and negative signs in the
argument.
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hold for all j. In particular we can choose j = 1, other cases are obtained just by

relabeling. By double periodicity we can focus only on poles at the origin, so there will

be poles in xj − yk and xj − xl, l 6= j. By the symmetries described above we have to

check only three cases: x1− y1, x2− y1 and x1−x2. To do so, we use the Laurent series

for ℘ and ζ

℘(z) =
1

z2
+ ℘R(z), ℘R(z) =

∞∑
n=1

cn+1z
2n

ζ(z) =
1

z
+ ζR(z), ζR(z) = −

∞∑
n=1

cn+1

2n+ 1
z2n+1 (C.9)

Let us now show the vanishing of the residues at each pole.

Pole in x2 − y1

There are only two terms in (C.8) contributing

ζ(x2 − y1)
[
℘(x1 − x2)− ℘(x1 − y1)

]
∼ 1

x2 − y1

[ 1

(x1 − x2)2
− 1

(x1 − y1)2
+
∑
n≥1

cn+1

(
(x1 − x2)2n − (x1 − y1)2n

) ]

=
x2 − y1

x2 − y1

[ 1

(x1 − x2)2(x1 − y1)
+
∑
n≥1

cn+1

2n∑
k=1

(
2n

k

)
(−1)kx2n−k

1

k−1∑
l=0

xk−1−l
2 yl1

]
. (C.10)

So indeed the residue vanishes.

Pole in x1 − y1

The terms contributing to this pole read

℘(x1 − y1)
∑
k 6=1

{[
ζ(x1 − yk)− ζ(y1 − yk)

]
−
[
ζ(x1 − xk)− ζ(y1 − xk)

]}
+ ζ(x1 − y1)

∑
k 6=1

[
℘(x1 − yk)− ℘(x1 − xk)

]
∼ 1

(x1 − y1)2

∑
k 6=1

{[ 1

x1 − yk
− 1

y1 − yk

]
−
[ 1

x1 − xk
− 1

y1 − xk

]
+
[
ζR(x1 − yk)− ζR(y1 − yk)

]
−
[
ζR(x1 − xk)− ζR(y1 − xk)

]}
+

1

x1 − y1

∑
k 6=1

[
℘R(x1 − yk)− ℘R(x1 − xk) +

1

(x1 − yk)2
− 1

(x1 − xk)2

]
. (C.11)
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Collecting all the rational terms gives a regular term

∑
k 6=1

[ 1

(x1 − xk)2(y1 − xk)
− 1

(x1 − yk)2(y1 − yk)

]
(C.12)

and we stay with the rest

∑
k 6=1

1

x1 − y1

{
℘R(x1 − yk)− ℘R(x1 − xk) +

1

x1 − y1

[ (
ζR(x1 − yk)− ζR(y1 − yk)

)
−
(
ζR(x1 − xk)− ζR(y1 − xk)

) ]}
.

(C.13)

In the following we show that the terms in the square parenthesis in the above for-

mula factorizes a term (x1 − y1) which, after combining with the rest, cancels the pole

completely. Indeed, we just use (C.9) and binomial theorem to get

[
. . .
]

= −(x1 − y1)
∑
n≥1

cn+1

2n+ 1

2n∑
l=1

(
2n+ 1

l

)
(−1)l

(
y2n+1−l
k − x2n+1−l

k

) l−1∑
m=0

yl−1−m
1 xm1

℘R(x1 − yk)− ℘R(x1 − xk) =
∑
n≥1

cn+1

2n∑
l=1

(
2n

l − 1

)
(−1)lxl−1

1

(
y2n+1−l
k − x2n+1−l

k

)
(C.14)

and after combining these two terms we get

{
. . .
}

=
∑
n≥1

cn+1

2n∑
l=1

(
2n

l − 1

)
(−1)l

(
y2n+1−l
k − x2n+1−l

k

) [
xl−1

1 − 1

l

l−1∑
m=0

yl−1−m
1 xm1

]
,

(C.15)

however the terms in the square brackets of (C.15) factorizes once more a term (x1−y1)

[
. . .
]

= (x1 − y1)
1

l

l−1∑
m=1

(l −m)xl−1−m
1 ym−1

1 (C.16)

so that we end up with a regular term

∑
k 6=1

∑
n≥1

cn+1

2n∑
l=1

(
2n

l − 1

)
(−1)l

l

(
y2n+1−l
k − x2n+1−l

k

) l−1∑
m=1

(l −m)xl−1−m
1 ym−1

1 . (C.17)

Summarizing, we have shown the vanishing of the residue at the pole in (x1 − y1) and

we now move on to the last one.
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Pole in x1 − x2

Analysis of (C.8) gives the following terms contributing to this pole

℘′(x1 − x2) + ζ(x1 − x2)
[ ∑
k 6=1,2

℘(x1 − xk)−
∑
k

℘(x1 − yk)
]

− ℘(x1 − x2)
[∑

k

ζ(x1 − yk)−
∑
k 6=1

ζ(x1 − xk)−
∑
k

ζ(x2− yk) +
∑
k 6=2

ζ(x2 − xk)
]
.

(C.18)

In analogy with the previous case let us first deal with the rational terms

−2

(x1 − x2)3
+

1

x1 − x2

[ ∑
k 6=1,2

1

(x1 − xk)2
−
∑
k

1

(x1 − yk)2

]
− 1

(x1 − x2)2

[ −2

x1 − x2
+
∑
k

(
1

x1 − yk
− 1

x2 − yk

)
−
∑
k 6=1,2

(
1

x1 − xk
− 1

x2 − xk

)]
=
∑
k

1

(x1 − yk)2(x2 − yk)
−
∑
k 6=1,2

1

(x1 − xk)2(x2 − xk)
, (C.19)

which give a regular contribution as we wanted. For the remaining terms we can write,

using the same methods as above

1

x1 − x2

{ ∑
k 6=1,2

℘R(x1 − xk)−
∑
k

℘R(x1 − yk)−
1

x1 − x2

[∑
k

(ζ(x1 − yk)− ζ(x2 − yk))

−
∑
k 6=1,2

(ζ(x1 − xk)− ζ(x2 − xk))
]}

=
∑
n≥1

cn+1

2n+1∑
l=1

(
2n

l − 1

)
(−1)l

l

l−1∑
m=1

(l −m)xl−1−m
1 xm−1

2

[ ∑
k 6=1,2

x2n+1−l
k −

∑
k

y2n+1−l
k

]
,

(C.20)

which explicitly shows the vanishing of the residue of this last pole.

We just showed that R
(
xj ; {xk}k 6=j , {yk}Nk=1

)
is holomorphic in the whole complex plane

for all variables. Liouville’s theorem then implies it must be a constant. Hence we can

set any convenient values for the variables to show this constant to be zero. Taking the

limit yk → 0 for all k we get

− lim
yk→0

∑
k

℘(x1 − yk)
∑
l 6=k

1

yk − yl
+
∑
k 6=1

℘′(x1 − xk) +N℘(x1)
[
Nζ(x1)−

∑
k 6=1

ζ(x1 − xk)−
∑
k

ζ(xk)
]

−
∑
k 6=1

℘(x1 − xk)
[
Nζ(x1)−

∑
l 6=1

ζ(x1 − xl)−Nζ(xk) +
∑
l 6=k

ζ(xk − xl)
]

(C.21)
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The first term can be written as

lim
yk→0

∑
pairs(m,n),m 6=n
m,n∈{1,...,N}

1

yn − ym

[
℘′(x1)(yn − ym) +O

(
(yn − ym)2

) ]
=
N(N − 1)

2
℘′(x1)

(C.22)

Sending xk → 0, k 6= 1 simplifies R further

(N − 1)

(
N

2
+ 1

)
℘′(x1)− (N − 1)℘(x1)ζ(x1)

+ lim
xk→0
k 6=1

{∑
k 6=1

℘(x1 − xk)
[
Nζ(xk)−

∑
l 6=k

ζ(xk − xl)
]
−N℘(x1)

∑
k 6=1

ζ(xk)

}
, (C.23)

where the second line yields

lim
xk→0
k 6=1

{
N
∑
k 6=1

1

xk

[
℘(x1 − xk)− ℘(x1)

]
︸ ︷︷ ︸

−N(N−1)℘′(x1)

−
∑
k 6=1

℘(x1 − xk)
∑
l 6=k

ζ(xk − xl)︸ ︷︷ ︸
(N−1)℘(x1)ζ(x1)+

(N−1)(N−2)
2

℘′(x1)

}
.

Putting everything together we finally obtain

const = lim
yk→0

xl→0,l 6=1

R(. . .) = 0 =⇒ R(. . .) = 0,

which concludes the proof of (C.8).

C.2 Proof of (6.50)

By simplifying the left hand side of (6.50) one gets

N∑
j=1

{
G
[
℘(z − xj)ζ(z − xj) +

1

2
℘′(z − xj)

]
+G

[
℘(z − yj)ζ(z − yj) +

1

2
℘′(z − yj)

]

+ ℘(z − xj)
[
− iẋj −G

N∑
k=1

ζ(z − yk) +G
∑
k 6=j

ζ(z − xk)
]

+ ℘(z − yj)
[
iẏj −G

N∑
k=1

ζ(z − xk) +G
∑
k 6=j

ζ(z − yk)
]

+G
2η1

L

[
iẏj − iẋj +G (℘(z − yj)− ℘(z − xj))

∑
k

(yk − xk)
]}
. (C.24)
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Going on-shell w.r.t. auxiliary system (6.45), we arrive at

LHS = X1 +X2, (C.25)

where

X1 =
N∑
j=1

{
1

2
℘′(z − xj) + ℘(z − xj)

[ N∑
k=1

(ζ(z − xk)− ζ(z − yk) + ζ(xj − yk))−
∑
k 6=j

ζ(xj − xk)
]

+
1

2
℘′(z − yj) + ℘(z − yj)

[ N∑
k=1

(ζ(z − yk)− ζ(z − xk) + ζ(yj − xk))−
∑
k 6=j

ζ(yj − yk)
]}

X2 = G2 2η1

L

N∑
j=1

∑
k 6=j

{
ζ(yj − xk) + ζ(xj − yk)− ζ(yj − yk)− ζ(xj − xk)

}
. (C.26)

It is easy to see that X2 vanishes, since we can rearrange the sum to pairs of ζ’s with

positive and negative arguments respectively

X2 = G2 2η1

L

∑
pairs(m,n),m 6=n
m,n∈{1,...,N}

{[
ζ(ym − xn) + ζ(xn − ym)

]
+

[
ζ(xm − yn) + ζ(yn − xm)

]

−
[
ζ(xm − xn) + ζ(xn − xm)

]
−
[
ζ(ym − yn) + ζ(yn − ym)

]}
= 0. (C.27)

The vanishing of X1 looks more intriguing, but actually reduces to the already proven

relation (C.8). Indeed, we can write X1 as

X1 =
1

2(N − 1)

N∑
j=1

[
R ({x}, {y})

∣∣∣
xj=z

+R ({x} ↔ {y})
∣∣∣
yj=z

]
= 0,

which concludes the proof of (6.50).



Appendix D

Expansion in the twist parameter

q and some other properties of

ILW BAE

Let us define the twist parameter as q = (−1)Ne2πt. Then we can recast the Bethe

equations for the ILW integrable system (5.20) in a more suitable form (with λst :=

λs − λt)

N∏
j=1

(
λs − aj +

ε

2

) k∏
t=1
t6=s

(λst + ε1) (λst + ε2)

λst (λst + ε)

= q
N∏
j=1

(
λs − aj −

ε

2

) k∏
t=1
t6=s

(λst − ε1) (λst − ε2)

λst (λst − ε)
, s = 1, . . . , k. (D.1)

D.1 Perturbation theory around the B–O points q = 0 and

q =∞

The goal is to perform an asymptotic expansion for solutions of (D.1) around q = 0.

Hence we expand λs in a powers series in q as

λs =

∞∑
n=0

qnλ(n)
s , (D.2)

plug it into the Bethe equations and work at a fixed order in q. In the following, analytical

results will be provided only up to first order. However, we wrote an algorithm in

Mathematica working to any order. The disadvantage of the computer algebra approach

140
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is pretty clear, one has to keep k and N reasonably small 1. Various cross-checks were

completed, all confirming the results presented below.

Remark. The Bethe equations (D.1) are invariant under a simultaneous transformation

q → q−1, ε1 → −ε1 and ε2 → −ε2. This means that once an asymptotic expansion

around q = 0 is established, we know it also for q =∞.

D.1.1 Solutions at leading order in q

Substituting (D.2) into the BAE (D.1) and keeping only terms of order q0, we arrive at

N∏
j=1

(
λ(0)
s − aj +

ε

2

) k∏
t=1
t6=s

(
λ

(0)
s − λ(0)

t + ε1

)(
λ

(0)
s − λ(0)

t + ε2

)
λ

(0)
s − λ(0)

t

(
λ

(0)
s − λ(0)

t + ε
) = 0. (D.3)

This is just the B–O limit of ILW Bethe equations, so we can readily classify the solutions.

They are labeled by colored partitions of the instanton number k, i.e. N -tuples of Young

diagrams as in Figure D.1. Each box in a colored partition is given by three coordinates

Figure D.1: An example of a colored partition of the instanton number k. Implicitly,
it defines also our conventions for Young diagrams.

(l, {J, I}). Moreover, precisely one Bethe root is associated to every box. Therefore,

Bethe roots at leading order in the q-expansion can be expressed in terms of colored

partition data

λ(0)
s := λ

(0)
(l,{J,I}) = al −

ε

2
− (I − 1) ε1 − (J − 1) ε2, l = 1, . . . , N

J = 1, . . . ,#rows in Yl

I = 1, . . . ,#columns in rowJ of Yl.

(D.4)

1The order of the q-expansion that can be achieved in practice depends crucially on the choice of k
and N .
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D.1.2 Solutions at first order in q

The structure of Bethe equations at first order in the q-expansion is

A(0)
s (N)λ(1)

s +
k∑
t=1
t6=s

B
(0)
st (N)

(
λ(1)
s − λ

(1)
t

)
= C(0)

s (N), (D.5)

where A, B, C are known functions of λ
(0)
s and remaining parameters of the model as

well

A(0)
s (N) =

 N∑
j=1

N∏
l=1
l 6=j

(
λ(0)
s − aj +

ε

2

) k∏
t=1
t6=s

(
λ

(0)
st + ε1

)(
λ

(0)
st + ε2

)
λ

(0)
st

(
λ

(0)
st + ε

) (D.6)

B
(0)
st (N) = −ε1ε2

N∏
j=1

(
λ(0)
s − aj +

ε

2

) 2λ
(0)
st + ε(

λ
(0)
st

)2 (
λ

(0)
st + ε

)2

k∏
u=1
u6=s, t

(
λ

(0)
su + ε1

)(
λ

(0)
su + ε2

)
λ

(0)
su

(
λ

(0)
su + ε

)
(D.7)

C(0)
s (N) =

N∏
j=1

(
λ(0)
s − aj −

ε

2

) k∏
t=1
t6=s

(
λ

(0)
st − ε1

)(
λ

(0)
st − ε2

)
λ

(0)
st

(
λ

(0)
st − ε

) . (D.8)

A straightforward manipulation brings the linear system (D.5) to a matrix form2

M(0)(N) · λ(1) = C(0)(N) (D.9)

with the matrix M given as

M(0)(N) =



A1 +
∑k

t6=1B1t −B12 . . . −B1k

−B21 A2 +
∑k

t6=2B2t . . . −B2k

...
... . . .

...

−Bk1 −Bk2 . . . Ak +
∑k

t6=k Bkt


. (D.10)

2This structure remains true at any order in q. Just the matrix elements and the right hand side
become complicated functions of Bethe roots in all lower orders. It also suggests that even exact solutions
for any q are still labeled by colored partitions. We checked this for the exact results that we got by
Mathematica. However, square roots appear in the analytic solutions and one has to combine choices of
different branches properly to make the combinatorics work.
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Actually, it is not really convenient to try to invert this matrix directly. A better option

turns out to be a division of the index s ≡ (l, {J, I}) into cases

(l, {J, I}) =



(l, {1, 1})

(l, {1, I}) ; I = 2, . . . , Cl,1

(l, {J, 1}) ; J = 2, . . . , Rl

(l, {J, I}) ; J = J = 2, . . . , Rl | I = 2, . . . , Cl,J

and then solving recursively, as we will sketch now. For cleaner notations we introduced

Rl = #rows in Yl and Cl,J = #columns in rowJ of Yl, respectively.

Case I: (l, {1, 1}). Still, we need to subdivide into two branches; a pivot (upper-left)

box in a bigger Young diagram or a single box diagram, respectively.

1. kl > 1: In this case we get an easy equation for λ
(1)
(l,{1,1})

Alλ
(1)
(l,{1,1}) = 0. (D.11)

The form of Al is not important at this point as long as it does not vanish.

The solution is trivial

λ
(1)
(l,{1,1}) = 0. (D.12)

2. kl = 1: The right hand side does not vanish as previously. A little bit of

algebra leads us to a result for a Bethe root attached to a single box diagram

λ
(1)
(l,{1,1}) = −ε

N∏
m=1
m 6=l

{
alm + (Rm − 1)ε2 − ε1

alm +Rmε2

Rm∏
J̃=1

[
alm + (J̃ − 2)ε2 + (C

mJ̃
− 1)ε1

alm + (J̃ − 1)ε2 + (C
mJ̃
− 1)ε1

×
alm + J̃ε2 + C

mJ̃
ε1

alm + (J̃ − 1)ε2 + C
mJ̃
ε1

]}
.

(D.13)

Case II: (l, {1, I}). We are focusing on the first row of the l-th Young diagram. The

analysis we are just about to show will uncover that only the last box in the row

can get a non-vanishing contribution at first order of the q-expansion; moreover,

just provided it is a “corner” box (i.e. the second row is shorter than the first one).

For a more accessible presentation, we want to anticipate that this will prove to

be a general feature. Corner boxes get corrections while Bethe roots attached to

inner boxes do not. To demonstrate our statements in equations, in this event
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(D.5) yields

Al,I

(
λ

(1)
(l,{1,I}) − λ

(1)
(l,{1,I−1})

)
= RHSl,I . (D.14)

This can be solved recursively with the result

λ
(1)
(l,{1,I}) = λ

(1)
(l,{1,1}) +

I∑
Ĩ=2

RHS
l,Ĩ

A
l,Ĩ

; I = 2, . . . , Cl1. (D.15)

However, we already derived that λ
(1)
(l,{1,1}) = 0 and the further essential piece of

information is

RHS
l,Ĩ

=


6= 0

(
Ĩ = Cl1

)
∧ (Cl1 > Cl2)

= 0 otherwise

,

which brings us to conclude (we do not show intermediate results since they are

quite nasty, whereas in the final formulas some simplifications occur)

λ
(1)
(l,{1,I}) = δI,Cl1θ(Cl1 − Cl2)

εε2
ε1

(Rl − 1) ε2 − Cl1ε1
Rlε2 + (1− Cl1) ε1

×
Rl∏
J̃=2

[
(J̃ − 2)ε2 + (C

lJ̃
− Cl1)ε1

] [
J̃ε2 + (C

lJ̃
− Cl1 + 1)ε1

]
[
(J̃ − 1)ε2 + (C

lJ̃
− Cl1)ε1

] [
(J̃ − 1)ε2 + (C

lJ̃
− Cl1 + 1)ε1

]
×

N∏
m=1
m 6=l

{
alm + (Rm − 1)ε2 − Cl1ε1
alm +Rmε2 + (1− Cl1)ε1

Rm∏
J̃=1

[
alm + (J̃ − 2)ε2 + (C

mJ̃
− Cl1)ε1

alm + (J̃ − 1)ε2 + (C
mJ̃
− Cl1)ε1

×
alm + J̃ε2 + (C

mJ̃
− Cl1 + 1)ε1

alm + (J̃ − 1)ε2 + (C
mJ̃
− Cl1 + 1)ε1

]}
(D.16)

with θ(·) being the step function.

Case III: (l, {J, 1}). Here we concentrate on the first column. The conclusion is the

same, non-vanishing contribution gets only the last box provided it is a corner one

(i.e. the second column is shorter than the first one). All the derivations go along

the same lines, so we write just the result

λ
(1)
(l,{J,1}) = δJ,Rlδ1,Cl,Rl

(−ε1)
[Cl,Rl−1(Cl,Rlε1 + ε2)] [−2ε2 + (Cl,Rl−1 − 1)ε1]

[Cl,Rl(Cl,Rl−1ε1 − ε2)] [−ε2 + (Cl,Rl−1 − 1)ε1]

×
Rl−2∏
J̃=1

[
(J̃ −Rl − 1)ε2 + (C

lJ̃
− 1)ε1

] [
(J̃ −Rl + 1)ε2 + C

lJ̃
ε1

]
[
(J̃ −Rl)ε2 + (C

lJ̃
− 1)ε1

] [
(J̃ −Rl)ε2 + C

lJ̃
ε1

]
×

N∏
m=1
m 6=l

{
alm + (Rm −Rl)ε2 − ε1
alm + (Rm −Rl + 1)ε2

Rm∏
J̃=1

[
alm + (J̃ −Rl − 1)ε2 + (C

mJ̃
− 1)ε1

alm + (J̃ −Rl)ε2 + (C
mJ̃
− 1)ε1
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×
alm + (J̃ −Rl + 1)ε2 + C

mJ̃
ε1

alm + (J̃ −Rl)ε2 + C
mJ̃
ε1

]}
(D.17)

Case IV: (l, {J, I}). It remains to treat the rest of the boxes that were omitted in I–III,

namely J = 2, . . . , Rl and I = 2, . . . , ClJ . As we already stressed many times, non-

trivial contributions get only boxes which form corners in the profile. Finally, we

arrive at

λ(l,{J,I}) = δI,ClJ θ(ClJ − Cl,J+1)εε2
Cl,J−1 − ClJ + 1

−ε2 + (Cl,J−1 − ClJ + 1)ε1

×
[(Rl − J)ε2 − ClJε1] [−2ε2 + (Cl,J−1 − Cl,J)ε1]

[(1− ClJ)ε1 + (Rl − J + 1)ε2] [−ε2 + (Cl,J−1 − ClJ)ε1]

×
Rl∏
J̃=1

J̃ 6=J,J−1

[
(J̃ − J − 1)ε2 + (C

lJ̃
− ClJ)ε1

] [
(J̃ − J + 1)ε2 + (C

lJ̃
− ClJ + 1)ε1

]
[
(J̃ − J)ε2 + (C

lJ̃
− ClJ)ε1

] [
(J̃ − J)ε2 + (C

lJ̃
− ClJ + 1)ε1

]

×
N∏
m=1
m 6=l

{
alm + (Rm − J)ε2 − ClJε1

alm + (Rm − J + 1)ε2 + (1− ClJ)ε1

Rm∏
J̃=1

[
alm + (J̃ − J − 1)ε2 + (C

mJ̃
− ClJ)ε1

alm + (J̃ − J)ε2 + (C
mJ̃
− ClJ)ε1

×
alm + (J̃ − J + 1)ε2 + (C

mJ̃
− ClJ + 1)ε1

alm + (J̃ − J)ε2 + (C
mJ̃
− ClJ + 1)ε1

]}
. (D.18)

In the above paragraphs we fully described the asymptotic q-expansion of the Bethe

roots around the B–O point q = 0 (and q =∞ as well by the symmetry we mentioned)

up to first order. The formulae for next-to-leading order corrections might not be very

enlightening, however what is important, is the structure of the boxes that receive non-

vanishing corrections.

Summary. Most of the Bethe roots do not receive corrections in the q-expansion; they

are just given by the leading-order solution (D.4). The only roots that get corrected

are associated to boxes that form a corner in the profile of the Young diagram as is

shown in Figure D.2. The correction for a single box diagram is given in equation

Figure D.2: Boxes that receive corrections in the q-expansion are marked in red.
They are referred to as “corner” boxes.

(D.13), for a corner box in the first row in (D.16), for a corner box in first column

in (D.17) while for the remaining corners in (D.18)
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D.2 Perturbation theory around the KdV point q = (−1)N

This kind of expansion might shed new light on the quantization of KdV integrable

system (with dispersion), which is a long-standing problem of Mathematical Physics 3.

Unfortunately, we do not have much to say about it. The perturbation theory around

this point is singular and pretty hard to analyze. We do not pursue this direction further

here.

D.3 Some properties of ILW BAE

D.3.1 Exact sum rule for Bethe roots

By a standard technique for Bethe equations we can derive a sum rule. As a first step

manipulate the Bethe equations to the form

N∏
j=1

λs − aj + ε
2

λs − aj − ε
2

= q(−1)(k−1)
k∏
t=1
t6=s

λst + ε

−λst + ε

λst − ε1
−λst − ε1

λst − ε2
−λst − ε2

. (D.19)

Notice, that the double product over t can be extended to the whole range without

changing anything. The point of this rewriting was to factor some signs of this product,

such that when we exchange s and t it goes to its inverse. Subsequently, taking the

logarithm produces an antisymmetric function (in (st) indices), which is just what we

wanted

N∑
j=1

log
λs − aj + ε

2

λs − aj − ε
2

− log q − (k − 1)iπ −
k∑
t=1

log
λst + ε

−λst + ε

λst − ε1
−λst − ε1

λst − ε2
−λst − ε2︸ ︷︷ ︸

−iχ(λst)

= 2πiñs.

(D.20)

As we anticipated χ(λst) is antisymmetric and ñs ∈ Z. Bringing the iπ term to the right

N∑
j=1

−i log
λs − aj + ε

2

λs − aj − ε
2

+ i log q +

k∑
t=1

χ(λst) = 2πns (D.21)

defines a new mode number ns

ns =

(
ñs +

k − 1

2

)
∈


Z, k odd

Z + 1
2 , k even

.

3The dispersionless KdV hierarchy is solved. The generating function for the quantized Hamiltonians
(integrals of motion) was first discovered by Eliashberg (see also [82]) while their spectrum was computed
in [83].
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Summing over s kills the most complicated term χ(λst) (since it was carefully constructed

to be anti-symmetric), which was the true motivation behind all this. Hence, we get a

constraint for the Bethe roots that we call a sum rule

k∑
s=1

N∑
j=1

−i log
λs − aj + ε

2

λs − aj − ε
2

+ ik log q = 2π
k∑
s=1

ns. (D.22)

D.3.2 Two possible limits

Next, we want to discuss two possible limits of the ILW BAE. The first one is inspired

by gauge theory while the second one rather by the integrable system world. Since we

know that our Bethe equations are connected to instanton counting, it is natural to

study the Nekrasov-Shatashvili limit, ε2 → 0. In this situation the equations simplify

drastically and we obtain

N∏
j=1

λs − aj + ε1
2

λs − aj − ε1
2

= q, s = 1 . . . , k. (D.23)

The second available limit is to send ε1 → ±∞, ε2 → ∓∞ while keeping ε1 +ε2 = ε fixed.

This reduces to the Heisenberg XXX 1
2

spin chain with twist. Indeed, setting us = i
ελs,

νj = i
εaj and θ = −i log q we get the Heisenberg Bethe equations in standard form

N∏
j=1

us − νj + i
2

us − νj − i
2

= eiθ
k∏
t=1
t6=s

us − ut + i

us − ut − i
. (D.24)

A feasible idea could be to write ε1 = 1
δ , ε2 = −1

δ + ε and build a perturbation theory

in δ → 0.



Appendix E

BON Hamiltonians versus tCSN

In Section 6.4.1 we observed that the spectrum of the chiral operator TrΦn+1 can be

expressed as a linear combination of the eigenvalues of the integrals of motion (IMs)

of the Benjamin-Ono integrable system1. We showed explicitly the connection between

SU(2) N = 2 supersymmetric Yang-Mills theory and Vir ⊕ H CFT. In this Appendix

we consider the SU(N) gauge theory versus WN ⊕ H algebra, focusing mainly on I3,

which we identify as the basic Hamiltonian, whose spectrum was computed in [84].

As a preliminary check and also to build the dictionary between [84] and [58] we can

specialize to the Vir⊕H case2. The dictionary is obtained by direct comparison of explicit

expressions for IMs and their eigenvalues and can be found in Table E.1. Comparing

Litvinov Estienne et al. gauge theory

b i
√
g ε2

ak
√

2ak

P∗ special eigenstates a∗

b
(
h

(2)
λ (P )− 2P |λ|

)
e

(3),+
λ (g)

Table E.1: Dictionary between [84] and [58]

the expressions for I+
3 (g) in [84] and I2 in [58] (the labeling is unfortunately shifted) we

1This is was checked up to n = 4, where explicit results for the eigenvalues of the IMs are available.
2In [84] the eigenvalues were computed for a special class of eigenstates. In general, the eigenvalues

depend on the momentum P , which characterizes the eigenstates, i.e. does not enter into the IMs. So
picking a special class of eigenstates translates into setting a given value of the momentum P = P∗.

148
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get

I+
3 (g) = 2ibI2 =⇒ E

(3),+
−→
λ

(g) = 2ib

(
− i

2
h

(2)
−→
λ

∣∣∣
P=P∗

)
= b h

(2)
−→
λ

∣∣∣
P=P∗

. (E.1)

To highlight how one picks the special value P∗ let us still concentrate only on the Vir⊕H

case. Taking the result for E
(3),+
−→
λ

(g) from [84] and using the third row of table E.1 we

can write

E
(3),+
(λ,µ) (g) = e

(3),+
λ (g) + e(3),+

µ (g)−
√

2g(q − α0)(|λ| − |µ|)

= bh
(2)
(λ,µ)(P ) + b

[√
2i(q − α0)− 2P

]
(|λ| − |µ|), (E.2)

where α0 = i√
2
Q and q is a charge for the zero mode b0 of an auxiliary bosonic field,

b0|q〉 = q|q〉. By imposing (E.1) the bracket [. . .] is forced to vanish, which leads to

P∗ =
i√
2

(q − α0). (E.3)

Finally, concluding the Vir ⊕ H CFT or SU(2) gauge theory respectively, we get for
−→
λ = (λ, µ)

E
(3),+
−→
λ

(g) = b h
(2)
−→
λ

∣∣∣
P=P∗

= −ε2
TrΦ3−→

λ

3

∣∣∣∣∣
a=a∗

. (E.4)

At this point we are ready to make connection between the WN−1⊕H CFT and SU(N)

gauge theory for I+
3 (g) and TrΦ3. First, we write the result for E

(3),+
−→
λ

(g) [84] and

manipulate it to a more convenient form for us

E
(3),+
−→
λ

(g)=
N∑
l=1

e
(3),+
λl

+ (1− g)
N∑
l=1

(N + 1− 2l)|λl|

=ε22

N∑
l=1

#rows(λl)∑
j=1

{(
al + ε1|rowj(λl)|+ ε2

(
j − 1

2

))2

−
(
al + ε2

(
j − 1

2

))2
}

− 2ε2

N∑
l=1

alλl + (1 + ε22)
N∑
l=1

(N + 1− 2l)|λl|. (E.5)

Then we need also to rewrite the expression for TrΦn+1 (6.74)

TrΦn+1
−→
λ

=
N∑
l=1

an+1
l +

N∑
l=1

#rows(λl)∑
j=1

(−ε2)

n∑
i=1

(
n+ 1

i

)(ε2
2

)n−i 1 + (−1)n−i

2
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×

[(
al + ε1|rowj(λl)|+ ε2

(
j − 1

2

))i
−
(
al + ε2

(
j − 1

2

))i ]
.

(E.6)

In particular, setting n = 2 in (E.6) and comparing with (E.5) leads to the desired

relation

TrΦ3−→
λ

=
N∑
l=1

a3
l −

3

ε2
E

(3),+
−→
λ

(g) + 3
N∑
l=1

|λl|
[1 + ε22

ε2
(N + 1− 2l)− 2al

]
. (E.7)

The last piece has to vanish, thus fixing the special value a∗l

a∗l =
1 + ε22
ε2

1

2
(N + 1− 2l) = Qρl, (E.8)

where ρl are the components2 of the Weyl vector for SU(N).

Finally, the key relation connecting the operator TrΦ3 and the energy of BO3 integrable

system is

TrΦ3−→
λ

∣∣∣
a∗l

=
N∑
l=1

(a∗l )
3 − 3

ε2
E

(3),+
−→
λ

(g). (E.9)

2In the orthonormal basis {βl}Nl=1 of RN ⊃ h∨.
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