
Scuola Internazionale Superiore di Studi Avanzati - Trieste

SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY

Scuola Internazionale Superiore di Studi Avanzati

Area of Physics
Ph.D. in Astrophysics

PANTONE 652 U/C

Cosmic Microwave Background and Large
Scale Structure: Cross-Correlation as

seen from Herschel and Planck satellites

Candidate Supervisor
Federico Bianchini Carlo Baccigalupi

Pawel Bielewicz
Andrea Lapi

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor Philosophiae Academic Year 2015/2016



ii



Declaration of Work
The research presented in this thesis was carried out in the Astrophysics Sector
of the International School for Advanced Studies (SISSA/ISAS), Trieste, between
November 2012 and August 2016. This thesis is the result of my own work except
where explicit reference to the results of others has been made.

The content of this thesis is based on the following published or submitted papers:

• Chapter 3: Bianchini, F., Bielewicz, P., Lapi, A., et al. 2015, Cross-
correlation between the CMB lensing potential measured by Planck and high-z
submillimiter galaxies detected by the HERSCHEL-ATLAS survey, The As-
trophysical Journal, 802, 64

• Chapter 4: Bianchini, F., Lapi, A., Calabrese, M., et al. 2016b, Toward a
tomographic analysis of the cross-correlation between Planck CMB lensing
and H-ATLAS galaxies, The Astrophysical Journal, 825, 24

• Chapter 5: Bianchini, F., Renzi, A., & Marinucci, D. 2016a, Needlet estima-
tion of cross-correlation between CMB lensing maps and LSS , arXiv:1607.05223

• Chapter 6: Bianchini, F., & Silvestri, A. 2016, Kinetic Sunyaev-Zel’dovich
effect in modified gravity, Physical Review D, 93, 064026

iii

http://dx.doi.org/10.1088/0004-637X/802/1/64
http://dx.doi.org/10.1088/0004-637X/802/1/64
http://dx.doi.org/10.3847/0004-637X/825/1/24
http://arxiv.org/abs/1607.05223
http://arxiv.org/abs/1607.05223
http://arxiv.org/abs/1607.05223
http://dx.doi.org/10.1103/PhysRevD.93.064026


Contents

1 Introduction 1

2 Cosmology and gravitational lensing 5
2.1 FLRW Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Zeroth-order cosmology: the Background Universe . . . . . . 6
2.1.2 First-order cosmology: the Perturbed Universe . . . . . . . . 15
2.1.3 Setting the initial conditions: Inflation . . . . . . . . . . . . 22

2.2 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Primary anisotropies . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Secondary anisotropies . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Cross-correlations: combining probes with CMB . . . . . . . 36

2.3 Weak Gravitational Lensing . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 The lens equation . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2 CMB Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 LSS lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 CMB-LSS cross-correlation: statistics and datasets 57
3.1 Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 3D Random Fields . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Fields on the sphere . . . . . . . . . . . . . . . . . . . . . . 60
3.1.3 Projected fields . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Spectral estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1 Power spectrum estimators . . . . . . . . . . . . . . . . . . . 65
3.2.2 Covariance estimators . . . . . . . . . . . . . . . . . . . . . 68

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Planck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Herschel Space Observatory . . . . . . . . . . . . . . . . . . 75

4 Cross-correlation in the high-z sky as seen by Planck and Herschel 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Theory and expectations . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



Contents

4.2.2 Expected S/N . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Planck data . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Herschel fields . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 The Cross-Correlation Algorithm . . . . . . . . . . . . . . . . . . . 91
4.4.1 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.1 CMB Convergence-Galaxy Cross-correlation . . . . . . . . . 97
4.5.2 Galaxy Autocorrelation . . . . . . . . . . . . . . . . . . . . . 99
4.5.3 Null Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Constraints on bias and amplitude of cross-correlation . . . . . . . . 101
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7.1 Noise Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.7.2 Astrophysical systematics . . . . . . . . . . . . . . . . . . . 108

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Toward a tomographic analysis of the Planck-Herschel cross-correlation114
5.1 Improvements over previous analysis . . . . . . . . . . . . . . . . . 115
5.2 Improved CMB lensing and DM tracers from data . . . . . . . . . . 116

5.2.1 Planck data . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 Herschel data . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Analysis method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 Estimation of the power spectra . . . . . . . . . . . . . . . . 120
5.3.2 Estimation of the cross-correlation amplitude and of the

galaxy bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Comparison between the 2013 and the 2015 Planck results . 123
5.4.2 Tomographic analysis . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Cross-correlation of galaxies in different redshift intervals . . 130
5.4.4 Effect of different choices for the SED . . . . . . . . . . . . . 131
5.4.5 Redshift dependence of the galaxy bias . . . . . . . . . . . . 134
5.4.6 Results dependence on flux limit . . . . . . . . . . . . . . . 136
5.4.7 Other tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 140

6 Needlet estimation for CMB-LSS cross-correlation 143
6.1 The use of needlets for cosmological datasets . . . . . . . . . . . . . 143

v



Contents

6.2 Building the cross-correlation estimators . . . . . . . . . . . . . . . 144
6.2.1 Needlet cross-correlation estimator . . . . . . . . . . . . . . 145

6.3 MASTER algorithm for needlets . . . . . . . . . . . . . . . . . . . . 148
6.4 Numerical evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Kinetic Sunyaev-Zel’dovich effect in modified gravity 157
7.1 The kinetic Sunyaev-Zel’dovich effect . . . . . . . . . . . . . . . . . 157
7.2 The modeling of the kSZ effect . . . . . . . . . . . . . . . . . . . . 159
7.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.1 Growth history . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.2 The kSZ signal . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.4.3 Fitting formula . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4.4 Caveats et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5 Outlook to observations . . . . . . . . . . . . . . . . . . . . . . . . 171
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Conclusions and future prospects 174

vi



Contents

vii



Sometimes science is a lot more art, than
science. A lot of people don’t get that.

—Rick Sanchez, Rick & Morty



Alla mia famiglia





1 Chapter 1

Introduction

We know of an ancient radiation
That haunts dismembered constellations,
A faintly glimmering radio station.

—Frank Sinatra, Cake

Over the past two decades cosmology has entered the age of precision cosmology1:
the flood of data collected by cosmological experiments have transformed cosmology
from a data-starving field into a data-driven field, which allows cutting-edge theories
to be tested. A wide set of cosmological observations (Weinberg, 2008) have allowed
us to summarize our fair understanding of the basic properties of the Universe in
the concordance cosmological model - also known as ΛCDM model - built on the
solid theoretical premises of Einstein’s General Relativity. Despite the remarkable
success in fitting the data, the standard model presents several puzzles on which
light needs to be shed. For example, combining different cosmological data sets
(Planck Collaboration, 2015c), baryonic matter can account for only 5% of the
mass-energy budget of the Universe, while approximately 25% is in the form a dark
component, namely the Dark Matter (DM) whose properties and features are not
known yet. Moreover, the mechanism sourcing the late-time accelerated expansion
of the Universe, whether being associated to some other dark component dubbed
Dark Energy (DE) or to modifications of the underlying theory of gravity (MG),
remains elusive.

Most of the information about the cosmological properties and parameters comes
from accurate measurements of Cosmic Microwave Background (CMB) anisotropies,
which provide us a snapshot of the early Universe. However, a wealth of information
about the later evolution of the Universe can be gained by studying the interaction
between CMB photons and its Large Scale Structure (LSS), giving rise to the
so-called CMB secondary anisotropies. In this framework, two effects have recently

1As advocated by Peebles in Peebles (2002), the era of precision cosmology is the moment when
"all the important parameters will be established to one significant figure of merit or better,
within the cosmological model."
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1 Introduction

emerged as new promising and powerful tools, the weak gravitational lensing of
CMB photons and the kinetic Sunyeav-Zel’dovich effect.

CMB lensing is the deflection of photons trajectories due to the intervening matter
distribution between the last scattering surface (the edge of the observable Universe)
and us. On one hand it encodes a wealth of information about the geometry and
the growth of structure in the Universe, on the other it represents a nuisance since
it obscures the primordial inflationary polarization B-mode signal. In a period
of less than 10 years, from 2007 - the year that I enrolled at the university - up
to now, CMB lensing science has turned from the detection regime to being a
standard cosmological probe. In fact, it is one of the main driver of the upcoming
experimental efforts represented by a plethora of ground-based high-sensitivity
CMB experiments such as the Simons Array, the South Pole Telescope (SPT-3G),
the Advanced Atacama Cosmology Telescope (AdvACT), the Simons Observatory,
and CMB-S4 devoted to an exquisite mapping of the CMB lensing sky.

The kinetic Sunyeav-Zel’dovich (kSZ) effect arises from the inverse Compton
scattering of CMB photons off of free electrons, and it is specifically sourced by the
bulk motion of these electrons with respect to the CMB rest frame. The large-scale
momentum field is a powerful cosmological probe that can place tight constraints
on the growth of structure and the epoch of reionization in a complementary way
with respect to density fluctuations measurements.

This thesis focuses on how to exploit these two effects to address both cosmological
and astrophysical questions, and it features theoretical work, observations, and data
analysis. Specifically, we will exploit the synergy between the Planck and Herschel
satellites by developing, validating, and applying cross-correlation algorithms to
reconstruct the tomographic signal between the CMB lensing and the positions
of the sub-millimeter selected galaxies. As pictorially shown in Fig. 1.1, such a
signal is detectable because we are basically probing the same underlying field, i.e.
the integrated matter distribution on cosmological scales.2 Galaxies represent the
biased signpost of the DM halos, the most massive of which act as lenses for the
CMB photons, providing a clean and independent measure of the relation between
luminous and dark matter. Cross-correlation measurements are generically less
sensitive to any known (and unknown) systematics, as well as to extract signals
hidden in noisy data, even though the full potential of these measurements is still
under scrutiny, and it is one of the drivers of the present work. We anticipate that
the key aspect of the present work is an accurate interplay between CMB lensing

2As a little disclaimer we note that the (gradients of) gravitational potentials are technically
responsible for the deflection of CMB photons rather than the matter distribution itself,
though in the standard scenario (General Relativity) the two can be related through the
Poisson equation.
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Figure 1.1: Pictorial explanation of the origin of the CMB lensing - galaxy density
cross-correlation signal. While CMB photons collected by the Planck satellite experience
several deflections during their cosmic journey because of the matter perturbations
(represented by DM halos), the dusty enshrouded galaxies that reside in these halos emit
infrared photons captured by Herschel.

datasets as seen from Planck on one side, and an accurate selection of DM tracers
on Herschel data on the other. This results in the most accurate detection of the
cross-correlation to date, which allows to exploit it to set cosmological constraints
from cross-correlations, which will become tighter and tighter in the incoming
years.

The second main topic discussed in this thesis is the impact of modified gravity
theories on the kSZ effect of the CMB. Several approaches to detect and study
the kSZ have emerged on the market, here we focus on the kSZ signal showing up
at small scales in the temperature CMB power spectrum (assuming an efficient
foreground removal by means of multi-frequency observations). By being dependent
on the details of the growth history, especially at late times, and on the epoch of
reionization, the kSZ can be exploited to test gravity on cosmological scales. This
field of research is at the early stages of development, though it is very promising
both as a cosmological and astrophysical tool.

Outline of the Thesis
This thesis is organized as follows. The first two chapters are propaedeutic to
follow the main content. In Ch. 2 we review the basics of the current cosmological
model, carefully focusing on the physics and applications of two of the main pillars,
the CMB and the weak gravitational lensing. The following chapter, Ch. 3, deals
with the statistics of random fields, since these are fundamental to model and
analyze the data, and provides a thorough description of the exploited Planck
and Herschel datasets. The remaining four chapters represent the core of the
work carried out during my Ph.D. and exposed in this thesis. In Ch. 4 we present

3



1 Introduction

the first cross-correlation measurement between the Planck CMB lensing and the
spatial distribution of the high-z (z & 1.5) dusty star-forming galaxies detected
by Herschel-ATLAS, measuring the linear galaxy bias b and reporting a cross-
correlation signal somewhat stronger than expected. We improve this analysis
with updated datasets in Ch. 5, where we attempt a first tomographic approach
by splitting the galaxy sample in two redshift bins and studying the evolution
of the cross-correlation amplitude and galaxy bias over cosmic time. Ch. 6 is
devoted to the methodology and algorithms to investigate the cross-correlation
between CMB and LSS datasets: we discuss the spectral estimation problem in the
needlet framework, developing a MASTER-like technique to address the bias induced
by heavy masking, and compare it with its harmonic counterpart. In Ch. 7 we
consider the capability of the kSZ power spectrum measured by the small-scale
CMB telescope to constrain models of modified gravity, in particular we focus on
a specific f(R) model, the Hu & Sawicki one. Finally, we summarize the main
results and future perspectives in the Conclusions.
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2 Chapter 2

Cosmology and gravitational
lensing

Roll up! Roll up for the
magical mystery tour!
Step right this way!

—Magical Mystery Tour,
The Beatles

Once you become familiar with the fact that the farther out we look in space, the
further back we see in time, the Universe is put in a new perspective as it unravels
before our eyes. Over the centuries we have come to discover that the Universe is
an incredible place and, in my personal view, the most amazing aspect is perhaps
that it can be remarkably well described by mathematical means. In fact, our fair
understanding of the Universe has been summarized in the so-called Standard Hot
Big Bang (HBB) model which rests on the following assumptions:

• On sufficiently large scales the Universe is homogeneous and isotropic (the
Cosmological Principle (CP)).

• General Relativity (GR) is the theory to describe gravitational interactions
on cosmological scales.

• The energy budget of the Universe can be modeled in terms of cosmological
fluids with barotropic equation of state (EoS).

The model states that the Universe evolved from an initial singularity1 and it has
been expanding ever since. As a result, the primordial Universe was in a hotter
and denser state where all species were in thermal equilibrium. This picture is
corroborated by three fundamental observations: the distance dependent recession
of galaxies from which we can infer the expansion of the Universe (encoded in the
Hubble law), the abundances of light elements indicating that the Universe went

1Curiously, the current paradigm does not explain the Big Bang in the HBB (the initial
singularity). In fact, the term HBB was coined by Fred Hoyle, a supporter of the alternative
steady state cosmological model.
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2 Cosmology and gravitational lensing

through an hot and dense phase, and the Cosmic Microwave Background (CMB)
which is interpreted as the afterglow of the primeval plasma.

The theoretical limitations of the HBB model, such as the horizon problem or the
origin of the structure seeds, can be overcome within the inflationary framework
which postulates a period of accelerated expansion in the early Universe, driven by a
transient phase of non-zero vacuum energy provided by the potential of a scalar field,
the inflaton. As a result, adiabatic and Gaussian perturbations were generated from
quantum fluctuations of the inflaton field (as predicted by the simplest inflationary
scenario). Then, according to the current paradigm of structure formation, the
objects we now observe have originated from the gravitational collapse of such
small perturbations in a homogeneous, expanding Universe. The earliest imprint
of the primordial inhomogeneities can be observed in the temperature anisotropies
of the Cosmic Microwave Background (CMB), a snapshot of the Universe at the
time of recombination, allowing for tight constraints on the space of models. This
picture of the infant Universe is however distorted by interactions of CMB photons
with the evolving medium through which they are propagating. An important
effect is the weak gravitational lensing of photons trajectories due to the gradient
in the gravitational potentials associated to the Large Scale Structure (LSS) in the
Universe. Its characteristic effect on the CMB anisotropies pattern enables the
reconstruction of lensing maps which probe the total integrated matter distribution
out to the last scattering surface, hence opening a unique window on fundamental
physics aspects that affect the structure formation in the Universe such as gravity
theories, neutrino sector and Dark Matter (DM).

This Chapter reviews the theoretical framework as well as the key observational
tools in cosmology and it is split in three main sections. Sec. (2.1) describes the
modeling of the background Universe together with its constituents, and it sketches
how structures form and evolve from the initial conditions set by inflation. The
physics of the CMB temperature and polarization anisotropies is discussed in
Sec. (2.2), while the last part, Sec. (2.3), is dedicated to the weak gravitational
lensing as a cosmological probe, focusing on the case of CMB lensing.

2.1 FLRW Cosmology

2.1.1 Zeroth-order cosmology: the Background Universe

The CP is meant to be statistical, that is the Universe is on average homogeneous
(invariant under spatial translations, i.e. the cosmological properties are the same

6



2.1 FLRW Cosmology

throughout) and isotropic (invariant under spatial rotations, i.e. there are no
preferred directions). Homogeneity does not imply isotropy and viceversa; however,
if we accept the Copernican Principle, according to which we do not live in a
particular position in the Universe, then isotropy guarantees the homogeneity of
the whole Universe (Ellis, 1975). While homogeneity can hardly be tested, the
isotropy is well established by observations of the CMB (Bennett et al., 1996), the
X-ray background (Boughn et al., 2002), and the spatial distribution of galaxies
(Marinoni et al., 2012). For a discussion on cosmologies that do not rely on the
Copernican Principle, we refer the reader to Clarkson (2012).
The assumption of the CP allows us to define a universal time variable, the cosmic
time, and to represent the Universe by a time-ordered sequence of three-dimensional
spatial slices, each of which is homogeneous and isotropic. If we also consider the
Universe not to be static, as Hubble observations suggest, then the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric is the most general metric describing
an expanding spacetime. When expressed in the comoving spherical coordinate
system xi = (χ, θ, φ) it has the following form:

ds2 = −c2 dt2 + a2(t)γij dxi dxj (2.1)
= −c2 dt2 + a2(t)

[
dχ2 + f 2

K(χ)(dθ2 + sin2 θ dφ2)
]

(2.2)

= −c2 dt2 + a2(t)
[
dχ2 + f 2

K(χ) dΩ2
]
, (2.3)

where the scale factor a(t) (normalized to a(t0) = 1 today) encodes the expansion
of the Universe and the comoving transverse distance2 can take - depending on the
spacetime curvature - the following forms:

fK(χ) =


sinχ if K = 1
χ if K = 0
sinhχ if K = −1,

(2.4)

Physical size are related to the comoving ones through dp = a(t)χ. The physical
velocity of an object is v = ḋp = ȧχ+aχ̇ ≡ Hdp +vpec, where we defined the Hubble
parameter H ≡ ȧ

a
= da

adt that describes the expansion history of the Universe and
the dot denotes proper time derivative, i.e. ˙≡ ∂

∂t
. It is customary to normalize its

present day value, H0, in terms of the dimensionless parameter h as H0 = 100h
km/s/Mpc. The Hubble parameter naturally introduces a characteristic expansion
timescale given by H−1 which corresponds to the age of the Universe at that time3.
Similarly to distances we can define the conformal time as dη = dt/a(t): with this

2Also referred to as the metric or proper distance.
3It is roughly the time in which the scale factor doubles.
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2 Cosmology and gravitational lensing

definition, the Hubble parameter becomes H ≡ d ln a/ dη = aH.
An important consequence of the Universe expansion is that light gets stretched.
A photon emitted at a time tem with wavelength λem will be observed at a time
tobs with a wavelength λobs given by

a(tobs)
a(tem) = λobs

λem
≡ 1 + z, (2.5)

where the cosmological redshift z was defined.

Distances
Distances in cosmology are not uniquely defined. The comoving distance between
us and a source at redshift z is given by

χ =
∫ 0

t

c dt′
a(t′) =

∫ 1

a

c da′
a′2H(a′) =

∫ z

0

c dz′
H(z′) . (2.6)

In a flat universe (K = 0), the comoving transverse distance is simply equal to the
comoving distance χ. Note also that both fK and χ distances are not observable.
The causality structure of the Universe is determined by the photons trajectories: in
FLRW cosmologies we can define the particle horizon χph as the greatest comoving
distance from which light could have reached us by now (assuming the Big Bang
at ti = 0)

χph =
∫ t

0

c dt′
a(t′) =

∫ a

0

c da′
a′2H(a′) =

∫ ∞
z

c dz′
H(z′) . (2.7)

It is straightforward to see that χph(t) = cη. Regions which are separated by a
distance larger than the horizon size dph(t) = a(t)χph(t) cannot be in causal contact.
It is worth to stress that the particle horizon χph and Hubble radius (aH)−1 are
roughly the same for a FLRW cosmology but are generally different.4 The Hubble
radius is the (comoving) distance over which particles can travel in the course of
one expansion time. So, if two regions are separated by λ > χph, they have never
communicated, whereas if λ > (aH)−1, then they are not in causal contact now.
Cosmologists commonly make use of standard candles, i.e. objects with known
luminosity L (like the Type-Ia SN), and standard rulers, i.e. sources with a known
physical size l (such as the fluctuations in the CMB). These probes allow us to define
the luminosity distance DL as the distance to a standard candle with measured

4Strictly speaking, this is true if the energy budget of the Universe is dominated by a pressure-less
dust component.
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2.1 FLRW Cosmology
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Figure 2.1: Different distance measures for a flat cosmology with cosmological constant
ΩΛ = 0.7 (solid lines) and matter-only (dashed lines).

flux F = L
4πD2

L(z) as:

DL ≡
√

L

4πF = fK(χ)
a

= (1 + z)fK(χ), (2.8)

and the angular diameter distance as the distance to an object of dimension l

subtending and angle δθ:

DA ≡
l

δθ
= a(t)fK(χ) = fK(χ)

1 + z
. (2.9)

From Eq. (2.8) and (2.9) we see that angular diameter and luminosity distances are
not independent but they are related through the Etherington’s distance-duality
relation (Etherington, 1933):

DL = (1 + z)2DA. (2.10)

The redshift dependence of the three distance measures fK(χ), DL, and DA is
shown in (2.1) for a flat cosmology with (solid lines) and without dark energy
(dashed lines) in the form of a cosmological constant Λ, a cosmic component with
vacuum energy-like features that we introduce below, hypothesized to source the
late-time cosmic acceleration. As can be seen, all the distances are enlarged by the
presence of Λ.
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2 Cosmology and gravitational lensing

Friedmann Equations
So far the discussion focussed on the symmetries of the spacetime and led us to
the definition of the FLRW metric. The dynamics of the background Universe,
described by the time evolution of a(t), can be worked out by relating the metric
to the energy content of the Universe. This is achieved via the Einstein’s Field
Equations (EFE)

Gµν ≡ Rµν −
1
2gµνR = 8πGTµν + Λgµν , (2.11)

where Gµν and Rµν are the Einstein and Ricci tensors computed from the metric,
R = Rµ

µ is the Ricci scalar, and Tµν is the Stress Energy Tensor (SET) which
describes the energy content of the Universe. In order to allow for static solutions
(ȧ = 0) of the EFE, which were considered to describe our Universe before Hubble’s
discovery of recession of galaxies, Einstein introduced a cosmological constant term
∝ Λgµν whose presence does not spoil the Bianchi identity. In principle this term
could be equivalently added to the l.h.s., and be interpreted as a geometrical
feature of the spacetime, or to the r.h.s. of Eq. (2.11) as a contribution to the
SET T vac

µν = Λ
8πGgµν . The physical interpretation is still debated but a non-zero

cosmological constant provides nowadays the simplest explanation for the cosmic
acceleration. Homogeneity and isotropy also constrain the form of the SET to be
the one of a perfect fluid at rest in comoving coordinates:

T µν = (ρ+ P )uµuν − Pδµν , (2.12)

where uµ is the relative four-velocity between the fluid and the observer, while
ρ = ρ(t) and P = P (t) are the energy density and pressure in the rest-frame of the
fluid. In this case, the time-time component of the EFE can be solved to yield the
time evolution of the expansion rate H

H2 ≡
(
ȧ

a

)2

= 8πG
3 ρ+ Λ

3 −
K

a2 , (2.13)

while the spatial components of the EFE reduce to a single expression for the
acceleration:

ä

a
= −4πG

3 (ρ+ 3P ) + Λ
3 , (2.14)

where ρ = ∑
a ρa and P = ∑

a Pa are the total energy density and pressure of the
Universe. Eqs (2.13) and (2.14) are usually called the Friedmann equations, from
which we see that the total energy density of a flat Universe (K = 0) corresponds
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2.1 FLRW Cosmology

to the critical density ρcrit defined as

ρcrit = 3H2

8πG. (2.15)

Note that it depends on time and its present value ρ0
crit is approximately 10−27

kg/m3. The critical density is useful to define dimensionless density parameters
for the different species as Ωi(t) = ρi(t)

ρcrit(t) . Cosmological fluids are assumed to be
barotropic, that is, their pressure is given as an explicit function of their energy
density so that we can define the fluid EoS w as P = w(ρ)ρ and the sound speed
as c2

s = δP/δρ. From the conservation of the SET, ∇µTµν = 0, we find that the
time evolution of the energy density obeys

ρ̇+ 3H(ρ+ P ) = 0. (2.16)

The continuity equation applies separately to each species as long as their particle
number is conserved and their energy exchange can be neglected. Then, for a
constant w, the energy density scales as ρ ∝ a−3(1+w), while for a time-dependent
EoS w(a), one has to solve the following integral:

ρ ∝ exp
(
−3

∫ a

0

da′
a′

[1 + w(a′)]
)
. (2.17)

With these scalings and the dimensionless densities, we can rewrite Eq. (2.13) as

H2(z) = H2
0

[
Ωr0(1 + z)4 + Ωm0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ

]
. (2.18)

It is useful to classify the different species according to their contribution to pressure
as:

• Matter: All sources for which the internal pressure is much smaller than
the energy density, |P | � ρ, like the case of a gas of non-relativistic particles
(where the mass m is much bigger than the momentum p). Baryons (i.e.
nuclei and electrons) and DM represent two dust-like species. In this case
w ≈ 0 and the energy density is diluted by cosmic expansion as ρ ∝ a−3.

• Radiation: The term refers to species for which the pressure is about a third
of their energy density, P = 1

3ρ so that w = 1
3 and ρ ∝ a−4. This is the case

of a gas of relativistic particles (for which m� p2), like photons, neutrinos
and massive species while still relativistic.

• Dark Energy: Even though the term indicates a plethora of models which
source the cosmic acceleration, here we consider a cosmological constant

11



2 Cosmology and gravitational lensing

which exerts a negative pressure P = −ρ so that w = −1. In this case the
energy density is constant and does not feel the cosmic dilution, ρ ∝ a0.
The vacuum energy predicted by quantum field theory provides a natural
explanation for Dark Energy (DE), however its expected density ρvac is off
by ≈ 120 orders of magnitude with respect to the observed one.

Cosmic Inventory
What we have sketched above is just a framework that employs few parameters
which are not fixed a priori. Deciding which values the cosmological parameters
should assume for our Universe relies on observational constraints. A combination
of cosmological probes, including observations of the CMB5, the LSS (such as the
Baryonic Acoustic Oscillations (BAO) and galaxy clusters), and the Type-Ia SN
magnitude-redshift relation has now placed strong constraints on the cosmological
parameters. The emerging picture is an almost flat Universe mainly composed of
dark ingredients we cannot yet theoretically account for. Observations show that
the Universe is filled with radiation (Ωr), matter (Ωm), and DE (ΩΛ) with an EoS
that remarkably resembles the one of a cosmological constant wΛ ≈ −1. Ordinary
baryonic matter can account for just 5% of the total budget, while most of the
matter content is in the form of a clustering dark component which appears to
interact only gravitationally or weakly at most. The most popular candidate for
DM is a Weakly Interacting Massive Particle (WIMP), an hypothetical elementary
particle. WIMPs are generally referred to as Cold Dark Matter (CDM) because
their velocity (or thermal pressure) is small so that they behave as a non relativistic
fluid. DM properties have a pivotal role in structure formation: if CDM is dominant,
then larger structures form by accreting smaller structures. Relativistic species are
represented by photons (mainly in the form of CMB) and neutrinos. Summing
up all the ingredients we have ΩK = 1− Ωr0 − Ωm0 − ΩΛ ' 0. As can be seen in
Fig. (2.2), depending on the species that is the most abundant we can identify
three epochs in the cosmic history: the radiation dominated era (a ∝ η), the matter
domination era (a ∝ η2) and the DE dominated era (a ∝ 1/η ). The transitions
between the three eras take place at aeq = Ωr0

Ωm0
= 2.93× 10−4 and aΛ = Ωm0

ΩΛ
= 0.46

(corresponding to zeq = 3410 and zΛ = 1.18, respectively). This concordance model
goes under the name of Λ Cold Dark Matter (ΛCDM) and the main constituents
contribution to the total Ω, as well as other cosmological parameters that will be
defined later on, is listed in Table (2.1).

5From an historical point of view, CMB measurements provide the tightest constraints.
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2.1 FLRW Cosmology

Densities
Parameter Ωb Ωcdm ΩΛ Ωr

Value 0.0490+0.0005
−0.0005 0.2642+0.0005

−0.0005 0.685+0.013
−0.013 ' 9.2× 10−5

Others
Parameter H0 ns 109As τ

Value 67.31+0.96
−0.96 0.9655+0.0062

−0.0062 2.198+0.076
−0.085 0.078+0.019

−0.019

Table 2.1: Parameters of the vanilla ΛCDM cosmology computed from the 2015 baseline
Planck likelihoods for the CMB temperature power spectra plus low-` polarization data
(referred to as Planck TT+lowP in Planck Collaboration (2015c)).

Dark Energy or Modified Gravity?
The accelerated expansion of the Universe, first discovered in 1998 (Riess et al.,
1998; Perlmutter et al., 1999), has raised great interest both in the cosmology and
the physics community as a whole: the mechanism behind the acceleration still
remains elusive and it represents one of the main scientific drivers of the upcoming
experimental efforts. Even though a cosmological constant is consistent with the
current observations, it is essential to consider alternatives from a phenomenological
perspective. Over the last years a classification scheme has emerged to distinguish
between physical scenarios that source the cosmic acceleration: namely the Dark
Energy and Modified Gravity (MG) models. Naively, DE models modify the r.h.s.
of EFE by adding an additional component to the SET, while Modified Gravity
(MG) models alter the l.h.s. of EFE, hence modifying the Einstein-Hilbert action
(i.e. they change GR itself). Giving a thorough overview of all existing theories is
far beyond the purposes of this thesis, but we refer the reader to Silvestri & Trodden
(2009); Clifton et al. (2012) for complete reviews on the topic. Here we just sketch
the main ideas behind the two approaches and, following the prescription of Joyce
et al. (2016), we distinguish between DE and MG by means of the strong equivalence
principle (SEP): any theory which obeys the SEP is classified as DE, while any
theory which violates it as MG. Heuristically, the SEP forbids the presence of fifth
forces.
The most natural extension to the cosmological constant paradigm is that is a
dynamical field (dubbed DE) which relaxes to its present value via some mechanism
(Wetterich, 1988; Ratra & Peebles, 1988). This idea is at the base of many different
theoretical implementations, that all share the presence of a degree of freedom
that drives the background cosmological evolution. Perhaps the most obvious
generalization of the canonical scalar field with a potential is the following:

S =
∫

d4x
√
−gΛ4K(X), (2.19)
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Figure 2.2: Cosmic history of the Universe. The blue curve is the scale factor as a
function of conformal time, obtained by solving the Friedmann equation, while the dashed
lines represent the radiation, matter and cosmological constant densities as function of
conformal time. Adapted from Pettinari (2016).

where we defined X ≡ − 1
2Λ4 (∂φ)2 and K(X) is an arbitrary function: these models

are usually referred to as k−essence (Chiba et al., 2000; Armendariz-Picon et al.,
2000). Similar to the canonical case, if the field has an homogeneous profile
φ = φ(t), these models behave as a (slightly more complicated) perfect fluid with
EoS parameter w given by

w = K

2XK,X −K
. (2.20)

The background expansion history can be reproduced by a suitable choice of the
functional form for K. It is worth to notice that in k−essence models the field
perturbations do not propagate luminally but with a sound speed given by

c2
s = K,X

K,X + 2XK,XX

, (2.21)

allowing for significant differences with ΛCDM in the structure formation.
On the other hand, modifications to GR lead to new physics on small scales (Lue
et al., 2004), introducing new degrees of freedom in the gravity sector. Since
these new particles mediate a fifth-force, MG theories must develop some screening
mechanism in order to evade the very constraining local tests of gravity, like the
ones on Solar System scales. In Ch. (7.3) we will discuss a specific model of MG
named f(R), where the standard Einstein-Hilbert action gets modified by the
presence of a generic function of the Ricci scalar.
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2.1 FLRW Cosmology

2.1.2 First-order cosmology: the Perturbed Universe

The assumption of homogeneity and isotropy significantly simplifies the mathemat-
ical description of the Universe as a whole, however it just holds when looking at
scales larger than approximately 100 Mpc. On smaller scales observations of the
galaxies distribution and of the CMB fluctuations anisotropy pattern tell us that
the Universe is far from being homogeneous, showing a complex structure and rich
hierarchy composed by stars, globular clusters, galaxies, galaxy clusters, filaments
and voids. These structures are thought to be originated from primordial fluctu-
ations through gravitational instability. As we mentioned already, the Universe
is not homogeneous even on larger scales, as it is seen in the anisotropies of the
CMB. Here we sketch the theory of cosmological perturbations, first introduced by
Lifshitz (1946); classic literature on the subject is by Kodama & Sasaki (1984); Ma
& Bertschinger (1995) and the review by Bernardeau et al. (2002).

Relativistic perturbations
The basic idea is to consider small perturbations around the FLRW metric and the
perfect fluid SET and couple them through EFE; after subtracting the background,
we are left with6

δGµν = 8πGδTµν . (2.22)

If the perturbations are small, we can perform a perturbative expansion on both
sides and keep the linear terms. Assuming the background metric to be spatially
flat, the most general form for the metric fluctuations can be written in conformal
coordinates as

ds2 = a2(η){−(1 + 2φ) dη2 + 2Bi dxi dη + [(1− 2ψ)δKij + Eij] dxi dxj}. (2.23)

The perturbations ψ and φ are scalars, while Bi and Eij can be split into scalar,
vector and tensor parts as:

Bi = ∂iB︸︷︷︸
scalar

+ B̂i︸︷︷︸
vector

with ∂iB̂i = 0 (2.24)

Eij = ∂〈i∂j〉E︸ ︷︷ ︸
scalar

+ ∂(iÊj)︸ ︷︷ ︸
vector

+ Êij︸︷︷︸
tensor

with ∂iÊi = ∂iÊij = 0, (2.25)

6We remind that here the dot represents proper time derivative ˙≡ ∂
∂t , while the prime denotes

conformal time derivative ′ ≡ ∂
∂η .
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2 Cosmology and gravitational lensing

where

∂〈i∂j〉E ≡
(
∂i∂j −

1
3δij∇

2
)
E, (2.26)

∂(iÊj) ≡
1
2
(
∂iÊj + ∂jÊi

)
. (2.27)

Scalar fluctuations are induced by density inhomogeneities and exhibit gravitational
instability leading to structure formation. Vector modes are strongly suppressed
by cosmic expansion. Tensor perturbations are an important prediction of the
inflationary paradigm and describe gravitational waves. Scalar-Vector-Tensor (SVT)
decomposition is powerful because it decouples Einstein equations for scalar, vectors
and tensor modes, whose evolutions can be thus treated separately. However, the
problem of relativistic perturbation theory is the gauge redundancy in GR: the
way to deal with such issues is either to fix a gauge (i.e., a coordinate system) in
order to make any two of the four scalar functions φ, ψ, B and E vanish or work in
terms of gauge-invariant perturbations.7 The most common gauge-invariant linear
combinations of these function are the so called Bardeen’s potentials (Bardeen,
1980; Mukhanov et al., 1992):

Φ ≡ φ− 1
a

[a(B − E ′)]′ and Ψ ≡ ψ + a′

a
(B − E ′). (2.28)

On the r.h.s. of Eq. (2.22) we can perturb the SET to linear order like:

δT 0
0 = −δρ (2.29)

δT 0
i = (ρ̄+ P̄ )vi (2.30)

δT ij = δPδij + Πi
j, (2.31)

where bar denotes background quantities and Πi
j is the anisotropic stress tensor. If

we substitute the metric from Eq. (2.23) into EFE and keep only the linear order
perturbations, we find the gauge-invariant perturbation equations (Mukhanov,
2005):

∇2Ψ− 3H(Ψ′ +HΦ) = 4πGa2δT 0
0 (2.32)

∂i(Ψ′ +HΦ) = 4πGa2δT 0
i (2.33)[

Ψ′′ +H(2Ψ + Φ)′ + (2H′ +H2)Φ + 1
2∇

2(Φ−Ψ)
]
δij −

1
2∂i∂j(Φ−Ψ) = −4πGa2δT ij .

(2.34)

7Here, B and E refer to the scalar components of the metric fluctuations and should not be
confused with the E- and B-modes decomposition of the CMB polarization that we will
discuss in Sec. (2.2.1).
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2.1 FLRW Cosmology

These equations can be derived without imposing any gauge conditions and they
are valid in an arbitrary coordinate system.

Conformal Newtonian gauge
Here we work in the conformal Newtonian gauge (or the longitudinal gauge), defined
by choosing B = E = 0 in Eq. (2.23): in this coordinate system the metric takes
the form

ds2 = a2(η)[−(1 + 2Φ)c2 dη2 + (1− 2Ψ)δij dxi dxj]. (2.35)

Note that this metric is similar the usual weak-field limit of GR about Minkowski
space: in the Newtonian limit, Φ plays the role of the gravitational potential, i.e.
it governs the dynamics of non-relativistic objects, while the combination (Weyl
potential) Ψγ ≡ (Ψ + Φ)/2 determines the null geodesics, i.e. light propagation.
Going to Fourier space, the perturbation equations in Eq. (2.32) expressed in the
conformal Newtonian gauge for a mode with comoving wavenumber k become:

k2Ψ + 3H(Ψ′ +HΦ) = −4πGa2δρ (2.36)
k2(Ψ′ +HΦ) = 4πGa2(ρ̄+ P̄ )θ (2.37)

Ψ′′ +H(2Ψ′ + Φ′) + 3
2H

2(1 + w)Φ + k2

3 (Ψ− Φ) = 4πGδρ (2.38)

k2(Ψ− Φ) = 12πGa2(ρ̄+ P̄ )σ, (2.39)

where θ ≡ ∂iv
i = ∇ · v is the velocity divergence and σ is the anisotropic stress, i.e.

the trace-free part of Tij. The source terms on the r.h.s. are meant to be the sum
over all the relevant matter-energy components: in the absence of anisotropic stress8

Φ = Ψ. Conservation of the SET, ∇µT
µν = 0, yields the two following equations

(for µ = 0 and µ = i) in the conformal Newtonian gauge (Ma & Bertschinger, 1995)

δ′ = −(1 + w)(θ − 3Ψ′)− 3H(c2
s − w)δ (2.40)

θ′ = −H(1− 3w)θ − w′

1 + w
θ + c2

s

1 + w
k2δ + k2Φ− k2σ, (2.41)

which are the relativistic generalization of the continuity and Euler equation.
The equations derived above are fully relativistic and provide an adequate descrip-
tion of perturbations on scales larger than the Hubble radius and for relativistic
fluids (like photons and neutrinos).

8In reality, neutrinos develop anisotropic stress after neutrino decoupling (i.e. they do not
behave like a perfect fluid), so that Φ and Ψ differ from each other by about 10 % between the
neutrino decoupling and the matter-radiation equality; during matter domination neutrinos
contribution is negligible and the two potentials approach each other.
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2 Cosmology and gravitational lensing

Looking at the relative size between the perturbation wavenumber and Hubble
radius, we can distinguish two regimes: k � H called super-Hubble modes, and
k � H, referred to as sub-Hubble modes9. In the regime when we are deep within
the Hubble radius, we can take the non-relativistic limit of the perturbed EFE in
order to greatly simplify the description of perturbations. However, these equations
are nonlinear and several efforts have been made in the past to find approximate
solutions for a wide range of scales and redshifts: the most straightforward approach
goes under the name of Standard Perturbation Theory, while other approaches are
the so called Renormalized Perturbation Theory and the Effective Field Theory.
The efforts aimed at improving the perturbations description towards nonlinear
scales are essential for a successful comparison of theory and data in the light of
upcoming LSS surveys such as Euclid, Large Synoptic Survey Telescope (LSST),
Dark Energy Spectroscopic Instrument (DESI), and Wide Field Infrared Survey
Telescope (WFIRST).

Scales smaller than the Hubble radius
Assuming a DM dominated Universe, on sub-Hubble scales the linearized10 Poisson,
continuity and Euler equations for matter perturbations read:

∇2Φ = 3
2Ωm(η)H2(η)δ (2.42)

δ′ + θ = 0 (2.43)
v′ +Hv = −∇Φ. (2.44)

Combining them, one finds a second-order linear differential equation for the linear
density contrast

δ′′ +Hδ′ − 3
2H

2Ωmδ = 0. (2.45)

In this equation only time derivatives appear, hence solutions can be factorized
into a spatial and time-dependent solutions, associated to a growing and decaying
mode; in general we can write

δ(x, t) = D+(η)A(x) +D−(η)B(x), (2.46)

where A(x) and B(x) are two arbitrary functions describing the initial density field,
while D± are the growth and decay functions. In a matter dominated Universe

9Note that in literature super- and sub-Hubble modes are often (improperly) called super-and
sub-horizon modes. See the discussion on the differences in Sec. (2.1.1)

10We assume the densities and velocities to be small, i.e. δ � 1 and v � c.
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2.1 FLRW Cosmology

H = 2/η, so that
D+(η) = η2 and D−(η) = η−3. (2.47)

The explicit time-dependence makes clear why the two solutions are known as
growing and decaying modes: the relevant mode for structure formation is the
former, while the latter quickly fades away. It is customary to normalize the
solution by the growing mode today, such that we define the growth factor as :

D(a) ≡ D+(a)
D+(a0 = 1) . (2.48)

Scales greater than the Hubble radius
What does happen when the perturbation is much larger then the Hubble radius?
Assuming that the pressure depends only on the energy density and the EoS w is a
constant, then we have c2

s = w (which is valid both for matter and radiation). In
this case the first two lines of Eq. (2.32) can be combined to yield

Φ′′ + 3H(1 + c2
s)Φ′ = 0, (2.49)

for which Φ = const is the growing solution. Note that this super-Hubble solution is
independent on w as long as it is constant; in particular, the gravitational potential
is frozen outside the Hubble radius (during radiation and matter domination). It is
also possible to show that a frozen potential at large scales implies that the density
contrast δ ≈ −2Φ = constant as well. Density perturbations are therefore simply
proportional to the curvature perturbation: this is a key ingredient for setting the
initial conditions and to link inflation with perturbation evolution.

Transfer function, power spectra and galaxy bias
So far we just described the qualitative behavior of perturbations in an expanding
Universe and we have seen that it depends on (i) whether the perturbation mode
is larger or smaller than the Hubble radius and (ii) on the species that dominates
the cosmic energetic budget. Let’s summarize the main results here.
The gravitational potential Φ is constant when the modes are outside the horizon:
if they cross the horizon during the radiation era, they start to oscillate and their
amplitude decreases as a2, while during the matter era the potential is constant on
all scales. During the radiation domination the radiation fluctuations are constant
on super-Hubble scales, while they oscillate if k � H; in the matter era, the
subhorizon fluctuations in the radiation density oscillate with constant amplitude
around a shifted equilibrium point. For CDM, we have that perturbations on
super-Hubble scales remain frozen both during radiation and matter domination:
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2 Cosmology and gravitational lensing

this means that the properties of such modes are preserved from the early Universe.
If the perturbations enter the horizon during the radiation-dominated epoch, they
grow logarithmically, δm ∝ ln a, while the growth is a power-law (δm ∝ a) if the
horizon is crossed during the matter domination. When the Universe becomes
dominated by DE, perturbations stop growing. Baryons behavior is somewhat
different because they are coupled with photons through Compton scattering prior
to the decoupling at z ∼ 1100, so that we can treat the photons and baryons as a
single fluid. On sub-Hubble scales they oscillate with decreasing amplitude together
with the photons, while after the decoupling, since the effective baryons pressure
drops to approximately zero, their oscillations are not supported by photons,
enabling gravitational collapse (if the perturbation scale is below the Jeans length).
To account for all the interactions between different components and the effects
at play on all scales, such as causality, one can define a transfer function T (k) as
(Eisenstein & Hu, 1998)

T (k) ≡ δ(k, z = 0)
δ(k, z =∞)

δ(0, z =∞)
δ(0, z = 0) , (2.50)

which can be defined for each species and, by construction, T → 1 for k → 0. In
order to derive T (k) one has to numerically solve the Boltzmann equation (as done
by the Code for Anisotropies in the Microwave Background (CAMB) (Lewis et al.,
2000) or the Cosmic Linear Anisotropy Solving System (CLASS) (Lesgourgues &
Tram, 2011)) but there also can be found fitting formulae in literature, see Bardeen
et al. (1986); Eisenstein & Hu (1998). Then the (matter) power spectrum at a
given time 〈|δ(k, z)|2〉 is proportional to the square of the transfer function and
the growth factor, multiplied by the initial power spectrum Pini(k) set by inflation
(as we will see in Sec. (2.1.3))

Pδδ(k, z) = D2(z)T 2(k)Pini(k). (2.51)

The normalization of the matter power spectrum is determined from observations
and it is common practice to measure the variance of the smoothed overdensity
field over a comoving scale R (usually taken to be 8 Mpc/h) at present as

σ2
R =

∫ d3k

(2π)3Pδδ(k, z = 0)|WR(k)|2, (2.52)

where |WR(k)|2 is a window function which usually is a top-hat filter in real space.

However, we need to bare in mind that our observations rely on using galaxies to
trace the overall matter distribution and as such, they provide a biased picture of
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matter clustering: the statistical relation between the dark and luminous matter
distribution is described by the galaxy bias b. The idea that galaxy formation is
enhanced in dense environment was introduced by Kaiser (1984)11 and generalized
by Bardeen et al. (1986); Sheth & Tormen (1999) in the peak-background split
framework. Fry & Gaztanaga (1993) then proposed that galaxies δg trace matter
distribution δ through a non-linear transformation, δg(x) = F [δ(x)], which can be
Taylor-expanded to obtain the so-called local12 biasing scheme:

δg(x) =
∞∑
i

bi
i! δ

i(x). (2.53)

The perturbative expansion is usually halted at the linear order and one finds
δg = b1δ, so that the galaxy power spectrum reads as Pgg(k) = b2

1Pδδ(k). At
small scales the linear bias relation breaks down because of nonlinear structure
formation and acquires non-local features like the scale dependence, even though
for k . 0.01h/Mpc the linear relation should hold. Measuring the galaxy bias of
the high-z dusty star forming galaxies (DSFG) will be a central topic of Ch. (4)
and (5).

A semi-analytical model that has proven useful to address both nonlinear clustering
and galaxy bias is the halo model, developed from the pioneering work of Neyman
& Scott (1952) and then formalized by Scherrer & Bertschinger (1991); Seljak
(2000) (see Cooray & Sheth (2002) for a comprehensive review). The basic idea is
that at late times all the matter distribution is contained only in virialized DM
objects called halos, and the galaxy distribution can be modeled by an appropriate
scheme for placing galaxies in these DM halos. The fundamental assumption of
the model is that the average halo properties, such as its density profile and its
galaxy content, only depend on the halo mass. As a consequence, the total matter
power spectrum splits into two terms, Pδδ(k) = P 1h

δδ (k) + P 2h
δδ (k) where P 1h

δδ is the
1-halo term describing correlations on small scales between mass within the same
halo and P 2h

δδ is the 2-halo term arising from large-scale correlation of matter in
different halos.

11In order to explain the stronger correlation function of galaxy clusters with respect to the
galaxies one.

12This is because the galaxy overdensity at some position x1 is not affected by the density
displaced in x2, otherwise the bias is said to be non-local and the coefficients bi would carry
spatial dependence.
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2.1.3 Setting the initial conditions: Inflation

The HBB scenario we depicted so far is a remarkably simple model that allows
us to describe the Universe both at the background and at the perturbation
level. Nonetheless, the model is unable to explain the following theoretical and
observational problems which we summarize briefly here below. It is beyond the
scope of this thesis to give a comprehensive description of the physics of the very
early Universe, and our discussion is targeted to define the power spectrum of
scalar perturbations generated during inflation. For a more complete discussion,
we refer the reader to Mukhanov (2005).

Flatness problem. The spatial curvature is observationally constrained to be
negligible (|ΩK | � 1) (Planck Collaboration, 2015c). Moreover, from the Friedmann
equation, one can show that ΩK grows with time, so that the spatial curvature
becomes vanishingly small as time runs backward. This means that a flat geometry
is an unstable solution and if the density today is close to the critical one, as
observations suggest, it had to be much more so in the past, requiring unnatural
initial conditions (fine tuning problem).

Horizon problem. Any correlations between regions separated by a distance
greater than the particle horizon cannot be naturally explained by the standard
model. However, the CMB appears to be isotropic (to 10−5 precision, see Sec. (2.2))
over much bigger scales13.

Monopoles problem. Most extensions of the standard model of particle physics,
like the Grand Unification Theory (GUT), predict the creation of magnetic
monopoles which would be produced during transition phases in the early Universe.
However, no monopole relics have been observed to date.

Structure problem. Despite the solid perturbation theory formalism developed
in the sections above, we lack of a mechanism that explains the formation of the
primordial seeds that eventually lead to the structure formation via gravitational
collapse.

As we already mentioned, these shortcomings are all connected to the Universe
initial conditions and can be solved by postulating the existence of a period of
accelerating expansion in the early Universe, the so-called cosmic inflation (Guth,
1981; Starobinsky, 1982; Linde, 1982). The effect of the cosmic acceleration
predicted by the inflationary models14 is to hugely increase the size of the Universe,
washing out any curvature and stretching the geometry of the Universe in a way
13Barbara Ryden in her cosmology textbook (Ryden, 2003) compares this situation to "inviting

20.000 people to a potluck dinner and they all bring potato salad".
14The term inflation refers to a mechanism rather than a theory of the early Universe.

22



2.1 FLRW Cosmology

that it becomes spatially flat, hence solving the flatness problem. Moreover cosmic
inflation solves the horizon problem by connecting regions that, in the standard
HBB model, would be causally disconnected. This can be achieved if the comoving
Hubble radius at the beginning of inflation is larger than the largest scale observable
today, i.e. the current Hubble radius.15 Inflation also solves the apparent monopole
paradox by completely diluting their density, so that there may be an arbitrarily
small number of relics in the observable Universe. Inflationary models also predict
an almost scale-invariant power spectrum of primordial density perturbations,
which serve as initial conditions to the process of structure formation, as we explain
in some more detail below.
For the cosmic expansion to be accelerated, Eq. (2.14) requires the Universe to be
dominated by a species of negative pressure which fulfills:

ä > 0⇔ ρ+ 3P < 0⇔ w < −1
3 . (2.54)

This can be achieved if we consider a Universe in which a cosmological constant
is dominant at early times. Then, since w = −1, the background expansion is de
Sitter and the scale factor increases exponentially in time, a(t) ∝ eHt. At the end
of inflation, the duration of which can be "tuned" in order to solve the problems
discussed above, the cosmic acceleration comes to an end and the cosmological
constant decays into a thermal mix of elementary particles, leading to a radiation
dominated Universe. This process is the so-called reheating and thereafter the
Universe can evolve according to the standard HBB model.
Over the years a plethora of inflationary models have emerged on the market (for a
comprehensive review of the zoology see, for instance, Martin et al. (2014)), and they
all share the presence of one or more real scalar fields φi, with associated potentials
Vi(φi), which drive the accelerated expansion. The particles corresponding to these
fields are called inflatons.
To sketch how single-field inflation works, consider a Universe dominated by an
homogeneous scalar field φ that behaves as a perfect fluid with

ρφ = 1
2 φ̇

2 + V (φ) (2.55)

pφ = 1
2 φ̇

2 − V (φ). (2.56)

15It is worth to stress that it is not the accelerated expansion that solves the horizon problem:
the causal connection is established before the inflationary epoch and then inflation simply
puts these regions out of reach again.
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2 Cosmology and gravitational lensing

Then, the equation of motion of the scalar field is given by

φ̈+ 3Hφ̇+ dV
dφ = 0, (2.57)

which corresponds to an oscillator equation for a scalar field experiencing the
damping of the Hubble expansion. Since the inflaton dominates the energy budget,
the Friedmann equation becomes

H2 = 8πG
3

[
1
2 φ̇+ V (φ)

]
− K

a2 , (2.58)

and we immediately notice that if a grows by many orders of magnitude then the
term K/a2 → 0, leading to a spatially flat universe. The sought-after accelerated
expansion can be achieved under the slow-roll condition that is, φ̇2 � V (φ). In
this case the wφ ≈ −1 so that the scale factor grows as a ∝ eHt, where H(t) ≈
const for slowly varying potentials. Several potentials can be tailored in order to
satisfy the slow-roll condition and it is common practice to parametrize them with
the two slow-roll parameters defined as

ε ≡ d
dt

( 1
H

)
= − Ḣ

H2 and η ≡ ε̇

Hε
. (2.59)

If both {ε, η} � O(1), then slow-roll inflation takes place.
Cosmic inflation also provides a mechanism to generate primordial density fluctua-
tions Starobinsky (1982); Hawking (1982); Bardeen et al. (1983). These primordial
fluctuations are the result of the microscopic quantum vacuum fluctuations in the
inflation field that, during inflation, get stretched out by the accelerated expansion
and imprinted on super-horizon scales. Eventually, the density fluctuations reenter
the horizon and serve as initial conditions for the growth of structure in the Universe.
The requirement ε� 1 translates into an approximate time-translation invariance
of the background, so that primordial fluctuations generated during inflation are
expected to have the same variance on all scales. We can define the power spectrum
of the primordial comoving curvature perturbation, R = Ψ− 1

3
δρtot

ρ̄tot+p̄tot
, as

PR(k) = k3PR(k)
2π2 = As

(
k

k∗

)ns−1

, (2.60)

where the scale invariance16 is usually expressed in terms of the scalar spectral

16The exact scale invariance is achieved if H and φ are constant in time during inflation; however
this is only an approximation as we know that the inflaton must have a dynamics otherwise
the inflation continues forever.
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2.1 FLRW Cosmology

index ns. As is the amplitude of the primordial scalar fluctuations evaluated at
the the pivot scale k∗ (commonly taken to be 0.05 h/Mpc or 0.02 h/Mpc). The
scalar spectral index is linked to the slow-roll parameters through ns = 1− 6ε+ 2η
and recent measurement from Planck, in combination with other experiments,
measured a value of ns = 0.9655± 0.0062 (Planck Collaboration, 2015c), excluding
ns = 1 at more than 8σ. The primordial power spectrum appearing in Eq. (2.51)
can be taken to be Pini(k) = 2π2k−3PR(k) = PR(k). Another robust and model-
independent prediction from the inflationary mechanism is the production of a
stochastic background of primordial gravitational waves that is also expected to be
nearly scale invariant. Similarly to the case of scalar perturbations in Eq. (2.60),
we define the power spectrum of tensor fluctuations as

Pt(k) = At

(
k

k∗

)nt
. (2.61)

The tensor and scalar fluctuations are related through the tensor-to-scalar ratio
r ≡ Pt(k∗)

PR(k∗) , which represent a valuable probe of the inflation physics since it directly
sets the energy scale for inflation as

V 1/4 ≈
(

r

0.01

)1/4
1016 GeV. (2.62)

The statistics of primordial perturbations is usually characterized in terms of power
spectra, however they are just one of the infinite n-point functions that describe a
random field (see Sec (3.1)). For a Gaussian random field these moments can be
written in terms of the 2-point function, i.e. the power spectrum, while for generic
random fields this is not true. Higher-order moments carry information about the
nonlinear physics of the early Universe and, in particular, about the interactions
of the inflaton. Since the inflationary potential is expected to be very flat, the
interactions are expected to be very small as well. The deviations of primordial
fields from a perfectly Gaussian distribution are known as non-Gaussianities (NG);
for a pedagogical review on primordial NG from inflationary models we refer the
reader to Chen (2010). In this context, CMB has become one of the best laboratory
to study NG: statistics like the bispectrum (3-point function) and the trispectrum
(4-point function) of the CMB can be used to assess the level of primordial NG (and
possibly its shape) on different cosmological scales and to disentangle it from the
one induced by secondary anisotropies and systematic effects (Bartolo et al., 2010).
To date, the tightest constraints on NG, and on the inflationary epoch in general,
are provided by the latest release of Planck collaboration (Planck Collaboration,
2016b).
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2 Cosmology and gravitational lensing

2.2 Cosmic Microwave Background

The CMB was first fortuitously discovered in 1965 by Arno Penzias and Robert
Wilson while working on long-distances radio communications at the Bell Labora-
tories17 (Penzias & Wilson, 1965). It represents the first compelling evidence of the
HBB model proposed by Gamow in the forties (Gamow, 1946) and it is interpreted
as being the leftover radiation of the primordial plasma - when the Universe was in
a hot and dense state - and as such it is characterized by a blackbody spectrum
at a temperature of about 3K . In the early Universe (103 . z . 108), protons
(p), electrons (e−) and photons (γ) were tightly coupled into the so called photo-
baryonic plasma. Protons and electrons interact through Coulomb scattering while
photons were coupled to electrons via Compton scattering (Thomson scattering in
the low-energy limit), maintaining the three species in thermal equilibrium through:

p+ e− ↔ H + γ (2.63)
e− + γ ↔ e− + γ. (2.64)

The thermal equilibrium allows to define a single temperature T for the photo-
baryonic fluid, common to all the species. The cosmic expansion causes the
Universe to cool down, hence diluting the density of photons with energy greater
than the hydrogen ionization energy, Eγ > 13.6 eV. The effect is to spoil the
balance in the reaction in Eq. (2.63), leading to p+ e− → H + γ: this process is
dubbed recombination and happens at a redshift zrec ' 1400 (corresponding to
Trec ' 3900K), when approximately 50% of the free electrons were captured by
protons into hydrogen atoms.18 The Universe becomes transparent to radiation only
when the photon mean free path is larger than the Hubble radius at that time, i.e.
when the electron-photon interaction rate Γ(z) is similar to the Hubble expansion
rate: Γ(zdec) ' H(zdec), where we defined the decoupling redshift. Observation
suggest that the previous condition is satisfied at zdec = 1089.90 ± 0.23 (Planck
Collaboration, 2015c).

Thermal equilibrium ensures that the Spectral Energy Distribution (SED) of the

17The first observations of the CMB were actually made in the forties by McKellar (McKellar,
1940), who studied the population of excited rotational states of CN molecules in interstellar
absorption lines.

18In reality the temperature of recombination is much smaller than the binding energy of the
hydrogen atom, Trec � 13.6 eV. This is mainly because the photon-to-baryon ratio is very
large, ≈ 109, and the high-energy tail of the photons distribution is still efficient in breaking
hydrogen atom down to lower temperatures.
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2.2 Cosmic Microwave Background

CMB photons is well described by Planck’s statistics

Bν(T ) = 2hv3

c2
1

e
hν
kBT − 1

, (2.65)

where h is the Planck constant, ν is the frequency and kB is the Boltzmann
constant. The first measurement of the CMB energy spectrum over the frequency
range ν ∈ [50, 650] GHz has been made in the early nineties with the Far-InfraRed
Absolute Spectrophotometer (FIRAS) instrument (Mather et al., 1994) on board of
the COsmic Background Explorer (COBE) satellite, showing that it has a Planckian
shape with an equivalent brightness temperature of about T = 2.725±0.001 (Fixsen
et al., 1996).

Measurements of the CMB blackbody spectrum can tightly constrain energy
injections in the primordial plasma. While any energy injection prior to ztherm ≈ 107

would have time to be thermalized19, a posterior energy release would cause a
distortion of the black-body spectrum (Danese & de Zotti, 1982; Burigana et al.,
1991). Two main types of spectral distortions are usually distinguished, the y-
and µ-type distortions. The former type arises at z . few× 103 − 104 when the
Compton process ceases to be extremely efficient and is characterized by a constant
temperature decrement at low and an increment at high frequencies. The latter
type of distortion forms at times when the Compton process can still achieve full
kinetic equilibrium with the electrons (z . few × 105), and the CMB spectrum
reaches a Bose-Einstein distribution with non-zero chemical potential µ. After
the constraining FIRAS measurements on the spectral distortions, |µ| < 9× 10−5

and |y| < 1.5 × 10−5 at 95% confidence level, the subject of spectral distortion
has recently attracted a renewed theoretical attention (Chluba & Sunyaev, 2012;
Chluba, 2014) especially in light of upcoming satellite missions aiming at improving
such measurements such as the Primordial Inflation Explorer (PIXIE) (Kogut et al.,
2011) and Cosmic Origin Explorer (CORE).

2.2.1 Primary anisotropies

Temperature power spectrum
The CMB photons carry information about the density, velocity and gravitational
potential inhomogeneities imprinted by inflation to the photo-baryonic plasma.
These tiny inhomogeneities in the plasma source the tiny departures from the

19With the term thermalization we refer to the process that erases possible spectral distortions of
the CMB in the early Universe, hence attempting to restore full thermodynamic equilibrium.
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2 Cosmology and gravitational lensing

average temperature, the so called primary CMB temperature anisotropies20, which
provide a snapshot of the Universe at the time of decoupling.

The CMB temperature sky can be decomposed into

T obs(n̂) = T0

[
1 + (β · n̂) + T (n̂)

T0

]
, (2.66)

where T0 is the mean blackbody temperature, β = v/c is the Earth proper velocity
vector with respect to the CMB rest frame, and T (n̂) is the CMB temperature
fluctuation field. The intrinsic temperature anisotropies are of the order Θ ≡
∆T
T0
∼ O(10−5), approximately two orders of magnitude smaller than the kinematic

dipole signal due to the Doppler boosting. Let us stress that Eq. (2.66) is just an
approximation as it does not include the contribution from foreground emissions
Fν(n̂) that has to be taken into account when dealing with real data.

The intrinsic stochastic nature of the quantum fluctuations during inflation prevents
us from developing a theory that exactly predicts the pattern of T (n̂), nonetheless
the problem can be properly tackled from a statistical point of view. We start
by decomposing our scalar CMB temperature field T (n̂) in spherical harmonics
Y`m(n̂), a frequency-space orthonormal basis for representing functions defined over
the sphere (see Sec. (3.1.2)), such that21

Θ(n̂) =
∞∑
`=2

∑̀
m=−`

aT`mY`m(n̂), where aT`m =
∫

dΩ Θ(n̂)Y ∗`m(n̂), (2.67)

and the angular scale θ and multipole moment ` are related by θ ∼ 1/`.
The randomness of the initial conditions does not allow us to predict any particular
aT`m coefficient, but different theories tell us about the distribution from which they
are drawn. Considering T (n̂) to be a Gaussian real-valued random field, then the
harmonic coefficients are complex Gaussian random variables which satisfy the
following relations:

〈aT`m〉 = 0, ∀{`,m}, (2.68)
Isotropy⇒ 〈aT`maT∗`′m′〉 = δK``′δ

K
mm′C

TT
` , (2.69)

T (n̂) ∈ R⇒ aT`−m = (−1)maT∗`m, (2.70)

where 〈·〉 denotes an average over an ensemble of sky realizations and CTT
` is

the angular power spectrum, i.e. the variance of the aT`m. The CP guarantees

20Here, the term anisotropies refers to the temperature fluctuations as function of the line-of-sight
(LOS) and should not be confused with the notion of statistical anisotropic random fields.

21The monopole ` = 0 and dipole ` = 1 are left out, see Eq. (2.66).
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that the covariance matrix of the harmonic coefficients is diagonal, otherwise the
off-diagonal components would introduce a preferred direction in the sky, hence
breaking the statistical isotropy of the temperature field. Then, the diagonal part
of the covariance matrix, CTT

` contains all the statistical information of the CMB
field. Even if we are allowed to observe only one realization of the stochastic field,
we can construct a power spectrum estimator from a single realization of the sky
by replacing the ensemble average in Eq. (2.68) with the spatial (sample) average,
i.e. averaging over the 2`+ 1 m-samples22. The commonly used power spectrum
estimator reads as (see Sec. (3.2))

ĈTT
` = 1

2`+ 1
∑
m

|aT`m|2, (2.71)

which is unbiased, i.e. 〈ĈTT
` 〉 = CTT

` , and described by a chi-square distribution
with 2`+ 1 d.o.f., while the diagonal covariance is given by

(∆Ĉ`)2 = 2
2`+ 1C

2
` . (2.72)

This result is known as cosmic variance. The harmonic space formalism can easily be
linked to the configuration space 2-point correlation function CTT (θ) ≡ 〈T (n̂)T (n̂′)〉
as23

CTT (θ) =
∑
`m

∑
`′m′
〈aT`maT∗`′m′〉︸ ︷︷ ︸
δK
``′δ

K
mm′C

TT
`

Y`m(n̂)Y ∗`′m′(n̂′)

=
∑
`

CTT
`

∑
m

Y`m(n̂)Y ∗`m(n̂)︸ ︷︷ ︸
2`+1
4π P`(n̂·n̂′)

=
∑
`

2`+ 1
4π CTT

` P`(n̂ · n̂′),

(2.73)

where n̂ · n̂′ = cos θ and we used the addition theorem for spherical harmonics to
express the product of Y`m in terms of the Legendre polynomials P`(x).

We now seek a theoretical framework that allows us to compute the observables
given a set of cosmological parameters. The CMB temperature angular spectrum
can be computed via the LOS integration method (see Seljak & Zaldarriaga (1996)
for an extensive discussion) as

CTT
` = 4π

∫
d log kPR(k)|ΘT

` (k, η0)|2. (2.74)

22It is possible to prove that a random field is ergodic if it can be described by a Gaussian
statistics and if its power spectrum is continuous (Adler & Taylor, 2007).

23Sometimes labelled as w(θ), especially in clustering analysis.
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This method elegantly connects the physics at recombination with the projection
effects by writing the photon transfer functions ΘT

` (k, η) as a time integral of a set
of source functions ST (k, η) multiplied by the spherical Bessel functions j`(x):

ΘT
` (k, η0) =

∫ η0

0
dηST (k, η)j`[k(η0 − η)]. (2.75)

The temperature source term can be split as24 (Lesgourgues & Tram, 2014)

ST (k, η) = g

(
1
4δγ + Φ

)
+ e−τ (Φ̇ + Ψ̇) + g

k
θb, (2.76)

where τ(η) is the optical depth τ =
∫
for a photon emitted at time η and received

at η0 and g(τ) = −τ̇ e−τ is the visibility function which peaks around the last
scattering epoch at η = η∗. The first term in Eq. (2.76) contains the intrinsic
temperature fluctuations 1

4δγ and the gravitational redshift term Φ responsible
for the Sachs-Wolfe effect25. The second term in ST (k, η) is sourced by the time
evolution of the gravitational potentials and gives rise to the so-called integrated
Sachs-Wolfe effect (iSW) effect that, in the case of standard GR where the two
potentials are equal, reduces to SiSW

T → −2e−τ Φ̇ (see Sec. (2.2.2)). Doppler effects
induced by the peculiar motion of the photo-baryonic fluid are given by the θb
term.

By looking at the temperature power spectrum (normalized as DTT` = `(`+1)
2π CTT

` )
shown in Fig. (2.3), we can appreciate a rich structure and distinguish three main
features sourced by few physical effects:

1. the Sachs-Wolfe plateau at ` . 100, that almost faithfully traces the initial
conditions (which have not had enough time to evolve on such big scales);

2. a prominent peak around ` ∼ 100 followed by a series of acoustic peaks,
produced by modes of the density perturbations which have experienced one
or more acoustic oscillations (driven by the competing action of gravity and
pressure) before last scattering;

3. an overall damping of the spectrum for ` & 1000 caused by photon diffusion at
recombination (Silk damping) and the fact that these small-scale fluctuations
have a size comparable to the width of the last scattering surface (it is rather
a layer than a surface).

Polarization power spectra
CMB photons can be, and in fact are, polarized (at the 10% level). CMB polariza-
24Neglecting the contribution from polarization.
25The Sachs-Wolfe term is sometimes considered to be the sum 1

4δγ and Φ.
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tion represents an invaluable source of information on inflation and on the late-time
evolution of the Universe, like reionization and structure formation (through the
lensing effects).

Light polarization is commonly described in terms of the Stokes parameters I,Q, U,
and V . As we have seen, the CMB total intensity I has a blackbody spectrum
along the LOS, while the parameters Q and U describe the linear polarization and
V describes the circular polarization (which is expected to vanish for the CMB).
Note that the temperature T ≡ I/4 is invariant under any rotation in the plane
orthogonal to the direction of propagation n̂, while Q and U are not. In particular,
we have that under a rotation of an angle ψ they transform as

Q′ = Q cos 2ψ + U sin 2ψ, (2.77)
U ′ = Q cos 2ψ − U sin 2ψ, (2.78)

i.e. they rotate as a spin-2 quantity. The problem with polarization is that Q and
U depend on the coordinate system: while such coordinate system is well defined
in the flat-sky limit, it becomes ambiguous on the whole sphere (because it is not
possible to find a rotationally invariant orthogonal basis on the sphere). Zaldarriaga
(1997) and Kamionkowski et al. (1997) have developed an all-sky formalism to
describe correlation function of CMB polarization. Q and U Stokes parameters
can be combined to yield a pair of spin s = 2 quantities as

(Q± iU)′(n̂) = e∓2iψ(Q± iU)(n̂), (2.79)

which can be decomposed on the spin-weighted spherical harmonics sY`m(n̂) as
follows

(Q± iU)(n̂) =
∑
`m

±2a`m ±2Y`m(n̂) =
∑
`m

(aE`m ± iaB`m) ±2Y`m(n̂), (2.80)

where we have defined the E- and B-modes as

aE`m = −1
2(+2a`m + −2a`m) and aB`m = i

2(+2a`m − −2a`m). (2.81)

E-modes are invariant with respect to parity transformations (n̂→ −n̂) while B-
modes flip sign (similarly to the gradient and curl component of the electromagnetic
field). Because of the opposite parity, the cross-correlations between E and B or T
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and B is vanishing. Then, the non-null power spectra are given by

〈aE`maE∗`′m′〉 = δK``′δ
K
mm′C

EE
` , (2.82)

〈aB`maB∗`′m′〉 = δK``′δ
K
mm′C

BB
` , (2.83)

〈aT`maE∗`′m′〉 = δK``′δ
K
mm′C

TE
` . (2.84)

We now turn to the explanation of the polarizing mechanism for CMB photons.
Recall that before recombination the photons interact with free electrons through
Compton scattering (Thomson scattering in the low-energy limit) which does
not induce polarization unless the incident radiation scattering off the electron is
anisotropically distributed. The cross-section of the process can be written as

dσ
dΩ = 3σT

8π |ε̂
′ · ε̂|. (2.85)

where ε̂′ = (ε̂′x, ε̂′y) and ε̂ = (ε̂x, ε̂y) are the polarization vectors of the incoming and
scattered waves respectively, defined in the plane orthogonal to the direction ẑ of
the wave propagation. After the scattering, the ẑ-direction is deflected by an angle
θ defined in the plane that contains both the incident and diffused waves. With this
geometrical configuration, it is possible to show that for an incoming unpolarized
(Q,U, V = 0) radiation of intensity I ′(θ, φ), the net polarization produced by the
scattering is given by (Kosowsky, 1996):

I = 3σT
16π

∫
dΩ I ′(θ, φ)(1 + cos2 θ) (2.86)

Q = 3σT
16π

∫
dΩ I ′(θ, φ) sin2 θ cos (2φ) (2.87)

U = −3σT
16π

∫
dΩ I ′(θ, φ) sin2 θ sin (2φ). (2.88)

Decomposing I ′(θ, φ) on the spherical harmonics basis as I ′(θ, φ) = ∑
`m a`mY`m(θ, φ),

one obtains

I = 3σT
16π

(
8
3
√
πa00 + 4

3

√
π

5a20

)
(2.89)

Q− iU = 3σT
4π

√
2π
15a22, (2.90)

which shows that the presence of a quadrupole term in the distribution of the
incoming radiation intensity can induce a linear polarization state of the scattered
photon.

We can distinguish two main sources of polarization fluctuations at the time of
last-scattering: the density perturbations and the gravitational waves, of scalar
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Figure 2.3: Left panel: CMB temperature angular power decomposed into the scalar
contributions. Right panel: CMB polarization power spectra with reionization at zre = 8
(solid lines) and without (dashed lines). No primordial tensorial power (r = 0) is assumed
to predict the theoretical lines.

and tensorial nature respectively. In the former case, a quadrupole is produced
as photons start to free-stream so that the electrons see an anisotropic incoming
radiation while falling in and out of potential wells; thus, the quadrupole amplitude
is proportional to the gradient of the photon fluid. Primordial gravitational waves,
introduced in the context of inflation in Sec. (2.1.2), are a prediction og inflation
and correspond to traceless and transverse spatial metric perturbations: as the
waves propagate through the photo-baryonic fluid, they create ripples in space-time.
The associated stretching of photons wavelengths originates a quadrupole which
can be converted into polarization via Thomson scattering. The angular power
spectra can be evaluated with the same approach of Eq. (2.74) and are shown in
the right panel of Fig. (2.3). The acoustic oscillations are activated by the same
processes in total intensity through the quadrupole for the E-modes. As concerns
the B-modes, gravitational waves at recombination are able to determine a peak
at the degree scale because they rapidly diffuse when entering the horizon since
they are not supported by pressure.

2.2.2 Secondary anisotropies

After decoupling the mean free path of photons becomes large enough such that they
can be considered to freely propagate in the intergalactic medium. In reality, this
picture is distorted by interactions of the CMB photons with matter on their way
from the last scattering surface to the observer. We refer to these interactions as
secondary anisotropies, since they are not originated in the primordial Universe, and
usually do not include astrophysical foregrounds. For a comprehensive discussion
on CMB secondary anisotropies, we refer the reader to the review by Aghanim et al.
(2008), while here we introduce the main ones. The weak gravitational lensing
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of the CMB is sourced by the intervening LSS and as such can be considered
a secondary anisotropy: since this topic is at the core of this thesis, it will be
extensively discussed in Sec. (2.3.2).

Integrated Sachs-Wolfe Effect
This effect is due to CMB photons crossing a time-varying linear gravitational
potential. The photons will gain energy if the depth of the potential is shallower
by the time they exit, and lose energy otherwise. The change in temperature due
to gravitational redshifting is achromatic, i.e. frequency independent (contrary to
the case of Sunyaev-Zel’dovich effect (SZ) effect), thus it cannot be isolated from
primary anisotropies using only spectral information. We can distinguish two types
of iSW: the early-iSW, sourced by the damping that potentials feel when entering
the horizon during the radiation-matter transition, and the late-iSW, associated to
the decay of potentials at the time the cosmic acceleration kicks in. The effect at
the power spectrum level is to enhance the fluctuations at low `, i.e. large angular
scales. Assuming a flat geometry, the detection of the iSW effect would hint to
the presence of DE (Crittenden & Turok, 1996), thus it represents one of the main
probes of DE and in general of the gravity sector, although it is severely affected by
cosmic variance. The basic idea of (late-)iSW measurements is to cross-correlate,
either reconstructing the 2-point function in harmonic/real domain or with stacking
techniques, CMB temperature maps with external LSS tracers of the large-scale
potentials.

Rees-Sciama effect
The iSW effect concerns the linear evolution of potentials. However, CMB photons
may happen to fly by structures going through nonlinear evolution: if the crossing
time is a non-negligible fraction of the collapsing time-scale, they can experience
the gravitational redshifting. This nonlinear iSW signal goes by the name of Rees-
Sciama effect (RS) (Rees & Sciama, 1968). In the standard structure formation
scenario, nonlinearities tend to appear earlier on smaller scales, so this effect
should show up at high-`; nonetheless, the overall amplitude is very small, ∆T

T
∼

10−6 − 10−7.

Sunyaev-Zel’dovich effect
Perhaps the most studied secondary CMB anisotropy, the SZ effect is generally
originated by inverse Compton scattering of CMB photons off high-energy free
electrons in the hot intracluster gas (Zeldovich & Sunyaev, 1969; Sunyaev &
Zeldovich, 1970). This effect can be broadly split into (i) the thermal SZ (tSZ),
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due to the scattering of CMB photons by the random thermal motion of electrons,
and (ii) the kinetic SZ (kSZ), sourced by the bulk motion of electrons (that we will
thoroughly discuss in Ch. (7)). The CMB temperature change caused by tSZ is
proportional to the gas pressure pe in the galaxy cluster integrated over the LOS
and can be written as

∆TtSZ

TCMB
= f(x)y with x ≡ hν/kBTCMB = ν/(56.78)GHz. (2.91)

Here, the frequency independent part is called the Compton-y parameter

y ≡ σT
mec2

∫
pe d`, (2.92)

while f(x), in the non-relativistic case, reads as

fNR(x) = x
ex + 1
ex − 1 . (2.93)

The tSZ does not induce any CMB temperature change around ν ∼ 217 GHz,
which is called the SZ null, while below and above this frequency the CMB intensity
is decreased and increased respectively. Thus, by looking at CMB temperature
maps at different frequencies above and below the SZ null we can detect galaxy
clusters up to high-z (Planck Collaboration, 2015e); a key feature of this signal is
that is redshift independent. On the other hand, the kSZ induced Doppler boost
of CMB photons is sensitive to the gas momentum integrated along the LOS and
the temperature change, in the non-relativistic regime, reads as

∆TkSZ

TCMB
= −τe

ve
c
, (2.94)

where τe is the optical depth of the cluster. Differently from tSZ, the SED of
the kSZ is Planckian, thus it is impossible to disentangle it from CMB with
multiband measurements; moreover, the amplitude of this signal is at least an order
of magnitude smaller than the tSZ one. kSZ effect has been detected statistically
(Hand et al., 2012) and, recently, the detection at the single cluster level has been
claimed (Adam et al., 2016).

Reionization
After recombination and decoupling the Universe goes from being fully ionized to
neutral, entering the so-called dark ages. However, the birth of the first astrophysical
objects such as stars at later times (around 6 . z . 15, though the details are
stil debated), ionizes the surrounding medium (Gunn & Peterson, 1965). The
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reionization process is not yet fully understood but it is expected to be a patchy
process: the sources emitting energetic photons form ionized bubbles around
them which eventually joint. Since this process happens at times when the free
electron density is sufficiently small, the mean free path of CMB photons is slightly
affected; in particular, CMB photons are re-scattered by these free electrons and the
overall effect is an optical depth dependent suppression of temperature anisotropies,
∆T
T

(n̂) → ∆T
T

(n̂)e−τ(n̂). At the power spectrum level, this translates to a e−2τ

suppression so that the amplitude of the observed spectra is proportional to Ase
−2τ ,

introducing a degeneracy between the primordial power amplitude and the optical
depth which can be broken with lensing or polarization information. The effect of
reionization on polarization anisotropies is to enhance the power at low-`, generating
a bump in the CEE

` and CTE
` power spectra.

2.2.3 Cross-correlations: combining probes with CMB

As we have seen, by being sensitive to a variety of perturbations over different
epochs of the cosmic timeline, the CMB sky contains a wealth of information
about fundamental physics, the origin and the evolution of the Universe. While
primordial anisotropies give us a snapshot of the physics at recombination, the
different secondary effects probe a wide range of environments, from decaying
potentials to intracluster medium, along the light-cone. How can we make the
best of CMB observations and extract all the relevant information? In the context
of precision cosmology, cross-correlation analyses between independent probes
have become a useful tool to infer further information about the Universe while
providing extra safety checks on known (and unknown) systematics affecting the
datasets. This last part can be schematically understood as follows: if we have two
independent observables {X, Y } their estimates will constitute a signal and a noise
term as X̂ = SX +NX (same for Y ). Then, the 2-point correlator is given by

〈X̂Ŷ 〉 = 〈(SX +NX)(SY +NY )〉
= 〈SXSY 〉+�����〈NXSY 〉+�����〈SXNY 〉+�����〈NXNY 〉,

(2.95)

where we used the fact that, for uncorrelated noise, the signal-noise and noise-noise
cross terms are vanishing.26 So, probes combination allows to extract signals
hidden in noisy data, providing us a clean and unbiased measurement of the cross-
correlation signal which is non-null if the observed fields are correlated, e.g. because
26Note that the notion of signal and noise is not uniquely defined and depends on the context of

the study. As an example, Galactic foregrounds contaminating the CMB are considered to
be a nuisance from a cosmological perspective, though they encode a lot of information for a
galactic astrophysicist!
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of common physical mechanisms that source the signal. Note that, depending on
the fields being cross-correlated, the information content can be both cosmological
and astrophysical (as the case of the CMB lensing-galaxy density cross-correlation
which is the main topic of the present thesis), helping to break the degeneracies
affecting the parameters. In particular, CMB secondary anisotropies are expected
to be correlated with a variety of external LSS probes like the galaxy distribution,
the cosmic shear, the Cosmic Infrared Background (CIB), the γ-ray background
anisotropies and HI intensity data. The reason is that all observables are sensitive
in different ways to same underlying fields, i.e. either the distribution of matter
or gravitational potentials, and it is exactly the different sensitivity that allows
cross-correlation measurements to expand the range of investigation in a safer way.
CMB temperature, polarization and lensing data have been cross-correlated with
numerous external datasets for different scientific exploitations, here we focus on
the CMB lensing, in particular on its cross-correlation with the spatial galaxy
distribution.

CMB lensing vs. LSS
As we will see in Sec. (2.3.2), the LSS leaves an imprint on CMB anisotropies
by gravitationally deflecting CMB photons during their journey from the last-
scattering surface to us (Lewis & Challinor, 2006). The net effect is a remapping
of the CMB observables, dependent on the gravitational potential integrated along
the LOS, and it is sensitive to both the geometry of the Universe and to the growth
of the LSS. On the other hand, since CMB lensing is an integrated quantity, it
does not provide direct information on the evolution of the large scale gravitational
potential. However, in the standard structure formation scenario galaxies reside in
DM halos, the most massive of which are the signposts of larger scale structures
that act as lenses for CMB photons. Then, it is clear that the cross-correlation
between CMB lensing maps and tracers of LSS δg enables the reconstruction of the
dynamics and of the spatial distribution of the gravitational potential, providing
simultaneous constraints on cosmological and astrophysical parameters (Pearson
& Zahn, 2014), such as the bias factor b relating fluctuations in luminous and
dark matter (Eq. (2.53)), that can be exploited to derive the effective halo masses
associated with the tracer populations. This can tighten tests of the time evolution
of DM density fluctuations and through that, give constraints on the dynamics of
the DE at the onset of cosmic acceleration as well as on neutrino masses. Although
the bias factors can also be well determined from the autopower spectra, we
must always beware of unaccounted systematic effects. These cross-correlation
measurements are not prone to systematics that are not correlated between the
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two data sets, thus they are complementary to galaxy clustering measurements and
a comparison of the bias estimates from auto- and cross-correlations can uncover
unforeseen systematics, both at the data and theory level, on either side. We refer
to Sec. (4.2) for the mathematical modeling of the expected cross-correlation signal.

Let us note here that the peculiarity of the sources exploited in the analyses
presented in this thesis (see Ch. (4) and (5)) is that their sub-mm flux density
remains approximately constant with increasing redshift for z & 1 (strongly negative
K-correction), so that sub-mm surveys have the power of piercing the distant
Universe up to z & 3–4 where the CMB lensing is most sensitive to matter
fluctuations. In contrast, the available large–area optical/near-infrared galaxy
surveys and radio source surveys reach redshifts only slightly above unity and
therefore pick up only a minor fraction of the CMB lensing signal whose contribution
peaks at z > 1 and is substantial up to much higher redshifts. Quasars allow us
to extend investigations much further, but are rare and therefore provide a sparse
sampling of the large-scale gravitational field.

CMB lensing itself was first detected by means of cross-correlation analysis (Smith
et al., 2007; Hirata et al., 2008). Since the first detections, several analyses have
been carried out with the distribution of tracers observed at different wavelengths,
including optically-selected sources (Sherwin et al., 2012; Bleem et al., 2012; Planck
Collaboration, 2014c; Giannantonio & Percival, 2014; Omori & Holder, 2015; Kuntz,
2015; Giannantonio et al., 2016; Pullen et al., 2016; Baxter et al., 2016; Singh
et al., 2016), sub-mm selected sources (Bianchini et al., 2015, 2016b), radio-selected
sources (Feng et al., 2012; Planck Collaboration, 2014c; Allison et al., 2015), Infrared
(IR)-selected sources (Bleem et al., 2012; Geach et al., 2013; DiPompeo et al., 2014;
Giannantonio & Percival, 2014; DiPompeo et al., 2016), X-ray-selected galaxy
clusters (Planck Collaboration, 2014c). In Table (2.2) we provide a list of the
reported cross-correlations studies between CMB lensing and the galaxy density
field, with a summary of the analyses features. Even though the full potential of
these measurements is yet to be unravelled, cross-correlation analyses have already
been exploited to measure the redshift evolution of the galaxy bias (see Bianchini
et al. (2015); Kuntz (2015); Bianchini et al. (2016b); DiPompeo et al. (2016)), to
test GR by studying the growth of structure as done by Giannantonio et al. (2016)
or measuring the relation between curvature fluctuations and velocity perturbations
with the Eg statistics (see Pullen et al. (2016)), to improve the calibration of the
cosmic shear data together with CMB lensing - galaxy lensing data (Baxter et al.,
2016), and to study primordial-NG (Giannantonio & Percival, 2014). It is worth
to stress that all the mentioned analyses have reconstructed the 2-point statistics,
either in real (wκg(θ)) or harmonic space (Cκg

` ): a step towards new statistical
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domain for cross-correlation analyses will be taken in Ch. (6), where we develop a
needlet-based spectral estimator.

As pointed out by Song et al. (2003), the CMB lensing kernel is well-matched
with the one of the unresolved dusty galaxies comprising the CIB since both are
tracers of the large-scale density fluctuations in the Universe. In particular, Planck
measurements suggest that the correlation between the CMB lensing map and
the CIB map at 545 GHz can be as high as 80% (Planck Collaboration, 2014d).
Other statistically significant detections have been recently reported by Holder
et al. (2013); Hanson et al. (2013); Ade et al. (2014a); van Engelen et al. (2015).
Even though there are connections between these studies and those presented
here, one needs to bear in mind that, differently from galaxy catalogs, the CIB
is an integrated quantity and as such it prevents a detailed investigation of the
temporal evolution of the signal. Moreover, the interpretation of the measured
cross-correlation is actually more challenging since the precise redshift distribution
of the sources contributing to the sub-mm background is still debated. For the
sake of completeness, we recall that CIB-galaxy density cross-correlation has been
measured to date, see Serra et al. (2014); Schmidt et al. (2014); these studies can
be useful to infer the redshift distribution of sources contributing to the CIB and
the star formation history.

Recently, CMB lensing has also been combined with galaxy shear data (Hand
et al., 2015; Liu & Hill, 2015; Kirk et al., 2016; Harnois-Déraps et al., 2016),
demonstrating its complementarity to galaxy shear measurements. They both
directly probe the underlying matter field, being insensitive to the galaxy bias and
potentially providing constraints on a combination of the mean matter density
Ωm and the amplitude of matter fluctuations σ8. Forecasts analyses have shown
(Vallinotto, 2012; Das et al., 2013; Schaan et al., 2016a) that by combining CMB
lensing, galaxy clustering and cosmic shear data, it is in principle possible to
calibrate shear multiplicative bias, as well as other galaxy related parameters
like photo-z errors, while still providing stringent constraints on cosmological
parameters. Other cross-correlations involving CMB lensing have been measured in
combination with the γ-ray sky (Fornengo et al., 2015), which represents an high-z
leverage to quantify the impact of astrophysical sources to the 〈γδg〉 correlation
for annihilating DM-related studies, and with tSZ data of Compton-y parameter,
〈κCMBy〉 (Hill & Spergel, 2013; Van Waerbeke et al., 2014).
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Authors κCMB data δg data Redshift fsky

Smith et al. (2007) WMAP3 NVSS (RGs) ∼ 1.1 0.58
Hirata et al. (2008) WMAP3 SDSS (LRGs) 0.2 < z < 0.7 0.16

SDSS (QSOs) z < 2.7 0.15
NVSS (RGs) ∼ 1.0

Bleem et al. (2012) SPT Spitzer
BCS zmed ∼ 0.5 0.001
WISE

Feng et al. (2012) WMAP1-7 NVSS (RGs) zmed ∼ 1.1 0.58
Sherwin et al. (2012) ACT SDSS-XDQSO zmed ∼ 1.4 0.008
Planck Team 2013 Planck 2013 NVSS (RGs) zmed ∼ 1.1 0.7

MaxBCG (GCs) 0.1 < z < 0.3 0.2
SDSS (LRGs) zmed ∼ 0.55 0.25

WISE zmed ∼ 0.18 0.6
Geach et al. (2013) SPT/Planck2013 WISE (QSOs) zmed ∼ 1.1 0.06
DiPompeo et al. (2014) Planck 2013 WISE (QSOs) zmed ∼ 1 0.08
Giannantonio & Percival (2014) Planck 2013 NVSS (RGs) zmed ∼ 1.1 0.7

2MASS (IR) zmed ∼ 0.1 0.2
SDSS-CMASS z̄ ∼ 0.55 0.25

Bianchini et al. (2015) Planck 2013 H-ATLAS (FIR) z ≥ 1.5 0.01
Omori & Holder (2015) Planck 2013/2015 CHFTLens (Optical) 0.2 < z < 1.2 0.004
Kuntz (2015) Planck 2013/2015 CHFTLens (Optical) 0.2 < z < 1.2 0.004
Allison et al. (2015) ACT+ACTPol FIRST (RGs) zmed ' 1.5 . 0.01
Giannantonio et al. (2016) Planck 2015/SPT DES-SV (Optical) 0.2 < z < 1.2 (Tomo) 0.004
Bianchini et al. (2016b) Planck 2015 H-ATLAS (FIR) z ≥ 1.5 (Tomo) 0.01
Pullen et al. (2016) Planck 2015 SDSS-CMASS zmed = 0.57 0.2
Baxter et al. (2016) SPT-SZ DES-SV 0.4 < z < 0.8 0.03
Singh et al. (2016) Planck 2015 SDSS-CMASS/LOWZ zmed = 0.57/0.30 0.2

Table 2.2: Current observational status of the measurement of the CMB lensing - galaxy
density cross-power.

2.3 Weak Gravitational Lensing

Gravitational lensing is the deflection of light bundles as they propagate through
a gravitational field. This effect is a spectacular consequence of Einstein’s GR,
although it can also be interpreted within the Newtonian theory of gravity. The
basic idea in GR is that photons propagate along geodesics, i.e. the shortest path
between two events. While in vacuum the geodesics are simply straight lines, the
presence of matter alters the spacetime fabric and, as a consequence, geodesics
becomes slightly bent.
Since the Universe today is rather empty, most of the photons only feel weak
gravitational potentials and hence, their trajectories experience tiny deflections
even over cosmological scales (as the case of CMB photons that we will consider
later). However, on small scales, these trajectories happen to pass close to massive
structures (like a star, a galaxy or a galaxy cluster) and feel strong gravitational
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fields that result in more dramatic deflections. For a comprehensive overview of
gravitational lensing, see the review by Bartelmann & Schneider (2001).

2.3.1 The lens equation

To illustrate the lensing basics we follow Shirasaki (2016) and consider the trajectory
of light from a distant source object in the presence of inhomogeneous matter
distribution. The path of the photon is determined by the null geodesic equation,

d2xµ

dλ2 = −Γµαβ
dxα
dλ

dxβ
dλ , (2.96)

gµν
dxµ
dλ

dxν
dλ = 0, (2.97)

where Γµαβ denotes the Christoffel symbol evaluated from the metric gµν as

Γµαβ = gµν
2 (gµα,β + gµβ,α − gαβ,µ), (2.98)

with ∂gµα/∂xβ ≡ gµα,β. If the gravitational potential Φ associated to the lens is
small enough (|Φ| � c2), the metric that describes an inhomogeneous expanding
Universe can be written as follows:

ds2 = −
(

1 + 2Φ
c2

)
c2 dt2 + a2(t)

(
1− 2Φ

c2

)[
dχ2 + f 2

K(χ) dΩ2
]
. (2.99)

Considering small deflection angles, we can approximate dΩ2 ≈ (dθ1)2 +(dθ2)2 (this
is the so called flat-sky approximation). Now suppose that the spatial coordinates
of the incoming light ray are xi = (θ1, θ2, χ), then the derivative with respect to
the affine parameter λ reads as

d
dλ = dχ

dλ
d

dχ (2.100)

= dχ
dx0

dx0

dλ
d

dχ (2.101)

= −P
0

a

d
dχ, (2.102)

where P 0 = dx0/ dλ. As a result, the transverse components (i = 1, 2) of the null
geodesic equation can be expressed as a differential equation with respect to the
comoving distance χ. By Taylor expanding about θ1, θ2, and Φ/c2 up to first order
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in Eq. (2.96), we can obtain the following expression

d2(fKθi)
dχ2 +KfKθ

i = − 2
c2

∂Φ
∂(fKθi)

. (2.103)

The solution of Eq. (2.103) is given by the so called lens equation

βi = θi − 2
c2

∫ χ

0
dχ′∂iΦ(χ′)fK(χ− χ′)

fK(χ) , (2.104)

where βi represents the unlensed position of the source on the sky and ∂i denotes
the derivative with respect to fK(χ)θi. For a fixed source position β, Eq. (2.104)
is a nonlinear equation for the image position θ that, in certain cases, allows more
than one solution, i.e. the source is multiply imaged. The local properties of the
lens mapping are given by the Jacobian matrix A

Aij ≡
∂βi

∂θj
=
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 (2.105)

=
1− κ 0

0 1− κ

+
−γ1 −γ2

−γ2 γ1

 (2.106)

where we have introduced the components of the shear γ ≡ γ1 + iγ2 = |γ|e2iφ, and
the convergence κ: the former describes an anisotropic stretching of the shape of
the image while the latter represents a magnification of its size. In the presence of
the both components, a unitary radius circular source is distorted into an elliptical
image with major and minor axis given by (1− κ± |γ|)−1, oriented along the angle
φ, and amplified by a factor µ = (detA)−1 = [(1− κ)2 − γ2]−1. Eq. (2.104) enables
us to link the components of A to the second order derivative of the gravitational
potential as follows:

Aij = δKij − Φij, (2.107)

Φij = 2
c2

∫ χ

0
dχ′G(χ, χ′)∂i∂jΦ(χ′), (2.108)

G(χ, χ′) = fK(χ− χ′)fK(χ′)
fK(χ) , (2.109)

from which we find that 2κ = Φ11 + Φ22. Since the gravitational potential is related
to the matter density contrast through Poisson equation (Eq. (2.42)) as

∇2Φ = 3H2
0

2 Ωm0
δ

a
, (2.110)
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the convergence in a given direction n̂ can be written as a weighted integral of δ
along the LOS:

κ(n̂, χ) =
∫ χ

0
dχ′W κ(χ′)δ(χ′). (2.111)

The lensing kernel that weights the density contrast reads

W κ(χ) = 3H2
0 Ωm0

2c2 g(χ)(1 + z), (2.112)

where lensing efficiency g(χ) is an integral function of geometrical factors and the
radial distribution of the sources dN

dz (χ):

g(χ) = fK(χ)
∫ ∞
χ

dχ′ dNdz
fK(χ′ − χ)
fK(χ′)

dN
dz (χ′)→δD(χ′−χs)−−−−−−−−−−−→ fK(χ)fK(χs − χ)

fK(χs)
.

(2.113)
Note that the redshift distribution of sources has to be normalized such that∫

dχdN
dz (χ) = 1 and the equality that follows the arrow in Eq. (2.113) holds only if

all sources are at a single redshift zs; as we will see in Sec. (2.3.2), in the case of
CMB lensing the last-scattering surface can be considered as a single source plan
at zs = z∗ ' 1090.

2.3.2 CMB Lensing

We now move on to tackle the weak gravitational lensing of the CMB temperature
and polarization anisotropies. After recombination at z ∼ 1100, CMB photons can
freely propagate through an evolving clumpy medium before being collected by
our telescopes. The LSS leaves an imprint on CMB anisotropies by gravitationally
deflecting CMB photons during their journey from the last-scattering surface to
us. The net effect is a remapping of the CMB observables, dependent on the
gravitational potential integrated along the line-of-sight. Thus the effect is sensitive
to both the geometry of the Universe and to the growth of the large-scale structure
(see Blanchard & Schneider (1987); Cole & Efstathiou (1989) and Lewis & Challinor
(2006) for a review); lensing can also be used to break the degeneracy of geometrical
parameters that CMB measurement alone cannot (Stompor & Efstathiou, 1999;
Sherwin et al., 2011). Moreover, lensing introduces non-Gaussian features in
the CMB anisotropy pattern which can be exploited to get information on the
intervening mass distribution (Hu & Okamoto, 2002; Hirata & Seijak, 2003), which
in turn may give hints on the early stages of cosmic acceleration (Acquaviva &
Baccigalupi, 2006; Hu et al., 2006).

CMB lensing is a unique cosmological probe because:
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1. CMB, which acts as a backlight, can be considered as a single source plane
extended across all sky at a known redshift;

2. it represents the only source plane for lenses at very high redshifts;

3. it is mainly sourced by scales in the linear regime.

However, it is an integrated measure of the matter distribution and it also con-
verts the polarization E-modes into B-modes, hindering the power of primordial
gravitational induced B-modes.

CMB lensing potential
Let us recall here some useful definitions previously introduced to illustrate the
CMB weak gravitational lensing. In FLRW cosmologies a light ray approaching a
matter density distribution is deflected by an angle

δβ = −2δχ∇⊥Φ, (2.114)

where δβ is the local deflection, ∇⊥ is the spatial gradient on a plane perpendicular
to the light propagation direction, and δχ is a small distance along the photon path.
The comoving distance that the source appears to have shifted from its actual
position because of lensing is fK(χ∗ − χ)δβ = fK(χ∗)δθ, where χ∗ is the comoving
distance of the source. Considering that a photon undergoes several deviations
during its journey and that we are in the weak lensing regime, we can evaluate the
total deflection angle α as

α = −2
∫ χ∗

0
dχfK(χ∗ − χ)

fK(χ∗)
∇⊥Φ(χn̂, η0 − χ), (2.115)

where η0 − χ is the conformal time at which the photon was at position χn̂.

Eq. (2.115) is cumbersome because it requires the integral to be evaluated along
the perturbed light path. Nonetheless, since we are working at first order in Φ
(small deflections), we can compute the integral over the unperturbed path of the
photon. From the photons geodesic equation (2.96), one has

χ = η0 − η − 2
∫ η

η0
dη′Φ(η′). (2.116)

The Born approximation is equivalent to set χ = η0 − η, i.e. calculating the
deflection along the unperturbed light path, so that the transverse derivative in
Eq. (2.115) becomes the covariant derivative over the LOS n̂, ∇⊥ → ∇n̂/fK(χ).
The validity of the Born approximation in the context of CMB lensing has been
recently investigated by Calabrese et al. (2015) by means of multiple planes ray-
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tracing techniques, who have shown the differences to be small. Recently, CMB weak
lensing beyond-Born approximation has been also investigated from a theoretical
point of view by Hagstotz et al. (2015); Pratten & Lewis (2016); Marozzi et al.
(2016).

Assuming an average potential well to be |Φ| ∼ 10−4 and large ∼ 300 Mpc, a back
of the envelope calculation shows that the number of independent deflections is
∼ 14000/300 ∼ 50 (where 14000 Mpc is the comoving distance to the last-scattering
surface), meaning that the total r.m.s. deflection should be ∼

√
50×10−4 ∼ 7×10−4,

or about 2 arcmin. These deflections are coherent across a scale given approximately
by the angular scale subtended by a typical 300 Mpc structure located halfway to
the last-scattering surface, ∼ 300/7000 ∼ 2 deg. From the deflection angle α we
can define the lensing potential φ(n̂) as

φ(n̂) ≡ −2
∫ χ∗

0
dχ fK(χ∗ − χ)
fK(χ∗)fK(χ)Φ(χn̂, η0 − χ), (2.117)

so that we can relate the two as α(n̂) = ∇n̂φ(n̂) (from now on ∇ ≡ ∇n̂). The
lensing potential can be expanded into multipole moment (all-sky) or Fourier
(flat-sky):

φ(n̂) =
∑
`m

φ`mY`m(n̂), (2.118)

φ(n̂) =
∫ d2`

(2π)2φ(`)ei`·n̂, (2.119)

where (`,m) and ` are conjugate to the real space unit vector n̂ in all-sky and
flat-sky respectively (see Hu (2000b)). If we consider the primordial perturbations
to be Gaussian, then the assumption of linear evolution implies that the lensing
potential is also Gaussian, and all the information about the field is carried by its
power spectrum:

〈φ`mφ`′m′〉 = δK``′δ
K
mm′C

φφ
` , (2.120)

〈φ(`)φ(`′)〉 = (2π)2δD(`− `′)Cφφ
` . (2.121)

Cosmology predicts the shape and the amplitude of the CMB lensing power
spectrum, which depends on geometrical factors and on the metric perturbation
evolution (Lewis & Challinor, 2006):

Cφφ
` = 16π

∫
d log kPR(k)

[∫ χ∗

0
dχTΦ(k; η0 − χ)j`(kχ) fK(χ∗ − χ)

fK(χ∗)fK(χ)

]2

. (2.122)
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Here j`(kχ) is the spherical Bessel function and TΦ(k; η) is the linear theory
transfer function such that the gravitational potential at later epoch is Φ(k; η) =
TΦ(k; η)R(k), where R(k) being the primordial comoving curvature perturbation
(set at the inflationary epoch) with power spectrum PR(k). The CMB lensing
potential power spectrum, shown in Fig. (2.5), can be related to the deflection
angle and to the convergence κ(n̂) = −1

2∇
2φ(n̂) ones through27

Cαα
` = `(`+ 1)Cφφ

` , (2.123)

Cκκ
` = [`(`+ 1)]2

4 Cφφ
` , (2.124)

where we used the following relations (Hu, 2000b)

α`m = −i
√
`(`+ 1)φ`m, (2.125)

κ`m = −`(`+ 1)
2 φ`m, (2.126)

(2.127)

and assuming the curl component of the deflection angle to vanish.

CMB lensed power spectra
The effect of gravitational lensing on CMB photons can be described as a remapping
of the unlensed temperature anisotropies Θ(n̂) by the deflection field α(n̂). By
Taylor expanding in terms of the displacement field we get

Θ̃(n̂) = Θ(n̂ +α(n̂))
= Θ(n̂ +∇φ(n̂))

= Θ(n̂) +∇iφ(n̂)∇iΘ(n̂) + 1
2∇

iφ(n̂)∇jφ(n̂)∇i∇jΘ(n̂) +O(φ3),

(2.128)

where the tilde denotes a lensed quantity. In the flat-sky approximation Eq. (2.128)
reads as

Θ̃(`) ≈ Θ(`)−
∫ d2`′

2π `
′ · (`′ − `′)φ(`− `′)Θ(`′)

− 1
2

∫ d2`1
2π

∫ d2`2
2π `1 · [`1 + `2 − `]`1 · `2Θ(`1)φ(`2)φ∗(`1 + `2 − `),

(2.129)

from which we see that lensing affects the unlensed multipoles by coupling different
scales. For a fixed realization of lenses, the mode-coupling effect is to introduce
27Sometimes the deflection angle α(n̂) is denoted as d(n̂).
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Figure 2.4: Effect of the weak gravitational lensing on the temperature angular power
spectrum as function of the phenomenological lensing amplitude parameter AL that
rescales the fiducial CMB lensing power spectrum as Cφφ` → ALC

φφ,ΛCDM
` .

off-diagonal components into the covariance matrix of observed temperature, and
large-wavelength mode of the lensing potential correlate CMB modes on smaller
scales. The Taylor expansion performed above remarkably simplifies the description
of the lensing effect on CMB anisotropies, however it is not accurate on all scales,
especially when looking at scales comparable to the deflections.

Assuming that both Θ̃(`) and φ(`) have the statistics of an isotropic, Gaussian
random field and are uncorrelated28, we find

〈Θ̃(`)Θ̃∗(`′)〉 = δD(`− `′) (2.130)

C T̃ T̃
` ≈ (1− `2Rφ)CTT

` +
∫ d2`′

2π [`′ · (`− `′)]2Cφφ
|`−`′|C

TT
`′ , (2.131)

where we have defined half the total deflection angle power Rφ

Rφ ≡ 1
2〈|∇φ|

2〉 = 1
4π

∫ d`
`
`4Cφφ

` ∼ 3× 10−7. (2.132)

The lensed temperature power spectrum to first-order in Cφφ
` differs from the

unlensed one by a term proportional to Rφ and by a convolution of the unlensed
temperature gradient power spectrum with the deflection power spectrum. As
shown in Fig. (2.4), the overall effect is to smooth the CMB acoustic peaks and to

28We neglect the correlation 〈Tφ〉 induced by secondary anisotropies such as the iSW and
Sunyaev-Zel’dovich effects.
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boost the small-scale power in the damping tail. Since weak lensing preserves the
brightness but alters the photons directions, the total variance of the temperature
field is conserved even though the power is reshuffled among different scales. For
an exact calculation of the lensed spectra in the curved sky framework, which relies
on real space correlation function methods and is commonly adopted in modern
Boltzmann codes, we refer the reader to Challinor & Chon (2002); Challinor &
Lewis (2005).

What about the polarization? The lensing effect on the CMB polarization is also
described as a remapping of the Stokes parameters Q± iU by the deflection field.
Assuming no primordial B-modes, i.e. CBB

` = 0, the lensed power spectra to lowest
order in Cφφ

` are (Hu, 2000b)

C T̃ Ẽ
` = (1− `2Rφ)CTE

` +
∫ d2`′

(2π)2 [`′ · (`− `′)]2Cφφ
|`−`′|C

TE
`′ cos 2(ϕ`′ − ϕ`′),

(2.133)

CẼẼ
` = (1− `2Rφ)CEE

` +
∫ d2`′

(2π)2 [`′ · (`− `′)]2Cφφ
|`−`′|C

EE
`′ cos2 2(ϕ`′ − ϕ`′),

(2.134)

CB̃B̃
` =

∫ d2`′

(2π)2 [`′ · (`− `′)]2Cφφ
|`−`′|C

EE
`′ sin2 2(ϕ`′ − ϕ`′), (2.135)

where ϕ` and ϕ`′ are the angles between n̂ and ` and `′ respectively. Eq. (2.135)
tells us that the lensing of pure E-modes generates B-mode polarization, even if
initially absent. Qualitatively, lensing acts on CEE

` and CTE
` similarly to what

happens to the temperature: the unlensed spectra are convolved with the lensing
potential one, with a resulting blurring of spectral features and power shift to the
damping tail. Since the acoustic peaks in CEE

` are sharper than the temperature
ones, the fractional changes in the lensed E-modes are O(30%) near the acoustic
peaks (Challinor & Lewis, 2005).

Lensing induces an E- to B-modes power leakage which represents a contaminant
in the search for gravitational induced B-modes on large angular scales. In order to
get a rough estimate of the contamination, consider that the unlensed CEE

` peaks
around ` ∼ 1000, so for `� 1000 we can assume |`| � |`′| for the lensed B-mode
and find

CB̃B̃
` ≈

∫ d2`′

(2π)2 |`
′|4Cφφ

`′ C
EE
`′ sin2 2(ϕ`′ − ϕ`′)

= 1
4π

∫ d`′
`′
`′4Cφφ

`′ `
′2CEE

`′ ,

(2.136)

which is independent of `, corresponding to a B-modes white noise power spectrum

48



2.3 Weak Gravitational Lensing

101 102 103

`

10−10

10−9

10−8

10−7

10−6
C
κ
κ

`
Linear

NonLinear

0 500 1000 1500 2000 2500 3000

`

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

∆
C
`/
C
`

TT

EE

Figure 2.5: Left panel: Angular power spectra of the CMB lensing convergence evaluated
considering linear (dashed line) and nonlinear (solid line) matter evolution. Right panel:
Comparison between the lensed and unlensed temperature (blue line) and polarization
E-modes (green line) power spectra, showing the signatures induced by weak lensing.

of amplitude around CBB
` ∼ 2× 10−6 µK2 for an instrumental white noise level of

∼ 5µKarcmin.

CMB lensing reconstruction
If we assume to know the statistics of the unlensed CMB, it is possible to exploit
the information in the 4-point function of the lensed CMB to extract statistically
the lensing potential. As we have previously seen, the effect of the lensing is
to introduce small departures from Gaussianity in the CMB (when marginalized
over realizations of the lenses), or statistical anisotropy (for a fixed distribution
of the lenses). There are two main methods to detect the CMB lensing: one is to
measure the smoothing of the acoustic peaks on small angular scales induced by
lensing at the CMB power spectrum level (Reichardt et al., 2009; Dunkley et al.,
2010; Keisler et al., 2011; Planck Collaboration, 2014b), while the second method
involves measuring the peculiar mode-coupling induced in the CMB by lensing.
Methods that directly reconstruct the deflection field can either employ a maximum
likelihood approach (Hirata & Seijak, 2003) or optimal quadratic estimators (Hu &
Okamoto, 2002). So far, all reconstructed lensing maps have employed the optimal
quadratic estimation which is derived under idealized observational conditions, i.e.
the CMB is nearly perfect Gaussian field, as well as the lensing field, with negligible
mode-coupling induced by instrumental or foregrounds effect. Several papers have
investigated the effect of a number of additional sources of mode-coupling, such
as finite sky-coverage (Perotto et al., 2010; Namikawa et al., 2013), primordial
non-Gaussianity (Lesgourgues et al., 2005), higher-order mode-coupling induced
by lensing itself (Kesden et al., 2003; Hanson et al., 2011), and foreground biases
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(Fantaye et al., 2012; Osborne et al., 2014; van Engelen et al., 2014).

Let us briefly review the optical quadratic estimator which is based on the first
order perturbative expansion, similarly to Eq. (2.129) but truncated at first order.
Assuming the different CMB realizations to be lensed by the same lensing potential,
the off-diagonal components of the 2-point statistics of the observed fields X̃ ∈
{T,E,B} read as

〈X̃(`1)X̃ ′∗(`2)〉CMB = δD(L) + 1
2πfX̃X̃′(`1, `1)φ(L) +O(φ2), L = `1 + `2

(2.137)
where the average 〈·〉CMB represent an average over CMB realizations and fXX
denotes the different coupling kernels between the CMB and φ which depends
on the given CMB observable X (see Hu & Okamoto (2002) for their precise
expression). By properly filtering the harmonic modes of the observables, we can
construct an estimate of the lensing potential field φ̂ as

φ̂(L) = Aα(L)
∫ d`2

1

2π X(`1)X ′(`2)Fα(`1, `2), α ≡ XX ′ (2.138)

Aα =
∫ d`2

1

2π f
α(`1, `2)Fα(`1, `2). (2.139)

The function Aα(L) is a normalization that guarantees that the estimate is unbiased
when averaged over CMB realizations, while Fα is a filter function which can be
optimized to yield an optimal estimator and is, in general, a function of the observed
lensed and unlensed power spectra comprehensive of instrumental noise. The effect
of filtering is to match the observed CMB with its gradient. From the (unbiased)
estimated harmonic coefficients of the lensing field one can compute the lensing
potential power spectrum using one of the 3! combination of the observable fields
α as

〈φ̂(L)αφ̂(L′)β〉 = δD(L−L′)[Ĉφφ
L +N

(0)αβ
L ]. (2.140)

Here N (0)
L is the lowest order noise on the reconstructed lensing power spectrum

(often called Gaussian bias). Each combination of quadratic estimators provides a
different reconstruction noise level and it is possible to combine them in a minimum-
variance (MV) estimator in order to increase the S/N. The cleanest reconstruction
in general depends on the specific observational setup, but for low-noise experiments
the combination which has the highest S/N is the one exploiting E- and B-modes.
This is because the observed B-modes are a direct result of the lensing effects since
the primordial is expected to be small.

The CMB lensing reconstruction scheme outlined above has been derived within
the flat-sky framework, for completeness we provide here the full-sky analogue
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which has been exploited by the Planck team for the internal lensing reconstruction.
In this case, if we ensemble average over a fixed realization of lenses, the CMB
covariance matrix acquires off-diagonal element given by

Cov[X`1m1Z`2m2 ] =
∑
LM

(−1)M
 `1 `2 L

m1 m2 −M

WXZ
`1`2LφLM , (2.141)

where the fields X`m, Z`m ∈ {T`m, E`m, B`m} and the precise expression for the
covariance response functions WXZ , that tells how different temperature and
polarization modes couple to each other, can be found in Okamoto & Hu (2003),
while the quantities in parenthesis are the 3j Wigner symbols (introduced in
Ch. (3.1.2)). From Eq. (2.141) we can se that the off-diagonal information is
proportional to φLM and can thus be used to estimate the lensing potential. The
idea is to inverse-variance filter the observed sky maps X̄ and Z̄ and construct a
general quadratic estimator from the observables combination XZ as

x̄LM [X̄, Z̄] = (−1)M
2

∑
`1`2m1m2

 `1 `2 L

m1 m2 −M

W x
`1`2LX̄`1m1Z̄`2m2 , (2.142)

where W x
`1`2L is a set of weight functions that define the estimator x. Then, a

quadratic estimate of the lensing potential can be written as

φ̂xLM =
∑
`m

[
Rxφ

]−1

LM`m

[
x̄`m − x̄MF

`m

]
, (2.143)

where Rxφ is a normalization matrix and the mean-field term x̄MF
L′M ′ accounts

for known sources of statistical anisotropy in the map (such as masking, beam
asymmetry, and inhomogeneous noise), and it is usually estimated by means of
Monte Carlo (MC) simulations and subtracted to debias the lensing estimate
(Planck Collaboration, 2016a). The minimum-variance estimator can be obtained
from the individual estimators as29

φ̂MV
LM =

∑
x φ̂

x
LMR

xφ
L∑

xRxφ
L

, (2.144)

where the sum is taken over the possible combination of estimators (TT,EE, TE, . . .).

Current status of observations
CMB lensing is a fast evolving field of research. The first observational hints
of the lensing effects on CMB were found by Smith et al. (2007) and Hirata

29Under the assumption that RxφLM`m = δKL`δ
K
MmR

xφ
L .
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Figure 2.6: Status of CMB lensing measurements as of February 2016. Band powers
shown in the plot are from ACT, Planck full mission, POLARBEAR, SPT, and SPTPol.
The black solid line represents the theoretical lensing power spectrum for the best-fit
ΛCDM parameters obtained from the Planck 2015 temperature and polarization data.
The figure is taken from the Legacy Archive for Microwave Background Data Analysis
(LAMBDA) website (http://lambda.gsfc.nasa.gov).

et al. (2008), who cross-correlated properly filtered CMB maps obtained from
Wilkinson Microwave Anisotropy Probe (WMAP) with external LSS tracers. On
the other hand, the first direct evidence of a preference for a lensed CMB is due
to Reichardt et al. (2009) who combined Arcminute Cosmology Bolometer Array
Receiver (ACBAR) and WMAP data. With the advent of the high sensitivity small
scale CMB temperature experiment such as Atacama Cosmology Telescope (ACT)
(Das et al., 2011) and South Pole Telescope (SPT) (Keisler et al., 2011), the CMB
lensing potential reconstruction has become truly feasible for the first time, with
reported detection significance around ∼ 4− 6σ. The next step forward in CMB
lensing science has been made by the Planck team who detected the CMB lensing
power spectrum at a significance of about 25σ and reconstructed an almost full-sky
lensing map using only temperature data Planck Collaboration (2014c).30 The first
CMB lensing measurements using polarization data have been recently reported
by POLARBEAR (Ade et al., 2014b), SPTPol (Story et al., 2015), and Planck
(Planck Collaboration, 2016a): recent measurements are reported in Fig. (2.6).

30Consider that the Planck satellite is as sensitive to CMB lensing as COBE was to CMB
temperature fluctuations: T : κ = COBE : Planck.
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2.3.3 LSS lensing

CMB photons are not the only ones that experience gravitational deflection by the
intervening LSS. Galaxy photons are also affected by weak lensing which causes
(i) the distortion the shape of galaxy images, and (ii) a change in their magnitude
and size (Bartelmann & Schneider, 2001): these two main effects are at the core of
Weak Lensing (WL) measurements. Here, we focus on the relationship between
the observables and the cosmological signal in WL.

Shear measurements
The most common quantity inferred from observations is the shear of galaxy images.
In the weak lensing limit (|γ|, |κ| � 1), the shear can be directly estimated from
the observed ellipticity ε̂ as follows

ε = γ + εint, (2.145)

where εint is the intrinsic ellipticity of source galaxies, for which current observations
suggest σint =

√
〈|εint|2〉 ' 0.4. Measurement of galaxy ellipticities are also

complicated by several observational systematics such as the point spread function
of the instrument and the blurring caused by atmosphere which have to be finely
controlled. Also in this case, what the theory predicts is the statistical correlation
of galaxy shears, i.e. the shear power spectrum (or correlation function). The
convergence (angular) power spectrum is equivalent to the shear power spectrum in
the weak lensing limit, i.e. Cκκ

` ' Cγγ
` . Moreover, radial information can be used

to perform a tomographic analysis of the WL signal by measuring the galaxy shear
in redshift slices. Considering two redshift bins i and j, with associated radial
distribution of sources dNi,j

dz , we can write the tomographic cross-power spectra in
different bins as

〈κi`mκ
j
`′m′〉 = δK``′δ

K
mm′C

κiκj

` , (2.146)

which can be related to theory through

Cκiκj

` =


∫∞
0 dχW

κ
i (χ)Wκ

j (χ)
f2
K(χ) Pδδ

(
`

fK(χ) , χ

)
∫∞
0

dz
H(z)

Wκ
i (z)Wκ

j (z)
f2
K(z) Pδδ

(
`

fK(z) , z

)
.

(2.147)

We recall that Eq. (2.147) assumes both Limber and Born approximations. The
observed auto-power spectra also include a shot-noise term due to random galaxy
shape, Cκiκj

` → Cκiκj

` + δijσ
2
int/n̄i, where n̄i is the average number of galaxies per

steradian in the i-th redshift bin: a large number of sources increases the statistics,
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hence lowering the noise level. If we decompose the shear into a tangential and
cross component as

γt ≡ −Re[γe−2iφ], (2.148)
γ× ≡ −Im[γe−2iφ], (2.149)

we can obtain a rotationally invariant linear combination of the cross-correlation
functions of γ× and γt as follows:

ξij±(θ) ≡ 〈γt(0)γt(θ)〉 ± 〈γ×(0)γ×(θ)〉

= 1
2π

∫ ∞
0

d` `Cκiκj

` J0/4(`θ),
(2.150)

where the Bessel function J0 (J4) refers to the correlation function ξ+ (ξ−). A
common estimator of the shear correlation function is ()

ξ̂±(θ) =
∑
ij wiwj[et(θi)et(θj)± e×(θi)e×(θj)]∑

ij wiwj
, (2.151)

where all galaxy pairs (i, j) separated by an angular distance |θi−θj| ∈ θ contribute
to the same angular bin with their respective weights (wi, wj).

An important systematic effect that has an impact on the above estimator is the
intrinsic galaxy alignments due to tidal forces (Hirata & Seljak, 2004). In fact,
Eq. (2.151) estimates 〈ξ̂±〉 = ξ±+ ξII

± + ξGI
± , where ξII

± measures correlation between
the intrinsic ellipticities of neighboring galaxies (known as II) and ξII

± is sensitive to
correlation between foreground Galaxy Intrinsic ellipticity and background galaxy
shear (known as GI). The modeling of galaxy alignment is a very active and
debated area of research, see Kirk et al. (2015) for a review.

Intrinsic alignments represent a potential contaminant also to CMB lensing-galaxy
lensing cross-correlation measurements, entering the 2-point function as a 〈κCMBI〉
term. Hand et al. (2015) measured for the first time the cross-correlation between the
ACT CMB lensing and the galaxy convergence of Canada-France-Hawai Telescope
(CFHT) Stripe 82 (CS82) and reported a lower amplitude with respect to the
expect signal. Troxel & Ishak (2014) showed that intrinsic alignment contamination
could account for a ≈ 15% reduction of the observed discrepancy; these findings
have been later confirmed by Chisari et al. (2015) who modeled the impact of
the intrinsic alignment with a model based on early-type31 galaxy population to
CMB lensing measurements, pointing out that at z & 1.2 alignments remain largely
unconstrained. Larsen & Challinor (2015) have considered the impact of intrinsic
31In this context it means red galaxies.
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alignments of spiral galaxies on the CMB lensing-galaxy lensing cross-correlation
using the quadratic alignment model, finding the signal to be similar in shape with
respect to the linear model but with opposite sign, hence it can potentially reduce
the overall impact.

Magnification bias
The size amplification is called magnification and leads to a fluctuation in the size
and the flux of individual galaxies. Two competing effects are at play: one one
hand WL of photons stretches the observed area and dilutes the number density,
on the other it changes the apparent brightness and allows galaxies in the survey.
In a flux-limited survey, the number density of background galaxies is expected to
be affected through magnification effects due to the foreground galaxy distribution.
Let us see how.

In presence of lensing the galaxy flux is magnified by f obs = µf s, where f obs and
f s are is the observed and intrinsic galaxy flux respectively. In the WL limit it can
be shown that N(> S), the intrinsic counts of sources with observed flux greater
than S, is related to the cumulative source counts Ñ(> S) observed in a given
direction through (Bartelmann & Schneider, 2001)

Ñ(> S, n̂) = µα−1(n̂)N(> S). (2.152)

Here, α is the logarithmic slope of the cumulative number counts of galaxies at
the faint end, α = d logN(>S)

dS |Smin . Thus, if α > 1 (α < 1), the observed number
density of objects is enhanced (decreased) by lensing: this effect is the so-called
magnification (anti-)bias. Since |κ| � 1, the magnification µ can be approximated
as µ ≈ 1 + 2(α− 1)κ and the observed number density of galaxies is modulated by
the foreground matter distribution as

δobs
g (n̂, z) ' δcl

g (n̂, z) + 2(α(z)− 1)κ(n̂, z)
= δcl

g (n̂, z) + δµg (n̂, z),
(2.153)

where δcl
g (n̂, z) is the intrinsic galaxy clustering term. By substituting in Eq. (2.153)

the expression for the convergence κ - of the sources in the redshift bin around zi -
we get

δµg (n̂, z) = 3Ωm

2c
H2

0
H(z)(1 + z)χ(z)

∫ ∞
z

dz′
(

1− χ(z)
χ(z′)

)
(α(z′)− 1)dN

dz′
. (2.154)

Cosmic magnification measurements can be carried out by correlating the angular
positions of background and foreground galaxy populations (see Scranton et al.
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(2005); Gonzalez-Nuevo et al. (2014)) and by counting galaxies (Negrello et al.,
2010). Magnification bias can be either a source of information (Hildebrandt
et al., 2013) or a nuisance depending on the analysis performed and it can lead
to substantial biases if not properly accounted for, as shown for CMB lensing-
galaxy density (Bianchini et al., 2015) and iSW (CMB temperature-galaxy density)
measurements (LoVerde et al., 2007). The high-z DSFG detected by Herschel
have a steep integrated number counts at the limiting flux, hence are potentially
sensitive to the magnification bias as we will see in Ch. (4).
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3 Chapter 3

CMB-LSS cross-correlation:
statistics and datasets

Statistics: the mathematical theory of ignorance.

—Morris Kline

Cosmology is intrinsically entwined with statistics. There are threefold reasons
for this. Firstly, given the huge size of cosmological structure it is impossible to
follow the evolution of all components in a deterministic way. Secondly, we do not
observe along a single spatial hyper-surface, rather we have direct observational
access to our past light-cone, which means that we see objects at different stages of
their evolution. Thirdly the generation of primordial inhomogeneities is an intrinsic
stochastic process and as such, we can just predict the statistical properties of
cosmological fields (such as the matter density contrast δ or the intensity of CMB
temperature fluctuations). The main implication of these remarks is that we
should model the observable Universe as a stochastic realization of a stochastic
ensemble. Moreover, in the vanilla inflationary framework, the initial perturbations
are Gaussian and adiabatic meaning that the study of Gaussian random field
(GRF), with a specific focus on isotropic and homogeneous ones, is pivotal in
cosmology.

This chapter mainly deals with the methodology at the core of the analyses presented
in this thesis and with the exploited datasets. We start by describing cosmological
random fields with a special focus on the mathematics on the sphere. Then, we
discuss the spectral estimation problem in the light of cosmological surveys, while
in the last part of the chapter we present the Planck and Herschel datasets.

3.1 Random Fields

3.1.1 3D Random Fields

We can describe a perturbation (calculated at a given time t) as a random field
f(x), which basically means that we assign a random number at each point x ∈ R
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according to a probability density function P[f(x)].1 Here, P[f(x)] is a distribution
that gives the probability of realizing a particular field configuration.2 Strictly
speaking, a random field is a collection of N random variables f(xi) with xi ∈ Rn;
the set of functions is called an ensemble while each individual function represents
a realization of the ensemble.

The correlators of the fields are the expectation values of the product of the field
at different locations (and times). The 2-point correlation function (2PCF) is
defined by

ξ(x,y) ≡ 〈f(x)f(y)〉 =
∫
Df P[f ]f(x)f(y), (3.1)

where the integral is a functional integral (or path integral) over the field configura-
tions. The requirements of statistical isotropy and homogeneity translate into the
following constraints on the correlation function: ξ(x,y) = ξ(R−1x, R−1y) for the
former and ξ(x,y) = ξ(x− y) for the latter, where R is a generic rotation matrix.
Combining the two together we find that the 2PCF only depends on the distance
between points, i.e. ξ(x,y) = ξ(|x− y|). The same calculations can be performed
in the harmonic domain by Fourier transforming the field adopting the following
convention:

f(k) =
∫

d3x f(x)e−ik·x and f(x) =
∫ d3k

(2π)3f(k)eik·x (3.2)

Generically the Fourier transform is complex but for real valued fields we have that
f(k) = f ∗(−k). Then, the 2PCF in Fourier space than reads as

〈f(k)f ∗(k′)〉 = (2π)3δD(k − k′)2π2

k3 Pf (k)

= (2π)3δD(k − k′)Pf (k)
(3.3)

where Pf (k) is the dimensionless power spectrum and the homogeneity and isotropy
are enforced by the delta function and the dependence only on the module of k.
The 2PCF and the power spectrum are a Fourier transform pairs:

ξ(x,y) = 〈f(x)f(y)〉 =
∫ d3k

(2π)3
d3k′

(2π)3 〈f(k)f ∗(k′)〉eik·xeik′·y

= 1
4π

∫
d log kPf (k)

∫
dΩeik·(x−y).

(3.4)

1We will consider centered field, i.e. 〈f(x)〉 = 0 for the sake of clarity. This is not an issue since
the mean can always be subtracted from the field.

2The probability that the field f will have a given configuration between f(x) and f(x) + df(x)
is calculated as dP = P[f(x)]Πx df(x) ≡ P[f(x)]Df .
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After the angular integration, Eq. (3.4) reduces to

ξ(x,y) =
∫

d log kPf (k)j0(k|x− y|), (3.5)

where j0(x) = sin x/x and the variance is computed as the 2PCF at zero-lag,

σ2 = ξ(0) =
∫

d log kPf (k). (3.6)

Higher-order correlations can be evaluated by averaging the product of n fields;
some of the most studied polyspectra are the 3PCF or bispectrum

〈f(k1)f(k2)f(k3)〉 = (2π)3B(k1,k2,k3)δD(k1 + k2 + k3), (3.7)

and the 4PCF or trispectrum

〈f(k1)f(k2)f(k3)f(k4)〉 = (2π)3T (k1,k2,k3k4)δD(k1 + k2 + k3 + k4). (3.8)

Gaussian Random Field
This class of random fields is of particular relevance in cosmology due to the
high-level of Gaussianity predicted by inflation for primordial fluctuations. For
(homogeneous and isotropic) GRF, P[f(x)] is a Gaussian functional of f fully
characterized by its power spectrum3, or by the 2PCF equivalently. If we discretize
the field in N pixels and represent it as a collection of fi = f(xi) in a N -dimensional
vector f = [f1, f2, . . . , fN ]T , the multivariate joint probability distribution of the
GRF has the following form

P[f ] ∝ e−fiC
−1
ij fj√

det(C)
, (3.9)

where Cij = 〈fifj〉 is the covariance matrix. Since the Gaussian is even under parity
around the mean, any odd expectation value vanishes, e.g. 〈f(x1)f(x2)f(x3)〉 = 0,
while any even higher-order correlation function can be written as sum of 2PCF
products: this result is known as Wick’s theorem (or Isserlis theorem) and can be
expressed as

〈f(x1)f(x2)f(x3)f(x4) . . .〉 =
∑

All possibile 2-point contractions. (3.10)

3Since the mean is zero.
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3.1.2 Fields on the sphere

Nearly all cosmological observations, from CMB to galaxy surveys, provide us
with a sampling of 3D random fields projected on the sphere, mostly in the form
of two-dimensional sky-maps.4 The information content hidden in such maps is
usually probed by means of harmonic analysis on the sphere. A popular observable
that characterizes the statistical properties of a given cosmic field is the angular
power spectrum C` and its reconstruction enables a direct comparison between
models and data.

It is common practice to decompose the observed field X(n̂) into spherical harmon-
ics, a frequency-space orthonormal basis for square-integrable, i.e.

∫
S2 dΩ|X(n̂)|2 <

∞, as:

X(n̂) =
∞∑
`=0

∑̀
m=−`

x`mY`m(n̂), (3.11)

where the spherical harmonic coefficients are given by

x`m =
∫
S2
X(n̂)Y ∗`m(n̂)dΩ. (3.12)

The spherical harmonics Y`m are the eigenfunctions of the Laplacian on the sphere
∇2

S2 = 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2 , and are described by two integers, the multipole
` and the azimuthal parameter m that satisfy ∇2

S2Y`m = −`(`+ 1)Y`m and ∂ϕY`m =
imY`m. We recall below some useful properties:∫

S2
dΩY`m(n̂)Y ∗`′m′(n̂) = δK``′δ

K
mm′ Orthonormality (3.13)∑

`m

Y`m(n̂)Y ∗`m(n̂′) = δD(n̂− n̂′) Completeness (3.14)

∑
m

Y`m(n̂)Y ∗`m(n̂′) = 2`+ 1
4π P`(n̂ · n̂′) Addition Theorem (3.15)

where P`(x) are the usual Legendre polynomials. The phase of Y`m can be chosen
such that Y ∗`m = (−1)mY`−m, so that for a real valued field we have x∗`m =
(−1)mx`−m.

Under the assumption of statistical isotropy, for a finite variance field, the mean of
the spherical harmonic coefficients is 〈x`m〉 = 0, while their covariance is given by

〈x`mx∗`′m′〉 = CXX
` δK``′δ

K
mm′ , (3.16)

4This especially applies when distance information about the sources is unavailable, nevertheless
the quantity of interest can always be projected on the sphere, as is the case for tomographic
analyses of LSS.

60



3.1 Random Fields

where CXX
` is the angular power spectrum of X which is related to the angular

2PCF CXX(θ) through (see Eq. (2.73) for the derivation)

CXX(θ) =
∑
`

2`+ 1
4π CTT

` P`(n̂ · n̂′) (3.17)

CXX
` = 2π

∫ 1

−1
d cos θ CXX(θ)P`(cos θ). (3.18)

It is also possible to expand the product of two spherical harmonics in terms of
spherical harmonics as

Y`m(n̂)Y`′m′(n̂) =
∑
LM

√
(2`+ 1)(2`′ + 1)(2L+ 1)

4π

 ` `′ L

m m′ M

 ` `′ L

0 0 0

Y ∗LM(n̂),

(3.19)
where the strange quantities in parenthesis that we have introduced are called the
Wigner 3j symbols (Varshalovich et al., 1988). Integrating the above expression
over the whole sphere one finds the Gaunt relation:

G``′Lmm′M ≡
∫
S2

dΩY`m(n̂)Y`′m′(n̂)YLM(n̂)

=
√

(2`+ 1)(2`′ + 1)(2L+ 1)
4π

 ` `′ L

0 0 0

 ` `′ L

m m′ M

 . (3.20)

Basically, Wigner 3j matrices are a rescaling of the Clebsch-Gordan coefficients
and describe the quantum mechanical composition of two angular momentum
eigenstates into a third one. The selection rules for Wigner 3j symbols, i.e. when
they are non-null, are given by

`+ `′ + L is even, (3.21)
|`− `′| ≤ L ≤ `+ `′ (3.22)
m+m′ +M = 0. (3.23)

These objects are somewhat nasty to calculate and are at the core of the Pseudo-C`
method (PCL) methods to calculate the masking induced mode-coupling, as we
will see in Sec. (3.2). Harmonic calculations on the sphere can be performed on the
computer with standard packages for CMB data analysis such as HEALPix5 (Gorski
et al., 2005) and S2HAT (Stompor, 2011). The basic idea is to tesselate the sphere
according to some pixelization scheme and to discretize the function into maps. As
an example, for HEALPix, the resolution of the grid is controlled by the parameter
Nside = 2k (where k ∈ N) which fixes the total number of pixels Npix = 12N2

side. In

5http://healpix.sourceforge.net
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particular, spherical harmonic transforms in Eq. (3.12) are operatively estimated as

x`m ≈ Ωp

∑
p

X(p)Y ∗`m(p), (3.24)

where Ωp = 4π
Npix

is the solid angle subtended by each pixel p. Another complication
that arises from pixelization is that we only know the value of the field averaged
over the pixel area: the effect is an amount of degradation of the information below
a certain scale set by the size of the pixel (basically it acts as a low-pass filter). A
way to account for this bias is to deconvolve the reconstructed spectrum for the
pixel window function p` (Cobs

` = p2
`C`).

Before concluding this subsection, let us take a look at the near future: most of
the upcoming cosmological surveys will carry out large and deep observations of
the sky, providing both angular and redshift information about the cosmic fields.
Thus, a formalism for analyzing function on the 3D ball - a family of concentric
spheres (shells) indexed by a continuos radial parameter, such as the redshift z -
will be required. Tomographical analyses (see Ch. (5)) represent a first step in this
direction: the idea is to slice the data in redshift bins and then perform the usual
2D spherical analysis. A natural decomposition scheme for full-3D analyses is given
by the spherical Fourier-Bessel formalism, while extensions to wavelets (Lanusse
et al., 2012; Leistedt & McEwen, 2012) and radial 3D needlets (Durastanti et al.,
2014) have also been investigated.

3.1.3 Projected fields

Let us now work out the connection between a 3D field X3D(x) and its 2D
counterpart X2D(n̂), projected on the sphere and integrated along the light-cone
according to some arbitrary weight function WX(χ):6

X2D(n̂) =
∫ ∞

0
dχWX(χ)X3D(χn̂, χ). (3.25)

Using the Rayleigh’s expansion

eik·n̂χ(z) = 4π
∑
`m

i`j`(kχ)Y ∗`m(k̂)Y`m(n̂), (3.26)

6To avoid a crowding of equations we restrict to the case of a flat Universe, so that fK(χ) = χ.
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we can Fourier transform the 3D field X3D(χn̂, χ) and obtain

X3D(χn̂, χ) =
∫ d3k

(2π)3 X
3D(k, χ)eik·n̂χ

= 4π
∑
`m

i`
∫ d3k

(2π)3 X
3D(k, χ)j`(kχ)Y ∗`m(k̂)Y`m(n̂).

(3.27)

In this way, the projected field becomes

X2D(n̂) = 4π
∑
`m

i`
∫

dχWX(χ)
∫ d3k

(2π)3X
3D(k, χ)j`(kχ)Y ∗`m(k̂)Y`m(n̂), (3.28)

and the spherical coefficients read as

x`m = 4πi`
∫

dχWX(χ)
∫ d3k

(2π)3 X
3D(k, χ)j`(kχ)Y ∗`m(k̂). (3.29)

We calculate the angular cross power spectrum CXY
` by taking the ensemble average

of 〈x`my∗`m〉 as

CXY
` = (4π)2

∫
dχWX(χ)

∫
dχ′WX(χ′)

×
∫ d3k

(2π)3
d3k′

(2π)3 〈X
3D(k, χ)Y 3D∗(k′, χ′)〉j`(kχ)j`′(k′χ′)Y ∗`m(k̂)Y`′m′(k̂′)

= (4π)2
∫

dχWX(χ)
∫

dχ′W Y (χ′)
∫ d3k

(2π)3PXY (k;χ, χ′)j`(kχ)j`′(kχ′)Y ∗`m(k̂)Y`′m′(k̂)

= 2
π

∫
dχWX(χ)

∫
dχ′W Y (χ′)

∫
k2 dk PXY (k;χ, χ′)j`(kχ)j`(kχ′)

(3.30)

where we used the definition of (isotropic) 3D cross-power spectrum 〈X(k, χ)Y ∗(k′, χ′)〉 =
(2π)3δD(k−k′)PXY (k;χ, χ′) and the orthonormality condition of spherical harmon-
ics. Summing up, the exact relation is

CXY
` = 2

π

∫
dχWX(χ)

∫
dχ′W Y (χ′)

∫
k2 dk PXY (k;χ, χ′)j`(kχ)j`(kχ′). (3.31)

Limber approximation
The Limber approximation (Limber, 1953) is a handy tool whenever integrals of
Bessel functions appear. When deriving it, one usually assumes small angular
separations (or large multipoles `) and that some of the integrand functions vary
slower with respect to others. The idea is that if f(x) is a smooth function, then∫∞
0 dxf(x)Jν(x) = f(ν) +O(1/ν2), where ν ≡ `+ 1/2; this can be written in the
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following form

2
π

∫
k2 dk f(k)j`(kχ)j`(kχ′) = δD(χ− χ′)

χ2 f

(
ν

χ

)[
1 +O

(
1
ν2

)]
, (3.32)

where the presence of the δD tells us that the integrand is dominated by the
region χ ≈ χ′, and the goodness of the approximation gets better as ` → ∞,
i.e. the corrections are O(1/ν2) (see LoVerde et al. (2007)). Substituting the
above expression in Eq. (3.31) (and integrating out the δD), one finds the Limber
approximated angular power spectrum:

CXY
` =

∫ ∞
0

dχ
χ2 W

X(χ)W Y (χ)PXY

`+ 1
2

χ
, χ

. (3.33)

In literature the power spectrum in Eq. (3.33) is sometimes evaluated at ν = `

(as will be the case in Ch. (4) and (5)), which increase the error from O(`−2) to
O(`−1). The approximation is correct to O(1%) for ` & 10. An extended Limber
approximation, in the sense that exploits higher-order terms in the Bessel integral
expansion, has been developed by LoVerde et al. (2007). For completeness, we
write below the analogous of Eq. (3.33) with the integration in redshift space:7

CXY
` =

∫ ∞
0

dz
c

H(z)
χ2(z)W

X(z)W Y (z)PXY

`+ 1
2

χ(z) , z
. (3.34)

Recall that the comoving distances χ should be replaced by fK(χ) for non-flat
cosmologies and that Limber approximation is valid as long as (i) the sources
stretch in a wide range of distances ∆χ and (ii) vary smoothly, i.e. `/χ×∆χ� 1
(see Simon (2007); Bernardeau et al. (2011)).

3.2 Spectral estimation

The scientific exploitation of any cosmological dataset is just the tip of the iceberg:
the data analysis that allows us to extract science from observations is a complex
and iterative process which requires both computational and physical solid skills.
Having in mind the CMB field, the reduction of a dataset usually can be split in
the following sequence of steps:

7In order to switch the Dirac delta from χ to z recall that δD[g(x)] = δD(x−x0)
|g′(x0)| where x0 is the

root of g(x). In our case g(z) = χ(z) − χ(z′) =
∫ z

0
c dz′′

H(z′′) −
∫ z′

0
c dz′′

H(z′′) , so that g′(z) = c
H(z)

and δD[χ(z)− χ(z′)] = H
c (z′)δD(z − z′)
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• Pre-processing: the goal is to prepare real data so that can be fed to the
subsequent pipeline steps. Here, the raw time-ordered data (TOD) collected
by the detectors are calibrated and the time-domain systematics are generally
flagged and/or removed.

• Map-making: after characterizing the instrument’s noise specifics, the
different frequency maps of the observed temperature and polarization are
extracted from the cleaned TOD.

• Component separation: the available spectral information is used to isolate
the emission from all other (astrophysical) components in the data, hence
singling out the CMB signal. One of the outcome of this pipeline step is the
production of ancillary data. Though not strictly correct, we can insert in
this step the production of additional maps, such as the CMB gravitational
lensing convergence, derived from the T and P separated maps.

• Power spectrum estimation: CMB temperature T and polarization E-
and B- modes auto- and cross-power spectra are reconstructed from the maps,
along with spectra of derived fields such as lensing κ.

• Parameter estimation: the estimated set of CMB power spectra is com-
pared with the theoretical models to study the degeneracies in the parameter
space and infer best-fit parameters, usually by means of Bayesian analysis.

3.2.1 Power spectrum estimators

Throughout my thesis I have mainly been involved with the last two steps of the
CMB pipeline, here I will focus on the power-spectrum estimation techniques: since
the statistical properties of GRF are completely described by their power spectra,
spectral estimation is a pivotal step.

There exist a variety of well-established methods to recover the underlying angular
spectra from observations. In principle, optimal maximum likelihood algorithms
can be applied to the spectral estimation problem, assuming that the pixel-pixel
covariance matrix is known. The idea behind these methods is the following:
considering a data vector xi (e.g. the CMB temperature in a given pixel) of length
Nd with the xi being Gaussian distributed, then the likelihood function reads as

L(C`|x) =
exp

(
−1

2x
TC−1x

)
√

(2π)Nddet(C)
. (3.35)

Here C` is the power spectrum to be estimated and the covariance matrix C

(in pixel space) can be written as the sum of signal Sij and noise Nij terms as
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Cij = 〈xixj〉 = Sij(C`)+Nij . From this, maximum likelihood solution can be found
iteratively with Newton-Raphson algorithm (Bond et al., 1998) or with quadratic
maximum likelihood estimators (Tegmark, 1997). Despite being optimal, these
methods are computational expensive and require O(N3

pix) CPU time (as well as a
good knowledge of the covariance matrix), and become prohibitively for datasets
with Npix & 105.

As a result, PCL techniques have emerged on the market, see Yu & Peebles (1969);
Hauser & Peebles (1973); Wandelt et al. (2001); Hivon et al. (2002); Efstathiou
(2004). The idea is to split the estimation of C` in two steps: a biased estimate C̃`
of the power spectrum is first obtained, and then corrected in the harmonic domain
for all the different biasing effects such as the beam function, the pixelization, the
mapmaking, and mode-mode coupling induced by masking. Schematically, the true
power spectrum and the initial estimate are related by the mapping C̃` = f(C`),
where the function f encodes all the biasing effects. If we linearly expand it, we can
rewrite the previous relation in matrix notation as 〈C̃`′〉 ≈

∑
` α`′`C` + β`′ , where

{α`′`, β`′} are the coefficients that approximate the effect of f , and then invert it
to recover the true spectrum as Ĉ`′ = α−1

`′` (C̃` − β`). The PCL method is very fast,
requiring O(N3/2

pix ) CPU time and it is nearly-optimal for temperature (and scalar
fields) in practice.8 Let us see the details of the method (for spin-0 fields).

From a statistical point of view, an unbiased estimator of the (cross-)angular power
spectrum is given by (hereafter the hat X̂ denotes estimated quantities):

ĈXY
` = 1

2`+ 1
∑̀
m=−`

x`my
∗
`m. (3.36)

Spherical harmonics are particularly appealing because they are statistically or-
thogonal for full-sky Gaussian-distributed sky-maps, i.e. the covariance is diagonal
Cov``′ ∝ δK``′ , and the power spectrum fully characterizes the behavior of the field.
However, real-world observations have to deal with a number of limitations and
issues, such as the finite instrumental spatial resolution, the anisotropic noise, and
asymmetric beam response. Moreover the incomplete sky coverage, motivated for
example by foreground contamination or the instruments scanning strategy, induces
a mode-coupling and a power leakage between different multipoles, as well as an
overall downward shift of power (Hivon et al., 2002; Efstathiou, 2004). Consider
a position dependent weighting scheme W (n̂), i.e. the mask, whose harmonic
expansion is W (n̂) = ∑

`mw`mY
∗
`m(n̂) and its power spectrum is W`. Then the

8The problem with the estimation of polarized spectra is the spurious mixing of E- and B-modes
(E-to-B leakage) that has to be taken into account. Several methods have been proposed to
treat such effect, see Lewis et al. (2002); Bunn et al. (2003); Grain et al. (2009).
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pseudo-x`m of the masked field X̃(n̂) = X(n̂)W (n̂) are given by:

x̃`m =
∫
S2
X(n̂)W (n̂)Y ∗`m(n̂)dΩ

=
∑
`′m′

x`′m′
∫

dΩY`′m′(n̂)W (n̂)Y ∗`m(n̂)

=
∑
`′m′

K`m`′m′ [W ]x`′m′ ,

(3.37)

where the kernel K that describes the induced mode-coupling reads as

K`m`′m′ [W ] ≡ (−1)m
∑
`′′m′′

w`′′m′′G` `
′ `′′

mm′m′′ . (3.38)

The well known MASTER (Hivon et al., 2002) (or XSPECT, the cross-spectra extension
by Tristram et al. (2005)) approach to obtain unbiased but slightly sub-optimal
multipole estimates relates the pseudo-spectrum

C̃XY
` = 1

2`+ 1
∑
m

x̃`mỹ
∗
`m (3.39)

to the underlying power spectrum C` as

〈C̃XY
` 〉 =

∑
`′
M``′C

XY
`′ , (3.40)

where M``′ is the coupling matrix

M``′ = 2`′ + 1
4π

∑
`′′

(2`′′ + 1)W`′′

 ` `′ `′′

0 0 0

2

(3.41)

The finite size of the observed sky patch (of area Aobs) approximately determines
the smaller multipole that can be recovered, `min ≈ π/

√
Aobs, and the width of

M``′ , that characterizes the amount of mode-coupling. The basic idea is to invert
eq. (3.40) in order to recover the underlying power spectrum, however for small
sky fraction fsky = 1

4π
∫
S2 W 2(n̂)dΩ, one needs to bin the pseudo-power spectrum

and the coupling matrix, so that the estimator of the true cross-bandpowers ĈXY
L

writes
ĈXY
L =

∑
L′`

K−1
LL′PL′`C̃

XY
` , (3.42)

where L is the bandpower index and the binned coupling matrix can be written as

KLL′ =
∑
``′
PL`M``′B

X
`′ B

Y
`′ p

2
`′F`′Q`′L′ . (3.43)

67



3 CMB-LSS cross-correlation: statistics and datasets

Here PL` is the binning operator and Q`L is its reciprocal. To correct also for
angular resolution, finite pixel size and filtering applied to TOD, we added to the
binned coupling matrix the beam function (for the observed field X) BX

`′ , the pixel
window function p`, and the effective filtering function F`′ . When dealing with
auto-power spectra of maps comprehensive of noise, Eq. (3.42) gets modified as

ĈXX
L =

∑
L′`

K−1
LL′PL′`(C̃XX

` − 〈ÑXX
` 〉MC), (3.44)

where 〈ÑXX
` 〉MC is the MC estimate of the average noise pseudo-power spectrum.

If the true power spectrum varies slowly with respect to the coupling matrix and/or
fsky is large, eq. (3.40) becomes

〈C̃XY
` 〉 ≈ CXY

`

∑
`′
M``′ = fskyC

XY
` , (3.45)

which is the so-called fsky approximation (Komatsu et al., 2002). For the analyses
discussed in Ch (4) and (5) and performed during my Ph.D., I have developed a
code to compute coupling matrices and estimate power spectra of spin-0 masked
maps. The computational bottleneck is represented by the calculation of the
Wigner 3j symbols: to this end, I have wrapped the FORTRAN rc3jj.f routine
from the SLATEC library9 into flexible Python code which calculates the coupling
matrix M``′ , as well as other quantities, and can be efficiently interfaced with usual
HEALPix-based codes (such as the Python implementation called healpy10). Just
as an illustration and example of how a coupling matrix can appear, we anticipate
here the mapping in the case of the H-ATLAS dataset considered in this analysis.
In the left panel of Fig. (3.1) we show the unbinned coupling matrix M``′ computed
for the H-ATLAS mask (shown in the right panel of Fig. (6.2)) that tells us how
the different harmonic modes are coupled to each other. As previously mentioned,
the width of the diagonal is roughly determined by the sky coverage and mask
topology: to highlight this aspect, we plot slices through M``′ (at fixed `′) in the
right panel of Fig. (3.1).

3.2.2 Covariance estimators

An estimate of the power spectrum means almost nothing without the associated
covariance matrix. Error bars must be assigned to asses the quality or the signifi-
cance of measurements and, for example, the full covariance matrix is needed to

9http://www.netlib.org/slatec/
10https://healpy.readthedocs.io/en/latest/
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Figure 3.1: Left panel: Coupling matrix M``′ evaluated for the H-ATLAS mask shown
in Fig. (6.2). The main diagonal structure, whose width determines the extent of the
mode-coupling, is visible. Right panel: Slices through the coupling matrix shown in the
left panel.

perform the further pipeline steps such as the parameter estimation. The covariance
of the power spectrum estimator ĈXX

` defined in Eq. (3.36) is:11

Cov(ĈXY
` , ĈXY

`′ ) = 〈(ĈXY
` − CXY

` )(ĈXY
`′ − CXY

`′ )〉

= 1
(2`+ 1)(2`′ + 1)

∑
mm′
〈x`my∗`mx`′m′y∗`′m′〉 − CXY

` CXY
`′ −������

CXY
` CXY

`′

+������
CXY
` CXY

`′

= 1
(2`+ 1)(2`′ + 1)

∑
mm′

[
〈x`my∗`m〉〈x`′m′y∗`′m′〉+ 〈x`mx`′m′〉〈y∗`my∗`′m′〉
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Then, the cross- and auto-power spectrum variance associated to a given multipole
are respectively

(∆CXY
` )2 = 1

2`+ 1
[
(CXY

` )2 + CXX
` CY Y

`

]
(3.47)

(∆CXX
` )2 = 2

2`+ 1(CXX
` )2, (3.48)

11Assuming that the fields are Gaussian, hence neglecting the connected part 〈x`my∗`mx`′m′y∗`′m′〉c.
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with the last one being the same as Eq. (2.72). Let us make a couple of remarks.
First of all, if the maps being analyzed are comprehensive of noise (as in the
real-world), then the auto-power spectra appearing in the above equations must
include a noise term, i.e. CXX

` → CXX
` +NXX

` . Secondly, in the incomplete sky
case, things become much more nastier and a full analytical treatment is virtually
unfeasible. Several authors (Efstathiou, 2004; Tristram et al., 2005; Brown et al.,
2005) have proposed analytic approximations if the underlying power spectra meet
certain criteria, for example if they vary slow with respect to the coupling matrix.
In the zeroth-order approximate formula for power spectrum error bars, known
as the Knox formula (Knox, 1995), the fractional error on C` typically scales as
1/
√
fsky. Although it is helpful for an assessment of uncertainties, it is known to

underestimate errors and does not account for the mode-mode coupling and the
E-to-B mixing. We will discuss in greater detail these approximations and compare
different covariance estimators for cross-power spectra in Ch. (4). The covariance
can also be estimated numerically by means of MC simulations with resampling
techniques. There exist different ways to calculate the covariance, each with their
respective advantages and drawbacks. Here we list the most common ones adopted
in literature for cross-correlation analyses, mainly developed for iSW studies, see
Cabre et al. (2007); Giannantonio et al. (2008) for thorough discussions.

• MC method 1: Perhaps the most used estimator in literature, it consists in
measuring the cross-power spectrum (or 2PCF) between Nsim random maps
of field X, obtained from a fiducial model, and the observed maps of the
field Y . This method is fast and straightforward to implement. Issues: it
is model-dependent (like all MC approaches), it does not account for the
variance in the Y maps (this is called the realization bias since we have only
one realization of the Y field), and it assumes no cross-correlation between
the fields (the so-called correlation bias, but if the expected signal is weak, it
should not represent a large bias).

• MC method 2: It tries to improve MC1 by measuring the cross-power
spectrum between random (MC generated) maps of the X field (from the
underlying model) and random Y field maps. Issues: it is somewhat more
time consuming and still model-dependent but has no dependence on any
observed maps unlike the MC1.

• Jack-knife (JK) method: The idea is to divide the Y field (e.g., the LSS
tracer map) into M patches to create M subsamples (of approximately the
same area) by neglecting each patch in turn and evaluating the covariance
between them. Issues: it underestimates the error, results are dependent
on the size and number of discarded patches, it assumes independence of
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different patches (not always the case), but it is model-independent.

The mock maps used to estimate covariances can either be obtained through
HEALPix via the synfast routine, or from N-body simulations. But what are
the errors on the errors? The number of simulations exploited is important in
determining the covariance matrix estimation convergence: Taylor et al. (2013)
have shown that the fractional noise in a covariance matrix of Nd ×Nd elements,
obtained from Nsim realizations, can be estimated as

√
2/(Nsim −Nd − 4). To

numerically estimate the covariance with MC1 and MC2 methods, one resorts to
the sample covariance matrix:

CovXYLL′ = 1
Nsim − 1

Nsim∑
i=1

(ĈXY,i
L − 〈ĈXY

L 〉MC)(ĈXY,i
L′ − 〈ĈXY

L′ 〉MC), (3.49)

while for the JK method the estimator becomes

CovXYLL′ = M − 1
M

M∑
i=1

(ĈXY,i
L − 〈ĈXY

L 〉)(Ĉ
XY,i
L′ − 〈ĈXY

L′ 〉). (3.50)

3.3 Datasets

As anticipated at the beginning of this Chapter, we dedicate the remaining part to
provide a brief and introductory description of the most important datasets that
we exploit in this thesis. The data, and their combination, will be treated and
discussed quantitatively in the following chapters.

3.3.1 Planck

The Planck satellite is a European Space Agency (ESA) mission devised to the
measurement of CMB anisotropies and it represents the third generation of spatial
missions devoted to CMB physics, after COBE and WMAP. It was launched on
14th May 2009 (together with its companion ESA’s Herschel satellite) towards
the second Lagrangian point L2 and has collected data until October 2013. The
nominal mission data, released in 2013, consists in 15 months of temperature-only
observations, while the full mission data comprehends all the 30 months of the
High Frequency Instrument (see below) temperature and polarization data.

The Planck telescope is an off-axis tilted Gregorian design, with the optical system
composed by a primary mirror of about 1.5 m and the secondary, which focuses
the radiation to the detectors, of about 1 m. Their operative temperature is
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approximately 45 K. Planck’s focal plane contains two separate scientific instru-
ments: the Low Frequency Instrument (LFI) (Bersanelli et al., 2010), an array
of radiometers covering three bands centered in 30, 44, and 70 GHz, and the
High Frequency Instrument (HFI) (Lamarre et al., 2010), and array of microwave
spider-web bolometers operating at higher frequencies from 100 GHz to 857 GHz.
Corrugated horns serve as wave-guides to collect the radiation to the instruments
detectors. Below we provide a brief description of the two intstruments:

• HFI: it observes the sky in six frequency bands centered at 100, 143, 217, 353,
545, and 857 GHz, thus allowing for a characterization of the cosmological
CMB signal and to study both Galactic and extragalactic foregrounds. HFI
detectors are bolometers that, depending on the placement on the grid
wires, can be sensitive only to the intensity of the incoming radiation or to
polarization as well. The former are called spider-web bolometers and collect
the CMB radiation through a spider-web like grid (to enhance sensitivity,
robustness to vibrations and to reduce the cosmic rays cross-section), while
the latter are called polarization sensitive bolometers. However, bare in mind
that only the four lower frequencies are polarization sensitive. The angular
resolution (called beam) of the different channels depend on the whole optic
chain and can be estimated from observations of planets (like Mars, Jupiter,
and Saturn): for HFI the effective beams vary between 10’ and 5’.

• LFI: it is designed to measure the microwave sky in three bands centered at
30, 44, and 70 GHz. The instrument is composed by differential radiometers
in the same fashion of COBE and WMAP, though they represent a major step
forward in terms of performances. LFI horns are displaced in the focal plane
around the HFI bolometers because since they operate at larger wavelengths,
they suffer less from optical aberrations. The number of radiometers is 22, all
of them being sensitive to polarization. Their angular resolution is about 33’,
28’, and 13’ at 30, 44, and 70 GHz respectively. Data gathered by LFI are
particularly important for monitoring the low frequency Galactic foregrounds,
the large scale CMB power spectrum and in particular polarization data can
be exploited to study reionization.

To achieve the required sensitivity needed to map the microwave sky at high
resolution, the noise level must be suppressed by cooling the instruments down
to cryogenic temperatures. In particular, LFI detectors require an operative
temperature of about 20 K, while the HFI ones have to be cooled down to 0.1 K:
this is achieved with a cooling chain that mixes passive and active cooling system.
Schematically, the (active) cryogenic system comprises three different coolers that
allow to reach the desired temperature: (i) an hydrogen sorption cooler that cools
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the LFI focal plane to 20 K and provides a pre-cooling to HFI, (ii) a Joule-Thomson
cooler based on 4He which cools the HFI focal plane down to 4 K, and (iii) a
3He/4He dilution cooler which is able to bring the temperature of the HFI focal
plane down to 100 mK.

Planck’s scanning strategy has been designed to optimize the sky coverage, the
data redundancy and to perform polarization measurements. Planck spins at 1
rpm and its spin axis is approximately oriented with the Sun-L2 axis, so that its
solar panels always face the Sun, and to minimize straylight and thermal radiation.
The LOS of the telescope is tilted of about 85 deg with respect to the spin axis.
What is called survey is an almost complete scan of the sky that is performed in 6
months: the full mission data consists of ∼ 5 surveys.

The broad spectral coverage of Planck allows it to characterize and separate the
diffuse foregrounds (Planck Collaboration, 2015b). In particular, six types have
been investigated in temperature: synchrotron emission; free-free emission; Galac-
tic dust thermal emission; dust anomalous emission (from spinning dust); three
carbon-monoxide (CO) rotational lines; thermal Sunyaev-Zel’dovich. Instead, the
sky components analyzed in polarization, in addition to CMB, are the synchrotron
and thermal dust emissions. Foreground maps are obtained using CMB component
separation techniques: the four methods exploited in Planck are described in
Planck Collaboration et al. (2015) and can be divided into two types. The first
kind of methods, by only assuming the knowledge of the blackbody spectrum of
CMB, remove foregrounds using a combination of multiband data that minimizes
the variance of CMB signal. Instead, the other approach exploits an explicit
parametrized model of the CMB and foregrounds with their associated likelihoods,
and extracts the CMB component by sampling from the posterior distribution
of parameters. Note that these two flavors can be implemented both in real and
harmonic space. In particular, Planck team relied on four algorithms, namely
Commander, Needlet Internal Linear Combination (NILC), Spectral Estimation Via
Expectation Maximization (SEVEM), and Spectral Matching Independent Com-
ponent Analysis (SMICA), which incorporate the main approaches to component
separation. The challenge represented by the treatment of intense, nonlinear and
non-Gaussian processes in order to achieve the separation of them from each other,
as well as from CMB, motivate a complementarity approach to the problem.

As mentioned earlier, when the CMB map is derived (either directly from the
frequency channels or through some component separation method), another
branch of the CMB pipeline consists in the extraction of the lensing information,
specifically the lensing potnetial. The main Planck product exploited in the
analyses presented in this thesis is the CMB gravitational lensing potential map,
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whose production pipeline is discussed in Planck Collaboration (2014c) and Planck
Collaboration (2016a) for the 2013 and 2015 releases respectively. We used both
the publicly released Planck CMB lensing potential maps for our analyses, here
we discuss the main differences between the two data deliveries. The 2013 lensing
maps are extracted from the first 15.5 months of observations by applying a (full-
sky) quadratic estimator (Hu & Okamoto, 2002) to the 100, 143 and 217 GHz
frequency channels12, which are the most suitable for estimation of the gravitational
lensing potential. Nevertheless, the released map is provided as a filtered lensing
potential φ map based on a minimum variance combination of the 143 and 217
GHz temperature anisotropy maps only, because adding the 100 GHz map yields
a negligible improvement (Planck Collaboration, 2014c). In addition to the 143
and 217 GHz maps, the 857 GHz Planck map is also used as a dust template to
project out the diffuse Galactic dust contamination (as well as a part of the CIB
fluctuations). The mask associated to this release is obtained by combining three
different masks: (i) a galaxy mask based on the temperature analysis one (which
is constructed using a combination of 30 and 353 GHz maps) that avoids most of
the Galactic foreground power, (ii) a CO and extended-object masks that removes
regions believed to be contaminated by CO lines as well as extended nearby objects
(such as the two Magellanic clouds and local galaxies), and a (iii) point-source mask
that removes the compact objects identified in the Planck Early Release Compact
Source Catalogue (ERCSC), in the Planck SZ clusters (PCC), and in the Planck
Catalogue of Compact Sources (PCCS).

On the other hand, the publicly released 2015 Planck CMB lensing map (Planck
Collaboration, 2016a) shown in Fig. (3.2) has been extracted from foreground-
cleaned temperature and polarization maps, using the Hu & Okamoto estimator
as well. Differently from the 2013 release, these maps have been synthesized from
the raw 2015 Planck full mission frequency maps using the SMICA code (Planck
Collaboration et al., 2015). In particular, the released map is based on a minimum-
variance combination of all five temperature and polarization estimators, and is
provided as a mean-field bias subtracted convergence κ map rather than the lensing
potential φ. The lensing mask associated to the 2015 release covers a slightly larger
portion of the sky with respect to the 2013 release: f 2015

sky /f 2013
sky ' 0.98. It is worth

to notice that the 2015 mask covers tSZ clusters, whereas the 2013 mask does not.
In particular, the 2013 reconstruction masks tSZ clusters in the 143 GHz channel
but not in the 217 GHz and since it is a minimum-variance combination, there is
still signal in the position of tSZ clusters. By being obtained from SMICA maps, in

12With angular resolution of 10′, 7′, and 5′ and noise levels of 105, 45 and 60 µKarcmin
respectively.
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Figure 3.2: CMB lensing potential estimated from SMICA full-mission T and P maps
using the MV estimator. The estimate has been Wiener-filtered as φ̂WF

`m = Cφφ,fid
`

Cφφ,fid
`

+Nφφ
`

φ̂`m

for a better visual illustration and the map resolution is Nside = 512.

the 2015 release the tSZ clusters are masked prior to the reconstruction.

The maps from both data releases are in the HEALPix format with a resolution
parameter of Nside = 2048, corresponding to 50331648 pixels over the sky, with a
pixel size of ∼ 1.7′. In Fig. (3.3) we show the CMB lensing reconstruction noise: the
flat part at large scales comes from the contribution of the statistical noise, while
the rise at smaller scales represents the limitations due to the instrument angular
resolution and noise level. As can be seen, the exploitation of the full-mission
temperature and the inclusion of polarization data have the effect of augmenting the
Planck lensing reconstruction sensitivity by approximately a factor of two. Roughly
half of the improvement comes from the reduced noise levels in temperature, while
the other half comes from the additional polarization data.

3.3.2 Herschel Space Observatory

The Herschel Space Observatory (Pilbratt et al., 2010) was launched on the 14th
May 2009 together with the Planck satellite and represented a huge leap forward
in the field of sub-mm/Far-infrared (FIR) astronomy. Before Herschel’s arrival, all
of the observations were severely limited to small patches, poor angular resolution
and a restricted wavelength range was available. However, with its 3.5 m primary
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Figure 3.3: Lens reconstruction noise levels Nκκ
` for the 2013 (blue solid line) and

2015 (orange solid line) Planck releases. The fiducial ΛCDM CMB convergence power
spectrum is plotted as the black solid line.

mirror13, which is the largest one currently in space, Herschel has been able to
pierce the deep Universe and to observe distant sources. The wavelength coverage
of Herschel is from 60 to 680 µm (roughly corresponding to 440 - 5000 Ghz) at
diffraction limited resolution, covering most of the dust emission of a typical galactic
SED. Like Planck, the satellite has been placed in the second Lagrangian point
to ensure that both the Sun and the Earth were always close to each other, thus
limiting contaminations and increasing the available field of view. The detectors on
board of Herschel, PACS and SPIRE, were able to reach high sensitivities by being
cooled down to 0.3 K with liquid 3He, while most of remaining parts were cooled
to 4 - 10 K. The amount of available liquid helium sets the lifetime of the telescope:
for Herschel, observations have been carried out for approximately 3.5 years. The
pointing of the telescope is performed through a combination of gyroscopes and
star-tracker cameras: since the launch, the absolute accuracy has been found to be
2” (Pilbratt et al., 2010).

The telescope carried three main instruments, which are a mixture of broadband
photometers and spectrometers: below we provide a brief description.

• SPIRE: The Spectral and Photometric Imaging Receiver (SPIRE) (Griffin
et al., 2010) consisted of an imaging photometer and medium resolution
spectrometer. It carried out observation at 250, 350, and 500µm band simul-
taneously (each with a resolution of about λ/∆λ ∼ 3). The detectors were
feedhorn-coupled bolometer arrays with 139, 88, and 43 spider-web bolome-

13This is the largest size that could fit within the limits of the Arianne 5 rocket used to ship the
satellite into space; in comparison the mirror of Spitzer, the next largest FIR telescope, is
about 0.85m.
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ters for the three bands respectively. The high sensitivity of SPIRE meant
that observations quickly reached the confusion limit, with 1σ sensitivities
estimated to be around 5.8, 6.3 and 6.8 mJy/beam for the three channels
respectively. On the other hand, the SPIRE spectrometer was a medium
resolution (λ/∆λ ∼ 1300 at 200 µm and ∼ 370 at 670 µm) imaging Fourier
transform spectrometer covering 194 - 672 µm. Science-wise, SPIRE was able
to shed light on the sub-mm region least explored by previous instruments,
thus allowing an investigation of the cold and dusty Universe.

• PACS: The Photodetector Array Camera and Spectrometer (PACS) (Poglitsch
et al., 2010) was a photometer and medium resolution spectrometer operating
in the 60 - 210 µm regime. The photometer performed observations in three
bands centered in 70, 100, 160 µm (with λ/∆λ ∼ 2) and could observe either
the 70 or 100 µm channel simultaneously with the 160 µm band. The mounted
spectrometer was a medium resolution spectrometer (λ/∆λ ∼ 1000− 4000)
covering the wavelengths range between 55 and 210 µm. PACS provided
photometric observations of the peak of galactic dust emission in the nearby
Universe at high spatial resolution; its main scientific goals were to map the
spectral lines in the FIR, in the Milky Way and in local galaxies.

• HIFI: The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) was
the high resolution spectrometer operating in the broad wavelengths range
between 157 and 625 µm. Unlike SPIRE and PACS, it only had a single
pixel but maps could be made using either a series of pointing or on-the-fly
mapping. The main scientific target of the instrument was to investigate the
interaction between stars and the interstellar medium in galaxies by searching
for molecular rotational lines.

Several surveys have been carried out with the Herschel telescope. In this thesis
we have made use of data gathered in the context of the H-ATLAS (Eales et al.,
2010), here we give a brief overview.

The H-ATLAS is the largest extragalactic key-project carried out in open time
with the Herschel Space Observatory. It was allocated 600 hours of observing time
and covers about 600 deg2 of sky in five photometric bands (100, 160, 250, 350 and
500µm) with the PACS and SPIRE instruments. The H-ATLAS map-making is
described by Pascale et al. (2011) for SPIRE and by Ibar et al. (2010) for PACS.
The procedures for source extraction and catalogue generation can be found in
Rigby et al. (2011) and Valiante et al. (2016).

Since H-ATLAS is an extragalactic survey, the observed fields were chosen to
minimize the Galactic dust contamination. As such, the survey area is divided
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into five fields: three equatorial fields centered on 9hr, 12hr, and 14.5hr (Galaxy
And Mass Assembly (GAMA) fields, G09, G12, and G15) covering, altogether,
161 deg2; the North Galactic Pole (NGP) block, a rectangular block of 15◦ cos(δ)
by 10◦ centered on right ascension α = 199.5◦, declination δ = 29◦ and rotated by
approximately 8◦ clockwise; and the South Galactic Pole (SGP) block consisting of
two concatenated rectangular regions, one of 31.5◦ cos(δ) by 6◦ centered on α =
351.3◦, δ = −32.8◦, the other of 20◦ cos(δ) by 6◦ centered on α = 18.1◦, δ = −30.7◦.
The fields were also chosen depending on the amount of complementarity data
available from external surveys operating at different frequencies. For example,
spectroscopy is covered by GAMA, Sloan Digital Sky Survey (SDSS), and 2dF
Galaxy Redshift Survey (2dFRGS), while much of the area has been covered
by Galaxy Evolution Explorer (GALEX) in the ultraviolet. As concerns optical
wavelengths, the SDSS has covered both the GAMA and NGP fields in five bands,
while GAMA and SGP fields have been observed by the Kilo Degree Survey (KIDS);
the SGP will be eventually covered by the Dark Energy Survey (DES).

The scientific targets of H-ATLAS are multiple, concerning both the local and
the distant Universe. In particular, a huge number of the discovered objects do
not belong to the local Universe: Herschel is able to resolve the CIB into discrete
sources, thus enabling an investigation of the LSS of the FIR Universe. The
z . 1 galaxies detected by the H-ATLAS survey are mostly late-type and starburst
galaxies with moderate star-formation rates and relatively weak clustering (Dunne
et al., 2011; Guo et al., 2011). High-z galaxies are forming stars at high rates
(≥ few hundredM� yr−1) and are much more strongly clustered (Maddox et al.,
2010; Xia et al., 2012), implying that they are tracers of large-scale overdensities.
Their properties are consistent with them being the progenitors of local massive
elliptical galaxies (Lapi et al., 2011). These DSFG contain a substantial amount
of dust and as a consequence, their rest-frame optical/ultraviolet (UV) light can
be strongly obscured. It is this high-z H-ATLAS galaxy population that we aim
to correlate with the Planck CMB lensing map in Ch. (4) and (5). In order to
select the these galaxies into a catalogue and, as an example, slice them in bins
for a tomographical analysis, the knowledge of their redshift must be at hand.
Unfortunately, redshift acquisition is not straightforward for dusty IR selected
objects: this is because most of the emission-line redshift indicators lie in the
rest-frame optical and UV bands that are severely extinct by dust, and because IR
observations are carried out with large beam sizes that make multiband counterpart
identification ambiguous. A common method to determine the millimetric photo-z,
is to perform a SED fitting in the FIR, where redshifts are estimated from the
shape of the FIR/sub-mm SED or its colors rather than properties indicated by
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Figure 3.4: SMM SED template at z = 0 (black solid line): solid colored lines from
purpleish to reddish represent rest-frame SED redshifted in the range 0 < z ≤ 5. Colored
dashed lines mark the wavelengths observed by the SPIRE photometer instrument on
board of the Herschel satellite. The prominent moving peak that enables the photo-z
determination with three photometric points is clearly visible.

its stellar emission features in the optical or emission-lines signatures. Differently
from data in the optical or near-IR, FIR data lacks of an extensive photometric
wavelength coverage: at most, individual galaxies will have around 10 photometric
points in the FIR (and an average of 3-5), while in the optical it is common to
have more than 30 bands (Casey et al., 2014). The basic idea assume that the
far-IR SED is roughly fixed (e.g. to SMM-J2135 or Arp220) and then to use the
FIR colors to infer the galaxy’s redshift14, allowing for a study of the redshift
distribution in a statistical sense rather than for individual galaxies. SED fitting
process can be divided into (i) methods that compare directly data (i.e. fluxes
or colors) with model templates by means of χ2 or Bayesian techniques, and (ii)
methods that fit for simple modified greybody-like functions. The baseline method
used here to infer galaxies photo-z is the former and will be discussed in Ch. (4)
and (5). The main feature of the FIR SED is the presence of a peak due to dust
emission (see Fig. (3.4)); however, note that the dust temperature (which manifests
as the SED peak wavelength) correlates with IR luminosity and can be degenerate
with redshift. The radial distribution of H-ATLAS galaxies is shown in Fig. (3.5).

14Of course the accuracy of the method is dependent on the intrinsic variation in SED types
within a given population and as a consequence the precision can be poor.
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Figure 3.5: Angular and radial distribution of sub-mm galaxies in all of the five H-
ATLAS patches. Please note that photometric redshifts have been used to place galaxies
along the redshift axis and even though the spongy structure of the matter distribution
is hardly observed - given the photo-z uncertainties that can be important - the radial
information can be used in a statistical way. In fact, the two main populations at z . 1
and at z & 1 can be seen.
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4 Chapter 4

Cross-correlation in the high-z
sky as seen by Planck and
Herschel

In this chapter we present the first measurement of the correlation between the map
of the CMB lensing potential derived from the Planck nominal mission data and
the angular positions of the z & 1.5 galaxies detected by the Herschel-ATLAS (H-
ATLAS) survey covering about 600 deg2, i.e. about 1.4% of the sky. The hypothesis
that there is no correlation between CMB lensing and the galaxy distribution is
rejected at a 20σ significance, and the result is checked by performing a number of
null tests. Specifically, the significance of the detection of the theoretically expected
cross-correlation is found to be 10σ. The galaxy bias parameter, b, derived from a
joint analysis of the cross-power spectrum and of the auto-power spectrum of the
galaxy density contrast is found to be b = 2.80+0.12

−0.11, consistent with earlier estimates
for H-ATLAS galaxies at similar redshifts. On the other hand, the amplitude of
the cross-correlation is found to be a factor A = 1.62± 0.16 higher than expected
from the standard model (A = 1). The highly significant detection reported here
using a catalog covering only 1.4% of the sky demonstrates the potential of CMB
lensing correlations with submillimeter surveys.

4.1 Introduction

The scientific context of the present analysis has already been thoroughly discussed
in Ch. (2.2.3), here we just recall that the study of cross-correlations between
CMB lensing with external tracers of LSS allows us to (i) constrain cosmology by
reconstructing the dynamics and spatial distribution of the cosmological gravita-
tional potentials, to (ii) derive the bias factor (as well as the effective halo masses)
associated to the tracer populations, and to (iii) uncover known (and unknown)
systematics affecting the datasets.

Several catalogs, such as those from the NRAO VLA Sky Survey (NVSS), the
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Sloan Digital Sky Survey (SDSS), the Wide Field Survey Infrared Explorer (WISE)
have already been cross-correlated with the CMB lensing potential. These surveys
cover large areas of the sky but detected sources are mostly at z . 1. The H-
ATLAS (Eales et al., 2010) allows us to extend the cross-correlation analysis up
to substantially higher redshifts (Lapi et al., 2011; González-Nuevo et al., 2012),
representing a novelty with respect to previous studies. In particular, by looking at
Table (2.2), one can see that our analysis is the first one involving at the same time

1. a high-noise CMB lensing map;

2. an high-z galaxy sample extremely well characterized in terms of astrophysics;

3. a small sky coverage.

In this chapter we present the first investigation of the cross-correlation between
the CMB lensing potential measured by Planck and Herschel-selected galaxies
with estimated redshifts z & 1.5, i.e. at redshifts higher and closer to the peak
of the lensing potential kernel than those of the source samples considered so far
(as illustrated by Fig. (4.1)). Our choice of restricting the analysis to z & 1.5 has
a twofold motivation. First, because we aim to reconstruct the evolution of the
lensing potential at higher redshifts than done with other galaxy samples, it is
expedient to remove the dilution of the signal by low-z sources. Second, as shown
by Lapi et al. (2011) and González-Nuevo et al. (2012), the adopted approach for
estimating photometric redshifts becomes unreliable at z . 1.

The outline of this chapter is as follows. In Sec. (4.2) we describe the theoretical
background and the expected significance of the detection. The datasets are
introduced in Sec. (4.3), whereas the analysis pipeline, including the estimator,
the simulations used for validation of the algorithm and the error estimation are
presented in Sec. (4.4). The measured auto- and cross-power spectra, as well as
the null tests, are reported in Sec. (4.5). In Sec. (4.6) we analyze the constraints
on the galaxy bias and in Sec. (4.7) we discuss the potential systematic effects that
affect the cross-correlation. Finally in Sec (4.8) we summarize our results.

Throughout this chapter we adopt the fiducial flat ΛCDM cosmology with best-fit
Planck + WP + highL + lensing cosmological parameters as provided by the Planck
team in Planck Collaboration (2014b). Here, WP refers to WMAP polarization
data at low multipoles, highL refers to the inclusion of high-resolution CMB data
of the ACT and SPT experiments, and lensing refers to the inclusion of Planck
CMB lensing data in the parameter likelihood.
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Figure 4.1: Estimated redshift distribution of the full sample of H-ATLAS galaxies
(dashed red line) compared with the CMB lensing kernel W κ (blue solid line). Both the
kernels are normalized to a unit maximum.

4.2 Theory and expectations

4.2.1 Signal modeling

We outlined the main features of CMB lensing in previous Chapters. Here we
briefly recall the quantities which are of relevance for this one. The effect of
gravitational lensing on CMB photons can be described as a remapping of the
unlensed temperature anisotropies Θ(n̂) by a two-dimensional vector field in the
sky, namely the deflection field d(n̂) (Lewis & Challinor, 2006):1

Θ̃(n̂) = Θ(n̂ + d(n̂))
= Θ(n̂ +∇φ(n̂))
= Θ(n̂) +∇iφ(n̂)∇iΘ(n̂) +O(φ2),

(4.1)

where Θ̃(n̂) are the lensed temperature anisotropies and φ(n̂) is the CMB lensing
potential:

φ(n̂) = −2
∫ z∗

0

c dz

H(z)
χ∗ − χ(z)
χ∗χ(z) Φ(χ(z)n̂, z). (4.2)

In this equation, χ(z) is the comoving distance to redshift z, χ∗ is the comoving
distance to the last-scattering surface at z∗ ' 1090, H(z) is the Hubble factor

1To avoid confusion with α, the logarithmic slope of the cumulative number counts of galaxies
introduced in Ch. (2.3.3), we denote the deflection angle with the letter d(n̂).
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at redshift z, c is the speed of light, and Φ(χ(z)n̂, z) is the three-dimensional
gravitational potential at a point on the photon path given by χ(z)n̂. Note that
the deflection angle is given by d(n̂) = ∇φ(n̂), where ∇ is the the two-dimensional
gradient on the sphere. Because the lensing potential is an integrated measure of
the projected gravitational potential, taking the two-dimensional Laplacian of the
lensing potential we can define the lensing convergence κ(n̂) = −1

2∇
2φ(n̂), which

depends on the projected matter overdensity δ (Bartelmann & Schneider, 2001):

κ(n̂) =
∫ z∗

0
dz W κ(z)δ(χ(z)n̂, z). (4.3)

The lensing kernel W κ is

W κ(z) = 3Ωm

2c
H2

0
H(z)(1 + z)χ(z)χ∗ − χ(z)

χ∗
, (4.4)

where Ωm and H0 are the present-day values of the Hubble and matter density
parameters, respectively.

The galaxy overdensity g(n̂) in a given direction on the sky is also expressed as a
LOS integral of the matter overdensity:

g(n̂) =
∫ z∗

0
dz W g(z)δ(χ(z)n̂, z), (4.5)

where the kernel is

W g(z) =
b(z)dN

dz(∫
dz′ dN

dz′

) + µ(z)

=
b(z)dN

dz(∫
dz′ dN

dz′

) + 3Ωm

2c
H2

0
H(z)(1 + z)χ(z)

∫ z∗

z
dz′

(
1− χ(z)

χ(z′)

)
(α(z′)− 1)dN

dz′
.

(4.6)

Assuming that the luminous matter traces the peaks of the dark matter distribution,
the galaxy overdensity kernel is given by the sum of two terms. The first one is
related to the physical clustering of sources and is given by the product of the
linear bias2 b(z) and the unit-normalized redshift distribution dN/dz; the second
one describes the effect of the lensing magnification bias (Ho et al., 2008; Xia et al.,
2009) (see also Ch. (2.3.3)). We recall that this effect depends on the slope, α(z), of
their integral counts (N(> S) ∝ S−α) below the adopted flux density limit. Given
the sharply peaked redshift distribution of our sources (see Fig. (4.1)) we can safely

2Throughout the analysis we assume a linear, local, deterministic, redshift- and scale-independent
bias factor unless otherwise stated.
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Figure 4.2: The cumulative number counts of galaxies as function of the flux at 250
µm, S250µm, where the main selection is operated.

assume a redshift- and scale-independent linear bias (b(z) = constant). Previous
analyses of the clustering properties of submillimeter galaxies Xia et al. (2012); Cai
et al. (2013) indicate b ' 3 at the redshifts of interest here, and we adopt this as
our reference value.

Recent work by Gonzalez-Nuevo et al. (2014) has shown that the magnification
bias by weak lensing is substantial for high-z H-ATLAS sources selected with the
same criteria as the present sample (see the Sec (4.3.2)). This is because the
source counts are steep, although their slope below the adopted flux density limit
(S250µm = 35mJy) is uncertain. The data (Béthermin et al., 2012) indicate, at this
limit, α ' 2 while for the high-z galaxy subsample considered in this work we find
α ' 3, see Fig. (4.2). In the following we adopt the latter as our fiducial value.
The effect of different choices for this parameter value is examined in Sec (4.7).
Because the relevant angular scales are much smaller than 1 radian (multipoles
` & 100), the theoretical angular cross-correlation can be computed using the
Limber approximation (Limber, 1953) as

Cκg
` =

∫ z∗

0

dz

c

H(z)
χ2(z)W

κ(z)W g(z)Pδδ
(
k = `

χ(z) , z
)
, (4.7)

where Pδδ(k, z) is the matter power spectrum, which we computed using the CAMB3

code (Lewis et al., 2000). The nonlinear evolution of the matter power spectrum was
taken into account using the HALOFIT prescription (Smith et al., 2003; Takahashi
et al., 2012). A more extended discussion on the effect of the nonlinear evolution
in CMB lensing maps based on N-body simulations is carried out by Antolini et al.

3available at http://camb.info
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(2014). The CMB convergence, W κ(z), and the galaxy redshift distribution dN/dz
of the sample analyzed in this chapter (see Sec (4.3.2)) are shown in Fig. (4.1).

Again under the Limber approximation, the CMB convergence, Cκκ
` , and the galaxy,

Cgg
` , autospectra can be evaluated as

Cκκ
` =

∫ z∗

0

dz

c

H(z)
χ2(z)

[
W κ(z)

]2
Pδδ

(
k = `

χ(z) , z
)

;

Cgg
` =

∫ z∗

0

dz

c

H(z)
χ2(z)

[
W g(z)

]2
Pδδ

(
k = `

χ(z) , z
)
.

(4.8)

4.2.2 Expected S/N

Plugging in the specifics of the H-ATLAS survey (see Ch. (4.3.2) and (3.3.2)), the
mean redshift probed by the cross-correlation between CMB lensing and our sample
is

〈z〉 =

∫ z∗
0

dz
c
z H(z)
χ2(z)W

κ(z)W g(z)Pδδ
(
k = `

χ(z) , z
)

∫ z∗
0

dz
c
H(z)
χ2(z)W

κ(z)W g(z)Pδδ
(
k = `

χ(z) , z
) ' 2. (4.9)

The expected S/N of the convergence-density correlation can be predicted by
assuming that both the galaxy overdensity and the lensing fields behave as Gaussian
random fields, so that the variance of Cκg

` is (see Eq. (3.47))

(
∆Cκg

`

)2
= 1

(2`+ 1)fsky

[
(Cκg

` )2 + (Cκκ
` +Nκκ

` )(Cgg
` +N gg

` )
]
, (4.10)

where fsky is the sky fraction covered by both the galaxy and the lensing surveys,
Nκκ
` is the noise of the lensing field, and N gg

` = 1/n̄ is the shot noise associated
with the galaxy field. Because our calculations are done in terms of the density
contrast, the shot noise is inversely proportional to the mean number of sources
per steradian, n̄. The signal to noise ratio at multipole ` is then

(
S

N

)2

`
=

(
Cκg
`

)2

(
∆Cκg

`

)2 =
(2`+ 1)fsky

(
Cκg
`

)2[
(Cκg

` )2 + (Cκκ
` +Nκκ

` )(Cgg
` +N gg

` )
] , (4.11)

and the cumulative S/N for multipoles up to `max is

(
S

N

)
(< `max) =

√√√√√ `max∑
`′=`min

(
S

N

)2

`′
. (4.12)

In Fig. (4.3) we show both the S/N per multipole and the cumulative one computed
using the specifications for the Planck lensing noise (see Sec (4.3.1)) and the mean
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Figure 4.3: S/N per multipole (blue lines; left axis) and cumulative S/N (red lines;
right axis) evaluated from `min = 100 for fiducial models with b = 3 and α = 1 (no
magnification, dashed lines) and α = 3 (solid lines).

surface density of our source sample. It must be noted that, because of the limited
area covered by the H-ATLAS survey (and split into 5 fields), the cross-correlation
is only meaningful on scales below a few degrees. We have therefore limited our
analysis to ` ≥ `min = 100. This restriction prevents us from exploiting the peak
at ` ∼ 100 of the signal to noise per multipole. The cumulative S/N saturates at
` ∼ 1000. If b = 3 and α = 3 we expect S/N ' 6.

4.3 Data

Both the Planck CMB lensing and Herschel submillimeter galaxies datasets used
in this analysis have been previously introduced in Ch. (3.3); we recall here the
main aspects of interest for this Chapter.

4.3.1 Planck data

We used the publicly released Planck CMB lensing potential map derived from the
first 15.5 months of observations (Planck Collaboration, 2014c). The released map
is based on a minimum variance combination of the 143 and 217 GHz temperature
anisotropy maps only, because adding the 100 GHz map yields a negligible im-
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Figure 4.4: CMB convergence autopower spectrum as reconstructed from Planck data
(blue points) on a portion of the sky with fsky ' 0.6 compared with the theoretical
prediction for our background cosmology (dashed green line).

provement (Planck Collaboration, 2014c).4 The maps are in the HEALPix format
with a resolution parameter of Nside = 2048, corresponding to 50, 331, and 648
pixels over the sky, with a pixel size of ∼ 1.7′.

The power spectrum of the lensing potential is very red, and this may introduce a
bias when we estimate it within multipole bins. To avoid this problem, we decided
to convert the lensing potential map, φ, into the convergence map, κ, which has
a much less red power spectrum. This was done using the relation between the
spherical harmonic coefficients of these quantities estimated on the full sky (Hu,
2000b)

κ`m = −`(`+ 1)
2 φ`m . (4.13)

The convergence spherical harmonic coefficients were transformed to a map with
resolution parameter Nside = 512 corresponding to a pixel size of ∼ 7′. This
resolution is sufficient for our analysis because the data noise level enables us to
detect cross-correlations between the convergence and the galaxy density field only
for angular scales larger than ∼ 20′ (` . 540).

The convergence autopower spectrum recovered on approximately 60% of the sky
using a modified version of the mask provided by the Planck collaboration is
shown in Fig. (4.4). The auto-power spectrum has been corrected for the lensing

4We recall that the angular resolution and the noise level of the 100, 143 and 217 GHz frequency
channels are 10′, 7′, 5′ and 105, 45, 60 µKarcmin respectively.
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reconstruction noise power spectrum Nκκ
` which was estimated from the set of

100 simulated lensing maps5 recently released by the Planck team that account
for the inhomogeneous noise level. The noise power spectrum was computed by
averaging the spectra of the difference maps between the reconstructed and the
input lensing map over 100 realizations. The errors on band powers were calculated
as the diagonal part of the covariance matrix built from the simulation, as described
in Sec. (4.4). The raw auto-power spectrum is not corrected for the bias induced
by non-Gaussianity of unresolved point sources and for pseudo-C` leakage effects
from masking (we just correct for N0 and N1 bias term adopting the formalism
of Planck Collaboration (2014c)). These terms may cause some discrepancy of
the power spectrum at high multipoles. Nevertheless, in the range of multipoles
relevant for our analysis the power spectrum agrees pretty well with the theoretical
one, and proper estimation of the convergence power spectrum is outside the scope
of this thesis.

4.3.2 Herschel fields

We exploited the data collected by the Herschel Space Observatory (Pilbratt et al.,
2010) in the context of the Herschel Astrophysical Terahertz Large Area Survey
(H-ATLAS) (Eales et al., 2010), an open-time key program that has surveyed
about 600 deg2 with the Photodetector Array Camera and Spectrometer (PACS)
(Poglitsch et al., 2010) and the Spectral and Photometric Imaging Receiver (SPIRE)
(Griffin et al., 2010) in five bands, from 100 to 500µm.

The surveyed area is divided into five fields: three equatorial fields centered on 9hr,
12hr, and 14.5hr (GAMA fields, G09, G12, and G15) covering, altogether, 161 deg2;
the NGP block; and the SGP block consisting of two concatenated rectangular
regions. The footprint of the survey is shown in the right panel of Fig. (6.2).

The H-ATLAS galaxies have a broad redshift distribution extending from z = 0
to z ' 5 (Pearson et al., 2013). The z . 1 population is mostly made of “normal”
late-type and star-burst galaxies with low to moderate star formation rates (SFRs;
Dunne et al., 2011; Guo et al., 2011) while the high-z galaxies are forming stars
at high rates (SFR & few hundredM� yr−1) and are much more strongly clustered
(Maddox et al., 2010; Xia et al., 2012), implying that they are tracers of large-scale
overdensities. Their properties are consistent with them being the progenitors of
local massive elliptical galaxies (Lapi et al., 2011). We aim to correlate high-z
H-ATLAS galaxies with the Planck CMB lensing map.

5http://irsa.ipac.caltech.edu/data/Planck/release_1/ancillary-data/HFI_
Products.html
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4 Cross-correlation in the high-z sky as seen by Planck and Herschel

To select the high-z population, we adopted the criteria developed by González-
Nuevo et al. (2012):

1. S250µm > 35 mJy;

2. S350µm/S250µm > 0.6 and S500µm/S350µm > 0.4;

3. 3σ detection at 350µm;

4. photometric redshift zphot > 1.5, estimated following Lapi et al. (2011) and
González-Nuevo et al. (2012).

Our final sample comprises a total of 99,823 sources, of which 9, 099 are in G09,
8, 751 in G12, 9, 279 in G15, 28, 245 in NGP and 44, 449 in SGP. The specifics
of each patch are summarized in Table (4.1). The redshift distribution of the
population is needed in order to predict the amplitude of the cross-correlation.
Estimating the uncertainties in the redshift distribution due to photometric redshift
errors is not a trivial task.

As stated in González-Nuevo et al. (2012) there is no indication that photometric
redshifts are systematically under- or overestimated when the spectral energy
distribution of SMM J2135-0102 is used as a template. The median value of
∆z/(1 + z) ≡ (zphot − zspec)/(1 + zspec) is -0.002 with a dispersion of 0.115. This
dispersion corresponds to an rms error on z of σ〈z〉 = 0.345 at the mean redshift
〈z〉 ' 2, given by Eq. ((4.9)). To get a rough indication of how many sources were
scattered above and below the redshift threshold (z = 1.5) by measurement errors
we have convolved a gaussian fit to the redshift distribution of sources selected
with the first 3 criteria [(1) to (3)] with a gaussian error distribution having zero
mean and dispersion σ〈z〉. The convolved redshift distribution was cut at z = 1.5,
and the portion at higher z was fitted with a half-normal distribution normalized
to unity:

dN

dz
=
√

2
σ
√
π

exp
(
−(z − µ)2

2σ2

)
. (4.14)

The redshift distributions of the galaxies before and after the convolution are shown
in Fig. (4.5).

We built an overdensity map at a resolution Nside = 512 defined by

g(n̂) = n(n̂)− n̄
n̄

, (4.15)

where n(n̂) is the number of objects in a given pixel, and n̄ is the mean number
of objects per pixel. The CMB convergence and galaxy overdensity maps in the
different patches are shown in Fig. (4.6). We filtered out from these fields multipoles
` & 400 where (S/N)` . 0.3.

90



4.4 The Cross-Correlation Algorithm

1.5 2.0 2.5 3.0 3.5 4.0

z

0.3

0.6

0.9

1.2

d
N
/d
z

Convolved
µ = 1.528
σ = 0.788
µ = 1.510
σ = 0.684

Figure 4.5: Redshift distribution of H-ATLAS galaxies for the combined set of patches
used in the analysis. The (blue) histogram is the empirical redshift distributions, the
dashed (orange) line is the half-normal fit to dN/dz as described in text, while the solid
(green) line represents the convolved dN/dz that takes into account errors on photo-z
estimation and is used as the fiducial distribution in our analysis. The values of the
parameters µ and σ given in the box are the best-fit values and are used in the analytic
expression for dN/dz adopted in calculations.

4.4 The Cross-Correlation Algorithm

4.4.1 Estimator

We computed the angular power spectra within the regions covered by the H-
ATLAS survey using a PCL estimator based on the MASTER algorithm (Hivon et al.,
2002).6 In Ch. (3.2) we have extensively discussed PCL methods, here we just
recall the main aspects and contextualize to the case of the CMB lensing-galaxy
cross-correlation. For a survey that covers only a fraction of the sky, different modes
of the true cross-power spectrum Cκg

` are coupled (Hauser & Peebles, 1973). The
coupling can be described by the mode-mode coupling matrix M``′ which relates
the pseudo-cross-spectrum C̃κg

` measured from the data

C̃κg
` = 1

2`+ 1
∑̀
m=−`

κ̃`mg̃
∗
`m. (4.16)

to the true spectrum
C̃κg
` =

∑
`′
M``′C

κg
`′ . (4.17)

6These regions are inside the area used in the estimation of the CMB lensing map.
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Table 4.1: H-ATLAS Patches Data

Patch Nobj fsky n̄ [gal pix−1] n̄ [gal sr−1]
ALLa 99823 0.014 2.30 5.76× 105

NGP 28245 0.004 2.25 5.64× 105

SGP 44449 0.006 2.38 5.95× 105

G09 9099 0.001 2.28 5.71× 105

G12 8751 0.001 2.13 5.35× 105

G15 9279 0.001 2.27 5.68× 105

a ALL is the combination of all fields together.

However, we cannot directly invert Eq. (4.17) to get the true power spectrum,
because for surveys covering only a small fraction of the sky, the coupling matrix
M``′ becomes singular. To reduce the correlations of the C`’s it is necessary to bin
the power spectrum in `. We used eight linearly spaced bins of width ∆` = 100 in
the range 0 ≤ ` ≤ 800.

Then, the estimator of the true band powers Ĉκg
L (hereafter Cκg

L denotes the binned
power spectrum and L identifies the bin) is given by

Ĉκg
L =

∑
L′`

K−1
LL′PL′`C̃

κg
` , (4.18)

where
KLL′ =

∑
``′
PL`M``′p

2
`′Q`′L′ . (4.19)

Here PL` is the binning operator; Q`L and p2
`′ are, respectively, the reciprocal of

the binning operator and the pixel window function that takes into account the
finite pixel size. Because of the small size of the sky area covered by the H-ATLAS
survey, the power spectrum for ` < 100 is very poorly estimated, and we did not
use it in our analysis. However, to avoid the bias coming from the lowest-order
multipoles, the first multipole bin is included in the computation of the power
spectrum; that is, the inversion of the binned coupling matrix KLL′ is performed
including the first bin, and the pseudopower spectrum for the first bin is used in
the product of Eq. (4.18).

The main assumption in cross-correlation studies is that the noise levels related to
the observables being analyzed are uncorrelated, so that we do not need to debias
the reconstructed cross-spectrum for any noise term. However, when dealing with
autopower spectra, such as Cgg

` and Cκκ
` , we have to correct the estimator given by

92



4.4 The Cross-Correlation Algorithm

(51◦,84◦)

Convergence NGP

-0.411 0.522

(51◦,84◦)

Galaxies NGP

-0.737 0.802

(0◦,-78◦)

Convergence SGP

-0.411 0.522

(0◦,-78◦)

Galaxies SGP

-0.737 0.802

(-132◦,28◦)

Convergence G09

-0.411 0.522

(-132◦,28◦)

Galaxies G09

-0.737 0.802

(-84.5◦,60◦)

Convergence G12

-0.411 0.522

(-84.5◦,60◦)

Galaxies G12

-0.737 0.802

(-12◦,54◦)

Convergence G15

-0.411 0.522

(-12◦,54◦)

Galaxies G15

-0.737 0.802

Figure 4.6: Convergence maps (upper row) and galaxy overdensity maps (lower row) in
the H-ATLAS fields: multipoles ` > 400 for which (S/N)` . 0.3 have been filtered out.
Galactic longitude and latitude (l, b) of patch centers are provided in brackets. The grid
overlay has spacing of 3◦ in each box.

Eq. (4.18) in order to account for the noise:

Ĉgg
L =

∑
L′`

K−1
LL′PL′`

(
C̃gg
` − 〈Ñ

gg
` 〉MC

)
,

Ĉκκ
L =

∑
L′`

K−1
LL′PL′`

(
C̃κκ
` − 〈Ñκκ

` 〉MC

)
,

(4.20)

where 〈Ñ gg
` 〉MC and 〈Ñκκ

` 〉MC are the average noise pseudospectra estimated from
the MC simulations.

4.4.2 Covariance matrix

The errors on the cross-power spectrum are described by the covariance matrix
(Brown et al., 2005)

CovκgLL′ = M−1
LL1PL1` C̃ov

κg

``′ Q`′L2(M−1
L′L2

)T , (4.21)

where C̃ovκg``′ is the pseudocovariance matrix given by

C̃ovκg``′ = 1
2`′ + 1M``′

[
Cκg
` (b)Cκg

`′ (b)+√
(Cκκ

` +Nκκ
` )(Cgg

` (b) +N gg
`′ )(Cκκ

`′ +Nκκ
`′ )(Cgg

`′ (b) +N gg
`′ )
]
.

(4.22)
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The corresponding covariance matrix of the galaxy autocorrelation is obtained by
replacing in Eq. ((4.21)) the pseudocovariance matrix C̃ovκg``′ with C̃ovgg``′ given by

C̃ovgg``′ = 2
2`′ + 1M``′

[
(Cgg

` (b) +N gg
` )(Cgg

`′ (b) +N gg
`′ )
]
. (4.23)

The analytical expressions for the covariance matrices given above were used in
the estimation of the galaxy bias and of the amplitude of the cross-correlation,
presented in Sec (4.6).

4.4.3 Validation

In order to validate the algorithms used for the computation of the estimators
outlined in the previous section and to check that the cross- and autopower spectra
estimates are unbiased, we created 500 simulated maps of the CMB convergence
field and of the galaxy overdensity field with statistical properties consistent with
observations.

Using the theoretical spectra obtained with Eqs. (4.7) and (4.8), we generated
full-sky signal maps, injecting a known degree of correlation, so that the simulated
CMB convergence and galaxy harmonic modes satisfy both the auto- and the
cross-correlations (Kamionkowski et al., 1997):

κ`m = ζ1
(
Cκκ
`

)1/2
;

g`m = ζ1
Cκg
`(

Cκκ
`

)1/2 + ζ2

Cgg
` −

(
Cκg
`

)2

Cκκ
`

1/2

.
(4.24)

For each value of ` and m > 0, ζ1 and ζ2 are two complex numbers drawn from
a Gaussian distribution with unit variance, whereas for m = 0 they are real and
normally distributed.

We also generated 500 noise realizations for both fields. To simulate Gaussian
convergence noise maps, we used the convergence noise power spectrum Nκκ

`

available at the Planck Legacy Archive7 (PLA). Although this power spectrum is
not sufficiently accurate to estimate the convergence power spectrum, it should
be sufficiently good for the cross-correlation analysis, which is not biased by the
noise term. For the same reason, it is not crucial for our analysis to use the 100
simulations of the estimated lensing maps available at the PLA.

To take into account noise in the simulated galaxy maps, we proceeded in the

7http://wiki.cosmos.esa.int/planckpla/index.php/Specially_processed_maps
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following way. For each signal map containing the galaxy overdensity, we generated
a set of simulated galaxy number count maps, where the value in each pixel is
drawn from a Poisson distribution with mean

λ(n̂) = n̄(1 + g(n̂)), (4.25)

where n̄ is the mean number of sources per pixel in a given H-ATLAS patch and
g(n̂) is the corresponding simulated galaxy map containing only signal. The galaxy
number counts map λ(n̂) was then converted into a galaxy overdensity map using
Eq. (4.15), substituting the real number of objects in a given pixel n(n̂) with the
simulated one λ(n̂). Note that maps obtained in this way already include Poisson
noise with variance N gg

` = 1/n̄.

We applied the pipeline described above to our set of simulations in order to recover
the input cross- and autopower spectra used to generate such simulations. The
extracted Ĉκg

L , Ĉgg
L , and Ĉκκ

L spectra averaged over 500 simulations are reported in
Fig. (4.7). The mean band power was computed as

〈ĈXY
L 〉 = 1

Nsim

Nsim∑
i=1

ĈXY,i
L , (4.26)

where X, Y = {κ, g}, i refers to the i-th simulation, and Nsim = 500 is the number
of simulations. The errors were computed from the covariance matrix as

∆ĈXY
L =

(CovXYLL
Nsim

)1/2
, (4.27)

and the covariance matrix CovXYLL′ was evaluated from the simulations as

CovXYLL′ = 1
Nsim − 1

Nsim∑
i=1

(ĈXY,i
L − 〈ĈXY

L 〉MC)(ĈXY,i
L′ − 〈ĈXY

L′ 〉MC). (4.28)

We also show, for comparison, the theoretical error bars obtained from Eq. ((4.10)),
modified to take into account the binning. They are in generally good agreement
with the MC error estimates, which, however, are slightly larger (by up to ∼ 25%).
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Ĉ
κ
κ

L

Theory

MC Simulations

100 200 300 400 500 600 700 800

`

−0.1

0.0

0.1

(Ĉ
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Figure 4.7: Left. Upper panel: cross-power spectrum of simulated galaxy and lensing
maps constructed with b = 3. The points connected by the solid blue line represent
the binned input cross-spectrum, and the average reconstructed spectrum from 500
simulations is shown by the orange points. Lower panel: fractional difference between the
input and extracted cross-spectra. Error bars obtained with the simulation covariance
matrix (orange points) and with the analytical approximation (blue points) are shown
for comparison. Middle. As in left plot, but for the galaxy auto-power spectrum. Right.
As in left plot, but for the CMB convergence autopower spectrum
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100 200 300 400 500 600 700 800

`

0

2

4

6

C
κ
g

`
(×

10
−

7 )

b = 2.80A = 1.62 κg-gg

b = 8.66 A = 0.63 κg-only

Data

Figure 4.8: The CMB convergence-galaxy density cross-spectrum as measured from
Planck and Herschel data. The data points are shown in blue, with error bars computed
using the full covariance matrix obtained from Monte Carlo realizations of convergence
maps. The theoretical spectra calculated with the bias values inferred from the likelihood
analysis (as described in text) using the cross-correlation data only (solid red line) and
the cross-correlation together with the galaxy autocorrelation data (dot-dashed green
line) are also shown; we fix α = 3 in this analysis. The null (no correlation) hypothesis is
rejected at the 20σ level.

4.5 Power spectra

4.5.1 CMB Convergence-Galaxy Cross-correlation

The recovered cross-spectrum is shown in Fig. (4.8). To compute it we have applied
to both maps masks that select the five H-ATLAS patches of interest. The error
bars are estimated by cross-correlating 500 MC realizations of simulated CMB
convergence maps (consisting of both signal and noise) with the true H-ATLAS
galaxy density map, as described in Sec (4.5.3). This method (MC1 in the language
of Ch. (3.2.2)) assumes that the two maps are uncorrelated; our error estimates are
a good approximation because both maps are very noisy and Cκκ,tot

` Cgg,tot
` � (Cκg

` )2.
We have also estimated the errors from cross-correlations of 500 MC realizations of
simulated H-ATLAS galaxy density maps with the real Planck CMB convergence
map. The former approach yields slightly smaller error bars, yet slightly larger than
those estimated analytically (see Fig. (4.9)). These error estimates were checked
by cross-correlating the publicly available set of 100 simulated lensing maps, which
accurately reflect the Planck noise properties, with the real H-ATLAS map. The
derived error bars are comparable with those found with our baseline approach,
and there is no sign of systematic under- or overestimation.
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Figure 4.9: Error estimates for the cross-power spectrum band powers. The Monte Carlo
estimates associated with estimated band powers are shown in orange (500 simulated
lensing maps correlated with the real galaxy field). Blue bars represent errors obtained
by correlating 500 simulated galaxy maps with the real convergence field, and the green
bars represent the analytical approximation to these errors. Error estimates obtained
by correlating the real galaxy field with the 100 lensing simulated maps by the Planck
collaboration are shown in red.
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L Ĉ

κg
L′ ] Real Herschel

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
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4.5 Power spectra

We have exploited the simulations to build the covariance matrix, used to evaluate
the probability that the measured signal is consistent with no correlation (our null
hypothesis). As can be seen in Fig. (4.10), the covariance matrix is dominated by
the diagonal components; however, off-diagonal components are non-negligible and
have to be taken into account. The χ2 was calculated as

χ2
null = Ĉκg

L (CovκgLL′)−1 Ĉκg
L′ . (4.29)

For the analysis performed with the whole H-ATLAS sample we obtained χ2
null =

83.3 for ν = 7 degrees of freedom (dof), corresponding to a probability that the
null hypothesis holds of p = 2.89× 10−15. Because the χ2 distribution has mean
ν and variance 2ν, the null hypothesis is rejected with a significance of about
(83.3 − 7)/(141/2) ' 20σ. This is the sum in quadrature of the significance of
the correlation in each band power, taking into account the correlations between
different bins. The results of the χ2 analysis for each patch are reported in Table
(4.2).

4.5.2 Galaxy Autocorrelation

We also performed an analysis of the autocorrelation of Herschel galaxies on the
different patches. The shot noise subtracted autopower spectrum measured for the
complete H-ATLAS data set is shown in Fig. (4.11). The error bars on the data
points are evaluated from the diagonal part of the covariance matrix built from
galaxy simulations with bias b = 3. The detected signal is highly significant (40σ).

4.5.3 Null Tests

In order to verify our pipeline and the reconstructed spectra against the possibility
of residual systematic errors, we performed a series of null tests, which consist of
cross-correlating the real map of one field with simulated maps of the other field.
Because there is no common cosmological signal, the mean correlation must be
zero.

We cross-correlated our 500 simulated CMB lensing maps (containing both signal
and noise) with the real H-ATLAS galaxy density contrast map and our 500 simu-
lated galaxy maps constructed using b = 3 with the true Planck CMB convergence
map. The error bars on the cross-power spectra were computed using the covariance
matrices obtained from these simulations. As illustrated in Fig. (4.12) in both
cases no significant signal was detected. In the first test we obtained χ2 = 7.2
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Figure 4.11: Galaxy density autopower spectrum for the whole sample of H-ATLAS
galaxies. The data points are shown in blue, and the solid (red) line is the theoretical
Cgg` evaluated for the best-fit value of the bias obtained using a likelihood analysis on
the galaxy autospectrum data.

Patch χ2
null/ν p-value Significance

ALL 83.31/7 2.89× 10−15 20.3σ
NGP 34.03/7 1.70× 10−5 7.2σ
SGP 27.77/7 0.002 5.6σ
G09 22.41/7 0.002 4.1σ
G12 22.26/7 0.002 4.1σ
G15 29.23/7 1.0× 10−4 5.9σ

Table 4.2: Significance of No Cross-correlation Hypothesis Rejection

corresponding to a probability of the null hypothesis (no correlation) p = 0.41, and
in the second one we have χ2 = 5.9 and p = 0.55.

A further test consisted of cross-correlating the galaxy distribution in one patch of
the sky with the lensing map in another. We moved in turn the three H-ATLAS
GAMA fields and the SGP field to the position of the NGP patch and shifted the
NGP galaxies to the SGP area. Then we cross-correlated each shifted galaxy map
with the convergence field in the same position. The errors on the cross-correlations
were obtained as above. All of the cross-spectra are consistent with no signal.
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Figure 4.12: Results of null tests. Upper panel: mean correlation between the true
H-ATLAS map including all of the five patches and 500 simulated CMB lensing maps.
Lower panel: mean cross-spectra between the true Planck lensing map and 500 simulated
galaxy maps with b = 3. No significant signal is detected in either case.

4.6 Constraints on bias and amplitude of
cross-correlation

We now discuss the cross-correlation signal of cosmological origin. We introduce a
phenomenologically motivated parameter, A, that scales the expected amplitude
of the cross-power spectrum, Cκg

` , of the Planck CMB lensing with the H-ATLAS
galaxy overdensity map as ACκg

L (b). Obviously, its expected value is one. The
introduction of such parameter enables consistency checks both at the data and
theory level: deviations from unity might point toward an incorrect modeling of
the signal (e.g. wrong redshift distribution estimate, scale-dependent bias and
magnification bias), new physics (e.g. growth history different from assumed ΛCDM
and primordial NG) or systematics affecting the datasets (e.g. residual correlated
contamination in the maps). Because the theoretical cross-spectrum is also basically
proportional to the galaxy bias, there is a strong degeneracy between these two
parameters. In order to break this degeneracy, we use also the galaxy autopower
spectrum which depends only on b.

Let us note that, depending on the subject of the study, previous works in literature
adopted different strategies to interpret the cross-correlation signal. We can
distinguish two main approaches: either the bias is fixed (or a bias template is
assumed) from prior knowledge and the observed cross-spectrum Ĉκg

` is fit for an
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4 Cross-correlation in the high-z sky as seen by Planck and Herschel

amplitude parameter A (Sherwin et al., 2012; Planck Collaboration, 2014c; Allison
et al., 2015; Giannantonio et al., 2016), or the cosmology is assumed to be known
and the reconstructed cross-spectrum is fit for the bias value (Feng et al., 2012;
Bleem et al., 2012; Geach et al., 2013; DiPompeo et al., 2014; Omori & Holder,
2015). Both estimated A or b can then be converted in derived parameters; in
particular, it is possible to construct statistics sensitive to deviations from ΛCDM,
such as Eg (Pullen et al., 2016) and Dg (Giannantonio et al., 2016), by combining
CMB lensing-galaxy cross-spectra with galaxy auto-spectra. We stress that the
analysis presented here is the first one that constrain the cross-correlation amplitude
A and linear galaxy bias b by combining the two-point statistics Cκg

` and Cgg
` . This

analysis scheme has been subsequently exploited by Kuntz (2015) to reanalyze the
cross-correlation signal between the CHFTLens galaxies with the Planck CMB
lensing firstly studied by Omori & Holder (2015).

The best-fit values of the amplitude and of the galaxy bias were obtained by means
of Bayesian analysis. In the following, we first describe the likelihood functions
and present constraints on the redshift-independent galaxy bias and on the cross-
correlation amplitude using galaxy autocorrelation data alone, cross-correlation data
alone, and combining both data sets. In this analysis, the cosmological parameters
and the counts slope α are kept fixed to the fiducial values. In order to efficiently
sample the parameter space, we use the Markov chain Monte Carlo (MCMC)
method assuming uninformative flat priors. For this purpose we employ emcee
(Foreman-Mackey et al., 2013), a public implementation of the affine invariant
MCMC ensemble sampler (Goodman & Weare, 2010). In this chapter, each
quoted parameter estimate is the median of the appropriate posterior distribution
after marginalizing over the remaining parameters with uncertainties given by
the 16th and 84th percentiles (indicating the bounds of a 68% credible interval).
For a Gaussian distribution, as is the case when combining both data sets, these
percentiles correspond approximately to −1σ and +1σ values, and the median of
the posterior is equal to the mean and maximum likelihood value.

We assumed Gaussian likelihood functions for the cross- and autopower spectra.
For the galaxy autopower spectrum it takes the form

L(Ĉgg
L |b) = 1√

(2π)NL det(CovggLL′)

× exp
−1

2[Ĉgg
L − C

gg
L (b)] (CovggLL′)−1 [Ĉgg

L′ − C
gg
L′ (b)]

,
(4.30)
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4.6 Constraints on bias and amplitude of cross-correlation

gg κg κg + gg

Patch b b A b A χ2
th/ν p-value

ALL 2.84+0.12
−0.11 8.66+4.23

−4.37 0.63+0.52
−0.20 2.80+0.12

−0.11 1.62+0.16
−0.16 12.6/5 0.03

NGP 2.72+0.22
−0.21 7.92+5.38

−6.38 0.53+1.35
−0.26 2.75+0.22

−0.21 1.27+0.28
−0.29 23.1/5 3× 10−4

SGP 2.67+0.19
−0.19 0.78+1.86

−0.61 3.48+2.63
−1.95 2.69+0.18

−0.18 1.56+0.23
−0.23 5.7/5 0.34

G09 3.79+0.35
−0.37 8.99+4.02

−5.06 1.11+0.96
−0.36 3.72+0.35

−0.32 2.11+0.41
−0.41 6.9/5 0.22

G12 3.43+0.35
−0.33 3.34+6.84

−2.55 2.04+3.41
−1.23 3.36+0.35

−0.33 2.05+0.47
−0.46 13.7/5 0.02

G15 3.14+0.33
−0.35 8.57+4.85

−6.54 0.97+1.72
−0.38 3.13+0.34

−0.34 2.06+0.45
−0.47 18.4/5 2× 10−3

Table 4.3: H-ATLAS galaxy linear bias and cross-correlation amplitude as determined
using both separately and jointly the reconstructed galaxy auto- and cross-spectra in the
different patches

where NL = 7 is the number of multipole bins and CovggLL′ is the covariance matrix
computed as described in Sec (4.4.2).

By sampling this likelihood for the measured H-ATLAS galaxy power spectrum
Ĉgg
L we obtained constraints on the galaxy bias. Estimated values of the bias for

all patches as well as for each of them are presented in Table (4.3). The results
for the different patches are consistent with each other within . 2σ and we note
the GAMA patches to be appear a bit more biased with respect to NGP and SGP.
The global value, b = 2.84± 0.12, is consistent with earlier estimates. For example,
Xia et al. (2012) found an effective value of the bias factor beff ' 3 (no error given)
"for the bulk of galaxies at z ' 2”. The Planck Collaboration (2014e) found, from
their analysis of the CIB, a slightly lower value (beff ' 2.6), as expected because a
large contribution to the CIB comes from fainter, presumably less biased, sources.

We used the measured cross-spectra to constrain the b and A parameters in the
same fashion. As noted above, the cross-spectra basically measure the product
A× b. The likelihood function is given by

L(Ĉκg
L |b, A) = 1√

(2π)NL det(CovκgLL′)

× exp
−1

2[Ĉκg
L − AC

κg
L (b)] (CovκgLL′)−1 [Ĉκg

L′ − AC
κg
L′ (b)]

,
(4.31)

where CovκgLL′ is the covariance matrix (Eq. ((4.21))). The results are shown in
Table (4.3).

Finally, we studied the constraints on b and A by combining the cross- and galaxy
autospectra. For the joint analysis we used the Gaussian likelihood function that
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takes into account correlations between the cross- and the autopower spectra in
the covariance matrix. We organized the extracted cross- and autoband powers
into a single data vector as

ĈL = (Ĉκg
L , Ĉ

gg
L ), (4.32)

which has 14 elements. The total covariance matrix is then written as the composi-
tion of four 7× 7 submatrices

CovLL′ =
 CovκgLL′ (Covκg−ggLL′ )ᵀ

Covκg−ggLL′ CovggLL′

 (4.33)

where the mixed covariance that takes into account the correlation between the
two observables is

Covκg−ggLL′ = M−1
LL1PL1`C̃ov

κg−gg
``′ Q`′L2(M−1

L′L2
)ᵀ (4.34)

C̃ovκg−gg``′ = 2
2`′ + 1M``′

[
(Cgg

` (b) +N gg
` )(Cgg

`′ (b) +N gg
`′ )Cκg

` (b)Cκg
`′ (b)

]1/2
. (4.35)

In the above expressions, CovκgLL′ and CovggLL′ are the covariance matrices evaluated
using Eq. ((4.21)).

The full 2-dimensional posterior distributions of the b and A parameters, as well
as the marginalized ones obtained from this analysis, are shown in Fig. (4.13).
Numerical values of the parameters are presented in Table (4.3), where the
best-fit values and the errors are evaluated as the 50th, 16th, and 84th per-
centiles, respectively, of the posterior distributions. The χ2 values are evalu-
ated as χ2

th = [Ĉκg
L − AbfCκg

L (bbf )](CovκgLL′)−1 [Ĉκg
L′ − AbfCκg

L′ (bbf )], where bbf and
Abf are the best-fit values. Note that the posterior distributions of b and A

obtained using only cross-correlation data are far from being Gaussian. As a
sanity check, we derived a theoretical upper limit on A considering that cross-
spectrum cannot be larger than the geometric mean of the two autospectra:
A ≤ (Cκg,th

L (CovκgLL′)−1
√
Ĉκκ
L′ Ĉ

gg
L′ )/(C

κg,th
L (CovκgLL′)−1Cκg,th

L′ ) ∼ 2.5.

The χ2 value of the best-fit theoretical spectrum is χ2
th = 12.6 for ν = 5 dof

(χ2
th/ν = 2.5). The significance of the detection of the theoretically expected

cross-correlation signal was evaluated as the ratio between the estimated amplitude
A and its error σA: A/σA ' 10, corresponding to a 10σ significance.

The constraint on the bias factor from the joint fit of the galaxy autocorrelation
and of the cross-correlation power spectra, b = 2.80+0.12

−0.11, is consistent with earlier
estimates (Xia et al., 2012). On the other hand, the cross-correlation amplitude
is A = 1.62 ± 0.16 times larger than expected for the standard ΛCDM model
for the evolution of large-scale structure. This is at odds with the results of the
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Figure 4.13: Posterior distribution in the b−A plane with the 68% and 95% confidence
contours (darker and lighter colors, respectively), together with the marginalized distri-
butions of each parameter with 1σ errors shown by the dashed white lines, obtained by
combining the convergence-galaxy cross-correlation and the galaxy autocorrelation data
for each patch. The solid red line represents the standard case in which A = 1, and α is
set to 3 for the analysis.
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Figure 4.14: Validation of the MCMC pipeline and constraining power comparison. We
show posterior distribution in the b−A plane with the 68% and 95% confidence contours
(darker and lighter colors, respectively), obtained by combining the CMB convergence-
galaxy cross-correlation and the galaxy autocorrelation mock data with b = 3 and A = 1.
The 1σ red and green error bars represent the bias constraints found using only the Cgg`
and Cκg` (fixing A = 1), respectively.

cross-correlation analyses presented in the Planck Collaboration (2014c) paper,
which are consistent with A = 1 except, perhaps, in the case of the MaxBCG
cluster catalog. Possible causes of the large value of A are discussed in the following
section.

In order to provide further proof of the reliability of the MCMC analysis, as well as
to give a comparison of the constraining power of the different two-point statistics
exploited here, we conclude this subsection with Fig. (4.14): there, we show the
results of the MCMC analysis on mock data using Cgg

` , Cκg
` , and Cgg

` + Cκg
` . To

produce this plot we first output two correlated signal plus noise κ and g maps
with the fiducial model by setting b = 3 and A = 1. We then extract both the cross-
and auto-power spectra and fit separately Ĉgg,fake

` and Ĉκg,fake
` (assuming A = 1)

for the bias value, while the combination of Ĉκg,fake
` + Ĉgg,fake

` is fit for the bias and
amplitude parameters. As we can see, in all cases the input model is recovered,
i.e. b = 3 and A = 1 within 1σ, and there are no signs of spurious biases. In
particular, the galaxy auto-power spectrum seems to constrain tighter the value of
the linear galaxy bias, though it is expected to be much more sensitive to residual
systematics.
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Figure 4.15: CMB convergence autopower spectrum recovered using the H-ATLAS
mask. Theory line as in Fig. (4.4).

4.7 Discussion

The correlation between the CMB lensing potential and the distribution of high-z,
submillimeter selected galaxies was found to be stronger than expected for the
standard cosmological model. We now address on one side the possibility that
the tension between the estimated and the expected value of the amplitude A
is overrated because of an underestimate of the errors and, on the other side,
astrophysical effects that may enhance the measured signal.

4.7.1 Noise Levels

Due to the inhomogeneity of the noise level in the Planck survey, the H-ATLAS
patches used for the cross-correlation may have slightly higher than average effective
noise. To check this possibility, we reconstructed the CMB convergence autopower
spectrum for each of the H-ATLAS patches. Error bars were derived from 100
simulated Planck lensing maps. The results of the analysis performed combining
the five patches show some excess power for ` ∼ 400–500 (Fig. (4.15)). Considering
the patches separately we find that the main features of the CMB lensing power
spectrum are recovered in the two largest patches, whereas the power spectrum
in the three GAMA fields seems to be dominated by noise. Thus, there is an
indication of a slight underestimate of the noise bias in the latter fields, but the
effect on the combined patches is marginal.

107



4 Cross-correlation in the high-z sky as seen by Planck and Herschel

100 200 300 400 500 600 700 800

`

10−18

10−17

10−16

10−15

10−14

(∆
C
κ
g

b
)2

(Cκg
b )2 + Cκκ

b C
gg
b

Nκκ
b N gg

b

Cκκ
b N

gg
b

Nκκ
b Cgg

b

(∆Cκg
b )2

Figure 4.16: Contributions to the cross-spectrum variance (∆Cκg` )2 [see Eq. ((4.36))].
Blue line: signal only term. Green line: noise only term. Red and cyan lines: mixed
signal and noise terms.

To understand which is the main statistical error source on the cross-power spectrum,
we have analyzed the contributions to the error budget. The autospectra contain
a signal and a noise term as ĈXX

L = CXX
L + NXX

L , so that the errors on the
cross-spectra can be written as

fsky(2L+ 1)∆`
(
∆Ĉκg

L

)2
=
[
Cκκ
L Cgg

L + (Cκg
L )2

]
+Nκκ

L N gg
L + Cκκ

L N gg
L + Cgg

L N
κκ
L .

(4.36)

The first term represents the cosmic variance, the second one the pure noise, and
the remaining are mixed signal-noise terms. As can be seen from Fig. (4.16), the
main contribution to the Cκg

L variance is given by the noise-only term. Moreover,
the relative amplitude of the mixed terms is telling us that most of the error
comes from the lensing noise. In order to reduce the errors of the reconstructed
cross-spectrum, it is important to reach high sensitivity in reconstructing the CMB
lensing potential. This, of course, does not include the possible systematic errors
discussed below.

4.7.2 Astrophysical systematics

First we have checked the effect on the auto- and cross-spectra of errors of photo-
metric redshift estimates. To this end we have redone the full analysis using the
initial redshift distribution, dN/dz, i.e. the one represented by the dashed red line
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Figure 4.17: Effect of lensing magnification bias on the cross-power spectrum (left
panel) and on the galaxy autopower spectrum (right panel). In both panels, theory lines
are plotted for bias values b = 3, while the slope of the galaxy number counts as function
of flux is set to α = 1 (no magnification) and α = 3, 5 as described in the legend.

in Fig. (4.5). As shown in Fig. (4.19), we get a slightly higher value of the cross-
spectrum amplitude (A = 1.70+0.16

−0.17) and a somewhat lower value of the galaxy bias
(b = 2.59+0.11

−0.11). The reason for that is easily understood. As shown by Fig. (4.5),
the convolution of the initial dN/dz with the smoothing kernel (representative of
the uncertainties on estimated redshifts) results in a broadening of the distribution.
This translates into a decrease of the expected amplitude for both the cross- and
the autopower spectra. Hence, in order to fit the same data, we need a higher
value of the galaxy bias and, consequently, a lower value of the cross-spectrum
amplitude A. Because the derived value of b is quite sensitive to the adopted
redshift distribution, the agreement with other, independent determinations implies
that our dN/dz cannot be badly off. Therefore, it looks unlikely that the higher
than expected value of A can be ascribed to a wrong estimate of dN/dz.

Our choice of a constant b over the redshift range spanned by the H-ATLAS catalog
is obviously an approximation, and the effective values of b may be different for the
cross- and the galaxy autopower spectra. To check the effect of this approximation
on the estimates of Cκg

` and Cgg
` we have computed the effective values of the bias

for the two cases

bκgeff =
∫ dz

c
b(z) H(z)

χ2(z)W
κ(z)dN

dz
Pδδ(k, z)∫ dz

c
H(z)
χ2(z)W

κ(z)dN
dz
Pδδ(k, z)

,

(bggeff )2 =
∫ dz

c
b2(z) H(z)

χ2(z)(
dN
dz

)2Pδδ(k, z)∫ dz
c
H(z)
χ2(z)(

dN
dz

)2Pδδ(k, z)
,

(4.37)
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Figure 4.18: Effect of fixed slope of number counts α on the inferred values of cross-
correlation amplitude A and bias b. We show 1− and 2σ contours (darker and lighter
shaded regions, respectively). As the α parameter increases, both A and b shift toward
smaller values.

using the bias evolution model b(z) from Sheth & Tormen (1999) for halo masses
in the range 1012–1013 M�. We find that bκgeff is only slightly larger (by ' 6%) than
bggeff . Hence, considering a redshift-dependent bias factor would only marginally
affect the expected cross-spectrum.

Weak lensing by foreground structures modifies the observed density of background
sources compared to the real one (Ho et al., 2008; Xia et al., 2009) and is especially
important for high-redshift objects. The effect on the galaxy overdensity kernel
is described by the second term on the right-hand side of Eq. ((4.6)). The effect
of the magnification bias on both Cκg

` and Cgg
` is illustrated in Fig. (4.17) where

we show the expected power spectra for A = 1, b = 3, and three values of α: 1
(no magnification bias), 3, and 5. The impact of the magnification bias is clearly
stronger for Cκg

` .

Fitting the joint data for α = 1 we find b = 2.95+0.12
−0.11 and A = 1.93+0.18

−0.19 while for
α = 5, b = 2.55+0.13

−0.12 and A = 1.46 ± 0.14. The contour plots in the A − b plane
are shown in Fig. (4.18). Higher values of α imply lower values of A, but even for
α = 5 the data require A > 1.

Another systematic effect that can bias our measurement of the CMB convergence-
galaxy cross-correlation is the leakage of CIB emission into the lensing map through
the temperature maps used for the lensing estimation, as it correlates strongly with
the CMB lensing signal Planck Collaboration (2014d). The 857GHz Planck map
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used by Planck Collaboration (2014c) as a Galactic dust template also removes
the portion of the CIB fluctuations that have a spectral index similar to that of
Galactic dust. However, as noted in that paper, this approach is liable to problems
due, for example, to variation of Galactic dust spectral indices across the sky, as
well as to the mismatch between the beams at 100/143/217 and 857 GHz.

The H-ATLAS galaxies are well below the Planck detection limits (their flux
densities at 148GHz are expected to be in the range 0.1–1mJy, hence are much
fainter than sources masked by Planck Collaboration (2014c)). Thus they are part
of the CIB measured by Planck. If they are only partially removed by the use
of the 857GHz map, they are potentially an important contaminant of the cross-
correlation, resulting in an enhancement of the observed signal. The shot-noise
correction applied by the Planck analysis removes only partly the contamination
by infrared sources because their main contribution to the fluctuation field is due
to clustering.

Foreground induced biases to CMB lensing reconstruction have been extensively
studied by van Engelen et al. (2014) and Osborne et al. (2014). These authors
concluded that the impact of these sources of systematic errors should be small
due to Planck’s resolution and noise levels. However, a calculation of the bias on
the cross-spectrum discussed in this chapter is beyond the scope of the present
chapter. Having at hand CMB lensing maps at different frequencies would allow to
investigate the CIB leakage issue in more detail.

Clusters of galaxies, which trace the large-scale potential responsible for the CMB
lensing, are visible at millimeter and submillimeter wavelengths via the scattering
of CMB photons by hot electrons (Sunyaev-Zel’dovich effect) and might therefore
contaminate the cross-correlation signal to some extent. However, the redshift
range populated by galaxy clusters only marginally overlaps with the redshift
distribution of our sources, so that this contamination is negligible.

4.8 Conclusions

We have presented the first measurement of the correlation between the lensing
potential derived from the Planck data and a high-z (z ≥ 1.5) galaxy catalog from
the Herschel-ATLAS survey, the highest redshift sample for which the correla-
tion between Planck CMB lensing and tracers of large-scale structure has been
investigated so far. We have shown that the expected signal is remarkably strong,
in spite of the small area covered by the H-ATLAS survey (about 1.3% of the
sky), suggesting that cross-correlation measurements between CMB lensing maps
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Figure 4.19: Posterior distributions for A and b obtained using the convolved (red
contours) and the unconvolved dN/dz (blue contours).

and galaxy surveys can provide powerful constraints on the evolution of density
fluctuations, on the nature of the DE, and on properties of tracers of the matter
distribution, provided that a good control of systematic errors for both data sets
can be achieved.

The null hypothesis (no correlation) was rejected with a significance of about 20σ
and the significance of the detection of the theoretically expected cross-correlation
signal was found to be 10σ. The reliability of this result was confirmed by several
null tests. A joint analysis of the cross-spectrum and of the autospectrum of the
galaxy density contrast yielded a galaxy bias parameter of b = 2.80+0.12

−0.11, consistent
with earlier estimates for H-ATLAS galaxies at similar redshifts. On the other
hand, the amplitude of the cross-correlation was found to be a factor 1.62± 0.16
higher than expected from the standard model.

We have investigated possible reasons for the excess amplitude. Some of them,
such as the redshift dependence of the bias parameter or the contamination by
the Sunyaev-Zel’dovich effect, were found to be negligible. Others, such as the
magnification bias due to weak gravitational lensing or errors in the photometrically
estimated redshifts, can contribute significantly to the observed excess but cannot
fully account for it. A possible culprit is some residual contamination of convergence
maps by unresolved infrared sources (Osborne et al., 2014; van Engelen et al., 2014),
adding a substantial contribution to the measured correlation between the lensing
convergence and the H-ATLAS high-z sources, which are unresolved by Planck.
However, a detailed calculation of this effect is complicated and beyond the scope
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of the present chapter.

We have also investigated the possibility that the tension between the observed and
the expected cross-correlation amplitude was overrated because the noise level of
the convergence maps in the regions used for the cross correlation is above typical
values. This turned out to be the case in the three GAMA fields, but the effect on
the combination of fields was found to be marginal.

An exquisite mapping of the CMB lensing pattern is one of the major goals of
operating and planned CMB probes because of its relevance in studying cosmological
structure formation and the properties of the dark energy. Forthcoming data releases
by Planck8 as well as future CMB lensing measurements from suborbital probes
will be most relevant to further address the results presented here and improve
the constraining power of these studies, both in a cosmological and astrophysical
context.

8The CMB lensing map from 2015 Planck release will be used in the next chapter, while the
definitive one, within the last data release expected for late 2016 could not be included in the
present analysis.
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5 Chapter 5

Toward a tomographic analysis
of the Planck-Herschel
cross-correlation

I’m looking through you, where did you go
I thought I knew you, what did I know
You don’t look different, but you have changed
I’m looking through you, you’re not the same

—I’m Looking Through You, The Beatles

We present an improved and extended analysis of the cross-correlation between the
map of the CMB lensing potential derived from the Planck mission data and the
high-z galaxies detected by H-ATLAS in the photometric redshift range zph ≥ 1.5.
We compare the results of the previous chapter, based on the 2013 Planck dataset,
with the 2015 release and investigate the impact of different selections of the H-
ATLAS galaxy samples. Significant improvements over our previous analysis have
been achieved thanks to the higher signal-to-noise ratio of the 2015 CMB lensing
map released by the Planck collaboration. The effective galaxy bias parameter, b,
for the full galaxy sample, derived from a joint analysis of the cross-power spectrum
and of the galaxy auto-power spectrum is found to be b = 3.54+0.15

−0.14. Furthermore, a
first tomographic analysis of the cross-correlation signal is implemented, by splitting
the galaxy sample into two redshift intervals: 1.5 ≤ zph < 2.1 and zph ≥ 2.1. A
statistically significant signal was found for both bins, indicating a substantial
increase with redshift of the bias parameter: b = 2.89 ± 0.23 for the lower and
b = 4.75+0.24

−0.25 for the higher redshift bin. Consistently with our previous analysis
we find that the amplitude of the cross correlation signal is a factor of 1.45+0.14

−0.13

higher than expected from the standard ΛCDM model for the assumed redshift
distribution. The robustness of our results against possible systematic effects has
been extensively discussed although the tension is mitigated by passing from 4 to
3σ.

114



5.1 Improvements over previous analysis

5.1 Improvements over previous analysis

In this chapter we revisit the angular cross-power spectrum Cκg
` between the CMB

convergence derived from Planck data and the spatial distribution of high-z sub-mm
galaxies detected by H-ATLAS (Eales et al., 2010). The present analysis improves
over that presented in our previous chapter and paper (Bianchini et al., 2015,
hereafter B15) in several aspects:

• we adopt the new Planck CMB lensing map (Planck Collaboration, 2016a,
see Sec. (5.2.1));

• we treat more carefully the uncertainty in the photometric redshift estimates
of the H-ATLAS galaxy sample (see Sec. (4.3.2));

• we move toward a tomographic study of the cross-correlation signal (see
Sec. (5.4.2)).

The rest of this chapter is organized as follows: in Sec. (5.2) we describe the novel
aspects of the handling of datasets, while the analysis method is presented in
Sec. (5.3). In Sec. (5.4) we report and analyze the derived constraints on the
galaxy bias parameter, discussing potential systematic effects that can affect the
cross-correlation. Finally in Sec. (5.5) we summarize our results.

The theoretical background and cross-correlation formalism has been extensively
presented in the previous chapters, in particular we refer the reader to Ch. (4.2)
for the modeling of the expected signal.

The expected signal-to-noise (S/N) of the detection for the CMB convergence-
density correlation can be estimated assuming that both fields behave as Gaussian
random fields, so that the variance of Cκg

` is

(
∆Cκg

`

)2
= 1

(2`+ 1)fsky

[
(Cκg

` )2 + (Cκκ
` +Nκκ

` )(Cgg
` +N gg

` )
]
, (5.1)

where fsky is the sky fraction observed by both the galaxy and the lensing surveys,
Nκκ
` is the CMB lensing reconstruction noise level, N gg

` = 1/n̄ is the shot noise
associated with the galaxy field, and n̄ is the mean number of sources per steradian.
For the H-ATLAS - Planck CMB lensing cross-correlation the sky coverage is
approximately 600 deg2 (fsky ' 0.01) and we assume a constant bias b = 3 and
a slope of the galaxy number counts α = 3: restricting the analysis between
`min = 100 (as lower multipoles are poorly reconstructed) and `max = 800, we
expect S/N ' 7.5.
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5 Toward a tomographic analysis of the Planck-Herschel cross-correlation

5.2 Improved CMB lensing and DM tracers from
data

5.2.1 Planck data

We make use of the publicly released 2015 Planck CMB lensing map (Planck
Collaboration, 2016a) that has been extracted by applying a quadratic estimator
(Okamoto & Hu, 2003) to foreground-cleaned temperature and polarization maps.
These maps have been synthesized from the raw 2015 Planck full mission frequency
maps using the SMICA code (Planck Collaboration, 2016a). In particular, the
released map is based on a minimum-variance (MV) combination of all tempera-
ture and polarization estimators, and is provided as a mean-field bias subtracted
convergence κ map.

For a comparison, we also use the earlier CMB lensing data provided within the
Planck 2013 release (Planck Collaboration, 2014c). Differently from the 2015 case,
the previous lensing map is based on a MV combination of only the 2013 Planck
143 and 217 GHz foreground-cleaned temperature anisotropy maps. The lensing
mask associated to the 2015 release covers a slightly larger portion of the sky with
respect to the 2013 release: f 2015

sky /f 2013
sky ' 0.98.

The map is in the HEALPix format with a resolution parameter Nside = 2048.
We downgraded them to a resolution of Nside = 512 (corresponding to an angular
resolution of ∼ 7′.2).

5.2.2 Herschel data

Our sample of sub-mm galaxies is extracted from the same internal release of the
full H-ATLAS catalogue as in B15. The survey area is divided into five fields: NGP,
SGP and the three GAMA fields (G09, G12, G15). As previously mentioned (see
Ch. (3.3.2) and (4.3.2)), the H-ATLAS galaxies have a broad redshift distribution
extending from z = 0 to z ' 5 (Pearson et al., 2013). We are interested in selecting
the high-z (z & 1) galaxies.

We have selected a sub-sample of H-ATLAS galaxies complying with the following
criteria:

1. flux density at 250µm, S250 > 35 mJy;

2. ≥ 3σ detection at 350µm

3. photometric redshift greater than a given value, zph,min, as discussed below.
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For our baseline analysis we set zph,min = 1.5. The sample comprises 94,825 sources.
It was subdivided into two redshift bins (1.5 ≤ zph < 2.1 and zph ≥ 2.1) containing
a similar number of sources (53,071 and 40,945, respectively), thus comparable
shot-noise.

The estimate of the unit-normalized redshift distributions dN/dz to be plugged
into Eq. (4.6), hence into Eq. (4.7), is a very delicate process because of the
very limited spectroscopic information. Also, the fraction of H-ATLAS sources
having accurate photometric redshift determinations based on multi-wavelength
optical/near-infrared photometry is rapidly decreasing with increasing redshift
above z ' 0.4 (Smith et al., 2011; Bourne et al., 2016). However, if a typical
rest-frame SED of H-ATLAS galaxies can be identified, it can be used to estimate
the redshifts directly from Herschel photometric data.

Lapi et al. (2011) and González-Nuevo et al. (2012) showed that the SED of
SMM J2135-0102, ‘The Cosmic Eyelash’ at z = 2.3 (Ivison et al., 2010; Swinbank
et al., 2010) is a good template for z & 1. Comparing the photometric redshift
obtained with this SED with spectroscopic measurements for the 36 H-ATLAS
galaxies at z & 1 for which spectroscopic redshifts were available González-Nuevo
et al. (2012) found a median value of ∆z/(1+z) ≡ (zphot−zspec)/(1+zspec) = −0.002
with a dispersion σ∆z/(1+z) = 0.115. At lower redshifts this template performs much
worse. As argued by Lapi et al. (2011) this is because the far-IR/sub-mm SEDs of
H-ATLAS galaxies at z > 1 are dominated by the warm dust component while the
cold dust component becomes increasingly important with decreasing z, amplifying
the redshift–dust temperature degeneracy. That’s why we restrict our analysis to
zph ≥ 1.5.

Pearson et al. (2013) generated an average template for z > 0.4 H-ATLAS sources
using a subset of 53 H-ATLAS sources with measured redshifts in the range
0.4 < z < 4.2. They found that the redshifts estimated with this template have an
average offset from spectroscopic redshift of ∆z/(1 + z) = 0.018 with a dispersion
σ∆z/(1+z) = 0.26.

In the following we will use the SED of SMM J2135-0102 as our baseline template;
the effect of using the template by Pearson et al. (2013) is presented Sec.. (5.4.4).
To allow for the effect on dN/dz of random errors in photometric redshifts we
estimated, following Budavari et al. (2003), the redshift distribution, p(z|W ), of
galaxies selected by our window function W (zph), as

p(z|W ) = p(z)
∫
dzphW (zph)p(zph|z), (5.2)

where p(z) is the fiducial true redshift distribution, W = 1 for zph in the selected
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Table 5.1: Statistics of H-ATLAS fields

Nobj n̄ [gal ster−1]

Patch zph ≥ 1.5 1.5 ≤ zph < 2.1 zph ≥ 2.1 zph ≥ 1.5 1.5 ≤ zph < 2.1 zph ≥ 2.1
ALLa 94825 53071 40945 5.76× 105 3.22× 105 2.49× 105

NGP 26303 15033 11039 5.63× 105 3.22× 105 2.36× 105

SGP 43518 24722 18422 5.95× 105 3.38× 105 2.52× 105

G09 8578 4590 3922 5.72× 105 3.02× 105 2.61× 105

G12 8577 4611 3881 5.34× 105 2.87× 105 2.41× 105

G15 7849 4115 3681 5.66× 105 2.97× 105 2.65× 105

a ALL is the combination of all fields together.

interval and W = 0 otherwise, and p(zph|z) is probability that a galaxy with
a true redshift z has a photometric redshift zph. The error function p(zph|z) is
parameterized as a Gaussian distribution with zero mean and dispersion (1 +
z)σ∆z/(1+z). For the dispersion we adopt the conservative value σ∆z/(1+z) = 0.26.

A partial estimate of the effect of the dust temperature–redshift degeneracy in
contaminating our z > zph,min sample derived from Herschel colors by cold low-z
galaxies is possible thanks to the work by Bourne et al. (2016) who used a likelihood-
ratio technique to identify SDSS counterparts at r < 22.4 for H-ATLAS sources
in the GAMA fields and collected spectroscopic and photometric redshifts from
GAMA and other public catalogues. A cross-match with their data set showed
that about 7% of sources in GAMA fields with estimated redshifts larger than 1.5
based on Herschel colors have a reliable (R ≥ 0.8) optical/near-IR counterpart with
photometric redshift < 1. The fiducial redshift distribution for the GAMA fields
was corrected by moving these objects and the corrected, unit normalized, redshift
distribution was adopted for the full sample. The result is shown in Fig. (5.1) for
z ≥ 1.5 and for the sub-sets at 1.5 ≤ zph ≤ 2.1 and zph > 2.1. As mentioned above,
photometric redshifts based on Herschel colors become increasingly inaccurate
below z ∼ 1. Thus the low-z portions of the p(z)’s in Fig. (5.1) are unreliable.

For each H-ATLAS field we created an overdensity map in HEALPix format with a
resolution parameter Nside = 512. The overdensity is defined as g(n̂) = n(n̂)/n̄− 1,
where n(n̂) is the number of objects in a given pixel, and n̄ is the mean number
of objects per pixel. As a last step, we combined the Planck lensing mask with
the H-ATLAS one. The total sky fraction retained for the analysis is fsky = 0.013.
The specifics of each patch are summarized in Table (5.1).
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Figure 5.1: Redshift distributions of the galaxy samples selected from the full H-ATLAS
survey catalogue. The fiducial true redshift distribution p(z) for the full sample is shown,
in each panel, by the dashed lines, while the solid lines show the redshift distributions
p(z|W ) obtained implementing the top-hat window functionsW (zph) represented, in each
panel, by the shaded area. The blue and the orange lines refer to redshift distributions
based on the SED of SMM J2135-0102 and on the Pearson et al. (2013) best fitting
template, respectively (see Sec.. (5.4.4)). These redshift distributions were used for
the evaluation of the theoretical C`’s. The dotted black line in each panel shows the
arbitrarily normalized CMB lensing kernel W κ(z).
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5.3 Analysis method

5.3.1 Estimation of the power spectra

Similarly to Ch .(4), we estimate cross- and auto-power spectra using a PCL method
based on the MASTER algorithm (Hivon et al., 2002) (see also Ch. (3.2) and (4.4)),
reconstructing the signal in seven linearly spaced bins of width ∆` = 100 spanning
the multipole range from 100 to 800.

In order to estimate the full covariance matrix and the error bars we make use of the
publicly available set of 100 realistic CMB convergence simulations1, that accurately
reflect the Planck 2015 noise properties, and cross-correlate them with the H-ATLAS
galaxy density contrast maps. Because there is no correlated cosmological signal
between CMB lensing simulations and real galaxy datasets, we also use them
to check that our pipeline does not introduce any spurious signal. The mean
cross-spectrum between the Planck simulations and the H-ATLAS maps is shown
in Fig. (5.2) which shows that it is consistent with zero in all redshift bins. For
the baseline photo-z bin we obtain χ2 = 9.5 for ν = 7 degrees-of-freedom (d.o.f.),
corresponding to a probability of random deviates with the same covariances to
exceed this chi-squared (p-value) of 0.22. In the other two redshift bins we find
χ2 = 12.6 for the low-z one and χ2 = 6.1 for the high-z one, corresponding to a
p-value p = 0.08 and p = 0.53 respectively.

5.3.2 Estimation of the cross-correlation amplitude and of the
galaxy bias

Following B15 we introduce a phenomenologically-motivated amplitude parameter
A that globally scales the observed cross-power spectrum with respect to the
theoretical one as Ĉκg

L = ACκg
L (b). We analyze the constraints on the parameters

A and b combining the information from the cross-spectrum and the galaxy auto-
spectrum. For the joint analysis we exploit Gaussian likelihood functions that take
into account correlations between the cross- and the auto-power spectra in the
covariance matrix. The extracted cross- and auto-band-powers are organized into
a single data vector as

ĈL = (Ĉκg
L , Ĉ

gg
L ), (5.3)

1http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/maps/
component-maps/lensing
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Figure 5.2: Null test results. Mean cross-spectrum Cκg` between Nsim = 100 simulated
Planck CMB lensing maps and the H-ATLAS galaxy density maps for the three redshift
bins considered: z ≥ 1.5 (blue circles), 1.5 ≤ z < 2.1 (green crosses), and z ≥ 2.1 (red
triangles). Band-powers are displaced by ∆` = ±10 with respect to the bin centers for
visual clarity. The error bars are calculated as the square root of the covariance matrix
diagonal derived from the same set of simulations and divided by

√
Nsim.

which has NL = 14 elements. The total covariance matrix is then written as the
composition of four 7× 7 submatrices:

CovLL′ =
 CovκgLL′ (Covκg−ggLL′ )ᵀ

Covκg−ggLL′ CovggLL′

 . (5.4)

The covariance matrices are approximately given by (see Ch. (3.2.2)):

CovggLL′ = 2
(2L+ 1)∆Lfsky

[
Cgg
L (θ) +N gg

L

]2
δLL′ ;

CovκgLL′ = 1
(2L+ 1)∆Lfsky

×
[
(Cκg

L (θ))2 + (Cκκ
L +Nκκ

L )(Cgg
L (θ) +N gg

L )
]
δLL′ ;

Covκg−ggLL′ = 2
(2L+1)∆Lfsky

[
(Cgg

L (θ)+N gg
L )Cκg

L (θ)
]
δLL′ ,

(5.5)
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where the ∆L is the bin size, θ is the parameters vector, and δLL′ is the Kronecker
delta such that they are diagonal. Then, the likelihood function can be written as

L(ĈL|θ) = (2π)−NL/2[detCovLL′ ]−1/2

× exp
{
−1

2
[
ĈL −CL(θ)

](
CovLL′

)−1[
ĈL′ −CL′(θ)

]}
.

(5.6)

The parameter space is explored using emcee2, an affine invariant Markov Chain
Monte Carlo (MCMC) sampler (Foreman-Mackey et al., 2013), assuming flat priors
over the ranges {b, A,Abias} = {[0, 10], [−1, 10], [0, 10]}3 (Abias will be defined in
Sec.. (5.4.5)). This analysis scheme is applied independently to each redshift bin.

The covariance matrices built with the 100 Planck lensing simulations were
used to compute the error bars for the cross-power spectra (the ones shown in
Figs. (5.2), (5.4), (5.6), (5.11)), to address bin-to-bin correlations and to evaluate
the chi-square for the null-hypothesis rejection. On the other hand, we used the
diagonal analytical approximation of Eq. (5.5) to evaluate the bias-dependent co-
variance matrices used to sample the posterior distribution and for error bars on the
galaxy power spectra estimation (error bars shown in Figs. (5.5), (5.7), (5.9), (5.12)).
As in B15, we decided to rely on an analytical approximation of the covariance
matrices that depend on the estimated parameters, i.e. the linear galaxy bias.
This simple approximation is able to capture the covariance matrices features as
shown in Sec. (5.4.2) where we compare results obtained with (i) the diagonal
approximation given by Eq. (5.5); (ii) the non-diagonal (bias-dependent) analytical
prescription derived and exploited in B15 that accounts for the mask induced
mode-coupling; (iii) and the full covariance matrix evaluated from the set of 100
Planck CMB lensing simulations as described above.

5.4 Results and discussion

Before performing a thorough quantitative analysis with the data, we can qualita-
tively show that the galaxy density field is correlated with the lensing convergence,
which means that peaks in the galaxy distribution correspond to regions of enhanced
lensing signal: this is shown in the right panel of Fig. (5.3). To output such plot
we have smoothed both the CMB convergence and galaxy maps with a 0.5 deg
Gaussian filter, binned the density field δ and found the corresponding pixels in
the κ maps corresponding to the given density bins. Then, we took the average

2http://dan.iel.fm/emcee
3Note that we constrain separately (b, A) and (A,Abias).
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Figure 5.3: Left panel: Histograms of pixel values in CMB convergence and galaxy
density in z−bins maps, after applying Gaussian smoothing with σ = 0.5 deg. Left panel:
binned values of the H-ATLAS galaxy overdensity samples in the three z-bins versus the
averages CMB convergence in corresponding pixels. The position of points center along
δ is given by the average density in each bin, while horizontal error bars are given by the
scatter in δ in the same bin. Vertical error bars are obtained by measuring the scatter in
the same measurements when using the set of 100 Planck lensing simulations in place of
the real lensing map.

value of δ and κ in each bin and plot these against each other, showing a strong
correlation for all data splits (photo-z bins).

5.4.1 Comparison between the 2013 and the 2015 Planck
results

Figure (5.4) compares the cross-spectra Cκg
` between the zph ≥ 1.5 H-ATLAS galaxy

sample and the 2013/2015 Planck CMB lensing maps. For a fuller comparison,
the figure also shows the results obtained using the galaxy catalogue built by
B15 adding to the requirements (i-iii) mentioned in Sec.. (4.3.2) the color criteria
introduced by González-Nuevo et al. (2012) (hereafter GN12): S350µm/S250µm > 0.6
and S500µm/S350µm > 0.4. The error bars were derived by cross-correlating the 100
simulated Planck lensing realizations with the sub-mm galaxy map and measuring
the variance in Cκg

` .

The exploitation of the 2015 CMB lensing map has the effect of shrinking the
error bars, on average, by approximately 15% with respect to the previous data
release due to the augmented Planck sensitivity. All shifts in the cross-power
spectra based on the 2013 and on the 2015 releases are within 1σ. As illustrated by
Fig. (5.5), the auto-power spectra, Cgg

` , of H-ATLAS galaxies in the present sample
and in the B15 one are consistent with each other: differences are well within 1σ.
Table (5.2) shows that the various combinations of lensing maps, galaxy catalogues
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Figure 5.4: Comparison of the cross-spectra between the Planck CMB lensing maps
and the zph ≥ 1.5 H-ATLAS galaxy density maps obtained using the 2013 and the 2015
Planck results. The results labelled “[k2015 × g35mJy]M2015” refer to the analysis done
with the present sample of zph ≥ 1.5 galaxies. The GN12 superscript refers to the sample
of H-ATLAS galaxies used by B15, based on slightly more restrictive selection criteria;
results for this sample are shown for both the 2013 or the 2015 Planck masks (M2013

and M2015) and convergence maps (κ2013 and κ2015). The solid black line shows the
theoretical cross-spectrum for the best-fit values of the bias factor and of the cross-
correlation amplitude, A, found for the [κ2015 × g35mJy]M2015 adopting the redshift
distribution estimated by B15. The estimated bandpowers are plotted with an offset
along the x-axis for a better visualization. The error-bars were computed using the full
covariance matrix obtained via Monte Carlo simulations as ∆CκgL =

√
diag(Covκg).
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Figure 5.5: Comparison of the auto-power spectra of H-ATLAS galaxies with zph ≥ 1.5
in the present sample and in that selected by B15 (GN12) using slightly more restrictive
criteria. The effect of using different masks (the 2013 and 2015 Planck masks) is also
shown. The solid black line represents the auto-power spectra for the best-fit value
of the bias parameter given in the inset (see also Table (5.2)) and for the redshift
distribution of B15. The estimated bandpowers are plotted with an offset with respect
to the bin centers for a better visualization. The error bars are computed using the
analytical prescription (

√
diag(Covgg) with Covgg given by Eq. (5.5) and evaluated using

the estimated bandpowers).

and masks we have considered in Fig. (5.4) lead to very similar values of the A and
b parameters, if the redshift distribution of B15 is used. Note that the errors on
parameters given in Table (5.2) as well as in the following similar tables, are slightly
smaller than those that could be inferred from the corresponding figures. This is
because the errors on each parameter given in the tables are obtained marginalizing
over the other parameter.
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Datasets Mask b A
κ2013 × gGN12 2013 2.80+0.12

−0.11 1.62+0.16
−0.16

κ2013 × gGN12 2015 2.86+0.12
−0.12 1.68+0.19

−0.19
κ2015 × gGN12 2015 2.85+0.12

−0.12 1.61+0.16
−0.16

κ2015 × g35mJy 2015 2.79+0.12
−0.12 1.65+0.16

−0.16

a The analysis is performed on the zph ≥ 1.5
sample for consistency with B15.

Table 5.2: Comparison of the {b, A} values obtained from the joint κg + gg analysis for
the combinations of maps and masks reported in Fig. (5.4) and adopting the redshift
distribution of B15.

5.4.2 Tomographic analysis

As discussed in the previous sub-section, if we use the redshift distribution of
B15 the impact of the new Planck convergence map and mask, and of the new
H-ATLAS overdensity map on the A and b parameters is very low. However,
significant differences are found using the new redshift distribution for zph ≥ 1.5
built in this chapter and shown by the blue solid line in the bottom panel of
Fig. (5.1). Compared to B15, the best fit value of the bias parameter increases
from b = 2.80+0.12

−0.11 to b = 3.54+0.15
−0.14 and the cross-correlation amplitude decreases

from A = 1.62± 0.16 to A = 1.45+0.14
−0.13 (see Tables (5.2) and (5.3)).

As in B15, we get a highly significant detection of the cross-correlation, at A/σA '
10.3σ and again a value of A higher than the expected A = 1 is indicated by the
data.

Figure (5.6) shows the cross-correlation power spectrum for the 3 redshift intervals
we have considered. The error bars were estimated with Monte Carlo simulations as
described above. Their relative sizes scale, as expected, with the number of objects
in each photo-z interval, reported in Table (5.1). In all cases, the detection of the
signal is highly significant. The chi-square value for the null hypothesis, i.e. no
correlation between the two cosmic fields, computed taking into account bin-to-bin
correlations, is χ2

null = Ĉκg
L (CovκgLL′)−1 Ĉκg

L′ ' 88 for ν = 7 d.o.f., corresponding to
a ' 22σ rejection for the full sample (zph ≥ 1.5). For the 1.5 ≤ zph < 2.1 and
zph ≥ 2.1 intervals we found χ2

null ' 47 and χ2
null ' 64, respectively, corresponding

to 10.7σ and 15σ rejections.

There is a hint of a stronger cross-correlation signal for the higher redshift interval.
The indication is however weak. A much stronger indication of an evolution of
the clustering properties (increase with redshift of the bias factor) of galaxies is
apparent in Fig. (5.7) and in Table (5.3). However the auto–power spectrum for
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ẑph ≥ 1.5
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Figure 5.6: Cross-power spectra between the 2015 Planck CMB lensing map and
the H-ATLAS galaxy sample for different redshift intervals: zph ≥ 1.5 (red circles),
1.5 ≤ zph < 2.1 (blue triangles), and zph ≥ 2.1 (green crosses). Uncertainties are derived
as for bandpowers in Fig. (5.4). The red solid, blue dashed and green dot-dashed lines
are the corresponding cross-power spectra for the best-fit bias and amplitude parameters
obtained combining the data on the auto- and cross-power spectra (see Table (5.3)). The
adopted redshift distributions are shown by the blue lines in Fig. (5.1).
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Figure 5.7: H-ATLAS galaxy auto-power spectra in different redshift intervals: zph ≥ 1.5
(red circles), 1.5 ≤ zph < 2.1 (blue triangles), and zph ≥ 2.1 (green crosses). Uncertainties
are derived as for bandpowers in Fig. (5.5). The red solid, blue dashed and green
dot-dashed lines are the galaxy auto-power spectra for the Planck cosmology and the
best-fit bias and amplitude found for the z ≥ 1.5, 1.5 ≤ z < 2.1, and z ≥ 2.1 photo-z
bins respectively. The theory lines refer to the dN/dz built in this chapter and also used
in Fig. (5.6).

128



5.4 Results and discussion

Table 5.3: Linear bias and cross-correlation amplitude as determined using jointly the
reconstructed galaxy auto- and cross-spectra in the different redshift bins.

Bin b A χ2/d.o.f. p-value
Diagonal covariance matrices approximation (Eq. (5.5))

zph ≥ 1.5 3.54+0.15
−0.14 1.45+0.14

−0.13 10.6/12 0.56
1.5 ≤ zph < 2.1 2.89+0.23

−0.23 1.48+0.20
−0.19 29.5/12 0.003

zph ≥ 2.1 4.75+0.24
−0.25 1.37+0.16

−0.16 9.6/12 0.65

Non-diagonal covariance matrices approximation (Eq. (4.21))

zph ≥ 1.5 3.53+0.15
−0.15 1.45+0.14

−0.13 8.75/12 0.72
1.5 ≤ zph < 2.1 2.88+0.23

−0.25 1.48+0.20
−0.19 23.1/12 0.03

zph ≥ 2.1 4.74+0.24
−0.24 1.36+0.16

−0.16 8.5/12 0.75

Covariance matrices from MC simulations

zph ≥ 1.5 3.56+0.17
−0.17 1.39+0.15

−0.14 8.37/12 0.76
1.5 ≤ zph < 2.1 2.91+0.24

−0.24 1.48+0.22
−0.21 33.7/12 7.5× 10−4

zph ≥ 2.1 4.80+0.25
−0.25 1.37+0.17

−0.17 14.5/12 0.27
a The redshift distributions derived in this chapter and shown by
the black lines in Fig. (5.1) were adopted. The best-fit values and
1σ errors are evaluated respectively as the 50th, 16th, and 84th
percentiles of the posterior distributions. The χ2’s are computed
at the best-fit values. The results obtained including off-diagonal
terms of the covariance matrices and using covariances based on
simulations are also shown for comparison.

the 1.5 ≤ zph < 2.1 interval shows a puzzling lack of power in the first multipole
bin. This feature, not observed in the cross-power spectrum for the same photo-z
bin, may be due to systematic errors in the photometric redshift estimate.

The 68% and 95% confidence regions for the amplitude A and the bias b, obtained
from their posterior distributions combining the data on auto- and cross-spectra,
are shown in Fig. (5.8). We have b = 2.89 ± 0.23 and A = 1.48+0.20

−0.19 for the
lower redshift bin and b = 4.75+0.24

−0.25 and A = 1.37± 0.16 for the higher-z one (see
Table (4.3)). The reduced χ2 associated with the best-fit values are close to unity,
suggesting the consistency of the results, except for the 1.5 ≤ zph < 2.1 interval for
which there is a large contribution to the χ2 from the auto-spectrum for the first
multipole bin. In order to test the stability of the results with respect to the chosen
covariance matrices estimation method, we redo the analysis with the non-diagonal
approximation of B15 and the full covariance matrices from simulations: results
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Figure 5.8: Posterior distributions in the (b, A) plane with the 68% and 95% confidence
regions (darker and lighter colors respectively) for the three redshift intervals: zph ≥ 1.5
(red contours), 1.5 ≤ zph < 2.1 (blue contours), and zph ≥ 2.1 (green contours). The
dashed line corresponds to the expected amplitude value A = 1 (a magnification bias
parameter α = 3 is assumed). The colored crosses mark the best-fit values reported in
Table (4.3) for the three photo-z intervals.

are reported in Table (4.3). As can be seen, in the former case the inclusion of
non-diagonal terms induced by mode-coupling results in negligible differences with
respect to our baseline analysis scheme. In the latter case we observe a rather
small broadening of the credibility contours (dependent on the z-bin), from 2%
to 17% for b and from 6% to 10% for the cross-correlation amplitude A, with the
biggest differences reported for the baseline z ≥ 1.5 bin. The central value of
A for the baseline redshift bin is diminished by approximately 4% even though
A > 1 at & 2σ. However, one might argue that the limited number of the available
Planck CMB lensing simulations imposes limitations to the covariance matrices
convergence. Given the stability of the results, we therefore adopt the diagonal
approximation of Eq. (5.5) as our baseline covariance matrices estimation method.

5.4.3 Cross-correlation of galaxies in different redshift intervals

Both the auto- and the cross-power spectra depend on the assumed redshift
distribution; hence the inferred values of the (constant) bias and of the amplitude
are contingent on it. A test of the reliability of our estimates can be obtained
from the cross-correlation Cg1g2

` between positions of galaxies in the lower redshift
interval, 1.5 ≤ zph < 2.1 (indexed by subscript 1), with those in the higher redshift
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interval, zph ≥ 2.1 (subscript 2). Assuming, as we did in Eq. (4.6), that the observed
galaxy density fluctuations can be written as the sum of a clustering term with
a magnification bias one as δobs(n̂) = δcl(n̂) + δµ(n̂), the cross-correlation among
galaxies in the two intervals can be decomposed into four terms:

Cg1g2
` = Ccl1cl2

` + Ccl1µ2
` + Cµ1cl2

` + Cµ1µ2
` . (5.7)

The first term results from the intrinsic correlations of the galaxies of the two
samples and it is due to the overlap between the two redshift distributions: if
the two galaxy samples are separated in redshift, this term vanishes. The second
term results from the lensing of background galaxies due to the matter distribution
traced by the low-z sample galaxies, while the third one is related to the opposite
scenario: again, it is non-zero only if there is an overlap between the two dN/dz.
The fourth term results from lensing induced by dark matter in front of both galaxy
samples. The relative amplitude of these terms, compared to the observed galaxy
cross-power spectrum, can provide useful insights on uncertainties in the redshift
distributions.

The measured Ĉg1g2
` is shown in Fig. (5.9). The expected contributions of the four

aforementioned terms are computed using the bias values reported in Table (4.3),
and the redshift distributions shown in Fig. (5.1). We remind that the assumed
value for the rms uncertainty is σ∆z/(1+z) = 0.26. The figure shows that the
expected amplitude of the intrinsic correlation term is dominant with respect to the
magnification bias related ones and that the observed signal is in good agreement
with expectations. No signs of inconsistencies affecting redshift distributions are
apparent.

5.4.4 Effect of different choices for the SED

The assumed SED plays a key role in the context of template fitting approaches
aimed at photo-z estimation. It is then crucial to test the robustness of the
results presented here against different choices for it. To this end we constructed
a catalogue with photo-z estimates based on the best fitting SED template of
Pearson et al. (2013) and applied the full analysis pipeline described in Sec. (5.3).
In Fig. (5.10) we show the comparison between the estimates of photo-z using the
SED of SMM and the one of Pearson et al. (2013).

The cross- and auto-power spectra extracted adopting the SED template of Pearson
et al. (2013) are shown in Fig. (5.11) and (5.12) respectively. In Fig. (5.13) we
compare the credibility regions for the bias b and cross-correlation amplitude A
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Figure 5.9: Cross-correlation of angular positions between galaxies in the low-z and in
the high-z redshift interval. The solid lines show the expected contributions from the
various terms appearing in Eq. (5.7). Note that the “Total” line is not a fit to the data.
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Figure 5.10: Scatter plot comparing different photo-z estimates using the fiducial SED
of SMM and the one of Pearson et al. (2013) for the H-ATLAS galaxies used in this
analysis and selected with the criteria discussed in Sec. (5.2.2).
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Figure 5.11: Cross-power spectra between the 2015 Planck CMB lensing map and the
H-ATLAS galaxy sample built with the SED of Pearson et al. (2013) for different redshift
intervals: zph ≥ 1.5 (red circles), 1.5 ≤ zph < 2.1 (blue triangles), and zph ≥ 2.1 (green
crosses). Uncertainties are derived as for bandpowers in Fig. (5.4). The red solid, blue
dashed and green dot-dashed lines are the corresponding cross-power spectra for the
best-fit bias and amplitude parameters obtained combining the data on the auto- and
cross-power spectra (see Table (5.3)). The adopted redshift distributions are shown by
the orange lines in Fig. (5.1).

obtained with the dN/dz based on the Pearson et al. (2013) best fitting template
(filled contours) with that based on the baseline SMM J2135-0102 SED in the three
photo-z intervals. The best fit parameter values for the Pearson et al. (2013) SED
are reported in Table (5.4).

The Pearson et al. (2013) SED leads to a cross-correlation amplitude consistent
with SMM J2135-0102–based results for the 1.5 ≤ zph < 2.1 interval and for the full
zph ≥ 1.5 sample, although the deviation from A = 1 has a slightly lower significance
level: we have A > 1 at ' 2.5σ (it was ' 3.5σ in the SMM J2135-0102 case). For
the high-z bin we get consistency with A = 1 at the ' 1σ level. Also, there no
longer a lack of power in the first multipole bin of the galaxy auto-power spectrum
for the lower-z interval. The shifts in the A parameter values are associated to
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Figure 5.12: H-ATLAS galaxy auto-power spectra in different redshift intervals: zph ≥
1.5 (red circles), 1.5 ≤ zph < 2.1 (blue triangles), and zph ≥ 2.1 (green crosses). The SED
template of Pearson et al. (2013) was adopted to estimate photo-z. Uncertainties are
derived as for bandpowers in Fig. (5.5). The red solid, blue dashed and green dot-dashed
lines are the galaxy auto-power spectra for the Planck cosmology and the best-fit bias
and amplitude found for the z ≥ 1.5, 1.5 ≤ z < 2.1, and z ≥ 2.1 photo-z bins respectively.
The theory lines refer to the dN/dz built in this chapter and also used in Fig. (5.11).

changes in the bias value: as we move toward higher redshifts, the bias parameter
grows increasingly larger compared to that found using the SMM J2135-0102 SED.
Adopting an effective redshift zeff = 2.15 for the high-z sample we find that the best
fit value b = 5.69 corresponds to a characteristic halo mass log(MH/M�) = 13.5,
substantially larger than found by other studies (Xia et al., 2012; Hickox et al.,
2012; Cai et al., 2013; Viero et al., 2013; Hildebrandt et al., 2013) to the point of
being probably unrealistic.

5.4.5 Redshift dependence of the galaxy bias

Using a single, mass independent, bias factor throughout each redshift interval is
certainly an approximation, although the derived estimates can be interpreted as
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Figure 5.13: Posterior distributions in the (b, A) plane with the 68% and 95% confidence
regions (darker and lighter colors respectively) plane based on the dN/dz obtained using
the Pearson et al. (2013) best fitting template (filled contours) and using the baseline
SMM J2135-0102 SED (dashed contours) for the three redshift intervals: zph ≥ 1.5 (red
contours), 1.5 ≤ zph < 2.1 (blue contours), and zph ≥ 2.1 (green contours).

effective values. In fact it is known (e.g., Sheth et al., 2001; Mo et al., 2010) that
the bias function increases rapidly with the halo mass, MH , and with z at fixed
MH .

To test the stability of the derived cross-correlation amplitude A against a more
refined treatment of the bias parameter we have worked out an estimate of the
expected effective bias function, b0(z), for our galaxy population. We started from
the linear halo bias model b(MH ; z) computed via the excursion set approach (Lapi
& Danese, 2014). The halo mass distribution was inferred from the observationally
determined, redshift dependent, luminosity function, N(logLSFR; z), where LSFR

is the total luminosity produced by newly formed stars, i.e. proportional to the
Star Formation Rate (SFR). To this end we exploited the relationship between
LSFR and MH derived by Aversa et al. (2015) by means of the abundance matching
technique. Finally, we computed the luminosity-weighted bias factor as a function
of redshift

b0(z) =
∫
d logLSFRN(logLSFR; z)b(LSFR; z)∫

d logLSFRN(logLSFR; z) , (5.8)

where the integration runs above Lmin(z), the luminosity associated to our flux
density limit S250 = 35mJy at 250 µm.

To quantify deviations, requested by the data, from the expected effective bias
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Bin b A

zph ≥ 1.5 4.06+0.18
−0.18 1.33+0.13

−0.13
1.5 ≤ zph < 2.1 3.00+0.24

−0.25 1.54+0.20
−0.19

zph ≥ 2.1 5.69+0.36
−0.36 1.18+0.16

−0.16

Table 5.4: Same as Table (4.3) but for analysis based on SED template of Pearson et al.
(2013).

function, b0(z), we have introduced a scaling parameter Abias so that the effective
bias function used in the definition of the galaxy kernel W g(z) [Eq. (4.6)] is
b(z) = Abiasb0(z).

The 68% and 95% confidence regions in the (Abias,A) plane are shown in Fig. (5.14)
and the central values of the posterior distributions are reported in Table (5.5),
while the corresponding bias evolution is shown in Fig. (5.15). On one side we note
that Abias is found to be not far from unity, indicating that our approach to estimate
the effective bias function is reasonably realistic. The largest deviations of Abias

from unity happen for the lower redshift interval that may be more liable to errors
in photometric redshift estimates. However, the values of the cross-correlation
amplitude A are in agreement with the previous results of Table (5.3), showing
that our constant bias approach does not significantly undermines the derived value
of A.

5.4.6 Results dependence on flux limit

To check the stability of the results against changes in the selection criterion (ii)
formulated in Sec. (4.3.2) we built a new catalogue with objects complying with
criteria (i), (iii) and with a (ii.b) ≥ 5σ detection at 350µm, and applied the pipeline
outlined in Sec. (5.3) in the three photo-z intervals. Raising the detection threshold
at 350µm has the effect of decreasing the statistical errors on photometric redshifts
because of the higher signal-to-noise photometry and of favoring the selection of
redder, higher-z galaxies; the total number of sources decreases by approximately
20%. The credibility regions in the (b, A) plane are presented in Fig. (5.16) while
the best fit values of the parameters values are reported in Table (5.6).

The inferred cross-correlation amplitudes are consistent with the previous estimates
within the statistical error in all of the three photo-z bins (A > 1 at ∼ 2 − 3σ).
The value of bias parameter for the low-z bin increases (dragging also the value
for the full zph ≥ 1.5 sample), while the value for the high-z interval is essentially
unchanged. This is likely due to the fact that by requiring at least a 5σ detection
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Figure 5.14: Posterior distributions in the (Abias, A) plane with the 68% and 95%
confidence regions (darker and lighter colors respectively) for the three redshift intervals:
zph ≥ 1.5 (red contours), 1.5 ≤ zph < 2.1 (blue contours), and zph ≥ 2.1 (green contours).
The dashed lines correspond to A = 1 and Abias = 1. The colored crosses mark the
best-fit values reported in Table (5.5).

Bin Abias A χ2/ d.o.f. p-value
zph ≥ 1.5 0.82+0.04

−0.04 1.49+0.15
−0.15 9.5/12 0.66

1.5 ≤ zph < 2.1 0.77+0.06
−0.07 1.51+0.22

−0.20 25.7/12 0.01
zph ≥ 2.1 1.02+0.05

−0.05 1.43+0.16
−0.16 9.6/12 0.65

a The reduced χ2 are computed at the best-fit values.

Table 5.5: Best fit values of the cross-correlation, A, and bias, Abias, amplitudes obtained
combining the observed κg and gg spectra.

at 350 µm, we select objects which are intrinsically more luminous, hence more
biased. The high-z sample is not affected by the higher threshold because at such
distances we already detect only the most luminous objects (Malmquist bias). At
the power spectrum level we find that, for both the total zph ≥ 1.5 sample and the
low-z sample, the cross-power spectra are less affected by the modification of the
selection criteria, while the galaxy auto-power spectra are systematically above
those obtained with the 3σ selection at 350µm. Errors in the photo-z estimates
may also have a role, particularly for the low-z sample; a hint in this direction is
that the lack of power of Cgg

` in the lowest multipole bin for the low-z sample is no
longer present in the case of the 5σ selection.
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Figure 5.15: Effective bias functions. The dashed line corresponds to b0(z), while the
solid line shows b(z) with Abias = 0.82, the best fit value for zph ≥ 1.5. The data points
show the best fit values of the bias parameter at the median redshifts of the distributions
for zph ≥ 1.5 (red), 1.5 ≤ zph < 2.1 (blue) and zph ≥ 2.1 (green). In the “Template Fit”
case b(z) = Abiasb0(z). Horizontal error bars indicate the z-range that includes 68% of
each of the redshift distribution.

5.4.7 Other tests

The bias parameter is also influenced by non-linear processes at work on small scales.
Thus it can exhibit a scale dependence. At an effective redshift of zeff ' 2 the
multipole range 100 < ` < 800 corresponds to physical scales of ≈ 50− 6 Mpc (or
k ≈ 0.03− 0.2h/Mpc). Moreover, Planck team does not include multipoles ` > 400
in cosmological analysis based on the auto-power spectrum due do to some failed
curl-mode tests. We have repeated the MCMC analysis restricting both the cross-
and auto-power spectra to `max = 400 and found b = 3.58±0.18 and A = 1.47±0.14
for the baseline photo-z bin, fully consistent with the numbers shown in Table (5.3).
For the low-z bin we obtained b = 2.76 ± 0.28 and A = 1.46 ± 0.22, while for
the high-z one we found b = 4.81 ± 0.30 and A = 1.45 ± 0.17. Theeqrefore it
looks unlikely that the higher than expected value of A can be ascribed to having
neglected non-linear effects, to a scale-dependent bias or to issues associated with
the Planck lensing map.

To check the effect of our choice of the background cosmological parameters we
have repeated the analysis adopting the WMAP9 + SPT + ACT + BAO +H0 ones
(Hinshaw et al., 2013). Both A and b changed by < 5%.

The values of the bias parameter are stable and well-constrained in all redshift
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Figure 5.16: Posterior distributions in the (b, A) plane obtained requiring a ≥ 5σ
detection at 350µm (solid contours) compared with distributions obtained with our
baseline selection criterion (≥ 3σ detection; dashed contours) for the three redshift
intervals: zph ≥ 1.5 (red contours), 1.5 ≤ zph < 2.1 (blue contours), and zph ≥ 2.1 (green
contours).

Bin b A

zph ≥ 1.5 3.95+0.17
−0.17 1.47+0.14

−0.14
1.5 ≤ zph < 2.1 3.44+0.27

−0.27 1.42+0.20
−0.20

zph ≥ 2.1 4.77+0.26
−0.26 1.40+0.17

−0.17

Table 5.6: Best fit values of the cross-correlation amplitudes A and galaxy linear bias b
obtained requiring a ≥ 5σ detection at 350µm and combining the observed κg and gg
spectra.

intervals and can therefore be exploited to gain information on the effective halo
masses and SFRs of galaxies. Using the relations obtained by Aversa et al. (2015)
one can relate the galaxy luminosities to the SFRs and to the dark matter halo
masses, MH . The results are reported in Table (5.7). The SFRs are a factor
of several above the average main sequence values (see Rodighiero et al., 2014;
Speagle et al., 2014). The host halo masses suggest that these objects constitute
the progenitors of local massive spheroidal galaxies (see Lapi et al., 2011, 2014)).
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Bin b logMH/M� log SFR [M� yr−1]
zph ≥ 1.5 3.38+0.16

−0.16 12.9± 0.1 2.6± 0.2
1.5 ≤ zph < 2.1 2.59+0.28

−0.29 12.7± 0.2 2.4± 0.2
zph ≥ 2.1 4.51+0.24

−0.25 13.1± 0.1 2.8± 0.2

Table 5.7: Effective halo masses, MH, and SFRs derived from the effective linear bias
parameters determined using jointly the reconstructed galaxy auto- and cross-spectra in
the different redshift intervals. A Chabrier IMF (Chabrier, 2003) was adopted to evaluate
the SFR.

5.5 Summary and conclusions

We have updated our previous analysis of the cross-correlation between the mat-
ter over-densities traced by the H-ATLAS galaxies and the CMB lensing maps
reconstructed by the Planck collaboration. Using the new Planck lensing map we
confirm the detection of the cross-correlation with a total significance now increased
to 22σ, despite of the small area covered by the H-ATLAS survey (about ∼ 1.3%
of the sky) and the Planck lensing reconstruction noise level. The improvement is
due to the higher signal-to-noise ratio of Planck maps.

This result was shown to be stable against changes in the mask adopted for the
survey and for different galaxy selections. A considerable effort was spent in
modeling the redshift distribution, dN/dz, of the selected galaxies. This is a highly
non-trivial task due to the large uncertainties in the photometric redshift estimates.
We have applied a Bayesian approach to derive the redshift distribution given the
photo-z cuts, zph, and the r.m.s. error on zph.

As a first step towards the investigation of the way the dark matter distribution is
traced by galaxies we have divided our galaxy sample (zph ≥ 1.5) into two redshift
intervals, 1.5 ≤ zph < 2.1 and zph ≥ 2.1, containing similar numbers of sources and
thus similar shot-noise levels.

A joint analysis of the cross-spectrum and of the auto-spectrum of the galaxy density
contrast yielded, for the full zph ≥ 1.5 sample, a bias parameter of b = 3.54+0.15

−0.14.
This value differs from the one found in B15 (b = 2.80+0.12

−0.11) because of the different
modeling of the redshift distribution, dN/dz: when the analysis is performed
adopting the same dN/dz as B15 we recover a value of b very close to theirs.

On the other hand, we still find the cross-correlation amplitude to be higher than
expected in the standard ΛCDM model although by a slightly smaller factor:
A = 1.45+0.14

−0.13 against A = 1.62 ± 0.16, for the full galaxy sample (zph ≥ 1.5).
A similar excess amplitude is found for both redshift intervals, although it is
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slightly larger for the lower-z interval, which may be more liable to the effect of
the redshift–dust temperature degeneracy, hence more affected by large failures
of photometric redshift estimates. We have A = 1.48+0.20

−0.19 for the lower z interval
against A = 1.37± 0.16 for the higher z one. Larger uncertainties in zph may be
responsible, at least in part, also for the lack of power in the lowest multipole bin
of the auto-power spectrum of galaxies in the lower redshift interval. However,
reassuringly, the measured cross-correlation of positions of galaxies in the two
redshift intervals is in good agreement with the expectations given the overlap of
the estimated redshift distributions due to errors in the estimated redshifts. It is
thus unlikely that the two redshift distributions are badly off.

We have also tested the dependence of the results on the assumed SED (used
to estimate the redshift distribution) by repeating the full analysis using the
Pearson et al. (2013) SED. The deviation from the expected value, A = 1, of the
cross-correlation amplitude recurs, although at a somewhat lower significance level
(' 2.5σ instead of ' 3.5σ). However this happens at the cost of increasing the
bias parameter for the higher redshift interval to values substantially higher than
those given by independent estimates.

The resulting values of A are found to be only marginally affected by having
ignored the effect of non-linearities in the galaxy distribution and of variations of
the bias parameter within each redshift interval, as well as by different choices of
the background cosmological parameters.

The data indicate a significant evolution with redshift of the effective bias parameter:
for our baseline redshift distributions we get b = 2.89 ± 0.23 and b = 4.75+0.24

−0.25

for the lower- and the higher-z interval, respectively. The increase of b reflects
a slight increase of the effective halo mass, from log(MH/M�) = 12.7 ± 0.2 to
log(MH/M�) = 13.1± 0.1. Interestingly, the evolution of b is consistent with that
of the luminosity weighted bias factor yielded, as a function of MH and z, by
the standard linear bias model. According to the SFR–MH relationships derived
by Aversa et al. (2015), the typical SFRs associated to these halo masses are
log(SFR/M� yr−1) = 2.4± 0.2 and 2.8± 0.2, respectively.

If residual systematics in both lensing data and source selection is sub-dominant,
then one would conjecture that the selected objects trace more lensing power than
the bias would represent, in order to achieve a cross-correlation amplitude closer
to 1.

An amplitude of the cross-correlation signal different from unity has been recently
reported by the DES collaboration (Giannantonio et al., 2016) who measured the
cross-correlation between the galaxy density in their Science Verification data and
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the CMB lensing maps provided by the Planck satellite and by the SPT. They
however found A < 1, but for a galaxy sample at lower (photometric) redshifts
than our sample. So, their result is not necessarily conflicting with ours, especially
taking into account that they found A to be increasing with redshift. Another
hint of tension between ΛCDM predictions and observations has been reported
by Pullen et al. (2016), where the authors correlated the Planck CMB lensing
map with the Sloan Digital Sky Survey III (SDSS-III) CMASS galaxy sample at
z = 0.57, finding a tension with general relativity predictions at a 2.6σ level. In
another paper, Omori & Holder (2015) compare the linear galaxy bias inferred from
measurements of the Planck CMB lensing - CFHTLens galaxy density cross-power
spectrum and the galaxy auto-power spectrum, reporting significant differences
between the values found for 2013 and 2015 Planck releases. This case has been
further investigated by exploiting the analysis scheme developed in B15 by Kuntz
(2015), where the author partially confirms the Omori & Holder (2015) results,
finding different cross-correlation amplitude values between the two Planck releases.

The CMB lensing tomography is at an early stage of development. Higher signal-
to-noise ratios will be reached due to the augmented sensitivity of both galaxy
surveys, such as DES, Euclid, LSST, DESI, and of CMB lensing experiments,
such as AdvACT (Calabrese et al., 2014) or the new phase of the POLARBEAR
experiment, the Simons Array (Ade et al., 2014c). In the near future, the LSS will be
mapped at different wavelengths out to high redshifts, enabling the comparison with
the results presented in this and other works, the comprehension of the interplay
between uncertainties in datasets and astrophysical modeling of sources, as well as
the constraining power on both astrophysics and cosmology of cross-correlation
studies.
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6 Chapter 6

Needlet estimation for
CMB-LSS cross-correlation

Elwood: What kind of music do you usually have here?
Claire: Oh, we got both kinds. We got country *and* western.

–The Blues Brothers

In this chapter we develop a novel needlet-based estimator to investigate the
cross-correlation CMB lensing maps and LSS data. We compare this estimator
with its harmonic counterpart and, in particular, we analyze the bias effects of
different forms of masking. In order to address this bias, we also implement
a MASTER-like technique in the needlet case. The resulting estimator turns out
to have an extremely good signal-to-noise performance. Our analysis aims at
expanding and optimizing the operating domains in CMB-LSS cross-correlation
studies, similarly to CMB needlet data analysis. It is motivated especially by next
generation experiments (such as Euclid) which will allow us to derive much tighter
constraints on cosmological and astrophysical parameters through cross-correlation
measurements between CMB and LSS.

6.1 The use of needlets for cosmological datasets

As we thoroughly discussed in Ch. (2.2.3), CMB lensing-galaxy cross-correlation
measurements can be used to reconstruct the redshift evolution of the galaxy bias
(Bianchini et al., 2015; Allison et al., 2015; Bianchini et al., 2016b), the growth of
structures (Giannantonio et al., 2016) and to augment the absolute cosmic shear
calibration (Baxter et al., 2016). In particular, it is worth to notice that all analyses
reported to date have reconstructed the 2-point statistics either in harmonic or real
space.

In this chapter, we shall use instead a procedure based on needlet ideas, and we
shall discuss how to improve its performance for very aggressive masks using a
MASTER-like correction.
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6 Needlet estimation for CMB-LSS cross-correlation

As discussed in many previous references, needlets are a form of spherical wavelets
which were introduced in functional analysis and statistics by Narcowich et al.
(2006); Baldi et al. (2009) and have then found a number of different applications in
the cosmological community over the last decade; we recall for instance Marinucci
et al. (2008) for a general description of the methods, Lan & Marinucci (2008);
Rudjord et al. (2009); Pietrobon et al. (2010); Donzelli et al. (2012); Regan et al.
(2015); Planck Collaboration (2016b) for non-Gaussianity estimation, Delabrouille
(2010); Planck Collaboration (2014a, 2015a); Rogers et al. (2016a,b) for foreground
component separation, Geller et al. (2008); Leistedt et al. (2015a); Planck Collab-
oration (2016b) for polarization data analysis, Durastanti et al. (2014); Leistedt
et al. (2015b) for extension in 3d framework and Troja et al. (2014); Regan et al.
(2015) for trispectrum analysis.

The advantages of needlets, like those of other wavelets system, have been widely
discussed in the literature; in short, they are mainly concerned with the possibility
to exploit double localization properties, in the real and harmonic domain. Despite
this localization in the real domain, we show here that the performance of a needlet
cross-correlation estimator deteriorates badly in the presence of very aggressive
sky-cuts (i.e., experiments with sky coverage much smaller than 50%). In this
chapter, we show how the performance of this estimator can be greatly improved by
a MASTER-like correction. Thus achieving signal-to-noise figure of merits which are
in some aspect superior to the corresponding results for power spectrum methods.

The plan of the chapter is as follows. In section (6.2) we introduce the needlet
system along with the spectral estimation in this framework; we then proceed in
section (6.3) to introduce the MASTER-like algorithm for the needlets cross-correlation
estimator. Numerical evidence and some comparison on the performance of these
procedures are collected in section (6.4), while final considerations are presented in
section (6.5).

6.2 Building the cross-correlation estimators

In this section we introduce the spectral estimator in needlet space. We recall
that the theoretical background of the CMB lensing-galaxy cross-correlation has
been widely discussed in Ch. (2.2.3) and (4.2), while we illustrated how to build
an harmonic estimator for cross-correlation analysis in Ch. (3.2.1). Even though
the main focus of the chapter is the measurement of the CMB lensing-galaxy
cross-correlation, we stress that the estimators presented here can be applied to
any scalar field on the sphere.
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6.2.1 Needlet cross-correlation estimator

As mentioned in the introduction, some drawbacks of standard Fourier analysis
on the sphere can be mitigated by the exploitation of needlet/wavelet techniques.
Related advantages have already been widely discussed in the literature, see again
Marinucci et al. (2008); Lan & Marinucci (2008); Donzelli et al. (2012); Troja
et al. (2014); Marinucci et al. (2011); Durastanti et al. (2014). Below we provide a
brief summary of some of the needlets advantages with respect to other spherical
wavelets construction:

1. they have bounded support in the harmonic domain (i.e. localized on a finite
number of multipoles);

2. they are quasi-exponentially (i.e. faster than any polynomial) localized in
pixel space;

3. they do not rely on any tangent plane approximation;

4. they allow for a simple reconstruction formula (because they represent a
tight frame system). Note that this property is not shared by other wavelet
systems such as the common Spherical Mexican Hat Wavelet (SMHW);

5. they are computationally convenient to implement and natively adapted to
standard packages such as HEALPix;

6. needlets coefficients can be shown to be asymptotically uncorrelated at any
fixed angular distance for growing frequencies.

Here we recall that the spherical needlet system ψ{jk} can be obtained by a quadratic
combination of spherical harmonics as

ψjk(n̂) =
√
λjk

[Bj+1]∑
`=[Bj−1]

b

(
`

Bj

) ∑̀
m=−`

Y ∗`m(n̂)Y`m(ξjk), (6.1)

where [·] denotes the integer part, b(·) is the filter function in the harmonic
domain defined for x ∈ [1/B,B], and {ξjk} are the cubature points on the sphere
corresponding to the frequency j and the location k. Since our implementation
relies on the HEALPix pixelation scheme we can identify the cubature points with
the pixel centers, so that the cubature weights λjk can be approximated by 4π/Npix,
where Npix is the number of pixels for the chosen HEALPix Nside resolution and k
represents the pixel number (Pietrobon et al., 2006).

Needlets can be thought of as a convolution of the projection operator∑m Y
∗
`m(n̂)Y`m(ξjk)

with a filter function b(·) whose width is controlled by the only free parameter B:
recipes for the construction of the function b(·) can be found in Marinucci et al.
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(2008); McEwen et al. (2013); Marinucci et al. (2011). For instance, an explicit
recipe for the construction of the filter function is as follows (Marinucci et al.,
2008):

1. Construct the C∞-function

φ1(t) =

exp
(
− 1

1−t2
)

t ∈ [−1, 1]
0 otherwise,

(6.2)

compactly supported in [−1, 1];

2. Implement the non-decreasing C∞-function

φ2(u) =
∫ u
−1 dt φ1(t)∫ 1
−1 dt φ1(t)

, (6.3)

which is normalized in order to satisfy φ2(−1) = 0 and φ2(1) = 1;

3. Construct the function

φ3(t) =


1 t ∈ [0, 1/B]
φ2
(
1− 2B

B−1

(
t− 1

B

))
t ∈ (1/B, 1]

0 t ∈ (1,∞);

(6.4)

4. Define for u ∈ R
b2(u) = φ3

(
u

B

)
− φ3(u). (6.5)

A smaller value of B corresponds to a narrower localization in `-space, while a
larger value translates into a more precise localization in real space. Once B is
fixed, each needlet can be shown to pick up signal only from a specific range of
multipoles determined by the index j: the profile of the filter function b(·) is shown
in Fig. (6.1) for different frequencies. Needlet coefficients are then evaluated by
projecting the centered field X(n̂) on the corresponding needlet ψjk(n̂) as

βjk =
∫
S2
X(n̂)ψjk(n̂) dΩ

=
√
λjk

∫
S2

∑
`m

x`mY`m(n̂)
∑
LM

b

(
L

Bj

)
Y ∗LM(n̂)YLM(ξjk) dΩ

=
√
λjk

∑
`mLM

x`mb

(
L

Bj

)
YLM(ξjk)

∫
S2
Y`m(n̂)Y ∗LM(n̂) dΩ︸ ︷︷ ︸

δ`LδmM

=
√
λjk

∑
`

b

(
`

Bj

) ∑̀
m=−`

x`mY`m(ξjk).

(6.6)
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Figure 6.1: Profile of the filter function in the `-space for different needlet frequencies
j. The needlet width parameter is set to B = 1.75.

Needlet coefficients corresponding to a given frequency j can themselves be rep-
resented as an HEALPix map. It is worth to stress that although needlets do
not make up an orthonormal basis for square integrable functions on the sphere,
they represent a tight frame (redundant basis) so that they allow for a simple
reconstruction formula, i.e

X(n̂) =
∑
jk

βjkψjk(n̂). (6.7)

After computing the needlet coefficients βjk from the maps, we can build a spectral
estimator as

β̂XYj = 1
Npix

∑
k

βXjkβ
Y
jk, (6.8)

and it is immediate to check that it provides an unbiased estimate of (a binned
form of) the angular power spectrum, i.e.

〈β̂XYj 〉 ≡ βXYj =
∑
`

2`+ 1
4π b2

(
`

Bj

)
CXY
` . (6.9)

These theoretical predictions can directly be compared to the extracted spectra,
allowing for the parameter extraction process. Moreover, as noted in Pietrobon
et al. (2006), the analytic relation between βj and C` makes straightforward dealing
with beam profiles, pixel window function, and experimental transfer functions.
Note that in this chapter we divide the spectral estimator (6.8) and its expected
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value (6.9) for a normalizing factor N given by

N =
∑
`

2`+ 1
4π b2

(
`

Bj

)
, (6.10)

so that in the plots we show β̂XYj → β̂XYj /N .
The theoretical variance of the cross-correlation power spectrum in needlet space
reads

(∆βXYj )2 ≡ Var[β̂XYj ] =
∑
`

2`+ 1
16π2 b

4
(
`

Bj

)[
(CXY

` )2 + CXX
` CY Y

`

]
, (6.11)

where the angular auto-spectra can be comprehensive of a noise term, i.e. C` →
C` +N`, if present. Moreover, the needlets system is compactly supported in the
harmonic domain and as such, for full-sky maps, the random needlets coefficients
are uncorrelated by construction for |j − j′| ≥ 2 (Baldi et al., 2009).

6.3 MASTER algorithm for needlets

As mentioned in Sec (6.2.1), one of the main driver behind the development of the
needlet spectral estimator is the need to overcome the issues related to Fourier
analysis on the sphere in the presence of missing observation. The excellent
needlets localization properties in real space represent a key feature for analyzing
cosmological data on the partially observed sky, in particular it has been shown
that even in the presence of masked regions the random needlet coefficients βjk are
asymptotically independent (over k) as j → ∞ (contrary to the case of random
coefficients x`m) (Marinucci et al., 2008; Baldi et al., 2009). However, as we shall
see from simulations in the next section, the estimator defined in Eq. (6.8) becomes
biased for aggressive masking: here we formally study the effect of sky-cuts on the
needlet power spectrum estimation.
From Eq. (3.37), we find that needlet coefficients computed on a masked sky are
given by

β̃jk =
√
λjk

∑
`

b

(
`

Bj

)∑
m

x̃`mY`m(ξjk). (6.12)

Then, if we consider the statistic

Γ̂XYj = 1
Npix

∑
k

β̃Xjkβ̃
Y
jk, (6.13)
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it is straightforward to see that its expectation value reads as follows

〈Γ̂XYj 〉 ≡ ΓXYj =
∑
`m

b2
(
`

Bj

)
〈x̃`mỹ`m〉

=
∑
`m

∑
`′m′

b2
(
`

Bj

)
K2
`m`′m′ [W ]C`′

=
∑
``′

2`+ 1
4π b2

(
`

Bj

)
M``′C`′ ,

(6.14)

which tells us that Γ̂XYj is an unbiased estimator for a smoothed version of the
pseudo angular power spectrum C̃`, similar to the case of β̂XYj : in some sense,
we can view Γ̂XYj as an estimator of the pseudo-needlet power power spectrum.
Using Eq. (3.45), which is valid for slowly varying power spectra and/or large sky
fractions, it is possible to relate the two estimators as

〈Γ̂XYj 〉 ≈ fsky
∑
`

2`+ 1
4π b2

(
`

Bj

)
C`

= fsky〈β̂XYj 〉.
(6.15)

Before we conclude this section let us introduce a couple of remarks. We recall
first that in the case of a survey with a large sky-cut, inverting the full coupling
matrix become unfeasible because of singularities; hence the power spectrum can be
estimated only over some subset of multipoles i.e. the power spectrum is recovered
only up to some frequencs windows. As discussed earlier in Sec. (3.2.1), the choice
of this frequency windows is to a good degree arbitrary; on the other hand, the
needlet framework naturally provides a binning scheme which is controlled by a
single width parameter B (as well as by the profile of the filter function b(·)).

As a second difference, we note that while the PCL approach usually makes use
of the backward modelling, where measurements are deconvolved for numerical
and observational effects to match the theoretical predictions, needlets analysis is
oriented towards the forward modelling, which turns theoretical (needlet) power
spectra into pseudo-spectra that can be directly compared to the raw measurements1

(see Harnois-Déraps et al. (2016) for a discussion on forward and backward modeling).
In particular, in the needlet case it is not feasible to write a closed formula such
as Eq. (3.42) to express the original needlet power spectrum as a function of the
pseudo one, i.e. βj = βj(Γj); however, this is not an obstacle for data analysis
because the forward estimator can be used just as well to do model checks as

1Note that pseudo-spectra, either in harmonic or needlet space, depend on the observational
setup represented for example by the masking, the smoothing, and the apodization, while this
is not the case for theoretical predictions.
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Gal Mask

0 1

H-ATLAS Mask

0 1

Figure 6.2: Masks used for the analysis. The mask with a symmetric Galactic cut at
±20 deg (fsky = 0.65) is shown in the left part, while the H-ATLAS mask (fsky = 0.013)
is shown on the right one. In both cases the black color denotes observed regions of the
sky.

parameter estimation.

6.4 Numerical evidence

In this section we describe the simulations setup exploited and the tests performed
in order to compare the harmonic and needlet cross-correlation estimators.

6.4.1 Simulations

We simulate a set of Nsim = 500 correlated CMB convergence and galaxy density
maps at an HEALPix resolution of Nside = 512 (corresponding to an angular
resolution of ∼ 7′.2). For the galaxies we consider an high-z Herschel-like population
with a redshift distribution as described in Ch. (5) and fix b = 3 for the present
galaxy sample; the precise details of spectra are not fundamental since we are
interested in testing the estimators. This simulations set is used in a MC approach
(i) to validate the extraction pipelines; (ii) to compute the uncertainty associated
with each bin; and (iii) to quantify the degree of correlation among different needlet
frequencies. A thorough description of the main steps to obtain correlated CMB
lensing and galaxy maps comprising of signal and noise can be found in Ch. (4),
here we simply use noise-free maps for validation purposes. Pairs of correlated
signal-only Gaussian CMB convergence κS`m and galaxy density gS`m maps are
generated from the three fiducial spectra Cκg

` , Cκκ
` and Cgg

` (Giannantonio et al.,
2008; Bianchini et al., 2015). This is easily implemented using the synfast routine of
HEALPix. In order to show the effect of masking on the reconstructed statistics, the
simulated maps are masked with two different masks: we consider either a Galactic
mask that covers the 35% of sky (fsky = 0.65), similar to the one implemented in
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Planck CMB data, and a much more aggressive H-ATLAS (Eales et al., 2010) mask
with sky coverage equal only to 1.3% that comprehends the North Galactic Pole,
the South Galactic Pole, and the GAMA fields. The adopted masks are shown in
Fig. (6.2).

6.4.2 Results

We start by investigating the uncorrelation properties of the needlets coefficients,
as a function of the width of the mask. In particular, the covariance matrix of
needlet coefficients is computed by means of 500 MC simulations as

Covjj′ ≡ Cov[β̂j, β̂j′ ] = 〈(β̂j − 〈β̂j〉MC)(β̂j′ − 〈β̂j′〉MC)〉MC. (6.16)

The corresponding results are reported in Fig. (6.3) for the full-sky, Galactic and
H-ATLAS cases respectively. Numerical evidence is very much consistent with the
theoretical expectation: in particular in the full-sky and Galactic mask case the
correlation decrease very rapidly outside the main diagonal (where it is trivially
unit, which is not reported in the table) in the case of full-sky maps. The decay is
still very satisfactory when sky coverage is high, although not complete as for the
Galactic mask; on the other hand a very aggressive cut with sky coverage of 1.3%
deteriorate enormously the uncorrelation properties (even though Corrjj′ is O(0.1)
and smaller at high frequencies for |j − j′| ≥ 2), see the bottom panel in Fig. (6.3).
The estimated covariances are then used to derive error bars in the cross-correlation
estimators reported in Fig. (6.4). Again, the needlet estimator is shown to perform
very well in the full-sky and Galactic mask cases whereas Herschel-like framework
clearly requires corrections. Error bars decay rapidly for increasing frequencies
as expected. For comparison, in Fig. (6.5) MASTER-like estimators are reported
for the cross-power spectrum, while the equivalent MASTER needlet reconstruction
discussed in section (6.3) is shown in Fig. (6.6), where we can see that the bias is
strongly suppressed.

The most important results are collected in Fig. (6.7), where we report the per-
formance of the MASTER-like corrected needlet cross correlation estimator. The
figure of merit that we report is the signal-to-noise ratio (S/N), evaluated as the
ratio between the analytical expected value of the estimator (numerator) and a
measure of variability, which can be either the standard deviation (∆β̂j ≡

√
Covjj)

or the root mean square error (
√
MSE). The latter estimator takes in to account

also the possible presence of bias, but this is so small that the two measures are
largely equivalent. Clearly, an higher value of this figure of merit entails a better
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Figure 6.3: Cross-correlation coefficient matrices, defined as Corrij ≡
Covij/

√
CoviiCovjj , about the needlet space estimator. From top to bottom we show

results for the full-sky, Galactic mask, and H-ATLAS mask cases respectively.
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Figure 6.4: Upper panel: Recovered mean needlet cross-power spectrum between
correlated CMB convergence and galaxy density maps for different masks and width
parameter (B = 1.75 and 1.45 on the left and right parts respectively). Green, yellow and
purple bandpowers represent full-sky, Galactic mask (with fsky = 0.65) and H-ATLAS
mask (with fsky = 0.013) cases respectively. Solid blue line is the generative theoretical
input cross-power spectrum. Error bars shown are the diagonal components of the
covariance matrices (defined in Eq. 4.1), properly scaled by

√
Nsim. Central panel:

Fractional difference between mean recovered and theoretical needlet cross- spectra for
the cases shown in the upper panel. Lower panel: Error bars comparison for the cases
shown in the upper panel. Note that the lack of power observed for j = 12 (or for j = 18
if B = 1.45) is due to the fact that simulated maps have been generated using spectral
information up to `max = 2Nside = 1024, while the needlet frequency j = 12 picks up
signal in the multipole range of 458 . ` . 1396 (551 . ` . 1159), where the power is
partially missing.
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Figure 6.5: Same as (6.4) but in harmonic space.
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Figure 6.6: Mean needlet pseudo power spectrum 〈Γ̂κgj 〉 (orange circles) superimposed
to the generative theoretical (pseudo) spectrum (blue line).

performance of the estimator; for comparison, the same statistics are reported also
for the MASTER-like cross-correlation estimator in the standard harmonic domain.

The performance of the needlet estimator seems to be extremely satisfactory, with
the figure of merit ranging from 1 to 3 for the H-ATLAS case and from 3 to 10 for
the Galactic case at the smallest frequencies j = 3, 4, 5 (corresponding to multipoles
of the order ` = 6, 10, 18 respectively). At higher frequencies, i.e. j = 10, 11, 12
(corresponding to central multipoles of the order ` = 312, 547, 957 respectively), the
figure of merit is of order 200 (30) when the Galactic (H-ATLAS) mask is applied.
To make a rough comparison, the figures of merit for the standard power spectrum
cross-correlation estimators are in the order of 9 at ` = 10, and 80 at ` = 800 for
the Galactic mask case, while the figure of merit in the H-ATLAS scenario goes
from below 1 up to roughly 6 in the same `-range. To be fair, we stress that these
numbers are not strictly comparable, because the bandwidths which are chosen
for the standard harmonic domain estimator are constant across the multipoles
domain and smaller than the equivalent needlet bandwidths, especially at high
frequencies j. However, the least one can conclude from these results is that the
two procedures have different advantages; in particular, we view as major assets for
the needlet based algorithm the very high S/N and the natural choice of bandwidth
parameters; while the advantage of the power spectrum based procedure seems the
high resolution which can be achieved in multipole spaces.

As a further check we show in Fig. (6.8) the variance of the harmonic and needlet
space estimators for the different observational setups as function of multipole `
and needlet frequency j, normalized to the full-sky analytical variance.
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Ĉ
`

∆
C
`

Full-sky

Gal Mask

H-ATLAS Mask

2 4 6 8 10 12

j

100

101

∆
β̂
j

∆
β
j

Full-sky

Gal Mask

H-ATLAS Mask

Figure 6.8: The variance of cross-power spectrum estimates (left panel) and needlet
cross-spectra (right panel) divided by the respective analytical full-sky variance. Note
that we calculate the ratio β̂j/∆βj for the H-ATLAS case, not the pseudo spectrum
Γ̂j/∆Γj .

155



6 Needlet estimation for CMB-LSS cross-correlation

6.5 Conclusions

Cross-correlation analyses between independent cosmological datasets have the
advantage to be potentially immune to any known (and unknown) systematics,
as well as to extract signals hidden in noisy data. In this way, cross-correlation
measurements can provide us with a clearer view of the large scale distribution of
matter, fundamental to reconstruct the dynamics and the spatial distribution of the
gravitational potential that can be then translated into constraints on cosmological
parameters, breaking degeneracies with the astrophysical ones.

In this chapter we begin a systematic analysis of the scientific potential associated
to the expansion of the analysis domain in CMB-LSS cross-correlation studies
to include the localization in the harmonic and spatial domains. In this initial
application, by exploiting an ensemble of simulations, we have shown that under the
same observational configurations the needlet spectral estimator can outperform the
harmonic one thanks to the excellent needlets localization properties in both pixel
and frequency space, as well as their optimal window function. Moreover, we have
completed an initial needlet based analysis pipeline throughout the implementation
of a novel MASTER-like approach for needlet spectral reconstruction in the case
of aggressive masking (fsky ' 0.01), reporting an higher S/N with respect to its
harmonic counterpart.

Motivated by these positive indications and results, in future research we plan
to explore further the trade-off between S/N and multipole localization, so as
to achieve optimal bandwidth selection for a given experimental setting (such as
the Euclid coverage mask). We also aim at applying this machinery to accurate
CMB maps lensed with ray-tracing techniques (Calabrese et al., 2015) and realistic
galaxy mock catalogues based on N-body simulations by adopting, on the CMB
side, the projected accuracy and sensitivity of forthcoming polarization oriented
CMB probes, targeting the B-modes from cosmological gravitational waves and
gravitational lensing. This work is of course preparatory for application to real data,
from currently available LSS maps such as Herschel and WISExSCOS Photometric
Redshift Catalogue (WISExSCOSPZ) (Bilicki et al., 2016) to upcoming surveys
such as Euclid, LSST, DESI, and WFIRST, in order to robustly extract cosmological
information from cross-correlation measurements.
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7 Chapter 7

Kinetic Sunyaev-Zel’dovich
effect in modified gravity

In this Chapter, which concludes the work described in this Thesis, we tackle the
interplay between CMB and LSS from a different perspective, focusing not only
upon a different effect with respect to CMB lensing, but also investigating its
capabilities as a discriminant from cosmologies characterized by modifications of
gravity. Here we investigate the impact of modified theories of gravity on the kinetic
Sunyaev-Zel’dovich (kSZ) effect of the CMB. We focus on a specific class of f(R)
models of gravity and compare their predictions for the kSZ power spectrum to
that of the ΛCDM model.1 We use a publicly available modified version of Halofit
to properly include the nonlinear matter power spectrum of f(R) in the modeling
of the kSZ signal. We find that the well-known modifications of the growth rate
of structure in f(R) can indeed induce sizable changes in the kSZ signal, which
are more significant than the changes induced by modifications of the expansion
history. We discuss prospects of using the kSZ signal as a complementary probe of
modified gravity, giving an overview of assumptions and possible caveats in the
modeling.

7.1 The kinetic Sunyaev-Zel’dovich effect

As we have already seen in Ch. (2.2.2), the journey of the photons from the last
scattering surface to us is not a smooth one. On their way to the observer, they
undergo several physical processes which induce additional anisotropies on top of
the primordial ones, imprinted at the time of recombination. These can be noticed
as secondary effects on the CMB, of which the iSW effect and CMB lensing are
common examples. Since they happen at different intermediate redshifts, they
carry valuable information on the Universe between the last scattering and today.

1f(R) gravity is a family of gravity theories in which the Lagrangian density f is an arbitrary
function of R and cosmological models are derived from that.
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7 Kinetic Sunyaev-Zel’dovich effect in modified gravity

In this chapter we focus on the kSZ effect, which is sourced by the inverse Compton
scattering of CMB photons off clouds of moving free electrons (Sunyaev & Zeldovich,
1980; Vishniac, 1987; Jaffe & Kamionkowski, 1998; Shaw et al., 2012). The kSZ
signal is sensitive to both the expansion history and the dynamics of cosmological
perturbations. Its constraining power as a geometrical probe for DE studies was
investigated in Ma & Zhao (2014). We focus on the growth of structure and
investigate the prospect of using the kSZ effect to constrain models of modified
gravity that address the phenomenon of cosmic acceleration. Indeed we show that
the kSZ phenomenon is particularly sensitive to the growth of perturbations at
redshifts z . 2 and, as such, we expect it to be a good probe of cosmological
models that introduce late times modifications of the growth rate of structure,
such as clustering dark energy and modified gravity. In particular, we consider
the class of f(R) models introduced by Hu & Sawicki (2007) and we find that
the corresponding modifications to the growth rate of structure can indeed induce
sizable changes in the kSZ effect. We discuss also the caveats and assumptions
associated to the modeling and measurements of the kSZ signal, and conclude
giving an outlook of the observational prospective.

A wide set of observational probes has been proposed and exploited to test theories
of modified gravity from astrophysical to cosmological scales. In particular, viable
f(R) models have been constrained with secondary CMB anisotropies, such as
CMB lensing, the iSW effect (Raveri et al., 2014; Planck Collaboration, 2015d)
and its cross-correlation with galaxy density (Song et al., 2007b; Giannantonio
et al., 2010), galaxy clusters abundances (Jain & Zhang, 2008; Ferraro et al., 2011;
Cataneo et al., 2015) and profiles (Lombriser et al., 2012; Wilcox et al., 2015),
galaxy power spectrum (Oyaizu et al., 2008; Dossett et al., 2014), redshift-space
distortions from spectroscopic surveys (Guzzo et al., 2008; Yamamoto et al., 2010;
Alam et al., 2016), weak gravitational lensing (Simpson et al., 2013; Harnois-Déraps
et al., 2015), 21-cm intensity mapping (Hall et al., 2013), and dwarf galaxies (Jain
et al., 2013; Vikram et al., 2013).

The chapter is organized as follows. In Sec. (7.2) we provide an overview of the kSZ
effect and describe our modeling of the kSZ angular power spectrum. The different
gravity models considered in this analysis are reviewed in Sec. (7.3). We investigate
the effect of the modified cosmic growth history on the kSZ observable and discuss
possible caveats in Sec. (7.4). In Sec. (7.5) we discuss the detectability of such
an effect with the available and upcoming observations, while the conclusions are
presented in Sec. (7.6). Throughout the chapter we assume a fiducial background
expansion that closely mimics one of a spatially flat ΛCDM cosmological model
consistent with the best-fit cosmological parameters derived using the joint data
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sets of 2015 Planck TT + low P (Planck Collaboration, 2015c), namely Ωb = 0.049,
Ωc = 0.264, ΩΛ = 0.687, ns = 0.966, H0 = 67.31 km s−1 Mpc−1, and zre = 9.9.

7.2 The modeling of the kSZ effect

In this section we review the physics and the modeling of the kSZ signal. During
their journey from the last scattering surface to the observer, CMB photons
experience further Compton scattering off clouds of moving free electrons: the
LOS component of the electron momentum induces temperature fluctuations in
the CMB sky through Doppler effect. This phenomenon is known as kinetic
Sunyaev-Zel’dovich effect and its magnitude is given by (Sunyaev & Zeldovich,
1980)

∆T
T0

(n̂) = σT

∫ dz
(1 + z)H(z)ne(z)e−τ(z)v · n̂, (7.1)

where σT is the Thomson scattering cross section, T0 ' 2.725 K is the average
CMB temperature, H(z), τ(z), ne(z), and v · n̂ are the Hubble parameter, optical
depth, free electron number density, and peculiar velocity component along the
LOS.
The optical depth out to redshift z is

τ(z) = σT c
∫ z

0
dz n̄e(z)

(1 + z)H(z) , (7.2)

where n̄e is the mean free-electron density,

n̄e = χρg(z)
µemp

, (7.3)

with ρg(z) = ρg0(1 + z)3 being the mean gas density at redshift z and µemp the
mean mass per electron. The electron ionization fraction is defined as (Shaw et al.,
2012; Ma & Zhao, 2014):2

χ = 1− Yp(1−NHe/4)
1− Yp/2

. (7.4)

Here, Yp is the primordial helium abundance, fixed to Yp = 0.24, and NHe is the
number of helium electrons ionized.

The kSZ power is expected to be sourced by a contribution from the epoch of

2Note that in this chapter we switch convention and denote the comoving distance with the letter
x to avoid confusion with the electron ionization fraction χ and stick to the most diffused kSZ
literature.
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7 Kinetic Sunyaev-Zel’dovich effect in modified gravity

reionization, dubbed the patchy kSZ, and one from the postreionization epoch,
namely the homogeneous kSZ.

• Patchy kSZ: it is originated by inhomogeneities in the electron density and
the ionization fraction at redshift z & zre;3 its power spectrum amplitude and
shape depend, at first order, on the time and duration of reionization (Zahn
et al., 2005; McQuinn et al., 2005);

• Homogeneous kSZ: it is sourced by free-electron density perturbations and
peculiar velocities at z . zre.

Since we focus on the kSZ signal after reionization, we set the upper integration
limit in Eq. (7.1) to zre = 9.9 while we assume χ = 0.86, i.e. neutral helium at all
redshifts.4 We discuss more in detail about the possible choices for the reionization
redshift and the dependence of kSZ on its value in Sec. (7.4.4).

Writing ne = n̄e(1 + δ), Eq. (7.1) can be recast as

∆T
T0

(n̂) =
(
σTρg0
µemp

) ∫ zre

0
dz (1 + z)2

H(z) χe−τ(z)q · n̂, (7.5)

where q = v(1 + δ) is the density weighted peculiar velocity (ionized electron
peculiar momentum).

Since the longitudinal Fourier modes of q, i.e those with k parallel to n̂, experience
several cancellations in the LOS integral of Eq. (7.5), only transverse momentum
modes contribute to the effect (Vishniac, 1987; Jaffe & Kamionkowski, 1998). More-
over, in the linear regime the velocity field is purely longitudinal, so that only the
cross term vδ can source the kSZ power spectrum. In the small angle limit, the kSZ
angular power spectrum can be written under the Limber approximation (Limber,
1953) as

C` = 8π2

(2`+ 1)3

(
σTρg0
µemp

)2 ∫ zre

0

dz
c

(1 + z)4χ2∆2
B(`/x, z)e−2τ(z) x(z)

H(z) , (7.6)

where x(z) =
∫ z

0 (cdz′/H(z′)) is the comoving distance at redshift z, k = `/x and
∆B(k, z) is the power spectrum of the transverse (curl) component of the momentum
field. Earlier analytical studies calculated the expression for ∆2

B (Vishniac, 1987;

3We define zre as the redshift at which hydrogen reionization ends.
4This is an assumption: in a more realistic case, helium atoms remain singly ionized until z ∼ 3
(χ = 0.93) and, below that, they are thought to be doubly ionized (χ = 1). Shaw et al. (2012)
calculates for their ΛCDM case that this would increase the kSZ power by a factor of 1.22 at
` = 3000 relative to their baseline model. Hence, the level of uncertainty on the kSZ power
spectrum due to helium reionization is equivalent to that due to the uncertainty on σ8.
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Jaffe & Kamionkowski, 1998; Dodelson & Jubas, 1995; Ma & Fry, 2002) to be

∆2
B(k, z) = k3

2π2

∫ d3k′
(2π)3 (1− µ2)

[
Pδδ(|k− k′|, z)Pvv(k′, z)

− k′

|k− k′|Pδv(|k− k′|, z)Pδv(k′, z)
]
,

(7.7)

where Pδδ and Pvv are the linear matter density and velocity power spectra, while
Pδv is the density-velocity cross spectrum and µ = k̂ · k̂′. We can further simplify
Eq. (7.7) by relating the peculiar velocity field to the density perturbations: in
the linear regime and on subhorizon scales, under the assumption that Φ̇ ' 0,
we can use the continuity equation for matter to write ṽ = if ȧδ̃k/k2, where
f(a, k) = d log δ(a, k)/d log a is the linear growth rate. This gives us the following
equations

Pvv(k) =
(
fȧ

k

)2
Pδδ(k); Pδv(k) =

(
fȧ

k

)
Pδδ(k). (7.8)

Inserting them into Eq. (7.7), we obtain5

∆2
B(k) = k3

2π2 ȧ
2
∫ d3k′

(2π)3f
2(k′)Pδδ(|k− k′|)Pδδ(k′)I(k, k′), (7.9)

where
I(k, k′) = k(k − 2k′µ)(1− µ2)

k′2(k2 + k′2 − 2kk′µ) (7.10)

is the kernel that describes how linear density and velocity fields couple to each
other. Since we are interested in studying the impact of scale-dependent growth of
structure induced by modified gravity scenarios on the kSZ observable, f is kept
inside the previous integral. Combining Eq. (7.6) with Eq. (7.9), one obtains the
so-called Ostriker-Vishniac (OV) effect (Ostriker & Vishniac, 1986).

When nonlinear structure formation arises, linear perturbation theory does not hold
and Eq. (7.9) breaks down: several previous works have investigated the impact
of nonlinearities on the kSZ power spectrum (Hu, 2000a; Ma & Fry, 2002; Shaw
et al., 2012). In particular, Hu (2000a); Ma & Fry (2002) argue that nonlinearities
in the velocity field are suppressed by a factor of 1/k2 with respect to those in the
density field. Hence it is sufficient to replace the linear Pδδ(k, z) in Eq. ((7.9)) with
its nonlinear counterpart PNL

δδ (k, z) to capture the effect of nonlinearities, so that

∆2
B(k) = k3

2π2 ȧ
2
∫ d3k′

(2π)3f
2(k′)PNL

δδ (|k− k′|)Pδδ(k′)I(k, k′). (7.11)

5Redshift dependence is suppressed for clarity.
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7 Kinetic Sunyaev-Zel’dovich effect in modified gravity

Throughout this chapter, we use Eq. (7.11) and Eq. (7.6) to compute theoretical
predictions for the full kSZ angular power spectra. Let us notice that the continuity
equation that we have used to go from ((7.7)) to ((7.9)) remains valid in our Jordan
frame treatment of f(R) gravity. N-body simulations have shown that f(R) models
affect significantly the velocity spectrum, with resulting changes in Pvv with respect
to the ΛCDM being more sizable than the corresponding changes in Pδδ (Li et al.,
2013). Nevertheless, the relative size of these modifications should not hinder the
above assumption on negligibility of nonlinearities of the velocity power spectrum
in ∆2

B.

As previously done (Jaffe & Kamionkowski, 1998; Dodelson & Jubas, 1995; Ma &
Fry, 2002; Zhang et al., 2004), we assume that gas fluctuations trace dark matter
ones at all scales, i.e. there is no (velocity) bias between them. Note that this
approximation breaks on small scales, where baryon thermal pressure tends to
make gas distribution less clustered than the dark matter one. This suppression
effect due to baryon physics can be incorporated into a window function W (k, z),
such that (Shaw et al., 2012)

PNL
gas(k, z) = W 2(k, z)PNL

DM(k, z). (7.12)

An investigation of the astrophysical processes such as radiative cooling, star for-
mation, and supernova feedback on the kSZ power spectrum achieved by measuring
the window function W 2(k, z) in hydrodynamic simulations is provided in Shaw
et al. (2012) (the cooling and star-formation model, labelled CSF). There, the
authors provide an improved fitting formula for W 2(k, z) with respect to the one
presented in Gnedin & Hui (1998) and argue that the CSF model is a robust lower
bound on the homogeneous kSZ amplitude.

All the previous studies on which we rely to model the kSZ signal, neglect the
contribution of the connected term in the transverse component of the momentum
power spectrum6 that arises in the nonlinear regime: a recent investigation of this
term is reported in Park et al. (2016).

Since we aim at studying the modified gravity effects on the kSZ power spectrum, in
the following analysis we adopt the full nonlinear kSZ modeling without including
the thermal gas pressure. However, when comparing with observations, one should
take that into account and exploit numerical simulations to calibrate. As discussed
in Shaw et al. (2012), the realistic expected homogeneous kSZ power spectrum
should lie within the region delimitated by the OV signal (lower bound) and the
full kSZ (upper bound).

6As we have seen, q ≈ vδ, hence 〈qq〉 = 〈vv〉〈δδ〉+ 2〈vδ〉2 + 〈vδvδ〉c
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7.3 Models

In our analysis we compare the kSZ effect in the standard cosmological model,
ΛCDM to that in the f(R) class of modified gravity. As we discuss, the latter
models have an expansion history which is very close to the ΛCDM one, while they
can predict a different cosmic growth history. In our analysis we therefore focus on
the effects of the modified growth.

For our standard gravity scenario, we consider a flat ΛCDM composed of baryonic
matter (with critical density Ωb), pressureless cold DM (Ωc), and a cosmological
constant Λ exerting a negative pressure and dominating the current energy budget
of the Universe (ΩΛ). The power spectrum of the transverse component of the
momentum field ∆2

B(k, z) [Eq. (7.11)], which sources the kSZ signal, is sensitive to
the growth history through the linear growth rate and to the matter power spectrum,
both the linear and nonlinear one. In our analysis, we use f(z) = Ωm(z)γ (Linder,
2005) , where γ ' 0.55 for general relativity, to evaluate the growth rate, while
we make use of CAMB7 (Lewis et al., 2000) to compute the matter power spectrum.
In this way, nonlinearities in PNL

δδ (k) are taken into account via the Halofit
prescription of Smith et al. (2003); Takahashi et al. (2012).

For the case of f(R) gravity (Song et al., 2007a; Bean et al., 2007; Pogosian &
Silvestri, 2008; De Felice & Tsujikawa, 2010), we consider a specific family of models
introduced by Hu and Sawicki in Hu & Sawicki (2007). This represents one of
the viable f(R) families, capable of sourcing the late-time accelerated expansion,
closely mimicking the ΛCDM background cosmology on large scales and evading
solar system tests because of the built-in chameleon mechanism (Hu & Sawicki,
2007; Khoury & Weltman, 2004). The action of the model in the Jordan frame
reads

S = 1
16πG

∫
d4x
√
−g[R + f(R)] + Sm, (7.13)

where f(R) is a generic function of the Ricci scalar

f(R) = −m2 c1(−R/m2)n
c2(−R/m2)n + 1 , (7.14)

and the matter sector is minimally coupled to gravity. Here, c1, c2, and n are free
dimensionless parameters of the theory and m2 is a mass scale. Because of the
higher order derivative nature of the theory, there is a dynamical scalar degree of
freedom fR ≡ df/dR, dubbed the scalaron, that mediates a long-range fifth-force
and is responsible for the modification of structure formation.

7http://cosmologist.info/camb/
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Following Hu & Sawicki (2007), we fix the mass scale to m2 = 8πGρ̄0/3, where
ρ̄0 is the average density of matter today. This effectively corresponds to having
m2/R � 1 for the entire expansion history, allowing an expansion of ((7.14)) in
m2/R, with the scalaron sitting always close to the minimum of the potential,
and the model resembling, at linear order, the ΛCDM one. If we additionally fix
c1/c2 ∼ 6ΩΛ/Ωm, then in first approximation the expansion history mimics closely
that of a ΛCDM universe with a cosmological constant ΩΛ and matter density Ωm.
This leaves us with two free parameters, c1/c

2
2 and n; models with larger n mimic

ΛCDM until later in cosmic time, while models with smaller c1/c
2
2 mimic it more

closely.

In the following we work in terms of n and the present value of the scalaron f 0
R,

which can be related to c1/c
2
2 as (Hu & Sawicki, 2007)

c1

c2
2

= − 1
n

3
(

1 + 4 ΩΛ

Ωm

)n+1

f 0
R. (7.15)

In order to calculate the kSZ power spectrum, we use the publicly available
MGCAMB (Hojjati et al., 2011) and MGHalofit (Zhao, 2014) to compute the growth
rate and the linear and nonlinear matter power spectrum. Following the discussion
above, we approximate the expansion history to the ΛCDM one, and focus on
differences due to a different growth rate of structure. MGCAMB and MGHalofit use
the quasistatic approximation for the dynamics of scalar perturbations, which is
sufficiently good for the choice of parameters that we have made above and for the
range of f 0

R values that we explore (Hojjati et al., 2012). In the following analysis
we consider models with |f 0

R| ∈ [10−6, 10−4] and n = 1.

7.4 Results and Discussion

We now proceed to calculate the kSZ power spectrum for the above models. Before
discussing the final results, let us give an overview of the different quantities that
contribute to ∆2

B (Eq. (7.11)) and how they differ in these models. In particular, we
discuss how the differences in the dynamics of perturbations for f(R) models reflect
in a modified kSZ signal. We also give an overview of other physical phenomena to
which the kSZ is sensitive regardless of the theory of gravity under consideration,
discussing how they can affect our ability to test gravity with kSZ.
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Figure 7.1: Right panel: The linear growth rate f = d log δ/d log a as a function of
scale k and redshift z for the f(R) model with a ΛCDM background expansion with
|f0
R| = 10−4 and n = 1. The characteristic scale dependence of the structure growth

is clearly visible: at a given redshift, different scales are characterized by a different
growth rate. The red dashed line represents the size-distance relation, k = `/x(z), for
` = 3000 while the orange solid line corresponds to the Compton scale kC associated
to the scalaron. Top righ panel: Comparison between matter power spectra in ΛCDM
and f(R) models at redshift z = 0: linear predictions are shown as dashed lines, while
nonlinear ones are shown as solid lines. Nonlinear matter power spectra in ΛCDM are
evaluated using Halofit prescription, while we make use of MGHalofit for the Hu and
Sawicki model (with |f0

R| = 10−4 and n = 1). Bottom right panel: The relative difference
between the nonlinear matter power spectra in f(R) and ΛCDM cosmology.

7.4.1 Growth history

Being a weighted integral of ∆2
B over the redshift, the kSZ power spectrum probes

the cosmic growth history across a wide range of scales and redshifts through
the evolution of matter and velocity perturbations Shaw et al. (2012). In our
analysis of f(R) models, we obtain the linear growth rate f(z, k) using MGCAMB and
following the procedure outlined in Ma & Zhao (2014): first we output the density
contrast as a function of redshift and scale, and then we evaluate its logarithmic
derivative with respect to the scale factor. In the left panel of Fig. (7.1) we show
the growth rate as a function of scale k and redshift z for the Hu and Sawicki
model with |f 0

R| = 10−4: it can be seen that f(R) models enhance the growth of
matter perturbations on scales smaller than their characteristic length scale, i.e.
the scalaron Compton wavelength λ2

C ∼ fRR/(1 + fR). On the contrary, the growth
in ΛCDM depends only on time.

The differences in the growth history show up in the matter power spectrum. In the
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7 Kinetic Sunyaev-Zel’dovich effect in modified gravity

right panel of Fig. (7.1), we plot the present time matter power spectrum, Pδδ(k),
for ΛCDM and the Hu-Sawicki f(R) model with |f 0

R| = 10−4, including both the
linear and nonlinear cases. It can be noticed that the scale-dependent growth of
f(R) produces an enhancement of the power spectrum on smaller scales, with the
effect kicking in at a k proportional to the Compton wave number. The bigger f 0

R,
the smaller the k at which the enhancement kicks in.
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Figure 7.2: Power spectrum of the curl component of the momentum field calculated
for the different gravity model, regimes, and redshifts.

In Fig. (7.2) we plot the momentum power, ∆2
B, in terms of the dimensionless

quantity ∆Bk/H(z) introduced in Zhang et al. (2004); Shaw et al. (2012): dashed
lines represent linear regime calculations (OV effect), while solid lines include
nonlinear corrections to the matter power spectra (full kSZ effect). The plot shows
that as cosmic structure evolves over time, the amplitude of the momentum curl
component power spectra increases: that is equally true for f(R) and ΛCDM.
However, the modifications of the growth of structure in f(R) imprint a different
shape on ∆2

B and enhance its power. Nonlinear density fluctuations become relevant
when ∆Bk/H(z) ≈ 1: as the Universe evolves, density perturbations exceed unity
and they increasingly become important at larger scales (Zhang et al., 2004).

7.4.2 The kSZ signal

We now move on to understand how the differences at the perturbation level
translate into differences in the predicted kSZ angular power spectrum, showing
how kSZ measurements can potentially represent a novel test of gravity.
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Figure 7.3: The homogeneous kinetic Sunyaev-Zel’dovich power spectrum (solid lines)
for standard ΛCDM and Hu and Sawicki models with |f0

R| = {10−5, 10−4} and n = 1 as
a function of multipole `. The dashed lines show the linear predictions, i.e. the OV effect.
The black data band power DkSZ

`=3000 = 2.9± 1.3µK2 (1σ confidence level) is taken from
the South Pole Telescope (SPT) George et al. (2015)). zre = 9.9 is assumed except where
otherwise stated.

In Fig. (7.3) we show the kSZ angular power spectrum as a function of multipole
` in terms of D` ≡ `(`+ 1)CkSZ

` /2π. Full kSZ theory spectra are plotted as solid
lines while OV calculations are shown as dashed lines. We plot results for the
ΛCDM scenario and for two Hu and Sawicki models with |f 0

R| = {10−5, 10−4}. The
comparison between dashed and solid lines for a fixed model provides an estimate
of the impact of nonlinearities in structure formation to the kSZ power spectrum,
as also shown in Shaw et al. (2012); Ma & Zhao (2014). Nonlinear structure boosts
the ΛCDM homogeneous kSZ power by a factor ≈ 2.2 at ` = 3000. On top of
nonlinearities, in f(R) cosmology the scale-dependent growth rate enhances the
power spectrum by ≈ 2.5 (2.4) for |f 0

R| = 10−4 (10−5). The net effect of modifying
gravity is to enlarge the expected kSZ signal: the CkSZ

` amplitude increases as
|f 0
R| becomes larger (i.e. chameleon mechanism is less efficient). Note that the

`-dependence is not dramatically altered. When comparing full kSZ power for
different gravity models, we find CkSZ

` (|f 0
R| = 10−4) is approximately 30% larger

than the ΛCDM values, while CkSZ
` (|f 0

R| = 10−5) is ≈ 11% larger than the ΛCDM
one.
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7.4.3 Fitting formula

As noted in Ma & Zhao (2014), the numerical evaluation of CkSZ
` ’s is computation-

ally expensive and makes the exploration of the parameter space through Markov
chain Monte Carlo (MCMC) rather unfeasible. To this end, we develop a fitting
formula to predict the kSZ angular power spectrum for the Hu-Sawicki f(R) model
with n = 1. We consider the power spectra ratio Cf(R)

` /CΛCDM
` for several values

of |f 0
R| in the representative range [5 × 10−6, 5 × 10−5] and perform a fit via the

following formula

C
f(R)
` (|f 0

R|)
CΛCDM
`

= A
(

`

1000

)B
exp

(
−C `

1000

)
, (7.16)

whereA depends on |f 0
R| through a0+a1 log10(|f 0

R|)+a2 log2
10(|f 0

R|) (same dependence
for B and C). The outcome of this fitting procedure gives:

A(|f 0
R|) = 3.308 + 0.603 log10(|f 0

R|) + 0.034 log2
10(|f 0

R|)
B(|f 0

R|) = −0.261− 0.169 log10(|f 0
R|)− 0.021 log2

10(|f 0
R|)

C(|f 0
R|) = 0.182 + 0.044 log10(|f 0

R|) + 0.002 log2
10(|f 0

R|).
(7.17)

As can be noticed in Fig. (7.4), the above curves are a very good fit. Hence
Eq. ((7.16)) provides an accurate way of modeling the kSZ spectrum in the f(R)

168



7.4 Results and Discussion

models under consideration, allowing one to explore the parameter space in a much
faster way. Let us notice that the fitting parameters in ((7.17)), and possibly the
optimal fitting curve, may change if a different range of values for |f 0

R| is considered.

7.4.4 Caveats et al.

The focus of our study is the impact of modifications of gravity on the kSZ signal.
However, since we aim at determining whether the kSZ can be a useful probe for
modified gravity, in this section we review astrophysical and cosmological effects
that could be degenerate with the main signatures we are after, as well as limitations
of the theoretical modeling.

Reionization redshift
The amplitude of the kSZ power spectrum depends on the redshift zre at which
reionization occurs through Eq. (7.6). If reionization ends at higher redshifts, the
integral which sources the kSZ power picks up more signal, hence it increases. We
find that by fixing zre = 6, CkSZ

`=3000 is decreased by approximately 15% and 11%
with respect to the baseline ΛCDM and Hu and Sawicki (|f 0

R| = 10−4) results.

Helium reionization
So far, we have assumed that helium remains neutral throughout cosmic history
(χ = 0.86), although in a more realistic model helium would be singly ionized
(χ = 0.93) between 3 < z ≤ zre and doubly ionized (χ = 1) for z ≤ 3. The
magnitude of CkSZ

` scales as the square of the ionization fraction (plus integrated
dependence through the optical depth τ), so we expect that helium reionization
would boost the power spectrum.

Applicability of MGHalofit
A fundamental ingredient needed to predict the kSZ power is the matter power
spectrum, especially the nonlinear counterpart: as stated in Sec. (7.3), in our
analysis we make use of Halofit for the ΛCDM case (as done in Shaw et al. (2012);
Ma & Zhao (2014)) and MGHalofit for the f(R) model. The accuracy level of
the fitting formula to calculate the nonlinear matter power spectrum is crucial if
one wants to test gravity with kSZ effect. We recall that MGHalofit works for an
arbitrary |f 0

R| ∈ [10−6, 10−4] below redshift z = 1 (reaching an accuracy of 6% and
12% at k ≤ 1h/Mpc and k ∈ (1, 10]h/Mpc).8 While it is nontrivial to address

8Note that the standard Halofit accuracy is below 5% (k ≤ 1h/Mpc) and 10% (k ∈
(1, 10]h/Mpc) at z ≤ 3 (Takahashi et al., 2012), so that previous analytical ΛCDM cal-
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quantitatively and self consistently this issue, we expect nonlinearities to be less
important at redshift z & 1. In the left panel of Fig. (7.5) we show the differential
contribution to the kSZ power of redshift slices in the range 0 ≤ z ≤ zre at ` = 3000
for the different cases studied in our analysis. The difference between the OV and
kSZ lines (within the same gravity scenario) gives an estimate of the kSZ power
enhancement due to nonlinear evolution: moreover, we can see that in the full kSZ
case, the bulk of the signal is sourced by structure at z . 1 (especially for the f(R)
model). The right panel of Fig. (7.5) shows the differential contribution dDkSZ

` /dz

for the f(R) kSZ case with |f 0
R| = 10−4 at different `’s: as the multipole becomes

larger, the differential redshift distribution peak shifts toward higher z (but always
smaller than 1).

Gastrophysics
Shaw et al. (2012) have shown that the effect of the baryon physics, i.e. cooling
and star formation, is to reduce the gas density in halos, hence hindering the kSZ
power boost due to nonlinear density fluctuations. The authors find a reduction of
CkSZ
` at all angular scales; in particular the power in the CSF model is reduced by
≈ 30% at ` = 3000 with respect to the model without baryon physics. However,
they argue that their radiative simulation suffers from the overcooling problem, so
that the measured kSZ power is likely to be underestimated.

Patchy Reionization
What we have modeled so far is the homogeneous kSZ signal which is sourced in
the postreionization epoch: however, the patchy kSZ contribution should be added
on top of that. The precise patchy kSZ power spectrum amplitude and `-shape
depend at first order on the details of reionization, i.e. its time and duration
(Zahn et al., 2005; McQuinn et al., 2005; Iliev et al., 2006). In particular, the
patchy kSZ signal has a different spectral shape with respect to the homogeneous
one and peaks on multipoles between ` ≈ 2000− 8000, roughly corresponding to
the typical angular size of ionized regions at the reionization redshift (Iliev et al.,
2006). Patchy kSZ can allow us to place constraints on the reionization physics,
details of which are not yet well understood, assuming a good knowledge and
modeling of the homogeneous signal. To this end, 21-cm fluctuation power spectra
and its cross-correlation with the CMB anisotropies can shed light on the details
of reionization and help disentangle between different kSZ contributions (Jelic
et al., 2014). Very recently, Smith & Ferraro (2016) have proposed a new statistic
that is capable to separate the kSZ signal from others small-scale CMB secondary

culations are similarly affected by the precision of the fitting formula for matter nonlinearities.
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anisotropy, and also allow the kSZ signal to be decomposed in redshift bins. The
peculiarity of the method is that it does not rely on external information such as
galaxy catalogues and it is claimed to be able to cleanly isolate the high-z signal
from patchy reionization.
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Figure 7.5: Left panel: the contribution to the kSZ power as function of redshift at
` = 3000 shown for ΛCDM and Hu & Sawicki model with |f0

R| = 10−4 and n = 1. A
comparison between the full kSZ and OV effect is also provided. Right panel: redshift
contribution to kSZ power in the f(R) model for different angular scales. Dashed line
marks z = 1 in both panels.

7.5 Outlook to observations

The kSZ effect was detected observationally for the first time by Hand et al.
(2012), applying the pairwise momentum estimator to data from the Atacama
Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey
(BOSS). Recently some authors have performed an analysis of constraints on dark
energy and modifications to gravity achievable with the mean pairwise velocity of
clusters estimator (Mueller et al., 2015). Other detections using the the pairwise
momentum estimator have been reported by the Planck team exploiting galaxies
from SDSS (Planck Collaboration, 2016c), by the SPT collaboration using galaxies
from DES (Soergel et al., 2016), and by the ACTPol team using the BOSS DR11
sources (De Bernardis et al., 2016).

Here, we focus on measurements of the kSZ angular power spectrum obtained from
CMB surveys. At high multipoles (` & 3000), there are several sources contributing
to the secondary anisotropies of the observed CMB temperature: a number of
Galactic and extragalactic astrophysical foregrounds, such as the cosmic infrared

171



7 Kinetic Sunyaev-Zel’dovich effect in modified gravity

background (CIB), thermal Sunyeav-Zel’dovich (tSZ) and kSZ, radio galaxies,
synchrotron and dust emission.9 Multiband observations are fundamental: the
different frequency scalings of these foregrounds can help in separating out the
primordial CMB contributions. However, the only contribution that is spectrally
degenerate with the primary CMB is the kSZ emission which has a blackbody
spectrum.

To the best of our knowledge, the latest observational constraints on the kSZ power
spectrum were reported in George et al. (2015) from the combination of the 95, 150,
and 220 GHz channel data from the SPT. By jointly fitting the data for the tSZ
and kSZ templates (assuming equal power at ` = 3000 from the homogenous (CSF)
and patchy contributions), it is found that DkSZ

3000 < 5.4µK2 at 95% C.L.; when tSZ
bispectrum information is added, the derived constraint on the kSZ amplitude is
DkSZ

3000 = 2.9 ± 1.3µK2 (this data point is shown in Fig. (7.3)). Comparing with
our findings, Fig. (7.3), we can see that current kSZ measurements would already
have some constraining power. More importantly, we expect kSZ measurements
from the ongoing and upcoming CMB surveys to provide a novel complementary
probe of gravity on cosmological scales. In particular, it will be essential to rely
on arcminute-scale resolution and high sensitivity CMB data since the instrument
capability to detect kSZ signal degrades substantially when enlarging the beam size,
as noted in Calabrese et al. (2014). In the latter paper, the authors investigate the
possibility of using the small-scale polarization information to constrain primordial
cosmology in order to remove the primary CMB from temperature measurements,
hence isolating the kSZ contribution (assuming an efficient foreground cleaning
from multifrequency channels).

Another approach proposed to detect the kSZ signal is to infer the peculiar velocity
field v̂ from the observed galaxy number overdensity10 δg and to stack the CMB
temperature maps at the location of each halo, weighted by the reconstructed
v̂ field. Recent analysis exploiting this technique has been reported in Planck
Collaboration (2016d); Schaan et al. (2016b).

Recently, a different way to detect the kSZ effect based on projected fields have
been proposed by Ferraro et al. (2016) and applied in Hill et al. (2016). The basic
idea of the method is to (Wiener-)filter the foreground-cleaned CMB temperature
maps, square them (to avoid cancellations in the signal), and then cross-correlate
them with galaxy position of an external survey. Specificallty, in Hill et al. (2016)
the authors have used the (foreground-cleaned) CMB temperature maps built from

9The effect of weak gravitational lensing is present (but subdominant) at these angular scales
and it gently smoothes the CMB peaks.

10By solving the linearized continuity equation in redshift space.
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multiband Planck and WMAP data and the WISE galaxies, yielding a 3.8-4.5 σ
kSZ detection. It is worth to notice that this method does not require spectroscopic
redshift estimate for each cluster but allows to exploit the statistical power of
photometric measurements.

7.6 Summary

We have revisited the kSZ effect in the context of modified theories of gravity that
approach the phenomenon of cosmic acceleration. In particular, we have focused
on the class of f(R) models introduced by Hu & Sawicki (2007). We have found
that, as expected, the kSZ effect is particularly sensitive to modifications of the
growth rate of structure offering, in principle, an interesting complementary probe
for modified gravity. Interestingly, we find the kSZ signal to be more sensitive to
modifications of the dynamics of cosmological perturbations than to those of the
expansion history.

As we have discussed in Sec. (7.4.4), there are several assumptions and caveats in
the modeling of the kSZ effect that could hinder its power in constraining modified
theories of gravity. We have given a detailed overview of these, elaborating on
possible ways of overcoming them, also in light of future experiments. Finally,
as this is always the case when the growth rate of structure plays an important
role, we expect a degeneracy between the modifications of the kSZ induced by
f(R) gravity, that we have discussed, and those that would be induced by massive
neutrinos. As part of future work, it would certainly be interesting to explore this
latter aspect, as well as to use N-body simulations to get the full nonlinear velocity
and density power spectra.

Upcoming high resolution CMB surveys will carry out multifrequency observations
in future years (Calabrese et al., 2014), allowing for a reconstruction of the small-
scale temperature power spectrum and providing a unique window on the cosmic
growth history as well as processes of the epoch of reionization. Given the wide
range of modified gravity observational probes and their associated systematics,
cross-correlation methods will prove to be robust and complementary tools to
determine gravity properties and constrain its behavior over cosmic time.
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There ain’t no dark till something shines
I’m bound to leave this dark behind

—Rex’s Blues, Townes Van Zandt

These are exciting times to be a cosmologist and despite the Universe dark sides,
the future of cosmology looks bright. While Planck contributed to consolidate the
standard ΛCDM model, perhaps having the final word on the CMB temperature
anisotropies,11 a lot of work remains to be done in order to address the numerous
questions still open. The next cosmological frontiers include, among the others, the
measurement of the CMB polarization (especially the B-modes) and lensing, as well
as the extensive mapping of the LSS at different wavelengths out to high redshifts.
The large volume of data gathered by the upcoming CMB and LSS surveys will
pose new challenges concerning the best approach to extract cosmological and
astrophysical information, how to construct optimal estimators, and how to combine
(cross-correlate) different probes. In fact, the main motivations behind this thesis
were to move the first steps in this direction.

In this thesis we have studied how to extract cosmological and astrophysical
information from the combination of the CMB and LSS datasets. Specifically,
we have exploited the synergy between the Planck and Herschel satellites and
measured for the first time the cross-correlation signal between the CMB lensing
and the angular positions of the sub-mm galaxies detected in the context of the
H-ATLAS survey residing at z & 1.5 - where the CMB lensing efficiency is at
its best - pushing the analysis to a redshift window higher compared to previous
studies. Despite the small sky fraction (fsky ' 0.013) and the high CMB lensing
reconstruction noise level, our analysis yielded a detection around ≈ 10σ (depending
11Bearing in mind that high-resolution CMB experiments can, and will, say a lot about the small

scales temperature anisotropies induced by secondary effects.
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on the Planck release). This result, validated with a series of null tests and stability
checks, confirms that DSFG are excellent tracers of the matter distribution and are
found to reside in halos of effective masses aroundMH ' 1012.9 at z ' 2, supporting
our understanding of the structure formation process. Combining the CMB lensing-
galaxy density cross-spectrum, Cκg

` , with galaxy clustering measurements, Cgg
` , we

have found a cross-correlation amplitude somewhat higher than expected - at the
2.5-3.5σ level - for the assumed ΛCDM cosmology and galaxy redshift distribution.
This indicates a possible residual contamination, an incorrect modeling of the
signal, or new physics at play. Much effort has been spent also on the astrophysics
side for the characterization of the sources in terms of their redshift distribution,
a sensitive ingredient of the analysis. As a first step towards a full 3D analysis
over the lightcone, we have split the main galaxy samples in two redshift bins and
performed a 2D tomographic analysis, reconstructing the galaxy bias evolution
over cosmic time.

Motivated by the upcoming experimental efforts, we have also examined the
spectral estimation problem in the needlet domain and compared it with the
standard harmonic approach, focusing on the masking-induced biasing effects. Even
though theoretically equivalent, needlets can benefit from their dual localization in
both real and harmonic space and perform better than usual PCL methods. To
overcome limitations encountered in the case of heavy masking, as the case of the
Planck-Herschel cross-correlation, we have developed a novel MASTER-like needlet
technique.

Finally, we have considered the perspective of theory, by looking at modifications
of gravity, but studying manifestations in a different effect, the kSZ. We have
focused on a specific class of f(R) models - the Hu & Sawicki one - and identified
imprints of the modifications to gravity, through in enhancement of the effect
itself with respect to a ΛCDM case. Nevertheless, we also showed how the same
phenomenology could arise fom other effects such as details of reionization, and
impact of gastrophysics in modeling of the signal.

Future prospects
As mentioned in the introduction, cosmology has entered the precision era and the
avalanche of data that will be gathered by the community in the upcoming years
will propel it to accuracy era: this will only be possible by developing suitable
statistical techniques and this thesis walks in this direction. At the time of writing
this thesis, CMB lensing has been detected at a significance of ≈ 40σ in the Planck
data and have become a standard probe in the cosmologist’s toolbox, while the
cross-correlation science is rapidly moving away from the detection regime. As we
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7 Conclusions and future prospects

have have learnt, also from our experience, cosmological and astrophysical datasets
are now increasingly dominated by systematic, rather that statistical uncertainties.

The work presented here can be extended in different ways. The most puzzling
result regarding the cross-correlation analysis is perhaps the observed tension be-
tween the cross- and auto-power spectrum, resulting in an amplitude A > 1, which
should be further investigated. As one of the main limitations of the analysis is the
resolution of the CMB lensing maps, a first step would be to exploit low-noise CMB
datasets to augment the S/N. Due to the partial overlap with the H-ATLAS survey,
the POLARBEAR experiment together the Simons Array, its planned progression,
would represent a major step forward in the cross-correlation analysis, enabling a
more detailed investigation of the signal.
As we have seen, astrophysical modeling is fundamental in order to interpret the
observed signal, meaning that we also need accurate astrophysics if we want correct
cosmology measurements. On the galaxies side, the H-ATLAS survey is complete
but there is room for improvement on the estimation of the galaxies redshift distri-
bution. In this direction, I started developing a SED template fitting tool based
on Bayesian formalism that allows to recover the full photo-z information of the
considered galaxy sample.
At the same time, it is essential to complement these findings with appropriate
simulations, by exploiting accurate CMB maps lensed with ray-tracing techniques
and realistic galaxy mock catalogues based on N-body simulations. The simulative
pipeline will help to optimize cross-correlation estimators, to better understand the
relations between astrophysical processes and cosmology, and to provide insights
on the characterization of future surveys.
Finally, needlet cross-spectrum estimators will be applied to the same set of simu-
lations and above all to real datasets, in preparation of a full-3D analysis.
To conclude, the work presented in this thesis represents an attempt to exploit
observations of the CMB secondary anisotropies and LSS to sharpen our under-
standing of the dark Universe. Much work needs to be done in order to consistently
include cross-correlation measurements in the usual cosmological analysis pipelines
and to understand how to fully exploit their constraining power.
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