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Abstract
This Thesis presents a new method to simulate and study weak gravita-
tional lensing of the Cosmic Microwave Background (CMB) and its cor-
relation with the Large Scale Structure (LSS). We exploit ray-tracing tech-
niques to follow the photons’ path from the last scattering surface, as they
travel throughout a Universe which is expanding and evolving. The main
analysis revolves around the concept of a light-cone, by compressing the
information of N-Body numerical simulations into a set of lensing planes,
which deflect the light as predicted by (weak) gravitational lensing. We
perform several different numerical tests in order to establish the accuracy
of our reconstruction and the precision of our simulations up to the arc-
minute scale, as we explore these effects by the means of the two-points
statistics. The main goal is to model non-linear effects of weak lensing by
going beyond the first-order result of the Born approximation. We com-
pare our simulations with analytical and semi-analytical predictions, as
we study the signal behaviour at different scales and regimes. We confirm
the validity of first order approach up to very small scales (` ≈ 4000 with
the current simulation’s set-up, corresponding to few arc-minutes on the
sky), when we find some tension especially with the signal predicted by
high-order perturbation theory in the power spectrum. Finally, we imple-
ment a methodology for creating mock catalogues of galaxies populating
N-Body simulations, in order to apply our pipeline to model the cross-
correlation between large scale structure traces such as CMB lensing and
galaxy catalogues. We show how the simulated signal can be recovered
and compared with theoretical expectations and observations, enabling
a thorough investigation of structure formation over cosmic time and al-
lowing for a better understanding of cosmology and astrophysics. The re-
sulting, end-to-end pipeline going from simulated CMB and LSS, through
lensing and cross correlation of the distorted anisotropies and the lenses
themselves as traced by galaxies, is part of the suites of codes and valida-
tion infrastructure while approaching high resolution and sensitivity for
CMB and LSS observations, such as the Euclid satellite, or the POLAR-
BEAR ground experiment.
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Introduction

A new dawn has broken, marking the beginning of a new era: the era
of precision cosmology where we can begin to talk with relative certainty
about the origin of structure and the content of matter and energy in the
Universe.

Recent measurements of the Planck satellite [1] has unveiled a Uni-
verse well described by a cosmological model known as ΛCDM. In this
model, the Universe is expanding from the Big Bang, accelerated by a
Dark Energy (DE) component well described by a cosmological constant
Λ. Cold Dark Matter (CDM or simply DM) is responsible for the matter
halos around galaxies and galaxy clusters, while a smaller part is left to
play to leptons and baryons. The robustness of the this model comes pri-
marily from advanced and enduring studies on the Cosmic Microwave
Background (CMB), a radiation emerging from a dark, distant past, where
photons were tightly coupled with matter in the same primordial bath.
At the age of recombination of hydrogen nuclei, suddenly these photons
are let free by a Universe which is expanding and cooling down: matter
perturbations are imprinted and stored via Thomson scattering in this pri-
mordial light, producing anisotropies in the CMB signal both in total in-
tensity (T) and in polarization, described by the Stokes parameters Q and
U. According to ΛCDM, an early era of accelerated expansion, the infla-
tion, would generate the approximately scale invariant, Gaussian, density
perturbations we observe in CMB anisotropies and Large Scale Structure
(LSS), and perhaps, excitations of tensor perturbations in the metric as
well, known as cosmological Gravitational Waves (GWs).

The Planck satellite was able to show these CMB anisotropies over the
whole sky down to a resolution of 5 arc-minutes, confirming theoretical
predictions and expectations of ΛCDM model. A further step in terms of
constraining power on cosmological parameters will be achieved with the
high accuracy measurements of the CMB by current and future high sen-
sitivity ground-based and balloon-borne experiment like, e.g, EBEX [2],
and POLARBEAR [3], SPTpol [4], ACTpol [5], Spider [6] and Keck array
[7]. These are designed to measure in particular the so-called B-modes of
polarization which could provide a direct evidence for primordial GWs
generated in many inflationary scenarios if indeed such signal is detected
on the degree scale.

If the CMB is a picture frozen in time, a snapshot of a distant past,
the Universe itself has changed and evolved up to present day. In addi-
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tion to the primary anisotropies previously described, so-called secondary
anisotropies are imprinted in the CMB radiation by the interaction of its
photons with the LSS of the Universe along their paths from the last scat-
tering surface to the observer. One of the most important sources of these
secondary anisotropies is the gravitational lensing effect: growing and
evolving matter inhomogeneities bend the geodesic path of the light, mod-
ifying the primordial CMB signal’s statistical properties. Lensing distorts
the primordial polarization patterns converting gradient-like E-modes into
curl-like components of the polarization tensor (B-modes), generating power
on the sub-degree scale where we expect the primordial signal to be negli-
gible. This effect, even if theoretically predicted a long time ago, has been
measured only recently by many different probes; the latest Planck release
of 2015 has confirmed the signal with a very high significance.

The interest and scientific case for CMB lensing as a cosmological probe
lies in the possibility of extracting information about the projected large
scale structure potential, and thus to constrain the late-time evolution of
the Universe, e.g. the effect of the DE and massive neutrinos proper-
ties. Nowadays experiments and measurements require a high-resolution,
high-sensitivity reconstruction of the lensing signal. The most valued price
is obviously to model correctly the B-mode of CMB polarization, from the
smaller scales, where the effect of gravitational lensing is at most visible, to
larger scales, where - if a signal is present - is mainly activated by primor-
dial physics at the birth of CMB, i.e. GWs. The most accurate way to obtain
those predictions is to perform ray-tracing of CMB photons through large,
high resolution N-Body numerical simulations to study the full non-linear
and hierarchical growth of cosmic structures. Although this approaches
are computationally very demanding, they allow to check and balance
the approximations and assumptions made in widely-used semi-analytic
models, adjusting and extending these models if necessary.

A further step to probe DE would be to cross correlate the CMB lens-
ing with the observations of the actual lenses in LSS surveys as seen by
independent tracers of the matter distribution. This option has already
been exploited to obtained astrophysical and cosmological information
by, e.g., SPT, ACT and, more recently, by POLARBEAR collaborations
[8, 9, 10, 11, 12], but a major improvement is expected in about a decade
with the observations of the ESA-Euclid satellite. This mission will com-
bine arc-second imaging of billions of galaxies with photometric redshift
accuracy corresponding to the percent level, between redshifts 0 . z . 2
[13, 14]. This Thesis aims at filling a gap in modern cosmology in terms of
support to these ambitious goals, by constructing a methodology, imple-
mentation and validation infrastructure for high resolution and sensitivity
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CMB lensing measurements, per sé and in cross-correlation with LSS.

Outline of the Thesis This Thesis is organised as follows: in the first
Chapter, Chap. 1, we will review some of the main features of our current
cosmological model, carefully focusing on the theory and applications of
weak gravitational lensing, as background for our ray-tracing algorithm.
The next Chapter, Chap. 2, will discuss the other big theoretical pillar of
this work, the CMB. After introducing the formalism of the CMB statis-
tics, we will describe its main cosmological application, and recall some
of the most recent observations. The third and central Chapter, Chap. 3,
will be finally dedicated to our ray-tracing algorithm, to show how it mod-
els lensed CMB fields, both temperature and polarization. This work has
been presented for the first time to the astrophysical community in [15].
In Chapter 4 we will show a further improvement of our algorithm as we
move towards even higher resolutions to study different lensing observ-
ables; this study will be included in a forthcoming paper [16]. Chapter 5
contains the outline of our algorithm for creation of mock catalogues, out
of N-Body simulations. This procedure completes our pipeline for sim-
ulation of CMB-LSS cross-correlation via gravitational lensing, enabling
us to be accurate in forecasting, including systematics and uncertainties
of forthcoming LSS and CMB observations. On this subject, we intend
to publish two different papers: one which will expand and improve the
current XC analysis based on the Planck and Herschel datasets [17] and a
further article concerning the actual simulation pipeline itself [18]. Finally,
in Chapter 6 we discuss our work and present forthcoming applications.
Most of the subjects touched in this Thesis has been developed within the
Euclid collaboration and has been presented at several Euclid Consortium
Meetings thoughout the four years of my Ph.D.
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CHAPTER 1

General Cosmology and
Gravitational Lensing

In every systematic inquiry (methods) where there are
first principles, or causes, or elements, knowledge and
science result from acquiring knowledge of these; [...] It
is clear, then, that in the science of nature as elsewhere,
we should try first to determine questions about the first
principles.[...] Hence it is necessary for us to progress,
following this procedure, from the things that are less clear
by nature, but clearer to us, towards things that are clearer
and better known by nature.

Aristotle, Phys. 184a10-21

As suggested by Aristotle, we start this Thesis from the first principle,
which in cosmology takes the unimaginative name of Cosmological Princi-
ple. It states that “Viewed on a sufficiently large scale, the properties of the
Universe are the same for all observers” (William Keel). Its deep philo-
sophical meaning lies in the fact that the Universe which we can see is a
fair sample of the whole, and that the same physical laws apply through-
out. In essence, this is a relief to all of us observers of nature: the Universe
is knowable and is playing fair with scientists. [19] The cosmological prin-
ciple depends on a definition of “observer”, meaning any observer at any
location in the Universe; in the words of Andrew Liddle, another way to
put it is “the cosmological principle [means that] the Universe looks the
same whoever and wherever you are”.

The hypothesis of a perfectly isotropic and homogeneous Universe, is
corroborated - as the scientific method would require - by observational
evidence if cosmological observations are carried out on sufficiently large
enough volumes. The clearest modern evidence for the cosmological prin-
ciple is measurements of the CMB. Isotropy and homogeneity is reflected
in its random appearance. “Sufficiently” is the key word here: if we re-
strain progressively more and more the observational scale, the Universe
shows an increasing in-homogeneous structure, corresponding to galax-
ies and clusters of galaxies. We think that these structures grew gravi-
tationally from very small “primordial perturbations”. In the inflationary
paradigm, these primordial perturbations were at one stage quantum fluc-
tuations, which were inflated to macroscopic scales. When gravity acted
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on these small perturbations, it made denser regions even more dense, and
under-dense regions even more under dense, resulting in the structures
we see today. Because the fluctuations were thought to be small once, it
makes sense to treat the growth of perturbations in an expanding Universe
in linear theory. There are several excellent reviews of this, for example see
Efstathiouś review in “Physics of the Early Universe” (Davies, Peacock &
Heavens [20]) or “Structure formation in the Universe” (T. Padmanabhan,
[21]).

However complex it may be, this overall picture needs to be verified
by several observations and experiments. In the other half of this chapter,
we will recall the principle of gravitational lensing and its mechanisms, a
superb tool to test and verify the first principles described above. Since
Newton, it had been speculated that masses should deflect light, but only
thanks to Einstein’s General Relativity (GR) we are able to fully describe
this phenomenon. Matter intervening along the light paths of photons
causes a displacement and a distortion of ray bundles. The properties and
the interpretation of this effect depend on the projected mass density inte-
grated along the line of sight and on the distances to the observer, the lens
and the source. The sensitivity to mass density implies that gravitational
lensing effects can probe the mass of deflectors, without regard to their
dynamical stage and the nature of the deflecting matter. This is therefore
a unique tool to probe the matter distribution in gravitational systems as
well as to study the dynamical evolution of structures in the Universe.

This Chapter deals with the basic tools and equipment in cosmology.
The first half, Sec. 1.1 introduces the background metric and content of the
Universe 1.1.1, and describes how, starting from Its initial conditions 1.1.2,
It has evolved throughout Its history 1.1.3. The second half of this Chapter
is dedicated to the weak lensing formalism, Sec. 1.2, focusing on how the
light propagates throughout the matter structure 1.2.1, the main approxi-
mations used in this work 1.2.2 and describing the most important lensing
observables 1.2.3.

1.1. FRW COSMOLOGY

The simplest model for the Universe can be based on the assumption that
the matter distribution is homogeneous and isotropic. This apparent sim-
plistic framework has been proved to be right over the years by many
observations of galaxy surveys and of the CMB itself [22]: 3D space has ge-
ometrical proprieties which are independent of the location (homogeneous)
and are the same in all directions (isotropic). In any Universe that obey to
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these rules, it is possible to choose a comoving coordinate system in which
the metric has the form:

ds2 = −c2dt2 + a2(t)

[
dχ2

1−Kχ2
+ χ2

(
dθ2 + sin2 θdφ2

)]
, (1.1)

called the Robertson-Walker metric (RW) [23, 24]. With a suitable definition
of the units of χ, the curvature constant K may be assumed to have only
three possible values: K = 0 for a spatially flat Universe; K = 1 for a
closed Universe (positive curvature) and K = −1 for an open Universe
(negative curvature). The factor a determines the overall scale of the spa-
tial metric and is a function of time. It represents the cosmic expansion
factor and gives the rate at which two points at fixed comoving coordi-
nates (χ1, θ1, φ1) and (χ2, θ2, φ2) increase their mutual physical distance as
a(t) increases.

The spatial coordinates (χ, θ, φ) are time independent as such depen-
dence is locked into the scale factor but the coordinate a · χ has dimension
of distance. If a(t) grows with time, every observer sees all the other points
in the Universe receding from him, as observed in the Hubble law. The in-
stantaneous distance between us and a galaxy can be written as

r =

∫ χ

0

dr = a(t)

∫ χ

0

dχ√
1−Kχ2

, (1.2)

from which we can define the Hubble constant H(a) as is related to the
scale

H ≡ ȧ

a
. (1.3)

It is customary to describe Hubble constant with the parameter h, as

H0 = 100h km/s/Mpc. (1.4)

Light rays travel along null geodesics, i.e. ds2 = 0. For a radial light ray
we have in addition the angular part dΩ2 = dθ2 + sin2 θdφ2 = 0, so that
Eq. (1.1) can give the relation between comoving radial distance and the
cosmic time t when the photon arriving at the observer at t0 was emitted,
or:

cdt = a(t)dχ, (1.5)

χ =

∫ t0

t

cdt

a(t)
. (1.6)
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Now if we let a source at distance χ emit two photons at t and t + dtem,
which the observer detects at t0 and t0 +dtobs. Employing Eq. (1.6) for both
photons, it follows that dtem = a(t)dtobs, or expressed in frequencies:

νem
νobs

=
1

a(t)
≡ (1 + z), (1.7)

where the redshift z was defined. Note that the redshift z is explicitly
linked to the expansion parameter a as:

(1 + z) =
a(t0)

a(t)
.

Solving the integral on the r.h.s of Eq (1.2) for a different geometry of the
Universe, we can define the comoving angular diameter fK(χ) as:

fK(χ) ≡


1/
√
K sin

(√
Kχ
)
, if K > 0

χ, if K = 0

1/
√
−K sinh

(√
−Kχ

)
, if K < 0

(1.8)

where K is the external curvature of space.
Two important ways of distance determination in cosmology are mea-

suring the apparent length of a standard ruler or the apparent brightness
of a standard candle. While in a Euclidean space both would yield the
same result, they become ambiguous in a RW space-time. For the first
method consider two light rays emitted simultaneously from the edges of
a source with diameter dl, which arrive at the observer enclosing an angle
dθ. The angular diameter distance then is defined as

DA ≡
dl

dθ
= a(t)fK(χ), (1.9)

as can be read off from the metric (1.1). The second method requires
knowledge of the luminosity L of a given source. Assuming that the
source radiates isotropically, its photons have spread out over an area
4πf 2

K(χ) when arriving at the observer, are redshifted by a factor (1 + z)−1

and furthermore have their arrival frequency reduced by the same factor.
The flux measured by the observer is then

F =
L

4π(1 + z)2f 2
K(χ)

. (1.10)

The luminosity distance is defined analogously to Euclidean space as

DL ≡
√

L

4πF
= (1 + z)fK(χ) = (1 + z)2DA. (1.11)
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The RW models defines a distance scale which sets the causality struc-
ture in the Universe called (particle) horizon. This represents the largest
comoving distance from which light could have reached us by now. It is
defined as a function of the so-called conformal time τ

τ =

∫ t

0

dt

a(t)
. (1.12)

Since the Big Bang, photons can have travelled only a finite distance, which
is called the horizon dh. Its physical size at given cosmic time t or scale fac-
tor a can be computed from (1.6):

dh = a(t)

∫ t

0

cdt′

a(t′)
= a

∫ a

0

cda′

a′2H(a′)
. (1.13)

Obviously, regions which are separated by a distance larger than the hori-
zon size cannot be in causal contact. However, this may change at later
times, since the horizon size increases with time.

1.1.1. Friedmann equations

We have not made any a priori hypothesis on the scale factor function, the
metric presented in the previous section is defined for any behaviour of
a(t). We are working in a General Relativity framework, we expect that
the evolution of the Universe space-time can be determined by applying
Einstein field equations of Gravitation to link the scale factor to the energy-
momentum tensor of the Universe. Since a comoving observer sees a per-
fect isotropic Universe, if we decide to model matter and energy as a fluid,
its energy-momentum tensor Tµν necessarily takes the form of a perfect
fluid at rest in comoving coordinates:

Tµν = (ρ+ p)uµuν + pgµν , (1.14)

where ρ and p are functions of time and represent the energy density and
pressure of the fluid, gµν is the metric tensor and uµ is the four-velocity
which in this frame takes the simple form uµ = (−1, 0, 0, 0). ρ and p can be
related by the energy conservation equation,T µν;µ = 0, as

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (1.15)

and their relationship can be inferred when a suitable equation of state
p = p(ρ) couples the two quantities for any matter component present in
the Universe.
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The time dependence can be worked out by solving Einstein equations
for the gravitational field:

Gµν = Rµν −
1

2
gµνR− Λgµν = 8πGTµν ; (1.16)

if the matter of the Universe is that of a perfect fluid described in (1.14),
and the Einstein tensor Gµν is computed for the RW metric, these equa-
tions reduce to the system of two equations:(

ȧ

a

)2

≡ H2 =
8πG

3
ρ+

Λ

3
− K

a2
(1.17)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.18)

which are usually called Friedmann equations, or Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) models after the name of the four scientists who first pro-
posed and investigated these kind of solutions to the Einstein equations
[25, 26, 27]. The equations connect three variables, a(t), ρ(t) and p(t); an
equation of state p = p(ρ) and proper conditions at a given time are needed
for the integration. It is conventional to specify the boundary conditions in
terms of two other parameters directly connected with observations. The
first one is the Hubble constant H0 = (ȧ/a)(at present), which is histori-
cally observed to have the value 100h, km s−1 Mpc−1.Secondly, it is con-
ventional to define the density of different constituents of the Universe in
terms of the critical density ρc,

ρc =
3H2

0

8πG
. (1.19)

The critical density is the value that makes the geometry of the Universe
flat (K = 0 in the FLRW equations). The ratio ρ/ρc is usually denoted by
the symbol Ω. The total density due to all constituents will be taken to
be Ω0ρc. From a heuristic point of view the Friedmann equations can be
seen as the equivalent of the energy conservation principle and the second
law of dynamics for classical mechanics (non relativistic). Adopting the
expression of the FLRW metric two points at distance r = a(t)χ (where χ
is the fixed comoving distance) will move with velocity v = ȧχ = Hd as
predicted by the Hubble’s law.

Content of the Universe
A combination of experimental measures, including studies of the CMB,
LSS, the Type-Ia supernovae magnitude-redshift relation and galaxy clus-
ters, have now placed strong constrains on the parameters of our cosmo-
logical model. Historically, most of the tighter constrains comes from the
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CMB analysis performed over the recent years by different groups and
collaborations. The picture that emerges from the latest data, [28] is one
in which the density of the Universe is shared between dark energy (ΩΛ),
dark matter (Ωdm) and baryonic matter (Ωb) with a Hubble parameter of
67.74 ± 0.46 km/s/Mpc. Densities are usually expressed in terms of the
cosmological density parameter, Ω = ρ/ρcrit. The main constituents of the
Universe and their contribution to Ω are listed in Table 1.1.

Table 1.1 The content of the Universe, adapted from [28]
Component Contribution to Ω

CMB radiation Ωrad ≈ 4.7 10−5

massless neutrinos Ων ' 3 10−5

massive neutrinos Ων ' 6 10−2
(
<mν>

1ev

)
baryons Ωb = 0.0486± 0.0005
(of which stars) Ωs ' (0.0023− 0.0041)
dark matter Ωdm = 0.3089± 0.0062
dark energy ΩΛ = 0.6911± 0.0062

Dark matter makes up most of the matter content of the Universe to-
day. Various dynamical tests, as well as measurements of gravitational
lensing around clusters are converging on a value of Ωdm ∼ 0.3. The abun-
dance of baryons, instead, is now known with reasonable precision from
comparing the abundance of chemical elements predicted by Big Bang the-
ory [29] with observations. Since Ωdm is much larger than Ωb, it follows
that the dark matter cannot be made of baryons, but it is necessarily a non-
baryonic component. The most popular candidate for the dark matter is a
hypothetical elementary particle like those predicted by super-symmetric
theories of particle physics. These particles are generically referred as
Cold Dark Matter or CDM. At the moment of recombination, these par-
ticles are not relativistic, so that their velocities’ dispersion is irrelevant
to the growth of density perturbations. The formation pattern is bottom-
up: smaller substructures collapse earlier and form more extend ones. In
a hot dark matter Universe, instead, particles are hot, with a high veloc-
ity dispersion which prevents the aggregation at lower scales. Hot-dark
matter particles, like massive neutrinos (mν ∼ 5 eV ) foretell a top-down
model, where bigger objects fragment into smaller ones. The latter case is
however not supported by cosmological observations.

A recent addition to the cosmic budget is the dark energy, direct evi-
dence first provided by studies of Type-Ia [30] supernovae of an acceler-
ating Universe expansion. Fig. 1.1 shows an up-to-date recap of distance
measurements using these type of standard candles. The data are plot-
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ted with the ΛCDM best-fit, confirming a wonderful agreement between
theoretical expectations and experimental results. Within the Friedmann
cosmology, the most simple agent that can produce these acceleration is
an Einstein constant being different from 0, in particular consistent with
the value ΩΛ ' 0.7. When all components are added together, the picture
is a flat Universe

Ω = Ωb + Ωdm + ΩΛ ' 1. (1.20)

Given such a cosmological model, the Universe is 13.798 ± 0.037 Gyr old.
Galaxies probably began forming at z ∼ 20 − 50 when the first sufficient
deep dark matter potential wells formed to allow gas to cool and condense
to form galaxies [32, 33]. Generally speaking, the overall model is called
ΛCDM and it has been confirmed by several independent observations.

The cosmological constant was first introduced by Einstein while look-
ing for a solution of Friedmann equations describing a static Universe (
ȧ = 0). The role of the cosmological constant on its own will therefore
cause the Universe to accelerate. The modern point of view on the cos-
mological constant problem goes further than the ad-hoc geometrical hy-
pothesis of Einstein and looks at the cosmological constant as the result
of the minimum energy state being non-zero in Quantum Field Theory
(QFT). Moving the cosmological constant term on the right hand side of
Eq. (1.16) it is clear that the vacuum energy behaves like a perfect fluid
with an equation of state w = −1. Such fluid has a constant energy den-
sity because

ρΛ ∝ a0 =
Λ

8πG
. (1.21)

The energy-density connected to the cosmological constant tends there-
fore to dominate over matter and radiation energy density, which decrease
as the Universe expands. Solutions of the Friedmann equations in pres-
ence of a dominating positive (negative) cosmological constant are called
de Sitter (anti-de Sitter) solutions and require the scale factor to evolve (re-
collapse) exponentially with time

a(t) ∝ eHt, (1.22)

because the Hubble parameter H is constant.
Once the equation of state is specified the Friedmann equations can be

solved for a(t) and ρ(t). Commonly, it takes the form of

p = ωρ, with 0 ≤ ω ≤ 1, (1.23)

where ω = 0 for collision-less non-relativistic matter, ω = 1/3 for radiation
and ω = −1 for the vacuum; when assuming an adiabatic expansion of the
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Figure 1.1 From [31]: measurements of luminosity distance using type-Ia
supernovae in terms of apparent magnitude mcorr (top) and residual from
the best fit cosmological model (bottom) using data from different surveys.
The apparent magnitude is computed asmcorr = mB+α(s−1)−βC, where
mB is the rest-frame peak B band magnitude of an SN, s is the stretch (a
measure of the shape of the SN light-curve), and C is colour measure for
the SN. α and β are nuisance parameters which characterize the stretch-
luminosity and colour-luminosity relationships, reflecting the well-known
broader-brighter and bluer-brighter relationships, respectively. The uncer-
tainties on the cosmological parameter estimations from supernovae mea-
surements are now basically only dominated by systematic errors.
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Universe, we get the expression from Eq. (1.15)

ρa3(1+ω) = const. (1.24)

which links the expansion factor with the type of matter (ω) and Universe
considered. Here some limiting cases:

1. radiation-dominated Universe with an equation of state p = (1/3)ρ; the
evolution of density - thanks to the previous equation with ω = 1/3
- is ρr = ρr0(1 + z)4;

2. matter-dominated Universe with an equation of state p = 0; in this
case density goes as ρm = ρm0(1 + z)3;

3. non-baryonic dust Universe, possibly made of weakly interacting par-
ticles with an equation of state p ≈ 0.

4. non-standard components, concerning the presence of dark energy; if
a cosmological constant is assumed this is equivalent to consider a
fluid with the equation of state p ≈ −ρ.

Once the ratio between density and radiation increases with redshift
we can conclude that at high z the Universe was radiation dominated.
The transition between the radiation-dominated epoch and the matter-
dominated one is called equity (z ≈ 5900). Finally for a more complete
view, we will report here the solution of Friedmann equations for some
particular cosmological models. This is a useful but dated classification,
based on a geometrical description of the Universe’s evolution. Nowdays,
especially with the pletora of dark energy models, geometry cannot deter-
mine alone how the Universe evolves, as the expansion history of a flat
Universe with a small cosmological constant Λ can be mimic by a more
complex scenario where the geometry and the DE content of the Universe
vary and change.

• Einstein-de Sitter Universe (EdS); Ωm = 1, ω = 0, 1/3

(matter dominated) ⇒ a(t) ∝ t
2
3

(radiation dominated) ⇒ a(t) ∝ t
1
2

The expansion factor a grows indefinitely with time; moreover an
Einstein-de Sitter Universe approximates the expansion of flat Uni-
verse in the first epochs when the curvature term in Friedmann equa-
tion is negligible.
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• Open Universe: Ωm < 1.

As in the previous case the expansion factor grows indefinitely with
time. If Ω ∼ 0, then a(t) ∝ t: the expansion is linear with time. This
kind of Universe approximates the expansion of an open Universe
when a(t) is large, so that the density term is small and the decelera-
tion term (ä ' 0) is negligible.

• Closed Universe : Ωm > 1

In this case it is possible to show that, at a certain time, the expansion
factor becomes negative. The solution is therefore symmetric with
respect time and consequently there are two singularities, the Big
Bang and the so-called the Big Crunch.

• de Sitter Universe: p = −ρ.

This situation correspond to the vacuum domination. The expansion
in this case is exponential: a(t) ∝ eHt.

1.1.2. Initial conditions

Galaxies and other cosmic structures are the result of the growth and slow
amplification of small primordial density perturbations by gravity. This
simple idea, even if quite simple and natural, could explain what has pro-
duced those perturbations in the first place. Only in the early 1980s a new
mechanism capable of creating such density perturbations was found: in-
flation. The Big-Bang model with standard energetic content (matter or
radiation) yields a decelerated expansion. On the contrary, inflation pro-
posed a period of accelerated expansion in the very early Universe, typi-
cally ending at an energy of the order 1016 GeV (Grand Unification scale).
During this period the geometry is close to de Sitter meaning that the ex-
pansion is exponential. Initially, it was meant to solve several conceptual
problems that arose with the standard Big-Bang model [34, 35]:

• flatness problem: the spatial curvature is observationally constrained
to be negligible (ΩK � 1) today [28]. However, using Eq. (1.15)
we can prove that ΩK grows with time, thus backward extrapola-
tion yields that spatial curvature becomes vanishingly small as time
rolls back. This necessitates unnatural initial conditions (fine-tuning
problem). Inflation solves this issue by washing out spatial curva-
ture through accelerated expansion, so that ΩK becomes arbitrarily
small at the end of inflation if that period lasted long enough.
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• causal horizon: for a standard energetic content, the particle hori-
zon at recombination (the time when the CMB were last scattered,
see Chap. 2) is small compared to the typical distance between two
points of the last scattering surface. This means that these points did
not have time to communicate. Nevertheless, these points have a
thermal equilibrium emission with extremely close temperature (to
10−5 precision, see e.g. [36, 37]). This again necessitates fine-tuned
initial conditions which are unnatural. Inflation solves this problem,
as the accelerated expansion means that these points were in fact
much closer in a distant past, close enough to be in causal connec-
tion.

• monopole problem: most extensions of the standard model of par-
ticle physics predict the creation in the early Universe of magnetic
monopoles (an elementary particle with the equivalent of an elec-
tric charge but sourcing the magnetic field B instead of E). However
no magnetic monopole has been observed to date in the Universe.
Inflation solves this apparent paradox by completely diluting the
monopole density, so that there may be an arbitrarily small number
of monopoles in the observable Universe.

Inflation can account for the amplification of quantum fluctuations in
the density field to macroscopic scales and become established as genuine
adiabatic ripples in the energy density [38, 39, 40, 41]. The basic idea is that
quantum fluctuations of the inflaton are stretched out by the fast expan-
sion and are frozen when their wavelength becomes larger than the Hub-
ble length c/H . The details are complex and would necessitate a long de-
scription (see e.g. [42]). Nevertheless, one can show that the resulting den-
sity perturbations δρ/ρ (related to the gravitational potential Φ through the
Poisson equation) have a nearly scale-invariant power spectrum :

Pδ(k) ∝ knS (1.25)

with nS ∼ 1. More precisely it would be exactly scale invariant (nS = 1) if
the background evolution was de Sitter, i.e. a(t) ∝ eHt. The deviation to
scale invariance can be linked to this deviation and is a general prediction
of inflation models [38, 35, 40], which yield a spectral index close to, but
smaller than, unity; and indeed Planck has revealed a near scale invariant
spectrum, detecting significantly the deviation to scale invariance (at 68%
C.L Planck CMB alone gives nS = 0.9667 ± 0.0040 [28]. As for the back-
ground, the slow roll parameters govern the magnitude of non-linearity
in the perturbation evolution equations; as the vacuum initial condition
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is Gaussian, it is not surprising that the resulting density perturbation are
Gaussian to leading order. In a general way, for inflation to generate non-
Gaussian primordial perturbations, we need either the initial conditions
to be non-Gaussian or the evolution to be non-linear. The latter possibility
is model dependent [43, 44, 45], and thus motivates the search for primor-
dial non-Gaussianity as it may discriminate inflation models. Indeed these
models are degenerate at the power spectrum level, as they are all built to
reproduce near scale invariance.

1.1.3. Evolution of density perturbations

Primordial fluctuations grow by gravitational instability: the dark mat-
ter components, being no pressured, undergo gravitational collapse and,
as such, these perturbations will grow. The linear theory of cosmological
perturbations is well understood and provides an accurate description of
their early ages. Once the perturbations become non-linear, their evolu-
tion is significantly more complicated, but simple arguments (e.g. spheri-
cal top-hat collapse) provide insight into the basic behaviour. The result is
a network of halos string along walls and filaments forms, creating a cos-
mic web. This web is consistent with measurements of galaxy and quasar
clustering on a wide range of scales.

The type of DM defines how structures evolve. In a CDM scenario,
the relative velocities of particles are not-relativistic, and non-essential to
the perturbation growth. Small density fluctuations - having lower dy-
namical times - are the first to collapse. The picture is a bottom-up model:
bigger structures form by subsequent mergers of smaller ones. At late
times, LSS forms a complex web: at large scales filaments of DM are sep-
arated by large void areas, halos form in these filaments and host clusters
of galaxies. Figure 1.2 illustrates the spatial distribution of dark matter at
the present day, in a series of simulations covering a large range of scales.
The top-left panel illustrates the “Hubble volume simulation”: on these
large scales, the distribution is very smooth. Interesting structures begin
to appear when we look at the DM distribution in a slice from a volume
approximately 2000 times smaller. At this resolution, the characteristic
filamentary appearance of the DM distribution is clearly visible. In the
bottom-right panel we can recognize individual galactic-size halos, as we
zoom again in the box by a factor of 5.7 in volume. These halos prefer-
entially occur along filaments, at whose intersection large halos form that
will host galaxy clusters. Finally, the bottom-left panel zooms into an indi-
vidual galactic-size halo. As we will extensively discuss along this Thesis,
LSS formation and evolution is studied by means of large numerical simu-
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lations, called N-Body, reproducing the action of Gravity in an expanding
environment (see, e.g. for Reviews [46, 47, 48]). As a good comparison,
Fig. 1.3 shows the galaxy distribution as observed by the Sloan Digital Sky
Survey, SDSS1 [49]. Structure growth can roughly be divided into three
regimes. Shortly after the end of inflation, virtually all density fluctua-
tions are larger than the horizon size at that time, and therefore require a
treatment within the framework of General Relativity. However, at these
times, the perturbations are very small, so that linear perturbation theory
is sufficient. As time goes by, more and larger fluctuations enter the hori-
zon, then allowing for a simpler linear Newtonian description. Eventually
small-scale perturbations will enter the non-linear regime, which is diffi-
cult to describe analytically, and therefore usually is studied using N-body
simulations.

Sub-horizon perturbations
A Newtonian approach is valid on sub-Hubble scales (λ < c/H) where
general relativity effects are negligible (see e.g. Weinberg (1972) for a much
more complete discussion [54]). If a single pressure-less fluid dominates
the inhomogeneities, e.g., in matter- or Λ-dominated era, the Poisson equa-
tion, mass conservation and Euler equation take the form:

∇2
phΦ = 4πGρ; (1.26)

∂ρ

∂t

∣∣∣∣
ph

+∇ph (ρv) = 0; (1.27)

ρ
∂v

∂t

∣∣∣∣
ph

+ ρ (v · ∇ph)v = −ρ∇phΦ; (1.28)

where v is the velocity field, Φ is the Newtonian Gravitational potential,
and the subscript ph denotes that derivatives are taken with respect to
physical positions r = a(t)χ, where χ is the comoving position. The physi-
cal and comoving time-derivative are also different, as the time-derivative
is meant to be taken at constant spatial coordinates. The conversion be-
tween physical and comoving derivatives, the latter being noted with a
subscript co, are:

∇ph =
1

a
∇co, (1.29)

∂

∂t

∣∣∣∣
ph

=
∂

∂t

∣∣∣∣
co

−Hχ · ∇co. (1.30)

1http://www.sdss.org/

http://www.sdss.org/
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Figure 1.2 Example of a LSS N-Body Universe. The picture is taken from
[50], denoting 4 different numerical simulations of the DM in the ΛCDM
cosmology. Each panel is a thin slice of the cubical simulation volume
and shows the slightly smoothed density field defined by the number of
DM particles. In particular, denoting the number of particles in each sim-
ulation by Np, the length of the simulation cube (box size) by L, and the
particle mass by mp the characteristics of each panel are as follows. Top-
left (the “Hubble volume simulation”, [51]): Np = 109, L = 3000 h−1Mpc,
mp = 2.2 × 1012 h−1M�. Top-right [52]: Np = 16.8 × 106, L = 250 h−1Mpc,
mp = 6.9 × 1010 h−1M�. Bottom-right [52]: Np = 16.8 × 106, L = 140
h−1Mpc, mp = 1.4 × 1010 h−1M�. Bottom-left [53]: Np = 7 × 106, L = 0.5
h−1Mpc, mp = 6.5× 105 h−1M�.
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Figure 1.3 Example of a LSS observations of the Universe. The picture
shows the galaxy distribution observed by the Sloan Digital Sky Survey
[49]. Galaxies had been first identified on 2D images, then their distances
is measured from their spectrum to create a 3D map where each galaxy is
shown as a single point; the colour bar shows the local density. The galaxy
sample covers an observed volume of about 0.2h−3 Gpc3.
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We will note δm = ρ−ρ̄
ρ̄

the relative perturbation of matter density, compris-
ing baryonic matter and DM, and δv the velocity perturbation. Notice that
the quoted perturbation variables represent a sub-set of the ones obtained
by means of a GR classification cosmological perturbations [55, 56]. In
particular, we consider here only scalar perturbations, and no anisotropic
stress, making the two scalar Gravitational potentials indistinguishable.
In this framework, density fluctuations, their peculiar velocity and the as-
sociated Gravitational potential are sufficient to describe the all processes
we are interested in. We will comment specifically where this might not
be the case in the rest of the Thesis. If we linearise Eqs. (1.28) around the
background solution (ρ = ρ̄(t), v = Hr,Φ = 0), we get in comoving coordi-
nates:

∇2
coΦ = 4πGa2ρ̄δm; (1.31)

∂δm

∂t

∣∣∣∣
co

+
1

a
∇co · δv = 0; (1.32)

∂δv

∂t

∣∣∣∣
co

+Hδv = −1

a
∇coΦ. (1.33)

These equations can be combined to obtain a second-order differential
equation on δm only:

δ̈m + 2Hδ̇m = 4πGρ̄δm (1.34)

where, for simplicity, the comoving time-derivative is noted with an over-
dot. As there are only time derivatives involved, this equation has sepa-
rable solutions, i.e. of the form δm(x, t) = D(t)f(x). Moreover, the differ-
ential equation is of second-order, so there are two independent solutions,
with amplitude fixed by the initial conditions:

δm(x, t) = D+(t)δ+
m(x, ti) +D−(t)δ−m(x, ti). (1.35)

Let us note that the right-hand side of Eq (1.34) can also be written 3
2
H2δm.

Using the Friedmann equations (1.18), we see that the Hubble parameter
H is solution of Eq. (1.34), hence D−(t) = H(t)/H(ti). The other mode can
be searched for in the form D+(t) = H(t)g(t), which leads to a first order
differential equation on g. Hence we find:

D+(t) ∝ H(t)

∫ t

ti

dt

[a(t)H(t)]2
= H

∫ a

ai

da

(aH)3 . (1.36)

During matter domination D+ ∝ a ∝ t2/3 and D− ∝ t−1 , so that the
corresponding solutions are respectively called the growing mode and the
decaying mode.
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Matter perturbations are small, they grow linearly without mixing their
Fourier modes. No extra non-Gaussianity is generated and this stands as
well for the velocity and gravitational potential fields. However, pertur-
bations eventually grow out of the linear regime, and non-linear dynamics
is not solvable analytically. As the non-linear terms in Eq. (1.28) involve
spatial derivatives, the non-linearity affects predominantly small scales.
In the Fourier range, large scales are hence still in the linear regime while
small scales are non-linear. As time goes by, the non-linear range extends
to larger and larger scales. The non-linearity can be tackled perturbatively,
e.g. with Eulerian or Lagrangian perturbation theory (see [57] for a re-
view). The linear approach described previously then gives the first or-
der solution, and the system is solved iteratively order by order. Higher
orders of computation, re-summation of loops contributions etc, enable
the domain of validity to extend to smaller scales. But perturbation the-
ory eventually fails in the fully non-linear regime [58]. In regimes where
non-linearity effects become important, other approximation or hypoth-
esis (spherical collapse, Zeldovich approximation, ...) can be considered.
However, for linear perturbations, it is often sufficient to consider DM as
an ideal fluid with a unique velocity at each point in space. This is a good
approximation if the density fluctuations are small, so that the DM parti-
cles mainly follow the mean flow determined by the large-scale gravita-
tional potential. This approximation breaks down when high density re-
gions form, where particle trajectories cross frequently. Actually, because
of its non-linear character, lack of symmetry and general complexity, the
formation of cosmic structure is best approached theoretically using nu-
merical simulations.

Super-horizon perturbations
If a perturbation is of a size comparable to or larger than the horizon
size, the Newtonian description breaks down and general relativistic ef-
fects have to be taken into account. The basic picture can be obtained
by considering a homogeneous, spherical overdensity. This will obey the
same expansion equation as the background Universe, just with a slightly
different mean density. From the Friedmann Eq. (1.18) it follows for the
background Universe that:

t =

∫ a0

a

da′√
8πG

3
ρa′2 −Kc2

(1.37)

The same can be written down for the perturbation, with ρ → ρ + δρ
and a slightly different scale factor a. Comparing these two cases at the
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same cosmic time and specialising either to matter or radiation dominance
yields a relation between the two scale factors, from which the density con-
trast of the perturbation can be computed. The result is that δ ∝ a2 while
radiation is the dominant species, and δ ∝ a during matter dominance.

These considerations show that there is a characteristic scale in struc-
ture growth, namely the horizon size at matter-radiation equality, corre-
sponding to a length scale of dH(aeq) ≈ 12(Ωmh)−2 Mpc [58, 57].
Fourier analysis of density perturbations
The Fourier transform of the density contrast, δ̃(k, t) is defined as

δ(x, t) =

∫
d3k

(2π)3
eik·xδ̃(k, t). (1.38)

With this, the linear evolution equations (1.33) in Fourier space are

∂δ̃

∂t
+
i

a
ṽ · k = 0, (1.39)

∂ṽ

∂t
+
ȧ

a
ṽ =

−ik
a

Φ̃, (1.40)

−k2Φ̃ =
3H2

0 Ωm

2a
δ̃. (1.41)

where the tilde represents Fourier-transformed quantities. This shows that
in the linear regime, all Fourier modes evolve independently of each other.
This is no longer true when δ approaches unity and higher-order terms in
the series expansion of δ have to be taken into account, causing strong
mode coupling.

For the simple case of purely linear structure growth of sub-horizon
perturbations during the matter dominated area, the growth factor can be
computed easily. The Fourier modes of the density contrast then evolve
according to

δk(z = 0) =
δk(z)

D+(z)
. (1.42)

This is of course an oversimplified description, because the Universe was
not always matter-dominated; moreover the transition from radiation to
matter dominance - thus changing the expansion law of the Universe -
leads to a suppression of small-scale perturbations. Furthermore, the lat-
ter ones can be erased as soon as they enter the horizon due to relativistic
particles streaming out of the shallower potential wells. Depending on the
nature of the DM particles, this effect is more or less pronounced. If it con-
sisted of light particles that are relativistic for quite a long time (Hot Dark
Matter, HDM), only the largest perturbations will survive this so-called
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free streaming. To account for these complications, the transfer function
T (k) is introduced to evolve the density contrast from a redshift z at which
no scale of interest has entered the horizon to present time:

δk(z = 0) =
δk(z)

D+(z)
T (k). (1.43)

The transfer function encodes all effects of linear evolution of fluctuations,
in a GR treatment of cosmological perturbations. It is evaluated above
at present, but of course it can be also expressed at a generic time. This
is actually exploited for computing initial conditions in N-body simula-
tions, as we shall see in the following sections. Usually, the transfer func-
tion is parametrised using the shape parameter Γ ≡ Ωmh, which reflects
the characteristic scale introduced by the horizon size at matter-radiation-
equality; this parametrization, however, neglects the effect of baryons on
small scales (high-k), as it depends on the dark matter contribution only.
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1.2. WEAK GRAVITATIONAL LENSING

In this final part of this Chapter we will define the basics of gravitational
lensing, which are necessary for the discussion in this thesis. For a com-
plete and exhaustive review, see [59, 60].

One of the earliest experimental tests of general relativity was the mea-
surement of the deflection of light in the gravitational field of the sun. It
was found to be consistent with Einstein’s prediction of the deflection an-
gle due to a point mass:

α =
4GM

c2

1

r
, (1.44)

where r is the impact parameter of the light ray. This result can be derived
in the limit of weak gravitational fields (Φ/c2 � 1) and small deflections
of the light ray. In this case, the metric can be written as

ds2 = −
(

1 +
2Φ

c2

)
c2dt2 +

(
1− 2Φ

c2

)(
dx2 + dy2 + dz2

)
. (1.45)

Since ds2 = 0 for a photon, this leads to

dt =

√
1− 2Φ/c2

c2 + 2Φ
dl ≈ 1

c

(
1− 2Φ/c2

)
dl, (1.46)

where the coordinate distance between two points on the light ray dl ≡
dx2 + dy2 + dz2 was defined. This is a relation between coordinate time
interval dt and the line element along the ray. This suggests, in analogy to
standard optics, to define the refractive index

n ≡ 1− 2Φ/c2, (1.47)

so that v/c = 1/n, v being the velocity of light in a specific medium. By
Fermat’s principle, the actual light path is the one that minimises the func-
tional

t =
1

c

∫
n(x)dl. (1.48)

Since deflections along the ray are expected to be relatively weak, we can
choose the z-coordinate to parametrize the light path, so that

t =
1

c

∫
dz n(x)

√(
dx

dz

)2

+

(
dy

dz

)2

+ 1. (1.49)

Varying x(z) with fixed endpoints and requiring the resulting δt to vanish,
one obtains

d

dz

n(x)

((
dx

dz

)2

+

(
dy

dz

)2

+ 1

)−1/2
dx

dz

 =
∂n

∂x

[(
dx

dz

)2

+

(
dy

dz

)2

+ 1

]1/2

.

(1.50)
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Multiplying by dz and integrating from source to observer, the result is[
n(x)

dx

dl

]obs.

source

=

∫ obs.

source

∂n

∂x
dl. (1.51)

If the distance of source and observer to the deflecting mass is large, n = 1
at their positions and

dx

ds

∣∣∣∣
obs.

− dx

ds

∣∣∣∣
source

=

∫ obs.

source

∂n

∂x
dl. (1.52)

The left hand side of this equation is nothing but the 1-component of the
deflection angle α. The same calculation can be performed varying y(z),
yielding a similar expression for the 2-component, such that, finally

α =

∫ obs.

source

∇⊥n(x)dl =
2

c2

∫ obs.

source

∇⊥Φdl. (1.53)

The result for a point mass may be obtained by inserting Φ = GM√
x2+y2+z2

then integrating along the unperturbed ray.
In most lensing applications, the size of the lens is much smaller than

the dimensions of the whole lens system. For example, compare the size
of a typical galaxy (d < 1 Mpc) to the typical distances between source,
lens and observer, which can be of the order of 1 Gpc. Compared to the
use of the full three-dimensional mass density ρ(x) of the lens, it is thus
an excellent approximation to use just a two-dimensional projection Σ(ξ)
of the lensing mass onto a plane perpendicular to the line of sight through
the lens centre. The deflection is then assumed to occur only when the
ray intersects the lens plane. One effect of gravitational lensing is an ap-
parently different position of the lensed object on the sky than would be
observed in absence of lensing. The overall set-up of a lens system and the
relation between source and image coordinates with respect to the optical
axis, defined as the line connecting observer and lens centre, is shown in
Fig. 1.4. From this, by simple geometry one finds the lens equation

η =
Ds

Dd

ξ −Ddsα̂(ξ). (1.54)

Introducing angular coordinates, so that η = Dsβ and ξ = Ddθ, and the
scaled deflection α ≡ Dds

Ds
α̂ the lens equation takes the simple form

β = θ − Dds

Ds

α̂ = θ −α. (1.55)
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Figure 1.4 Geometry of a typical lens system.

Given a fixed source position β, this is a non-linear equation for the im-
age position θ, which under certain circumstances allows more than one
solution, meaning that the source is multiply imaged. Eq. (1.55) defines a
mapping θ → β(θ) from image to source plane, which in the case of mul-
tiple images is not globally invertible. If the images of the lensed object
are small compared to the scales on which the deflection angle changes,
and so the lens properties do not change much across one image, local
information may be obtained by linearising the lens mapping.

1.2.1. Light propagation in an in-homogeneous Universe

The general treatment is given by directly solving Einstein’s equations;
we choose a coordinate system (t, β1, β2, χ) based on physical time t, two
angular coordinates β = (β1, β2), and line-of-sight comoving distance χ.
The space-time metric of the model is then given by a FLRW metric:

ds2 = −c2dt2 + a2(t)
{

dχ2 + f 2
K(χ)

[
dβ2

1 + cos2(β1)dβ2
2

]}
(1.56)

Note that the choice for the angular coordinates β = (β1, β2) differs from
the usual one for spherical coordinates, see Fig. 1.5. The choice will be
more convenient for the small-angle approximation. We can furthermore
assume that the space-time metric of the model is given by a weakly per-
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Figure 1.5 Illustration of the spatial part of the used space-time coordinate
system: a spherical coordinate system (β1, β2, χ) based on two angular co-
ordinates β = (β1, β2) and line-of-sight χ.

turbed FLRW metric:

ds2 = −
(

1 +
2Φ

c2

)
c2dt2+

(
1− 2Φ

c2

)
a2(t)

{
dχ2 + f 2

K(χ)
[
dβ2

1 + cos2(β1)dβ2
2

]}
.

(1.57)
Here, Φ = Φ(t,β, χ) denotes the peculiar gravitational potential. Whereas
the cosmological constant Λ, the curvature K, and the mean matter den-
sity ρ̄m determine the evolution of the scale factor a [via Eq.(1.18)], local
deviations from the mean density determine the peculiar gravitational po-
tential Φ. The potential and the density contrast δm then satisfy the Poisson
equation

∇2
co(β, χ)Φ(t,β, χ) =

4πGρ̄m(t)

a(t)
δm(t,β, χ), (1.58)

where∇2
co(β, χ) denotes the 3D Laplace operator with respect to comoving

coordinates. This operator can also be expressed as

∇2
co(β, χ) =

1

f 2
K(χ)

[
∇2

co,S2(β, χ) +
∂

∂χ
f 2
K(χ)

∂

∂χ

]
, (1.59)

where∇2
co,S2(β, χ) denotes the Laplace-Beltrami operator on the two-sphere

S2. Note that this equation can be made more complicated adding other
terms on the r.h.s to include curvature or other gauge terms. If one restricts
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the discussion to matter in form of a pressure-less fluid of non-relativistic
particles with conserved particle number, then

ρ̄m(t) = ρ̄m =
3H2

0 Ωm

8πG
(1.60)

and hence,

∇2
co(β, χ)Φ(t,β, χ) =

3H2
0 Ωm

2a(t)
δm(t,β, χ). (1.61)

If the previous Equation holds, the potential Φ depends only on the mat-
ter distribution and the scale factor, but not on the cosmological constant
Λ. As a consequence, there is no effect of the cosmological constant Λ on
the light deflection. Only the involved distances along the l.o.s. may be
affected by Λ.

In Einstein’s General Relativity, photon paths are null geodesics of the
space-time metric. Using an affine parameter λ to parametrise the light
path {qµ},

qµ(λ) = (t(λ), β1(λ), β2(λ), χ(λ)) , (1.62)

the null equation reads [54]:

0 =
∑
αβ

gαβ
dqα

dλ

dqβ

dλ
, (1.63)

while the geodesic equation for the light path reads:

d2qµ

dλ2
=
∑
αβ

Γµαβ
dqα

dλ

dqβ

dλ
. (1.64)

Now let us return to discuss the light propagation in an in-homogeneous
Universe. If a light ray reaching the observer at (t0, 0, 0, 0) in the global co-
ordinate system qµ = (t, β1, β2, χ) is never strongly deflected, its direction
(dqµ/dλ) is always almost “radial”. This means that the comoving radial
coordinate χ can be used to parametrise the light-ray. This is equivalent to
the “small deflection angle” approximation (see, e.g., [61]) for light paths
reaching the observer. To be precise, we neglect in the calculation of the
angular coordinates of the light path:

• all terms of second and higher order in the peculiar potential Φ, ac-
counting or the fact that the metric (1.56) is valid only in the weak-
field limit Φ/c2 � 1;
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• all terms of second and higher order in the angular velocities (dβ/dχ),
ignoring complications in the equations of motion for photons due
to non-radial directions, e.g. in presence of a varying gravitational
potential Φ, global curvature K, or time-dependent scale factor a;

• all terms of first and higher order in both the peculiar potential Φ
and angular velocities (dβ/dχ), in this case ignoring photons that
travel not exactly in the radial direction, as there can be a non-zero
χ-component contributing to the deflection of the photon in the an-
gular direction.

The first approximation is justified if the peculiar gravitational field strength
is small. The second and third approximations are justified if the photon
direction has only very small angular components. See [62], for a dis-
cussion of the importance of additional contributions neglected by these
approximations.

The lens equation
Solving the geodesic equation for the assumed metric, one obtains the
following: an observer at space-time point (t0, 0, 0) in a Universe with
a weakly perturbed FLRW metric (1.57) is receiving a photon with in-
cident direction β from a source at redshift z. The position (t,β, χ) of
the source is then found by tracing back the photon along the light path
(t(χ),β(β, χ), χ), where

βi(θ, χ) = θi −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βi (t(χ′),β(θ, χ′), χ′) dχ′. (1.65)

For a given mass distribution ρ(t,β, χ) generating a gravitational poten-
tial Φ(t,β, χ), this equation can be integrated numerically. The relative
position of nearby light rays is quantified by:

Aij(θ, χ) =
∂βi(θ, χ)

∂θj

= δKij −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βiβk (t(χ′),β(θ, χ′), χ′)Akj(θ, χ
′)dχ′.

(1.66)

where δKij is the Kronecker delta. The image distortions of small light
sources can be described by the distortion matrix A(θ, χ) ≡ {Aij(θ, χ)}.
The lens-map can also be written as β = θ+α(θ, χ), such that the (scaled)
deflection angle becomes:

αi(θ, χ) = − 2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βi (t(χ′),β(θ, χ′), χ′) dχ′; (1.67)
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encoding the deviation of the angular photon positions caused by a given
gravitational field Φ. Known source image and position can give a com-
plete information on the lens map and hence the underlying matter distri-
bution. However, often we can infer only positions and shapes of objects
from the data, not the intrinsic source positions, shapes, or sizes. Thus,
for every lens map satisfying the observational constraints on image po-
sitions and shapes, there is a whole family of lens maps that all yield the
same observed images, but for different source positions and shapes. This
is known as mass sheet degeneracy.

1.2.2. Approximations to the lens equation

After having defined the basics of Gravitational Lensing, we will conclude
this Chapter by giving some of the main approximations which are used
for computing the effect in a variety of cases, which we will exploit in the
following.

The first-order approximation
The approximate solution

β1st
i (θ, χ) = θi −

2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,θi (t(χ′),θ, χ′), χ′) dχ′, (1.68)

can obtained by taking the “unperturbed” path (t(χ),θ, χ) as input is called
the first-order approximation to the lens equation. This is also know as the
Born approximation. Using the first-order lens potential

ψ1st(θ, χ) =
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ (t(χ′),θ, χ′), χ′) dχ′, (1.69)

and the (scaled) deflection angle

α1st
i (θ, χ) = −ψ1st,θi (θ, χ); (1.70)

this can be written as:

β1st
i (θ, χ) = θi + α1st

i (θ, χ). (1.71)

The resulting approximation to the distortion reads:

A1st
ij (θ, χ) = δKij −

2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,θiθj (t(χ′),θ, χ′) dχ′

= δKij + Uij(θ, χ),

(1.72)
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where the shear matrix is defined as:

U1st
ij (θ, χ) = −ψ1st,θiθj (θ, χ). (1.73)

The shear matrix U1st, and hence the distortion matrix A1st are manifestly
symmetric, and thus free of non-diagonal terms. Applying the Laplace op-
erator on the 2-sphere∇2

co,S2(β, χ) to the first-order lens potentialψ1st(θ, χ),
while neglecting the second integral (see, e.g., [63], for a discussion) and
using Eq. (1.61), one obtains for the first-order lens potential:

∇2
co,S2ψ

1st(θ, χ) = 2κ1st(θ, χ), (1.74)

where κ1st(θ, χ) denotes the first-order lensing convergence:

κ1st(θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)a(t(χ′))
δm (t(χ′),θ, χ′) dχ′. (1.75)

The lens potential thus satisfies the Poisson equation.

The multiple-lens-plane approximation
A feasible computational scheme to calculate the photon path is based on
a discretization of the lens equation (1.65). We considered an ordered par-
tition of the interval [0, χmax] intoNmax sub-intervals (χmax being the largest
source distance of any interest). Then the lens equation becomes:

βi(θ, χmax) = θi −
2

c2

Nmax∑
k=1

fK(χmax − χ(k))

fK(χ(k))fK(χmax)
ψ(k),βi

(
β(k)(θ)

)
= θi −

2

c2

Nmax∑
k=1

fK(χmax + χ(k))

fK(χ(k))fK(χmax)
α

(k)
i

(
β(k)(θ)

)
,

(1.76)

where
α(k)(β) = −∇βψ(k)(β), (1.77)

ψ(k) =

∫ χ
(k)
U

χ
(k)
L

dχψ(β, χ), (1.78)

β(k)(θ) = β(θ, χ(k)) = θ +
k−1∑
i=1

f
(k,i)
K

f
(k)
K

α(i)(β(i)(θ)), (1.79)

with f
(k)
K = fK(χ(k)) and f

(k,i)
K = fK(χ(k) − χ(i)). The result of the deriva-

tion (1.76) is called multiple-lens-plane approximation. The derivation ex-
ploits the fact that fK(χ) and β(θ, χ) are continuous, slowly varying func-
tions of χ. In contrast, the lens potential ψ(t,β, χ) (unlike the gravita-
tional potential Φ) can vary with χ as rapidly as the matter distribution
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δm(t,β, χ). The lensing potential still obeys the Poisson Equation, with the
(discretised)-convergence

κ(k)(β) =
4πGρ̄m

c2

f
(k)
K

a(k)
Σ(k)(f

(k)
K β), (1.80)

proportional to the comoving surface mass density

Σ(k)(x) =

∫ χ
(k)
U

χ
(k)
L

dχδm(t(χ),x, χ), (1.81)

with the abbreviations t(k) = t(χ(k)) and a(k) = a
(
t(χ(k)

)
, while the sub-

script L and U relate to the lower and upper limit of the discretised in-
terval k, where χ(k) = (χL + χU)/2. Usually - and also in the following
Chapters - we refer as χL being χ(k) − ∆(k)χ/2 or χU ≡ χ(k) + ∆χ(k)/2, if
∆χ(k) is the thickness of the whole k-interval. The multiple-lens-plane ap-
proximation appears as if the continuous matter distribution has been ap-
proximated by a number of thin lens planes located at distances χ(k) from
the observer, and the light deflection by these lens planes is approximated
using the sudden-deflection approximation.

Equation (1.76) is not practical for tracing rays through many lens planes.
An alternative expression is obtained as follows (see, e.g., [64], for a differ-
ent derivation): The angular position β(k) of a light ray on the lens plane k
is related to its positions β(k−2) and β(k−1) on the two previous lens planes
by (see Fig.1.6):

f
(k)
K β(k) = f

(k)
K β(k−2) + f

(k,k−2)
K ε(k−2) + f

(k,k−1)
K α(k−1)(β(k−1)), (1.82)

where

ε(k−2) =
f

(k−1)
K

f
(k−1,k−2)
K

(
β(k−1) − β(k−2)

)
. (1.83)

Hence,

β(k)(θ) =

(
1− f

(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

)
β(k−2)(θ)

+
f

(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

β(k−1)(θ)

+
f

(k,k−1)
K

f
(k)
K

α(k−1)(β(k−1)(θ)).

(1.84)



34

Figure 1.6 From [65]: schematic view of the observer’s backward light cone
in the multiple-lens-plane approximation. A light ray (red line) experi-
ences a deflection when passing through a lens plane (solid blue lines).
The deflection angle α(k−1) of a ray passing through the lens plane at dis-
tance f (k−1)

K from the observer is obtained from the matter distribution be-
tween f (k−1)

K,L and f
(k−1)
K,U projected onto the plane. Using this deflection an-

gle and the ray’s angular positions β(k−1) and β(k−2) on the two previous
planes, the angular position β(k) on the current plane can be computed.

For a light ray reaching the observer from angular position β on the first
lens plane, one can compute its angular position on the other lens planes
by iterating (1.84) with initial values β(0) = β(1) = θ. Differentiating (1.84)
with respect to θ, one obtains a recurrence relation for the distortion matrix

A
(k)
ij (θ) =

(
1− f

(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

)
A

(k−2)
ij (θ)

+
f

(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

A
(k−1)
ij (θ)

+
f

(k,k−1)
K

f
(k)
K

U
(k−1)
im (β(k−1)(θ))A

(k−1)
mj (θ),

(1.85)

with

U
(k)
ij (β) =

∂2ψ(k)(β)

∂βi∂βj
. (1.86)

Unlike in the first-order lensing approximation, the distortion matrix (1.85)
is not symmetric in general. For the reduced distortion matrix U(k) =



35

A(k) − 1, the recurrence relation reads:

U
(k)
ij (θ) =

(
1− f

(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

)
U

(k−2)
ij (θ)

+
f

(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

U
(k−1)
ij (θ)

+
f

(k,k−1)
K

f
(k)
K

U
(k−1)
im (β(k−1)(θ))

[
U

(k−1)
mj (θ) + δKmj

]
.

(1.87)

1.2.3. Standard decomposition of the distortion field

The position of the light ray with respect to the global coordinate system
is given by the lens equation (1.65), the relative position of nearby light
rays is quantified by the distortion matrix (1.66). The distortion matrix is
usually decomposed into a rotation matrix and a symmetric matrix:

A(θ, χ) =

(
cosω − sinω
sinω cosω

)(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.88)

The decomposition defines the rotation angle ω = ω(θ, χ), the convergence
κ = κ(θ, χ), and the two components γ1 = γ1(θ, χ) and γ2 = γ2(θ, χ)
of the shear, which may be combined into the complex shear γ = γ1 +
iγ2. The (signed) magnification µ(θ, χ) of an image is given by the inverse
determinant of the distortion matrix:

µ = (detA)−1 . (1.89)

The reduced shear g = γ/(1− κ) determines the major-to-minor axis ratio

r =

∣∣∣∣1 + |g|
1− |g|

∣∣∣∣ (1.90)

of the elliptical images of sufficiently small circular sources. The determi-
nant and trace of the distortion matrix,

detA = A11A22 − A12A21, (1.91)
trA = A11 + A22, resp. (1.92)

may be used to categorise images [66].
The convergence defines at first order the magnification of the inten-

sity of a source. It causes an isotropic focusing of light rays, leading to
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an isotropic magnification of a source, i.e., the source is mapped onto an
image with the same shape but larger size. The γ shear parameter defines
how the background signal is distorted by lensing and the parameter ω
how this image is rotated. The distortion α (referred to as field rotation)
is purely a gradient term this is zero at lowest order and represents the
eventual curl component of the displacement vector [67]. The curl compo-
nent however appears naturally if the light is deflected by several sources
at the same time even if ω = 0 for each of the lenses separately. The power
spectrum of this kind field rotation is expected to be a sub-percent cor-
rection in the convergence power spectrum on all scales and is smaller
than the uncertainties on the contribution of the non linear effect on the
lensing potential. A curl component can also be generated by first order
effect of lensing due to gravitational waves, cosmic strings collisions or
residual vector perturbation in the universe [68, 69, 70] although they are
expected to be sub-dominant with respect to the standard gradient term
arising from density perturbations.

Magnification, convergence, shear, etc. can be calculated by:

µ = (detA)−1 = (A11A22 − A12A21)−1, (1.93)

ω = − arctan
A12 − A21

A11 + A22

, (1.94)

κ = 1− A11 + A22

2 cosω
= 1− 1

2
(A11 + A22) secω, (1.95)

γ1 = −1

2
[(A11 − A22) cosω + (A12 + A21) sinω] , (1.96)

γ2 = −1

2
[(A12 + A21) cosω + (A22 − A11) sinω] . (1.97)

(1.98)

Using some algebra, one can express the modulus square of the reduced
shear by:

|g|2 = 1− 4
A11A22 − A12A21

(A11 + A22)2 + (A12 − A21)2 =
(A11 − A22)2 + (A12 + A21)2

(A11 + A22)2 + (A12 − A21)2 .

(1.99)
If one considers only weak lensing, one can expect κ, γ1, γ2, and ω to be
small compared to unity. Then, one can expand the distortion matrix (1.88)
up to linear order in these quantities:

A(θ, χ) =

(
1− κ− γ1 −γ2 − ω
−γ2 + ω 1− κ+ γ1

)
(1.100)

One can use this decomposition even in the case when κ, γ1, γ2, and ω
are not small, but then the relations between the quantities defined by
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the decomposition (1.100) and the lensing observables become quite com-
plicated. However, the decomposition (1.100) is easier to use in certain
calculations than the decomposition (1.88). In the case of weak rotation,
magnification, convergence, etc. can be calculated by:

µ = (detA)−1 = (A11A22 − A12A21)−1, (1.101)

ω = −1

2
(A12 − A21) , (1.102)

κ = 1− 1

2
(A11 + A22), (1.103)

γ1 = −1

2
(A11 − A22), (1.104)

γ2 = −1

2
(A12 + A21), (1.105)

|g|2 =
(A11 − A22)2 + (A12 + A21)2

(A11 + A22)2 . (1.106)

Using the reduced distortion matrix

U = A− 1 =

(
∂α

∂β

)
=

(
−κ− γ1 −γ2 − ω
−γ2 + ω −κ+ γ1

)
, (1.107)

one obtains:

µ = (det1 + U)−1 = (U11U22 − U12U21 + U11 + U22 + 1)−1, (1.108)

ω = −1

2
(U12 − U21) , (1.109)

κ = −1

2
(U11 + U22), (1.110)

γ1 = −1

2
(U11 − U22), (1.111)

γ2 = −1

2
(U12 + U21), (1.112)

|g|2 =
(U11 − U22)2 + (U12 + U21)2

(U11 + U22 + 2)2 . (1.113)
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CHAPTER 2

Primary anisotropies and
gravitational lensing of the

Cosmic Microwave Background

Cosmology is a science which has only a few observable
facts to work with.

Robert W. Wilson, Nobel Lectures

The CMB is the remaining light from the first instants of the Universe,
emerging from a time where photon and electron are melt together in a
hot, opaque, ionised and dense plasma. As the Universe expands and
cools down, the temperature drops below T ≈ 3000K, even the photons
at high energy are not anymore sufficient to keep the hydrogen ionized
and thus electrons and protons starts recombining. This period in the his-
tory of the Universe is called recombination. As a consequence, the major
source of opacity in the primordial plasma disappears, the mean free path
of photons increases and the Universe becomes transparent to radiation.
The light could then propagate freely, photons coming from this epoch
represent therefore the most distant signal we can observe.

The first CMB detection was made by Penzias and Wilson in 1965, who
found an excess of antenna temperature of 3K uniformly distributed on
the sky. However, only in the early nineties the FIRAS instrument on
COBE satellite [36] was able to measure its spectrum with great accuracy.
As the photons were tightly coupled to the matter before being release,
they have a black body spectrum distribution with a today temperature
of TCMB = 2.7260 ± 0.0013K, measured with incredible precision by [71],
as shown in Fig. 2.1. The frequency peak is at ν = 160 GHz that is to say
photons belong to the microwave domain. Moreover, this light appears
to be isotropic in the sky once we have removed the so-called dipole due
to the motion of the Sun in the CMB photon bath. COBE confirmed for
the first time that the Universe at the time of recombination was indeed
constituted of a photon baryon plasma in thermodynamic equilibrium, as
theoretical predicted in the hot Big Bang cosmological model.

In this Chapter we will investigate in details the nature of the CMB
radiation, in particular the anisotropies found in the signal, signpost of

39
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Figure 2.1 The black body spectrum of the CMB measured by the FIRAS
instrument of COBE satellite [72].
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the matter perturbation described in the previous Chapter. The first Sec-
tion 2.1 is dedicated to a mathematical and physical description of CMB
primary anisotropies, and their relation to the matter perturbation (Sec. 2.1.1).
We will review as well the polarization signal coming out the CMB (Sec. 2.1.2).
The second part of the Chapter treats secondary anisotropies in the CMB
signal, in particular the effect of gravitational lensing as already described
in the previous Chapter, Sec. 2.2. Weak lensing effects on the temperature
(Sec. 2.2.1) as well as on polarization fields (Sec. 2.2.2) carry huge cosmo-
logical implications, as discussed in Sec. 2.2.3. The final part recalls the
opening quote of this Chapter, as we discussed the main observational
successes in the CMB physics (Sec. 2.3), their application to cosmology
(Sec. 2.3.1) and their interaction with other astronomical observations, as
cross-correlation (XC) studies (Sec. 2.3.2).

2.1. CMB PRIMARY ANISOTROPIES

At first, the CMB appears to be roughly homogeneous over the whole sky.
The COBE satellite however revealed the presence of tiny fluctuations of
the CMB temperature. These fluctuations are known to have an amplitude
of:

∆T

TCMB

= 10−5. (2.1)

Their spatial correlations give a prodigious amount of information on the
Universe history either on its primordial or in its late time state. Figure 2.2
displays a full-sky projection of the latest CMB temperature fluctuations
map as released in 2015 by the Planck Collaboration [73]. These fluctua-
tions are due entirely to the physics of the early Universe. Before the re-
combination era, baryons, electrons and photons were tightly coupled to-
gether through Thomson and Coulomb scattering, i.e., the scattering rate
between them was much larger than the expansion rate set by the Hub-
ble time scale. For this reason, the primordial plasma can be considered
as a single photon-baryon fluid. Dark matter inhomogeneities do not in-
teract directly with photons, but they affect the gravitational structure of
the system, thus changing the evolution of the photon-baryon fluid. Those
perturbations grow though the effect of gravity and influence the distribu-
tion of baryons. After the recombination, photons decouple from matter,
and basically travel “freely” towards us.

The basic observable of CMB is its intensity as a function of frequency
and direction n̂ = (θ, φ) in the sky. Since the CMB spectrum is a black-
body with a nearly constant temperature across the sky, we can describe
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Figure 2.2 Mollweide projection of the CMB temperature fluctuations,
Planck Collaboration 2015 [73].

its intensity simply in terms of temperature fluctuations,

Θ(n̂) =
∆T

T
(n̂). (2.2)

Instead of handling the large temperature fluctuations map, we can take
advantage of the fact that the CMB signal is distributed and well-defined
over the whole sky. Therefore, we can safely use a set of orthonormal
functions to describe its projection over the sphere: the spherical harmon-
ics. The CMB temperature anisotropies are usually decomposed on the
spherical harmonics as:

Θ`m =

∫
dn̂Y ∗`m(n̂)Θ(n̂). (2.3)

The temperature can indeed be expanded in modes on the sphere with the
multipoles ` - analogue to the Fourier wavenumber |k| - the inverse of the
scale between two points on the sky and m the orientation on the sphere.
Small values therefore correspond to large angular scales on the celestial
sphere.

The coefficients of this decomposition contain all the information on
the amplitude of the fluctuations for a given scale, and therefore on the
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state of the scalar and tensor perturbations at the time of the last scatter-
ing surface. To extract as much information as possible, we can deal with
their statistics. If we assume that fluctuations in CMB are Gaussian, as the
density fluctuations produced during inflation, the multipole moments of
the temperature field are characterised completely by their power spec-
trum (or the Fourier transform of the 2-point correlation function in real
space),

〈Θ`mΘ∗`′m′〉 = δK``′δ
K
mm′C`. (2.4)

Since for an angular scale on the sky θ = 2π/` , large multipoles corre-
spond to small angular scales and ` ∼ 200 represents a degree scale sep-
aration. A peculiar feature arises from this definition: as we only have
access to one observable Universe, we only do have a finite amount of in-
formation to sample the a`m distribution. In fact, the power spectrum rep-
resents the average power at a given multipole ` an observer would see
in an ensemble of several universes; however, a real observer is limited to
the observation of one Universe and one sky with only one set of Θ`m, thus
2` + 1 harmonics for each `. The fact that there are only 2` + 1 m-samples
of the power in each multipole moment leads to a sample variance on the
power spectra equals to

∆C` =

√
2

(2`+ 1)fsky

C`. (2.5)

This inherent uncertainty on the observed angular power spectrum is called
the cosmic variance. For a given `, there are indeed 2` + 1 independent
modes, so that the cosmic variance is larger at low `. In the above formula
we also inserted the fraction of the observed sky fsky to show that if only a
part of the sky is limited, then the number of accessible modes (or number
of degrees of freedom) decreases, as angular scales larger than the size of
the observed sky patch are not accessible. In general, leaving aside con-
tamination of external sources and instrumental issues, the determination
of low multipoles of the spectra is intrinsically affected by a great uncer-
tainty while, even at relatively intermediate multipoles, measurements of
the power spectra are statistically more accurate.

2.1.1. The Boltzmann equation and the photon distribution

The evolution of an in-homogeneous black-body photons-distribution in
time is described by a a Boltzmann equation in an expanding background;
in particular, the Boltzmann equation describes the evolution of a phase
space distribution f = f(x,p) of a system due to the effects of specifics
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forcing effects which can be incorporated in a functional C of the phase
space distribution itself:

df

dt
= C[f ]. (2.6)

Since the distribution of the CMB photons has been shown to be extremely
isotropic, we can adopt a perturbative approach an express the phase space
distribution in terms of the temperature anisotropies Θ,

f(x,p, t) =

[
exp

(
p

kT (t) [1 + Θ(x, p̂, t)]

)
− 1

]
, (2.7)

where Θ does not depend directly on the absolute value of the momenta
p, as in Compton scatter the energy photon momentum variation is small
at this energy condition. Collisions of electrons with photons affect the
electrons distribution, since the scattering rate depends on the inverse of
the mass of the particles. Therefore, the collision term can be computed
from first principles using Feynman rules and is given by [74, 55]

C[f(p)] = −p∂f
0

∂p
neσT [Θ0 −Θ(p̂) + p̂ · vb] , (2.8)

where σT is the Thompson cross section. Θ0 is the monopole part of the
perturbation which represents the deviation of the monopole (or CMB
temperature) at a given point of space from its average on all the Universe,

Θ0 = Θ0(x, t) ≡ 1

4π

∫
dΩΘ(p̂,x, t), (2.9)

and f 0 means the photon distribution (2.7) at the zero-th order in Θ. The
general multipole of the perturbation distribution is defined in terms of a
multipole expansion of the distribution on Legendre polynomials P`,

Θ` =
i`

4π

∫ 1

−1

dΩP`(x)Θ(x). (2.10)

The f 0 distribution can be derived as a series expansion of Eq. (2.7) and
represent the equilibrium distribution of the solution of the Boltzmann
equation when the thermodynamic equilibrium is reached , i.e. in pres-
ence of no collision (C = 0). The collision term shows how the effect of
Compton scattering on the photon distribution is to drive the perturba-
tion Θ towards its monopole value, washing out all the other multipole
moments of the distribution. However the presence of the bulk velocity
of the electrons and protons, vb, adds a dipolar term to the photon distri-
bution by the effect of gravitational interactions. In the case for a perfect
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fluid, the photons distribution is therefore characterised by a dipole and a
monopole terms thanks to a very efficient Compton scattering.

Acoustic oscillations
Coulomb scattering forces electron and protons to maintain charge neu-
trality, leading their overdensities to a common value and the velocities of
the two species to be the same:

δe = δp ≡ δb, (2.11)
ve = vp ≡ vb. (2.12)

In the Newtonian gauge, the Boltzmann equation reduces to a set of linear
differential equation coupling the photons distribution to the gravitational
field and curvature perturbation, together with the bulk velocity of the
photon baryon fluid. In this context it is convenient to solve the Boltzmann
equation in the harmonic domain, as the different Fourier modes couple
when non linear effects become important, which is not the case at that
epoch. For the baryons the Boltzmann equation reads:

˙̃δb + ikṽb + 3 ˙̃Φ = 0, (2.13)

˙̃vb +
ȧ

a
ṽb + ikΨ̃ =

τ̇

R

[
3iΘ̃1 + ṽb

]
, (2.14)

where time derivatives from now on are taken with respect to the confor-
mal time. Note that in this case we report the full derivation, as we include
as well the scalar potential Ψ to be distinguished from the standard grav-
itational potential Φ in general conditions in which viscosity exists (like
the non-negligible one caused by neutrinos at last scattering) giving rise
to an anisotropic stress. In the previous equation we can define the opti-
cal depth given by the electron density in the plasma at a given conformal
time as

τ(χ) ≡
∫ χ0

χ

dχ′neσTa, (2.15)

and the ratio between photon and baryon density as

1

R
≡ 4ργ

3ρb
. (2.16)

Defining µ as the angle between the photon direction and the wave vector,
the Boltzmann equation for photons in the Fourier domain reads

˙̃Θ + ikµΘ̃ + ikΨ̃ = −τ̇
[
Θ̃0 − Θ̃ + µṽb

]
. (2.17)
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For a tightly coupled photon-baryon fluid, the Boltzmann equation for
photons can be solved in terms of a multipole expansion, turning then the
differential equation (2.17) into a virtually infinite set of coupled equations
for multipole moments Θ̃`. This is particularly convenient since multipole
moments higher than the dipole are suppressed by a factor τ and start
being somehow important only close to recombination. Expanding the
monopole and dipole and neglecting all the second order terms damped
by the optical depth, the monopole of the photon distribution evolves in
the following way:

c2
s

d

dχ

(
c−2
s

˙̃Θ
)

+ c2
sk

2Θ̃ = −k
2

3
Ψ̃− c2

sc
2
s

d

dχ

(
c−2
s

˙̃Φ
)
, (2.18)

where the sound speed cs = 1/
√

3(1 +R) is reduced by the presence of
the baryons mass with respect to a standard perfect relativistic fluid of
photons, where cs = 1/

√
3. Dropping the tilde for the Fourier mode for

sake of simplicity, we can recast the previous Equation as

d2

dχ2
[Θ0 + Φ] +

Ṙ

1 +R

d

dχ
[Θ0 + Φ] + k2c2

s [Θ0 + Φ] =
k2

3

[
1

1 +R
Φ−Ψ

]
,

(2.19)
which is the equation of a damped harmonic oscillator with a forcing term.
A further simplification can be obtained if we set to zero Ψ and Φ, thus ne-
glecting the damping term and curvature and gravitational perturbation;
each different mode, as soon as its wavelength is smaller than the causal
horizon, propagates as an acoustic oscillation. Pressure gradients due to
photons behave like a restoring force to any initial perturbation in the sys-
tem, which oscillates at the speed of sound cs, and the photon baryon fluid
heats and cools as it is compressed and rarefied by the sound waves. The
main effect of gravity is to make oscillation as a competition between a
pressure gradient kΘ0 and potential gradients kΨ with an equilibrium po-
sition when the quantity Θ0 + Ψ, which can be seen as an effective temper-
ature, is equal to zero. Acoustic oscillations arise therefore from the infall
and compression of the fluid into gravitational potential wells generated
by dark matter, which keep growing since dark matter does not interact
with photons, and by the restoring opposition due to photon pressure.
The system keeps oscillating with peaks and throats until recombination
comes; then photons start to free streaming towards us, oscillations in the
photons distribution are frozen as they were at the last scattering surface.
Modes which have their maxima or minima of oscillation at the moment
of recombination correspond to peaks in the power spectrum. The first
peak represents a mode caught in its first compression by recombination
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and the second one represents a mode who went through a full cycle of
compression and rarefaction at recombination (i.e., was at his minimum
at that time). On the contrary, wavemodes with a wavenumber greater
than the wavenumber corresponding to the sound horizon size at recom-
bination (k∗ = π/s∗, with s∗ is the distance sound has travelled inside the
horizon at recombination) never underwent to the acoustic cycle therefore
are kept equal to their initial condition.

Oscillations damping
The photon baryon fluid in reality is not a perfect fluid and viscosity and
heat conduction give rise to a process of diffusion inside the plasma re-
sulting in an overall decrease of the amplitude of the peaks of acoustic
waves as a function of time. The heat conduction is generated once elec-
trons start recombining with protons and the photons mean-free path for
Compton process gradually increases. Photons can therefore stream away
from the over-dense hot regions towards the under-dense (cool) ones eras-
ing fluctuations smaller (or comparable) with the mean free path of the
electrons in the plasma, which is, at most, equal to the depth of Last Scat-
tering Surface. Viscosity effects, conversely, are coupled to the production
of a quadrupole moment in the photon temperature distribution which
becomes important towards recombination. The final oscillator equation
[75, 76, 77] is then

c2
s

d

dχ

(
c−2
s Θ̇

)
+
k2c2

s

τ̇
[Ah + Aν ] Θ̇0 +c2

sk
2Θ0 = −k

2

3
Ψ−c2

s

d

dχ

(
c−2
s Φ̇

)
, (2.20)

where Ah, Aν are the heat conduction and viscosity coefficient,

Ah =
R2

1 +R
Aν =

8

9
. (2.21)

We expect then that inhomogeneities are damped by and exponential fac-
tor of order e−(k/kD)2 where the damping scale is approximately of the or-
der

√
τ̇ /χ, corresponding to the geometric mean of the mean free path and

the horizon. A detailed numerical resolution of the solution of Eq. (2.20)
shows that the peaks beyond the third one are substantially suppressed by
diffusive effects. Intuitively, as diffusion length ultimately depends on the
comoving mean free path, which is in turn controlled by the free electron
density (λC ∝

√
χenb), the damping scale can be used to prove the baryon

content of the Universe. The effect approximately scales as (Ωbh
2)−1/4.

Projecting anisotropies on the present sky
Once we have determined the evolution of a Fourier mode till the last
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scattering surface, we then have to propagate the signal until the present
epoch. This involves a projection from an Euclidean flat space where
Fourier modes are defined onto the sky where observation are carried out
(i.e., a 2D-sphere). This requires the evaluation of the source functions,
i.e., the evaluation of all the multipole moments of the photon distribu-
tion today as a function of monopole, dipole and eventually quadrupole
at the time of recombination. This is nowadays at the basis of current im-
plementation of numerical solvers of cosmological Boltzmann equations
[78]:

Θ`(k, χ0) ' [Θ0(k, χ∗) + Ψ(k, χ∗)] j`(kχ∗) + 3Θ1(k, χ∗)j
′
`(kf∗)

+

∫ χ0

χ∗

dχe−τ
[
Ψ̇− Φ̇

]
j`(kfK(χ)),

(2.22)

where j` are the spherical Bessel functions, f∗ = fK(χ∗) is the angular
diameter distance to the last scattering surface χ∗ and fK(χ) the angular
diameter distance between us and an observer situated at χ. Eq. (2.22)
shows that the fluctuations of the CMB temperature, while travelling to-
wards us, can be affected by the evolution of the gravitational potential in
time (represented by the third terms of the equation, which is referred to
as Sachs-Wolfe effect [79], and Doppler effects due to the baryon peculiar
velocity along the line of sight (see Eq. (2.14)). Today’s anisotropies can be
interpreted as the result of intrinsic temperature fluctuation Θ0, modified
by the gravitational redshifting effect of the potential Ψ and the Doppler
shift from scattering off moving matter. The final integrated Sachs-Wolfe
term involves the integral of the time derivatives of Ψ and Φ meaning that
for a deeper potential well in time, photons receive a net blueshift in cross-
ing it and the CMB appears hotter.

Once the multipoles of the distribution are known, we can finally com-
pute the expected angular power spectrum of the CMB temperature anisotropies
as a simple projection:

CΘΘ
` =

2

π

∫
dkk2Θ2

`(k, χ0). (2.23)

2.1.2. CMB Polarization

Like the reflection off a surface, the Thomson scattering can generate a lin-
ear polarization in the scattered radiation: we should expect the CMB to be
polarized. Nevertheless, in the primordial Universe made of the plasma,
the light is coming from every direction before reaching the scattering elec-
tron: Thomson scattering of an isotropic light beam on an electron would
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Figure 2.3 Transmitted intensity after scattering of photons presenting a
quadrupolar anisotropy on a free electron. On the left panel, two incident
perpendicular light beams with different intensity and the resulting inten-
sity are depicted as projected on the plane orthogonal to the line of sight.
The right panel displays the same scheme in pseudo-perspective. Picture
taken from [80].

not select a specific polarization direction, leaving the net outgoing radia-
tion unplaced. In order to observe a net polarization of the CMB light, it
is necessary for the incoming light to be anisotropic for the scattering elec-
tron. As we can see from Figure 2.3 in order to produce a net polarized
radiation, the incoming radiation must have a nonzero quadrupole. Since
Thomson scattering produces polarization only when the incident field
has a quadrupole moment, we expect the eventual polarization from the
decoupling epoch to be smaller than the intensity anisotropies, as before
recombination the coupling regime substantially suppressed multipoles
higher than the dipole. The quadrupolar origin of the polarization can
be explicitly derived [74] by computing the Stokes parameters (see later)
for Thomson scattering using a harmonic decomposition of the intensity.
A quadrupole corresponds to the ` = 2 components in the spherical har-
monics expansion. Thus the contribution from Y`=2,m (with m ∈ [−2; 2]) of
the intensity decomposition alone therefore causes the CMB polarization.

Source of polarization
Let’s consider now which kind of primordial perturbation can generate
polarization perturbations. In the early Universe we saw that the radia-
tion field at a given point has a dominant monopole corresponding to the
temperature and a dipole corresponding to a Doppler shift velocity of the
fluid, while the higher multipole were damped by the high opacity. At re-
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combination a quadrupole is produced as photons free streaming begins:
the photons mean free path increases progressively and every electron sees
more and more anisotropic incoming radiation, due to both density and
dipolar (velocity) perturbations present at that time. In the electron ref-
erence frame, only the quadrupolar component Y`=2,m of the intensity de-
composition on the spherical harmonics contributes to the CMB polariza-
tion. There exists several configurations that coincide with a quadrupolar
pattern corresponding to the different values of the azimuthal number m
(m ∈ [−2; 2]). Consequently, the perturbations of the background sourcing
quadrupolar anisotropies come in three flavours: scalar (m = 0), vector
(m = ±1) and tensor (m = ±2). Each of them cause distinct polarization
pattern.

• m = 0: scalar perturbations

The scalar perturbations are fluctuations of energy density which are
translated into potential fluctuations. At scales where the gravitation
exceeds the pressure, over(under)-densities do attract (respectively
repel) the surrounding matter. As the gravity has a radial symme-
try, this system has an azimuthal symmetry. As a consequence, this
radial case corresponds to the Y20 component of the decomposition
on spherical harmonics. In the case of an over-density, an electron
falling into the gravitational potential is accelerating towards the
centre. The forward plasma is thus falling faster than the electron
while the backward plasma is falling slower than the electron. There-
fore, the electron sees the forward and backward plasma receding
from him. The photons being tightly coupled to the plasma, the in-
tensity distribution of the incoming light gets the same pattern: the
electron sees light showing a quadrupolar anisotropy as sketched
in the left panel of Fig. 2.3. Moreover, in this case, the polarization
pattern will necessarily be radial. Indeed, the scattered light is po-
larized in the direction orthogonal to the incoming light. As the elec-
tron sees a more intense light in the direction tangent to its trajectory,
the outgoing light is polarized along the radius of the perturbation
as shown in the right panel of Fig. 2.3. In the same way, the polar-
ization pattern is tangential for an under-density. The symmetry of
the perturbation is then memorised at the level of the polarization
pattern.

• m = ±1: vector perturbations

Vector perturbations represent a vortical motions in the primordial
plasma such that the velocity field in the primordial plasma acquires
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also a curl-like component. They correspond to the Y2,±1 component.
Such perturbations are negligible as they do not outlast the inflation-
ary phase due to their amplitude being proportional to the inverse
of the scale factor, ∝ a−1(t). Therefore, they will not be taken into
account in the present manuscript.

• m = ±2: tensor perturbations

Tensor perturbations conversely play a significant role in the gener-
ation of polarization in CMB as first noted in [81]. The tensor per-
turbations of the perturbed metric stands for gravitational waves.
When a gravitational wave go through a circle of motionless test par-
ticles, the circle is deformed, distorted into an ellipse whose semi-
major axis becomes semi-minor axis as the spatial phase changes
from crest to trough. The photons, coupled to the plasma, are there-
fore redshifted in one direction while they are blueshifted in the or-
thogonal direction. An electron being localised at the centre of the
test particles therefore sees quadrupolar anisotropy of the light in-
tensity. The associated stretching of the photons wavelengths pro-
duces a characteristic quadrupole proportional to the Y2,±2 harmon-
ics which can be converted into polarization through Thomson scat-
tering [82]. The induced polarization pattern has a radial and a curl
component.

In general, for a given mode, a polarization pattern on the sky cannot be
separated into modes with different m because, since we can observe only
one Universe, we expect to observe the ensemble averaged power for each
multipole. Nevertheless there are some peculiarities of polarization pat-
terns which survives the average and are still distinguishable, such as its
parity and its correlation with temperature fluctuations.

Statistics of CMB Polarization
Before proceeding further in the analysis of CMB polarization, it is use-
ful to recall the definition and peculiarities of the quantities required to
describe a polarized radiation. A radiation field is conventionally de-
scribed in terms of 4 parameters called Stokes parameters. Taking a (nearly)
monochromatic wave with frequency ω0 (i.e. with amplitude and phase
slowly varying with time respect to the inverse of its frequency), the com-
ponents of the wave electric field can be written, in a given point of the
space as

Ex = ax cos (ω0t− θx(t)) Ey = ay cos (ω0t− θy(t)), (2.24)
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and its Stokes parameters are defines as follows [83]

I ≡ 〈a2
x〉+ 〈a2

y〉; (2.25)

Q ≡ 〈a2
x〉 − 〈a2

y〉; (2.26)

U ≡ 〈2axay cos θx − θy〉; (2.27)
V ≡ 〈2axay sin θx − θy〉; (2.28)

(2.29)

where brackets stand for time-average. The parameter I gives the inten-
sity of the radiation and together with the parameter V , which describes
circular polarization, is a frame orientation-independent quantity, whileQ
and U , describe linear polarization in direction North-South or East-West
(Q) and NW-SE or NE-SW (U ) according to their sign, are not. The physical
observable connected to polarization is defined as a “vector without head”
P = P [Q,U ] orthogonal to waves direction of propagation, having mag-
nitude

√
Q2 + U2 and polar angle α = 1

2
arctan

(
U
Q

)
. This quantity is not a

real vector because it has no orientation, since it describes only the plane
where the electric field oscillates. Being linearly polarized, the CMB polar-
ization can be described only by the two Stokes parameters (Q,U). Being
a fundamental observable for cosmology, as we will further comment in
the following, the CMB polarization is the target of Planck and many sub-
orbital CMB experiments. An example of detection of cosmological Q and
U pattern is reported in Figure 2.4 where the measurements concerns a sky
area relatively free of foreground emission, at an angular resolution of a
few arc-minutes, and sensitivity at µK level. The Figure shows maps of the
observed CMB Q and U Stokes parameter derived from the POLARBEAR
CMB observations in [84].

The CMB polarization is a unique property of the primordial Universe
because it traces the density perturbations and the primordial gravita-
tional waves amplitude. In the same manner as temperature, the polar-
ization angular power spectra would be a useful tool directly extract the
cosmological information. Nonetheless, the (Q,U ) Stokes parameters de-
fine a spin-(±2) field and therefore depend on a change of coordinate sys-
tem: constructing their power spectra is consequently intricate but doable
as in [85]. Constructing temperature-like quantity from (Q,U) parameters
could avoid this complexity. I will expose how to build such temperature-
like quantities, which are the so-called E and B modes, in the harmonic do-
main. Following [86], we can define encompass all the information about
polarization thanks to the (Q,U ) Stokes parameters, the polarization fields
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Figure 2.4 Q and U maps from [84].

P±2 along the line of sight n̂ as:

P±2(n̂) = Q(n̂)± iU(n̂). (2.30)

Under a rotation of an angle γ, such a field P±2 is transformed into P ′±2

following:
P ′±2(n̂) = e±2iγP±2(n̂). (2.31)

This is why the polarization field is by definition a spin-(±2) field. It thus
can be decomposed over the basis of the spin spherical harmonics:

P±2(n̂) =
∑
`m

±2a`m ±2Y`m(n̂), (2.32)

or equivalently:

±2a`m =

∫
dΩ±2Y`m(n̂)P±2(n̂) (2.33)

The spin-raising ∂ and spin-lowering ∂̄ operators, built from the deriva-
tives on the sphere, respectively increase or decrease the spin of a unity as
shown in [86]. The spin-(±2) spherical harmonics,±2Y`m, are linked to the
standard spherical harmonics following:

2Y`m =
1
√
α`
∂∂Y`m, (2.34)

−2Y`m =
1
√
α`
∂̄∂̄, Y`m, (2.35)
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with α` =
√

(`+2)!
(`−2)!

. A spin-0 quantity can thus be deduced from the spin-
(±2) polarization field multipoles in Eq. (2.33) using twice the spin-raising
∂ and spin-lowering ∂̄ operators and by integrating by part:

2a`m =
1

α`

∫
dΩY ∗`m(n̂)∂̄∂̄P+2(n̂), (2.36)

−2a`m =
1

α`

∫
dΩY ∗`m(n̂)∂∂P−2(n̂). (2.37)

From the spin multipole coefficients ±2a`m, two new relevant multipoles
are introduced:

aE`m = −1

2
[2a`m +−2 a`m] , (2.38)

aB`m =
i

2
[2a`m −−2 a`m] . (2.39)

The E and B multipoles are characterised by their behaviour under parity
change. If the coordinate system (êx, êy) undergoes a parity transformation
in (ê′x, ê

′
y) = (êx,−êy), then the Stokes parameters are straightforwardly

expressed as Q′ = Q and U ′ = −U . Consequently, the E multipoles aE`m are
not changed under this transformation while the B modes multipoles aB`m
become−aB`m. The behaviour of E and B multipoles under parity change is
the reason for their denomination recalling the electric and magnetic field
properties. The built E and B multipoles, aE`m and aB`m respectively, are the
coefficients of the scalar E and B modes fields:

E(n̂) =
∑
`m

aE`mY`m(n̂), (2.40)

B(n̂) =
∑
`m

aB`mY`m(n̂). (2.41)

Alternatively, the E and B modes have a unequivocal correspondence with
respectively divergent- and curl-like quantity as shown in [87]. As a re-
sult, the decomposition in the harmonic domain of the spin-(±2) polariza-
tion field allows the construction of the scalar quantities E and B. In Fig-
ures 2.5,2.6 shows E-modes and B-modes polarization patterns generated
by scalar (` = 2, m = 0) and tensor (` = 2, m = 2) matter density perturba-
tions. The main issue for interpreting the E and B modes is that they are
not locally related to the (Q,U ) Stokes parameters. We cannot deduce the
value for E or B modes on a given pixel from the observed (Q,U ) parame-
ters on the same pixel. Nonetheless, the E and B modes have characteristic
polarization patterns. As shown above, the E-modes are an even quantity
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Figure 2.5 Polarization pattern for ` = 2, m = 0, note the azimuthal sym-
metry. From [82].

Figure 2.6 Polarization pattern for ` = 2, m = 2, note the azimuthal sym-
metry. From [82].
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therefore the corresponding polarization pattern should be also parity in-
variant. On the contrary, the B-modes are an odd quantity as their sign
change under a parity transformation (see Figures 2.5,2.6). From previ-
ous considerations, we have acknowledged that the scalar perturbations
always produce a symmetric polarization pattern, so they only account
for the even E modes. Gravitational waves are partly invariant and partly
variant under a parity transformation. The even gravitational waves can
thus induce both temperature (T-modes) and E-modes. The odd gravi-
tational waves can however only generate B modes pattern in the CMB,
unlike scalar perturbations. In other words, primordial B-modes are only
a signature of the tensor perturbations.

However, as we will extensively discuss in the following, CMB pho-
tons have crossed gravitational potentials implying that they are deflected,
which results in E-modes deformation. The distorted E-modes behave like
B-modes and are thus called the lensed B-modes. Fortunately, this only
affects the small angular scales of the B-modes pattern while the primor-
dial signal in B-modes is expected to be predominant on the largest scales.
Thus, the large scales B-modes are a powerful probe of the primordial Uni-
verse as they are a signature of the primordial gravitational waves. The
latter also affect the temperature and E modes anisotropies power spectra.
Nonetheless, the contribution from the scalar perturbations overwhelms
the tensor perturbations presumed to below. Thus, the B-modes power
spectra is a key quantity to target the primordial Universe.

Polarization power spectra
The CMB temperature and polarization power spectra are built thanks to
the scalar description of the polarization field. Similarly to the tempera-
ture, the polarized power spectra are defined by:

〈aT`maT∗`′m′〉 = CTT
` δK``′δ

K
mm′ , (2.42)

〈aE`maE∗`′m′〉 = CEE
` δK``′δ

K
mm′ , (2.43)

〈aB`maB∗`′m′〉 = CBB
` δK``′δ

K
mm′ , (2.44)

〈aT`maE∗`′m′〉 = CTE
` δK``′δ

K
mm′ , (2.45)

〈aT`maB∗`′m′〉 = CTB
` δK``′δ

K
mm′ , (2.46)

〈aE`maB∗`′m′〉 = CEB
` δK``′δ

K
mm′ , (2.47)

with aT/E/B`m the coefficients of the decomposition of the T ,E and B modes
on the spherical harmonics Y`m and ±2Y`m. Furthermore, as the E modes
are even and the B modes are odd, the TB and EB cross-correlations are
expected to vanish in the standard model of cosmology as the Universe
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is parity invariant. It is worth reminding that although the B modes are
odd, their power spectrum is even because it involves squared quantities.
The Figure 2.7 shows the scalar (left panel) and tensor (right panel) part
of the temperature as well as the polarized power spectra, from [88]. The
temperature is, as expected, at least an order of magnitude higher than
the polarization. Furthermore, the temperature and the E-modes are anti-
correlated because of the E-modes amount for the velocity gradient in the
primordial plasma, whereas the T-modes are only sensitive to the velocity
itself. Moreover, the bump at ` . 10 in the polarized power spectra is the
signature of a second scattering process during the reionisation, the forma-
tion of the first stars. Besides, the B-modes power spectra is decomposed
on its expected primordial tensor part, peaking at low `, and its lensing
scalar part, dominating at ` ∼ 1000. In the end, the detected power spectra
are the sum of the two, scalar and tensor, contributions. Nevertheless, the
temperature, E-modes power spectra and TE correlations are dominated
by the scalar contribution which is at least one order of magnitude higher
than the tensor contribution, as clearly shown on Fig. 2.7. It establishes the
B-modes as a unique signature of the tensor perturbations at low `.

2.2. SECONDARY ANISOTROPIES

On their way towards us, CMB photons interact with cosmic structures
and their frequency, density and velocity fields of the Universe, as energy
or direction of propagation are affected. These effects are known as sec-
ondary anisotropies; they can be split into two major categories: gravita-
tional effects (gravitational lensing, the Rees-Sciama effect, ...) and scatter-
ing effects due to the interaction between CMB photons and free electrons.
In this Section, we will briefly describe the main processes, although we
will almost uniquely focus on the interaction between CMB light and mat-
ter, i.e. the weak lensing of CMB. A complete review of those secondary
anisotropies can be found in [89].

As the photons travel from the last scattering surface to the observer,
they are sensitive to the evolution of the large-scale structure gravitational
potentials which modify anisotropies. Density perturbations cease to grow
as the DE component starts to dominate the energy balance in the Uni-
verse: the gravitational potentials must then decay. When a photon falls
into a gravitational potential well, it gets blue-shifted causing an effective
heating, while, on the contrary if it tries to climb out of it, its frequency gets
red-shifted. On the other hand, the opposite effect occurs in under-dense
regions and the overall contributions tend to cancel each others for small
scales where the photons traverse many crests and troughs of the potential
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Figure 2.7 Scalar (tensor) contributions to the power spectra T, E- and B-
modes and to the TE correlations on the left (right) panel, from [88].
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perturbations during the matter-dark energy transition. For this reason the
(late-time) integrated Sachs-Wolfe (ISW) effect (see e.g. [90, 91]), is mainly
visible at large scales or low multipoles which are scale who have just re-
cently entered the horizon. The ISW effect is therefore one of the most
direct signature of the dark energy available in the CMB and is in prin-
ciple sensitive to its equation of state and clustering properties, although
the uncertainty due to cosmic variance prevents a precise measurement of
these effects from the power spectrum. The cancellation of the ISW effect
on small scales that we just discussed, is only true at linear order and if the
non linear effects of the evolution of the gravitational potentials are non
negligible, a second order non linear ISW effect may generate anisotropies
on large scales. This is usually referred to as Reese-Sciama effect.

In addition to CMB anisotropies generated by evolution of LSS, the
CMB photons are affected by all the astrophysical source and effects able
to put back in contact electrons and photons by Doppler effects. CMB pho-
tons can cross clusters of galaxies, where the temperature of gas can reach
10 keV and the free electrons thermal velocity is a consistent fraction of
the speed of light; the net result is a transfer of energy between hot elec-
tron gas and cooler CMB photons through inverse Compton scattering.
This energy transfer, called thermal Sunyaev-Zeldovich effect (tSZ) leaves
a spectral distortion in CMB photons because some of them are shifted
from the Rayleigh-Jeans side of the spectrum to the Wien tail due to the
energy scattering energy transfer [92]. This effect is one the greatest con-
tribution to temperature anisotropies beyond the damping region until the
arc-minute scale, where clusters become unresolved and their contribution
is diffused on the whole sky and analogous to a white noise. However, the
contribution to power spectrum does not affect significantly the acoustic
peaks below the damping scale. Since the frequency spectrum of tSZ is
known precisely and differs significantly from the one of CMB, the tSZ
effect can be removed with multi-frequency observations or by observing
close to 217GHz where the effect is null. Despite being a contaminant to
the primordial anisotropies signal itself, the tSZ effect is a powerful cosmo-
logical probe as it can be used to detect galaxy cluster and produce cluster
catalogues with very precise mass properties [93, 94, 95, 96]. In addition to
the thermal SZ effect, anisotropies can be induced by the motion of cluster
through Doppler effects of baryons (kinetic SZ effects) although the pro-
duced level of anisotropy is confined to a significantly narrow range of
angular scales.

Weak lensing of CMB A CMB photon, on its way from the LSS to our ob-
servation point, will encounter several density perturbations when trav-
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elling in matter dominated era. Since the depth of the potentials is of the
order of 10−5, the average size of potential wells is given by the scale of the
peak of the matter power spectrum around 300 Mpc and the distance from
the last scattering surface is about 14000 Mpc, the number of deviation
that a CMB photon experiences during its journey is more or less 50. We
might expect the lensing effect to become significant on the CMB power
spectrum at ` ' 3000, where the primordial (or unlensed) CMB has very
little power due to the Silk damping and therefore lensing can become the
leading effect. However, the deviations of the photons are coherent on the
size comparable to the comoving size of the lens and therefore affects the
spectra on wide range of angular scales down to few degrees.

The main theoretical framework of weak lensing has been extensively
treated in the previous Chapter. Here we recall some useful definitions, as
we discuss weak lensing quantities and properties in light of CMB physics.
In a standard Universe with a weakly perturbed Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric (see Sec. 1.2), a light ray approaching
a matter density distribution is deviated by an angle

δβ = −2∇⊥Φδχ, (2.48)

where δβ is the deflection, Φ is the Newtonian potential and ∇⊥ denotes
the spatial gradient on a plane perpendicular to the light propagation
direction. Notice that the previous relation, as well as the treatment in
the present chapter, is valid for FLRW cosmologies, free in particular of
anisotropic stress, so that only one of the two scalar potentials of the met-
ric, matters. For a complete casting of the theory of weak gravitational
lensing in generalized cosmologies, see [97].

The gradient in Eq. (2.48) is defined in the small-angle limit as ∇⊥ =
(∂/∂β1, ∂/∂β2) where (β1, β2) describe a coordinate system orthogonal to
the light ray trajectory. This deflection can be related to the observed angle
δθ subtended by a photon coming from the CMB at a distance χCMB, and
deviated from a lens at the angular diameter distance fK(χ). Integrating
over the whole distance between us and the LSS to take into account all the
possible deflections from all the potential gradients present in this region,
we obtain a total deflection in terms of the potential gradients along the
line of sight:

α = −2

∫ χCMB

0

dχ
fK(χCMB − χ)

fK(χCMB)
∇⊥Φ(χn̂, χ0 − χ), (2.49)

where χCMB−χ is the conformal time at which the photon was at position n̂
and χ0 the present epoch. Lensing by transverse gradients does not change
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the frequency of the photons and hence does not affect the frequency dis-
tribution in a given direction except by changing the angular position of
the source. If our source plane is CMB, the lensed CMB will have therefore
the same black-body spectrum as the unlensed CMB and multi-frequency
surveys cannot be used to isolate the lensing effect on CMB. As frequency
is not altered and photons are simply moved around, the observable dis-
tribution of photons would thus be exact to the one present at the moment
of their emission.

Starting from Eq. 2.49, which represents the total displacement vector
of photons coming in one direction due to gravitational lensing, we can
define an integral potential called lensing potential from which we can
compute the displacement vector applying a transverse differential opera-
tor∇⊥. The latter can be expressed as a function of the canonical covariant
derivative on the sphere: ∇⊥ = ∇n̂/fK(χ) and has the following explicit
form:

ψ = −2

∫ χCMB

0

dχ
fK(χCMB − χ)

fK(χCMB)fK(χ)
Φ(χn̂, χ0 − χ). (2.50)

Despite, in a flat Universe, the potential is singular in χ = 0 because of
the 1/χ term coming from fK , the potential is well defined because, the
divergence only affects the monopole term of the multipole expansion of
Φ which does not contribute to the deflection angle. If we approximate the
recombination as instantaneous the CMB is described by a single source
plane at χ = χCMB. If we consider the potential Φ as Gaussian, the lensing
potential is Gaussian too and therefore can be completely described by its
power spectrum. In order to evaluate it we can expand the lensing poten-
tial in standard scalar spherical harmonics. Since the lensing potential is a
statistically isotropic field, we then define its angular power spectrum in
the usual way

ψ(n̂) =
∑
`m

ψ`mY`m(n̂), (2.51)

〈ψ`mψ∗`′m′〉 = δK``′δ
K
mm′C

ψ
` . (2.52)

We can evaluate numerically the power spectrum of the lensing potential
in terms of the gravitational potential power spectrum Φ(x;χ) with a sim-
ple expansion of in Fourier modes and a projection on the 2D sphere using
the Bessel function as it is done for the CMB power spectrum [98]:

Cψ
` = 16π

∫
dk

k
PR(k)

[∫ χCMB

0

dχTψ(k;χ0 − χ)j`(kχ)
χCMB − χ
χCMBχ

]2

, (2.53)

where PR(k) is the power spectrum of the comoving curvature pertur-
bation set at the inflationary time and Tψ(k;χ0 − χ) is the transfer func-
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tion such that the gravitational potential at later epoch χ is Φ(k;χ) =
Tψ(k;χ)R(k). Since the deflection angle is the gradient of the lensing po-
tential, its power spectrum can be defined in terms of the power spectrum
of the lensing potential

Cαα
` = (`+ 1)` Cψψ

` . (2.54)

The lensing potential receives contributions from matter perturbations lo-
cated out to quite high redshift and nearby low redshift potentials only
contribute to large scales due to ISW effect so the lensing potential power
spectrum is weakly sensitive to recent non-linear evolution. As we can
see from the top panel of Fig. 2.8, the deflection power spectrum peaks at
` ' 60 where anisotropies on these scales receive contributions from the-
oretically all redshifts, but in particular 1 . z . 6 where the CMB lensing
signal receives the bulk of its power. The bottom panel of the same Figure
split the lensing potential signal in its various contribution from a whole
range of wavenumbers k. Lensing is predominantly affected by linear and
quasi non-linear scales; non-linear corrections becomes more important
only at small angular scales while the region close to the peak is weakly
affected. They can be estimated using numerical simulations [99, 100] or
semi-analytic models like Halofit [101, 102] which are expected to be ac-
curate at few percent level for standard ΛCDM. Including non-linear cor-
rections will not introduce a significant level of non-Gaussianity on the
lensing potential. These are reduced by the fact that the photon is deflected
several times during its journey from the LSS and the lensing potential is
effectively more Gaussian than the gravitational potential itself.

2.2.1. The lensed CMB Temperature power spectrum

In order to calculate the effect of lensing on CMB temperature anisotropies,
we can restrain ourselves for sake of simplicity to a perturbative expan-
sion of the CMB observable field. Lensing remaps the CMB temperature
fluctuations:

Θ̃(n̂′) = Θ(n̂ +α) = Θ(n̂ +∇ψ), (2.55)

where we denoted with a tilde a lensed quantity. This relation can be
expanded as

Θ̃(n̂) = Θ(n̂′) = Θ(n̂ +α)

≈ Θ(n̂) +∇aψ(n̂)∇aΘ(n̂) +
1

2
∇aψ(n̂)∇bψ(n̂)∇a∇bΘ(n̂) + ...

(2.56)
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Figure 2.8 From [98]. Top panel: cumulative contribution of different red-
shifts to the power spectrum of the lensing potentialCψψ

` for a concordance
ΛCDM model, in both linear (right-hand plot) and log-linear (left-hand
plot) scale. Bottom panel: Contributions of different wavenumbers k (in
Mpc−1) to the power spectrum of the lensing potential for a concordance
ΛCDM model.
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If we expand this relation in Fourier domain - assuming a flat sky approx-
imation for sake of clarity and simplicity - the last equation reads

Θ̃(`) ≈ Θ(`) +

∫
d2`′

2π
`′ · (`− `′)ψ(`− `′)Θ(`′)

− 1

2

∫
d2`1

2π

∫
d2`2

2π
`1 · [`1 + `2 − `] `1 · `2Θ(`1)ψ(`2)ψ∗(`1 + `2 − `).

(2.57)

The series expansion is not a good approximation on all scales. On inter-
mediate scales the lensing deflection is of the same order of the angular
scales of the anisotropies which are being deflected, and a perturbative
expansion in the deflection angle is not suitable for a precise estimate of
the effect. Nevertheless, this simple approach is useful to understand the
most important effects and correct on a good range of angular scales and,
for some purposes detailed in the following, sufficiently accurate.

We can deduce the lensed CMB power spectrum in the usual way
as lensing from a statistical isotropic field like lensing potential does not
brake the statistical isotropic properties of the CMB:

〈Θ(`)Θ∗(`′)〉 = CΘ
` δ

D(`− `′);

CΘ
` ≈

(
1− `2Rψ

)
+

∫
d`′

4π2
[`′ · (`− `′)]2Cψ

|`−`′|C
Θ
`′ ;

(2.58)

Rψ =
1

2
〈|∇ψ|2〉 =

1

4π

∫
d`

`
`4Cψ

` . (2.59)

In the last equation we neglected the temperature-lensing potential cor-
relation, since the Θψ correlation is small on most of the angular scales
and its effect on the lensed power spectrum is small. The lensed power
spectrum, at the first order in Cψ

` , differs from the unlensed coefficients
by a term proportional to the deflection power angle Rψ and by an inte-
gral term which has the form of a convolution of the unlensed tempera-
ture spectrum with the lensing potential power spectrum. This convolu-
tion effectively smooths out the main peaks and troughs of the unlensed
spectrum and cause a fractional change in the power spectrum equal to
several percent at ` ' 1000. On small scales, where there is little power
in the unlensed CMB because of Silk damping, the convolution transfers
power from large scales to small scales increasing the small scales power
(cf. Fig. 2.9). Even if, as we note previously, the series expansion is not
accurate on intermediate scales, on very small scales (` � 3000) it be-
comes again accurate because the anisotropies in the unlensed CMB are
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Figure 2.9 Adapted from [98]. Top panel: lensed and unlensed temper-
ature power spectrum. In the small scale limit the power of the lensed
spectrum is proportional to lensing potential power spectrum. Bottom
panel: fractional difference between lensed and unlensed temperature
power spectrum. As a result of lensing, acoustic peaks are smoothed and
through are filled in.
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wiped out by diffusion damping and the unlensed spectrum is very close
to isotropic. The total variance of the temperature field at a point is con-
served by lensing and this reflects the fact that weak lensing only modifies
photons directions and hence spatial correlation structure but does not
change variance in any given direction:∑

`

CΘ
` (2`+ 1) =

∑
˜̀

C̃Θ
˜̀ (2˜̀+ 1). (2.60)

A more exact calculation can be obtained using the curved sky approach
implemented in [103, 104] although for an exact calculation as implemented
in modern Boltzmann codes, the lensed CMB power spectrum is derived
using method involving the real space correlation function methods. We
refer the reader to [105, 106, 107] for more details.

2.2.2. Lensing of CMB polarization

The presence of a quadrupole moment at last scattering generates a polar-
ization signal which will also be lensed by potential gradients along the
line of sight. This effect can be modelled in a way similar to temperature
lensing with the further complication that polarization is not a scalar field
but a spin-(±2) (tensor) field.

The CMB radiation field is characterised by a 2x2 intensity tensor whose
components are the Stokes parameters. As we have previously discussed
the Q and U parameters are not invariant under rotation of an angle Γ
around the direction of observation n̂, thus we can construct two quanti-
ties from the Q and U parameters which have a definite spin value

P = (Q± iU)′(n̂) = e∓2iΓ(Q± iU)(n̂). (2.61)

Evaluation of polarization power spectra is similar to the temperature
case. We can first remap the polarization spin field with the usual lensing
equation and then use a perturbative expansion to evaluate the leading
term contributing to the power spectra,

P̃ab(n̂) = Pab(n̂
′) = Pab(n̂ +α)

≈ Pab(n̂) +∇cψ(n̂)∇cPab(n̂) +
1

2
∇cψ(n̂)∇dψ(n̂)∇c∇dPab(n̂) + ...

(2.62)

Fourier transforming this quantity with the proper flat sky version of the
spin spherical harmonic and then computing the power spectrum would
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lead to a lensed E and B-modes polarization power spectra [103, 108, 109]:

C̃E
` =

(
1− `2Rψ

)
CE
` +

∫
d2`′

(2π)2
[`′ · (`− `)]2Cψ

|`−`′|C
E
`′ cos2 2(φ`′ − φ`),

(2.63)

C̃B
` =

∫
d2`′

(2π)2
[`′ · (`− `)]2Cψ

|`−`′|C
E
`′ sin2 2(φ`′ − φ`), (2.64)

C̃ΘE
` =

(
1− `2Rψ

)
CΘE
` +

∫
d2`′

(2π)2
[`′ · (`− `)]2Cψ

|`−`′|C
ΘE
`′ cos2 (φ`′ − φ`),

(2.65)

where φ`′ and φ` are the angles between n̂ and `′ and ` respectively. The re-
sult in Eq. (2.63) neglects the contribution of the lensing of the primordial
B-modes, which are expected to be small. In this case, the lensed B-modes
power spectrum is generated from lensing of the unlensed E-mode field
and on large scales it has an amplitude which is independent of ` (see
Fig. 2.10). This can be easily derived from the previous Equation in the
limit |`| � |`′|. Since the lensed B modes is a convolution of primordial E-
modes in the harmonic domain the contributions to the lensing B-modes
power come from all multipoles where there is non-zero E and lensing
potential power. It is important to note that the B-modes generated from
the lensing of E modes can potentially be a contaminant for the detection
of the primordial B-modes signal generated by the gravitational waves
coming from inflation [110, 111]. The effect of lensing on the E-modes is
similar to the effect on the temperature and the convolution with the lens-
ing potential smooths out the acoustic peaks and troughs of the power
spectrum. Since polarization peaks are sharper than in the temperature
case, this means that the effect of lensing is quantitatively more important
on the E-polarization spectrum. On very small scales the unlensed polar-
ization is damped, as in the temperature case, and lensing transfer power
from large to small scales, therefore on this area of the spectrum we expect
to observe the same power in both B and E polarization (cf. Fig. 2.10). The
more general and accurate results on the computation of polarized lensed
spectra can be found in [105, 108].

2.2.3. Constraining physics with CMB lensing

Although the lensing effect on the CMB power spectrum is significant, the
overall effect on recovered constraints on parameters for flat models is not
so important [112]. The CMB lensing data allow to break the so called
geometrical degeneracy between DE and spatial curvature [113]. ΛCDM
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Figure 2.10 Lensed CMB E and B-modes polarization power spectra. The
tensor and lensing contribution to the observed B-modes signal are plotted
separately. At very small scale we expect E and B-modes to display the
same power.



69

Figure 2.11 From [117]: Lensed BB power spectra for DE models with a
time-varying equation of state parametrised as w(a) = w1 + (w0 − w1)a.
The curves represent models with (w0, w1) = (−0.9,−0.4) (solid line),
(w0, w1) = (−0.8,−0.56) (dotted line) and (w0, w1) = (−0.965, 0.3) (dashed
line).

model can, in fact, be mimic by a closed Universe with low density of
dark energy, producing an identical unlensed power spectrum. This de-
generacy can be broken by lensing because the closed models predict too
much power in the lensing potential. This allowed to constrain simulta-
neously the curvature and the DE density, as done recently by [28] where
ΩK = 0.0096± 0.01 and ΩΛ = 0.67± 0.027.

However, there are few parameters to which the CMB alone is not very
sensitive but that can be studied in detail analysing simultaneously the
CMB with the lensing potential. The latter is in fact sensitive to parame-
ters which affect primarily the structure formation but not necessarily the
CMB; like the masses of neutrino, the dark energy and the dark radiation.
If the power spectra can be reconstructed precisely the extra information
imprinted in the lensing potential can be exploited to improve our knowl-
edge of cosmology [114, 115, 116].

The cross correlation of the lensing potential with the lensed CMB can
help constraining the curvature and the DE model though the ISW effect.
These probes are however not very precise as they are plagued by the cos-
mic variance uncertainties. A more direct imprint of DE can be inferred
from the lensing potential itself because DE affects the growth function
of the large-scale structure [117], as seen in Fig. 2.11. The effects on mas-
sive neutrinos however can be separated by the differences in the scale-
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dependence of their effect on the lensing potential power spectrum [115].
Nevertheless a complete separation of the two effect from CMB alone is
complicated because they influence effectively all the scales in a nearly
degenerate way especially on the lensed B-modes level [118], which is the
signal more sensitive the LSS evolution. Using CMB and lensing potential
can help constraining also time dependent DE equation of state and/or
the presence early dark energy [119]. These early DE models follow from
physics where DE traces the energy density of the dominant component
of the Universe, as in high energy physics and string theory models (see
e.g. [120, 121]). The presence of a non negligible component of DE at early
times has important impacts on the sound horizon scale, structure forma-
tion, and secondary anisotropies and a joint CMB plus lensing analysis
can become a good probe for this kind of model as this combination is
sensitive to all the effects. The constraints can also be improved using ad-
ditional external data from weak lensing and dark energy optical surveys
(see [122] and references therein) or, in the future, from 21cm observations
[123, 124]. An accurate account of the possible improvement expected on
DE and neutrino physics constraints from cross correlation between dif-
ferent data sets can be found in [125].

2.3. MEASURING THE CMB ANGULAR POWER SPECTRA

After the first detection of CMB anisotropies by the COBE satellite many
experiments have managed to observe successfully the CMB. The first
acoustic peaks where observed by MAXIMA [126] and Boomerang [127]
balloons with high precision and resolution. Satellite missions than strike
back with WMAP which was able not only to analyse the CMB temper-
ature field in all its glory, but also shading a first light on polarization
together with the ground base experiment DASI, who first detected E-
modes of polarization [128]. The latest measurements of the CMB spec-
trum to date are provided by the ACT, SPT [129, 130]. Atacama Cosmology
Telescope (ACT) and South Pole Telescope (SPT) are small-scales, ground
experiments that observed the sky from the Atacama desert (Chile) and
South Pole respectively and were capable to measure the CMB anisotropies
power spectrum up to the arc-minute scale. The ultimate and most accu-
rate measurements of CMB temperature was made available in the spring
2013 and later in 2015 with the latest generation of satellite mission: Planck.
Its wide frequency coverage and low instrumental noise allow to produce
high fidelity maps of the microwave sky to study in details galactic and
extra-galactic emissions in our Universe together with CMB characterisa-
tion, limited by the cosmic-variance only [1]. Figure 2.12 shows the an-
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Figure 2.12 From [1] Measured angular power spectra of Planck, WMAP9,
ACT, and SPT with the best fit model curve (dashed) obtained from a joint
analysis of Planck temperature, WMAP polarization, ACT, and SPT data.

gular power spectra of temperature fluctuations, as measured by different
probes quoted above. These data support, to extreme accuracy the ΛCDM
concordance model for cosmology.

Alongside with observations of pure intensity, the era of CMB polar-
ization has begun with the first detection of the E-modes by [131, 128].
The ACTPol collaboration has recently provided an accurate reconstruc-
tion of the temperature, E-modes and their correlations at small scales
(` ∈ [200, 9000], [132]). The WMAP satellite had access to the largest
scales reconstructing the E-modes power spectrum for ` ∈ [26, 500] [133].
The final realise of Planck in 2015 reaches the peaks in terms of recon-
structing the angular power spectrum basically at all scales of interest, cf.
Fig. 2.13. The Figure shows the temperature fluctuations (TT) as well as
E-modes and TE correlation angular power spectrum; these plots repre-
sent simply the best cosmology and CMB physics can reach nowadays, in
terms of accuracy, controlling systematics and constraining power. The
most striking result of this mission is the impressive consistency of the



72

different cosmological parameter extracted from those spectra: cosmolog-
ical parameters returned by the TT, TE or EE likelihoods are consistent
with each other, and the residuals of the (frequency combined) TE and
EE spectra after subtracting the temperature ΛCDM best-fit are consistent
with zero. This is the best illustration up to date of the predictive power
of the minimal 6-parameters cosmological model, and, at the same time,
the best tool for constraining interesting, physically-motivated deviations
from that model.

The B-modes power spectrum is a key issue for fully understanding the
standard model of cosmology. The motivation for its detection therefore
leads the way to designing a large set of ground based spatial or balloon
experiments. B-modes were still imperceptible to our instruments up to
the beginning of 2014. Indeed, the POLARBEAR experiment has directly
detected the lensed B-modes at small angular scales (` ∈ [500, 2100]) for
the first time in [84]. The reconstructed lensed B-modes power spectrum is
displayed on Figure 2.14 as blue points. In March 2014, the BICEP2 team
claimed the very first detection of the primordial B-modes in the multi-
pole range of ` ∈ [30, 150] in [134]. The corresponding data points are
displayed in black in the same Figure. The data should suggest a value of
the tensor-to-scalar ratio r to r = 0.2+0.07

−0.05. However, their results are con-
troversial mainly due to the way they remove the foregrounds, that are
thought to be underestimated (see Mortonson and Seljak (2014) or Flauger
et al. (2014) for instance). In February 2015, a joint analysis of data from
BICEP2/Keck Array and Planck has provided a definitive answer to this
matter [135], finding a strong evidence for dust contamination in the sig-
nal and no statistically significant evidence for tensor modes. The final
result was translated as a likelihood curve for r, which yields an upper
limit r0.05 < 0.12 at 95% confidence level. This results has been obtained
primarily by exploiting the polarization sensitive 353 GHz channel of the
High Frequency Instrument on-board Planck, the only good observation
of dust polarization we have to date. On the other hand, the Planck sen-
sitivity is not suitable for a dust monitoring to required accuracy for B-
modes experiments, and that is the reason of the not stringent limit ob-
tained by combining Planck, BICEP2 and Keck array data. In the same
paper, the two teams report an amplitude of lensing effect in the B-modes
of AL = 1.13 ± 0.18, with a significance of detection of 7σ. At this mo-
ment, sub-orbital experiments are sustaining the effort of equipping them-
selves with multi-frequency set-ups, in order to observe, and subtract, the
Galactic diffuse emission with required sensitivity and angular resolution.
Combining Planck data on large angular scales (which are inaccessible for
ground based experiments) with ACT and SPT data on small scales up to
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Figure 2.13 From [28]: Planck 2015 [28] temperature power spectrum (Top)
and frequency-averaged TE (Middle) and EE (Bottom) spectra. The best-fit
base ΛCDM theoretical spectrum fitted to the Planck TT+lowP likelihood
is plotted in the upper panels (red line) comparing with the data spectra.
Residuals with respect to this model are shown in the lower panels. The
error bars show ±1σ uncertainties. In all the panels, the horizontal scale
changes from logarithmic to linear at the “hybridisation” scale, ` = 29
(representing the division between the low-` and high-` likelihoods). Note
that angular power spectra are shown as D` = `(`+ 1) C`/(2π) for TT and
TE, but not for EE, where simply CEE

` are plotted.
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Figure 2.14 Top panel: Observed B-mode power from CMB experiments,
earlier constraints and current measurements. The BICEP2 [134] data
should suggest a value of the tensor-to-scalar ratio r to r = 0.2+0.07

−0.05. Bot-
tom panel: update plot using BICEP2+Keck/Planck join analysis [135];
POLARBEAR [3], and SPTpol [4] are included. The BICEP2+Keck/Planck
data points show results with dust foreground subtraction based on mea-
sured cross-power between Planck and BICEP2+Keck. For comparison,
a theoretical curve is shown for a fiducial ΛCDM model with tensor-to-
scalar ratio reduced to r = 0.1, signalling the importance of dust contam-
ination (and thus subtraction) in the observed B-modes of CMB polariza-
tion. The gravitational lensing component is shown as a dotted curve.
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` = 3000 - where the contribution of extra-galactic secondary anisotropies
(thermal SZ effect, dusty galaxies, extra-galactic point sources etc.) starts
being significant - confirm with excellent agreement the prediction of a
standard flat ΛCDM 6-parameters model. Besides, best-fit ΛCDM model
can provide strong predictions for the distance scale. This prediction can
be compared to the measurements provided by other measurements, such
as studies of Type Ia SNe and baryon acoustic oscillations (BAO). A mild
tension can be found between CMB data and the (relative) distance scale
inferred from compilations of SNe [31]. In contrast, results are in excellent
agreement with the BAO distance scale compiled in [136]. No strong evi-
dence can be found to favour any extension to the base ΛCDM cosmology,
either from the CMB temperature power spectrum alone or combination
with Planck lensing power spectrum and other astrophysical datasets. The
measured values of the ΛCDM parameters are relatively robust to the in-
clusion of different parameters, though a few do broaden significantly if
additional degeneracies are introduced. Despite the remarkable success
of the 6-parameters standard ΛCDM model in explaining CMB data, the
agreement is not perfect. A weak evidence for discrepancies can be seen in
the Planck data on large scales: at ` . 30 the spectrum seems to manifest a
deficit of power. Interpretation of such anomalies is difficult, they do leave
an open window for new physics on large scales. In addition, cosmology
derived from CMB is in tension with the results derived from surveys of
galaxy cluster counts selected through thermal SZ effect in Planck data.
This catalogue tends to prefer a Universe with lower matter density with
respect to the one derived from CMB only for reasons which are still un-
clear and maybe connected to the lack of knowledge of cluster physics or
their mass bias.

Future experiments
Furthermore, the current experiments dedicated to the B modes detection
among which POLARBEAR 2 [137] or the Keck array [138] will be up-
graded in the coming years. Also the QUBIC experiment [139] based on
bolometric interferometry is one of the promising forthcoming B modes
experiments to be built. The upgraded versions of ACT and SPT, ACTpol
and SPTpol [5, 4], are currently taking data to measure temperature and
polarization anisotropies at high-multipoles at the level of POLARBEAR
and BICEP, to probe the spectral index of inflation, the primordial helium
abundance, and neutrino properties. Moreover, B modes observation over
the full celestial sphere would give access to the crucial low multipoles,
including the reionisation bump, of the B modes power spectrum. Several
spatial experiments such as LiteBIRD (which design is described in [140])
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or a Core-like satellite [141] are under studies to be proposed in the coming
years to the spatial agencies.

2.3.1. CMB lensing measurements and cosmological applications

Lensing effects on CMB were first discovered by [142] and [143] correlat-
ing CMB with large scale structure tracers. ACBAR data [144] found direct
evidence of lensing looking at 2-points statistics: their measurements pre-
ferred a lensed CMB angular power spectrum. However, only recently we
were able to reach high sensitivity at small scale in CMB temperature; ex-
periment like ACT and SPT reconstructed CMB lensing potential for the
first time. [145, 146] detected a signal with a significance of 4 and 6 σ
respectively for the reconstructed lensing potential power spectrum. [9]
showed how detection of CMB lensing potential at high significance has
important constraining power on DE using CMB data alone. The latest
Planck 2015 full-mission release presented the most significant measure-
ment of CMB lensing potential to date, at a stunning 40σ significance level,
using temperature and polarization data. CMB lensing potential obtained
from the reconstruction was found to be in agreement with the prediction
of the ΛCDM model; in Fig. 2.15 the lensing potential angular power spec-
trum is shown, compared with the previous 2013 Planck release, together
with ACT and SPT data points.

In a broader context, CMB lensing helps breaking the degeneracy be-
tween several cosmological parameter; e.g. Planck 2013 [1] constrained
the amplitude of the primordial of the CMB power spectrum AS and opti-
cal depth to reionisation τ , taking advantage of the fact that lensing power
spectrum does not depend on the optical depth. The value of optical depth
reported by Planck-2013 discards the value which can be obtained assum-
ing the recombination instantaneous at zre ≈ 6 at 95%, and supports the
idea of reionisation as extended and continuous process. Lensing-only re-
sults can constrain the sub-space of Ωm, H0, and σ8. Figure 2.16 shows
those corresponding constraints from CMB lensing, along with tighter
constraints from combining with additional external BAO data, compared
to the constraints from the Planck CMB power spectra. The contours
overlap in a region of acceptable Hubble constant values, and hence are
compatible. A band in the Ωm − σ8 plane can be defined, thus constrain
a preferred direction corresponding approximately to σ8Ω0.25

m = 0.591 ±
0.021 at 68% CL. Finally, Planck 2015 [147] combines the determination
of the lensing potential with the E-mode polarization also measured by
the satellite to generate an estimate of the lensing B-mode. The mission
found evidence of a correlation between this lensing B-mode estimate and
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Figure 2.15 Lensing potential power spectrum estimate from the 2015 data
release [147], based on the CMB reconstructed map where the diffuse fore-
grounds were subtracted using a procedure parametrizing the Galactic
emission in the harmonic domain (SMICA, see [148]), as well as previous
reconstructions from Planck and other experiments for comparison.

the B-modes observed directly by Planck, with a statistical significance of
10σ. This can be translated into an overall amplitude of the lensing B-
mode power spectrum ÂB relative to the predicted spectrum in the fidu-
cial model; for a large bin 8 ≤ `B ≤ 2048 Planck measured an amplitude of
ÂB8→2048 = 0.93±0.08 for the standard, minimum variance lensing potential
estimation inferred using both temperature and polarization data.

2.3.2. Cross-correlation between CMB and LSS surveys

Cross-correlation of CMB with LSS tracers has become one of the most
lively and important research areas in the CMB field, thanks to the sensi-
tive lensing potential reconstruction. The CMB lensing potential is an in-
tegrated measure of the matter in the Universe back to the last scattering
surface which receives the bulk of the contribution from a broad window
in redshift space around z ∼ 2. For this reason it is possible to correlate it
with a wide range of optical and infrared catalogue of LSS, to constraint
parameters like the bias of the population of this sources. This was done
for ACT, SPT and Planck data [9, 8, 149] and the correlation was detected
with a significance up to 10σ. The Planck collaboration, for instance, has
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Figure 2.16 From [147]: Parameter constraints from CMB lensing alone
in the ΛCDM model; grey bands give the corresponding 1σ and 2σ con-
straints using the approximate fit σ8Ω0.25

m ≈ const.. Solid coloured contours
constraints when additional datasets is included: BAO data from SDSS
and 6DF, in blue; same but fixing the CMB acoustic-scale parameter θMC to
a CMB power spectrum fit, red; solid black contours show the constraint
from the Planck CMB power spectra (Planck temperature+low-` polariza-
tion). See [147] for all references.
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exploited its wide frequency coverage to correlate the CMB lensing poten-
tial with the Cosmic Infrared Background (CIB) anisotropies, which are
generated by thermal emission of intergalactic dust reheated by UV radi-
ation from young stars. The correlation of the two observables was found
to be on the level of 80% with a detection significance of 42σ for the 545
GHz channel of Planck.

More recently, [150] has cross-correlated data from the Herschel-ATLAS
(H-ATLAS) survey covering about 600 deg2 with the lensing potential de-
rived from Planck. This galaxy catalogue covers sub-millimeter sources
in redshift range 1 . z . 5, where the CMB lensing is mostly sensitive
to matter fluctuations. Hence they represent perfect candidates for cross-
correlation studies, as they are high star-forming galaxies (few hundred
M� yr−1) and strongly clustered [151, 152], implying that they are trac-
ers of large-scale overdensities. Their properties are consistent with them
being the progenitors of local massive elliptical galaxies [153]. A 25σ sig-
nificance detection confirm the validity of this technique, a results which is
even more astonishing since the galaxy catalogue used covers only 1.4% of
the sky, demonstrates the potential of CMB lensing correlations with sub-
millimeter surveys (cf. Fig. 2.17). The scientific goal of this work was to
evaluate the galaxy (linear) bias parameter, b, using a joint analysis of the
cross-power spectrum and of the auto-power spectrum of the galaxy den-
sity contrast. The bias is found to be consistent with earlier estimates for
H-ATLAS galaxies at similar redshifts, b = 2.80+0.12

−0.11, even if data suggest a
higher value of the amplitude of the cross-correlationAκg = 1.62±0.16 > 1
higher than expected from the standard model. A possible explanation
can be related to the difficult treatment of the redshift estimation for a
single object in the Herschel field. The catalogues are in fact constructed
using photometric redshifts, which have a intrinsically high uncertainty
- especially for low-z - due to the template fitting to the spectral energy
distribution of the galaxy [153, 154, 155].
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Figure 2.17 From [150]: The CMB convergence-galaxy density cross-
spectrum as measured from Planck and Herschel data. The data points
are shown in blue, with error bars computed using the full covariance
matrix obtained from Monte Carlo realisations of convergence maps. The-
oretical spectra calculated with the bias values inferred from the likeli-
hood analysis using the cross-correlation data only (solid red line) and
the cross-correlation together with the galaxy auto-correlation data (dot-
dashed green line) are also shown. The null (no correlation) hypothesis is
rejected at the 20σ level.



CHAPTER 3

CMB N-Body lensing

Numerical simulations are believed by no one except
those who conducted them.
Experimental results are believed by everyone except
those who performed them.

Anonymous researcher

The most accurate way to obtain predictions for observables of weak-
lensing surveys is to perform ray-tracing through large, high resolution N-
Body numerical simulations to study the full non-linear and hierarchical
growth of cosmic structures. Although these approaches are computation-
ally very demanding, they allow to check and balance the approximations
and assumptions made in widely-used semi-analytic models, adjusting
and extending these models if necessary.

Numerous ray-tracing methods have been developed so far in the con-
text of both strong and weak gravitational lensing. Though exact algo-
rithm are available [156], they are not suitable for application targeting
observations of large fraction of the sky for computational reasons. A sim-
pler and popular approach consists in using the matter distribution in the
N-Body simulations to calculate lensing observables by ray-tracing along
“unperturbed”, i.e. undeflected light paths in the so-called Born approx-
imation (e.g. [157, 158, 99]). In particular, [100] applied this technique to
study a set of N-Body simulation with different cosmologies and DE dy-
namics, to investigate the variation of the lensing pattern with respect to
the standard ΛCDM model. [159], conversely, showed that the integrated
matter distribution used to lens incoming CMB photons in the Born ap-
proximation can be properly reconstructed using standard lensing recon-
struction techniques and quadratic estimator [160].

However, when facing a complex cosmological structure, we must take
into account that each light ray undergoes several distortions due to mat-
ter inhomogeneities, i.e. approximating the actual path of a photon instead
of adopting a single effective deviation from the unperturbed, line-of-sight
integral assumed in Born approximation. The single effective lens must
therefore be replaced by a multiple-lens (ML) approach, where large vol-
umes of matter are projected onto a series of lens planes [161, 63, 162, 65,
163] so that the continuous deflection experienced by a light ray is approx-
imated by finite deflections at each of the planes. A ML full-sky CMB lens-

81
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ing application was sketched in [164] who simulated lensed CMB maps in
temperature only with an angular resolution of 0.9′. However, detailed
comparison of the effective Born approximation method and the ML ap-
proach was not discussed and only the results derived in the Born approx-
imation scenario were presented.

In this Thesis, we implemented a multiple plane ray-tracing algorithm
to lens CMB temperature and polarization fields combining the aforemen-
tioned work by [164] and using the light cone reconstruction from a single
N-Body simulation as [165]. The final rationale will be to investigate DE
effects in different cosmologies at arc-minutes scales, where are expected
to be most noticeable. At these scales, the Born approximation is expected
not to trace with high accuracy local deviations due to small-scales in-
homogeneities, and thus a more precise and realistic method is needed.
Moreover, in order to be successful, we need to be able to control and
discriminate between physical non-linearities of the N-Body simulations
from numerical issues connected to the various approximations in both the
lensing algorithm and the simulation itself. A detailed analysis of these is-
sues together with their impact on the lensed CMB observables will thus
be presented.

This Chapter is organised as follows: in the Section 3.1, we briefly recall
some of the theoretical background and notation used for our lensing algo-
rithm. In Section 3.2 we discuss our ray-tracing technique, throughout its
various steps, starting from a N-Body box (Sec. 3.2.1) which is converted
into a series of 2D spherical maps (Sec. 3.2.2) that act as lens planes for the
CMB photons (Sec. 3.2.3). Section 3.3 is dedicated to test and evaluate this
procedure, both on the map-level and using 2-points statistics (Sec. 3.3.1)
of the angular power spectrum. Section 3.4 shows the final results for the
lensed temperature and polarization fields of the CMB Sec.3.4.2, but first
it focuses on the numerical issues affecting lensing itself and the N-Body
simulation (Sec. 3.4.1). All the Figures reported in the following have been
shown first in [15], as this Chapter is directly based on the aforementioned
paper.

3.1. THEORETICAL TOOLBOX

The theoretical framework of this Chapter has already been extensively
described in the previous pages; repetition, in this case, is not helpful for
the reader. However, we will describe in details the various steps of our
algorithm, recalling some previous definitions and Equations.

The main idea is to apply a ML formalism to the lensing of CMB, as
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described for the standard weak lensing scenario in Sec. 1.2.2. We ap-
ply the discretised Eq. (1.76), thus considering N concentric shells, each of
comoving thickness ∆χ. The matter in the k-th shell is projected onto a
spherical, two-dimensional sheet which is positioned in the middle of the
two edges of the matter shell1, at comoving distance χk ≡ χ(k). We remind
the reader that we will use angular differential operators defined on the
sphere instead of spatial ones, since we will be working with 2D spherical
projections of the matter distribution.

A photon in the k-th shell at χk is deflected by an angle α(k), Eq. (1.77),
due to the presence of matter represented as a 2D lensing potential on the
sphere ψ(k), Eq. (1.78). N-Body simulations can provide a possible repre-
sentation of the matter structures as they evolve in time. Poisson equation
can relate the mass distribution, in particular the mass overdensity, with
the gravitational potential in the shell, as

∇2Ψ =
4πG

c2

ρ− ρ̄
(1 + z)2

, (3.1)

where ρ̄ is the mean matter density of the Universe at redshift z. As in
[166], we can integrate the above equation along the line of sight to obtain
the two dimensional version of the Poisson equation for the k-th mass
shell:

∇2
n̂Φ(k)(n̂) =

8πG

c2

fK(χk)

(1 + zk)2
∆

(k)
Σ (n̂), (3.2)

where the surface mass density is defined as

∆
(k)
Σ (n̂) =

∫ χk+∆χ/2

χk−∆χ/2

(ρ− ρ̄)dχ̃. (3.3)

In Eq (3.2) we have dropped the term containing the derivatives in the ra-
dial direction, ignoring thus long wavelength fluctuations along the line-
of-sight via the Limber approximation [63]. However, as argued by [164,
163], this is, at best, an approximation. In particular [167] showed that
this assumption neglects extra terms that become non-zero in presence of
realistic finite width lens plane. The problem arises because the matter dis-
tribution and, thus, the potential itself may become discontinuous at the
boundaries if periodic conditions are not enforced. Nevertheless, these
corrections to the lens-plane approach adopting the Born approximation
which has been used for this work (see Sect. 3.2) confine this problem to
the single shells. In fact, partial derivatives in the transverse plane com-
mute with the integral evaluated along the whole line of sight, resulting in

1The shell index k increases as moving away from the source plane.
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the cancellation of line-of-sight modes as required in the Limber approxi-
mation2.
We use the following definition for the convergence field K(k) at the k-th
shell,

K(k)(n̂) =
4πG

c2

fK(χk)

(1 + zk)2
∆

(k)
Σ (n̂), (3.4)

to rewrite Eq. (3.2) as
∇2

n̂Φ(k)(n̂) = 2K(k)(n̂). (3.5)

The lensing potential on the sphere is related to K via Eq. (3.5), and it can
be easily computed by expanding both sides of the Poisson equation in
spherical harmonics, obtaining the following algebraic relation between
the harmonic coefficients of the two fields:

Φ`m =
2

`(`+ 1)
K`m. (3.6)

The monopole term in the lensing potential does not contribute to the de-
flection field: therefore in order to avoid any divergence in the above equa-
tion we can safely set to zero Φ`m for ` = 0 in all calculations. The quantity
K is directly computed when the matter distribution in the shell is radially
projected onto the spherical map; as discussed in Sect. 3.2.2, it is useful to
define an angular surface mass density ∆θ

Σ(n̂) as the mass per steradians,

∆
θ(k)
Σ (n̂) =

∫ χk+∆χ/2

χk−∆χ/2

(ρ− ρ̄)
fK(χ̃)2

(1 + z̃)3
dχ̃. (3.7)

such that Eq. (3.4) can be rewritten as:

K(k)(n̂) =
4πG

c2

(1 + zk)

fK(χk)
∆
θ(k)
Σ (n̂). (3.8)

Finally, the vector fieldα(n̂) will be synthesised, as described in [168, 169],
from the spherical harmonic components of the potential in terms of spin-
1 spherical harmonics. The multiple-plane lens formalism can be also
applied to exploit the effective or single-plane approximation to lens the
CMB. Eqs. (1.69) and (1.75) can be discretised into the following sums,

ψ1st(n̂) =
∑
j

fK(χ∗ − χj)
fK(χ∗)

Φ(j), (3.9)

2Note for example that assuming a flat-sky approximation, unlike what has been done
in this work, is a stronger assumption with respect to the Limber approximation and
results in a well-known excess of power on large scales as seen, e.g., by [103].
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κ1st(n̂) =
∑
j

fK(χ∗ − χj)
fK(χ∗)

K(j), (3.10)

where we used the previous definitions of quantities on the j-th lens.
Based on the definition in Eq. (1.75), the angular power spectrum of the
convergence becomes

Cκκ
` =

9H4
0 Ω2

m,0

4c4

∫ χ∗

0

dχP (k, z)

(
fK(χ∗ − χ)

fK(χ∗)a

)2

, (3.11)

where P (k, z) is 3D matter power spectrum, computed via the Limber ap-
proximation at k = `/fK(χ(z)), valid for ` > 10 within a few percent accu-
racy [166]. The discretised equation reads:

Cκκ
` =

9H4
0 Ω2

m,0

4c4

∑
k

∆χ P (`/fK(χk), zk)

(
fK(χ∗ − χk)
fK(χ∗)ak

)2

, (3.12)

summing all over the k lens plane. Note that the convergence field can be
converted into lensing potential using the Poisson equation, or in terms of
the angular power spectrum:

Cψψ
` =

4

`2(`+ 1)2
Cκκ
` . (3.13)

3.2. THE ALGORITHM

In the previous Section we have described the basic formalism and equa-
tions to evaluate the weak lensing effects on the full sky. In this Section we
proceed outlining the basic steps of the algorithm used to lens the CMB
photons throughout:

(i) starting from an N-Body simulation, we create 3D simulated matter
distribution around a chosen observer;

(ii) taking advantage of the proper sampling in redshift of the simula-
tion, we select different shells of matter at different times to recon-
struct our past light-cone and mimic cosmological evolution;

(iii) we project all the matter in a given shell over a single 2D spherical
map which acts as lensing plane;

(iv) we solve the full-sky Poisson equation in the harmonic domain and
compute the lensing potential map for the single lens plane and for
the integrated potential of Eq. (3.9);
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(v) we use this lensing potential map to lens the CMB source plane;

(vi) we repeat step (iii)-(v) for all the selected shells, thus following the
evolution of the source plane.

In our analysis we have used a N-Body simulation of cosmic structure for-
mation in a flat ΛCDM universe with an underlying cosmology described
by the following set of cosmological parameters:

{Ωdm,Ωb,ΩΛ, ns, σ8, H0} =

{0.226, 0.0451, 0.729, 0.966, 0.809, 70.3 Km/s/Mpc}.

The simulation follows the evolution of the matter distribution in a cubic
(comoving) volume (1000 h−1Mpc)3 from redshift z = 10 to present time
using a modified TreePM version of GADGET3, specifically developed to
include all the additional physical effects that characterize different dark
energy models (see [170] for a detailed description of the code). The whole
numerical project goes under the name of COupled Dark Energy Cos-
mological Simulation, or CoDECS4. At present, they include two distinct
set of publicly available runs, the L-CoDECS and the H-CoDECS. The L-
CoDECS simulations consist in 10243 CDM and 10243 baryon particles,
both treated with collisionless dynamics only, which means that baryonic
particles are not considered as gas particles but just as a different family of
collisionless particles distinguished from CDM. This is done in order to ac-
count for the effect of the uncoupled baryon fraction in DE models which
would not be correctly represented by CDM-only simulations. The mass
resolution at z = 0 for this set of simulations is MCDM = 5.84 × 1010M�/h
for CDM and Mb = 1.17 × 1010M�/h for baryons, while the gravitational
softening is set to εs = 20 comoving kpc/h, corresponding to 0.04 times
the mean linear inter-particle separation. The H-CoDECS simulations are
instead adiabatic hydrodynamical simulations on much smaller scales,
which we do not consider in the present work.

3.2.1. Constructing mass shells

N-Body simulations are usually stored as a series of snapshots, each rep-
resenting the simulation box at a certain stage of its evolution. As a first
step, we fix the observer. We consider the last snapshot, at redshift z = 0,
and compute the centre of mass of the whole simulation. This centre rep-
resents the origin of our new system of reference, which sees all the CMB

3www.mpa-garching.mpg.de/gadget
4www.marcobaldi.it/CoDECS

www.mpa-garching.mpg.de/gadget
www.marcobaldi.it/CoDECS
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radiation around it. As we explore the universe around the new origin,
the further we move in space, the more we look back in time and see how
structures develop and grow, until we reach a volume large enough to
carry out the integration for CMB lensing. One of the difficulties in this
approach is that, even though the size of the simulation box is limited, we
need to use the box to reconstruct the full backwards lightcone. Therefore,
we need to replicate the box volume several times in space, so that the en-
tire observable volume is covered. In particular, as described in [171], the
simulation volume needs to be repeated along both the positive and nega-
tive directions of the three principal Cartesian axes x, y, and z, keeping the
origin centred on the observer.

To construct the all-sky past light cone we exploit the simulation out-
puts at different times which are equally spaced in the logarithm of the
scale factor, log10(a), corresponding to an average spacing of 150 h−1Mpc
comoving. The need to repeat the simulation volume due to its finite size
immediately means that, without augmenting large-scale structures, the
maps will suffer from a deficit of lensing power on large angular scales,
due to the finite box size. More importantly, a scheme is required to avoid
the repetition of the same structures along the line of sight. Previous stud-
ies that constructed simulated lightcone maps for small patches of the sky
typically simply randomised each of the repeated boxes along the past
lightcone by applying independent random translations and reflections
(e.g. [172]). However, in the present application this procedure would
produce artefacts like ripples in the simulated deflection-angle field, be-
cause the gravitational field would become discontinuous at box bound-
aries, leading to jumps in the deflection angle. It is therefore mandatory
that the simulated lensing potential of our all sky maps is everywhere con-
tinuous on the sky, which requires that the 3D tessellation of the peculiar
gravitational potential is continuous transverse to every line of sight.

Following [171, 99], our solution is to divide up the volume out to the
redshift covered by the simulation zmax into larger spherical shells, each of
thickness 1 h−1Gpc comoving (as the box size). All the simulation boxes
falling into the same larger shell are made to undergo the same, coherent
randomisation process, i.e. they are all translated and rotated with the
same random vectors generating a homogeneous coordinate transforma-
tion throughout the shell. But this randomisation changes from shell to
shell. Figure 3.1 shows a schematic sketch of this process, which was also
exploited in earlier works [171, 99]. As already mentioned, the need to
repeat the simulation volume due to its finite size implies that the maps
will suffer from a non proper description of the large angular scales. We
note however that if the box size is sufficiently big like in e.g. [173] this
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Figure 3.1 Sketch of the adopted stacking process. We use several outputs
of the N-Body, each box at a different time (t0, t1, ...) as the simulation
evolves with time. The simulation is used to trace the dark matter distri-
bution of the Universe (red dots, representing a DM particle). A lensing
plane for each output is then constructed by projecting the matter onto a
2D spherical map (blue surface), as explained in the text. In order to fill
the entire matter shell, we need to stack and replicate the boxes of the N-
Body simulation as we move further away from the observer and we need
to consider even bigger volumes (third picture from the left).

procedure is no longer necessary, at least up to the redshift covered by the
simulation size. The final results of the whole process is a series of concen-
tric shells that substitutes our snapshots. For our specific input N-body
simulation, we get 25 matter shells, building a lightcone spanning from
z = 0 to zmax = 10.

3.2.2. From shells to maps

Following the scheme proposed in [164], we convert the position of a parti-
cle distributed within a 3D matter shell into its angular position on the 2D
spherical map of the (projected) surface matter density. Note that among
all the particles in the simulation, only the ones falling within the radii of
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the spherical shell of width 150 h−1Mpc are projected onto the 2D spherical
map. We then assign each particle to a specific sky pixel in the HEALPix5

pixelisation scheme starting from its spherical coordinates (θ,φ) and us-
ing the ang2pix routine of the HEALPix suite. We place the particle mass
into the pixel so that each sky pixel reads Σθ

p = mp/Ωpix, where Ωpix is the
area of a pixel in steradians. If n particles fall inside the beam defined by
a pixel, the pixel will have a surface mass density of nΣθ

p. In HEALPix,
the resolution is controlled by the parameter NSIDE which determines the
number Npix of pixels of equal area into which the entire sphere is divided
through the relation Npix = 12×NSIDE2, so that each pixel has an area of
Ωpix = 4π/Npix sterad. The angular resolution is often expressed through
the number θres =

√
Ωpix. For a value of NSIDE set to 2048 (4096), the cor-

responding an angular resolution is 1′.717 (0′.858).
The real interesting quantity in our lensing calculation, in addition to the
surface mass density, is the convergence map K(k)(n̂) on the lens-plane k.
In order to get this quantity we first compute the overdensity maps (∆Σθ)
using the average surface mass density of the 2D map. Then we multiply
by this map by its geometrical weight (1 + zk)/fK(χk), depending on the
lens plane distance from the observer and its redshift, assumed to be an
average between the time at the beginning and the end of the shell (see
Eq. 3.8). As a final step, we produce a convergence map from each shell of
the lightcone which will become our lensing planes to lens the CMB sig-
nal.
From the convergence map K(k)(n̂) we then extract the gravitational po-
tential ψ(k) following Eq. (3.6), using the HEALPix Spherical Harmonics
Transform (SHT) routines to decompose K(k)(n̂) into its harmonic coef-
ficients K`m. Note that we correct the smoothing of the true underlying
continuous field on the pixel scale directly in the harmonic domain when
we solve for the Poisson equation.

3.2.3. Lensing the CMB

In order to propagate the CMB photons through the different shells we
adopt a pixel-based approach first presented in [112]. Starting from the
ψ`m coefficients, we compute the deflection field for each shell α(k) evalu-
ating Eq. (1.77) in the harmonic domain. Being the deflection field purely a
gradient field (i.e. a spin-1 curl-free vector field), it can can be easily eval-
uated with a spin-1 SHT. The E and B decomposition of the field reads:

1α
E
`m

(k) =
√
`(`+ 1)ψ

(k)
`m , 1α

B
`m

(k) = 0. (3.14)
5http://healpix.sourceforge.net

http://healpix.sourceforge.net
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Once the deflection field is given, each pixel-based method remaps the
CMB field as a function of the position on the sky assuming the lensed
signal observed along a direction n̂ equal to the signal coming from an-
other direction n̂′,

n̂′(k) = n̂(k−1) +α(k), (3.15)

where n̂(k−1) represents the unlensed position of the CMB photons at the
previous step. To our level of approximation ‖∇Φ‖ is assumed to be con-
stant between n̂(k−1) and n̂′(k), consistent with working out the lensing
potential in the Born approximation between two consecutive shells. In
this work we adopted the publicly available code LensPix6 [112] to prop-
agate the CMB signal through all the lensing shells. LensPix implements
a pixel-based lensing method using a bi-cubic polynomial interpolation
scheme to evaluate the source plane along the displaced direction. This
method has been shown to be accurate at the sub-percent level to produce
temperature and E-modes signal. However, the recovery of the B-modes
of the CMB polarization is more difficult because B-modes are more sensi-
tive to numerical effects like the involved resolution and the choice of the
band-limit (i.e. the power cut-off `max) in the calculation. We will discuss
the impact on the relevant numerical effects in Section 3.4 and we refer the
reader to [174] for a complete discussion of the numerical problems and
accuracy of pixel based methods.
Finally, note that the simulated lightcone recovers the distribution of mat-
ter in the Universe up to zmax = 10, and therefore the primordial CMB
fields are lensed by LSS only in this specific redshift interval. In other
words, photons are ray-traced in a Universe evolving from zmax to z = 0.
The impact of high-redshifts contributions is besides the goal of this algo-
rithm, which will be tested against analytical and semi-analytical compu-
tations which we have modified accordingly to perform CMB lensing only
in this redshift range.

3.3. TEST AND CONVERGENCE

In this section we assess the reliability of our code by performing sanity
checks similarly to [164] to ensure that all the steps of the algorithm give
stable and robust results. For the first test, we show that the total mass
selected in each 3D matter slice is equal to the theoretical mass expected
from the assumed cosmological model in the simulation, given by

M theory
slice = 4πΩm,0ρcχ̄

2∆χ, (3.16)

6http://cosmologist.info/lenspix/

http://cosmologist.info/lenspix/
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Figure 3.2 The total mass for each shell compared with the one expected
from theory (fractional difference) as function of redshift.

where ∆χ is the comoving thickness of the slice at a comoving (average)
distance χ, ρc is the critical density and Ωm,0 corresponds to the present
value of the matter density parameter. We compare this quantity with the
total mass obtained from the surface density maps (Σθ) drawn with our
procedure,

Mslice =

Npix∑
p=1

Σθ
p Ωpix, (3.17)

by summing on all pixels of the spherical map. Figure 3.2 shows the
fractional difference between the two masses for the different redshifts at
which each spherical map is located. The agreement is very good within a
few percent. As similarly found by [164], fluctuations respect to the theory
appear at low z, due to the tension between the small comoving volume
as seen by the observer, and a highly-clustered matter distribution at late
times. Including or excluding large dark matter halos in the selection pro-
cess therefore leads to differences between the mass extracted from the
maps and the theoretical one.
As a second test, we make sure that the projection from the simulation box
onto the map has been properly performed. Figure 3.3 displays the Proba-
bility Density Function (PDF) as recovered from the surface mass density
maps, compared with analytic PDFs, drawn from the data, such as the
Gaussian and log-normal ones (as in [175, 176]). The extracted PDFs are
quite similar to the ones found by [164], even if - as already observed by
the same authors - the analytical PDFs could not fit well the data especially
at high surface mass density where the non-linearities becomes important
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and where accurate models are yet unknown.
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Figure 3.3 PDF of the surface mass density in the lensing-planes (crosses)
compared with the Gaussian (red, dotted line) and the log-normal (blue,
dashed line).

3.3.1. Lensing potential maps

Once surface density maps have been validated, we can move one step
forward and verify lensing quantities. As described in Section 3.1, the ef-
fective convergence plane is computed by weighting the surface mass den-
sity planes with appropriate geometrical factors. We validated such con-
vergence maps by comparing the extracted power spectra to the theoreti-
cal expectations based on semi-analytical computations of the matter per-
turbation evolution as implemented in the publicly available Boltzmann
code CAMB7. Adopting the Born approximation, we drew an “effective”
convergence map, as described in Eq. (3.10), using the matter shells at dif-
ferent redshifts. We then compute, in Limber approximation of Eq. (3.11),
the theoretical convergence angular power spectrum, exploiting directly

7http://camb.info

http://camb.info
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the 3D matter power spectrum computed with CAMB. The comparison be-
tween the simulated and the analytical power spectra are shown in Figure
3.4. In both cases we perform the integration up to a specific redshift z∗ to
assess the validity of the maps at different times. We observe that the mea-
sured spectra agree at high accuracy with the theoretical predictions on a
large interval of angular scales, indicating the validity of our map-making
procedure. As expected, the lack of power at small multipoles ` . 50 is
due to the finite box size of the N-Body simulation. A source of possible
contamination of the signal is the so-called shot-noise, due to the finite par-
ticle density in the N-Body simulation. The shot-noise power spectrum
can be computed analytically substituting the shot noise power spectrum
P Shot(k, z) = 1/n̄k in Eq. (3.12), where n̄k = Nk/ (4πχ2

k∆χ) and Nk is the
total number of particles in the k-th shell, we obtain the shot-noise contri-
bution to the convergence:

Cκκ,Shot
` =

9H4
0 Ω2

m,0

4c4

∑
k

∆χ
1

n̄k

(
fK(χ∗ − χk)
fK(χ∗)ak

)2

. (3.18)

For the N-body simulation used in this code the shot-noise is small at all
redshifts given the high spatial resolution and high number of particles
employed (see Figure 3.4). Figure 3.5 shows a comparison of the par-
tial contributions to lensing potential angular power spectrum computed
at different redshifts with the corresponding analytical signal given by
Eqs. (3.12) and (3.13) in which we insert the 3D matter power spectrum ex-
tracted from CAMB. In this case, the label z refers to the redshift of the mat-
ter spherical map which contributes to the lensing potential at that time.
Each power spectrum represents the “real” map given as input to LensPix

in order to obtain the final CMB lensed maps in the multiple plane ap-
proach. Here the Limber approximation is necessary to solve the Poisson
equation using the transverse part of the Laplacian only, thus neglecting
line-of-sight contributions as previously discussed in Sec. 3.1. The agree-
ment between simulated and analytical Cψψ

` as a function of the redshift is
clearly observable from Figure 3.5. The recovered signal is stable and co-
herent on a whole range of multipoles. As discussed in the following, we
assume a very conservative choice for the map resolution and power cut-
off `max (NSIDE = `max = 4096). Therefore, we do not expect this result to
be affected by power aliasing given that an HEALPix grid with resolution
set by NSIDE parameter should be able to properly sample modes up to
` ≈ 2×NSIDE. An interesting and comprehensive way to see how the lens-
ing process behaves at different scales is to look at the integrated potential,
as computed in Born approximation using Eq. (3.9). In Figure 3.6 we show
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Figure 3.4 Angular power spectrum from the “effective” convergence map
(solid lines) compared with theory predictions (dotted line) at three dif-
ferent redshifts, z∗ ' 0.6, 1.3, 4. Dashed lines quantify the shot-noise
contribution for each maps. Note that the shot-noise power spectra are
multiplied by a factor of 10 for visualisation purposes.

the angular power spectrum for the effective lensing potential and its shot-
noise contribution, compared to the semi-analytical realisations by CAMB,
where we fix the maximum redshift of the integration, zmax, to be the same
as the maximum redshift used in our map-making procedure. Also in this
case, we find a very good agreement between the two methods, within the
1σ uncertainty for the semi-analytical spectrum. As in Figures 3.4 and 3.5
the spectrum shows a lack of power due to the finite size of the simulation
box for ` < 50. Note that the shot-noise contribution is negligible, as we
have multiplied it by a factor of 10 such that it could be compared with
the lensing potential signal. In general, at intermediate scales our spec-
tra show a small deficit of power, within 3% with respect to the Halofit

prescription [102], while at small scales, even after the shot-noise subtrac-
tion (blue lines), the signal seems to increase towards ` ≈ 3500, likely due
to the underlying non-linear clustering underestimated by the analytical
models. Since the simulated spectra agree within percent level with the
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Figure 3.5 Comparison between the angular power spectrum of the lens-
ing potential computed with our algorithm (solid lines) and the analytical
results obtained using the Limber equation (dotted lines) at different red-
shift. The spectra have been multiplied by a constant factor for displaying
purposes. The grey area displays the cosmic variance 1σ uncertainty for
the theoretical spectra.

semi-analytical realisation of CAMB, this means that our map-making pro-
cedure traces with good accuracy the evolving matter distribution.

3.4. RESULTS

Pixel-based methods for CMB lensing, though in general very efficient,
are subjected to several numerical problems. The first one is related to the
bandwidths of the lensed CMB fields generated as a result of the calcu-
lation. Because the lensing effect happens before the intervention of any
instrumental response, the synthesis and analysis of relevant sky signals
in the pixel-based lensing methods (CMB source plane and lensing poten-
tial map) require using a resolution sufficient to support the signal up to
the intrinsic bandwidth `max set by the user specific application and its
required accuracy. However, since mathematically the lensing effects act
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Figure 3.6 Top panel: Integrated lensing potential ψeff obtained in the
Born approximation from the simulation (green) and the CAMB result based
on semi-analytical approximation of the non-linear evolution (red). Bot-
tom panels: fractional difference between the two for some intermediate
and high multipoles scales. The results obtained after the shot-noise sub-
traction are displayed in blue solid lines. Note that the shot-noise spec-
trum in the top panel is multiplied by an arbitrary factor of 10 to be seen
clearly in the Figure.
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as a convolution in the harmonic domain, the bandwidth of the resulting
lensed field is broader than the one of the unlensed CMB and of the lens-
ing potential. Therefore, given the bandwidth used to synthesise the CMB
source plane (`CMB

max ), i.e before undergoing any deflection, and the one
used to solve the Poisson equation and to create the deflection field for
a given shell (`ψmax), the resulting lensed CMB will have an approximate
band-limit of `CMB

max + `ψmax
8. Consequently, the lensed map should have

its resolution appropriately chosen to eliminate potential power aliasing
effects on these angular scales [174]. We note moreover that these aliasing
effects are even more important in the case of the ML approach because
the bandwidth extension induced by lensing happens each time the lensed
CMB is propagated through a single shell.
The second challenge arises from the fact that the displaced direction at
each iteration n̂′(k) does not correspond in general to the pixel centres of
any iso-latitudinal grid on the sphere. The values of the CMB signal at
those locations thus cannot be computed with the aid of fast SHT algo-
rithm and a more elaborated approach is needed. In the context of pixel-
based simulation methods, interpolation is the most popular workaround
of the need to directly calculate values of the unlensed fields for every dis-
placed directions. The exact solution, which consist in a direct re-summation
of the spherical harmonics at the displaced position, is in fact infeasible
even for moderate resolutions [112, 174]. Any interpolation in this con-
text, however, is not without its dangers because interpolations tend to
smooth the underlying signals and - as a consequence - to hide aliasing
effects in the lensed maps. For this reason we chose the bandwidth of our
signal (`CMB

max = `ψmax = 4096) and the resolution of our grid (NSIDE=4096)
following the recipe provided in [174] to minimise all of these effects si-
multaneously. This choice however limits the multipole range where the
lensing signal can be reproduced with high reliability especially in the case
of B-modes of polarization to ` . 2500 (see Sec 3.4.2).

3.4.1. Shot-noise contribution

In this section we estimate the impact of the intrinsic discretisation of the
N-Body simulation on the final lensed CMB power spectra. Since we
expect changes in the power spectrum on the order of few percent, it is
mandatory to be able to control numerical artefacts with the same level of
precision. For this study we use the analytical modelling of weak lensing

8We note that in general this band-limit is only approximate and the resulting function
is strictly not band-limited unlike the input source plane.
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in the harmonic domain discussed in [103]. This treats lensing as an effec-
tive convolution in Fourier space between the unlensed CMB and the lens-
ing potential and it is based on a second order Taylor expansion around
the unperturbed photons direction. The formulae are accurate to better
than the percent level on the angular scales considered in this work, espe-
cially in the case of B-modes, and allow to quantify more easily the impact
of the choice of the band-limit on the recovered result. In the specific case
of B-modes, the convolution reads:

C̃BB
˜̀
B

= O(˜̀
B, C

ψψ
` ) · CBB

˜̀
B

+

1

2

∑
`E ,`ψ

|2F˜̀
B`E`ψ

|2

(2˜̀
B + 1)

Cψψ
`ψ

[
CEE
`E

(1− (−1)L) + CBB
`E

(1 + (−1)L)
]
,

(3.19)

where we denote with tilde a lensed quantity and L = ˜̀
B + `E + `ψ. We

refer the reader to [174] for a detailed discussion of the properties of the
convolution kernels F˜̀

B`E`ψ
and to the O(˜̀

B, C
ψψ
` ) factor. Similar expres-

sion can also be derived for the TT, TE and EE power spectra [103]. Since
this formalism does not make any assumption on the explicit form nor the
origin of Cψψ

` , we can plug in Eq. (3.19) the shot-noise power spectrum
instead of the lensing potential extracted from the N-body simulation, to
estimate the fraction of the recovered signal generated by the limited res-
olution of our simulated data. For this purpose we truncated the sum of
Eq. (3.19) to the same band-limit value used in the lensing simulation, i.e.
`Emax = `ψmax = 4096.
We first evaluate the shot-noise contribution to the ψeff lensing potential
starting from Eq. (3.18) and assuming the average number density to be
the one of the ψeff field, n̄effk . This is then used as an input for the an-
alytical formulae of Eq. (3.19), assuming the primordial B-modes CBB

` to
be zero as it is the case for the unlensed CMB realisations used in the fol-
lowing. To validate the analytical shot-noise predictions we also produce
100 Monte Carlo realisations of shot-noise for the effective lensing poten-
tial. We use those maps to extract a deflection field which is then given
as input to LensPix to lens a random realisation of the CMB signal. The
final average of all the power spectra of these set of lensed CMB maps
contains thus only the lensing effect due to the shot-noise acting on pri-
mordial anisotropies.
To evaluate the shot-noise contribution to the ML method we compute
Eq. (3.18) for each k-shell and then apply the analytical convolution itera-
tively assuming as input CMB spectrum for the k-th shell the lensed one
emerging from lensing of the previous (k − 1)-th iteration.
As discussed in the following Section, if we assume a power cut-off for
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the incoming CMB and the lensing potential to be `CMB
max and `ψmax respec-

tively, the lensed CMB after each deflection shows power up to a multipole
˜̀≈ `CMB

max + `ψmax, due to the properties of the lensing convolution kernels
in the harmonic domain [174]. The evaluation of the lensing kernels re-
quires in fact a computationally-heavy summation of Wigner-3j symbols
up to high multipoles. We therefore have assumed that for the iteration
k > 0 the incoming CMB has power at most up to ` = 8192. This addi-
tional cut-off is high enough not to affect significantly the results on the
scale considered in this work. The analytical formulae were validated also
in this case with Monte Carlo simulation where for each shell the noise
realisations were generated starting from the shot-noise power spectrum
of the single shell.
In Figure 3.7 we show the results obtained from both these methods, for
the B-mode power spectrum, which is the most sensitive to the details of
the lensing potential being entirely lens-induced in our case (no primor-
dial tensor modes). The TT and EE spectra are conversely quite insensitive
to the the shot-noise which impacts the results at the sub 0.1% level (see
Figure 3.8). Both the analytical and Monte Carlo estimates of the shot-
noise contribution in the Born approximation agree extremely well at all
angular scales. The shot-noise contribution in the ML approach is com-
parable to the effective case at ` . 2000 though the difference is less than
0.5%.

3.4.2. Angular power spectrum

Similarly to the case of the lensing potential extraction, we now take into
consideration two different approaches also for the evaluation of the an-
gular power spectrum of the lensed CMB. The first set of primary CMB
maps are lensed in the Born approximation, while the second set by mean
of the ML approach. In Figure 3.8 we show the comparison between the
expected CMB lensed temperature and the E-modes of polarization power
spectra, (CTT

` and CEE
` ), estimated using semi-analytical halo mass func-

tion implemented in CAMB [101, 102], and the spectra extracted from our
lensed CMB maps. For both these cases the simulated power spectra fol-
low precisely the CAMB signal. In particular, the shot-noise-induced contri-
bution (evaluated following the recipe of the Section 3.4.1) for these two
observables is negligible given that the effect of lensing per-se is already
minor. Thus, changes introduced at percent variation in the lensing poten-
tial are further mitigated and hidden in the numerical noise. After having
subtracted the shot-noise induced lensing contribution, the fractional dif-
ference between CAMB and the N-Body lensed spectra shows no significant
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Figure 3.7 Angular power spectrum for the lensed B-modes induced by
the simulation shot-noise. The red, solid line is computed using 100 real-
isations of the algorithm in the Born approximation scenario. The green-
dotted and the blue-dashed lines are evaluated with the analytical formula
for - respectively - the Born and the multiple plane scenario.
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bias up to ` ≈ 3000 where we start seeing effects due to the choice of
`CMB
max . The latter is not high enough to properly resolve power on those

scales with high-accuracy. The difference between the results obtained
with the Born and ML method is negligible and important only towards
scales ` ≈ `max (see Figure 3.9). The abrupt decrease in power observed
on those scales for the ML approach with respect to the Born approxima-
tion is due to the effect of polynomial interpolation. As the latter tends
to smooth the underlying signal, the consecutive application effectively
removes more power on small angular scale with respect to the Born ap-
proach, for which the interpolation is performed only once.

The situation however is different for the B-modes of polarization, as
shown in Figure 3.10. This signal is entirely caused by lensing as we have
set the primordial tensor modes to zero. Its behaviour is therefore a clear
imprint of how the LSS process the primary CMB field and thus we expect
this observable to reflect more directly the features observed in the lensing
potential. As expected from the analysis of the lensing potential in Sec-
tion 3.3.1, the BB spectrum shows a lack of of power at percent level with
respect to CAMB spectra, in agreement with the matter power spectrum of
the N-Body simulation, though this effect is partially compensated by the
increase in power at small scales in the lensing potential. This feature is
not observable in the lensed T or E field, where power coming from pri-
mordial anisotropies is dominant over the lensing-induced one. Moreover,
while negligible in the TT and EE cases, we found the shot-noise contri-
bution to be important at the percent level for the BB power spectrum at
small scales. This is expected given that B-modes are very sensitive to
non-linear power, which is affected by shot-noise for ` � 2000 (see bot-
tom panel of Figure 3.6). The lack of power due to the choice of `CMB

max

starts to be important on angular scales larger than the ones affected in
T and E-modes power spectra. This can be explained considering that at
those scales a non-negligible fraction of the contribution to the BB power
spectrum starts to come from progressively higher multipoles of both E
and ψ. At `B ∼ 4000, for instance, a 25% contribution to the power in
the B-modes comes from scales in the E and ψ fields at ` > `max = 4096
[174]. Since our algorithm is band-limited to this `max, cutting power for
those high `, produce a loss of about 25% in the BB power spectrum at that
particular multipole (as shown in Figure 3.10).

As argued in Section 3.4, one of the major numerical problem affect-
ing the simulation of CMB B-modes is the power aliasing due to band-
width extension induced by lensing. In Figure 3.11 we show the impact
of this effect as a function of the map resolution on the B-modes power
spectrum recovery. For this tests we extracted the lensing potential maps
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Figure 3.8 Angular power spectrum of the (lensed) total intensity T (top
panel) and the E-mode polarization of the CMB (bottom panel). Black
dashed lines are CAMB realisation of a lensed spectra. Red dotted line uses
the lensing field as in the Born approximation, while for the blue solid line
the CMB is lensed through multiple planes. Green lines in both panels
show the shot-noise contribution to the lensed TT and EE spectra; green,
dot-dashed lines represent the absolute value of this contribution. Note
that the shot-noise power spectra are multiplied by a factor of 50 for visu-
alisation purposes.



103

Figure 3.9 Fractional difference for the angular power spectrum of the
temperature (top panel) and E-mode polarization (bottom panel) with re-
spect to CAMB. Red dotted lines are obtained in the Born approximation,
while blue solid in the multiple lens plane approach. The shot-noise has
been subtracted in both cases.
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Figure 3.10 Angular power spectrum for the B-mode polarization of CMB.
Black dashed lines are CAMB realisation of a lensed spectra. Red dotted
lines are obtained in the Born approximation, while blue solid lines in the
multiple lens planes approach. The green dot-dashed line is a lensed spec-
trum produced from a shot-noise-only lensing map. Note that the shot-
noise power spectra are multiplied by a factor of 10 for visualisation pur-
poses. In the bottom panel, it is shown the fractional difference with the
reference CAMB spectrum. In this panel, the noise power spectrum has been
subtracted from the original signal.
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for both Born and ML approach using two different HEALPix grid at
NSIDE = 2048, 4096 and refer to these two set-up as the low and high res-
olution case respectively. We then synthesised on the same grid the CMB
source plane assuming the same band-limit `CMB

max = 4096, as done for the
results discussed above, and propagate it through the lensing plane(s). As
shown in Figure 3.11, the Born approximation method is quite insensitive
to the choice of NSIDE because the polynomial interpolation is effective in
removing most of the aliasing. However, for the ML scenario the situation
is worse as the aliasing generated by multiple deflection can add up, be-
coming progressively more important. This can then lead to a misinterpre-
tation of the result obtained using the ML, which seems to be significantly
different from the once obtained in the Born approximation. The fact that
this difference vanishes in the high-resolution case is a demonstration of
the high level of control of numerical effects which needs to be achieved
for this kind of algorithms. Even though these effects were limited in the
set-up considered here, we expect those to become more important when
targeting accurate lensing simulations on scales `� 2000.

Finally, we compare the differences in the angular power spectra be-
tween the Born approximation and the multiple planes approach. First we
define the quantity OX

` as the difference between the angular power spec-
tra extracted with the multiple lens approach and the one computed in the
Born approximation,

OX
` = CX,ML

` − CX,Born
` , (3.20)

where X = TT, EE, BB. Its uncertainty is given by the cosmic variance af-
fecting both spectra, or

σOX` =

√
2

2`+ 1

(
|CX,ML

` |2 + |CX,Born
` |2

)
. (3.21)

Starting from these quantities we can define a reduced chi-square χ̃2 statis-
tics

χ̃2 =
1

`max − 1

`max∑
`=2

O2
`

σ2
O`

, (3.22)

to assess whether the two methods are inconsistent. Since we expectOX
` /σ

2
O`

to be a Gaussian random variable, we can we also perform a Kolmogorov-
Smirnov (KS) to test whether this hypothesis is verified or systematic dif-
ferences exists between the two methods. In defining both theses tests
and the sample variance of Eq. (3.22), we assumed that the covariance
of the lensed power spectra is Gaussian. This assumption neglects the
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Figure 3.11 Fractional difference of angular power spectrum of the BB
power spectrum with respect to the reference CAMB spectrum. Dotted lines
refers to the map at low resolution (NSIDE=2048), while solid lines to the
map with NSIDE=4096. Red lines plot the effective, Born approximation
case, blue lines are connected to the multiple plane approach. Note that
for this comparison, the noise power spectrum has not been subtracted
from the original signal.
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CX
` Significance PKS Significance Pχ̃2

TT 0.47 0.70
EE 0.19 0.51
BB 0.21 0.19

Table 3.1 Results of statistical tests on difference between lensed CMB
angular power spectra in the Born approximation and multiple lens planes
approach. The significance level probability for the null hypothesis using
a Kolmogorov-Smirnov test (PKS) and a reduced chi-square χ̃2 statistics
(Pχ̃2) show no difference between the power spectra computed with the
two methods on a statistical level.

fact that lensing introduces non-Gaussian correlations between different
modes [177, 178], but this effect is mainly important for B-modes, for which
the Gaussianity assumption underestimates the sample variance.

In Table 3.1 we report the results of both those tests expressed as the
significance level probability. In both cases we find that the power spec-
tra obtained in the Born approximation and with the ML method are sta-
tistically consistent. A further possible test to compare the two methods
would be to reconstruct the effective integrated matter density from the
simulated lensed CMB maps as done in [159], but we leave this option to
future work.
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CHAPTER 4

High resolution CMB lensing
simulations

Men who wish to know about the world must learn
about it in its particular details.

Heraclitus

Most people don’t have time to master the very
mathematical details of theoretical physics.

Stephen Hawking

The idea of this Chapter originates immediately after the last lines writ-
ten in the previous pages, as our simulations show no appreciable statisti-
cal difference between the standard, Born approximation, first-order result
and the multiple lens-planes implementation of our algorithm. This out-
come is on one side reassuring, it means that approximations used so far
by the community have been proven right, but on the other side, it opens
other new questions: in the end, is our approach correct, or we are ignor-
ing some important and crucial facts? Are we modelling accurately the
travel of a photon though the matter distribution in the Universe? How
can we improve our analysis to fully unleash the power of the multiple
lens approximation?

This Chapter attempts to address this issues following two different
but connected paths: first, we decide to push the limits of our algorithm by
reaching higher resolutions and by exploring all the lensing information
we can extract from our maps, i.e. we study the full magnification matrix
as described in a previous Section, Sec. 1.2.3. Secondly, we move towards a
theoretical and analytical description of the multiple deflections of a CMB
photons, as we look at high-order corrections in the power spectrum pre-
scribed by perturbation theory. The broader scientific goal, though, will
especially target the lensing-generated B-modes, both for their sensitivity
to the LSS distribution and as the main contaminant of any primordial B-
modes signal, holy grail of current and future CMB observations. Since
sensitivities of the CMB polarization arrays are rapidly improving, the ex-
periments aiming at setting constraints on values of the tensor-to-scalar
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ratio parameter r . 10−2 are expected to be ultimately limited by the lens-
ing signal [179]. As already stated previously in the Thesis, the scientific
community needs new simulations of very accurate, high-resolution maps
of the CMB total intensity and polarization, covering a large fraction of the
sky and with lensing effects included.

This Chapter reflects our double approach: in the first Section, we ex-
pand the theoretical and analytical background of our algorithm by de-
tailing high-order effects on the angular power spectrum, and their con-
sequences on the simulated lensing fields. Sec. 4.2 characterises the full
magnification matrix, as we improve our algorithm by using new remap-
ping technique by means of the lenS2HAT routines [174]. As done in the
previous Chapter, we focus our attention on the 2-points statistic of the
angular power spectrum (Sec 4.2.1) for different lensing observables. The
final Section, Sec. 4.3, is dedicated to study those secondary effects on the
CMB fields from a theoretical point of view, especially regarding B-modes
of CMB polarization induced by gravitational lensing.

4.1. HIGH ORDER EFFECTS ON THE FULL MAGNIFICATION MATRIX

In this Section we briefly recall some formulae to describe the behaviour
of a light-ray when deflected by the presence of matter. The description of
such formalism has already been developed in details in Sec. (1.2), how-
ever to facilitate the reader I reproduce here only the results relevant to
this work.

In weak lensing calculations, the effect of deflectors along the entire
line is governed by the lens equation, which maps the final position (t,β, χ)
of the photon to the position of its source, i.e.

βi(θ, χ) = θi −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βi (t(χ′),β(θ, χ′), χ′) dχ′, (4.1)

given a gravitational potential Φ(t,β, χ) acting on the photon during its
travel. The relative position of nearby light rays is quantified by:

Aij(θ, χ) =
∂βi(θ, χ)

∂θj
=

= δKij −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βiβk (t(χ′),β(θ, χ′), χ′)Akj(θ, χ
′)dχ′,

(4.2)

where δKij is the Kronecker delta. The image distortions of small light
sources can be described by the distortion matrix A(θ, χ) ≡ {Aij(θ, χ)},
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which holds the information of the mapping induced by lensing between
the original and the current position (i.e. Jacobian θ → β). Note that the
potential Φ is evaluated at the ray angular position β(θ, χ), while the dis-
tortion itself - which is present at the r.h.s of Eq (4.2), lens-lens coupling - is
computed at the “background” position θ. The magnification matrix A is
typically decomposed into four fields describing how the light rays com-
ing from a source at χ ≡ χs are transformed by the passage through the
matter distribution,

Aij =

(
1− κ− γ1 −γ2 + ω
−γ2 − ω 1− κ+ γ1

)
, (4.3)

where we assumed that the rotation angle ω(θ, χs) which defines a rotation
of the lensed image, is small. The field κ(θ, χs) is the convergence while
γ(θ, χs) = γ1(θ, χs) + iγ2(θ, χs) defines the complex shear, describing the
shearing of the image, and can be decomposed in to a rotation-free part,
γE(θ, χs) and a divergence-free one, γB(θ, χs).

The presence of a rotation ω authorize the introduction of an auxiliary
curl potential Ω with a slightly abuse of notation, such that the deflection
angle may be expressed as a combination of the standard gradient contri-
bution from a scalar field ψ, and a curl contribution [67]:

β = θ −∇ψ −∇× Ω, (4.4)

where we defined the two-dimensional curl (∇×Ω)i = εij∂Ω. This poten-
tial Ω has to be intended as an “effective”, Born-like potential, integrated
along the line of sight, that encodes all the information about the rota-
tion of the image as curl-like patterns are originated in the signal through
multiple deflections. All of the above quantities can be treated on the
sphere using the spin-s spherical harmonic decomposition of the full-sky
[103, 163]. In particular, this section combines results from [103] and [180]
to derive the relationships between the rotation, convergence, E- and B-
mode shear power spectra. See [67] for the equivalent flat-sky formalism.
The full-sky magnification matrix can be written as

Aij = (1− κ)δKij − γij + ωεij

= δKij −
∑
`m

(
ψ`m∇i∇jY`m + Ω`mε

k
j∇i∇kY`m

)
, (4.5)

where γij is a symmetric, traceless tensor, where we recall that

γij =

(
−γ1 −γ2

−γ2 γ1

)
, (4.6)
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ωεij is the antisymmetric part and (1 − κ)δKij is the non-zero trace part,
following previous Eq. (4.4). [103, 163] shows that by comparing the two
previous Eqs (4.5) and applying the relations between derivatives of scalar
and spin-s spherical harmonics by [103], we get the classic result

κ = −1

2

∑
`m

`(`+ 1)ψ`mY`m (4.7)

ω = −1

2

∑
`m

`(`+ 1)ψ`mY`m (4.8)

γ1 ± iγ2 =
1

2

∑
`m

√
(`+ 2)!

(`− 2)!
(ψ`m ± iΩ`m)±2 Y`m. (4.9)

These equations with Ω`m ≡ 0 where presented in [103]. Using naturally
the standard E and B modes decomposition for the spin-2 γ shear field,
these relations between the harmonic coefficients hold:

Eγ
`m ≡

1

2

√
(`+ 2)!

(`− 2)!
ψ`m, (4.10)

Bγ
`m ≡

1

2

√
(`+ 2)!

(`− 2)!
Ω`m. (4.11)

We can then obtain the following relations between convergence, rotation,
shear E- and B-mode angular power spectra:

Cκκ
` =

1

4
`2(`+ 1)2Cψψ

` , (4.12)

Cωω
` =

1

4
`2(`+ 1)2CΩΩ

` , (4.13)

Cεε
` =

1

`2(`+ 1)2

(`+ 2)!

(`− 2)!
Cκκ
` , (4.14)

Cββ
` =

1

`2(`+ 1)2

(`+ 2)!

(`− 2)!
Cωω
` , (4.15)

where ε and β refers to the E-mode and B-mode components of the γ field,
respectively. The relations between Cψψ

` , Cεε
` and Cκκ

` where presented in
[103]. The cross-spectra Cεβ

` , Cωκ
` , Cκβ

` , and Cωε
` are all zero assuming that

the Universe is statistically parity invariant (i.e. 〈ψΩ∗〉 = 0, see [67]). The
rest of the cross-spectra can be computed from the relations above as well.
Finally, note that at small scales or high-`, the factor

lim
`→∞

1

`2(`+ 1)2

(`+ 2)!

(`− 2)!
≈ 1, (4.16)
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thus reproducing the results of several previous authors [180, 67, 181].
The magnification tensor for sources at a single redshift can be rewrit-

ten implicitly as (see e.g. [182])

Ψij(θ) = Aij(θ)− δKij , (4.17)

highlighting the deformation component of the tensor. Within this defini-
tion, Eq (4.2) becomes:

Ψij(θ, χs) = 2

∫
dχg(χ, χs)Φ,ik (β, χ)

[
δKkj + Ψkj(θ, χ)

]
, (4.18)

where commas represents spatial derivatives. Repeated indices are summed
over the 2 transverse directions. The presence of Ψ in the integral reflects
a foreground lens affecting the deformation from a more distant lens - or
“lens-lens coupling”. The lensing efficiency g(χ, χ′) is the standard geo-
metrical factor,

g(χ, χ′) =

{
fK(χ′)fK(χ−χ′)

fK(χ)
, χ′ < χ

0, χ′ ≥ χ.
(4.19)

Here the gravitational potential Φ is evaluated at a deflected position1

β(θ, χ) = θfK(χ) + δβ(θ, χ), (4.20)

δβi(θ, χ) = −2

∫
dχ′g(χ′, χ)

fK(χ)

fK(χ′)
Φ,i (β, χ

′), (4.21)

where the deflections are confined to the transverse plane. Note that Eq. (4.18)
is implicit in both the deformation tensor and the potential along the full
geodesic Φ(β, χ), whereβ(θ, χ) again depends on the potential via the lens
equations, Eq (4.1). By assuming small initial deformations Ψ(0) ≈ 0 (ne-
glecting of lens-lens coupling) and evaluating the potential along the un-
perturbed geodesic β(0) ≈ θ, i.e. the Born approximation, the well-known
first-order result holds:

Ψ
(1)
ij (θ, χ) = 2

∫ χ

0

dχ′g(χ′, χ)Φ,ij (θ, χ). (4.22)

In the literature the use of the Born approximation generally implies ne-
glecting lens-lens coupling as well, since they appear at the same order in
perturbation theory. In terms of angular power spectrum, we can write in
Limber approximation as done in previous pages,

Cκκ,1st
` = `4

∫ χs

0

dχ
g2(χ, χs)

f 6
K(χ)

PΦΦ

(
`

fK(χ)
, χ

)
, (4.23)

1Formally fK(χ)θ → fK(χ)θ⊥ + χθ‖ in an open universe but components parallel to
the fiducial line of sight drop out in the Limber approximation.
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and Cεε,1st
` = Cκκ,1st

` while Cββ,1st
` = Cωω,1st

` = 0. The lack of B-modes in the
signal to first order in the perturbations has been considered as a possible
test of instrumental and astrophysical systematic effects. At first order,
weak lensing by matter only generate E-modes. However, as studied in
previous works [183, 67, 181], deviations from the Born approximation
can generate B-modes in the shear field.

Corrections to the Born approximation can be calculated by Taylor ex-
panding the potential in Eq. (4.18) to second order in the deflection of
Eq. (4.20),

Φ(θ + δβ) ≈ Φ(θ) + Φ,i (θ)δβi +
1

2
Φ,ij (θ)δβiδβj + ... (4.24)

Since we are considering perturbative corrections to the power spectrum
∝ Φ4, all terms up to third order in the potential must be kept here because
they can couple to first order contribution. Several authors [183, 184, 67,
181, 185] have computed high order corrections to the angular power spec-
trum by iteratively inserting the result for the deformation tensor into the
full expression of Eq. (4.18); the generic second-order correction for the
2-points statistics takes the form of

CXX,type
` = FXX,type

∫
dχ
g2(χ, χs)

f 6
K(χ)

∫
d2`′

(2π)2
GXX,type(`, `′)M(`′, `′′), (4.25)

whereFXX,type is a constant factor, different for the different type of second-
order correction or the lensing field considered -X = κ, ω, shear E-modes ε
or shear B-modes β; GXX,type(`, `′) is a generic geometrical factor depend-
ing the different modes ` and their geometrical orientation; M(`, `′;χ) is
the mode coupling integrand or

M(`, `′;χ) =

∫
dχ′

g2(χ′, χ)

f 6
K(χ′)

PΦΦ(
`′

fK(χ′)
;χ′)PΦΦ(

`

fK(χ)
;χ), (4.26)

and `′′ = ` − `′. These expressions are analogous to the Born series in
quantum scattering theory and similar diagrammatic representations of
the arising terms exist. The various contributions can all physically be at-
tributed to the coupling of lenses at different redshifts of the form Φ,im Ψmj ,
non-local Born-corrections of the form Φ,ijk δβk or a combination of both
effects at third order.

4.2. HIGH RESOLUTION LENSING SIMULATIONS

A detailed outline of the algorithm, concerning the construction of the
past light-cone and the map-making procedure, has been given in a earlier
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Chapter 3 and [15]. In the following, we explain some improvements and
changes to the last steps of such algorithm, as we trace the light travelling
throughout the N-Body simulation.

In order to propagate the CMB photons through the different shells we
have adopted a pixel-based approach [112, 186, 174], exploiting the pub-
licly available code LensPix [112]. For this work, however, we change this
part of the algorithm by using the code lenS2HAT to re-map the CMB sig-
nal through all the lensing shells. The list of operations on our light-cone
maps is still the same as in the previous implementation: starting from the
ψ`m coefficients, we compute the deflection field for each shell α(k). We
then take advantage of the deflection field as purely a gradient field (i.e.
a spin-1 curl-free vector field), to be synthesised with a spin-1 SHT. Once
the deflection field is obtained, each pixel-based method remaps the CMB
field as a function of the position on the sky assuming the lensed signal
observed along a direction n̂ equal to the signal coming from another di-
rection n̂′,

n̂′(k) = n̂(k−1) +α(k), (4.27)

where n̂(k−1) represents the un-lensed position of the CMB photons at the
previous step. Although algorithmically similar, lenS2HAT is definitely
more suitable for our studies of high-resolution lensing maps, as the code
itself presents a series of improvements with respect to the benchmark
LensPix.

The first advantage of this code comes from its flexibility as we can
produce lensed maps in a number of different pixelization schemes used
in cosmological applications. Internally, it uses grids based on the Equidis-
tant Cylindrical Projection (ECP) pixelization where grid points, or pixel
centres, are arranged in a number of equidistant iso-latitudinal rings, with
points along each ring assumed to be equidistant. This pixelization sup-
ports a perfect quadrature for band-limited functions, which in the con-
text of this work permits minimizing undesirable leakages that typically
plague codes of this type.

lenS2HAT implements a pixel-based lensing method using a Nearest
Grid Points (NGP) assignment scheme to evaluate the source plane along
the displaced direction, i.e. we assign to every deflected direction a value
of the sky signal computed at the nearest grid points defined by the centres
of a pixel of the assumed pixelization scheme. NGP assignment is quick
and simple, in particular the precision of the method is driven by the sin-
gle parameter defining the grid resolution. Remarkably, no smoothing is
needed in the signal beyond the scale of the pixel, as done, for instance,
in LensPix. To reach a resolution high enough for our study, we sim-
ply need to increase the number of points sampled by the grid. A suffi-
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cient resolution required will in general depend on the intrinsic sky signal
prior to the lensing procedure, as well as the resolution of the final maps
to be produced; in a typical case these are expected to be very high and
the computations involved in the problem may quickly become very ex-
pensive. Nevertheless, the overall computational time in this case is only
somewhat longer than that involved in some other interpolation schemes,
while the memory requirement can be significantly lower.

To sidestep the problem of computing spherical harmonic transforms
with a huge number of grid points and a very high band limit, lenS2HAT

resorts to parallel computers and massively parallel numerical applica-
tions. In our implementation, we used the publicly available spherical har-
monic transform S2HAT library2. This library provides a set of routines de-
signed to perform harmonic analysis of arbitrary spin fields on the sphere
on distributed memory architectures. It has a nearly perfect memory scal-
ability obtained via a memory distribution of all main pixel and harmonic
domain objects (i.e., maps and harmonic coefficients), and ensures very
good load balance from the memory and calculation points of view. It is
a very flexible tool that allows a simultaneous, multi-map analysis of any
iso-latitude pixelization, symmetric with respect to the equator, with pix-
els equally distributed in the azimuthal angle, and provides support for a
number of pixelization schemes, including the above mentioned ECP. This
library has been shown to be accurate at the sub-percent level to produce
temperature and E-modes signal.

Finally, another important aspect is the possibility within S2HAT library
to compute the first derivative of an arbitrary spin-s field with respect to
coordinates on a sphere (θ, φ). The code implements recurrence relations
based on the Wigner D-matrices derivatives [187], as done in HEALPix

but only for the spin-2 case. Numerical tests conducts so far have shown
that derivatives of the same field on a sphere, computed with S2HAT or
HEALPix, are equal within the numerical error. We refer the reader to [174]
for a further discussion of the numerical issues, accuracy and performance
of lenS2HAT code.

4.2.1. Angular power spectra

In the following, we exploit this algorithm to propagate the full magnifi-
cation matrix throughout the N-Body box; to be more specific, we apply
the discretised Equations described in Sec. 1.2.2, as we apply the multiple

2http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/
MIDAS09/software/s2hat/s2hat.htm

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/s2hat/s2hat.htm
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/s2hat/s2hat.htm
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lens scenario to our bundle of CMB photons, i.e. the source plane is at
z ≈ 1100, see Eqs (1.76-1.79) of Sect. 1.2.2.

In Figure 4.1 we show the angular power spectrum for different lensing
observables: convergence, Cκκ

` , rotation Cωω
` and E- and B-mode of shear,

Cεε
` , Cββ

` . As done in the previous Chapter, we plot the semi-analytical
prediction of CAMB as benchmark and reference. The spectra have been
synthesised using a fixed `max = 1024, while the resolutions of the in-
put (HEALPix-like map) has a NSIDE= 4096. As stated above, lenS2HAT

works with an internal ECP pixelization scheme, whose resolution can
be expressed in terms of NSIDE≈ 10000. Simulated spectra are in a good
agreement with the semi-analytical result; besides, we can finally see the
imprints of the multiple deflections of photons: Cωω

` and Cββ
` are not zero

as expected from the first order approximation. In this case, the study of
the full magnification tensor has allowed us to unveil this effect which is
however several orders of magnitude lower than the scalar signal of con-
vergence and shear E-modes: an effect in fact hidden when we look at the
resulting CMB lensed fields as done in the previous Chapter. Note that
such signal arising from second order effects of weak lensing is highly
relevant from a physical point of view. In a recent paper [70], updating
and correcting a previous estimate of [68], showed that an eventual curl
mode in the displacement field is much more efficient in converting pri-
mordial E- into B-modes though lensing. Therefore, even if the amount of
this signal is small, it can leave a detectable imprint on top of the standard
signal generated by the gradient mode. Besides, it has various implica-
tions on how the standard estimator for lensing are constructed. In fact,
lensing potential can be reconstructed statistically using the 4-point func-
tion of the lensed CMB as the popular un-biased, quadratic estimator on
the observed CMB field proposed in [160] which exploits the off-diagonal
correlation between distinct modes. This estimator, however, becomes bi-
ased by the terms higher than the first order which are, in fact, neglected
in the standard derivation. In addition, [69] have shown how it is possi-
ble to construct an analogous quadratic estimator of the curl mode of the
displacement field which can be estimated simultaneously to the standard
gradient-like one, although the potential higher order bias effects have not
been estimated yet. The ultimate goal for this study would be to assess and
quantify the relevance of a curl mode arising from second order effects of
weak lensing on current estimators of lensing potential.

The presence of a non-zero rotation allows us to test previous analyt-
ical relations derived in the previous Section. In particular, we would
like to test the consistency relations that links convergence Cκκ

` and shear
E-modes Cεε

` , rotation Cωω
` and shear B-modes Cββ

` , as deflections origi-
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Figure 4.1 The convergence, shear and rotation angular power spectra
for CMB lensing, as red continuous line (κκ), blue dotted line (εε), green
dashed (ωω) and dark green, dot-dashed line (ββ). The black line dot-
dot-dashed line is the reference convergence angular power spectrum as
computed by CAMB.
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nate from the influence of two different physical phenomena, the stan-
dard scalar (lensing) potential ψ and the auxiliary (lensing) curl potential
Ω. As shown in Figure 4.2, we compare the ratio of such angular power
spectra with theoretical expectations of Eqs (4.12): a spectacular agree-
ment can be found for “scalar-originated” fields, where the spectra duly
follow the analytical predictions. A higher scatter in the signal can be ob-
served for “rotation-induced” fields, even if for the ` range of our interest
the ratio is very close to 1, and it is far better than a similar numerical test
performed by other authors (see e.g. [163]). In the same Figure, the bot-
tom panels show the ratio between the fields belonging to the propagated
magnification matrix and the ones computed using the deflection angle
itself, therefore extracting from our lensing maps the information of the
angular power spectra of the two acting potentials, i.e. Cψψ

` and CΩΩ
` of

aforementioned Eqs. (4.5, 4.12). This is a good consistency test to see if our
numerical implementation of the multiple lens approach is indeed correct
when propagating the full magnification matrix throughout the simula-
tion. Again, there is a nice agreement for all observables, with the excep-
tion of the rotation induced ω and shear B-modes β at large angular scales,
at low multipoles.

In the Figures above we have shown how our algorithm is now able -
thanks to its new improvements - to fully study and characterise the mag-
nification matrix. This is not only a nice numerical test, but it carries as
well some important physical implications: we recover a non-null signal
induced by the multiple deflections of CMB photons, which is internally
consistent with analytical expectation if we assume the rotation of the im-
age to play its part though the potential Ω. The signal disappears if we use
a first order approach by the means of the Born approximation, thus sig-
nalling that the implementation of multiple lens algorithm can be useful
to fully explore the physics of CMB lensing. This result is indeed robust
against changes in resolution of our simulated maps, which in any case
have been synthesised to a very high precision and accuracy. In Figure 4.3
we show how the signal is stable even when reaching high resolution and
looking at small scales, as we synthesise our maps using different band-
limit `max = {1024, 2048, 4096}. The expected cut-off in power nearby `max
is in fact very visible in the Figure, as for each deflection plane we have
a fixed band-limit in the reconstruction. As the reader could imagine, B-
modes are more sensitive to this numerical effects, and this Figure is a
further proof of that. This is still a ongoing project; the main expectations
from this work involve excluding any possible contamination of numeri-
cal artefacts in the computation, as we intend to model and characterise
the effect of the intrinsic resolution of the N-Body, for instance to set some
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Figure 4.2 Top panel: Ratio of angular power spectra of different lens-
ing observables as extracted from the full magnification matrix. Red line
refers to “scalar field” induced by the lensing potential ψ, Cκκ

` /Cεε
` . On the

contrary, blue line is the ratio between Cωω
` /Cββ

` , induced by a rotation,
“curl-like” auxiliary potential Ω, both expected to be zero at first order.
Black line is the analytical prediction Eq. (4.16). Middle and Bottom pan-
els show consistency relations for the scalar and vector fields extracted
from the propagated magnification matrix and compared with the predic-
tion using directly the potentials ψ and Ω of Eqs (4.12). Middle panel treats
scalar field κ, ω while bottom panel shows results for the shear γ fields.
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Figure 4.3 Angular power spectrum for the effective curl - lensing potential
Ω, CΩΩ

` for different `max. Black line is the reference CAMB line, which shows
signal for the (standard) lensing potential ψ.

limits on the reconstruction of some lensing observables given a certain
N-Body numerical simulation, and vice-versa. Finally, the broader goal is
to quantify the impact of such non-zero signal due to the photons’ rotation
on current and future CMB surveys, and its relevance for B-modes of CMB
polarization.

4.3. SECOND ORDER CORRECTIONS TO CMB LENSING

In the previous Section we have shown some preliminary results on the
full magnification matrix, as we discover a non-zero signal which is due
to the multiple deflections a photon experiences while travelling though
the matter distribution of the N-Body simulations. Apart from numerical
studies regarding the overall algorithm and its accuracy limits, we would
like to characterise such signal using a more theoretical approach, apply-
ing high-order corrections to the power spectrum.

Several authors have adopted this formalism. [183], for instance, have
considered a standard weak lensing scenario, with a source emitting at
redshift zs = 1, computing several high-order corrections (at 4th order in
the gravitational potential Φ) to the angular power spectrum of the stan-
dard lensing observables: convergence, shear and rotation. They found
these corrections to be at least two orders of magnitude below the power
in the convergence, or E-mode shear, at the first order level as predicted
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by the Born approximation. While these corrections are larger than cosmic
variance at ` & 100, they are unlikely to affect the interpretation of the next
generation of surveys. Their analytical calculations are consistent with
previous numerical estimates: the rotational power spectrum generated
by the coupling between two lenses agree with numerical measurements
by [63]. Relatively small contribution to the lensing observables suggest
that higher order corrections related to the Born approximation and cou-
pling between two lenses are unlikely to affect the current estimates of
weak lensing statistics.

However, a recent paper [185] computed those corrections in our case
of interest of CMB lensing (zs = 1100), and they found important devi-
ations at the power spectrum level from the first-order analytical result.
They quantified these effects to be important even for B-modes of CMB
polarization, with a ∼ 10% variation of the signal on the B-modes lensing
peak ` ∼ 1000. We have exploited as well these formulae to the CMB-
lensing scenario, using a CAMB-generated P (k) for our analytical compu-
tations. Figure 4.4 shows the total second-order correction to the conver-
gence (κκ2). Our calculations reach the same conclusion as [185]: second-
order contributions to the convergence angular power spectrum seem to
be quite important for CMB-lensing. There are important deviations at the
power spectrum level from the first-order analytical result, although those
same deviations are not seen in our ray-tracing simulations which assess
the validity of the Born approximation even at reasonably high-`.

To investigate the nature of this discrepancy, we can test these formu-
lae against what already has been analysed in the literature. In particular,
we refer to a ML method developed by [65] to ray-trace (weak) lensing of
luminous sources throughout the Millennium Simulation. [65] found that
the power spectra from the ray-tracing are in very good agreement with
the 1st-order prediction, the difference is . 2 % for ` < 104. However, the
same analytical calculations of [184] show a significant departure - espe-
cially for sources at redshift zsource = 2 - from the standard first-order spec-
trum, definitely more evident than the limits inferred from simulations, for
small scales (` > 1000), see Figure 4.5 for a ratio of the analytical spectra in
the two cases. Note that for this comparison, to be consistent with the dif-
ferent numerical set-up, we have used the matter power spectrum directly
extracted from the Millennium Simulation. A tension seems to exist be-
tween numerical and analytical results, because important second-order
corrections to the convergence do not arise either using our procedure for
a CMB lensing scenario or referring to [65] accurate algorithm for weak-
lensing.

In Figure 4.6 we show the effect of these corrections on a lensed CMB
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Figure 4.4 Total second-order contribution to the convergence angular
power spectrum κκ2 in dot-dashed green line, while the dotted-blue one
is just the Xκκ correction computed by [184]. The black line is the well-
known first-order result. The matter power spectrum used in this com-
putation is the CAMB realization given the background cosmology of our
N-Body simulations. The source-plane is considered at redshift 1100.
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Figure 4.5 Ratio between first-order κκ(1) and (first+second)-order, κκ(1) +
κκ(2), corrections of the convergence power spectrum. Dashed-horizontal
lines refers to the limits found by [65].
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field, in particular on the B-modes of polarization which are very sensitive
to gravitational lensing. The primordial CMB field has been lensed using
LensPix, which creates a Gaussian realization of the gravitational poten-
tial from the given convergence power spectrum. Two cases are shown
here: the first-order-only result, where we considered only the standard
first-order analytical power spectrum, and the (first+second)-order cor-
rections one, exploiting previous formulae. We have produced several
Monte-Carlo realizations given the same power spectrum as input - using
a similar technique explained previously in the Thesis to estimate the con-
tribution to the lensed CMB field of the shot-noise present in the N-Body
simulation; lines plotted here are averaged over the whole ensemble. Fig-
ure 4.7 shows the difference power spectrum - between the standard ana-
lytical result and the second-order corrected one - for the lensed B-modes
of CMB polarization with respect to the shot-noise-induced one, which ac-
counts for the numerical noise present in our N-Body simulation due to
its intrinsic discretization. It is very difficult to distinguish between the
two for ` < 1200; Figure 4.8 shows the same plot as the previous Figure
but for the total intensity (TT) and E-mode of CMB polarization. In this
case the effect of second-order corrections cannot be distinguish from the
shot-noise coming from the N-Body simulations. Reaching the accuracy
required to test these corrections is still a work in progress, thanks to the
algorithm improvements of our code adopting lenS2HAT routines. The
next steps would include analysing the effects on other lensing observ-
ables encoded in the magnification matrix, as we compare them with our
numerical results discussed in the previous Section. Finally, we stress that
such analytical calculations may require a further expansion of the series
to higher perturbative orders, to check whenever higher terms may cancel
out the second-order contributions computed by [183, 184].
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Figure 4.6 Angular power spectrum for the lensed B-modes of CMB polar-
ization. The black line is the CAMB semi-analytical result, while the blue-
continuous line is obtained from the the first-order-only spectrum of the
convergence and the red-dotted line is obtained by including also second-
order corrections.
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Figure 4.7 Angular power spectrum for the B-modes of CMB polarization
as induced by the shot-noise present in our N-Body simulation (blue, con-
tinuous line). The red-dotted one is the difference between a lensed BB
power spectrum extracted from a first-order-only lensing potential and a
full one corrected with second-order terms.
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Figure 4.8 Angular power spectrum for the total intensity (TT - top panel)
and E-mode of CMB polarization (EE - bottom panel) as induced by the
shot-noise present in our N-Body simulation (blue, continuous line). The
red-dotted one is the difference between a lensed power spectrum ex-
tracted from a first-order-only lensing potential and a full one corrected
with second-order terms.



CHAPTER 5

Cross-Correlation simulations

Imitation is not just the sincerest form of flattery - it’s
the sincerest form of learning.

George Bernard Shaw

The final Chapter of this Thesis starts to address the final piece to the puz-
zle of modern cosmology, as we exploit the full potential of gravitational
lensing of CMB by cross correlating it with LSS tracers. Although N-Body
simulations can give a detailed picture of the abundance and clustering
of dark-matter haloes, and how matter evolves as the Universe expands,
they still do not represent what we really observe when we look up to the
sky, and we see little sparkling points we call stars and galaxies. To be less
prosaic, galaxy surveys constitute today the backbone of any astrophysi-
cal as well as cosmological study. However, in order to fully exploit and
interpret the observed data it is essential to produce a link between the
properties of the halo we model and simulate and galaxy populations we
observe and measure. This “link” can be achieved producing the so-called
(galaxy) mock catalogues [188, 189, 190, 191, 192, 193, 194, 195, 196].

The standard paradigm assumes that galaxies form by the cooling and
condensation of gas inside these dark matter haloes. Besides cooling,
however, other much more complicate phenomena such as star forma-
tion, merging, tidal interactions and several feedback processes determine
galaxy formation and its evolution. In recent years a big effort has been
devoted to generate mock galaxy catalogues that reproduce the observed
Universe, as we can finally investigate different galaxy formation scenar-
ios, test various statistical approaches and apply several computational
technologies. Moreover, mock catalogues can help to design and calibrate
“real” galaxy surveys, to study their selection effects and systematic er-
rors, to test new techniques to measure cosmological parameters, or to
calibrate other astrophysical estimators.

The basic approach is to start from the correct spatial clustering prop-
erties of the Universe, which is given by an N-Body (dark matter only,
usually) simulation. Dark matter haloes found in the simulations serve
as the seed points to place galaxies. Conversely, different recipes exist to
populate the dark matter haloes with galaxies. We can distinguish three
different approaches to link galaxy and dark matter halo.

129
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To start, we can include hydro-dynamics in the N-Body simulation it-
self (e.g., [197, 198, 199, 200] and for a review [201]), usually dealing with
physics on scales much smaller than those relevant for cosmological ap-
plications. However, this type of simulations are computationally very
expensive, and there is always a tension between the high resolution re-
quired for the small-scale physics and the huge volumes needed for cos-
mological exploitations. A tension which cannot be easily solved.

A second approach is to use Semi-Analytic Models (SAMs) (e.g., [202,
203, 204, 205, 206, 207, 208]), which attempt to simulate galaxy formation
and evolution using simple analytic and phenomenological prescriptions
to approximate star formation and feedback processes. The downside is
the huge number of free parameters that need to be included to model the
small-scale physics, whose value is fixed “ad hoc” to match real observa-
tions.

The third and final approach require extensions of the halo model for-
malism [209] to describe the non-linear gravitational clustering. Again,
within this formalism we can relate dark-matter haloes with galaxies in
three ways: (i) using the Halo/Sub-Halo Abundance Matching (HAM/SHAM)
technique (e.g. [210, 211, 212, 213, 214]), which assumes a monotonic rela-
tion between some determined galaxy property and the mass (or the dy-
namics) of the halo; (ii) adopting the Halo Occupation Distribution (HOD)
(e.g. [215, 216, 217, 218, 219, 220, 221]) to describe the galaxy bias in terms
of a probability distribution that a dark-matter halo of mass Mh contains
Ng galaxies of a given type; finally (iii) with the Conditional Luminos-
ity Function (CLF) (e.g. [222, 223, 224, 225]), which extends the HOD ap-
proach and gives the number of galaxies that resides in a halo of mass Mh

as a function of luminosity.

In this final Chapter we introduce and develop our own method to
populate dark matter halos. In Sec. 5.1 we describe the main steps of the
algorithm, from the N-Body simulation (Sec. 5.1.1) to the mock galaxies
(Sec. 5.1.2) built within the abundance matching formalism to link dark
halos and observed quantities such as fluxes and luminosities. In Sec-
tion 5.2 we show an example of the potentialities of our pipeline, as we
cross-correlate those LSS tracers with the lensing of CMB, both extracted -
as described in the previous pages - from the same N-Body simulation.

5.1. METHOD

In the following analysis we have used a set of different N-Body simula-
tions of cosmic structure formation in a flat ΛCDM Universe. The sim-
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ulations adopt a similar background cosmology, but they differ in mass
resolution and size of the simulated box, which give us the opportunity to
study and model mock catalogues at different scales, using different con-
figurations. In this Chapter we will analyse and investigate ΛCDM simu-
lations produced within two different projects: the Dark Energy Universe
Simulations (DEUS) consortium1 [226] and the aforementioned CoDECs
database of N-Body simulations. As said in Chapter 3, the latter is made
of a series of snapshots following the evolution of the matter distribution
in a cubic (co-moving) volume (1000 h−1Mpc)3 from redshift z = 10 to
present time using a modified TreePM version of GADGET [170]. Previously,
we have described the L-CoDECs suite of simulations, as we recall their
mass resolution at z = 0,mdm = 5.84×1010M�/h for CDM andmb = 1.17×
1010M�/h for baryons, while the gravitational softening is set to εs = 20 co-
moving kpc/h, corresponding to 0.04 times the mean linear inter-particle
separation. Mock catalogue capture physical phenomena at the galaxies
scale, and this is the reason we ought to use the H-CoDECs suite of sim-
ulations as well. H-CoDECs simulations are adiabatic hydrodynamical
simulations on much smaller scales, with a cosmological box of 80 co-
moving Mpc/h filled with 5123 CDM and 5123 gas particles. The mass
resolution at z = 0 for this set of simulations is mdm = 2.39× 108M�/h for
CDM and mb = 4.78 × 107M�/h for baryons, while the gravitational soft-
ening is set to εs = 3.5 co-moving kpc/h, also corresponding to 0.04 times
the mean linear inter-particle separation. For these simulations hydrody-
namical forces are included in the dynamical evolution of the baryonic
particles. These are computed by means of the entropy-conserving for-
mulation of Smoothed Particle Hydrodynamics (SPH, [198]) implemented
in GADGET. No other non-adiabatic processes such as gas cooling, start
formation, and feedback mechanisms from supernovae or Active Galactic
Nuclei are included in any of the H-CoDECs runs.

The Dark Energy Universe Simulation Series (DEUSS) [227, 228, 229]
aim at investigating the imprints of realistic dark energy models on cos-
mic structure formation. They are publicly available to the community
through the “Dark Energy Universe Virtual Observatory” (DEUVO), and
the DEUS consortium. The ΛCDM run consist of 10 snapshots at differ-
ent redshift, covering a volume of 162 comoving Mpc/h with 10243 DM
particles only. Particles evolution is computed with the Adaptive Mesh
Refinement (AMR) code RAMSES2 [230, 231], therefore implementing a dif-
ferent numerical method with respect to the previous set of simulations.
Table 5.1 summarizes the main features of the different simulations, as

1www.deus-consortium.org/
2www.ics.uzh.ch/˜teyssier/ramses/RAMSES.html

www.deus-consortium.org/
www.ics.uzh.ch/~teyssier/ramses/RAMSES.html
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Simulation mdm[M�/h] mb[M�/h] Np Box Size [Mpc/h] εs [kpc/h]

L-CoDECs 5.84× 1010 1.17× 1010 2× 10243 1000 20
H-CoDECs 2.39× 108 4.78× 107 2× 5123 80 3.5
DEUS-ΛCDM 2.86× 108 - 10243 162 2.47

Table 5.1 Simulations resolution, expressed as dark matter or baryon par-
ticle mass (mdm or mb), number of particles Np, size of the simulated box
and gravitational softening length, εs.

well as the slightly different background cosmology used for the differ-
ent set-ups, Eqs (5.1). Note how - for computational reasons mainly - low
resolutions correspond to big box sizes; besides, the DEUS-ΛCDM and H-
CoDECs simulations are directly comparable, as their particle mass (which
sets the minimum mass scale reproducible by the N-Body) or gravitational
softening length (εs, the corresponding length scale accessible) are indeed
very similar.

{Ωdm,Ωb,ΩΛ, ns, σ8, H0}CoDECs =

{0.226, 0.0451, 0.729, 0.966, 0.809, 70.3 Km/s/Mpc};
{Ωdm,Ωb,ΩΛ, ns, σ8, H0}DEUS =

{0.22, 0.04, 0.74, 0.96, 0.79, 72 Km/s/Mpc}.
(5.1)

In the following pages we will describe in details the various parts of
our mock catalogue algorithm; here we outline the basic steps to populate
our simulations with galaxies:

(i) starting from an N-Body simulation, we find dark matter halos using
an halo-finder algorithm: they represent the host site for our galax-
ies;

(ii) each halos can be identified by its mass, Mh and by its redshift zh
given the simulation output we are investigating;

(iii) we then associate to each halo, using some analytical fitting func-
tions, several astrophysical quantities like luminosity or Star Forma-
tion Rate (SFR), i.e. L ≡ L(Mh, zh) or SFR≡SFR(Mh, zh), functions of
only the redshift and the mass of each halos;

(iv) for each halo we can then contruct a PDF of the wanted astrophysi-
cal quantity, usually adoping a Gaussian or a log-Normal shape (de-
pending on the quantity we are looking at), where the mean value
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is computed at point (iii) and the width of the distribution, σ is ob-
tained from real data; we can randomly sample from those PDFs the
final astrophysical observable to associate to those DM halos, thus
accounting for statistical dispertion in the mock data;

(v) we correct our galaxy sample by ignore too massive DM groups, and
by considering only active galaxy, by means of their bursting time
tburst;

(vi) using the algorithm developed in Sec. 3.2, we can create spherical
maps of those mock galaxy; realistic observation can be simulated as
well as we introduce some survey requirements and specifications,
namely we consider cuts in the catalogue given the emitted flux (in
a specific bands) of our galaxies;

(vii) we repeat step (i)-(vi) for all the simulated snapshots of our simula-
tion, thus following the evolution of our galaxy sample in time.

The final result is a series of 2D spherical maps - recalling the 2D CMB con-
vergence maps we obtain using our multiple-lens code - which simulate a
real survey observation of galaxies emitting at different redshifts.

5.1.1. Finding Halos in N-Body

The first step towards finding gravitationally bound structure is to iden-
tify dark matter halos. These can be easily done using a Friend-of-Friend
(FoF) algorithm, a powerful tool to look for assembled structures [232, 233,
234, 200]. FoF selects groups of particles in which every object has at least
one neighbour within a specified linking length bl. If the separation be-
tween two dark matter particles is e.g. 20% of the average separation
between particles (thus linking length bl = 0.20), then they are placed
in the same group. At this point, if a particle is at the same distance bl
from these linked particles (friend of friends, precisely), it is also gathered
in the same group, and the process is thus iterated. In this way, particle
groups are formed that correspond to regions approximately enclosed by
isodensitiy contours with threshold value ρ ∝ 1/b3

l . The length bl is set to
have such a group with an average overdensity of 〈ρhalo〉〈ρ〉 ≈ 200, close to
the predicted value for a top-hat spherical collapse [235] in the Einstein-
De Sitter cosmology, and is usually regarded as a justification for using
b ∼ 0.2 in analysis of simulations. The code sets also a minimum num-
ber of dark matter particles to be part in a FoF group, such that spurious
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structures, due to numerical effects in the simulation, are discarded. Bary-
onic particles are placed in a particular group if the nearest dark matter
neighbour is a part of that group. FoF is both simple and efficient, and
its group catalogues agree quite well with predictions of Press-Schechter
theory [236]. An attractive feature of the FoF algorithm is its relatively
simplicity: the result depends solely on the linking length in units of the
mean inter-particle separation, bl. FoF algorithm does not assume any par-
ticular halo shape, therefore it can better match the generally triaxial mass
distribution in halos forming in hierarchical structure formation models.
In addition, studies over the last decade [237, 238, 234, 239, 240, 241] in-
dicate that mass function of FoF halos is universal for different redshifts
and cosmologies at least to∼ 10%, although real systematic variations can
exist.

In Figure 5.1 we show the halo mass distribution obtain from our sim-
ulations, in particular from the L-CoDECs and H-CoDECs suites. Note
that we sample the dark matter halos not from the FoF catalogue itself,
but directly from the halos in the light-cone, as we are able - thanks to the
algorithm detailed in Sec. 3.2 - to construct and simulated a whole, full-sky
Universe around a chosen observer. Data points are compared with ana-
lytical expectations by [239], for five different redshift outputs. The agree-
ments is very good at all times, and we can observe how points reflect the
different mass resolutions of the two simulations: the high-resolution one
(H-CoDECs) has access to the low-mass part of the halo mass function,
sampling objects up to a minimum mass of ∼ 1010M�/h. Low resolutions
and higher box sizes (e.g. L-CoDECs simulation), on the contrary, cover
the high-mass part of the plot, as we reach at z = 0 massive DM halos
of about 1015M�/h. Similar result can be found using the DEUS-ΛCDM
simulation.

5.1.2. From Halos to Galaxies

Once we have identified single halos within our simulation, we can pop-
ulate them using different recipes. We adopt a one-to-one correspondence
(one halo, one galaxy) based on the abundance matching formalism [214].
In this part we will describe the main step of the algorithm, as we refer the
reader to the quoted paper for an extended and complete discussion on
this technique.

Populating halos with galaxies
[214] has used abundance matching technique to link the stellar and black
hole content of galaxies to the gravitationally dominant dark matter com-
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Figure 5.1 Halo mass distribution, for five different redshift sample.
Points are extracted directly from the simulations, circle from the L-
CoDECs, which has a big box size (1 h−1Gpc) but a small resolution in
mass (mdm ' 1010M�/h); crosses, instead, belong to the H-CoDECs suite of
numerical simulations: with their high mass resolution (mdm ' 108M�/h)
snapshots are able to cover the low-mass part of the halo mass distribu-
tion, reaching bound objects of minimum mass of ∼ 1010M�/h. The con-
tinuous lines are analytically computed using a Tinker halo mass function
[239]. DEUS-ΛCDM shows similar results, and it covers a mass range sim-
ilar to H-CoDECs.
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ponent. The basic hypothesis is to consider one galaxy hosted in one halo
with a black hole in its centre, with the assumption that all the relations be-
tween the different masses are monotonic. From observations it is possible
to construct number density of object given a certain halo mass dN/dMh,
or a certain galaxy mass dN/dMgal, or a certain black hole mass dN/dMBH ;
the main idea is to match these number densities to construct some 1-to-1
relations for each different mass considered. This matching can be done at
different redshifts using several observations; an intrinsic statistical scatter
is thus present and will be taken into account by working with probability
distribution, i.e. PDF. The next step would be to link masses and luminos-
ity: [214] shows how it can be simply done as above by matching different
number density, with the addition of considering the effect of the duty cy-
cle. The luminosity number density dN/dL, in fact, can be measured only
if a galaxy is active, and this is controlled and modelled by the parame-
ter tburst, duration of the galaxy burst in activity. The resulting relation-
ships constitute a benchmark for galaxy formation and evolution model,
and provide analytic fits to the relationships derived from the abundance
matching technique. From the algorithm’s point of view, we would com-
pute from the halo mass - found by FoF algorithm - a simulated, observ-
able quantity, like the luminosity in a certain band or the SFR. [214] fit
observed data points using a functional form for different observables Y ,
Y ≡ Y (M) by adopting a double power-law shape:

Y (Mh, z) = N(z)×

[(
Mh

Mb(z)

)α(z)

+

(
Mh

Mb(z)

)β(z)
]−1

, (5.2)

where the normalization logN(z), the mass parameter of the break logMb(z),
and the characteristic slopes α(z) and β(z) evolve with the redshift accord-
ing to the same parametrization, i.e.

p(z) = p0 + kp1η + kp2η
2 + kp3η

3, (5.3)

with
η = log

1 + z

1 + z0

(5.4)

and z0 = 0.1. Basically, high luminosities correspond to massive halos.
We refer to Table 2 of [214] for the correct values of parameters used in
our mock catalogue algorithm. These relations are to be intended in a sta-
tistical sense: they represent the mean value of a probability function (a
Gaussian or a log-Normal distribution) with a certain dispersion σ, given
the statistical uncertainties in the observed data points. For a chosen halo
of mass Mh, the final value of a particular astrophysical quantity, say e.g.
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its luminosity in the infrared band, will be randomly sampled from the
probability distribution made of a mean value - computed with Eq (5.2)
- and dispersion σ reported in the aforementioned Table. The final result
will be a list of FoF objects characterized by several astrophysical quanti-
ties, a mock catalogue.

Mass cut for higher-mass halos
A one-to-one correspondence between galaxy and halo could be a prob-
lem in case of very massive DM group, since they more likely will repre-
sent cluster or groups of galaxies instead of a single, huge central galaxies.
Therefore, we need to cut our galaxy sample, factoring out objects too big
to host only one galaxy. To do so, we need to compute the analytic galac-
tic halo mass function, i.e., the mass function associated to halos hosting
one individual galaxy. The computation actually includes two steps: (i) to
account for the possibility that a halo contains various sub-halos each host-
ing a galaxy; (ii) to probabilistically exclude halos corresponding to galaxy
systems rather than to individual galaxies.

Our starting point is the sub-halo mass function, as recently deter-
mined by [242]. The distribution of sub-halos with mass between m and
m+dm in a halo of massMh at redshift zh can be well fitted by the function

Nsub(logψ) = γψαe
−βψω ln 10 (5.5)

where ψ = m/Mh. Actually if m is taken as the sub-halo mass at accre-
tion, the resulting un-evolved sub-halo mass function is universal for any
mass Mh; however, we are more interested in taking m as the mass of the
surviving, self-bound entity at redshift z, which is reduced with respect
to that at accretion due to mass stripping and dynamical friction. The
resulting evolved sub-halo mass function is then described by the param-
eter set [γ, α, β, ω] = [0.31fs, 0.82, 50.00, 4.00] and depends on the host halo
mass and redshift through the quantity fs. The latter may be determined
through the computation of the halo dynamical time within the spherical
collapse framework [242, 214]. Now we turn to compute the probability
distribution for a given halo to contain one individual galaxy. The first
step is to obtain the Halo Occupation Number (HON), i.e., the average
number of sub-halos inside a host halo of mass Mh:

〈N〉(Mh, z) =

∫ 0

logmmin/Mh

d logψN(logψ); (5.6)

here mmin represents a minimum mass for sub-halos, required to avoid
the divergence in the above integral; this will be set by comparison with
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numerical simulations and observational datasets (mmin = 1011.1M�). The
HON represents the average number of sub-halos inside a host halo, but
we need instead the probability distribution P (N |〈N〉) of having N sub-
halos given the average number 〈N〉(Mh, z). Numerical simulations and
HOD models aimed at reproducing various galaxy observables (see Ze-
havi et al. 2005, 2011; Zheng et al. 2007, 2009; Tinker et al. 2013) indicate
that such a distribution is well approximated by a Poissonian. Then one
can easily compute the cumulative probability P (< N |〈N〉) of having less
than N sub-halos; this reads

P (< N |〈N〉) =
Γ(N + 1, 〈N〉)

N !
, (5.7)

where Γ(a, z) =
∫
z

dt ta−1e−t is the incomplete complementary Γ-function,
x is the floor function (the closest integer lower than x), and n! = 1 ×
2 × ... × n the factorial function. We stress that in such a probability the
dependence on host halo mass and redshift are encased into the HON
〈N〉(Mh, z). In our case, we impose the host halo to have only one cen-
tral galaxy, therefore N = 1, while HON 〈N〉 is the “free” variable in our
computation. At the algorithm level, we simply toss a coin, if the resulting
random number is less than the computed cumulative probability, then
the halos of mass Mh is a possible candidate to host an active galaxy; oth-
erwise, it is too massive to be associated with a single galaxy, and it will
be discarded.

Is a galaxy active?
For reasons that will be explained later, we are interested in studying a
high-redshift sample of galaxies, which obviously have passed through
several different stages in their evolution. The observations have undoubt-
edly confirmed that the SFR in high-redshift galaxies must have proceeded
at very high rates (∼ 3× 102M�yr

−1) under heavily dust-enshrouded con-
ditions over a time-scale around 0.5 - 1 Gyr (see [243]). In addition, the
observed fraction of far-IR detected host galaxies in X-ray and optically
selected AGNs points toward a SFR abruptly shutting off after this period
of time. In the analysis by [243] this rapid quenching is interpreted as due
to the energy feedback from the super-massive BH growing at the centre
of the star-bursting galaxy. In the first stages of galaxy evolution, the BH is
still rather small and the nuclear luminosity is much less than that associ-
ated to the star formation in the host; the SFR stays roughly constant with
time being regulated by feedback from SN explosions is then regulated by
feedback from SN explosions, while the AGN luminosity increases expo-
nentially. After a period 1 Gyr in massive galaxies the nuclear luminosity
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becomes dominant, blowing away most of the gas and dust from the ambi-
ent medium and hence quenching abruptly the star formation in the host.
Actually the data concur to indicate that such phenomenon does not oc-
cur in less luminous galaxies, since in these objects the BH cannot grow to
large masses, and the nuclear luminosity remains always smaller than that
associated to the star formation; as a consequence, the latter may proceed
for times up to a factor of 10 longer. On this basis, [243] prescribe that the
time-scale for the duration of the starburst is given by

tburst = 7× 108 yr

(
1 + z

3.5

)−1.5

1 +
9

2

[
erfc

(
log

Lh
1011L�

)]
, (5.8)

where erfc is the (complementary) error function, and LSFR depend by
the halo mass using previous relations. The dependence on cosmic times
mirrors that of the dynamical/condensation time, in turn reflecting the
increase of the average density in the ambient medium. We then can con-
front this burst-time with the Hubble time,

tH(z) =

∫ 1
1+z

0

da

aH(a)
, (5.9)

giving a ratio δr = tburst(Mh, z)/tH(z) for each halo of mass Mh. Again in
the algorithm, we toss another coin: if the random number is less than
the ratio δr (or δr > 1, thus tburst > tH), then the galaxy is active and
accepted in our catalogue. In Figure 5.2 we recap all the previous steps,
as we show the luminosity function (number density) as extracted from
our simulations of the galaxy sample so far selected. We can confront our
mock galaxies with real observations by [153]. The agreement is satisfac-
tory for most of the luminosity range, and for different redshift ranges.
The high-redshift sample is the most problematic, but it is probably due to
a mismatch between the redshift of the single outputs of the N-Body (e.g.
all selected galaxies at z = 3.01), and the broad redshift range of the data,
which covers objects emitting radiation between z = 2.4 and z = 4. Again,
we can find very similar results using the DEUS-ΛCDM simulation.

5.2. SIMULATION OF CMB-LSS XC

As already explained in previous pages, LSS leaves an imprint in CMB
anisotropies by gravitationally deflecting CMB photons during their path
from the last-scattering surface to us. On the other hand, in the standard
structure formation scenario galaxies reside in DM halos, as signpost of
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Figure 5.2 Luminosity function distribution, for three different redshift
samples for the H-CoDECs ΛCDM simulation, from left to right, from low
to high redshift. Blue points are extracted directly from the simulations,
for three redshift sample. Red continuous lines represent observed data
by [153]. Note how in the right panels the mismatch between data points
and the curves extracted from N-Body simulations is mainly due to the
difference between the redshift of the simulation outputs and the redshift
sample of the dataset (which covers a high range from z = 2.4 to z = 4).
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structures that act as lenses for CMB photons. The cross-correlation be-
tween CMB lensing maps with tracers of large-scale structure can thus
improve simultaneous constraints of cosmological and astrophysical pa-
rameters, such as the structure growth rate and bias b relating fluctua-
tions in luminous and dark matter, allowing existing degeneracies to be
broken [244]. Sub-millimeter (sub-mm) surveys have the power of un-
veil the distant Universe in the redshift range 1 . z . 5, where the
CMB lensing is mostly sensitive to matter fluctuations, and hence rep-
resent perfect candidates for cross-correlation studies. Moreover, bright
sub-mm galaxies constitutes the progenitors of massive spheroids, and as
such represent a population of objects strongly biased relative to the back-
ground matter distribution. Previous cross-correlation studies involving
CMB lensing and galaxy or quasar density maps have been reported by
[245, 143, 8, 149, 246, 150, 247, 248].

Is a galaxy observable in a survey?
The Herschel Space observatory [249] has carried out observation of the sky
in five wavebands between 100 to 500 µm, enabling an exquisite mapping
of the sub-mm galaxies. The full H-ATLAS data field [250] has surveyed
about 600 deg2 with the survey area divided into five fields: the north
galactic pole (NGP), the south galactic pole (SGP) and the three GAMA
fields (G09, G12, G15). We are interested in replicating those observations
as mock catalogues for our XC studies, therefore the algorithm we have so
far presented intend to exploit and select this peculiar sample of galaxies:
high-z, high-star-forming, strongly clustered massive galaxies, tracers of
large-scale overdensities. Previous studies [154, 153, 150] have shown how
particular criteria on the galaxy emission can shrink the Herschel sample
to that specific group of objects we are interested in. The idea is to apply
these survey cuts to our simulated galaxies, to precisely mimic an Her-
schel-like observation. Sub-mm sources are selected and considered inside
our mock catalogue if they obey to the following criteria: (i) the flux at
250µm to be S250 > 35 mJy; (ii) the ratio between the flux at 350µm and
the flux at 250 µm to be greater than 0.6; (iii) the ratio between the flux
at 500µm and the flux at 350 µm to be greater than 0.4. These final two
criteria, so called “colour criteria” are intended to select only high-redshift
objects as observed by [154]. Obviously, we can compute the fluxes from
our simulated galaxy luminosity:

Sλobs =
Lλobs

4πd2
L(z)

SED (λobs/(1 + z))

SED(λobs)
(1 + z) (5.10)

at three different bands: λobs = 250 µm, 350 µm and 500 µm. So far we have
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Figure 5.3 Number of objects per redshift bin, dN/dz. Left panel, com-
puted for the DEUS simulation; right panel for the L-CoDECs one. In both
panels blue line is the number of halos, green represent all galaxy while
red refers to “galaxy in survey”, therefore galaxies selected throughtout
the above flux criteria. Note how in the left panel, the number of objects
per redshift has been multiplied by a factor of 1000 for viewing purpose.

in fact considered bolometric luminosity L(Mh), while for this set of ob-
jects we are interested in the emission at a particular electromagnetic band
(Lλ). This can be easily computed using the Spectral Energy Distribution
(SED) of said galaxies, as in [152]. In Figure 5.3 we can see the distribution
of objects selected using the above criteria as a function of redshift, i.e.
dN/dz, for two sets of simulation, L-CoDECs and DEUS. Note that, de-
spite being quite different, in terms of resolutions, box sizes, background
cosmology and simulation code, their dN/dz has roughly the same shape
and amplitude, with the peak of objects (about ∼ 5 106) for both found at
the same redshift, z ∼ 1.5.

Finally, Figure 5.4 show the XC angular power spectrumCκg
` computed

cross-correlating galaxies and CMB lensing maps. Blue points in the Fig-
ure are real observations from [150], obtained using Planck-2013 lensing
map and Herschel data, while green line is the theoretical angular power
spectrum. The orange points are the quantity of interest here, as they orig-
inates from mock catalogues and CMB lensing maps both extracted from
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the same N-Body simulations, computed using the algorithm described in
the previous Sections as well as in Chapter 3. Comparison between the dif-
ferent curves suggest that our mock catalogue recipes is on a good track,
since is able to fairly reproduce the expected theoretical signal and the ob-
served one3. Note that a detail astrophysical modelling of the signal is
still under investigation, as we plan to investigate the impact and relative
importance of different phenomena on the recovered and simulated XC
signal. The Figure shown here is obtained using the L-CoDECs N-Body
boxes; we expect similar results for the H-CoDECs and DEUS case, even
perhaps a better signal as they simulate smaller objects at higher resolu-
tions. A full comparison among the different simulation suites is still in
progress as we plan to address it in a future paper. In this sense, the over-
all algorithm is a staring point, not a final destination per sè, as we intend
to upgrade and improve it; for instance, we would like to drop the work-
ing assumption that one halo can host only one galaxy, by modelling the
halo (and sub-halo) physics through a HOD formalism.

The exploitation of this simulation setup has been use so far in sup-
port to the simulation of the signal in the context of cross-correlating CMB
lensing data with infrared observations for Herschel. We plan to study
in details the evolution of the XC signal in time, aiming at the CMB lens-
ing tomography which is still at an early stage of development but it will
improve enormously in the upcoming years. High signal-to-noise ratios
will be reached due to the augmented sensitivity of both galaxies surveys,
like DES, Euclid, LSST, DESI, and CMB lensing experiments, such as the
new phase of the POLARBEAR experiment. In the near future, the LSS
will be mapped at different wavelengths out to high redshifts, enabling
a thorough investigation of structure formation over cosmic time and al-
lowing for a better understanding of cosmology and astrophysics. Mock
catalogues will become therefore necessary to be able to control all possi-
ble systematic or contamination in the observed signal, as well as to pre-
dict the impact of different cosmological models or astrophysical scenar-
ios. Mock catalogues are indeed very flexible: different surveys’ require-
ments and specifications can be easly coded in the algorithm, for instance,
by changing the selection criteria of our objects; we plan to adjust our
pipeline to reproduce Euclid-like galaxy catalogues in order to explore the
many scientific possibilities allowed by this forthcoming spacecraft. Mock
catalogues represent up to date the best way to study the interactions be-
tween this two branches of physics, as by playing with the several recipes,

3Note that observed data seem to indicate a higher amplitude than expected; this
particular aspect is still not well understood, and it may be due to astrophysical contam-
ination and systematics, see discussion in [150].
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Figure 5.4 Angular power spectrum of the cross-correlation between
CMB-convergence and galaxies map. The blue point are from [150], ob-
tained using Planck-2013 lensing map and Herschel data; orange points
are computed using the algorithm described in the previous pages, as
both CMB convergence and mock galaxy catalogues are extracted from
the same N-Body simulation (L-CoDECs). The green line is the theoretical
angular power spectrum for a bias parameter of b = 2.8, which is an aver-
age value for this type of galaxy. Dashed horizontal lines refers to null XC
case. Error bars are computed directly from the maps as in [150].
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parameters and models we can forecast the best observational set-up able
to push the ΛCDM model to its limits.
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CHAPTER 6

Conclusions

The physics of the evolving and expanding Universe is at present well de-
scribed by the ΛCDM model. Several challenges to this model have been
proposed in recent years; and even if the standard paradigm is rock-solid,
robust against the many cosmological and astrophysical measurements,
numerous experiments are increasingly trying to improve sensitivity and
accuracy to put always finer and tighter constraints on the whole set of
parameters describing our Universe.

The Mother of all cosmological observations is, obviously, the light
coming from the recombination era, as photons decouple from matter car-
rying precious information of the initial perturbations present in the Uni-
verse. This light is of course known as Cosmic Microwave Background,
CMB, and its discovery and analysis represent the peak of the scientific
knowledge of the Universe. However, the main topic of this Thesis deals
with the life and times of CMB photons after decoupling, as they travel
through an expanding and evolving Universe towards us, the observers.
Secondary anisotropies are as rich of cosmological information as primary
CMB: among the former, a prominent role is played by the deflections due
to the interaction of photons with the gravitational potential arising from
LSS, or CMB lensing. In the upcoming years, a continuous flow of data
is going to foster a growing attention of the community on the potential
of this observable and the implications that a precise measurement of the
lensing power spectrum from CMB can reflect on our knowledge about
cosmology and astrophysics.

The goal of this Thesis has been a full characterization and modelling of
the CMB lensing signal, including also second-order and non-linear effects
which become more important as the experimental sensitivity improves.
To this aim, we have developed and tested a new algorithm to study the
gravitational lensing of the CMB on the full sky. As we summarize here,
so far, we have used it to study the lensing statistics, probing the validity
of existing approximations, calculating the full distortion tensor, creating
a simulation pipeline for CMB lensing - LSS cross-correlation for current
and forthcoming datasets.

The starting point are the snapshots of a full N-Body numerical simu-
lation, from which we can reconstruct a whole light-cone around the ob-
server, mocking a real observation from the Earth. A light-cone is made of
a series of different spherical maps onto which the matter distribution of
the LSS is projected. The spherical shells are then used as lensing planes
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to deflect the primordial CMB photons as they travel throughout the Uni-
verse. In such approach, the continuous deflections of photons is approx-
imated by a series of multiple lens-planes (ML) that bend the light rays.

In order to fully characterize the signal, we need first to test all the
possible approximations used so far in the literature. The Born approxi-
mation, where the deflection is considered as an integrated effect along the
line-of-sight, has been widely tested by several authors, and was chosen
as benchmark to highlight the range of validity and applicability of our
algorithm, in particular in reproducing non-linearities from the N-Body
simulation at small scales. The projection of the N-Body matter distri-
bution onto concentric spherical maps allows to compress all the inter-
esting information from the N-Body simulation into a more manageable
light-cone, mimicking a realistic distribution of large scale structure as
observed by present and future large galaxy surveys. The pipeline has
been tested on several HPC clusters, and for a medium-size simulation (of
about some billion particles), we can reconstruct the whole evolution of
the light-cone using few thousands CPU-hours, managing few Gigabytes
of high-resolution 2D spherical maps instead of a whole, heavy numerical
simulation.

We validated the lensing planes reconstruction both at the map and
statistical level using the 2-point correlation function in the spherical har-
monics domain evaluated for all the spherical maps constructed across
the past light-cone. We found the latter to be reproduced fairly well by
semi-analytical approximations to the non-linear evolution implemented
in widely used Boltzmann codes, though deviations at the percent level
were clearly observed, mainly due to the intrinsic mass resolution of our
N-Body simulations. We also analysed the final, lensed CMB anisotropies
in both temperature and polarization for the effective as well as the multi-
ple plane approach, paying a particular attention to the B-modes of polar-
ization. These are in fact the most sensitive quantities both to the overall
lensing process and to numerical effects. In the latter case, we have dis-
cussed in detail how to minimize their impact. We found however that
these numerical effects are usually negligible for the temperature and E-
modes polarization field and important only for B-modes. Our pipeline
has managed to recover the expected signal at the percent level up to ` ≈
4000 for the intensity (T) and E-modes of CMB polarization. The B-modes
signal was found to be lower than the one computed using the semi-
analytical result, following the general trend measured in the extracted
lensing potential power spectrum. However, we have reconstructed the
B-modes induced by lensing with the same precision of the other CMB
fields to ` ≈ 2000, where the observed lack of power at higher multipoles
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is only due to the chosen resolution of the lensing maps, as we have dis-
cussed its impact on the overall lensing kernels. Finally, we have extended
the control of the validity of the Born approximation to the limiting reso-
lution of the present set-up of our simulations. Our results indicate that,
when checking the angular power spectra of lensing observables, includ-
ing CMB lensed fields, the latter approximation describes well the ray-
tracing performed by the ML approach. However we expect the latter to
perform better for studies aiming at investigating the statistics of the sig-
nal at smaller angular scales, or in presence of distortion from isolated,
sharp structures.

Science usually unveils more questions than it answers, and that hap-
pened also in this case: motivated by the lack of statistical differences be-
tween multiple lens approach and the Born approximation, we decided
to push the limits of our algorithm by, on one side, reaching higher reso-
lutions in the numerical simulations and by looking at other lensing ob-
servables, while on the other side by describing the signal via a theoretical
and analytical framework thanks to a perturbative expansion of the angu-
lar power spectra. We have been able to reproduce the full magnification
matrix which encodes all the information about the image of a bundle of
light-rays coming from the last scattering surface. This result has been
achieved by improving our pipeline by linking new routines to deal with
high-resolution maps required for this study. Our analysis on the 2-points
statistics shows the arising of a second-order signal in terms of rotation
(or B-modes of the lensing shear) of the image, which is only present if we
take into accounts the several deflections a photon experiences, i.e. this is
the first effect of high-order corrections to the Born approximation. The
signal is present at all scales of interest, up to ` ≈ 2000, and it is almost
two order of magnitudes weaker than the first order signal. It has been
proven robust against different numerical tests: an ongoing work is re-
lated to quantify this impact on current and future surveys for B-modes of
CMB polarization, since - as repeatedly said during this Thesis - they are
the most sensitive probe to any changes or effects in the lensing potential
induced by LSS. The presence of a curl mode in the potential, arising from
second order effects of weak lensing, has a direct impact on the current sta-
tistical estimators of the lensing potential through the lensed CMB fields.
We plan in the next future to assess and quantify its relevance, both as a
contaminant of present algorithms and as a tool to explore new methods
and physics.

We have also computed the second-order corrections to the angular
power spectra of the lensing observables (convergence, shear and rota-
tion) predicted by perturbation theory up to the fourth order in the gravi-
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tational potential. The various contributions can be attributed to the cou-
pling between lenses at different redshifts, or non-local Born-corrections or
a combination of both effects at the third order. They have been tested both
numerically and observationally in the weak lensing scenarios, where the
source plane is reasonably near the observer, at zs ≈ 1, 2; several au-
thors have concluded that these corrections are not relevant for the galaxy
weak-lensing case being orders of magnitude lower than the first-order
contribution. On the contrary, if we apply the same recipes to the CMB-
lensing case, we recover a large excess in the B-modes power spectrum
with respect to the first-order one: these corrections seem to affect the
CMB lensing potential at very small scales and, consequently, the B-mode
power spectrum at all the multipoles. A tension seems to exist between
our numerical results, where only a small second-order effect on the ro-
tation power spectrum is recovered, and the analytical calculation which
prescribes a 10 % variation of the lensing peak of the B-modes (` ≈ 1000).
Again, this is under investigation as we struggle to improve the numeri-
cal set-up to properly simulate both the CMB lensing per sé and the LSS
evolution below the smallest angular scales considered in this Thesis; the
main goal is to test the validity of this perturbative approach to high-` for
a source plane and lens planes at very high redshift.

Finally, constraints on the cosmological parameters can be improved
not only by considering CMB lensing as a separate observable, but also by
taking into account the cross-correlation between CMB lensing and galaxy
angular distributions. This process enhances the contribution to the un-
perturbed CMB by the gravitational potential as we are able to relate it
to the structures producing the deflections themselves. Furthermore, the
cross-correlation of different data sets allows us to identify and gain con-
trol on the different systematics, peculiar to each experiment, and lower
their bias on the final results. This aspect becomes even more important
when considering the fact that nowadays cosmological and astrophysical
surveys are now increasingly dominated by systematic, rather than statis-
tical uncertainties.

To this end, we have developed a simulation pipeline to construct mock
galaxy catalogues. The main idea is to start from the same N-Body sim-
ulation and extract, on one hand, a series of lensing potential maps to
build up our light-cone, as described above. On the other hand, using
the appropriate halo-finder, we can produce mock halo catalogues from
the simulation. One-to-one relations between the halo mass and galaxy
observables quantities (luminosity, SFR, stellar mass, ...) can be analyti-
cally computed within the abundance matching formalism, and they have
been verified using real observed galaxy datasets. We then populate our
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catalogue of simulated halos with galaxies, creating a series of spheri-
cal 2D maps, mimicking a real measurements of galaxy emissions from
an observer on Earth, i.e. a mock catalogue. We have applied this tech-
nique to study the cross-correlation between Planck and Herschel data,
recovering a nice agreement with the expected theory and the measured
data. This pipeline, however, can be particularly useful in different cross-
correlation studies between the CMB with other tracers of mass and fore-
ground sources. The tomography of LSS, which is an intrinsic feature of
the two lensing approaches analysed in this work, can be exploited to in-
vestigate different cosmological scenarios, looking at the effects of differ-
ent dark energy models on small scales as well on the whole evolution
of structures in the Universe. These feature will be of great importance
for upcoming projects such as the Euclid satellite that can fully exploit the
capabilities of cross-correlation as cosmological probe. The Euclid case is
particularly relevant, as the collaboration needs mock catalogues and sim-
ulations of XC to be able to tightly focus its scientific objectives, to priori-
tise its observations and to study possible systematics, numerical as well
as physical contaminations in measured the signal.

As we stated in the first line of this Thesis, we are heading towards a
new era for cosmology, precision cosmology era where we should be able
to measure, model and predict cosmological observables with absolute
high accuracy and resolution. This Thesis walks into this direction, as
it tries to simulate and understand the effect of gravitational lensing on
CMB photons in its profound details. It will be a long haul, as we plan for
the near future to exploit our pipeline using new numerical simulations
which will reach even higher resolutions, thus allowing us to study the
signal to smaller scales. This is mandatory since sub-orbitals and satel-
lite experiments aim to full characterise lensing effects to always higher
multipoles, and the community hungers for accurate and precise recon-
struction of such effects. Another area of research will involve adopting
different cosmologies and dark energy scenarios with respect to the stan-
dard ΛCDM so far analysed, as our algorithm can post-process any type
of numerical simulations. The ultimate goal would be to reach the limit of
the constraining power of the CMB itself or the XC with other observables,
to explore the unknown dark sector of the current cosmological model.



152



Bibliography

[1] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-
Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont,
C. Baccigalupi, A. J. Banday, and et al. Planck 2013 results. XVI.
Cosmological parameters. A&A, 571:A16, November 2014.

[2] B. Reichborn-Kjennerud, A. M. Aboobaker, P. Ade, F. Aubin, C. Bac-
cigalupi, C. Bao, J. Borrill, C. Cantalupo, D. Chapman, J. Didier,
M. Dobbs, J. Grain, W. Grainger, S. Hanany, S. Hillbrand, J. Hub-
mayr, A. Jaffe, B. Johnson, T. Jones, T. Kisner, J. Klein, A. Korotkov,
S. Leach, A. Lee, L. Levinson, M. Limon, K. MacDermid, T. Mat-
sumura, X. Meng, A. Miller, M. Milligan, E. Pascale, D. Polsgrove,
N. Ponthieu, K. Raach, I. Sagiv, G. Smecher, F. Stivoli, R. Stompor,
H. Tran, M. Tristram, G. S. Tucker, Y. Vinokurov, A. Yadav, M. Zal-
darriaga, and K. Zilic. EBEX: a balloon-borne CMB polarization ex-
periment. In Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 7741 of Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, July 2010.

[3] Z. D. Kermish, P. Ade, A. Anthony, K. Arnold, D. Barron,
D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. A. Dobbs, J. Er-
rard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger,
N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L.
Holzapfel, J. Howard, P. Hyland, A. Jaffe, B. Keating, T. Kisner,
A. T. Lee, M. Le Jeune, E. Linder, M. Lungu, F. Matsuda, T. Mat-
sumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. My-
ers, H. Nishino, H. Paar, E. Quealy, C. L. Reichardt, P. L. Richards,
C. Ross, A. Shimizu, M. Shimon, C. Shimmin, M. Sholl, P. Siri-
tanasak, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki,
T. Tomaru, C. Tucker, and O. Zahn. The POLARBEAR experiment.
In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, volume 8452 of Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, September 2012.

[4] J. E. Austermann, K. A. Aird, J. A. Beall, D. Becker, A. Bender, B. A.
Benson, L. E. Bleem, J. Britton, J. E. Carlstrom, C. L. Chang, H. C.
Chiang, H.-M. Cho, T. M. Crawford, A. T. Crites, A. Datesman, T. de
Haan, M. A. Dobbs, E. M. George, N. W. Halverson, N. Harrington,
J. W. Henning, G. C. Hilton, G. P. Holder, W. L. Holzapfel, S. Hoover,

153



154

N. Huang, J. Hubmayr, K. D. Irwin, R. Keisler, J. Kennedy, L. Knox,
A. T. Lee, E. Leitch, D. Li, M. Lueker, D. P. Marrone, J. J. McMa-
hon, J. Mehl, S. S. Meyer, T. E. Montroy, T. Natoli, J. P. Nibarger,
M. D. Niemack, V. Novosad, S. Padin, C. Pryke, C. L. Reichardt, J. E.
Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer, E. Shirokoff, A. A.
Stark, K. Story, K. Vanderlinde, J. D. Vieira, G. Wang, R. Williamson,
V. Yefremenko, K. W. Yoon, and O. Zahn. SPTpol: an instrument
for CMB polarization measurements with the South Pole Telescope.
In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, volume 8452 of Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, September 2012.

[5] M. D. Niemack, P. A. R. Ade, J. Aguirre, F. Barrientos, J. A. Beall,
J. R. Bond, J. Britton, H. M. Cho, S. Das, M. J. Devlin, S. Dicker,
J. Dunkley, R. Dünner, J. W. Fowler, A. Hajian, M. Halpern, M. Has-
selfield, G. C. Hilton, M. Hilton, J. Hubmayr, J. P. Hughes, L. In-
fante, K. D. Irwin, N. Jarosik, J. Klein, A. Kosowsky, T. A. Marriage,
J. McMahon, F. Menanteau, K. Moodley, J. P. Nibarger, M. R. Nolta,
L. A. Page, B. Partridge, E. D. Reese, J. Sievers, D. N. Spergel, S. T.
Staggs, R. Thornton, C. Tucker, E. Wollack, and K. W. Yoon. ACT-
Pol: a polarization-sensitive receiver for the Atacama Cosmology
Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 7741 of Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, July 2010.

[6] A. A. Fraisse, P. A. R. Ade, M. Amiri, S. J. Benton, J. J. Bock, J. R.
Bond, J. A. Bonetti, S. Bryan, B. Burger, H. C. Chiang, C. N. Clark,
C. R. Contaldi, B. P. Crill, G. Davis, O. Doré, M. Farhang, J. P. Fil-
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