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1. Introduction and Summary

The consistent quantum theory of gravity is, together with the quark con-
finement problem in the theory of strong interactions, one of the most important
open problems in the contemporary theoretical physics. In the last few years
great hopes were concentrated on the string theory, which is supposed to give
complete, consistent unification of all interactions, including gravity. The string
theory itself includes as an essential part the theory of two-dimensional gravity,
as it is based on the requirement of diffeomorphism invariance on the worldsheet.
Hence, the study of 2D quantum gravity is of two-fold interest, being unavoidable
step in the development of the siring theory and, on the other hand, presenting

a theoretical laboratory for the realistic cosmology and gravity.

However, the conceptual and technical achievements of the recent years were
most impressive in the theory of critical strings, while strings in non-critical
dimensions appeared to be a rather though subject. Only recently there was a
fast growth of interest in this direction. This is mainly due to the successes in the
description of the non-perturabative 2D gravity based on the theory of random
surfaces (or the equivalent matrix models) [1], the more deep understanding of
the quantization of the Liouville theory [2, 3] and the recent construction of the

physical spectrum of the non-critical strings [4].

The theory of the noncritical strings can be defined as a quantum theory
of 2-D gravity interacting with matter fields [5, 6]. Which type of gravity we
have to couple to the matter fields depends on our choice of the string action.
The simplest area action 4 = [+/—hd%z (i.e. minimal surfaces) in noncrtical
dimensions d < 26 requires a consistent quantization of the “pure ” 2-D gravity
represented in conformal gauge by the Liouville action [7]. However if we define
the string as a theory of surfaces immersed in M, (or more generally in M, ,)
we have to consider, following Polyakov’s arguments [8], larger class of surfaces
in M which are described not only by the metric h;; (i,7 = 1,2) but also by
their second quadratic forms bf; (@ = 1,.-+,p— 1) and torsions V?E. In this case

the string action is given by the geometric invariants characterizing the surface



(i.e. certain determinats and traces of hij, bf; and V:-X'G). The gravitational
degrees of freedom of such theories include together with the Liouville mode
(¢ + hij) the “extrinsic modes” coming from the independent components of
b% and vy B Therefore the corresponding noncritical string model should be a
theory of “extended” 2-D gravity interacting with the matter fields.

The induced action of two-dimensional gravity is well known and has the
form:

d 1
L= [V (755)
Here d~! plays the role of a coupling constant, A is the Laplacian in the metric
gab, R is the scalar curvature and M is the manifold in consideration. This action
is naturally induced by massless particles and appears in the string functional
integral [T7].

The most simple form this formula takes is in the conformal gauge: g, =
e?8,,, where it becomes a free field action. However, troubles appear in trying
to quantize the theory in this gauge. We have to set a cut-off, such that it is
competible with the general covariance. Generally, it is not known how to do
this. In fact, trying to regularize the theory, we obtain a non-linear interaction
term of the form:

e, = 17 [ VAR ~ 15 [(06)e*.
For that reason it was proposed in {5] to quantize the theory in a light-cone gauge,
defined by:
ds?® = datdz™ + hyi(de™)?.

A remarkable property of this gauge is the SL(2, R)- current algebra generated
by hy.. This current algebra implements differential equations defining the cor-
relation functions of the theory. These differential equations involve constant pa-
rameters wich are subject to finite renormalization. Unlike the conformal gauge,

the quantization in the light-cone gauge does not spoil the general covariance.

Indeed, one can add a regulator to the action:
1 1 ,
l.c.
Tree = Ef\/ERZ ~ ﬁf(53h++)2

with no non-linear terms. This term modifies the propagator of the A- field

without touching the vertices and makes the theory convergent.



In two dimensions one can consider various extensions of gravity. The best
known is the theory of 2D supergravity [9] which includes a spin-§ gravitino
field as a superpartner of the graviton. There exist also higher-spin extensions
of 2D gravity. These theories are based upon an algebra which is of W- type.
In general, the latter are non-linear algebras: the OPE of two generators closes
only on normal ordered products of the other W- generators. In other words, the
closure of the algebra is achieved only in the enveloping algebra of the generators,
thus, it is not a Lie algebra. Originally introduced [10] as 2 higher spin extension
of the Virasoro algebra, it rapidly became clear that V- algebras are related to
various other important structures of theoretical physics, such as cosets of affine
Lie algebras [11], gauged WZW- models [12, 13], reductions of KP- hierarchy
(14, 15], Toda field theories [16], integrable IRF lattice models [17] and, more

recently, matrix models and random surfaces [18].

W- gravity can be thought of as the gauge theory of local W- algebra symme-
tries in the same sense as two-dimensional gravity can be thought as the result
of gauging the Virasoro algebra. The gauge fields of such theory include the
two dimensional metric gi; and a (possibly infinite} number of higher-spin gauge
fields 4;; ;. Perhaps the most important reason to consider W- gravity is that
the range of “weak gravity” is enlarged. Untill for the usual gravity it is in the
region: ¢ < 1, ¢ > 25, for W- gravity associated with the affine algebra § one
obtains: ¢ <r, ¢ > r+ 4hD, where r is the rank, - the dual Coxeter number
and D- the dimension of the algebra g. Owing to this fact, one can even define
the string theory in four-dimensional space time without compactification. The
minimal W- gravity to treat such object corresponds to si{5) or so(8). If the
space-time interpretation of these current algebras is possible, the W- string can

be regarded as an important candidate for realistic string theory.

Decpite recent progress in the understanding and the classification of 2D
classical and quantum W- gravities [5, 6, 12, 19, 20], a deep question remains
unanswered: what replaces the general covariance on the two-dimensional surface
in the case of 2D gravity when it is extended to W- gravity 7 In other words: what
is W- geometry, or as a dynamical question: what is the invariant definition of
W- gravity 7 Although Witten’s approach to CFT’s based on 21 Chern-Simons
actions clarified the geometry of WZW-models the question for the geometrical



meaning of the higher spin currents (s > 2) Wi , Vijut, ..., of the W-algebra
models, [16, 21, 22|, and its primary fields remains open. Concerning W -gravities,
the Drinfeld-Sokolov Hamiltonian reduction, {12, 23, 24, provides them with
natural phase space geometry and leaves unanswered the question about the
origin of the new geometrical objects A;k, Bijkty - ., coupled to the higher spin
currents.

In this thesis we present an attempt to give an answer (presumably incom-
plete) to some of the above questions and discuss some recent developments on
the subject. However, the full self-consistent theory of W- gravity is, at least to

my knowledge, still an open problem.
This thesis is organized as follows:

In Chapter 2 we give an overview of the, already classic, results concerning
two-dimensional quantum gravity. First, we discuss in some details the induced
gauge theories. The reason is the analogy between both theories which is used in
the proper treatment of 2D gravity. We obtain the induced action which results
after the integration over the matter flelds. After an appropriate parametrization
of the gauge flelds and currents it turns out to be equivalent to the WZW action.
To prove this one uses the anomaly equation and the corresponding anomaly in
the gauge transformation of the action. Then we discuss the dynamics of the
gauge fields, more precisely some aspects of the renormalization of the theory. It
is shown that the central charge of the corresponding current algebra does not

renormalize.

The theory of 2D gravity is treated in a similar way. We choose to work
in a light-cone gauge for the metric which is analogous to our choice in the
gauge case. Unlike the latter, however, the anomaly equation and the anomaly
transformation of the action contain third order derivatives of Ay, which leads
to different renormalization effects. The equation of motion for A, is solved in
terms of currents J=(zT) which obey SL(2, R) current algebra as a consequence
of the transformation properties of A . The dynamical description of the theory
implies that the total stress-energy tensor (and therefore the total central charge)
should vanish. This leads to an exact formula for the renormalized central charge

¢

k of the current algebra wich in the classical limit ¢ — —oco reduces to kg ~ 3.

The underlying SL(2, R) current algebra implements differential equations for



the correlation functions of the theory. In the case of two-point functions these
give the renormalized values of the anomalous dimensions of the primary fields
interacting with gravity.

Chapter 3 is a review of the known results about - gravity. The latter are
obtained mainly by using the structure and the representations of the underlying
W- algebras. Hence, we begin with brief discussion of their properties. The
most natural formalism to treat this subject turns out to be the free-field (or
Feigin-Fucks type) realization. The construction of the generators W} is rather
complicated and we give here only the first few examples. Then we proceed with
more or less standard description of the highest-weight representations, the role
of the screening operators, null vectors and degenerate representations, operator
product algebra and minimal models. We discuss also the possible n ~ oo limit

of Wy- algebras resulting in new linear algebra Wy or its contraction wee.

In the absence of covariant formulation the analysis of W- gravities is based
on a natural ansatz for the gauge fields, their transformation properties and the
analog of the light-cone gauge. We show that using these assumptions one can
rather straightforwardly generalize the previous results for the anomaly equa-
tions, anomaly of the action and the equations of motion of the usual gravity.
As a result we obtain that the hidden symmetry of ¥W- gravity in the light-cone
gauge is given by the corresponding affine Lie algebra §. Again, the vanishing
of the total central charge implies a general formula for the renormalized central
charge of the current algebra. Using the Sugawara construction for the stress
tensor we obtain also the anomalous dimensions of operators in the presence of
W- gravity. At the end we discuss briefly the properties of we- gravity (which
can be thought of as a gauge theeory of wy- algebra). It is shown that in the
process of cancellation of the anomalies the renormalized currents close no more
W but just Wee- algebra.

In Chapter 4 we present original results on the connection between ¥, - grav-
ities and the geometry of the affine surfaces of constant mean curvature immersed
in higher-dimensional affine spaces 4,. First we give a brief introduction to the
theory of affine curves in 4, and our proof that W; and W3 minimal models have
as a classical limit (c — —oo) the geometries of the affine curves in 4; and A4;

respectively. It is based on the identification of the normalized “affine velocities”



v("'n) with the classical limit of specific primary fields of W,- models. Also, the
classical limit of certain null vectors coincides with the affine Frenet equation for
the curve imbedded in 4,. We propose also an affine geometrical derivation of

the KdV equation.

The following section is devoted to the geometry of the affine surfaces im-
mersed in A3. It can be defined uniquely by its two fundamental forms: ¢ =
hgjdmidmj and ¥ = Aij-kdmida:jda:k satisfying the condition hiinjk = 0. In the
last section we derive our main result, namely that Wj3- gravity is equivalent to
the affine geometry of the constant mean curvature affine surfaces in 43. The
(gauge-fixed) affine structure equations in light-cone gauge are invariant under
W- transformations generated by h and 4. As a consequence of the integrability
conditions the “extended metrics” h and A satisfy the W- trace anomaly equa-
tions. Concerning Wy~ gravities we conjecture that they are described by certain

class of affine surfaces in A4,.

Chapter 5 presents an attempt to identify the noncritical string models repre-
sented by the geometry of surfaces of constant mean curvature and certain other
restrictions with the theory of WO(p,q)- gravities. Qur starting point are the
structure equations for the moving frame fields ¢ and N%. Choosing an appropri-
ate basis we fix part of the gange symmetries. The remaining restricted SO(p, q)-
gauge transformations are found by using a method proposed by Polyakov, We
show that imposing the condition of constant mean curvature (and some further
restrictions in the case of surfaces embedded in higher dimensional spaces) the
latter close the classical extended WO(p,q)- algebra. The anomaly equations
for the extended metrics are again a consequence of the integrability conditions.
Their derivation in the case of surfaces embedded in M3 3 is highly nontrivial
and it confirms our conjecture for the general case. For Af3 2 we present also a
discussion on how the self-intersection properties appear in the context of the
extended WO(2,2)-gravity.

Appendix A can be considered as a guide to the Lie-Cartan theory of the
geometric invariants which is one of the basic tools in the construction of the Klein
geometries. In Appendix B we give the proof of the W3- symmetry of the affine
structure equations and the detailed derivation of the corresponding infinitesimal

transformations. In Appendix C we derive, using the method of Polyakov, the



restricted (field dependent) gauge transformation laws of the currents Tin the
case of surfaces embedded in Mj3. We also derive the transformations of the
“extended metrics” As. In Appendix D we derive systematically the anomaly
equations from the Gauss-Codazzi equations for the specific surfaces embedded
in M3 3. It includes also the complete expressions for the transformation laws of

the fields W and V of conformal spins 3 and 4 respectively.



2. Two Dimensional Quantum Gravity

In this Chapter we give a brief introduction to the the theory of two-dimensional
quantum gravity. It is based mainly on the classic works of Polyakov [5] and
Knizhnik, Polyakov and Zamolodchikov (KPZ} {6]. It was proposed there to
quantize 2D gravity in a light-cone gauge for the metric which turns out to be
much more convenient than the usual conformal gauge used in the string theory.
Using a parametrization of the light-cone component A, similar to the one used
in the induced gauge theories, it is possible to write down a local covariant action
which is the gravitational analog of the WZW- action. In particular it reveals the
hidden SL(2, R) current algebra symmetry of the theory. It is exploated below to
give general expressions for the renormalized central charge of the current algebra
and the anomalous dimensions of the primary fields in presence of gravitational
interaction. Comparison with the results obtained in the random surface models

shows perfect agreement between both theories.

2.1. Induced Gauge Theories

Let us consider first the induced gauge theories. The reason of doing this is
that there are a lot of analogies between these and the induced gravity theory
which is our goal in this chapter. One can also show, [12, 25], that it is possible
to obtain the induced gravity action in chiral gauge from that of the induced
gauge theory with gauge group SL(2, R).

Consider the simplest example of fermions in the adjoint representation of

the group G minimally coupled to external G-gauge fields:
L=yt (887 + APyl 4 (4 - ), (2.1)

(z* are the coordinates of the 2D surface), or in a more compact form:

——
| O}
]

—

L o= Py,(8a + Ax 1.

The induced action of the theory is obtained after integrating out the matter



fermions and is given by the determinant of the Dirac operator in (2.2):
eTind(4) = { Det[va(Ba + Aa)]}? = f DypetS9r4), (2.3)

One can obtain the explicit form of T';p4(A) computing the Feynman graphs
and summing the perturbation series. The result is a non local non polynomial

expression in A:

Tina(4) = /dzmTr (Agjfi + 2A [;—_A, gf:u/l] +...—)

n (2.4)
_fd2:cTr( P L?l_ ] ng) .

Polyakov and Wiegmann, [26], found a very elegant alternative formulation

for T'(A). It is based on the so called anomaly equation:
3_J_|_ “+ a_g..-"'l.... + [A_, J+] = 0, (25)

(and analogous for 44 and J..}, which can be easily proved by direct computation.

Now, let us parametrize the gauge fields:
A= —(0-h)R™1
Ay =—(8+9)97",

where g and h are elements of the group G. For the currents J, one obtains

(2.6)

respectively:
Jy = (04 h)h—l

=(0-9)97",
because the anomaly equation (2.5) states that the curvature of the gauge field

(2.7)

with components {A_, J;) vanishes:
Vode =—0:4_. (2.8)

Using the anomaly equation (2.5) it is easy to obtain the variation of the induced

action I'_{A_) (the part of I'(4) depending only on A_):
SU_(A_) ~ fTrJ+6A_ - —fTr(V_J+)e (2.9)
under the gauge transformation. Using (2.8) this becomes:
~ ./‘TT(B.;.A".)E
In terms of the new variables (2.6) the above transformation can be written

10



as:

6T ~ — [ Tr (81(0-hh™")8hA™),

where we put i + 6h = (exp €)h.
Now one can look for an action which has the same transformation property.

The result is a WZW action for the group-valued field & £ G:
D(h) ~ [ daTr(0:h70-h) + [ d2eP Tr(hah™ hgh™hoh™)  (2.10)

with d®z = dz’dzTdz™ and €t~ = —1. A similar expression can be obtained
for T'4(A4) with changed sign and k& replaced by g. The final form of the total

action is:
Tina(As, A_) = Ty(Ay) + To(A) —2 ] Tr(AyA_), (2.11)

where —2 [TrA A_ is the local counterterm we have to add to ensure gauge
invariance. This covariant action can be viewed as the induced action of a gauged

WZW model [27]:

k k
T(k, Ay, A.) = D(R) + /TT(J+A_ + oAy — A A+ A hALRTY),
Parametrizing 4+ as before one can show that after integrating out matter, i.e.
the fields h, the induced action of the gauged WZW model is indeed given by
(2.11).
To perform now the functional integration over 4 we have to fix a gauge. We

choose:

A_=0, (2.12)

which results in the following Lagrangian:

L=9_(04 + A4 )b- + 094 +10-¢,

where 1 and € are anticommuting ghosts in the adjoint representation of the
gauge group. In order to compute the central charge of the theory we have to
use the constraints on the currents, namely that in any gauge theory the total
current is zero. At the quantum level this reads:

67

— tot = 0. .
GAZ|, - (Jy7) =0 (2.13)

11



For the model considered above we then have:
2% =4y s + ne+ constd, = 0. (2.14)

We see that Ji is a sum of three contributions coming from matter, ghosts
and gauge currents. Bach of them satisfies separately a Kac-Moody algebra with

central charge k:
[74(2), 7 (9)] = kbas'(z = y) + fuseT(3).

Then the constraint (2.14) implies that the sum of the central charges van-

ishes:

kot = kmatter + kghast +k= 0, (2-15)

k is the central charge of the gauge part of the currents. One can calculate:
kghost = 20,

where C is the Casimir of the gauge group, and therefore the following relation

between the central charges
k= _(kmatter + BCU) (216)

holds.

Let us now consider the problem of renormalization of the model, i.e. compute
the renormalization constant Z4 for the gauge field and the renormalization of
the Kac-Moody central charge k. We shall compute the 1-loop corrections using

the expansion:
44..1. - 44": +a
around the classical configuration 4 in the functional integral:

Z = f DA, e*T4+),

We have:

. + 2
Z = eikr(‘q)fpaexpigfa.agf%
Fy + < +

g1
SALOA,

Ay=4

_ eikr(.&)Det—lfz

A=A

12



Since J_ = 6.4 , the 1-loop induced action will have the form:

§J_
SAL |

F(l)(ﬁ) —%log Det |——

Using the transformation properties of 44 and J_ and computing the corre-

sponding determinants one gets:
T(d) = Cy (T+(A4) - T-(J-)).
Now we use the identity:
Ting(A4, J_) =Ty (Ay) +T_(J_) — 2/TTA+ J_ =0, (2.17)

which follows from the gauge invariance of I';g(A4+, J_) and the vanishing field
strength of the gauge field with components {4.,J_) due to the anomaly equa-
tion (2.5). Thus, the I-loop correction is given by:

6T

rM(4) = 20,T'4(4) - 2C, fT'r- i
and for the total effective action up to one loop we have:
(4) = (k + 2C,)T; [(1 260 ) A] (2.18
m.d -+ ind k+ ZOU ' = )

From this result we can read-off the renormalization constant for the gauge

field:

ic’f__ =14+ 2C,
k + 2011 kmatier

and see that the central charge £ does not renormalize. Actually, since & is an

Zag=1~

integer, it cannot be renormalized also at higher loop levels.

2.2 Induced 2D Gravity

Let us now turn to the description of the two dimensional gravity theory. We
shall follow an approach very similar to the one developed for the case of gauge

fields using the analogies between both theories. The Lagrangian for massless

13



Majorana fermions on a curved world sheet is given by:
L = (det )y e Bat, (2.19)
where e are the “zweibeins”, defined as:
ea“efﬁab = g”ﬁ.

It is convenient to make a change of variables:

b= ey 2.20
hit = St by =eire 4, Ao =2, (220)
Eqr— | -

under which the Lagrangian (2.19) takes a form similar to the one of gauge theory
(2.1) :
L = (}5_.(6.;. - h++6_)¢_ + ("*}" 3 ——). (2.21)

Again, our goal is to derive the induced action, obtained after the integration
over the matter flelds, and to investigate its properties under renormalization. In
view of the analogy with the gauge case we again expect for I';,4 the following

structure:
Find(h++7 h__, h’-*——) = F+(h++) + F—(h’——) "+ A(h’++1 h__, h-!-—): (222)

where A is is a local counterterm needed to ensure the general covariance.

The covariant form of this action, which appears in the string functional

integral, is well known and have the following non local form:

I [ &g (R%R) (2.23)

where ¢ is the central charge of the matter system, A is the Laplacian in the
metric g, and R is the scalar curvature. The most simple form of this action
is in a conformal gauge: g, = e%8,, where it reduces to a free field action.
Unfortunately in quantizing this theory one have to introduce a cut-off which
would spoil the general covariance. Instead, it was proposed in [5] to consider a

light-cone gauge for the metric defined by:
ds® = dztde™ + hyo (2,27 ) (dz™)?, (2.24)
i.e. to put (compare with the case of gauge fields) h__ =0, hy_ = 1. Again,

14



one can at this point use the parametrization:

Orf =hyt0_f
and obtain the following local form of the action:

c 8% f6_0 a2 f)%a
= g5 ”’2”[ pr (2:25)

which is the gravitational analog of the WZW- action (2.10) . Instead of working

directly with the action (2.25) we shall follow the approach developed in the
previous section using the anomalous equations and the Ward identities for the

correlation functions.

Consider the partition function:
Z = th++e"kﬂl"+("++), (2.26)

where
P+ ~ 10g det(3_1_ —_ h++6-)

and kp is the bare central charge which can be expressed in terms of the matter

central charge c:
c

kg = —. 2.97
o=: (2.27)

Here e*oT+(h++) can be considered as before as the generating functional for the

correlation functions of the stress-energy tensor:

eikor+(h++) — <ei,;.fh++T——> (2.28)

matt

average is performed over the matter fields), where 7__ satisfies the usual OPE:
P

c 1 L 2

2 (o)

It is not difficult to derive the anomalous conservation low for the stress-energy

T _(z7)T--(0) =

7T (0) + —=0_T_(0) (2.29)

tensor using (2.28) and (2.29) . In fact, take the derivative of the correlation

function {T__...):

OH(T(a*,a7)..) = — [ dPyhos ()04 (T ()T (o). Jo

= (X(z%,27)...) (2.30)
X(zt,27) = ligai hag + 2B by )T+ hyr 8T _,

where (...)p is the vacuum expectation value of the conformal theory and we

15



used the identity:
1

0 ———— = —wé*(z — y).
T -y
In this way we get the following anomaly equation for T__:
ViTlor =0T — 20 by )T — by 8_T . = -19-2-6_3,11++. (2.31)
It helps us to obtain the anomalous transformation low of the induced action

T (hy1). For this purpose consider the following infinitesimal transformation of

the coordinates;

2.32
o (2.32)
under which Ay, transforms as:
bhyy =Viwy = (04 — hyy 0wy +(0_hyy)ws. (2.33)
Then from (2.28) , (2.31) and (2.33) one obtains:
c
61_‘{,.1,1 = /(5h++)T__ = —/W+V+T__ = —1—2' (63,}!._;._5_)01_;_. (234)

We need now the equation of motion for Aty. From (2.31) one finds that it is
given by:
P hiy =0, (2.35)

which can be solved obviously by expanding in powers of z™:
her(zt,z7)=J T — 2270+ (27)2T~ (2.36)

the coefficients J* depending only of z™.

We are now going to obtain ihe symmetries generated by these “currents”.

Consider the N- point function of fields ¢ which transform according to:
bp =w 0 ¢+ AO_wy)d. (2.37)
Periorming a change of variables in the functional integral (2.26) and using (2.37)

one finds the following Ward identity:

82 (bt +(2)¢(21). .. p(2n))
=2 10(z — 2)0- + A0_5(z — 2;)] ($(=1) ... (n)).

7

16



This can be integrated to give:

(hyrd(z1) ... d(zn))
(== —=;) @ (z7 —z}) (2.38)
:zj: (z‘i*—:n;-”) 3:1‘.]-_ (zt —27)

or in terms of the currents (2.36) :

1%z
(Jz)p(z1) ... d(zn)) = Z (Z—+JE~:-iT)(q5(ml) oo {(zn)), (2.39)
j j
where: 5

= E
B=zre— 4 A .
=57 5 (2.40)
l;' = (:BJ_)Z Bf*-_ + 22Xz}

1t is straightforward to check that [}’s give a realization of the generators of
SL(2,R). In fact the WI (2.39) is exactly the kind of identity one geis from the
WZW theory. In the same way one can study the correlation functions of h...

itself. The result can be expressed equivalently by the OPE:

- ) L 1)
hyt(2)hiy(0) = 24 (1) —ha(0) = 57 O-hi4(0). (2.41)

K

Finally, substituting the solution (2.36) , one finds that actually the J's satisfy
the SL(2, R) current algebra: -

J%(21)T%(z3) = %ETZ: + g.}c(zz) + reg, (2.42)
where g° is the Killing metric and f* - the structure constants of SL(2, R).
The relation (2.42) shows also that indeed ky plays the role of a central charge
of the current algebra. At this point we see the advantages of the light-cone
gauge. In fact in that gauge the density /g = 1, the left-moving matter does
not interact with gravity and the hidden SL({2, R) Kac-Moody symmetry of the
theory becomes manifest. We are now going to exploite just this symmetry in

proving that, unlike the gauge case, the central charge ko gets renormalized.

Instead of repeating the analysis we made for the induced gauge theories we

shall proceed in a different way which allows us to get the exact result. We
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introduce the total stress-energy tensor:

aT

el 2.43
bh_-|, 4 ( )

tot __
Yy =

and require that it is zero. In our case of fermionic matier coupled to gravily we

have for example:
Tt = 40,64 + 14 0re +(Breq + TTE" =0, (2.44)

where 44, €_ are the ghosts of spin 2, -1 respectively corresponding to the gauge
choise A__ = 0 and (, e; of spin 0, 1 correspond to Ay = 1. The condition

(2.44) implies that the total central charge also vanish:
=262+ =0, (2.45)

¢ is in general the matter central charge. In order to determine ¢#7** and 77"
we make use of the Sugawara construction in terms of the currents (2.36) . The

most general form of T7" is given by:
T = const(gey J*J° + BO:JO). (2.46)

Due to the inhomogeneous term it satisfies a Virasoro algebra with modified
central charge depending on kg and B. To determine the unknown coeflicient B
we should fix the residual gauge symmetry presented in the theory. In fact it is

easily seen that the transformations:

gt = ot 4+ e(zT)

(2.47)
5™ = a7 — (Bre)a™ +n(w*)
preserve the form of the light-cone metric (2.24) . Under these transformations

h changes as:
bch = €8 h —a B_h+2¢h —z7 €'
(2.48)
bnh =n0_h+ 7.

Translating this in terms of the current coefficients (2.36) one convince himself

that the generators of (2.48) are given by:

Qc = [ da*e(=)Tiet

(2.49)
Qn = fdm+n(m)J’.
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Now, in the same way as we put 79! we should require that also

J=0. (2.50)
This additional constraint determines completely T

T = gapJ T + 8,0, (2.51)

1
ko + 2
and therefore the gravity central charge:

3ko
- — Bko. 52
ko + 2 0 (2.52)

grav

Finally, from the condition (2.45) , one obtains the exact result:

c—13= + 6(kg +2) (2.53)

ko + 2
which, compared to (2.27) , shows how kg gets renormalized in the presence of
gravitational interaction.

We now turn to the problem of the renormalization of the anomalous dimen-
sions of the operators. For that purpose we shall derive differential equations for
their correlation functions. We are interested mainly in the so called primary

fields with transformation:
Sy = (e0— + Ad_€)gy. (2.54)

Here ) is the SL(2, R) weight, therefore:
F(")

z—zt

J(z)ga(z) = da(z) + reg (2.55)

and [* are the SL(2, R) generators introduced in (2.40) . Since only the right-
moving matter interacts with gravity, we expect the following structure of the
correlation functions:

(d(z1)...¢(za)) ~ ; Felzly. ezl 2752, 2y) (2.56)

The “blocks” Fj satisfy a differential equation which can be derived in the fol-
lowing way. Recall the Sugawara construction for the stress-energy tensor (2.51)

. Onme can expand 7" and J in Laurent series in the usual way and obtain the
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corresponding relation for the coefficients L&%Y and J, :

1

LI = b 3t JETE_ : —(n+ 1)L (2.57)
ko + 2 B
If we insert now (2.57) for the case n = —1 in the correlation functions (2.56) we
obtain the desired equation:
B Gaplf (i) (2;) _ -
(k0+2)8:z:+_z ﬂ:+ J+J F(af, 2. 528 ,27) =0, (2.58)
i g |

where we used L_; = 84 and the current WI (2.55) . In the case of two-point

function (2.56) the above equation leads to the following relation:™

A +1)

= 2.
s =0 (2.59)

Ag+ A+

where Ag is defined by:
L7y = Doga
and 1s therefore the “bare” dimension of the primary field in the absence of

gravitational interaction. What is the scaling dimension of ®, in the presence of

gravity? The easiest way to see this is to perform a Weyl transformation of the

metric:

ds® — Ads® = A(deTdz™ + hyy(dz™)?)

with a constant factor A. The rescaled metric then can be turned back to the

gauge (2.24) by means of coordinate transformation:
z” — ATz,
which, as can be easily seen, is generated by the operator:

dz™

Therefore the scaling dimension is given by A = —A and the relation (2.59)
becomes:
Al = A)
A—Ayg= ——F7+. .

The equations (2.53) and (2.60) allow one to compute critical exponents for

massless fleld theory interacting with the induced gravity in the “weak gravity”

* Actually, one can use directly {2.57) with = = 0.
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regime: ¢ < 1 or ¢ > 25. In this region the quadratic equation (2.53) have real

solutions for kg:

c—13+ /(1 —¢)(25 —c)
12 ’

where we choose the (4)-sign, compatible with the semiclassical limit kg ~ ¢/6.

ko + 2 =

(2.61)
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3. Higher Spin Extensions of Two
Dimensional Gravity — W - Gravities

W- gravity was introduced as a formal generalization of the ordinary 2D
gravity described in Chapter 2. It contains in addition to the metric g;; and the
stress-energy tensor Ij; gauge fields and conserved currents of spin greater than
two. In the same way in which 2D gravity is connected to the Virasoro algebra,
W- gravity, as stated by its name, is based upon an algebra which is of - type.
The latter, as it is well known, are non-linear and not Lie algebras. This explains
the great interest in such theories as a part of the more general interest in the
quantum non-linear gauge theories. Another motivation to study W- gravity is
their essential role in the description of the non-critical - sirings. The most
important advantage of the latter is that the range of “weak gravity” is enlarged
from the usual bosonic string theory. In fact, we shall see below that this region

in the case of W- gravity becomes:
c< T, c>r+4hD

where 7 is the rank, & - the dual Coxeter number and D - the dimension of the
corresponding algebra g. Owing to this fact, if the space-time interpretation is
possible, W- string can be regarded as an important candidate for more realistic

(even four dimensional) string theory.

3.1. W - Algebras and Representations

The W- algebras realize an infinite dimensional symmetries which are exten-
sions of the conformal symmetry of the two-dimensional quantum field theory.
They include the Virasoro algebra as a subalgebra but have more complicated
structure, including generators of spin higher than two. Another specific property
is their nonlinearity, so that they are not ordinary Lie algebras.

The classical and most familiar example is the Zamolodchikov’s W3- algebra

[10]. It contains in addition to the stress-energy tensor T(z) = W{?)(z) additional
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current W{)(2) = W(z) of spin 3. The defining OPE’s have the following form:

T(NI() = o/ i,)4 + (jr{(‘;%z - 621_(2’) +A() + %aZT(Z')]
TW (') = e + T2
. y y (3.1)

W) = L ey P,

3 BZT(Z’) 1 8T(2')  26A(z')  BOA(L)

10(2—- 2 +E z—2' +(z—z’)2 + 2z

where:
8= Dci—ﬁm A(s) = T()T(2) - 0PT(z).

One can expand the currents in Laurent series T(z) = ¥, Lpz"" % and W(z) =
Y Woz"®"3, The above OPE’s of the currents are then equivalent to the com-

mutation relations:
[LnyLm] = (n )Ln+m + 12( 3
(L, W] = (3n — (n+ m))Wham

- n)6n+m

Wh, Wn] = T 5r(n — d)(n? — Dnbpim
1 1
+(n —m) [i—g(n—{—m 2)(n + m +3) = S(n +2)(m + 2)| Lnim
+)6(n - m)An—f-m
(3.2)
where:
Ap = Z s LD, 4 -{-lann
A 5
tan = (1 +n)(1 —n) Tont1 = (2 + n)(1 — n).

The appearence of the composite fleld A(z) in the RHS of (3.1) makes already
evident in this most simple example the nonlinear structure of the V- algebras.
At this point one has two possibilities. Either to consider A(z) as a new current
of spin 4 and compute its OPE’s with T and W. This introduces still other
currents and one has to define fields of higher and higher spin. This never stops.
The other possibility is to accept the nonlinear structure of the algebra (which
is thus not a Lie algebra) and keep A(z) as a composite field. Closure is then
obtained in the enveloping algebra of the L,’s and W}, ’s.

One can show that there is a close connection between the W3 algebra defined

above and the affine .91:(3) algebra. In fact, this statement is true also in the gen-
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eral case, i.e. for any given affine Lie algebra §, one can construct corresponding
W- algebra by using the Miura transformation [21, 22|(see also [11, 16, 24]). This
gives a natural classification of the W- algebras corresponding to that of the affine
algebras. For W- algebras of A-D-E type it is known that they contain currents
whose spins are given by the orders of Casimir invariants of the corresponding
Lie algebra.” 1In this Chapter we shall be concerned mainly with W- algebras
which correspond to A,-1 = su(n) (called simply W;,- algebras), and give the

general results for the remaining ones which can be treated in analogous way.

The W,- algebras contain generators L, = T’V,SE), W,Sf), e Ier(nn) of spins
2,...,n (corresponding to the Casimirs of 4,-1). These are the coefficients in the
Laurent expansion T/V(k)(z) = EWIEn)z_"_k of the conserved currents T/V(k)(z)
with OPEs:

_ EWH(2) N o (R (5
T (2 —2')? z—z
E+I-1 di . . EAY I

k ! if ferential polynomial(W\")(2")

wEEWOE) = 3 = 3

r=={)

T(z)WE) (2"
(3.3)

We shall show below that they have series of unitary representations of central

charge:
n(n + 1)
p(p +1)

6

The first member of (3.4) is just the conformal unitary series e = 1 — )

c:(n—l)(l—— ), p=n+l,n+2,.... (3.4)

The simplest approach to deal with the W- algebras is the free-field (or Feigin-
Fuchs type [28]) comstruction {10, 22]. For this purpose introduce n — 1 scalar

fields ¢*,i =1,...,n — 1 with two-point correlator:
(¢'(21)¢7 (22)) = —67 log 212
The stress-energy tensor for this system have the following general form:

T(=) = —506(2) - 08(z) + Ziaop - #*4(2). (3.5)

We choose p to be the Weyl vector of A, .1 defined as half the sum of the positive

# The W-algebras of B~ type has a little different properties. In this case there is a fermionic
generator with half-integer spin
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roots. It is given by:

n—1

p= 3 M (3.6)

i=1
where ); are the fundamental weights of 4,_1. In (3.5) we have pulled out a

constant 2iap for later convenience. The stress-tensor (3.5) satisfies the Virasoro

algebra with central charge given by:
¢ =(n—1)—48aip’. (3.7)

Omne can try to construct in a similar way also the other currents Wik [11], 1.e.
to express them as differential polynomials in ¢* of dimension k and determine the
unknown coefficients by computing their OPE with the stress tensor. Obviously
such program is realistic only for small k. The other way is to use the hidden
su{n)- symmetry of the algebras. Having consiructed the current W) in the
case of Ws- algebra, one observes an underlying structure related to the weights
of su(3). This motivates the following guess. Consider the differential operator
of order n:

(2i00)" Dy = ﬁ (2iag0; + hy - 0¢(z))
p=1
=: (2iap8; + hn - 0¢(2)) ... (2ia08: + hy - O06(2)) 1,

where h, are the n weights of the vector representation. It can be expanded in

(3.8)

the following “canonical form”:
D, = 62 + znj %ieg) Fug(z)8n . (3.9)
k=1
The transformation from (3.8) to (3.9) is known as Miura transformation [22].
One finds:
up = Z hy-0¢p =0
by the properties of the weights of :he vector representation. It can be shown

that there is a close connection between the remaining uj, and the currents k),

In fact, the second coefficient in (3.9) reads:

=Y thy-0¢h, - 0¢: +2m02n— Vo, - 8% (3.10)

W v

and after some algebraic manipulations this becomes:
1 .
ug = = O¢(z) - 0¢(z) : +21cpp - B é(z), (3.11)

i.e. exactly the stress-energy tensor in the form (3.5) . The situation is more
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involved for the higher-spin currents. One can show that, in general, W) can
be expressed as a differential polynomial of u;, 7 < k. Typical examples are given
by:

7 — 2

w3 - uz — T(Ziazg)auz (3.12)

Wt = ug + Gouz - 752uz Lg ug :
for some coeflicients {3, 4 and §. More details one can find in the original works
(22, 29]. A nice discussion of the classical case (i.e. disregarding the normal
ordering effects) is given in [15].

The main problem in studying the algebra (3.3} concerns its highest- weight
irreducible representations. They are in one-to-one correspondence with the pri-
mary fields of the corresponding 2D conformal QFT models obeying such symme-
try. As it is well known, the latter are represented in the free-field construction

by vertex operators, i.e. normal ordered exponents of ¢:
Va(z) =: gt (=) . | (3.13)

This is confirmed from their OPE with the stress tensor {3.5):
_ Mafa)al) | 8Va(Z)

ol
T(Z)T/a(z ) - (2.' _ Z‘)Z » Z, (3-14.)
stating that indeed V, is a primary field of dimension:
1
Az(a) = za - (a — dagp). (3.15)

2

]

Of special interest in what follows are the operators of conformal dimension one,
the so called screening operators. The corresponding vertex operators are defined

as:
Vi(z) = Viue,;(2) =: gh2eid(s) (3.16)
and (3.15) in the case A = 1 gives a quadratic equation for a..:

szi —anai —1 =10

Thus, the total number of screening operators is 2{(n — 1). Such operators are
particularly important since the singular terms in the OPE T/V(k)(zl)‘lf;g(zg) com-
bine to give a total derivative. This, in turn, means that the screening charge

i = fszi(z) is an invariant of the W- algebra (3.3) .

26



We are now going to discuss the highest-weight representations of (3.3) . The
highest-weight state is defined in the standard way: '

wila) =0, n>0

. i (3.17)
Wia) = Agla)la), k=2,3,...,n

The other states of the representation are obtained by applying to |e) monomials

of operators T/V_(f;) with n > 0. The connection to the free-fleld construction is

given by the relation:
111:% Va(2}]0) = |a), (3.18)

where [0) is the SL(2,C)- invariant vacuum of the theory. It is clear that this
state is annihilated by all positive modes of the W) and thus is a highest-
weight state. It is not difficult to compute the values of Ag(a). In fact, one first
obtains the eigenvalues of the zero modes of uy’s which we call Ag{a). Then,
Ap(a) and Ag(a) are related by equations of the type (3.12) , eg. Asz(a) =
Az{a) + (n - 2)(2iag)As(a) and, of corse, Az(a) = Az(e). One applies the
differential operator (3.8) to the highest-weight state (3.17) and uses the Miura
transformation. This results in a system of linear algebraic equations with solu-

tion:

k
Bule)= (=0 % ] (wn-atZealk-m) (319)

Ly e, e =
and one easily checks that this correctly reproduces Az(a) (3.15) .

Among the representations of (3.3) , of special interest are the so called
degenerate representations. They are characterized by the existence, al some
level N, of a state |xn), called null vector, which is again highest-weight state
(3.17) . It is clear that such representation cannot be irreducible. Actually, one
can show that the null vector, together with its descendents, decouples {from the
rest of the representation. Thus one can consistently set it to zero. This has
important consequences for the theory since it leads to differential equations for
the correlation functions of the corresponding fields. With enough number of null
vectors (completely degenerate representations) one can completely determine all
the correlation functions thus leading to an integrable theory. As an illustration,

and for later use, we present here the simplest example: the first level null vector
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of the W3- algebra. It has the form:

) = (mgwﬂ’ _ 3531;_1) A) (3.20)
provided:
- 32 1 1
Al = 2( AJ.————). 3.21
98 =202 {5 g P2+5) 3 (3.21)

The free field formalism described above provides a natural way of constructing
null vectors using the properties of the screening operators [22]. Consider the

state:
lxit(ﬁ)) = Q§:|A(ﬁ)) = j{dz L gloseid(z) o (18-40) |0y, (3.22)

Such expression is well-defined and not trivially zero if and only if:
axej -G =—-1; -1, [;=01,2,.... (3.23)

We choose B = 4agp — a* — a.ej so that (3.22) is clearly a descendent of the
highest-weight state with A(4dapp—a®) = A(a). Due to the invariance properties
of the screening charges Q; (3.16) , it is also a highest-weight state, so it is a

null vector. In the general case one considers a state:

X = ... g Vi vila) (3.24)

with l;- screening operators and imposes again analyticity condition analogous to

(3.23) . It can be solved giving the following parametrization for a:
n—1
o= ((1-l)a +(1-Lay) A, (3.25)
i=1

where [;, I;- =1,2,.... Note that A = ¥ ;({; — 1)}; and X' = Zj(l;- — 1)/\;- are

highest (i.e. dominant) weights of su{n). Thus, we may rewrite (3.25) as:
a=—a_\—aypl (3.26)

So the W,~highest-weight is labelled by a pair (A, A’) of highest-weights of su(n).
Analogous correspondence holds also in the general case of A-D-E type W- alge-
bras. We shall use it in the next Chapter in the description of the W- gravities.

The properties of the field theoretical model having W- algebra symmetry
are determined by the operator product algebra of the fields corresponding to

its representations. In general this algebra contains an infinite number of fields.
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However, it may happen that, due to various symmetries, it is truncated. In
fact, one can show that in our case of W- algebras for the special value ol = %
the OPE algebra closes on a finite number of fields. Denoting it by A, the field

content of the model can be expressed simbolycally as:

A =05 <1 On tgp-1 Pa0NW): (3.27)
These models are called minimal models. Since 209 = ay + a. = 5;7}3, the
central charge and the conformal dimensions of these (p,p') minimal models are
given by:
(p -2
C;pf = (n — 1) (1 — n(n 4 1)7
As(lll) = Aslls o lcally . By ) (3.28)
2
12 [T (ol ~ PE)A] —nl(n? ~ 1)
- 24pp' ’

where the range of [; and I} is clear from (3.27) . The remaining eigenvalues A

are also obtained by direct substitution in the corresponding expression (3.19) .

Among the minimal models, the most interesting are those obeying the uni-
tarity condition. In this case p' = p -+ 1 as can be easily seen by using the coset

construction based on the coset:

Su(n)k-a-l

All the quantum numbers characterizing the unitary models can be obtained

trivially by inserting p' = p + 1 directly in (3.28) and (3.19) .

Up to now we discussed the properties of the W,- algebras. These are not
Lie algebras for any finite » > 2, owing to the presence of non-linear terms in
the commutation relations, which rapidly increase in complexity as n increases.
However, it has been argued that the structure of these algebras should become
much simpler in the limit n — oo [30]. The process of taking this Limit is
not uniquely defined; one can in principle arrive at different algebras depending
on how one first rescales the generators and structure constants of the finite n
algebra. One particular limit that has been discussed in the literature [31] is of

the form:
0, w)] = ((G = 1)m — (i = Dnwin B, (3.30)

where wT(,i) is a generator of conformal spin 7. This algebra, called we, can be con-
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sidered as equivalent to the algebra of smooth area-preserving diffeomorphisms
of the cylinder S! x R! [32]. Although the Wh,- algebras have central terms for
each conformal spin, the limit (3.30) admits a central term only in the Virasoro
sector. One might suppose, therefore, that there should exist some different lim-
iting procedure in which the central terms of the Whn- algebra are retained in
the n — oo limit. From a physical point of view such a limit is more interest-
ing, since it would allow the existence of unitary representations with nontrivial
dependence on the higher-spin generators.
Such algebra, called W, was considered in (32, 33] and has the form:
oo
Vs Vil = 3 ¢ 53], m)VE07 + g m)6 6y, (3:31)

=0

where the structure constants are given by:

i7

gi(m,n) = 2 1)1V () (3.32)
with:
sj_i:ﬁ- (20— 3)(20 + 1)(2r — 20 + 3)(r — 1 + 1)
. hooim 20 =204 3)(25 — 20 + 320+ 27 —dr + 21 + 3)
Mimm) = 3 -0 (1)
k=0

X (242 -2 )4(27 + 2 — Rlgo g i+ 1+ m2ri1-k[7 + 1+ n]g.
The form of the algebra is unique up to an arbitrary constant ¢ which sets the

scale of the central terms:
2i-3 i + 2)!
(2 + 1)11(2i + 3)1°

It can be viewed as a deformation of the Weo algebra (3.30) , from which the

ci =2

latter is obtained by contraction in which we put g = (.

3.2, W - Gravity

The main obstacle in dealing with the TW- gravity is presented by the nonlin-
earity of the W- algebras. This, together with the c- dependence of the structure

constants, leads to non-local, non-linear Ward identities which are hard to solve.
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Another difficulty is the absence of covariant formulation of the theory. One
cannot write down a covariant action as in the case of the usual gravity (2.23) .
The deep reason for such situation is that the geometry behind the W- gravity
is not known. Some attempts for its description, from different points of view,
have been done recently but the situation is still not completely clear. We shall

describe some of these attempts in the next Chapters.

Despite the covariant formulation i1s not known, one can quite straightfor-
wardly extend the KPZ arguments for the case of W- gravity. For this purpose,
corresponding to the fact that there exist some higher spin charges, we need to
introduce some additional higher spin gauge symmetries. Lets make the following

natural ansatz {20]:

1. The gauge fields corresponding to the W- generators are components of a

(n)

symmetric tensor generalizing the metric tensor g,,. Denote them as A}’ 4.

2. The gauge symmetries corresponding to these fields are parametrized by

n — 1- symmetric tensors kg‘T_i)M . The gauge transiormation of 4 is given by:

5e A L = Vg k ) (3.33)

Hpasadbn HL oy
3. By using this gauge symmetry we can pick “light-cone gauge” for A:"

A 40
o (3.34)
{other componenis) = 0.

4. For W- algebra associated with the afline algebra § introduce a set of

connection flelds {A(”)}nec, C is the set of orders of the Casimir operators of 3.

By using these assumptions we shall discuss below the hidden symmetry of
the W- gravity and find the general expressions for the renormalized central
charge and anomalous dimensions. As in the case of W- algebras the discussion
will be performed for the most simple W3- gravity and the results will be then
generalized.

There are two different approaches one can follow in the description of the
W3- gravity. The first one is based on a classical Lagrangian for scalar flelds

which is invariant under Wj;- transformations. Then one introduces gauge fields

+ In this section we shall slightly change the notations: 2% -+ z, 2z~ —

by
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and determines their transformations in such a way that the resulting Lagrangian
remains invariant. The quantum corrections are obtained in % (loop) expansion
using the usual Feynmann diagram techniques. We shall follow here a KPZ -
like approach based directly on the defining W3- algebra OPEs (3.1) . It has the

advantage to lead to general results which are then confirmed by the perturbation
expansion.
Again we are interested in the induced action defined as the generating func-

tional for the current correlation functions:

mait

where 4 is the new gauge field corresponding to the conserved current W. The
anomalous conservation laws for the currents are derived in exactly the same way
as in the case of the usual gravity (2.30) . Using the OPE (3.1} we obtain:
v, T(z,z) =8T — 20RT — hOT — 30AW — 246W
€ =3
=—@a"h
B 126
V.W{z,£) =0W ~ (38h + RO)W
ey, lapn, 35,5, 1 ~3) . (3.36)
—{= -3 — e —4
(5074 + 50%40 + 5OAF + 4B ) T
— B(284 + AG)A
¢ —c

:ﬁa A.

The gauge transformations of the connections can be deduced from (3.35) and

(3.36) . In the classical limit ¢ — —oo the latter are given by:
§exh =Bc — hie + Bhe
+ %(_m? +35AB — 35° 48 + 25° )k (3.37)
§ep A =0k — hOk + 2kBh + DA — 20e4,

which agree with our ansatz (3.33) . From (3.36) ,(3.37) we can evaluate the

anomaly of the gauge symmetry of the action:
sr =L / (6hT + 6AW)d?2
1r

1 — —

= —= [(evT +kVW)d (3.38)
T

c 53 1. 25 ) 2

= —— bt ko4 ] d=.

57 [ (0 35404 &2
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The equations of motion for & and 4 are given by:
8*h =0
- (3.39)
&A=0

and are direct generalization of (2.35) . Analogously to (2.36) , their solution can

be presented as an expansion in z:

1
h=It(z) — 2I%z) — 2217 ()
2
+ 1 ., _ 1
A=J )+ 37 (2) + %EZJD(z) + 523J (z) + f“J“(z).
By the investigation of Ward identities [5], it is straightiorward to derive the

OPEs of h and A:

(3.40)

_ c 2t z 13? .
h(z,z)h(O,D) = —ﬁ;:i —_ ;h - '2—?6}1
=z =2
h(z, 5)A(0,0) = —2=4 %f—éa (3.41)
Z

where we have rescaled the gauge fields:
c e
h — —h, — ———A4
12 12+/10
One can easily check that these OPEs are equivalent to s{(3) current algebra in
terms of the component currents I and J defined above. The central charge of

the current algebra is given by:
c

Actually, the decomposition of the currents follows directly the decomposition

k (3.43)

of the adjoint representation of s/(3) into representations of s/(2) subalgebra of
I+, I% and I7: (8) — (3) 4 (5). This suggests the following generalization. Let
{X®, Y% H%*}4e1.r be the Cartan-Weyl basis of g. Define the sl(2) subalgebra
as follows:
I— == Z.{Ya
[44
0 -1
=% A7,H”
o,
-1
1+=:§%Amﬁyﬂ

where A;é is the inverse of the Cartan matrix. It is known that adjoint repre-

(3.44)
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sentation of g can be decomposed into representations of this si(2) subalgebra:
(D)= P(n-1). (3.45)
nec

As we have done in the s{(3) case (3.40) , we can assign the currents corresponding
to the elements appearing in (2n — 1) to the coefficients of Taylor expansion of

A®) with respect to 2. Remark that the OPE:

T/Tf(“)(z)ﬁf(“)(o) ~ 52‘2” + 0(5—211-!-1)

n
implies:

g 14" =0, (nec). (3.46)

Let us now turn to the description of the dynamics of the gauge fields based

on the partition function:

Z = / [] DA Timal 4], (3.47)

For each gauge connection A(™) we have to consider the gauge fixing condition:

6T 6T 6T

54T T ga™, T sl > (3-48)
If we use the ansatz (3.33) the ghost Lagrangian originated from this gauge fixing
is given by:
ghast - Z Lghost Z Z 5511‘75 n)j 3 (3.49)
ned nel ;=0

(»})

)
first condition (3.48) :

is a ghost of spin (—j) and b_(ii)l is an antighost of spin (j + 1). The

where ¢

6T
6h

states again that the total stress-energy tensor is zero. The contribution of W-

= Tt = (3.50)

gravity can be calculated analogously to (2.51) :
Tarav — pSua 4 g 10(2) (3.51)

where T5%9 is the Sugawara type energy-momentum tensor of § and I° is the

corresponding current introduced in (3.40) . According to the condition (3.50) ,
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the total central charge vanishes:
Crmatter T Cgravity T Cghost = 0, (3'52)

where now:
n
Cohost = 3 Z(—12j2 +125 —2)
nec g=1 (3.53)

kD ,
oy = —2 19,2,
€y k+h P

Here » and D are respectively rank and dimension of g, h is the dual Coxeter
number and p is the Weyl vector. In the case of A-D-E type algebras the ghost
central charge (3.53) has the form:

cghost = —7T — (1 + h)zD

Summarizing, (3.52) leads to the following relation between k& and cmatter = c:

2RD +7 —c+ \/(r—c)(r~{—4hD~c)
2hD '

—(k+h) = (3.54)

In the classical limit this reduces to:

C
ks (3.55)

which coincides with the previous result (3.43) . In a recent paper [25] Ooguri et
all. computed the first nontrivial terms in the % expansion of the effective action
for W3- gravity. Their results are in a perfect agreement with the general formula
(3.54) .

Anomalous dimensions of the operators can be computed in exactly the same
way as we did for the usual 2D gravity (2.58) , where now I(*) give a realization
of the algebra g. The equivalent of the general result (2.60) in our case reads:
23(A —p)

k+h
where A are highest weights of the current algebra:

A:-z-z(?i(z,-—1)—(zg—-.1)) by

: \4

Ag(Ill') = — + 22, (3.56)

and Ap(I|l') are the bare dimensions of the primary fields as given above (3.28) :

. {; — 12}‘52— 2(p—g)?
AD(Z”):[Z@ Q)QI]?Q‘ PFlp—aq)

Analogous formulas can be derived also for the other quantum numbers of
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the W- algebras. For that purpose we need to solve the more general constraints
(3.48) for arbitrary n.

Finally, we shall discuss briefly the theory of wo, gravity. The starting point
is a Lagrangian for a free scalar field ¢ that takes its values in some Lie algebra
g:

L= é—tr(atpgga). (3.57)

It is invariant under the transformation:
Sy = ky(Fp)t? (3.58)
provided k; are functions of z only. One can easily check that these transforma-

tions close to form the wy, algebra (3.30) .

To gauge this symmetry we first assume that k) depends on Z as well as z.

Then introduce gauge fields 4; and consider the following Lagrangian:

_ 1 5.y _ %o L 142
L= 2157'(3(,0399) XU: T 2A;tr(6(p) . (3.59)
Note that the currents:
wl) = ir(8p)? (3.60)

are conserved as a consequence of the field equation 8¢ = 0. The Lagrangian

(3.59) is invariant under (3.58) provided that the gauge fields transform as:

541 = By = (7 + 1) A;0kj — (1= + 1)ki—;04;]. (3.61)

7
Actually, due to the presence of additional symmetries of (3.59) , not all the gauge
fields are truly independent [34]. It can be shown that putting the additional
gauge fields (and the corresponding parameters) to zero and adding compensating
transformations leads to truncation of we, to W,- gravity where r is the rank of
g-

In trying to quantize the above theory one encounters the problem of cancel-
lation of the anomalies. There are two kinds of anomalies that arise. The first,
called universal anomalies, are given by local expressions involving the back-
ground gauge flelds only. They are governed by the central charge structure of
the algebra. The universal anomalies are cancelled by constructing a “critical

theory” in which they are simply cancelled against the ghost contribution. The
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second kind are the so called matter field dependent anomalies and arise from
diagrams with external matter fields. These are more difficult to deal with. For
their cancellation one introduces local finite counterterms simultaneously cor-
recting the matter and gauge field transformation rules. This is equivalent to
adjusting the currents (3.60) . The first simple examples for the spin-2 and
spin-3 currents (which are in fact exact) are given by:

1

1 2
(3.62)

1
vi= %(6(,0)3 + %\/ﬁﬁ(p@ztp + 1—9ﬁ33rp.

Onmne can proceed in this way renormalizing all the currents. It can be shown [35]

that, as a result of this procedure, the modified currents will generate not the

original we algebra but precisely the W, algebra (3.31) !
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4. Affine Geometry and W,-Gravities

4.1. Introduction

The present Chapter is an attempt to answer the following question:given
a set of “metrics” {h,ht, A, B,...} which are the geometries characterized by
this geomeirical data (i.e. what do the W-geometries look like) ? Our main
observation is that the (1 — D) CFT’s and the W-gravities can be described in
terms of particles and string mechanics, i.e. as differential geometries of curves
and surfaces immersed in certain spaces V;, with groups of motion Gpn =T, G
{36].

Our basic tool in the study of the geometries of the CFT’s and W-gravities
is the famous F.Klein’s classification of the geometries proposed in his “Erlan-
gen program” in 1872 and further developed by W.Blaschke [37], E.Cartan [38],
M.Fubini [39], etc. (our prefered textbook is [40} ). The Klein geometries can
be defined as theories of the geometric invariants of transitive transformation
groups . Specific examples of such geometries are the geometries of curves and
surfaces imbeded in Euclidean E, (or Minkowski Mp44=r), affine 4, and projec-

tive RP™ (or C P™) spaces.

A remarkable property of the geomeiric invariants kf(y(g),...,y(s)) (curva-

tures, torsions etc.), y(*)(z) = By, describing an embedding of a curve in Vy:
y¥(z) : B — Vn, Vo = En(Mpyy), An, RPY, p=1,...,n

is that they appear as generators of the infinithesimal transformations of W Gp-
a,lge]:;rasJr where G, = é/Tn for B, and A, and G, = SL(n + 1, R) for RP™.
Therefore the classification of WGp-symmetric (1—D) CFT’s is (to some eztend)

isomorphic to the Klein classification of the geometries of curves. We restrict

* A brief introduction to the Lie-Cartan theory of geometric invariants is presented in App.
A,

t The ortogonal case (G, = SO(n) or SO(p,q)) is an exeption: the number of invariants
is larger than the number of the generators of WG, (see App.A and [41]). To get WG,-
algebras we must impose specific conditions on the &; decreasing its number. This restricts
the possible curves geometries to the case of helices (see [41] for the case of surfaces).

38



our further discussion on the cases of affine curves (Sect.2) and affine surfaces
(Sect.3,4} only (see [41] for V, = Mpiqen).

To complete the identification of the affine particles (= affine curves immersed
in 4,) with W,-CFT’s models we have to find the geometric counterparts of the
primary fields and null-vectors of Wy,-models. As we shall show the classical limit
(¢ = —co) of specific null-vectors (n-th level for W) coincides with the affine
Frenet equations (2.6) for the curve immersed in 4,. The normalized “affine

velocites”
oty = (Bey*)(det(y, ..., y1™)) 7+

(of dimension A(’ufiﬂ)) = I_Tn) are the classical limits of specific primary fields of

W,-models. For example in the simplest case of plane affine curves (n = 2 and

W3 = Virasoro algebra) we have:
(62 + kywh(z) =0, p=1,2 (4.1)

(k(z) is the affine curvature), as an equation of motion (= affine Frenet equation)

and the quantum counterpart of v# (A(v#) = —1) is the primary field ¢u:(z) of
5—c+ (1—c)(25—c))

the Virasoro minimal models (Agl(c) = 16 The Lagrangian of

such a particle is
L= f ) Y+ a f e yuy,di (4.2)
The appearence of the KdV L-operator in (4.1) leads to the following affine
geometrical tnierpretation of KdV eguation. Consider a family of plane affine
curves y*(xz,t) generated by a given curve y#(z,tg) by specific small deformations
yH(z, 1) = y"(z,t0) + (t — to)kOey” + ...
(i.e. Oyy = kOyy). As it is shown in Sect.2 the KdV equation

Ok = 6kOk + O3k (4.3)

describes how the affine curvature k{z,t) changes under these transformations.

The main difference between the geometries of affine curves and affine sur-
faces in A, concerning their symmetries, is that in the case of surfaces the
number of the geometric invariants is bigger than the number of generators of

the Wy,-algebras (see App.A). To obtain geometries relevant to the Wy-gravities
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we have to consider a specific class of affine surfaces which are described by n—1
differential invariants only. For example, the {classical) W3-gravity is isomorphic
to the geometry of the affine surfaces of constant affine mean curvature immersed
in 43. Such an identification is based on the following properties of the affine

surface geometry (see Sect.3 and 4):

a) each affine surface in 4; is defined uniquely by its two fundamental forms:
p = hijdeide?, o = dgpdeida’da®,  RYA; =0

b) the (gauge fixed) affine structure equations (3.1) (or (3.5)): 8ig = Aig,
in light-cone gauge are invariant under Wi-transformations generated by (see
eqs.(4.60)):

T=-2B__, W =4(A.- + %3_]")

¢) as a consequence of the integrability conditions (i.e. affine Gauss-Codazzi)
of the eqgs.(4.42), the “metrics” h;; and A;;y satisfy the W3- “trace anomaly” equa-
tions (4.63). Integrating these anomalies one can construct an effective action of
Wi-induced gravity:
58 = [ Tohdie + [ Woad's

and the corresponding equations of motion are

82h=0=28"A. (4.4)

The eqs.(4.4) together with the specific transformation laws of h and 4 (4.61)
are at the origin of the SL(3, R)-current algebra symmetries of the affine surface
geometry.

This affine geometrical description of the Wj-gravily suggests an interpre-
tation of it as a theory of the noncritical affine string, i.e., affine curve moving
in {target) affine space A3. Its consistent quantization requires to consider not
all the affine surfaces in 43 but only the ones of constant mean curvature. A
peculiar property of such a string is that we have as a space-time the affine 3-D

space 43 and as a consequence we have no gravitons in it.

One could wonder how general is the affine geometrical approach to T17,-
gravities. In this Chapter we present the proof that the quanium Wj;-gravily has

as a classical limit (¢ — —oc) the geomelry of affine surfaces of constant mean
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curvature in As. Concerning the W,-gravities our cojecture is that they indeed
are described by certain class of affine surfaces in A,. However the theory of the
2D-surfaces immersed in 4, for n > 3 is not developed enough and we have in
support of this congecture only some preliminary results for n = 4, namely the
construction of the induced metric hij and the proof that the affine surface in A4
can be described by one quadratic form hij, one cubic form A;j; and one quartic

form Bjjki-

4.2. Affine Curves and W,-models

The affine curves y*(z) (4 = 1,...,n) in A, are completely defined by n—1
differential invariants ki(y(l),...,y(’)) (see App.A). The Cartan’s method for
the explicit construction of k; is based on the affine Frenet equations for the

(normalized) moving frame span by

vﬁ :yg“) (det(y(l),...,y(”)))_: , k=1,...,n (4.5)
1.e.
Ozg = Ag, A= (89)97", detg = 1 (4.6)

where g is (n X n)-frame matrix, (g)ﬁ = vﬁ. In general 4 is an arbitrary ma-

trix of sl(n,R) (i.e. TrA = 0) and eq.(4.6) is invariant under local SL(n, R)

transformations. For our specific choise of the frame (4.5) , 4 has the particular

form:
« 1 0 ... 0
* % 1 0
A=
® k= 1
* * *k *

which is preserved by local lower triangular §L(n, R) matrix transformations:

A =hAR™ + (BR)RTT

T 0 ... O

*= 1 ... 01. (4.7)
§T:hg, h = . . . .

K 1
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We can use this residual symmetry to further fix the basis vﬁ, choosing (h)} such

that

5 =00, W=D k=3 . .n (4.8)
i.e.
0 1 0 00
0 0 1 ... 0
A=} : R R (4.9)
0 0 o ... 0 1
—k1 —ks —ks ... ~ky_, O

In this basis the affine Frenet eq.(4.6) reduces to”
(6" + kn10™ 2 + ...+ £1) o) =0, (4.10)

The invariants k; take the simplest formm when one chooses as a worldline coor-

dinate z the invariant parameter ¢ (the affine arc length):
do = (det(y(l), e ,y(”))) T g (4.11)

1.e.
det(g,...,o"™)y = £1, " = gPy(o).

In this case as a consequence of (4.10) (v&l) = 7, ), the curvatures k; have the

form:
ki = —det(3,...,ym )

ki = —-d&f(:i;’, R :y[i—‘lla y{m]’ y[i-H]a s ,y[n+1})-

To make all these constructions and their symmetries clearer and more explicit

(4.12)

we consider in details two examples: n =2 and n = 3.

* the same equations appear in the generalized Toda equations approach to ¥, {16] and in
the Drinfeld-Sokolov Hamiltonian reduction {23).
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4.2.1. Affine plane curves (n = 2)

Choosing the moving frame in the form (4.5) we can write (4.6) as follows:

(1) (1,110 1 (1)
o, [ ¢ )= 2UI o 4.13
z @]~ (1IN 1 (111D (2) (4.13)
U LI R U

where (I,I1) = det(y',y"). The residual gauge freedom (4.7) allows to simplify
eq.(4.13) . Taking

(1 0) 1(I,IIT)
h.'_ ) aﬁa

we get A in the form

_ 0 1 _1(L,IV) | 3(ILII) 3 ((LIIDY®
(—-k o)’ ¢ ((LH)) (1)

The ($L(2, R) - T2) invariant k(z) is called affine curvature and it characterizes

- =3I T2 (I, 4
completely the affine curves in 42 up to SL(2, R) - T3 (global) transformations.

A remarkable property of k(z) given by (4.14) is that it transforms under
z-reparametrizations ¢ — # = f(z) as the (1 — D) stress-energy tensor (T(z) of
[421):

_ 1 (3 2
"2 .
k(z) = (f)k(f) + 5 (F AV ‘ (4.15)
Under these transformations the affine velocity ’UE) behaves as a primary fleld of
dimension A(v) = —1:
50(z) = (/) To(f(2) (416)
An easy computation shows that the transformations (4.15) ,(4.16) leave invariant

the corresponding n = 2 Frenet equation:
(8% + k)i = 0. (4.17)

As was noted by Polyakov [43] in the context of 2D-gravity the origin of such a
symmetry is i the SL(2, R) local gauge invariance of the non-gauge fixed Frenet
equation (4.6) . The specific choise of the moving frame, as in (4.13) ,(4.14) ,is

equivalent to a gauge fixing of

(& )

A=

A, —4p

by imposing the conditions 4_ = 1,4p = 0. Then from the infinithesimal form
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of (4.7)
5. A% = f%eq A, + 0e*,  A=T,A°

(e} o ag_ (G) abe abe (4'18)
by = €*(Ta)* v, o =" (a=0,%)
and the gauge fixing conditions we obtain
1
€ = —Oey, € = 556(} — €1k
Therefore the residual SL(2, R) gauge symmetry
1
be kb = 2(Be )b + e Ok + ~8%,
) 2 (4.19)
65+v}(‘]) = (—-§6£+ + E..:-B)'ULI)

is nothing but the diffeomorphisms generated by the affine curvature k.
Following the analogy with the curves in E, (or M,,) which have particle

interpretation, it is natural to consider the affine curves as trajectories of the

“affine particles”. One can take as an action for such a particle the affine arc

lenght (4.11) , i.e.
L
Sp=2 = / (det(g,l",g,/”'))'1 dz
In the case of the plane affine curves (n = 2) one can construct one more

(5L(2, R) - Ty and reparametrization) invariant

51 :fdet(y,y')dm

which has a meaning of a number of the selfintersections of the affine curve. The
sum of these two integral invariants (4.2) can be taken as a total affine particle
action.

‘The most remarkable property of the affine plane curves (= particles) is
that they appear as a classical limit (¢ — —oo) of the Virasoro algebra min-
imal models [42, 44]. To prove this statement we have only to rephrase the
Al.Zamolodchikov’s arguments [44] concerning certain covariant differential oper-
ators appearing in the light-cone quantization of 2D-gravity. The first observation
is that in this limit the primary field @9; behaves as a primary field of dimension
Agi(—o0) = —1/2, 1e.

E—c 1—-¢)(20—c¢
+\/( - ) ) — Agy(—00) = _% - i (4.20)

An(c) =
To identify it with the affine velocity v&l) (4.16) we have to prove that the null-
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vector condition [42] :

2(2A9 +1
(Lil - (—'%l—lez) | gar) = 0 (4.21)
or equivalently
2(2A 1
Bn(e) ~ 222 1(a)n(s) = 0

has (4.17) as a classical limit. This is indeed the case if we apply the Zamolod-

*

chikov’s limiting procedure [44]

[

1
L = glm, < -2, 2= Eagk, p>0

m =
(4.22)

Lm = lm, ki1 2 _1, l_l == (91;
and substitute (4.20) in (4.21) . There is one point to clarify: we have two
velocities vgl) and vgl) (1 = 1,2) and only one primary field ¢z in correspondence
with them. One can easily remove this apparent contradiction considering the
standart parametrization of the affine curves: y! = 2, y* = g(z) in which the fact

(1) _ ¢

that normalized velocity vff)(m) has only one independent component vy~ = —=

is manifest.

Reversing all these arguments we can state that the field ¢z represents the
quantum velocity of the affine particle in 4;. Broadly speaking the Virasoro min-
imal models can be considered as a quantum geometry of the affine plane curves.
However such a statement should be supported by an appropriate geometrical
interpretation for the other primary fields ¢nm of the corresponding models which
is missing at the moment. Our conjecture is that the Virasoro minimal models
are QFT version of a system of interacting afline particles.

The richness of the affine differential geometry is not exhausted by its role
in the geometry of the CFT’s. It offers us one more miracle: the affine geo-
metrical interpretation of the KdV equation. Consider a family of affine plane
curves y#(o,t) generated by the curve y*(o,tp) of curvature k(o,tp) by small

deformations in its tangent directions J-y*:

y* (o, 1) = y*(o, t0) + (t — to)kBpy* + ... (4.23)

% I, are the generators of the classical Virasoro algebra
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(o is the invariant parameter (4.11) ). As a consequence of (4.23) we have:
Ouy* = kB, y". (4.24)

In this parametrization the equations defining the curve y#(o, 1) take the following

form:

(82 + k(c,0)) Boy (o, t0) = 0 (4.25)

and

k(o,to) = —€* 82y, 0y, (4.26)

The question we adress is: how the affine curvature k(s,1) changes under these
deformations (i.e. if y* changes acording to (4.24) )? By simple differentiations

of the eqs.(4.24) and (4.25) we get:

Ok = 6kOsk + O3k (4.27)

or

Ok = 8,0,  0=3k%+ 8% (4.28)

Therefore the affine curvature k of the (continuous) family of curves (4.23) must
satisfy the KdV equation (4.27) .

Although we have no full understanding of the deformation (4.23) at the
classical level we shall address here few questions concerning its quantum (i.e.
Virasoro minimal models) counterpart:

a) while the quantum affine curves are related to the Virasoro minimal models
(Opy ~ o1,k = gT) one could wonder how the Zamolodchikov’s ¢y, flows [45,46]
of the Virasoro minimal models fits with the geometry of the certain families of
affine plane curves.

b) what is the quantum (perturbed Virasoro models ?7) counterpart of the
KdV? Its form (4.28) suggests to look for an answer in the perturbed conservation
laws of the stress-tensor T = £k and its descendents [45,46], i.e. to interprate

KdV as a classical limit of these conservation laws equations.
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4.2.2. 3-D space affine curves
In the basis (4.5) the Frenet equation for a curve y#(z) immersed in 43 has

the form (4.6) with

—a 1 0
A = 0 —a 1
b] bg 2a
where
I I
b = (ILIILIV) ——-»--——-——( 11, 1V) a=1/30,In(I,II,1II).

(I,1I,1IT)’ 2T T IL I
The residual gauge symmetry preserving this form of A forms an abelian subgroup

of SL(3,R):
1 0 0
ho = a 1 01, hohg = hoig.
al+at 2o 1
(1)

Choosing a = a, i.e. keeping the tangent v; ' unchanged and changing the “affine

normals” 'U;(_LZ) ,vﬁs) according to (4.8) we get

0 1 0
A= 0 0 1 (4.29)
—ky —ky O
with
b=k = (I,II1,1V)y (I,II,IV) ((I II, IV))
(I,IT,IIT) ' (I,II,III) 3 \(I,II,III)
I 1 - CS(ILIILIVY L(LILVI) 5(IIILV) 20 ((I,II,IV))3+
2 3 (I,II,IIT)  6(I,II,III) 6(I,II,IIT) 27 \(I,II,III)

)
5(III,IV)(I,IIL,1V)  5(LII,IV)(I,ILV)
3 (I,II,II)? 6 (L,

(4.30)
From these explicit constructions one can easily chek that the affine curvature &
and the affine torsion w are indeed SL(3, R).T3 (global) invariants. They define
completely each affine curve immersed in Aj.
Another simple cosequence of eqs.(4.30) are the transformation laws of the
affine invariants k& and w under reparametrizations ¢ — & = f(z) = = + €(z):
bk = 2(Be)k + eBk + 28%¢
bew = 3(Fe)w + eOw

(4.31)

(ie. A(k) =2,A(w) = 3). The affine velocity v, = yL(I,II,III)"% transforms
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as a primary field of dimension A(v) = —1:

bevy = —(0€)v, + edu,,. (4.32)

These tranformations do not exhaust the symmetries of the gauge fixed Frenet

equation for the affine curve in A43:
1
[33 + kO + (Ek' + w)J vy = 0. (4.33)

Applying Polyakov’s method [43] for the residual §L(3, R)-gauge transformations
encoded in the specific form (4.29) of 4 = 4T}, (a=1,...,8)", we have first to
solve part of the eqs.(4.18) for 6 of the 8 parameters e,:

&i(z) = g(z; 6,75 k,w), 1=1,...,86.

Substituting these ¢; in the remaining equations for 6k, fw and §uv, we get on
top of the reparametrizations (4.31) , (4.32) another set of one parameter (7)
transformations which leave invariant (4.33) :

fpk = 3(6m)w + 2ndw

__1 § _ir). 3 _._§ 2 _§ 27, _
ﬁnw = 66 i 6(5 n)k 4(6‘ T))(?k 4(6n)6 k (4 34)
1 3 _.2_ 2_% :
67]5 k 3(57])k Bnkak

2, 2
byva = [50% + Sk — (On)0 + naz] o

The explicit form of the transformations (4.31) and (4.34) suggests an inter-
pretation of the curvature k and the torsion w as generators of the (classical)

Ws-algebra [21,22]. Accepting the standard definitions
Sd(e) = [ dee()k(2), A@)},  Epd(=) = [ den(=){u(z), A())
we can derive from (4.31) the Virasoro algebra in terms of Poisson brackets:
{k(z), k(2)} = (k(z) + k(2)) B-6(z — z) + 2036(z — z)

and from (4.34) the corresponding ones for the spin-3 current w(z) {21,22].

Similarly to the affine plane curves the affine curves in A3 can be considered

as a classical limit (¢ — —oo0) of the Wj-minimal models.This identification is

* Ty are 3 X 3-matrices of the adjoint representation of SL(3,R)
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based on the transformation properties (4.32) ,(4.34) of v, and of the Frenet
2 1

equation (4.33) . Consider the field ¢ (1 1) of dimension and “torsion” [21]

(see (3.21))

A(z 1) _ 14—c+\/(§6-c)(98—c)

}) X (4.35)
2 2 1. 1
: = ZAY[28%(A 5 2 ——]
“ ( 1) QA [ ( +5) 5

2 _ 16
where & = T30 e

It has degeneraces at levels 1 and 2, the corresponding null-vectors being
(3.21}):
(2AW_; —3wL_1) | o) =0
2 (4.36)
(A(BA +1)W_p — 1202, + 6w (A + 1)I-) | ¢) = 0.

We multiply the second level null-vector by W_; and commute it to the right
using the Wj-algebra and the first null-vector (4.36) . This results in an eflective

third level null-vector:

(1) + calsL 1+ c3lg + caWog) | $) = 0 (4.37)
where
988w2
€1 = ————"77
A(5A +1)

144(A 4 1)w?

A{BA + 1)
s 45(A +1)(A ~ 3)w?
B A(BA + 1)

cy = —5A(5A + l)bz +

c3 = —5AYB5A + 1)b

cs = 18(A + 1)w.

Following the Zamolodchikov’s limiting procedure (4.22) and requiring

¢ 1
W, = 31 m m < =3, Wemn—3 = E@;"w(:c), m >0
Wm = wm, m > —2
c i
Ln. ﬁlna L S _21 l“‘i':‘—2 = ;aﬂlzki P Z 0

L‘n. = ln: n 2z _1: l—l = 6:1:

2 1
we find that (4.33) is the ¢ —» —oo Hmit of (4.37) and that ¢ (1 1) is the

quantum counterpart of the affine velocity vy, (1 = 1,2, 3).
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The origin of the classical Z3-symmetry is in the permutation symmetry of

the components of v,: (v1,v3,v3). The Z3-doublet of fields of equal dimensions

2 1

1 1 21
@ ( ) and ¢ (1 1) {and opposite Z3-charge) is in correspondence with the
two independent components of v, in the parametrization y; = z, yp = ya(z),
y3 = y3(z). The affine particle interpretation of the Wj-models is based on the
followihg action:

L
Sp=3 = f (e”"pyLy:yg’) *dz.
Analogously in the general case of Wj-algebras ome comsiders the field

$(1...1]2...1) (see [22]) of dimension (3.28):

(n—1)2n+1)—c+/{c—n+1)c—n+1—4dn(n? —1)
4n? '

A(l...1]2...1) =

In the classical limit this expression behaves as
1—n (n?-1)?
A -
T 2

and therefore it is natural to consider the field ¢ as a guantum counterpart of

the normalized affine velocities v;(i"’) = (O:y,) (dei(y(l), et ,y("))) "

In addition it exhibits n — 2 degeneraces at level 1 and one at level 2.Qur
conjecture is that combining them in the way analogous to the case of W3-algebra,
they result in an effective n-th level null-vector.Its classical limit should be the
n-dimensional affine Frenet equation (4.10) . In other words our conjecture is
that Wy-minimal models (n > 2) have as a classical limit the geometry of the
affine curves in 4, and that the geometric invariants k; describing these curves
appear as generators of the IWy-algebras (i.e. the higher spin currents).

Among the many open questions concerning the geometry of W, CFT's we
should mention the following two:

a} our present discussion was concentrated on the geometry of the 1 — D
(“left mouvers”) W,-models only. The consistent geometric interpretation of the
2D Wo CFT’s should be related to the geometry of the affine surfaces in A, (in
conformal gauge !). Although the remaining part of this Chapter is devoted to
the study of the affine surfaces we don’t have a complete answer to this question.

b) the affine geometry of curves in 4, is based on the group SL(n, R} - T, .

The (gauged) SL(n, R)-symmetries of the corresponding Frenet equations are in
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the origin of its relations with W, CFT’s. The question arises: are there other
geometries based on the same group? An example of such geometries are the
projective curves (and surfaces) in RP™! (with §L(n, R) as a group of motion).
Our preliminary results [47] confirme this possibility: W;-minimal models can

have as classical limits the geometry of projective curves in RP™~! as well.

4.3. Affine Surfaces

Consider 2D differentiable manifold A3 immersed in the afline space Aj:
y*(zi) My — A3, p=1,2,3; i=1,2

The affine differential geometry studies the properties of surfaces invariant under
unimodular affine transformations: ¢ = a*y, + (¥, where

(e, ) € SL(3,R) - T3 = (. Introducing at each point of M7 a moving frame
{y/;, N* : a = det(y1,y2,N) # 0} we can write the surface analog of the affine

Frenet equations in the form:

Yhioe Y
_L
Big=Aig, g=|vh ... yh|a’? (4.38)
N! .. N

where 4; = (8;9)g~". The problem is to realize the elements of 4;’s in terms of
covariant geometric objects characterizing the geometry (extrinsic!} of a surface
immersed in A;. According to the Radon theoremn [48] each affine surface in 4;
is defined uniquely (modulo G-transformations) by its two fundamental forms:
a) the first one is the metric quadratic form ¢ = h,'jda:"dmj
b) the second one is the Fubini-Pick cubic form % = 4;;; dz'dz! dz* satisfying
the apolarity condition

KA = 0. (4.39)

The induced (pseudo) Riemanian metric™ h;;(x;) has the following explicit form

% often called Blaschke-Berwald metric
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[48]:

L 1 v
hij = Hij (det(Hi3)) 7, Hij = S eyl aah, (4.40)
In terms of the y* derivatives the Fubini-Pick form 1 is given by
det y,l,yrg,d3y 3
= ( T ) — —dwp. (4.41)
(deth;j)t 2
Choosing the affine normal N* in the form
1
N* = SA(h)y”

we can finaly rewrite the matrices 4; in terms of hi;,4;;; and their first deriva-
tives. The result are the following affine structure equations {49, 37]
k
y,,':'_-,' = Fi_.,'yf;: + Af-“jyf;c + hijNH#
. ko (4.42)
N’i - _BJ‘ y,k
where I‘fj are the usual Christoffel simbols of h;; (i.e. the Levi-Cevita connection)
and B;j = hikB;-‘ is the second quadratic form. The integrability conditions of the
system of equations (4.42) are given by the affine analog of the Ricci-Mainardi-

Gauss-Codazzi equations [49]:
nm 1
Rip=h (Anjk»4mil - Anjzflmfk) +3 (hikBjI — hyBj, — hjp By + hjl-Bik)

Bijik ~ Bir; = AL By — AL By;
1

5 (hitBjt — haBjx + hj By — hjtBix)

Agjrg — A =
(4.43)
where Bj;.; denotes the covariant derivative of B;j:
Bijik = 04 Bij — T By — T4 By;

and R;j; is 2D Riemann tensor of h;;. As is well known these equations in the

matrix form (4.38) of the eq.(4.42) are nothing but the zero curvature condition

for the SL{3, R)-connection 4;:
O;4; — 0;4; +[4;,4;] =0, (4.44}

We can further simplify eqs.(4.43)
R=J-+2H
, (4.45)
ki = -thk - Bjk

where B = Rjz12 is the scalar curvature, H = %Bijh” is the mean curvature

and J = AijkAij’“ is the so called Pick invariant. The forms B;;,hy and A
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define three independent geometric invariants {(see App.A) which describe the
affine surfaces in 43: R(h) ,det Ah1B = kiky = K (affine Gauss curvature),Jr

Trh™ 1B = ki + ky = 2H, J satisfying the constraint (4.45) . One could find
this description to contradict the Radon theorem: we consistently use one more
quadratic form B;; to characterize the affine surfaces. In fact we must formulate
the above theorem more precisely. One indeed needs three independent forms
hi;,Bi; and A;ji to write the eqs.(4.42) .It is only on the solution of the integra-
bility conditions (4.43) (or (4.45) ) when we can express B;; in terms of hij, 4%

and their derivatives.

In this breef introduction to the theory of the affine surfaces we left unan-
swered two principal questions: {a) what is the geometrical meaning of the cubic
form A;;;7 (b) how one can succeed in inducing a metric hj; on the surface
having no any metric properties in 437 An elegant answer of these questions
one can find in the modern version of the affine differential geometry”™ [38] of
surfaces based on the Mayer-Cartan structure equations for the transformation
group G = SL(3,R) - T3.

Consider the 1-forms w® w? dual to the frame fields (y*,{a), @ = 1,2,3, where
ty is an arbitrary (normalized, det(t1,%2,13) = 1} local 43 frame (in particular
one can take tf = yg and #§ = N* as such a frame). In other words we have to
construct a principle frame bundle over 43 with structure group G and w® wi

are the corresponding (G-connections. According to these definitions we have:
dy* =Wk, dif = Wil (4.46)

and calculating d* = 0 we obtain the structure equations of G:

dw® = WP A wg
(4.47}

o v

3
duf = W A WP > ws=0.
a=1

3

We have to impose w” = 0 in order to restrict these forms to the surface Afs.

However this is not an independent requirement if we choose #; and #3 to be

T the common eigenvalues of the pair of quadratic forms h¢; and Bj; are called principal affine

curvatures
* at this point we are closely following ref.[50].
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tangent to My. As a cosequence of (4.47) we have w' A w? = 0 and therefore
2 .
w? == ZHiin’ Hi; = Hji. (4.48)

i=1

Let det H;; 5 0, then the quadratic form
w = hijwiwj, hi; = (det Hij)_%H{J’

is affine invariant and it defines a (pseudo) Riemannian metric on M. The

condition

1
wd = —dindet , dw} =0
allows to define an affine invariant normal vector N* = (det H)-th;LI . Substi-
tuting this requirement in the structure equations (4.47) we get wé Aw? =10,
i.e.
wi = -3 BYw!= -3 BYHw. (4.49)
Eq.(4.49) gives rise to another affine invariant quadratic form
= —wiwd = Bijw?w?. (4.50)
The remaining two egs.(4.47)
dw? = wg A w?
together with (4.48) imply the introduction of the Fubini-Pick form A;;;:
(dhik — hiltdi.. — hkzwg) Aw® =0
and therefore:
Dhy = dhyy, — hﬂlﬂi — hklwf‘ = Aikjwj. (4.51)

The Lh.s. of (4.51} is by definition the covariant derivative of h;; defined with
respect to the induced affine connection wf While in general Dh; # 0 we
conclude that w;-i does not coincide with the Levi-Cevita connection ch' of the

affine metric h;;. This observation makes clear the geometrical meaning of the

I we choose for simplicity det H:; = const, (w3 = 0), which holds in the case of light-cone
gauge for h;;
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cubic form: it measures the deviation of the induced affine connection wf from

the Levi-Cevita connection ch of the induced metric Ay;:
= h* 40l (4.52)

The apolarity condition (4.39) simply follows from (4.51) and det H;; = const.

The last step is the derivation of the affine structure equations (4.42) from

eq.(4.46) . Choosing local coordinates z* such that w' = dz’ we have

. . dut
- k Y
w;- =I‘;-kdm , t? = dz;
and therefore
w;- = (P;'k -+ hﬂAﬂk) dzk. (4.53)

It remains to substitute (4.48) ,(4.49) and (4.53) in (4.46) . As a result we get
eqs.(4.42) .

Among the various interesting (and unusual) properties of the affine surfaces
we should mention that the affine and reparametrization invariant area functional
is given by:

A= f | det hyj It d2e. (4.54)

Aty

The appearence of a fourth root is not surprising.It reflects the fact that A by
definition (4.40) contains four derivatives (instead of two in the euclidean case
My — E3). One can further use (4.54) as an action for the “affine strings”.
Concerning the problem of writing the most general action for the affine string
in Aj one should add to (4.54) the linear combination of the other independent
invariants describing the embedding of M1, in A3, ie. J, H? and det B = K.

Such an action will represent the affine analog of the Polyakov rigid string action

[8]-

4.4 W3-Gravity as a Geometry of the Affine Surfaces

The formal definition of the Wj-gravity is as a Borel gauge fixed SL(3, R)-
WZIW model [12, 20]. TIts light-cone formulation [20] is a 2D field theory of

interacting spin-2 h;; and spin-3 A;;; fields satisfying specific “trace anomalies”
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equations. The basic feature of this theory is its W3-symmetry mixed with the

“hidden” SL(3, R)-current algebra symmetries.

From the other side many of the ingredients of the “induced Wj-gravity”
can be recognized in the geometry of the affine surfaces immersed in A43. The
problem is to find the exact correspondence between them. Our main observation
is that W3-gravity coincides with the geometry of 2D affine surfaces of constant
affine mean curvalure (H = %(kl + kg)) immersed in A3. As a byproduct this

fact offers a new affine geometrical interpretation of the gauged WZW-models.

Let us first rewrite the affine structure equations (4.38) (or (4.42) ) in Lght-
cone gauge: h__. = 0, hp = %, hyey = hy A___ = C, Ay, = D and the
apolarity condition imposes A_,4 = h*C, A__; = hC. Taking as a moving
frame v = J+y* and N* = %—A(h)y”’ the eqs.(4.38) and (4.42) in the following

matrix form:

Y+ Y+
O+ | Y- =Adx | y- (4.55)
N N
where
—2hC 2C 0
A_=| 0-h-2Rr%C 2hC |,
4hB__ —2B,_ —2B__ 0
B_h — 2K2C v 1 (4:56)
Ay = | 6_h* +8,h+2D —4R3C 2RC —O_h h
-—-2B++ —l— 4hB+__. —2B+_ 0

Note that the specific form of A4 reflects our particular choise of the frame.
We can further gauge fix the initial local SL(3, R)-gauge symmetry of eqs.(4.38}
taking into account that the local SL(2, R) transformations of the tangents only,
ie. go(zx): t; — t; which do not change our affine surface Mj4;. The trans-
formations which mix the tangents #; with the normal N map a given surface to
another one and describe the flow of the invariants J, K, H, i.e. certain family

of surfaces.

Using the SL(2, R) gauge freedom we choose a new tangent frame 1=y,
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2 = ¥4 — hy_ by an appropriate gauge transformation

Az = goAugr ! + (8go)eg?

1 00
- (4.57)
tfl - thC!: !]G - _h 1 D
0 01
In this basis the eqs.(4.55) , (4.56) have the following simple form:
0 20 0 O_h 2hC
A_=1 0 0o L), 4y= A —0_h %
—-H -2B__ 0 —2B4y +2hBy_ -2B._ 0
(4.58)
where H = 2B, _—2hB__ is the afine mean curvature and 4 = 2(D—k3*C) = %%

(J is the Pick invariant).

Having fixed part of the local SL(3, R) gauge symmetries of the affine struc-
ture equations the main question is: which are the remaining gauge symmetries
and how the corresponding infinithesimal transformations look Like? At this
point we have to remember once more the Polyakov method” [43] for deriving
the residual gauge transformations we already have used in the case of affine
curves (see Sect.2.2). By permutations of rows and coloumns we can write A_

in the form similar to the one of eq.(4.29) :

0 0 2¢
Al =|-H 0 -2B__ . (4.59)
0 3 0

To obtain the Wj3-algebra we must restrict ourselves to the subclass of affine sur-
faces of constant mean curvature, i.e. to impose the following auxiliary condition:
H = —%. Then substituting the gauge fixing conditions (and H = —3) encoded
in the particular form of A_ in the SL(3, R) gauge transformation laws:

6 A% = Fbed 4¢ 1+ get 4 =T, 4 a=1,...,8

we obtain the W3 infinithesimal transformations (see App.B for the proof):

5T = — 40% €T + 20_€T + €6_T + 36_qW + 2n6_W
8
W :33—66377 e ?BEUT - QOBEUB_T — 126_7]5311 — §BET~}~ (4.60)

1
+§6(5~—€)T2 + gnﬁ_iﬁ 4 3(A_e)W + bW

* see also [24]
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where T = —2B__, W =4(C — d_B__).
Therefore the Wj-symmetries of the afline (gauge fixed) structure equations
for the affine surfaces with constant mean curvature are generated by the __ and

___ components of the second quadratic form B;; and the Fubini-Pick form A;;:
respsctively.

We can easily apply the above procedure to analyze the restricted gauge
transformations of A. given by (4.58) with H = —3. As it is shown in App.B
this gives us the transformations of the (improved) metric A = A + 40-C and
the fleld 4 = 2(D — R*C) (i.e. improved 4,4 component of 4;;;) coupled to the
spin-3 current W:

6h= |6y — ho_ + a._ﬁ] e+
+§ [2462 — 3(0_A)6% — 5(0%. 4)6_ — 2(6% 4) + 4T8_A] (4.61)
6A = [0y +20_h ~ hO_|n—20.-eA +c_A.

Comparing our results with the results of refs.|[43, 12] we can conclude that the

theory of the affine surfaces of constant mean curvature have the same symmetries

and the same equations as the Borel gauge fixed SL(3, R)-WZIW model.!
The next question is how the hidden SL(3, R) current algebra symmetry and

the specific “trace anomalies” equations (see ref.[20]) appear in the context of
the affine surface theory. The answer is extremely simple: they are nothing but

the integrability conditions (4.43) of the affine structure equations, i.e.
6id — 0 A, 4 [A,A] =0,
These equations in the light-cone gauge and for = —%— have the form:
3 1 1
0 h=_-A[W-20_T] - -
- 2 { ] 4

B4 =— (B++ + %hzT + %h)

1, 1 1
8 (B++ ST+ Eh) = AT
8y — 26_h — hO_|T = (8 A) (W — 25_T)
Bs — 30_h — RO_| (W —20_T) = T.

Fliminating By from the system (4.62) and performing some tedious manipu-

(4.62)

i note that in this gauge the Witten term is identicaly zero and the WZ'W equations coincide
with (4.38) , i.e. the o-model equations
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lations on the remaining equations we find that 7', W and %, A should satisfy

the following “anomalies equations™:

~40%h = (8, — 20_h — h8.) T — 3(8- A)W — 240_W
16 .5 s s
—giA=(mfﬁ&ﬁ—h&)W+

4 8
. [mz,-?-aiA +20(62 4) +12(8_A)62 + 3 40%| T~ 2(26_ A + A0 )T
(4.63)
We can further impose T' = 0 and W =~ 0 as classical constraints (which gives
W3) and then we obtain as equations of motion for hand A
B h=0

4.64
8% 4 = 0. (4.64)

The geometrical meaning of these constraints is that the Pick invariant J, the
Gauss curvature K = det B and the scalar curvature R = —%Bih (R # 2K) are
constants, i.e. all invariants describing the embedding of the affine surface M.
in A3 are constants.

Following Matsuo [20] we can obtain the egs.(4.64) considering the following

effective action:
§S = jTaﬁd% + /W&Adzm ~/eaihd23 + afn@ifldzw,

where we have used the Wj-variations (4.61) and the anomalies equations (4.63)

The general solutions of (4.64) can be written in the form:
Fl(m‘_{_,m_) =TTzt -2 (2T} — Z(27 )2 (z7)

A(e*,57) = TH () + 0 T 4 5T + 57T ) + 37T
(4.65)

As it has been proven by Matsuo [20], the 8 currents I%? and J*%, J£0 ghey

D] P

1
2

all the properties of the generators of (left) SL(3, R) current algebra.

With this we have completed the proof of our conjecture that the (classical)
induced Wj-gravity is nothing but the geometry of the affine surfaces of constant

mean curvature immersed in 3D affine space Aj.
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5. Extrinsic Geometry of Strings and W-Gravity

5.1, Introduction

The main statement of the present Chapter is that the noncritical string
models represented by the geometlry of surfaces of constant mean curvatures
(for p4+q = 3, 4) and certain other resirictions (for p+q > 4) are equivalent
to the WO(p, g)-gravities [12, 20, 22, 40]. Vice versa the quantum WO(p,q)-
gravities have as a classical limit (¢ — —o0) the extrinsic geometries of specific
surfaces immersed in Mp,. Remember that W-gravities, due to their higher
symmetries, can be solved by the methods of W-algebra representations [22, 12,
20]. Therefore in this way we are singling out a class of solvable noneritical string
models.

QOur starting point are the structure equations for the moving frame fields

= yf:(:n) and NE(z) [51]:

2
vh; = Tyl + b5 N,

N"‘f“ = —bf}hjkyfi_ + Vf!'BNE,

(5.1)

where y; = Oy, hij is the induced metric: hi; = nuy'fy", and I‘I’-“j are the
Christoffel’s symbols for hj. We will use the light-cone gauge:
ds? = dztdz~ 4+ A(dz*)? throughout this Chapter. Then we define 4, as follows
t
Brg=Azrg, g=|th |. (5.2)
Ni

The specific form of Ai(f‘i-“'j,b%,v?ﬂ) reflects our choice of the local frame and
surface coordinates. In general A1 € so(p,q) (for surfaces imbedded in flat M, ;)
and they transform as gauge fields under local SO(p, q) gauge transformations.
However we should distinguish two type of transformations: a) Gp = §0(1,1) x
S0(p — 1, — 1)-gauge transformations which do not mix tangent {t;} with

normal {Ng} space, i.e. leave the surface invariant ; b) transformations which

mix {t;} with {N} and therefore map a given surface to another one. Choosing

60



an appropriate basis in {{;} and {N,} we can gauge fix Gp-symmetries., The
remaining restricted SO(p, q)-gauge transformations of A_ can be found by using
the Polyakov’s method {43]. The analysis of the A_ transformations shows that
for the constant mean curvature surfaces in M ,,p = 2,3, the restricted gauge
transformations close the (classical) extended WO(1,p)-algebra. For p = 2 this
is the Virasoro algebra generated by 7' = b__ and for p = 3 the complexified
Virasoro algebra with generators 7o = b1_ £ ib® _. In the case of constant
mean curvature surfaces imbeded in Mz 2 the corresponding algebra is nothing
but the doubled Virasoro algebra and it coincides with W .Dz-algebra with T =
5! _ + 4% _. The A,-transformations generate the transformation laws for the
“extended metrics” Ay (coupled to the extended currents T4). For p = 2 we

obtain the well known transformation law of the light-cone metric & = h + c:

bch = Oy€ — O_eh + eB_h, (5.3)
For p=3 and M32 we get
bt c-hy = Byt — O_ehy + €50 ha, (5.4)
where A are defined as
he=h+ fl%, (5.5)

and e = 1 for M1 3; e = 1 for M2 . (See Sect. 3 for more details.)

In more complicated cases of surfaces embedded in higher dimensional spaces
we have to impose further restrictions to single out surface geometries correspond-
ing to the solvable WSO(p, ¢)- gravities. The first example is represented by the
theory of surfaces embedded in M3 3 for which, as we shall show in Sec. 4, the ge-
ometrical conditions {leading to theories of WS0(3, 3)- gravity) must be choosen

as follows:

ARAQ = 17 Al = _11 112 = 01 A—3 +A4 = 0,

4
bE_ =0, B bt =1, A3—Ag= gbl (5.6)

——

V2 412 =0, other w2 =,

At the moment we do not have clear understanding for the geometrical nature
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of such class of surfaces. The fact is that the currents

10
T = ?bl__,

(of conformal spins 2, 3 and 4) generate an algebra isomorphic to W Dj-algebra

W=23 V=" ), (5.7)

22|. The corresponding “extended metrics” are given by
p g

1
H=h- gcl, 4= 5("’-2{-3 + 2%, B = —(c3 + c4), (5.8)

and again their transformation properties are encoded in the restricted gauge
transformations of 4.

The W-symmetries of our models are an indication that the geometry of such
specific surfaces imbedded in M, , are related to the W-gravities. To show their
exact equivalence we have to find the origin of the hidden SO(p,q)- current
algebra symmetry and to derive the “extended trace anomaly” equations [5,
20] in the specific context of the surface geometry. The basic tool in solving
these problems is the analysis of the integrability conditions (called Gauss-Codazzi

equations) of the structure equations (5.1) (see [51]):
Op A —0-Ay +[A-, A ] =0, (5.9)

for the restricted class of surfaces we are considering. For example, in the simplest
case of constant mean curvature (A = 1) surfaces embedded in My 2, one derives
from (5.9) the Polyakov’s trace anomaly equation [5] for h = h + ¢

(8y — ho_ — 20_R)T = _%aifz. (5.10)

Imposing further the condition of constant scalar curvature

#h=0, (5.11)

we have
h=J}(z")— 272z + I (2T)(=7)?, (5.12)

and as a consequence of (5.3), Jf'o span the s0(2,1) ~ sl(2, R)-current zalgebra.
Similar arguments take place also in the case of constant mean curvature surfaces
embedded in M3 2 and M; 3. The anomaly equations for the extended metrics Ay
are again a consequence of the integrability conditions (5.9) and their explicit

form happens to coincide with (5.10) (see Section 3). The s0(2,2) (or so(1,3))
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-current algebras appear as hidden symmetries of these models. The next case
we analize in details (see Section 4) is a specific class of surfaces in M33. The
derivation of the extended anomaly equations for the metrics H, 4 and B from the
Gauss-Codazzi equations (5.9)is highly nontrivial and it confirms our conjecture
that the anomaly equations for the WSO(p,q)-gravities are consequence of the
integrability conditions for certain class of surfaces embedded in Mp,. However

we have no general proof of this statement (except for p+ q = 3,4, 6).

An important property of the surfaces immersed in higher dimensional spaces
is their richer geometrical and topological structure. Thus, for M2z (or M 3)
one have to take in consideration also the possibility of selfintersecting surfaces.
In Sect. 3 we present our discussion on how the selfintersection property appears

in the context of the extended W.S0(2,2)-gravity.

We have to mention the similarity of most of our constructions and arguments
to the corresponding ones in the Borel gauged SO(p, g)-WZW models [12, 20,
24,43]. In fact, for p + ¢ = 3,4 and 6 the struciure equations (5.1) {or (5.2))
{or a specific class of constant mean curvature surfaces in light-cone-like gauge
coincide with the equations of motion of the Borel gauge fixed SO(p,q)- WZIW
models, i.e. with the WO(p, q)- gravities in their light-cone gauge formulation.
The present Chapter can be considered as an attempt for differential geometric

and string interpretation of these models.

5.2. 2D Gravity as Extrinsic Geometry of Strings in M;,

As it is well known the most general classical 2-D gravity can be also described
as extrinsic geometry of surfaces embedded in appropriate flat Minkowski space
My 4 (of signature (p,q}). One could wonder what is the quantum counterpart
of such an equivalence. Qur statement is that the Polyakov’s 2-D quantum grav-
ity [5, 6] interacting with the conformal matter is equivalent to the {quantum)

geometry of surfaces of constant mean curvature embedded in M 2.

Consider an arbitrary 2-D surface immersed in M 2. According to the clas-

sical Gauss theorem [40] each surface in Mh 2 is uniquely characterized {modulo
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global T3 - SO(2,1) transformations) by its first and second fundamental forms:
ds? = hijde’de’,  H = {h;}
0 = byyde'de?, B = {by}

The geometric invariants describing this embedding are certain det’s and traces

of H and B:
IR =K =det H 1B = kiky

A=TrH™ B = hb;; = ky + Iy
where R, K and A are the scalar, Gauss and mean curvatures respectively. The
eigenvalues k; of the pair of forms H, B: det(H !B — K) = 0 are called prin-

cipal curvatures. Shortly, to define a surface in M; 2 we need to know its two

(5.13)

(independent) invariants, say K and A.

Introduce at each point of the surface P a local orthogonal moving frame
thlzi)(p, o = 1,2,3): muthiy = Mo, Mue = (1,—1,—1). We can choose t/(z;)
and ig'(:l:,') to be tangent to M7 ; and then the normal is té‘ = Nt = e“”"t'{tg. Let
y#(z;) are the functions defining the immersion, i.e. y* : P11 — Myz. Now we
can construct t4(z;) and the induced hi; and b;; in terms of y* and its derivatives

only. In light-cone gauge (l.c.g.) we have:

hit =yhysy,  hpo=yly ,=1/2, hiy=h, h__=0
w_ Vi vh N B
th = 2%, th = — = + 2V hyt = Ory* 5.14
1 \/}L_ 2 \/}; Y, Yy +Y ( )
bps = —yh Ny, by = —yi_ N,

The structure equations (1.1) describe the local changes of the moving frame on

P1].'

1

Org = Aig (5.15)
where in l.c.g. A+ € 50(2,1) take the form:
0 9.k bio
2h 7h
A_=| &k 0 — e 4+ 2VRb__
bio bi- o /R 0
Vi vk \/a;_h b (5.16)
Ar=|%ion 0 -2 1 2V/Rb,
b by
2k E 2vVhby_ 0
Using the “allowed” gauge transformations go € Go = Giangents ® Grnormals

(here these are the §O(2,1)-transformations that leave P); invariant, i.e. Gg =
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50(1,1)) we can further fix the tangents t,. We take gy in the form:

cosha sinha 0
1
go= | sinha cosha 0}, az—ilogh
0 0 1

and as a result of the gauge transformations

Ar = goAsgy?t + (Oxg0)gy”

g
(5.17)
g = gog
we obtain
h=yr+(L—hly-, fa=-yp+(1+hy-
0 0 b__+ A 0 g h a_
A_= 0 0 bo..—Al, di=106_A 0 —a,
b + A —b__+A 0 a-  ay O
(5.18)

where A =by_ —hb__,ar =by F (1L h)bsi.

We are now interested in the symmetries of the egs.(5.15) which remain af-
ter the partial gauge fixing of the S0(2,1)-symmetries. An effective method
for extracting such residual gauge transformations was recently proposed by
Polyakov [43]. To start with the SO(2,1)-transformations of 41 = (94§)§~} =
ToJi(zr 2o ):

5. J% = (2L )T (22) + e (5.19)

where J§ are the generators of the 5O(2,1) current algebra. Comparing the
general form of 4_:

0 J° 1/2(JF +J2)
A_ =2 Je 0 1/2(J5 - J-)
120 +J2) 1/2(JZ —J1) 0

with its gauge fixed form A_ given by eq.(5.18) we obtain:
Jr=b__, J-=4A, Jl=0 (5.20).

Let us further fix JZ = 1 (i.e.we consider surfaces of constant mean curvature

A =1 only) and substitute {5.20) (with A = 1) in (5.19) .Two of the eqs.(5.19)
67 =0=6J°
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allow to realize €p 4 in terms of e_ [43]

1

983 +b__)e_ (5.21)

1
€g = EB_E_, €y = (

and the third one gives the restricted gauge transformations we are looking for
(e- = ¢€):
1
beb__ =2(0_€)b__ + ed_b... — Eaie (5.22)

Therefore the residual gauge symmetries of eqs.(5.15) are nothing but ditffeomor-
phisms generated by b__. This fact suggests the identification of __ compo-
nent of b;; with __ component of the stress-tensor of the considered model”
b__=T__.

If we remove the condition A = 1 and consider an arbitrary surface in Mj 2
by applying the same Polyakov’s procedure we find the following complicated

transformations:
be, JT(z) = f dzey(z) {J"(z)J"'(w) — 9:6(z — :n)}
5E_J+(m) = —fdze~(z)J+(z)J+(u:)

The lack of clear understanding of the nature and the properties of the corre-
sponding {&..}-algebra is one of the reasons to consider the geometry of the
surfaces of constant mean curvature only. The similarity of the A = const case
to the Borel gauged SL(2, R} - WZW model [52] and to Drinfeld-5okolov Hamil-
tonian reduction [12,23, 24| is an indication that perhaps only the A = const
surfaces lead to exactly solvable model. This suggests the following strategy
to the solvable geometries of surfaces in Mpq: to look for such surfaces, whose

structure equations obey WS0(p, q) symmetries.

Turning back to the symmetries of eqs.(5.15) we have to examine the A -

transformations too. The egs.(5.18) and (5.19) together with (5.21) lead to

* which is in fact & Grassmanian o-model Ga,» = 50(2,1)/50(1, 1) (see ref.[8]), constrained
by A = const.
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8. transformation laws for b, b._ and & = h + ¢ (c is defined below):
beh = —(0_e)h + ed_h+ b€
b = (0 — 0.h) (b - %aie) 4 (O_e)bar (5.23)
cbis = bch + Be(hby_).

Note that the first of eqs.(5.23) exactly coincides with the transformation law of
the metric in the Polyakov’s 2-D gravity [5, 6].

The integrability conditions for the eqs.(5.15)
. A_ —0_A, +[A_,A]=0 (5.24)

are satisfied identicaly if h;; and b;; are constructed by y*’s as in (5.14) . Con-
sidering h;; and b;; as independent (of y*) variables and the surface geometry
as (F3,2 o-model (constrained by A = const) the equations (5.24) impose certain

restrictions on h and &:

O h=2b__ (bry — h*b__ —2h) —1/2

[0+ —20_h ~ hO_)b__ =10
8- (byy —h%.. —2k) =0
One can rewrite them in the form:
82(h+e)=-K
1., (5.25)
[6r —(h+c)0_ —20_(R+c)b__ = —53_0‘1 +c)
where ¢ = by —h%h._ — 2k and K is the Gauss curvaiure. The second equation

{5.25) is nothing but the Polyakov’s “trace anomaly™ equation [5] for the induced
2-D gravity with a metric A = & + ¢ and the stress-tensor 7__ = b__.

For the surfaces of constant K (and constant mean curvature A) the first
equation (5.25) gives:
Bh=0 (5.26)
and therefore
b= JHa") - 202 (e e + I5 ()P

According to refs.[5, 6] the currents J_:;:.D close SL({2, R) current algebra and their

transformation properties are & cosequence of (5.23) .
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All these properties of the geometry of constant mean curvarure surfaces Py 3
embedded in M; 3 encoded in their structure equations lead to the conclusion
that such an extrinsic geometry (having h;; and b;; as independent variables) is
equivalent to the 2-D Polyakov’s gravity [5, 6]. One could further repeat all the

KPZ steps for constructing the corresponding quantum theory.

Many of the properties of the surfaces of constant mean curvature have a sim-

ple form in the conformal gauge as well For example if we take

0 2e”

hi; = (2 e g ), ds® = e~*?dzdz, and write the integrability conditions (5.24)
e

we get the Liouville equation:

o = Ae®

as a counterpart of eqs.(5.25) .

One could wonder what is the action for such an extrinsic geometrical model.
The answer is extremely simple: the action for G237 o-model with the constraint
A = const. The same result can be obtained starting from the Borel gauged
WZW action (i.e. with JT = 1 constraint) and replacing the currents J% with
the corresponding geometrical variables h;;, b;; according to our identification
(see egs.(5.20) and (5.18) ). Al this if we take h;; and b;; as independent (of
y*’s ) variables. One can define equaly well the classical geometry of surfaces
in M using only the y*(z;) variables (h;;, b;; then are given by (5.14) ). The
main equations determining y* are:

_ A .
Upyp = -é—s,“,py::;yge”, A = const. (5.27)

The corresponding string action describing such “nonminimal” surfaces (ly* # 0)
is given by:

A g
where g = det(8;y*0;y*). The second term has a topological meaning and it is re-
lated to the degree (degf) of the “normal” Gauss map
fy v Pii1 — TPy ~ 51,;. We should mention that in eqs.(5.27) ,(5.28)
the metric h; is not gauge fixed.

In contrast with the critical strings one can not use free oscilators to quantize

(5.27) . However one can further speculate that the quantization of such a string
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is equivalent to the KPZ-quantization of the 2-D gravity interacting with the

conformal matter.

5.3. Noncritical Strings in Mz 3 and WS50(2,2) - Gravity

The extrinsic geometry of constant mean curvature surfaces in 4 dimensions
(2+2o0r 3+1, nu = diag(l,—1,-1,e%),e = +/£1) in many aspects is a trivial
generalization of the results for d; = 2+1, (dy < 1) from Sect.2. The immer-
sion y*(z;): P11 — Maga (Mi3) is characterized by hij, two second quadratic
forms bf%(a == 1,2) and the torsion vector v;. These quantities can be realized in

terms of the moving frame fields T%(z;) 1 7., T{Th = nap, (4,B,u,v =1,...,4)

as follows:
hij = Mw¥i¥g b = YN
13 (5.29)
vy = '—N;t: NU T]uy
where we denote Tj' = N1#, T} = N2*, We fix the Gy gauge freedoms:
Go = SO(1,1}) x SO(2) for M3 (e =1)
Go = 50(1,1) x SO(1,1) for My (e =1)
choosing a particular moving frame (in l.c.g.):
T =yi+(Q-h)yt NFN"n, =v_ =0
(5.30) -
Ty = —yi + (1 +h)yE.
In this basis the structure equations (1.1) get simplified: dig = 449, and
0 0 b+ A1 bs 4+ Ao 0 d_h
4 = 0 0 b1 - A-_l bz - Az ’ A_*_ _ B_h 1}
b1 + Ay —(b1 — Ay) 0 0 # *
mez(bg + Az) Ez(bz — Az) 0 0 * *
(5.31)
where
b2 = bq, ce = b5, — R2B%_ — 2A4h v=uy
i o (5.32)

af!_:: = Aq + Ry (o + AAa), Ag = bcf_ — hb% _.

To find the residual SO(2,2) (or SO(3,1)) gauge symmetries of egs.(1.1) we
apply again the Polyakov’s method [43], explained in Sect.2. As it is shown
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in App.C for surfaces of constant mean curvatures (i.e. A, are constants and
A1 £ eAg 5 0) the A_-restricted gauge transformations generate the following

two “diffeomeorphisms” for the fields b; -+ eby = T4:

6Ty =~ Pt 12Ot )Ts + HO Ty, 6Ty =0
2A1—ely
e . (5.33)
—_ L T e s - e - — - — — 65 [ —— .
§.-T 2A1+mhai +2(8-e )T+ 0-T_, +1 0

For e = 1 (My,2) the infinithesimal transformations (5.33) give rise to the W50(2, 2)
algebra wich happens to coincide with the W D3 of ref.[22]. This algebra is noth-
ing but the direct sum of two Virasoro algebras. For the surfaces (Ay = const)
in M3, (e = i), the transformations {5.33) generate the complexified Virasoro
algebra.

The doubling of the Virasoro algebra in the case of My 3 is a hint to look for
two “metrics” Ay sharing the transformation law (5.23) . This is indeed the case
and the analysis of the A, -restricted gauge transformations(see App.C) allows
us to conclude that the WS0(2,2) (WSO(3,1))- extended metrics are given by:

< C1 + ecsg
he=h4 ——. 5.34
' + A] o EAQ ( )
They obey the desired transformation laws:
fe-hy =06 ~(0_€ Vhy + O_hye, berhy =0
e ~ (0-€" )hy + + (5.35)

Serh_ = O et — (5_6‘{'):’;,_ + O h_e€t, §e-h_ = 0.
(see App.C for the proof}.

The next step is to derive the “extended trace anomaly equations” from
the integrability conditions {1.4) (Gauss-Codazzi egs.) for the corresponding
structure equations. It is so only when h;j,b;; and v in (5.1} are treated as y* -
independent variables. Substituting (5.31)in (1.4) we obtain the following system
of equations:

8% h = 2(byc; — €%byea) — 2A2 4+ 2A2 = — K
O-v = 2(bica — bacy) = Kt

(5.36)
(5+ — hB_) bo = 2(6_h)ba + O0_Ag — b,BV,Gcz
(8+ - ha_) A.a = B_Ca - Aﬁvﬁm V=1 = 621)21.
For Ay = const eqs.{5.36) can be written in the form:
- - 1 i}
. — heB_ —28_k = ——— 3%k )
(85 = hed = 20-ha)| T = — 5y 7B (5.37)
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and
# ha = 2T=(c1 & eca) — 2(A1 + eAz) (A1 — eda). (5.38)
Introducing the Gauss and normal” curvatures K and K+ as in eqs.(5.36) we
have:
2hy=—K +ek™ . (5.39)
For surfeces of constant K and K1 eqs.{5.39) imply:
8> hy = 0.

As a comsequence k. contain the currents of the 50(2,1) ® SO(2,1)-current
algebra for e = 1 (M3,2) and of the SO(3,1)-current algebra for e =1 (i.e. My3).
Their transformation properties are encoded in the h. transformation laws (5.35)

An important property of the geometry of the constant mean curvature sur-
faces embedded in M2 is its equivalence to the geometries of two {(indepen-
dent) surfaces of constant mean curvature embedded in Miz2. It reflects the
fact that the system of equations (5.37) ,(5.39) splits in two independent parts
( {hy, Ty} and {Rh_,T_}) and each of them is nothing but the eq.(5.25) for the
surfaces in My 2. The algebraic origin of this property is in the nonsimplicity of
$50(2,2) = §0(2,1) ® §0(2,1) and as a consequence the (constrained Ay =

const) Grassmanian o-model Go g = 50(2,2) =0Gy2® Gro = 5119@ 511,
d SO(I,])XSO(],]) ) 1 1 ;

representing the surface geometry in Mz 3 is a product of two G332 o-models.
One of the motivations to consider surfaces immersed in Afz 3 is that one
expect to enlarge the class of surfaces which can be immersed in M, with the
surfaces obeying new geometrical properties. The question we have to answer is:
which are these new geometric characteristics and how one can compute them?
The answer is that the surfaces in M3 2, together with the old (Mj 2)-property to

have certain number of handles g:
1
21 ~g) = %ff(f—gd% = x(Py) (5.40)
Py

obey new (Msz)- characteristic: the number of selfintersections g:

1
X (TPF) = 2—7;/K~L,/__gd% =9 (5.41)
P

+ the curvature of the induced connection in the normal frame bundle
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i.e. the genus of the normal space TP;-. To avoid the possible confusions’ due
to the noncompactness of the surfaces P;; in My at this point only we consider
their compactifications Pp (immersed in Ey). According to Hoffman-Osserman

[53] theorem the generalized Gauss map (see also [54]):
E Py — Gy = 5y x Sy, f: P, — By

splits into two factors 'y% (which are the projections of vf on both spheres 53)
and the corresponding Euler characteristics are given by:
x(Pz) = degv; +degyy
X (TP;) = degy} — deg v}
This fact suggests that the Lagrangian describing the comstrained G4 model
(Ae = const), i.e. the specific noncritical string in Ma 3, is the sum of two M,
Lagrangians (5.28) : L(A1, Az} = L(A1)+ L{A3). However, we have no an explicit
construction of deg 7}': in terms of the original y* : P;;1 — M.
Another approach to the G34 o-model action is to take hij,bf‘j and v; as

independent variables and to consider the Polyakov’s extrinsic geometrical action:
S = QD/\/*gdzm + oy /P+\/—gdzm + cr.ng_\/»-gdz:n (5.42)
wherePy are the following two invariants:
Py = h'b5baih™ = —K + dA®Aa, A% = 0% AT
P_ = ke fpimpnyl — gL,
For the surfaces of constant mean curvature A*A, = const the Polyakov’s action
simplifies. The second term gives contributions proportional to the area term

and the Euler characteristics. Therefore the action describing the geometry of

the constant mean curvature surfaces in Fy is:

S(A* = const) = Area(Py) + x(P2) + x (T Ps) (5.43)
This suggests the following form of the partition function Z(4) for a surface of
fixed area A and selfintersection number g{.4):

Z{4) = ZA—-J—'r%x(mr—z)e—m.‘l(_1)qm(_4)
X4

According to our analysis of the symmetries of the structure equations (5.1)

for P11 embedded in M3 9 (and A, = const) such an extrinsic geometry is equiv-

T and mainly because we do not know how to formulate these quantities for Py 5.
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alent (classicaly) to the WSO(2,2) -gravity interacting with W.D; -conformal
matter. It is natural to consider the quantum W S§0(2,2)-gravity and matter as
a quantization of the noncritical string with action (5.43) . Applying the KPZ-
quantization to the WS0(2,2)-gravity (with WS0(2,2) ghosts and W50(2,2)
matter (see refs.[12, 20])) {rom the condition of the vanishing of the total stress-

tensor
Tgr + Trnatt + Tqn = 0, Tyr =Ty + 12

one obtains:
6k

d— 56 +

—6r =10
4

K

(dg is the number of the matter fields, ¢, = —56) and therefore

26 — dg — \/(z"dq)(50_dq) K
2= —= -
£t 24 S S (5.44)

dq = Cmait-

This leads to the restriction dy < 2 = dg;./2. The analog of the KPZ formula for
the scaling dimensions A, A in terms of the conformal dimensions of the matter
fields Ag = AT + A5, Ao =27 — A7 is:

A1 —24)
E+2

A(l —A) = (A)? .

(5.45)

Due to the fact that WS0(2,2) = Vir @ Var all these results are trivial
doubling of the ones of the KPZ [6]. The only nontrivial element is coming from
the Zy-odd sector (“Ramond-like” sector) of the W D; algebra [55]. The generator
T = T+ — T~ is Zy-twisted around the flelds V%2 of this sector and therefore
the representations of W S0(2,2) -algebra are characterized by only one number
Ag(n,m) # AJ + A (see ref.[55]). The KPZ formula in the Zz-odd sector is:
Al - A)

0 _
Bnm =B = k + 2

The analog of the identity I (Ap = 0 = [Xg) here is the field of the lowest

dimension Vi1 : Aé'l = c—%‘%‘—’(cmﬂu = 26;[.;1:“). This analogy together with the

fact that ~s; is the solution of (5.45) for Ag =0 = Ap lead us to the following

* AZ are given by Kac formula for the Virasoro minimal models
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conjecture: the quantum counterpart of the selfintersection number gy, is given

by :
_ Cmatt _ {Lm-(l - q.st'.")
Gsir 39 P

and that the selfintersection properties are described by the fields from the Z;
-odd sector of the W Dj-algebra.

For W50(2,2)-gravity interacting with W Dy minimal unitary models d, =
cmatt = 2(1 — 6/p(p + 1)), k is quantized according to (5.44) . Therefore the
central charge of the pure gravity is quantized too:

6k
K+ 2

Cor =

— Bk. (5.46)

From the other side as a consequence of eq.(5.33) the (classical) central charge of

the pure gravity is given as a function of the constant mean curvatures A1, As:

1244

L 5.47
o= KA (5:47)

One can speculate that geometricaly the quantization of cgr means quantization
of the mean curvatures, i.e. A; = A;(k) and only surfaces with some discrete

values of A; are allowed.

The main obstacle in applying all this technology to the surfaces embedded
in My 3 is our poor understanding of the representations of W50(1,3) algebra.

5.4. Extrinsic Geometries and WSO(p, q)-Gravities

In the previous sections we have shown the equivalence between the extrin-
sic geometry of certain surfaces embedded in M » (and My or M;3) and the
WSO(1,2) (and WS50(2,2) or WSO(1,3)) -gravities. Both examples are based
on Virasoro- and SL(2, R)-current algebras. One could think that such an equiv-
alence does not hold in the general case of surfaces embededd in Mpq. In this
section we demonstrate that the extrinsic geometry of the specific class of sur-
faces imbedded in M3 3 is indeed equivalent to the W SO(3, 3)-gravity. However

we have no general proof for such a statement for the general case p+aq>6.

Consider a surface imbedded in flat M3 3 with the metric Muv = Mplpy, g,V =
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1,2,---,6, 7, = +11 . Let us take the tangent vectors T as in eq.(5.14) Then

the structure equations {(5.1)can be written in the form

Org = Azg,
0 0 % _ 4 Ao
A = 0 0 e — Aa ,
e+ Ae) Ta(b®_ —As) (5.48)

A, = O_h 0 a

(2
H
3
+

0 o_h af
I

N a’i NeaZ v

where o = b3 %+ (b%, — hb%_) and Ao = 3bFAY = bS_ — hb%_. From here
on we set by = b%_, cq = b%, — hb%_ — 2hA4. The Go = SO(1,1) x 50(2,2)-
gauge freedoms are partially fixed. To get W.SO(3,3)-symmetric surface model
we should do two more steps: (1) to gauge fix the SO(2,2)-local rotations of the
normal vectors, imposing appropriate conditions on v*P and (2) to find a set of
geometrical constraints selecting the class of “solvable” surface geometries. From

the SL{4,R) ~ S0O(3,3) Hamiltonian reduction [23], we know that the desired
W S0(3,3)-algebra can be obtained if we take A_ in the form:

0 5T W V
2 ,
AW 10 57 %IV '(5 49)
) A :
0o 1 0 T
o 0 1 0
The corresponding so(3,3)-form of A_ is
0 0 3T—-1 0 XHV-1+%iT) H-V-1-IT)
0 0 2T+1 0 XV-1-2T) H-V-1+1T)
PG ’ | ] ? ) (5.50)
* % 0 0 W —3 W
£ 0 W 0 0
€ A 0 W 0 0

T we take (n,) = (1,~1,1,-1,1,-1).
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The comparison of (5.50)with (5.48)leads to the following geometrical constraints:

1

A'_[ :wl, Ag =G, A3=—-—A423T,
3 1 1, .
blzl—DT, bs :D,b3=§(V—1), b4_~§(1/ +1), (5.

v = 2 %T/V,other yfﬂ = (.

o
o
'__l
f —

Note that 3, 7a(Aq)? = 1 (constant mean curvature condition). At the moment
we do not have clear understanding for the geometrical nature of such class of

surfaces.

Next we have to show how the WS0(3,3) symmetry of the structure equa-
tions (5.1)arises from the restricted SO(3,3)-gauge transformations. In doing
that we are following exactly the same procedure as before {which is now more
complicated due to the large number of parameters) [9]. As a result of tedious
calculations we find the following 3-parametric transformations of the currents

(of conformal spins 2, 3 and 4)

10
T = _"p1 ,
3 0—-

W=uv2_02 v=8_-p_, (5.52)
be el = — 58% €+ 28_eT'+ e6_T
+30_nW + 2n0_W + 408V + 3é0._V
beneW = 0°n + 30.eW + €_W + ( more terms),
benV = — 5%81@ + 40_€V + 0.V + ( more terms).

The explicit expressions for §W and §V are presented in Appendix D. The trans-
formations (5.53) close the (classical) Wy or W Dj-algebra.

The last and most difficult step is the derivation of the extended anomaly
equations from the Gauss-Codazzi equations (5.9). For surfaces embedded in

M3 3 they have the form:
82h = —23 nalbace — (Aa)?]
(0 = 20_h — hO_Yba = 0-Aa+ Y [(Ag + hbg)v®™ — b°]
a
(64 — hO_YAa = B_ca + 3 [(cg + hASYA™ — Agh]
B
By — 3_1/_?_’6 = —2n4(cabs — bacg) + ([vy,v_])%°.
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Introducing the extended “metrics”:

H=h—gc1, A:%(uﬁ_"’—%—vf), B = —(c3+ca)

and eliminating part of the variables, we find as a consequence of (5.54)that

H, A, Band T, W, V satisfy the following system of equations:

—58°H = (8, —20_H — HO_)T — 30_AW — 246_W — 40_BV ~ 3B8_V,
O° A= (0. —30_H — HI_)W + (more terms),

- ;OBIB = (84 —48_-H — H3_)V + (more terms),
(5.55)

A detailed analysis shows that these are indeed the expectied trace anomaly
equations for WS50(3,3)- gravity. (see Appendix D for details).
Further restrictions on the scalar curvature and certain other invariants lead

to the following “equations of motion” for H, 4, B:

BPH=0A=0"B=0, (5.56)
The solutions of these equations contain 15 functions Ji"(z™), u, v = 1,--+,6
(J¥ = —nunuJ%”) which should be related to the generators of the s0(3,3)-

current algebra as their transformation laws (which can be derived from the
transformation properties of 4. ) tell us.

This completes our schematic demostration that the extrinsic geometry of
the surfaces (4.1) possesses all the properties of the WS50(3,3) (= Wy) -gravity.
Concerning the KPZ-quantization of such theory we assume that it is given by
the quantum Wiy-gravity [12, 20]. According to refs. [12, 20] the vanishing of the
total stress-energy tensor restricts the number of the guantum matter fields d,
to be dy < 3.

Further generalizations to surfaces embedded in M, requires better under-
standing of the nature of the class of surfaces singled out by the D-5 Hamitionian

reduction.
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6. Discussion

To summarize, in the present thesis we described the general properties of the
extended W- gravities. It was shown that using a natural anzatz for the gauge
fields and the defining relations of the underlying W- algebras it is possible to
derive general expressions for the renormalized central charge and the anomalous
dimensions of operators. It is clear that a lot remains to be done. The theories
should be consistently gquantized and the conformal and W- anomalies should
be carefully investigated. If it turns out that one can construct anomaly free
theories, this would be an encouraging step in the studying of the W- strings.
The most important open problem, however, concerns the geometry underlying
the W- gravities. In the last two Chapters we discussed an attempt to make
connection between the latter and the exirinsic geometries of certain class of

surfaces embedded in higher dimensional spaces.

The relation between Wi-gravity and the geometry of affine surfaces in A3,
described in Chapter 4, addresses the question for the uniqueness of the proposed
affine geometrical interpretaion. In fact there exists one more candidate for the
role of W3-geometry. It is the projective geometry of surfaces embedded in RP?.
We have no satisfactory proof that such a geometry is a specisic classical limit
of the quantum W;j-gravity [47] but there are two indications that it should be
so. The first is the Fubini theorem [39] that the projective surfaces in RP3 are
described by their two fundamental forms: one quadratic hi; and one cubic 4;jy.
‘The second is that the corresponding (gauge fixed) projective structure equations
obey specific SL(4, R) residual gauge symmetries similar to the SL(3, R) ones in
the affine case.

Concerning the quantum Wj-gravity (i.e. the quantization of the affine sur-
face geometry ) we have to mention that the geometric quantities h;;, A;jk should
be considered as quantum fields independent from the matter fields y*(z ™, z7).

Remember now the identification of the tangent v* to the affine line in the Aj as

2 1
1) of the W3-minimal

4

11
a classical limit of the primary fields ¢ (2 1) and ¢ (1

models (see Sect.2.3). Let us introduce a set of (affine) z*- and z~-coordinate
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lines on the affine surface Mi.; such that in each point they are tangent to y4.
Therefore we have introduced in each point of M4 the corresponding primary
fields of the W3-model. This gives us an afline geometrical interpretation of the
interacting W3-gravity and Wi-minimal model as an interaction of the tangents
of the local frame y% with the fluctuating affine surface geometry given by hiy
and Ay, .. We can have another interpretation of the same system as an affine
particle {or “afline Wilson line”) moving on the random affine surface and inter-
acting with its quantum geometry. This picture can be generalized to the case of
W B, and W D,,-gravities™ (see [41]) interacting with the corresponding minimal
models. It suggests that the W G-gravity can interact only with the fields of the

W G-minimal model.

All our results concerning the equivalence of certain noncritical strings to the
W- gravities were derived in the light-cone gauge. The question arises whether
this property holds in arbitrary gauge ? Although we have no satisfactory proof
for the general case, the preliminary analysis shows that such an equivalence 1
gauge independent. For example, the integrability conditions (5.9) for constant
mean curvature surfaces in M; 9 in conformal gauge lead to the Liouville equation
and to two Liouville equations for surfaces embedded in My 2. Our conjecture is
that the integrability conditions (i.e. the Gauss-Codazzi equations) for certain
class of surfaces in the conformal gauge for hijT generate the generalized Toda
equations (see [16]). In other words the conformal gauge counterpart of the
“extended trace anomaly” equations are the Toda systems of the corresponding

affine algebra g.

Qur interpretation of the induced 2-D gravity as extrinsic geometry of sur-
faces embedded in M; 3 (i.e. dy = 3) might create certain confusions. As we
know from the KPZ- quantization [6] the well defined quantum gravity (inter-
acting with conformal matter) exists only for d; < 1 (or dy > 25). To make
the things clearer we should repeat once more our main statement concerning
W- geometries: the quantum W SO(p,q) gravities have as a quasiclassical limat

(¢ — —c0) the ezirinsic geometries of a certain class of surfaces embedded in flat

* including the Riemannian WSO(2, 1)-gravity
t and certain specific “Gy-gauge fixing” of the remaining “gravitational” degrees of freedom



My 4. The following three properties of the class of solvable extrinsic geometries:

a) their WSO(p, q) - symmetries of the (gauge fixed) structure equations

b) the “hidden” SO(p,q) - current algebra

c) the extended anomaly equations hidden in the Gauss-Codazzi equations
lead us to the assumption that the quantization of such geometries is given by the
WSO(p,q) - gravities interacting with conformal matier. However, we have no
explanation of the discrepancy between do; and dg, i.e. why 3 = do # dguan: < 1
(in general p+ g # d; = 3’—;—"—’1) We expect the inirinsic geometrical description of
the WSO(p, q) - gravities to answer this question.

Turning back to our starting point- the Klein geometries and the Lie- Cartan
theory of the geometric tnvariants- we should note that the problem of their
quantization remains open. Our few examples of quantum field theories which
have as a classical limit (¢ — —oo) specific Klein geometries show that these
allmost forgotten (by the physicists) geometries can play an important role in

the understanding of the noncritical string models.
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APPENDIX A

A transformation group acting in some subspace of R™ is defined by an r-
parameter Lie group G and a family of maps y = F(z,a),z,y € R™,a € G,
- provided

F(z,e) ==
F(F(z,a),b) = F(z,ba)
Let a(t) = at+... be a one parameter subgroup G, of G. y(t) = F(z,a(t)) is the

trajectory of the fixed point @ under the action of the one-parameter subgroup:
y(t) =z +aW(z)t + ... (A1)

where the » x m matrix W(z) is the Jacobian W(z) = (g—i})a:g' Define the Lie

derivative of a function f(z) on R™ under a one-parameter group G4 by:

Lof = (—% (F(m,a(t)"l)))

A simple computation shows that:

Lad(s) = 3. (W(a))i 5 F(2) = Eagrad (2).

1=1

The vector field é,(z) = alW(z) is the tangent at = to the trajectory of the

i=0

one-parameter group G4 (see (Al) ).

The Lie derivatives of a transformation group F form a Lie algebra under
addition and commutation which is isomorphic to the Lie algebra of the group
(. The corresponding transformation group is completely determined by its Lie
derivatives.

The transformation group is called localy transitive at the point z if for any
other point y in some neighborhood of # there exists a € G such that y = F(z, a).

The central point of any geometry is the study of the invariants of the tran-
sitive transformation groups. Among them the most important are those ones
which are not changed under any differentiable change of coordinates- the so
called geometric invariants. These are the only invariants that have an intrinsic
geometrical meaning.

The differential invariants are functions of the points z and their derivaiives
with respect to some parameters (independent variables). For example the func-

tion f(z) is an invariant of the transformation group F if f(z) = f(F(z,a)). As
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a consequence
Lof =aW(z)grad f=0. (A2)
But for the transitive iransformation groups the rank » of W is greather than
the dimension of the space: r > m, and the equation (A2) has only a trivial
solution f = const. Therefore any nontrivial invariant of F' must depend at least
on the first {and higher) derivatives of z. The number of invariants is determined
by the fundamental existence theorem for the solutions of the system of partial
differential equations of type (A2) .
Let us consider a curve in R™ and and choose the coordinate 21 as an inde-
pendent variable: z; = zi(z1),7 = 2,...,m. In this case we have m — 1 “new”
variables z} = g%ll The new “prolonged” Lie derivatives will act on functions of

2m — 1 variables ¥(z1,...,Zm;zh,..., ¢ ):

S ST (A3)

T 7=2 3

™ 6
(D = -
£ =13 6,

For the computation of 7; we observe that £ is acting in fact in some subspace
of R*™~1 in which

dzj — z;dz; =0 (Ad)

holds. Also, from the commutativity of the second partial derivatives we have

dc®) = £()g, (A5)
From (A4) and (A5) we obtain
L df] ] d{l
P Ty Sidm (A6)

Analogously, the second prolongation is

- RN
(2) — e
L ;‘f‘amiJ’

ang-; + ZC!W

1=2 1 =2 i

and {; are computed from (A35) and
d;n;- — w?da:l = 0.

The invariant function of order k& will be a solution of a system of equations of
type (A2) :
£y (zl,...,mm;..,;mgk),‘__,zgf)) _0

It is clear that we can “prolonge” the Lie derivatives to infinity and at the same
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time the rank r of W(z) is not changed. Therefore every transitive transformation
group has nontrivial differential invariants. Actualy, there exists a finite set of
independent invariants and all the others are functionaly dependent on them (for
example if f(2) and f(3) are invariants of order 2 and 3 respectively, then E%'; 1s an
invariant of order 4, etc.). It can be shown that if the number of the independent

variables is n, then the number of the independent invariants is < n + m.

Consider for example a curve in two dimensional Euclidean space. The 2D
Euclidean group of motions has three parameters {1 rotation, 2 iranslations)
T = 3, m = 2, and each prolongation adds one dimension to the space in which
the group is acting. So we expect two differential invariants of 2-nd and 3-th
order respectively. The prolonged matrix W in this case is given by

~zy Ty 1+ (mir,‘)2 3z! hzh B(mg) — 4zl
wl)=| 1 o0 0 0 0
0 1 0 0 0
The second order infrariant is a solution of the equations

af af af n Of

f 142 1 f —_
-m;nga—l + :131-5;; + (1 - (32) ) 8_58’2 T 3EZ$26712’ =10
af
4
B:.r:l
of
=0
Jzy
They can be integrated directly and one obtains
z
F2) = T
(1+ (@)

This is actualy the curvature of the curve embedded in E;. Analogously for the
third order invariant:
(14 (=3)7) 5 - 3ah(a})’
1+ (32)2)3 '
Actualy in the case of curves in Euclidean spaces one can introduce an “invariant

parameter” - the arc length of the curve o. One can show that in fact f) “”‘ , SO

3 =

the independent differential invariant in this case is only f(*, i.e. the curvature.

Consider the general case of a curvein R™. The Euclidean group has Tin;—_ll—:-
m parameters and each prolongation adds m — 1 dimensions. Therefore, given

the invariant parameter, we obtain m — 1 independent differential invariants.
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Another example is the theory of curves in affine spaces. The group of motion
is SL{m, R)-Tm (T = translationsin R™). It has m® +m —1 parameters. Each
prolongation of the Lie derivatives gives m — 1 new variables. According to the
above considerations this theory has m — 1 independent differential invariants of
order < m 42 (with respect to the invariant parameter - the “affine arc length”).

In the theory of surfaces there are two independent variables. The simplest

case is a surface in 3D EBuclidean space. It can be defined localy as a function

x3 = z3(c1,z2). Here, we should consider the derivatives p = g—i—%, g = az;,
gz a;s 859 )
T o= 33;2—, S = ga t = R etc. Analogously to the case of curves the first

prolonéation is found to be
0
L) = —030; + 2205 + pagg +(1+4°)5
P

£
ﬁgl) = —z301 + 218 — g0 + PO,

The group of Euclidean motions has 6 parameters. Two prolongations will add 5

Vo= a8y + 2185 + (1+0°)3p + pgby

dimensions. Hence, the theory of surfaces in R® is determined by two invariants
of second order.

Another interesting example considered in Chapter 4 is a surface embed-
ded in 3D affine space 43. The group of unimodular affine transformations has
11 parameters. Therefore we expect the theory to depend on one independent

invariant of order 3 and three independent invariants of order 4.

APPENDIX B

In this Appendix we show that after fixing the SL(3, R) gauge symmetry, the
remaining “currents” in (4.58) ,i.e. T = —2B__ and W = 4(C ~ 8_B__) gener-
ate the Wi-iransformations. We find also the variations of the improved metric
h =h+40_A and the field A = 2(D — h3C) under the above transformations.

First, for further convenience” , we make an ulterior gauge transformation

(4.57) of the matrices (4.58) using

1 o 0
Go=10 1 0],
g0 o 1

* in this gauge W transforms as a primary field with respect to T
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a=—2B__(=T). The matrices (4.58) take the form

0 W T
7 (new) _ l
AY 5 0 0 1
1 7T 0
h_ +2AT 2W — hO.T —2h_T — 2AT? + 8,7 14 1aT

Alpe) < 24 —h_ — 24T 1h

—2(Byr + 3R2T + %) 1/2+ 1AT + 2T(Byy + 1R2T + h/2) 0

(B1)

The SL(3, R) gauge transformations of the fields in (B1) are given by:
A = Be -+ [¢, 4], (B2)

A=4,T" e=¢€T" a=1,...,8 and T are the matrix generators of SL(3, R):

172 0 0 0 0 0 0 1 0
™= 0 0 0 TP=1{0 1/2 0 T3=10 0 0
0 0 -1/2 0 0 -1/2 00 0
0 0 1 00 0 0 0 0
T =10 0 0 T°={1 0 0 T =10 0 1
0 0 0 00 0 00 0
0 0 0 0 0 0
TT=10 0 0 T =10 0 0
1 0 0 0 1 0

We want to preserve the choosen gauge (B1) . This condition combined with the
transformation properties (B2) gives (algebraic) equations for the (part of) e's,
which are easily resolved:

€4 = —0ey +esW + 1T

€g = Oeg + esW L eggT

€g — €7 = —20¢s

€1 — €3 = 40(eg + €7) (B3)

4
€1+ € = 23255 — gesT

8 1 4
€3 = §3465 - “;“626511 — 56562T -+ 65T2 -+ 1/2(65 -+ E7)§’V.
The remaining independent ¢s+€7 = € and €5 = 1 parameters serve as parameters

of the transformations generated by I' and W.
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In fact from (B2) one obtaines:
8T = Oes +eg) + 1/4(es — e2)T — 1/2(e5 — e7)W
W = 20¢e3 + 1/2(6] — Eg)T’V -+ (64 — Eg)T.

(B4)

Substituting the relations (B3) in (B4) we get the final answer (4.60) . It is
obvious that € and 7 are the parameters of the transformations generated by T
and W respectively.

Let us turn now to the matrix ./11“’ in (B1)} and consider the fransformations

of the combinations A = Ag + A7 and A = As:

= 1 1 1 1
bh =0 €+ 1/2(—2—61 + e2)h + 2(e1 + EE;;)(B_;__;_ + éhzT + —~4-h)—-

+(es + er)(h- + 2AT) — 2(eq — eg)A + 4nT0_A (B5)
1 1
5.4 28+'T[ —_ (51 —_ Ez)A + 21’](}1_ + 2_‘4T) - 265(B++ + "éhzT -+ —h)—

2
+1/2(55 — E7)h.
The parameters are fixed by the same equations (B3) . After substituting
their solutions in (B5) we arive to the transformations (4.61) . They are in

agreement with the previous results {20] and demonstrate that endeed A and 4

are the flelds “conjugate” to T and W, as stated in the begining.

APPENDIX C

In this appendix we derive, using the method of Polyakov [43],the restricted
(field dependent) gauge transformation laws for T4, as announced in (5.33) . We
also derive the transformation laws for the extended metrics A.

The 50(2,2) (or 50(1,3), depending on whether e = 1 or e = i)-gauge
transformations

6Ax = [e, Az] + Oe,

0 € el 11 €2+ mo
~ € 0 € =11 € —1n (C1)
° €1+ 7 —(e1 — m1) 0 T ’
—eXe2+m) e —m) el 0

for A given by (3.3) and Ay = consts (A1 # A3) give 4 equations for the 6

parameters and the transformation laws for b; and bs:
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6by = 0.1 + enby — 827’]052,

(C2)
bby == O_e€q + egbs — Uﬂbl;
and
2(61A1 — ?’]151) - 262(1’]252 — EgAz) +0_¢ =0,
— (eoA1 + efmoA2) + 8-m1 =0,
(C3)
— (epAg + e®npAi) + O_n2 = 0,
2(611\2 - n;bg) — 2(77251 - 62A1) - 3_779 =0,
The solutions of the system (C3)are:
1
=~ (A{B_m — e?Aq0-
€0 A emg( 10-m1 — e*Aa0_m),
1
Ala_ﬁz — Aga_?’]l), (04)

vyl
1 11

_ b - = 2 .
adea = — (b1 & eb2)(m F em2) 2'*——A1J_FEA23_(T?1$6772)

Setting T4 = by = by, eF = 7’%2:%, and substituting (C4)in (C2)we get (5.33) .

Similar analysis of the A -transformations leads to the following transforma-

tions

8(e1 + hA1) = —[eo(e1 + RAL) — ezwp — d_hm + 62170((:2 + hAg)] + Oima,

5(62 + hl\z) = _[60(62 + hAg) — v — 6_h7]2 B T[g(cl + hA])] + a+172.

(C5)
Taking into account (C4)in the tansformation laws of the new “metrics”
5 c1-ecy
he=h+4+ ———, C6
* + Aq + els ( )
we find
Set by = Oy — _eThy + e50_ho. (C7)

We note that all the above calculations can be used to derive similar formulas
for the group SO(1,2) by simply setting the last row and column of the dx4

matrices to zero. In this way we obtaine again (5.21) ,(5.22) and (5.23) .
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APPENDIX D

In this appendix we derive systematicaly the anomaly equations, eq.(5.55),
from the Gauss-Codazzi ones, (5.54) , for the specific surfaces embedded in M3 3.
We also give the complete expressions for the transfomation laws of the fields W
and V of (conformal) spins 3 and 4 respectively.

Let us write down the Gauss-Codazzi equations in components imposing the
geometrical constraints (4.4). In the following we focus our attention on only a

part of them:

8%k =2(1 -~1—30ch+%(£3 —q)—%(ca +ca)V), (D1)
O_cy + %(u}f + viH)T =0, (D2)
O_(e3 + ca) + (13 + 43%) = 0, (D3)
%(m ~hO_)T = 8_(c3 — ca) + caW + (v3> — w1t + §Ui4T, (D4)
1—30(6+ —20_h— RO_)T = —%(uf — i+ %(uf +viHY, (D5)
Vit =28_h+ %(yjf + v, (D6)
83 = —(es — ca) — (65 + eV + 3 (27 + v2)TV, (D7)
O_(v2 +u3%) = 2¢,. (D8)

One can easily solve (D3), (D8), (D6), and (D7)to get:

U_l*_a -+ V,]{:i = “6_((!3 -+ C4),

1
£y =— 56_(1/3_3 + Ui':l),
113_4 =20_.h — -1%6_(1:3 + C4)T,
3 3 ., 1o,

30°h =2+ ﬁa_(a_(c;; +eq)T) — gclT —2(c3 +cg)V + E(Vf' + 134w,
2 1 1 1
ECIT + EBH(B_(C3 +c4)T) + 5(63 +eg)V + E(U_r‘:_a + 2w

(D9)

From (D4}and (D5)by eliminating 8, T and using the above solutions we obtain:

4
4:3—4:4;—5-;-

2 6 3 9
v — it =— 33_(C3 +cq)V — 2—55_(61T) - %33(3._(133 + ey )T) + 2—53_01T

1 1 3 -
- £ 0- ((es +en)V + 5(y;’f' + 2w — 1—08_(u_2,_3 + W,
(D10)
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Now we substitute #}* — v3* back into (D5}, which, together with (D2)gives:

B+T = — 533]1 -+ (26_h + ha_)T — g(—56361 o} (26_(:1 -+ Claw)T)

3 .

+ 55_(v_¢_ + YW 4 (02 4+ 2NEW — 40 _(c3 + ca)V — 3(c3 + cs)O_V.

(D11)

Setting H = h— %cl, A=3wP + 3 and B = —(c3 4 ¢4) we get from (D11)the

anomaly equation for the “metric” H:

—56° H = (8, —20_H—HO_)T—(30_ AW +2A8_W-+48_BV+3B3d_V). (D12)

We also present here the complete expressions for the transformation laws of

the fields Wand V:
BemeW =027 4 30_eW + e0_W +40_nV + 290_V ~ 28°9T — 38298..T
~ ga_nai 57;33 T — —63 EW — —52 EO_W ~ 20 80 W

27 1
~%583PV-|——66_5TW —l——eB_TW'-I——?eT@ W+~——a (nT)T,

(D13)
1 7__ - T 8 - T 4_ 21 3 -n2
be eV =— —a_e +40_eV + e0_V + —a_eT + —B_EB_T e -——956_58_1“

..c

32 63T+ 3_564T~§— 5T+ -a%v —Oaiaa_wr%a_gaiv

- -—eaiv rodert - i;;aE'Ta_T — OGO 2o o T)"
155“6 T2 T — 2—5061’33 T — 763 nW — Fa 8. W — —a_naz W

— Tﬁ"as W+ @a- égng"‘awT - —a_ eTV — -——EB_TV

- ggezramv + 2—53_ nTW + 5-.»;a_:r”W + %WTB_W + Za_(nw)w.

(D14)
The corresponding anomaly equations can be obtained formaly {rom the above

transformation laws by the folowing substitution
Segi— 0y, €e—H, n— A4, €—B. (D15)

We have proved that the anomaly equations obtained in this way can also be
derived from the Gauss-Codazzi equations for the surfaces we are considering,

i.e. taking A_ as in eq.(5.50).
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