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1. Introduction.

This thesis is devoted to study a class of models in Quantum Mechanics with
interactions supported on a discrete set M of points. Such models are known as
“point” or “contact” interactions, or zero-range potentials and have been
considered in various areas of physics: since the thirties in nuclear and atomic
physics in works of Thomas, Fermi, Bethe, Peierls and others; in solid state
physics (e.g. Kronig- Penney model of onedimensional crystal) and since the
fifties in many body physics in works of Huang, Lee, Yang, Wu and others.

The Schrodinger equation for the case of one interaction center is formally
given by

dry - ATy

where A is the Laplacian and g is the Dirac delta function. As it stands this
expression does not make any sense since the multiplication of \f by § gives the
zero wave function if Y(O\:O , or a non-normalizable wave function if Y(o)%() :
It is however possible to give a rigorous meaning to operators of such form. The
methods which have been used are some limiting procedures like the scaling limit
or the momentum cut-off potentials, the nonstandard analysis, the quadratic forms
and the methed of self-adjoint extensions of hermitian operators
Recenily much work has been done on solving the spectrum exactly, finding the
eigenstates and determining the the scattering parameters of such models

The case when the interaction is localized in a finite number of centers has
been discussed too and a n-parameter family of possible Schrodinger operators
has been described. However, from the theory of self-adjoint extensions it is
known that there should be a nz-parameter family of such operators, since we are
dealing with deficiency indices (n,n). The aim of this thesis is to find all theese
operators, study them and give a physical interpretation. For simplicity we shall
consider in full detail only the one-dimensional case (Quantum Mechanics on the

.



line) but all the results can be extended to D=2 and 3. |

The results which we present in this thesis can in principle be also applied to
more complicated sifuations. These include the presence of additional (smooth)
potentials (for example the Culomb potential), the Dirac operator instead of the
Laplacian or the derivative of delta function. The case of infinite number of
centers and the delta-shell or similar interactions with a support on curves or
surfaces has been discussed in the literature in some extend ; this vields an
infinite-parameter fafnily of operators.

The plan of this thesis is a5 follows. In section 2 we shall recall the theory of
self-adjoint extensions of closed symmetric operators. In section 3 we shall apply
it to the Schrodinger operater with point interaction in n centers. In section 4 we
shall show how to obtain these operators as the limit of the momsntum cut-off
potentials. In section 5 a8 an example we solve the case of two centers (n=2).

In section 6 we shall give the outline how the delta-shell interactions should be

described in our framework. Section 7 contains conclusions and final remarks.



2. Extensions of closed symmetric operators .

In this section we briefly recall the basic facts from the theory of self-adjoint
extensions of closed symmetric operators. In this theory one makes use of the
relation between symmetric and isometric operators which is given by the Cayley
transform as follows. Assume T is a closed symmetric operator and z a complex
number with nonzero imaginary part. Then the Cayley transform of T is defined
on the domain

D) = Ron (T-2)
(2.1)

by

VE= - (T-2(0-2Y"f | fedV) (22)

The operator V is isometric. The inverse transformation is given by

Th= e U2l e D) L gy

The defect indices (n) , no) of T are equal to the dimension of the defect spaces
N, and N 2, Tespectively, where

- 1
N, = Ran(T- 2) (2.4)

and L z,<0, T z,>0. Here‘&(jdenotas the orthogonal complement of :Ko
in the Hilbert spéce . The defect indices of V are similarly defined with
|z, | <tand | z,|>1. These defect indices do not depend on the choice of z in
the respective half planes are and are identical for T and V.

Any isometric extension V of V maps a subspace of D (V) =He D)
onto a subspace of (Raw V"= LoRa with the same dimension. Thus V is



mazximal (i.e. has no strictly larger extensions) if ny=0 orfand ny =0 and in
particular; ¥ is unitary if ny=ng = 0. Ifny =np > 0, ¥V has (at least one)
extension V which is of the form V = V + U for some unitary operator U from

DOV to (RawN) . Thenal the setf-adjoint extensions T of T can be
obtained from the . inverse Cayley transformation.

Wa see that all self-adjoint extensions are paramstrized by a nz—parameter
family of unitary operators U. The domain of a self-adjoint extension TV of T

consists of vectors of the form

-F='Faf321'U3z 3 {/o(-; D({T\ 5 ﬁzeN-Z—j I\MZ)O {25)
where U is the unitary map from N-onto N_ . The action of T" is given by

T“_Q:Tﬁ,fziz +ZU3Z (2.6)

. . u, g U v \"4
The whole infromation about T~ is contained in the resolvent R, = (T~ z\ ]
Let TY and T be two self-adjoint extensions of T, and R, and R‘Z’J the
corresponding resolvents . Denote by azk S k=4, n abasisof N5 .

}

The difference of the two resolvents satisfies the Krein formula

RS, - R" - %L YN AR 27)

Zz

where the n>n matriz M(z) obeys the equation
M- M) = (z-2) M(2)6( 2 )M (=) (2.8)
and 8(Z2) is the matrix of scalar products

6= < 9%, %> kL4 e (29)



The basis 3“1 can be chossn to be an analytic function of z as follows

g% = LA+ (22 )R) Tq% (2.10)

where q ' is some fized basis and T" is some fixed extension.



3. Construction of the gensral family of n-center point intereactions.

In this section we shall apply the above abstract construction to our problem.
We are intersted in a Hamilton operator which looks like the free Laplacian

-A = - g5 (3.1)

outside the set M={x;, j=1,...,n}. The basic idea is to restrict first the self-adjoint

Laplacian defined on the natural dense domain

{\\; 6}[: %_% aﬁcgnwﬁﬁg Oov\“b\w,wu/)] A\?QJ’Q}S (32)

in 1= 2R, dx) to some appropriate domain D and then find all the self-adjoint
extensions (which equal -A on D). The relevant dense domain D is the set of
functions which vanish at all the points x i for j=4;..,n (this is meaningful since
we deal with absolutely continuous functions). In this way the perturbation is felt
only by the wave-functions which do not vanish on M. This is why we can write
formally

dl
v RRN (33)
where S , 15 some generalized potential supported on M (delta-like distribution).
To see that we can apply the method of previous chapler to the restriction of

-\ 1o D we pass via the Fourier transformation to the momentum representation.

Then we have a multiplicative operator { Y (p\ =P2&Y (p) defined on the domain
D) = {‘Y ¢ (R, dp): Slp‘\z(g\\lo\f;@a} SJP“ Y (p) dp=0, léjé“"s (3.4)
This is obwously a symmetric operator. To show that it is closed consider a

-G~



saquance Y, £)Y), Qoo ) Wi ¢ with ¢ and & belonging to 3¢ . We have
to proove that e D(H) and Hy = ¢ . The first statement follows from the chain
of inequalities

Jer g {Je LoD &

\&U ALy yadte) \

oy
< bir (Lol dp € CN Ly gmll (359)
<N NT =N 0

and

Wl = Lo Gy g™ < Dup by

S T I by B C e [ | D ]
—2 el <o

N =22

where X (p) is the characteristic funcion of the set (-N,N).
The second statement is proven by

e = £ I P -l 4l gl © e

50

It 15 straightforward to see that the linearly independent basis of the defect

space N is

l/z LB ¥
L?\ 2w - =4,

- J

e (3.7)



Next we observe that the self-adjoint free Laplacian in the momentum
- representation provides us one particular extension with the resolvent

A
%_

R.(p) =

Z °

P

We can use it as a reference extension in the formula 2.10 obtaining

—&:P)(k

Y
94 (p) = Qo) '%::T h

The dommain of the self-adjoint extension H is now given by vectors

¢ lp)= $(p) + Zoqc(jb-i 3 ua\:\ )&ue(ﬁjdgeb(H)J

where the unitary operator can be written inthe basis ﬁ“ as

U@ku = % u’k,@, jl_.,

Due to the unitarity the nom matrix U, satisfies

T Sl )W = Slep) = S (epo)

where S(d.i) is the particular case of the matrix function 2.9
o =%,
74 Prem e

Sk,Q(E@Q\ = SQF\ ’Q______,___\ r

(E"‘— 2) (pl* Z,

U
Then the action of H on ¢ reals

(HQY\(F) = Pl*(@f%_o(m(i,ﬂ‘i(?\-—l;é‘ uw, 3&(@\ ) @eD(H)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

- (3.14)



It is easily seen that the extension 3.8 corresponds o the matrix w =- Ly -
To be able to use the Krein formula we have to determine M&) ineq. 2.7,
To this aim we observe that we know the resolvents of H and H for z=i , thus

2(p% -R)=VeU-VelU,- (3.15)

= 2 (uju* 5;\) 5;:@2.(3 ai<3’t)°> 5

j,M‘L

where V denotes the Cayley transform of H . This gives
. AT 'A(\ \
ME) = & (uTea) S0, (3.16)

which by using 2.8 yields

¥ o T+ A—- L (z,-1
M) - 1 SE (U A =@+ 5(E) 1

for det (USA)£0 | Since the spectrum of the free Laplacian is absolutely
continous and positive, the last formula together with the Krein formula imply
that the spectrum of H" is a positive halfaxis plus the pure point spectrum
consisting of those z for which

det M2} =0 . (3.18)

We define the matrix function 6 with the matrix elements



L("b‘ k=~ X L\ (3. lg)

The eq. 3.17 can be written in the form

-A = . T, -4 o\ - z
W =) = Telo)- 6] (U7 6} - 66) (3.20)

We now give the physical interpretation of the operators W Let )1: denote the
difference between the derivatives of Y from the right and from the lefi

3y (= Liw ['i\:“((“” -2 Y("'iﬂ . (321)

¢20
In the position representation we have

R '5\( ()= — 57:3 : (3.22)

By a short computation we get for a gensral vector in the domain of H )

S : . 3.23
Yyl %Akwm, 329
where the matriz /\ is related to U by

A (e(a\ L6l UT) = Ax ' 3 KT‘A/\ * (324

This shows that we can iterpret the operators Wi terms of the boundary
conditions. If the matriz N\ is nondiagonal we have nonlocal boundary conditions,
namely the jump of the first derivative at ¥ will depend on the value of the
function at, . This shows that the matrix A can be interpreted as the matrix of
the relative strenght of the delta potential at points X,

_.AO_—



4. Example : point interaction with two centers

We take n=2 and chose two points » and x_. Let

2 oy (4.1)
\ ba- %2 | {g )\01 j ke, el |

The pure point specirum can be obtained from the equation

L —yT * abiy( ¥ ) et

ot Lic&;(alo—xﬁ ‘ ~ ]:O (4.2)
T (b gF ), ot «c (-5 F)

where T = |\z. The bound states correspond to solutions Ton the positive
imaginary axis, the virtual states to T on the negative imaginary axis and
resonances o T not on the real axis. Sice the local case a-b, Y=(O has been

discussed in U«} we consider the purely nonlocal case, i.a. a-b= o) R.

From 4.2 we get

fetow ==y (4.3)
The quation for a bound state reads :

}{e't+‘b= ty , t29. (4.4)

Thus for o(y<A there is no bound state; for <O and DA thereis
exactly one bound state. As far as resonances are concerned we have to solve the
system

5 — {gé’h SL\A(S) =0

L Keft o () = £ (45)

- M~



where T-S+Lt , Which leads to

s o) v o et )= 5y,

By studying this transcedental equation we get the following pattern of

resonances: there are no resonances in the regions

2k Lo &2k N yéo
Qu-wds & 2k N! ¥ >o
K= {L)Z).... ;

(4.6)

there is one resonance in the region o<  and there are two resonances in the

remaining regions.

~A2-



5. Ths operator H as limit of momenturn cut-off potentials.

In this section we show that H- @ll the self-adjoint extensions described in
the previous chaptex) can be odtained as a limit N—so of momentum cut-off
potentials H . Let H,, be the operator in L"(R d¢) given by

Hay (p)= pylp) + Zl Ay K DE R E 7, 6D
K, }

where

L’ka

) -4
E.(p) = @9 , (5.2)

since this operator has bounded potential term we can write down directly its

resolvent

N = N | 5.3
P\'I. = R'2‘ t ?1 RZXNELQ MkL(Z) <RiﬁxNEL) ¢ > ( )

where

-1

- MM(ZYSL: AN kL + <lXNEk, RZXNEL> .

{5.4)
u
The convergence of H g o H is now easy consequence of
E _E ) (3.9)
“ Rz (XNEk "‘NE:ZO .



6. Brief outline of delta-shell interactions.

The direct application of the method of self adjoint extensions of closed
operators to delia-shell or similar interactions with a support on curves or
surfaces leads to infinite deficiency indices. This creates some problems.
Intuitively it is clear that there should be an oo?lparamater farnily of extensions
but we do not attewt the rigorous construction of all of them. We naglect
technical difficulties and proceed %o briefly outline the main points along the
lines of section 2 and 3.

Assume that on R* (minus a zero-measure set which does not meet M) we
have adapted coordinates (y,1) with the range ¥XT such that
i). M is given by the equation t=r (thus y are internal coordinates on M and t
are transversal coordinates + dimY=d, dmT=3-d j d =4 ov2 )

ii) the Laplacian D separatesin L~ (‘/,A\ﬁ s (T , A_Jc) as

AyoP, + Ae Ay (6.1)

where Aj and A y, are differential operators in the variables y and t respectively,
and B, is a multiplicative operator int.
In addition assume that we can solve for a complete orthonormal system of
(generalized) eigenvectors Y) of Aj with eigenvalues F()), 1.e.
A 37( »» FO\\ X DN
r
S)\MX%, ! o\j = S0

(1, %, 0 = Ty

(6.2)

_ A4 -



where d) is the spectral measure on/\. Let Vs be an analogous system in LZ(T, oUb
with eigenvalues E@ for the operator

A, +FQIP, ©3)

Here M is a parameter, U and E(r) depend on ) , and the measure on the
labeling set 7 is do”. Next we perform a unitary 'Fourier' transformation onto

L=2(AxZ , dnder ) given by
J( (\ ) = SJ(JC\X ]CJ )O\Jouc‘ (6.4)

The Laplacian becomes now A, the multiplicative operator by E(¢) defined on a
dense domain { fe]{, ‘ g ‘ E(G\.(\E(%,w\ \Zd)do € OO} .
The restricted domain is just

- i;ﬁ'ej{; g‘(}:(ﬂ T?\(j) \E(),o—\cl)o\tr =0 a.e.} :

~
The restriction of O to ) is a cloged symunetric operator T with deficiency
indices (o= o). The (generalized) basis of the deficiency space

- RanlT2) > Keeli=2) | Twzvo,

can be taken in the form

9clo) Koly)
g3 o) = o (6.5)

whare yeY is just a parameter. Denota N the deficiency spaces and ¢ the basis
] Jx

-AS -



for z = £ i. We have 3‘3 =g, 3 The domain of a general self-adjoint extension
H' of Tis

()= | F=Lrgelg e

and the action of HU‘ reads

0 (Lrg s Ug)s Ellr iy - Yy 67)

Here U is a bijective isometry from N_to N, . If we write
}
’ j /
u~3§‘ g u(é’@ v o (6.8)

then the integral kernel W satisties the relation

where S (y',y") is the particular case z = +1 of the (generalized) scalar product

matrix
52(313‘ >: S 32 () 327(7\‘5\ nds (6.10)

In the position representation, H" becomes the differential operator with the
domain specified by the following boundary conditions. We conjecture that
formally the (average) value of the derivative at (y,r') should be related to the

value of wave-function at (y',r) as

Z ms o o {2(3,%) ol = _g/\(j]j?)?(j),r\ o\j) , (6.11)

-Ae-



2-9) < .
where d(n) is the volume element on o - i’n . Z\ = 4} _
A_’

For d=2 the left hand side of this expression becomes just the jump of the first
normal derivative at t=r (the result similar to point interactions). However the
precise relation of the integral kernsl Afy,¥') to the kernel [L(y,y') has to be
find out.

The work to be done in the future is computation of quantities introduced
above for simplest symmetric menifolds M, for instance, if dimM=2, for:
RZ (plane), R¥8! (cylinder), SIx§!(torus), §2 (sphere), elipsoid, and, if
dimii=2, for R (ling), gl (circle) and elipse. Next, the quantities like resolvent,
spectrum, eigenfunctions, resonances and scattering parameters should be

explicitly determined.

—AF-



7. Conclusions and final remarks.

In this thesis we have constructed the most general n’*> parameter class of
Hamilton operators with poitnt interactions in n centers by using the method of
self-adjoint extensions . We have interpreted these operators in terms of the
(possibly nonlocal) boundary condition,and parameters as overall and relative
strengths of the delta potential at different points. We have found a limiting
procedure to obtain them as a norm resolvent limits of momentum cut-off
potentials. As an example we have analysed the spectrum of the case with two
interaction centers. Finally we have outlined the procedure to be applied for
delta-shell interactions.

Some comments are in order.

Which one of the many-parameter family is the ‘right' hamiltonian is a
question of addilional requirements. These may be for instnce the symmetry
properties with respect to some involutions in the Hilbert space or transformation
groups acting in R , the locality principle (it is interesting to note that nonlocal
boundary conditions for the Dirac operator are usedin the original papers on the
Atiyah-Singer index) or other physical requirements.

The method can be applied also to study operators of the form A +J, wt \/ ,
where ¥ is a usual potential - typically the Culomb one (L€ [3]). Some other
potentials to be discussed are the magnetic monopole with the delta at the origin
or soms nonabelian gauge potentials in the case of spinors.

In addition to obtaining the general point interactions as norm resolvent
limits of momentum cut-off potentials ons should also do limits of scaled
potentials or other approzimations.

Infinite number of centers is the case relatively less known. Our method
requires the full understanding of self adjoint extensions of closed operators with
infinite deficiency indices, the method which has not been described yet (to the
best of author's knowledge). In this respect this case is a bridge between M
discrete and continuous. When the method will be worked out as a special case we

— AR~



should recover various known solutions like Kronig-Permey or n - limit of
finite number of centers

The motivation to study the interactions supported on a continous
hypersurface M is obtaining a class of exacily solvable interesting models which
have even a richer structure that the point interactions. Obtaining the general class
will be useful in n-particle contact interactions or to explain the apparent
discrepancy between the Thirring and Glaser solutions of the Thirring modsl (see
e.g [AW AS A6 ] .

-143 -
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