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seornetry of Kaluss-Elein type theoriss
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mainza-Klein nnification

special cage : the internal space is a group manifold

g

General case : the internal space is a homogensous space

Gauge theories over Stiefel bundles

stiefel bundles as universal bundles

Hopt bundles and topologically non trivisl gauge configurations

spittor structures
Definiticn of spinor structure
spinor fislds

Spinot connection

spinor structures over oriented spheres give

3

auge figlds

()]

£y

fin
o




The idea was generalized by Yang and Liills [_] wiho introduced gaugs

figlds corresponding to the spin iselopic group 302 sEively by
paridirary Lis group . The satns idea | in

g g
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appropriate languags oribing classical gauge theories is that of

principal fibre tundles with connections [ 5-12] . This framework is
eggential to the analysis of global properties |

he description of tepologically non trivial gauge configurations such as the
magnetic pole solution of Maxmwsll's eguations DJ or the
Belavin-Folyakov-Schwartz-Tyupkin solution of the sourceless Tang-Mills
squations [11:] | ig an example of the importane of fibre bondls

technigques in physics .
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Hosar Irams

betwesn gravilat

bundle of framesis  “soldersd” foifs base M while for gauge theoriss
the bundle is wealkly connected to M Mo . the Einstein Lagrangian
for gravitation is linsar in the curvalure while the Lagrangian for gauge
theories is quadratic

One may try o unify gravity with ganges fislds by exploiting their
simnilarities . An allsrnative approach consists in deriving the cauge fislds
from gensral relativily in more than four dimensions | This ides has its
roots in the unified description of gravity with electromagnstism |, in the
Iramework of gensral relativity in five dimensions , propesed by Ealuza
[18] andmein [19]
The Ealuza-Elsin unification can be formulated in the contex of fibre

bundles | Given a principal tundle P oover the space-fime M, with a

es g 3 am mde - ~ g . R | 5 o o dead .
connection  co describing gauge fislds | and a Blemannian metric g
& ey 4" el 2] 3 ] N.—‘-. - 2 ‘-i.ﬁ. fe ] "t s A 1"
on M which gives the gravitational fisld | a Rismannian melric can be

naturally defined on P Then , the Einstein Lagransian for P
decomnposes in the Einstein Lagrangian for M plus the Lagrangian for the

ange fields and the curvaiug
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Fibre bundls tschniques may be very ussful for the guantization of

l|'..‘

oauge theories fo his into the

‘;.:"t




R gy e
anantiz

The most sudtable approach to guantization of zauge fislds is by
means of Feynman path-intezral [ 1 . At first sight one may think of
integrating over the functional space  C  of all connections defined on a
principal bundle P whose base is the space-time M . However , owing
to the gange fresdom | such an integral is overdetermined . In fact, one

o]

should integrate over the sel of all families of gavge related connections .

1
J 3

If Auty P isthe group of gauge transformations (se¢ paragraph 2.5

this set is the space C / 4ut P of the orbits of the action of  Aut P

on (. Hevertheless, there are difficulties even in the definition of
C faut P [2010]

& possible way out could be to choose one connection on each orbit

{gauge fizing) and to introduce a weight factor in the integral . Such a

cholce is equivalent o the construction of @ mapping s C JEUL, P — C

that JTes =id |, wherse JT C G ‘Aut, P is the canonical

[4x]
L}

projection . In general the map s is defined only locally and it is net
possible to prolong it to a glebal one . The fact the no continuons choice of
sxactly ong connection in each orbit can be made is known as Gribov

ambiguity | 20]

L_f



This theeis is organized as [ollows

P L

geometrics] preliminaries | In particular the notions of
of associaied bundle are introduced . In section 2. the concepts of

connection and covariant derivalive are snalveed and it is shown how

ﬂ!.,g

gauge theories may be [ormulated in the frameworh of principal fibre
bundles with connection . Section 3. deals with gecmetrical aspects of
Ealuza-Elgin type theories | Both the cases in which the internal space is a
group manifold and |, the more general one in which it iz a homogensous
space are considersd | In section 4. cavuge theoriss over Stisfel tandles are
studied and the importance of them as universal tundles is stressed . Itis
shown how Hopf bundles |, which are particular cases of Stisfel bundles |
describe topologically non trivial gange configurations . Finally | in section
Do the nofion of spinor structure is introduced | Particular cases of spinor
structures over oriented spheres are shown to describe relsvant phvsical

gysterns | In particular | we prove that the solution of Tang-Mills equations

Al

k)

in eight dimensions recently found by Grossman etal. [21] is a spinor

connection over the ¢ight dimensional sphere
We chall not disenss the problem of quantizaticn . This is a good

provdetn for fulure investizations |
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1 Geomestrical Iramessork

1.1 Principal fibre bundles [23 ]
Let P, M be manifolds and G a Lie group . We say that
M with

P=P(M ,G, 7t} isa principal fibre bundle over the base spac

structure group G if:

1. there exists a smooth projection 7T P — M |

2. Gacts freely on P oon the right

-

FXG 3 ({p,a) — R (pl=pa
with R, =RpeR_ forany a,be G; R, {pl=p forany peP

where ¢ isthe unitelementof G ; and R _(pl=p forsome peP

only if  a =g (free action)

& equivalence relation induced by the action of G is the

>3

same ag that induced by 70 i e
TC {pal = TC {p) forany peP andany aed
4. P is locally trivial ,ie. every xeM has ansighbourhaod

-1
Uc M such that 7T (U} igicomorphic to UXG  inthe
sense that there exists a diffeomorphism

YUY = UG, p —> P p)= UTIR), @ (p))

. -1 , -
with ¢ amapping frem  TU (U ) into & such that

)
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W opal = (P ipha for any Felt (U} andany




=, 7 o E B, S A S SUPR o4 - S P Ty )
Imowords o G aote fresiy and  transidvelv on the e JL L}

attached o > € W and any fwe ioiscmorphic to G ifselfl |
Transitive action of G on the fibres means that given any two points  p'

and p  in the same libre there exisis an element a€l  such that

ndls |

The space P is the total spa

The principal bundle i frivial if the diffeomorphism of the point

4. is globally defined ie. ¢ P — M XG

e

section of the principal bundle PIM G .70} isa smooth map

s M — P such that TC eS8 = idm . The existence of local

sections is equivalent o the local trivialization of the bundle | Given the

=L,

lecal trivialization of P described in the point 2, a set of local sections

-1, }
s, : U—m (U}, UcM,isdefined by

u
; o 4
S, txl= pleipll , pemix}

and this expression is clearly independent of the point p in the fibre | On

'ir %
the other hand | given the local sections s, U > {U), Uc M,

. -4, . . .
lorany peruixi, x €1  thereisa unique ae G such that
Y

{sixlla=p ; ths maps

TCA(U) = I R Tﬁpf,' e Uxn:
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friviglication of the
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Alocal section s U —> P provides an identification of the identity of

. . LI, . .
G with the submanifeld of  JT (11} corresponding to U wvia s .

[ 4'37-W)

—— e - = Ol

It is now obwicous that P is frivial if and only if there exists a

1.3 Transition functions

Let ILU%} be an open covering of the base space Il
Consider the sections

+ ¢ P -1 e
Sq: Uy —~>F ; gfxi=p iRlpl |, pemix) (1.1}
. . - . ,

where £, isthe mapping from 77 (Ug) to G which describes the
local trivialization of the principal bundle F . Since P, (pal) = (P ipla
- "d'l + - : g b
Iorany p e U (Uy) and any ae G, the sections (1.1} do not depend on

thepoint ¢ If X €l n U% then

) (1.2}



Fipt Ut Uy = G Y (0PI = 9,07 (9 (p)

The mappings Yy p A€ the transition functiens of the bundle P
corresponding to the covering {U o 75 of its bage space M . They are
such that |2 ,,24]

Yoge) =Ygl Yoy 2 forany x el nlnlU, . (1.2

iether with a family of

C.i

An open covering { Ugl of M, toz

mappings Y 43 U0lly G which have the property {1.3), nnigquely

characterize the principal bundle F(M,G, 70} [2 3,2 4]

1.4 Associated bundle
Let P=FP{M,G,7T} bea principal fibre bundle. Suppoese G
acts o the left in 2 manifeld 'V lin particular a veclor space
.o 7 T ERS (77 = {a v
f XV O —3 5 Loohav —_ fqvk\ 4 T .Aci.,‘.}
Onthe product P XV thereisaright action of G defined by

(p.vla = (pa, R.(v]

]
ety
e}
[
i)

the quotient of P X ¥V by this action |, then
1. E may be given a diffsrentiable structure ;
2. thereis s smoeoth projection

T E—> M , 70 izquivalence class of (pyi)= T (P!

11




X € M hasa peighbouresd

noiphic o the product T AV
The bundle E=E (M, ¥V, G P} is the bundle associated with P by the
action @ Every fibre T, i(I}, x € M, is diffeomorphic to V.

The notion of associated bundles is very important in physics : they
describe generalized matter fields | & matter field of type  ( ., V) isa
section of a bundle E of typical fibre ¥V associated to some principal
bundle P by the action @

By definition a sectionof E isamapping s M —=P such that
Tlees=1d . There isa bi }emve correspondence between sections of  E
and equivariant functions P from P to V| thatis functions

\
Y P—>V suchthat P {paj-= P Plpl forany peP and
any aeG [25]. Onesayethatthe fisld P  atthepoint TU(ple M ,
pel has components O (p)  with respect to the generalized frame

peP . By changing frame [ —> pa, the components trasform according to

the rappresentation £

15 Morphisms of principal bundiss

Let P =P {8, Gy, T0) be two principal fibre bundles  and let

-LJ
EoFox G — Py denotes the right action of the group G on Py .

ks

morphisim [h ’:k] of Poand P, isatriple (h,k 1}

e

1 g
P
o



groups homomorphism and such that the following dia

hox K
pix 131-—_'-'""‘% PZX Gz

commutes | If one denotes Rilpiail=piay , then h tnaps sach
fibreof P, inteafibreof P, with hipa)=hiplkia) forany pe<P, and
any aeflr,. N

Two principal bundles P, and P, having the same base spac
M and the same structure group G are isomoerphic if and only if there
existe a mapping h:F, — P, such that (h ,idg ,idy ) isa
morphism ¢f P, and Pz . The map h  is then forced fo be an
isomorphism and the bundles P, and P, may be identified [26)
The set of equivalence classes of isomorphic principal  G-bundles over M
is denoted by (M) .

Let {h, k,id, } be s morphism of the principal bundles




Hheth b angd &

; i o~ I S S U - . e TN L ey P I
then Pi 158 resificuios ol PZ Wi P, 15 ail gEenmien o ¢, {_ag].

Ifboth h and % {and their derived mappings) are surjective,

then P, isaprolongation of F, or F, isa reduction of P, [25].

1.6 Induced principal bundie  Universal bundles
Let P=Fi{M,G, 1T ) bes principal fibre bundle .
For any mapping { from s manifold M inte M itis possible

to construct a principal bundle P'= P over M with structurs oroup

6]

A%

G . The bundle f*P isthe bundle induced from P by { [23

The total space P is defined as
P={ zple MxP | fly)=T (p}'}
and G actsfreslyon P by |
ypl —iypla={(ypal for (vpleP and aeci
The projection TP = M s given by T (ypl=v .
If h:P'—P isdefined by hiypl=p ,thenthe triple (h,id, , )}
isamoerphismof P oand P .
suppese [oand g are two mappings from M infe M which are
homaotopic . Then the principal G-bundles %P and ¢*F  are isomorphic

bundles over M [26] .

[ect
o
g
<1

& principal bundle P =F (L & 71 48 p-ugdversal for

14




i for each principal G-bundle D =P (A, G, 701 over M,
with  dim ' < n, there existea mapping M — M  suchthat F
and [*P are isomorphic,

2.4 fg: M — M areany two mappings such that P and
o*F  are isomorphic, then { and g are homotopic .
Thus , these conditions mean that there is a bdjective cotrespondsnce
betwesn the set C%, (M) of equivalence classse of isomorphic
G-bundles ever M and the set [: M, M] of homotopy classes of
mappings M — M

The following theorem is essential to recognise the universality of a
principal bundle [ 24,26 ]

Theorsem 1.1 A principal bundle P =F (M, G, 70} is

n-undversal ifand enly if  JT.(P)=0 for 0 < isn  Here T(( (P}

ig the i-th homotopy group of F




gauge fizlds
2.5 Fundaments

1 wector fislds
Let P=F{

, G, TU ) be a principal fibre bundle |

of the Liealgebra G of G we may

field corresponding to §

; its value at the point pe P is defined by
o <:‘. % '~ b
{pi= — R {pl : (2.1

% X Jdi pr‘cg F | E=0
since the action of & sends any fibre inte itself | the vector §* (pi at

gach point p  is tangent to the fibre through p . Moreover ,as G acts
freely on P, € (pd never vanishes (unless g =0} Forany peF ,

. LTI . R .
the mapping v — 3 {pd is an isomorphism of j with the subspace

W p C T P of vectors which are tangent to the fibre through
The vectors of

F
Y o Are the vertical wectors at

P OANY Ve
characterized by the condition Tt (v) =0 where T,TC

map of TTat p .

Vo s

ot

is the derived

2.2 Cotinection o a principal Iibre bundle
Let P=P (M, G, 7T |

§ e a principal fibre bundle
& coninection ont P s & stmoeoth distribution of vector spaces

16




with the properiies

i T .17 T R ic an ieomorThicts o o )
Lo T, de =1 Kt igan somorphistnn for any p el

2. TRHp)=Heo

The cubepace H, isthe horizontal subspace at p .

¥

since Vo0 Hy = \_q ‘g Jany vector ¥ oof TPP may be unigquely
decomposed as a sum

T=h¥+v7 , hYeH? . VYQVF

Given the vector X ¢ T, M |, its horizontallift at p e U {m; is the

- > : e N
unique by 1) vecter X e HF such that T, T (X} =X

Given The curve u: [0,1] =M ,itstittte P , §: [0,1] =P |

through the peint p et {u(u” , 18 defined by

o>

a. (0)=p
. TTel=u

A . . . . [T
C U is horizontal | ie. | ifs fangent vector at u {f) belongs to

Hog forany te [0, 1]

One says that 1 (1) is obtained from p =0 {0} by parallel trasport

along the curve u |

A5 we saw in the paragraph (2.1}, the Lie algebra fj is
isomorphic to the vertical subspac *ax"f_., atany peP . Using this

isomorphist it is possible to characterize any connsctionon P by a

-~

3 -value [-iorm oo ot Pocalled the connection 1-form and defined by

17



The propsriles of Lo arg:
3 e H <>wi@=0 |
4 o §*3= s forany ¢ e 5
5. RFw @ oTR =4d_,°w forany a e G .

Here Ad  is the adjoint representation of the group G in its Lie algebra

N . Conversely |, anvy 3 ~valued I-form on P owith the

I

propertiss 3, 4.and 5. determines a umql ¢ connection on P by

¥

defining

]

-
U]
by
A
-

i
(b;u—\
=
(1)}
=3
o

£
Lo
1)
L]
[——

% Exterior covariant derivative . Curvature fortm .
Let P=F(M,G,T0} beaprincipal fibre bundie and co a
connigction  I-form on it | Let P bearepresentation of G in the

vector SP;E&_{Z{? ¥

& pesudotensorial k-form of type P lga  V-valued k-form o on P

such that  R* o = P o forany aeG . Suchaform o isa
[« 9
tensorial form iF it is horizental (i e if oL (Hy, K0 =0 whenever

at least one of the vectors X | is wertical . The set of all  V-valued

¢

I - o g o E - e . ] e (K¢
tensorial k-Torms of type ¢ on F s denoted by N LR W, 3 }



f o ferrn of TUTE
L E-torm ol LYRe

0
[l
s
W
o
iTx
ld
P
T
Lt

covariant derivative DoC iz defined by

¥ inw K} . i hid %, - At -~
Del (Hy,. X Jehordet (, . E g=d«(uX,, hE g . (2.2)

‘
i

The form Dol isatensorial (k+1)-form of type @

\

Let o 5 —> L{¥] be the derived mapping of Lie algebras,

LV} being the Lie algebra of endomorphism of ¥V . Then the sxterior
covariant derivative of a tenserial k-forin of type r© is [2 _'ﬂ

Dt =dol +{Pewrina (2.3)

where the symbol { o>« Ja o means exterior product of forms and

evaluation of g'ow ,asan element of L{VWY, on o asan glementof V.

In particular | if P isa O-form of types 5: , that is a matter field of

type P its sxterior covariant derivative will be

T
e
R

! 't
Dkf) =a:j,\_§) +!ig:o¢,.\_))l.\F
The connsction 1-form wo iz & peendotensorial form of type Ad
Then () =D <o isatensorial form of type  Ad  and itis called the

curvature form of oo . I is explicitly given by the following siructure

gquation
[w,w] ‘-f

Hote that this expression doss not follow Irom (2,30 becanse oo isnot

]

)L =dew +t wwaAwo =3 wo + 5)

1
2

ot
.
L

X



Theorem 2.1, The curvature form  SL vandshes if and only
if the connection is flat or completely integrable ,i 2., if and only if
[}{ , T 3 is a horizontal vector field on P for any two horizontal vector
fields ¥ and Y on P .

The curvature form always satisfies the Bianchi idsntity

Dl =0

Ll
[t
o
—

2.4 Pulling back by sections : gaugs potentials and field strengths |
Let P=P(M,G, T} bea principal fibre bundle and <o a
connection 1-form on it . Forany localsection s:U — P, U ¢ M,

it is possible to define a 3 -valued l-formon M

PR P (2.7

and a 3 -valued Z-formon M
%) [P
F i=¢tceo (2.8

They are related by the structure squation  (2.5)

[ad
—t

[

s () S
FO=aa™s L[a®a®] (
Z b
If one takss another section ¢ U —> P | there will exist a mapping

g U —> G such that

g'{oc} =s{x)o(x) forany x el {2.107
e L (9D g - S BS80S
The new A atid the new F arevelated to &7 and F7 b

20




87 oad 8T TeTe (2.11]
3

IS T - -

F :1."{".‘;33-1 r {&i if:-}

- ~t

Here (O isthe Maurer-Cartan formon G
&S TG — fj

TqG 2 B -——7&5(5):3’1,3_1(5}63 )

~

L g beingthe leftaction of G onfoitsell | If G isa group of matrices

the entries of the matrices may be taken as coordinates and wq =g dg

¢

In physics  [5,1 1:] the basse space M of the bundle is the space-time
~ - e LAl s) - s e

and the quantities A7 and F are respectively the rauge polential
and the fisld strength in the local gauge s . By changing the local gauge as

in (2,100, they trasform according to the gauge trasformation of the
econd kind  (2.11) and (2.12).

If ¢ P —>V isa matter field of type ¢ iis expression
in the gauge s will be

V= PpesU —> ¥ . (2.13)

) : L4 _ o ¢ - -y N . s) . LS')
By changing the section as in  (2.10) the local SHDressions <§> and

[5-)]

e,

2.14}

@ts',\= ?S_i" C@

. Y - .
By defining D O =¥ D | the local expression of the covariant

s : fe o . i " 5)
detivative {(28) of the matter fisld @ 18, dropping the label ‘

&

T R o -~ *
0P =4 +(pos) ) (2.15)

]
fo—




viven & basis } 31 X {i=1, ... n, n=2dm 8 3o for the Lis
\
2 - / = Kl
the fundamental vector Dislids SIS SRS I FENUS

give a basis for the vertical spaces ¥V p Jforany pe P .

If & Ep = Drk s lp=1,.,4) isalocal basis for the tangent bundle
A

of U< M, theliftad vectors § S r} JAp=1,.,4) give a hasis for

-4
the horizontal epace H, ,forany peTl  (U) .

: o " * 2
The 4+ linearly independent vector fistds (€. | are a basis
L2t y
N e 'ii‘ Y
for the tangent bundle of U )

One may decomposs the connection fortn <o in the basis %_3.173 of 3
w o= W {2.16)

i
W I

w o, li=1,..,n) , arenowreal-valued Il-formson P .

Jf
g
=
e
i
<[

By the properties of  co it follows that

S« i,k=1,..n

H

Lo
wo { § ]

R3]

Lt o om=1, 0,4 (2,173

, N :
so that the forms  wo”  are dual of the vector fislds g“L  Hote that w©
3#

and %, are globally defined

It s also possible to decompose the forms A and F

.L""‘l = .LL.I.L g L (21'5:'
i g
=5 R A
F=F §. (2.16)
Since &7 and FU are real-valusd formson M using the dual basis
e W s _.'
3 % % of %\33%} one wirites

17




1Y . (R«
F - _‘): F Jhee o X AR Sh FANEA
and the structure equation (2.9) impliss
1 i v \ s L i ’ {.k SR N
FJ*V = :)JA. By - :)” .LL.'LJA, +f)K .L'“J.JA, S {_b’:-l.i:v‘_o)!

, i e -
with {5, the structure constants of the group G

SUppose { LN } . bA =1, ., dimV T, 1o a basis of the ?ectx}f

3

oY

space ¥V . Then it is possible to express in this basis the matter fisld 53
- A

@ = <1> & (2.
and its covariant derivative

D (0, &dxe, (2.25)

[
W
P

The explicit transcription of the covariant derivative (2.15) is given by
< A A A L B .
.3 - 0,3 v g AL (2 26)
. - A .
with the quantities  ©,;  defined by

P8 80 5 S Coneg, )T Fy b (2.27)

2.5 The group of gauge transformations [} 2,12 :]

In the previcus paragraph we have seen how a change of local
sections corresponds to a gauge transformation . Equivalently | such
iransformations may be viewed as gl«taf}al aubomorphisme of the principal

bunidle

- 421
-
=




Let P =T 0R G, 70 §be s principal fibee bundie

that  flpa) =flpla forany peP andany ae G  Anysuch f
0y ~ %y - 3

induces a diffsomorphismn M —> M givenby (70N = JT ERE) .

The set  Aut P of all automorphisms of P form a group under

composition . A wverfical automorphism is an automorphism for which

LCI

The set  Aubty P of all vertical automorphisme of P isa
normal subgroup ol P Any [ e AutyF  maps each fibre into ifself |
Thers exists |, therefore ,amap T P => G such that
5, £ b K -i 3 T -
fipl=pTip; ., =Tipa)=a Tiph {2.28)
forany pe P andany ae G .
et C be the set of all connection 1-fermson P . If o
i

and o' areany two slements of  C . their differstice w0 - O

is a -valued tensorial 1-formof type Ad on F i e, an element

is a vector space | the sst (C may be given the structure of an affine
space
There is an action of the group At (P on C
: . ! - Fo
Aut,BPXC 3 (f,w) — w=foe C . {22

The connection o is given explicitly by




‘iC

responding to w0’ s

whiile the ug PR ey
- F ; ~ FITPS
Ll = A ” R ;*»-'-‘i':l,
supposze U —> P U oM isasectionel F . Then
g =fc5:U — P isasection over U aswell By defining the gaugs

potential &4 > and the field strenght F asin (2.7) and (2.8) ,the

gauge transicrmed quantities

may be in he pullbacks &

saction ' (passive viewpodnt) or the pullbacks by the original section
{active viewpoint) . Pulting 2= Te s ,one oblaines the expressions

~ {2.11) and {2.12).
Owing to the action (2.29) | the group  Aut (P iscalled the

sroup of gaunge ransformations

2.5 Lagrangian and field equations

In the previous paragraph we have chown how the guantitiss
gauge configuration on the space-time M imay be

ru x}

which characierizs &
described in terms of geometrical quantifiss | This has been dotis by
oup is the

) ,
whose struciure or

constructing a pri tundle P — M :

on B

RTIOS O, IT }‘mf ki
Fange group Gooand



nierach with hem  Th
equations restrict the class of possible connections which can be introduced
on P . Ingeneral they are derived from a lagrangian .
The general form of the gauge invariant Lagrangian for a svstem of
zauge fields interacting with matter fields has been described by Utivama
[3] . In The framework of fibre bundles the Lagrangian is taken to be
the follewing 4-fortnon M

£ =n{*FAFI+k(DEA DI I+ UKD, Pl (234

ate
)
k{' .

where h isa bilnvariant , i e. left and right invariant , metricon G and
k a G-invariant metric on V. The * operator and the volume
glement n  are defined by means of a Riemannian metric on M, :
It the case of Maxwell and Yang-Mills theories , usually V= f; ,
§ =Ad and k and h are both the Eilling metric .

The figld equations for the gauge fields are of the form

oe
&~ D
I ¥F =—*J gzt‘y}

where J  isa 3 -valued current  I-form .
The Bianchi identity (2.6} provided the homaogeneous part of fisld squations
LF=0 : 235
& part from the equations for the gauge fislds there are | of course | also

the squations for the matter fisld &

B
faal




3 Geomelry of Ealuza-Elein type theorie

.1 Ealugs-Elein unification

In 1921 Ealuza [‘f] proposed a model 1o desoribe in a unifisd
fashion electromagnetism and gravity . He considersd a space-time M of
five dimensions  endowsd with a particular Lorents metric

™M ~N
§= 9, 9% dx MON=1,..5 (31

The metric was assumed fo he "x:ﬁliudzmi Lloeauch thatl there exigts g

the competients o donotdepend on X

Moreover Ealuza assumed the fifth dimension to be

T
[<x}
o )
Ry
Ty
T
!
Py
Totee
oy
T
L
s
fimtls
paste
g
s

particular he took

¥es = 1 . (3.2)
The metric (110 may then be writfen as

= 5 e
¥ =:E-‘.)w51%5xy+ic§“—c°+zﬂif&¢‘r§"ﬁﬁ\>‘f A4 ,8% ) (14)

Under the particular transformation of coordinates

T T wo= ]

“
-
Wi

5 1
XX =1+ NAfx x') {:

€,v isinvariant while 4, transforms as
)
ApAusby- QN =t 4 (2.6)

This i just a gavge transformation if ons identifies & o Wil the

]
-}



dimensional world |

One assumes next that | without sources | the Lagrangian density is
£ - Vi'ﬂ R (3.7)
Here R ig the scalar curvature of the Levi-Civita connection of the metric
¥ while |y| isthe absolute value of its determinant .

By explicit calculations

o ‘(L&).‘ 1 e TR
i—‘a = P& Z Fr\} F V (:}-U)

'] . e e s .
where R ic the scalar curvature of the Levi-Civita connection of the

. M R . . .
metric o =g, dx dx , F v = C’f By - Oy A& S the electromagnetic

[ o gV
. v V&
field strength and F Jie g}~ fg Fegr
Finally , since |y = le |, one gets
< ‘C'-\.-) B r\’ b3 T (.‘l
L =\ig{r - = Fyv F7 L3.9)

This is just the Lagrangian density for the gravitational field
precefice of an electromagnetic field A

By considereing independent variations of 2 and Ay, the

[ux]
b
T

L - =
Euler-Lagrangs equalions for oL

(&%) fG'

c—
. A ¥
G = 5 FpsFoeg -

/‘ L]
Z gpFreF ] (3.10)

v
p el (3.11)

while D

e EBingtein tensor of the metric Dy

au]

fuv

30
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& second term in the right-hiand

- t}v
ide of {3.10) would have the opposite sign

dein [19] propossed a generalization of the previous ideas . He

and this would produce an

up the condition (3.2) assuming a pericdic dependence of Yo O12 x”

Later , Einstein and Bergmann  (27]  suggested that the fifth
dimension could be physically real . In order fo explain the four
dimentional character of the macroscopic world | they assumed that the
fifth dimension closes into itsell to form a small circle . The circle is
sufficiently small so that the variation of & a physical gquantity around it is

stnall when compared with its variations along the other four dimensicns

Jerdan and Thiry  [24]  considered ancther possible

g

getieralization . They maintained the condition {32} and assumed that

One of the conssquences of thiz assumption ie that the gravitational

constant becomes space-time dependent

Fifteen years later De With L'i;] proposed to extend Ealuza-Elsin

ideas to non abelian gavge fields by considering a space-time of  4+n

[l

ditnensions endowsd with a suitable Lorentz metric . This has besn

subsequently developed in the rameworl of fibre bundle theories

29



-
[a_;,,_j%g{?{,f} j resulting in a very elegant geommneinc s

By considering the Dirac egualion in the context o
theory in five dimsnsions , Thirring [4,3] obtained CP-viclation

In the last five vears there has been an increasin inferest in

xiu]

theoties of kaluza-Elein type La; 4 _} . The starting point s general
elativity in 4+ dimensions with the scalar curvaturs i 4+n dimensions

¢ Lagrangian . It is then assumed that the “ground sfafe” is a product

oy

M7 B owith MY the Minkowskispace of 4 dimensions and B
a compact space of n dimensions . The group of gavgs symmetriss is just
the group of isometries of B . Then, all relevant quantities are expanded
in eigenfunctions of differential operators on B { harmonic expansion } o

get the full spectrum of an effective theory in four dimensions

2.2 ESpecial case : the infernal space is a gronp manifold

The possibility of describing Ealuza-Elein unification of gravity with
glectromagnetism and ite generalizaticn to non abelian gauge figlds by
means of Iibre bundles has been firel analysed by Trautman [“J
Eertier [ﬁ] atid Cho [ 1]
However |, the idea of costructing a Ristnantian metric on a principal

+

tundle with connection | once given a Rismannian metric on the base of the

[ —

tundle , was already present in the mathetmatical literaine



let P =P (M, G, 01 bea priad

space-time M with structure group &
P described by a ﬁ—vaiued I-form w0 omit | Moreover , lst

9  bea Riemannian metricon M and h an  Ad-invariant scalar
preduct in G (this is equivalent to taking & bi-invariant metric on

G [23] ). A Riemannian metric y ooon FPoisdelined by

(Tre (), T (¥ +h (o (X}, w (T

s
0o
o
(3]

Pt

Yo (X, T)=2,,
forany X,Y e TPP ., pe P .
The metric  y  is invariant under the actionof G |, R¥ y = y  for
any a e G, se that any Mundamental vector fisld g" is a Eilling vector
field for Y
With the metric  (3.12) |, at any point p  the vertical vector space is
srihogoenal te the horizontal space |
Conversely ,if '  isa G-invariant mefric on P it determines

1. & connectionen B : H o € TP F o is the vector space of all
vectors at pe P owhich are orthogonal to Vg

2 ametric ¢ on M . g (¥, Ti= (X7 foran
E P

)
[5Y]
[
[

¥,Te T, M ,with 7ip)=x and the horizonfal lifts of

X oand T to p . Duetotheinvariance of y  the valueof g_(X, 7]
-1
dosgs not depend onthe point p e 7T (X)) ;
Goan Ad-invaria 'tc*’-%‘-rr roducton - G BlTnl= g (S0
Sooan aAd-imvariant scalar product on -y 0 nlt = f (g0

[N ]
[



for any ‘; . ‘z € j , where gé anid 7 are the fundam
vector fields associated o 3 and )
The form h is Ad-invariant because  f is G-invariant and
(4do § W=TR (¥ forany ge G andany a<G
In the case in which G is semisimple o¢ne may taks for h "minns” the
Eilling form of G
h{g,rz}=-'£‘f(&d'go A4 ) forany g ,Qéﬁ {2.13)
where Ad' ()= j_—t Adgon g (q':ll{;-—o = [%.71] . In terms
of structure constants of G, by =R, §)=1:] f,:j
For compact groups the EKilling form is negatively defined and h is
positively defined
For a discussion on the possible gauge groups and their metrics see
Kopczyhski [36]
% A
&S we saw in the paragraph 2.4 | the vectors 4 €7, %)& } }
{i=1,.,n; yp=1,.,47, form a basis for the tangsnt bundle of P .
Here 5:- are the fundamental vector fields associaled 1o the elements
%, ofabasisof G  while §, are the horizontal Lifts of the local
basis  §, = Op  of the tangent bundle of M .

In this basis the components of Y are given by

ey
Dy



3* # . ,
o = S0 = . o 1an
Z) % gi‘ 3 33 ) = h ( g‘l ; 3~J ;j hd L:}‘ » i:,ul. i 7L

We intreduce now a new bagis in order 0 Show Do e gangs
potentiale enter the mefric ¥ L3 1] . Once given an arbiirary section

-1
s:U —> P ,U <M, itispossible to cover the whele of  JT {U) with

the family of sections S =R, 25 ,aelC

~a. oo
~ 4
Abvasis 1% A"S (A =1, .., n+4 ), for the tangent tundie of  TU ()

is given as follows

*

1. choose 'g”.b = %

1

e ]

-4 )
2. ab the point pe TU W) suchthat pe=s

~~
b

|.-le i = A :..S T = E; 0 :I
define 3)~ Jip=1,..47),a g} T g, (p
The vectors 5, obey the following comtmutation refations [3 1]
=~ ~ 3 P
L Si) 33] =14 3k
l:hg)/v) gv]=0 . k;‘;l‘_‘::‘
~ ~ - A N
Observe that <, # 3 j because in general L $ o S ] #0 . The
commutater 3 o %y] is not even horizontal and it may be shown that
i z K -?( i - ol
[?)Ja.) gv]=-Fj‘“V %K 1.:;.15:‘
K .
whete F pv A1 the components of the gauge field strength

~ A
I11 the basis { 3 A]) the vectors 5, are given by



o

f\m,‘\:l
=
ot

(I

.;o\.a
G Ayzi

g
21 ¢ )%J~
p=ix, &
W ;.

E—
x @]
. . ( ~ . . .
Inthe basis § § Ag the metric §  isgiven by
~ ~ T _‘)
' - & ‘._I.‘
X’ l\ f}av}—gyv"’i’lij;;fl;y
o n
) Y= A ..
5 G d0-a g
5 L% 8y0=hyy
oo g
!g V+h'\-'_\ L.L‘)NPL\) { iék hLJ
}
[

and its inverse is

v ¥ o
o ) o - 0
= & iy

4 s i o & -
J.J.),\' = 1 +Ct Far) oy




For electromagnatism G =U(1) andtaking h.s=1 onegets the

¥ = \__---——_—-T —————— (3.20)
|
\ a0

In the spirit of Ealuza-Elein unification ong assutnss as Lagrangian

ey
Ly
[ W]
i
o

where R { g } is the scalar curvature of the Levi-Civita connsction
compatible with the metric while 7 18 & horizoniial volume
glement o P . The Euler-Lagrange for £ are

(R R)Sx™ -0 . (3.22)

4— .
AR~ 9 Tre
How the variations  § 55% are not arbitrary . One varies g ., and
v . TP
YN arbifrarly preserving the particular structure (312} of the

mnetric ¥

The components of the Ricci tensor R »q inthe basis {§,\ are [31]

ing 4 i ve K 0
E‘CS'TRLS'P ;htnh_}ng g fvae(p

Here Koo oand R, are respectively the Pr i tensors of G oand M




]

with the meiric b j At d g v and Do is the covariant derivative
L o R < —1 F L R 3

. > .
with [, the Christoffel symbols of M .

The scalar curvature is
. pove i
h Wi 8 Fov Fo(p

~ }&\)

R=g Ruy+ 0 Ry -

i
4
.2

e,
L)
o
55N
St

4
RM +R6‘ = -[;_

From (3.22) one gels two ssts of equations

1. the Einstein field squations for the metric 2 v in presence of

Rpw = 5 R - 2 Ragp = Ty (3.25)
with
Tyy = -;—h-bj{F;?Fjsgw- —liL';ngF;vFésg“P I {2.26)
2. the vacuum Yang-Mills equations in a gravitational fisld
pE Y -0 (3.27)
with B - o"feF ;g

We can see that the scalar curvature R G Flays the role of a
. . 420 )
costnological constant | a caloulation for it gives something like 10 times
the actual extimations [ 31,36 ]
{opcaviski I:L:-] describes a way o get rid of the cesmological
term by constructing a particular linear connection , i e, a connection on

the bundle of linsar frame of P, which is fully and uniquely determined




otion
This is possible because a principal bundle hme o richer structure than an
ordinary manifold |

It iz possible to generalize the previcus scheme by considering a
space-titne dependence of the quantities h i which then give a positive

defined metric on each fibre JC tx} , x €M .This eralization
provides a Jordan-Thiry version of the theory where the  hy {x}

[ i

becamne scalar fislds | It has been considered by Che and Freund [ 37]

DS

The general case : the internal space is a homogensons space

o

In the previous paragraph we have reviewsd the peometric

description of higher dimensional Ealuza-Elein unification in th

case in

-c'[:n

which the internal space is the sroup manifold of the zavge sroup G

In order fo lower the number of exfra dimensions necessary fo
implement a gauge symmetry G |, one consider an homogeneous space
G/H  as internal space . Here H is a subgreup of & and there isa
fratural t’f"’fﬁ sitive actionof & on G/H [ ]

Descriptions of models with homogensous space as infernal spaces

=¥ |

in the framework of fibre bundle | have been provided by several authors

O RACEVE L*i li:t~%3] desrilse o very

-



siegant way o oblain a libration of 5 manifeld  E , taken

]

muitidimensicnal vniverse | on which a global symmetry compact Lis group
7 acts from the right | The action of G iz taken to be effective i e,
the only transformation which leaves the all of E  unchangsd is the one
corresponding to the identity of G, and simple i e, all the isotropy
oronps of elerﬁente: of E are conjugatsd to a standard one H .
The space of orbite M =E/G i the space-time and  JC  is the
cancnical projection
JUE— M, uw— Glul=orbitef G through w
Let P be the submanifold of E  consisting of all points
whose isofropy groupisjust  H . Then TJT  restricts fo a projection
T, P —> M
Let  WiH} be the normalizer of H in G i %, the higgest
subgroup of G inwhich H isnormal HN(H) = { Z€G \ gH=Hg }
It is possible o show that
1. the manifeld P is & principal fibre bundle over M with

NH)H=E asstructure group .

2. Eis a bundle associated to P owhoss typical fikre 15 G/H

<I~

e 6 Is the set of right cose

cls .
s characterized

Theacticn of K on G/H which provides this assosiation i

by the following theorem

L]
S




Theoretn 3.1 The greup K is the group of all the invertibie
mapmings of  G/H into iteell which commute with the righ action of &
in G/H .

Explicitly , K is the group of all invertible mappings o G/H — G/H
such that oL {({alz)=(C{[allg forany [ale G/H andany
geG . Anymapping < isof theform (a) —> of f [ja]}l : [na]
forsome [n] € K

It is possible to provide  G/H with a Rismannian geomelry .

Assume ¢ oand H o are comnpact connected Lig groups | The compactness
of G implies that it admits a bi-invariant Rlemannian meiric , and this is

equivalent to the existence of an  Ad g -invariant positive defined scalar

[23]

Let  H  be the Lie algebra of H and S its orthogonal

3

o,
'

product { , 1 inthe Lie algebra ﬁ

complement in 3
g -He S (3.28)
Since  ( , ) igin parficular Ad, -invariant, the homogeneous space
G/H isreductive [44] ,i e,
A (S S (229
and , H being connected | this iz equivalent to

(X, S]c .D" (3.30)

It is possible to identify o with the vector Cp:xw tangent o 5=G/H

39



at the origin L 44 J

§ i e T e m et PRC oy o4 S RN SR & S
I N isthelisalgebraof H and X is ihe writhogonal

et

complementof 3 in XN, then

N = e X (3.3

LW
s
fo—y
[o—

and I*IIH is reductive as well
sd, (<) < XK (3.3

This is equivalent to [}( , ){] < K but, H being normal in

X

)

N, J( isanideal of N sothat [3—( ) )")L] ¢ H ,  and
(X, R =0 (5 33)

Jnce N ] H isagroup it is possible to identify J<  with its Lie algebra .

)

Finally , let & beths orthogonal complement of N in g

g =NedL , & (Li=&L . (3.34)
Using {3.28) and (331} we have also

S =He L . s (Lr=L . (5.35)
It may be shown that L and M are orthogonal with respect to
any Ad,, -invariant scafar producrin & [40] .

Let {éig Ji=i,.,n ;n=dimG ), beabasisof G

(3,3 ; 1-1 \:-) § . This basis is adapted to the decomposition
He Ff = Heoe H of
152¢ 3, geté F
{.6M, Sac L] (3,36

e~
\-/;/'\ AN
2. e o
[ L
it 1] ]




T oon B oars langent fo fhe floes ol anv poant of
. *' . .
In particular , the vectors { £ I corresponding to the basis { S: E
of 3 are vertical .
Since the dimension of 5 is greater than the dimension of the vertical
. . . . . : ] "t - *
space , which is in turn isomerphic to T, (G/H) |, there are too many  § -

that is they are linearly dependent

* : .
P . The vectors ¢ P}, peP  are linearly independent as vector
TE ; then they are linearly indepsndent in some neighbourhood U of P

in E where they constitule a frame for the tangent space of the fibres .

Once given a coniection p —>H, ot P, & Riemannian
metric g on M andafamily of G-invariant mefrics b, =x el
oft the fibres E_  of E il is possible fo define a G-invariant

Riemannian metric  y on E

Given X ,7T e T.E , let peP besuchthat u=pa [of some

aeG ; let Tm{E) and Tr(Y) betheprojectionsel X and ¥
4\ {\ H - - I3

to M, X and Y the horizontal lifteof Tr(X) and Tru¥) to

selong to Hea =H, , ihe




T CE, ¥ =g LT, Tui¥h i+ h (X- TPQ, CT-TRATY Y L

Conversely ,any  G-invariant metric on E determings
1. a G-invariant metric h, onanyfibre E, of E hx
is the restriction of ¥ ‘o thefibre E. . Themeiric h, definss

an  Ad,-invariant scalar producton T, (G/H) = S [44]

L]
-

2. a G-invariant horizontal distributiocn uw — H,, on E
equivalenly , a principal connection on P ¢ the horizontal space
H, < T E consistsof all vectorsat ue B which are orthogonal o the
space ¥, of vertical vectorsat v ; G-invariance of  y  implies that
TR JHW =H,, forany aeG
It order to have a principal connection on P, one must show that  H
is tangentto P forany pe P . This{cllows by cbeerving that H, is
of ?’hv onial to the vectors g o P’J which corres I‘:t.'ﬂli gi € oC ,and
which span the orthogonal complement of TP, and by remembering
that Y and of areor thogonal one to the other with respect to any

&4, -invariant metricin - & Morsover, T RM{H?} =Hopa forany

(n] € H{H . Therefore, p — H, a principal connection on P
H 1 %, (A A'
Joametric g oon M o oz IV, W= 0V, W forany
. R - oy
vV, We T, with JT{u)=x and Vo oand W the hotrizontal
liftecf ¥V and W fo uw . Owing to G-invariance of |, the valus
- ey ‘ “4’. .
of g IV, W) dossnot depend on the peint w e TU (o) |

o
)



prerim oo oon Fooor by a lamily { A =5w , g:UC M 7> F
alocal section of P | of X -valued I-formson M (remember

ithat 4 isthe Lie alwebraof HN|H) .

%)

- . . . , £5),
Any 1-form A7 may , in turn, be written as (by dropping the label )

where  {”] arelocal coordinates for M and  { §4 | is & basis for
A

In the spirit of Ealuza-Klein unificaticn the Lagrangian is taksn fo

L =Ry 1 (3.39)
where R{Yy ) is the scalar curvature of the Levi-Civita connection of the
metric f  while N isa horizontal volume elementon E .

The fisld equations are obtained by varving & with respect to Y
while kesping the bundle structure of 7 fixed .
The scalar curvature is given by [»11:\

CY
hgre g FoFoo +

RUY =R, +Re- = pvre

4
L
~i~h°’9n“g*”{n hoy Dy higy + Dy gDyt ) -2 V0077 D, i)

Here Lk is the scalar curvature of the Lewi-Civita connsction of

™M - i
2o o Dy s the local expression of the covariant derivative of the

oI
fmr



~ ol /\'
D, h 3 fla Al £ 40 h s
o llean = G iy, + ~L i, *1 _»~ i Vel U A
D A T T YR S
a
i . Fivg oo of it Frirs - ic g ornd
while  Fpo 15 the local expression of ifs curvature; R, is the scalar

curvature of the metric heg on the copy of G/H  over any pointof M
\

=0

, 4 1 PR T B if [
Res 3 Tplwy s o0 pfaplyg v Tupleg) “

_ns

!

42)
The quantities ﬁ}i and F ;'v are gauge potentials and gavge fisid

strengths corresponding to the group H[H while hg, play the role of

vl

scalar fislds
The curvature R{y ) isthe sum of
1. Ry : thecurvature of space-time metric g Jeu

2. R . the curvature of the metric hy which zives the
G/y B =

potential term for the scalar 644

~
= P : N & G
5 Tang-Mills Lagrangian of B
4. kinetic term for the scalars hag

2N
sl



4.1, Stiefel bundles as universal bundles [: 6]
Let F denote thefield R of real numbers or the fisld  C
of complex numbers of the division algebra H  of quaternions .

n 5 .
Let  F bethe right vector space of n-ples of 6 elements of

F . any elementof F is of the form

~1

= {

jea

2o )= 2a

<y

F {4.1)

o K

1
2.
m

'PRLE

) . n
with {e«} aframeof unit vectorsin F

B : . . . . n
Arninner product is defined in F 0 as follows

e
1
1l

o
ol
&
I
3
o
[
Rt

where T, istheconjugateof z,. ;if F=R then Z, =2«
If  Uq {F} s the Lie group of linear fransformations of F' which
preserve the inner product, then ae U (Fl &<y a a=1 , with a
the transpose conjugate of & ,and

O} for F=FR

U CFY = Wing for F=20C

+

i

Spind for  F

1t
v

For k=1,.,n, a k-frame 2 in F isan ordersd set
{ 2.2 K}= Z  of k orthonormal vectors

V21,24 4= 8% 1,1= 1, K

RN



Tine somd mf =i b Femevre S i o i fe Thyc i e g

snm EET G sl E-IVEINE N E it 5 manifold . The conneciad o QIToen L
af e o )i the SHefel space {F)

L Vg e s o S Lo LILRT i 3 '_k, . oK vy Ty

There is a transitive leftaction of U (F} on V_
UoX Voo 2 (a,Z2) —%Z
The stability greup of (e, .., e} isthe subgroup

LXU L FI=U0 JFY of U {F) consisting of all matrices of the form

0 1, (8t € Uy fFl , AB=kel,
The space  V,  (F) may be identified with a left coset spac
Vo (F) =U (F) /U o F) (4.3)

To the matrizof U (F)

aij ! dig
R R e mod. I XU, o F}
2hy Pae
there coresponds the k-frame 2 ={gz,, .., 2.} givenby
Z2.=) dyifg i=1,.,k (4.4

ol

Consider the  (nxk ) matrix

P L
So= ':!'d\::lc.i: dyeenyn ; '\‘15}
i‘: 1)...) K
g Y

the identification (4.3}  associates the malrix 5 te the unigue
k-frame L determined by (4.4} . Since the elements of F  are

orthonormal vectors it follows that 5 S=1. -
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There iz a right action of the group U (F) o the spaoe Vo [ FD
. |
(Z,2) —> R (Z)=Fa-% | z=2 za;

The quetient of V| (F) by this action may be given the structure of 2

differentiable manifold . This manifeld is the Grassmann manifold
- ¢ Ly . . . n
Go UF } o itis the set of all k-dimensional subspace of  F . Two

k-frames % , Z e Vo« F}  span the same k-subspace if and only
. . )
if thereisan a e U (F) suchthat % = Z a

The Stisfel bundle

ot
z
A
e 3]
Ll
oy
z
Y
i
L~
o~
%o
R
et

is a principal U, {Fi-bundle

The manifeld G, ((F} may be identified with a coset space

K

ey
YN

~J

Snar

Gp (F)=U (FI/U(FI XU, k){F)

On the Siefel bundles there is & natural connection . Marasimhan

and Ramanan [45] showed thatif S isthe matrizsiven by (45) and
chatacterizing the identification (4.3}, the differential form = coo = 5 4§
takes values in the Lis algebra of U {(F! and defines a connsction form

on the bundle ¥ (F} . Moreover , the connection is invariant under

the left action of U, {F)

The connsction TSN gives sourceless gaugs fislds over the
Grasssman manifelds G, ( F} [48]
The Siefel bundles tnpor ant becalse they are universal



JT AW, (FH=0 for 0 £ 1 & [n-k+ellc-2
with o=dim F ; byitheorsm 1.1 this impliss that the bundle (46}
is [{n-kellc-2] -universal
Given any manifeld M of real dimensions < fn-k+lic-2 ,any
U {Fi-bundle P over M may be obtained as the induced bundle
[¥Vo,cLF) where M —G_  (F)

Moreower | the conneclion form «O,  is ifself universal [&5] any

conniection fortnon P omay be induced from it
gange field [4 6]
4.2 Hopf bundles and topodogically non frivial gauge o srifignrations

We specialize the Stisfel bundle (46) tothecase k=1, Sincs

TT k I g b -
&.'RM),J_{F}= 5 (Fl=

ity
=
h
!
=
+
»
[
{Fa
L}
f—y
Vg

and

n

L i - . . n‘+1 . .
Cree,o L FI= FP o= thesetofalllinesin F through the origin,
we oblain the Hopl bundles over the projective spacss with structure

groups U, (F}
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o if

a(1 o
U1}
Spll) = Sz}

sresting cases

while

14

[}

it

et

if

if

those

numbers {or which the structure groups
respectively the electromagnetic and Ta

ng-Mills

B

[

H

of complsx and

quaternionic

S ars

gauge groups |

Following Trautman [‘i'—"] we will show how the Hopd bundles

{48) forthecases F=C or H
solutions of the soureeless Mamwell a

nd Yang-hills

describe topologically nen trivial

juations .

The crucial peint is the infreduction of a Ealuza-Elsin type meiric

{eeeeq . 310 onthe bundles (4.3)
& s -3 t = - - Y ot )
ANV Pl E=12,,2,, .., 80 €0 iF)

If z, #A0

uel, (F)

= f 1

Za= § %o a=1,.,n
- -2
then ® =lz. >0 and p =
The set ‘i % e;g *E'Z"PE a local coore 1111
49

issuchthat {(z,z)=1

, 1e
S

1+ Z
a =1

,local coordinates for the sphere are the following

2.=1 )

1a]



T whils the o ot b
For Cwhils The coordinates {?}., %QE

The natural rismannian metric on the sphere is
2 = ,
st - 5 dE, dzg (4.9)
=0
This metric may be written as
2 2 2 .
dg” = ds*- w (4.10)
whets

w s wtdew Pt LTS e - Wi Jw (4.11)

L/"‘l

ds* =9 Z% o d . t
%’ §" L LE (6 05, 5+ (d5.08 5,45, ] . (4.12
The line slsment  ds®  defines a Riemannian metricon FP" . When
F=0C , dg* is just the Fubini-Study metricof  CP~  [48]
2 d5 4 - L 5.8 ds. 43, (4.13)
& ab

The 1-form o iz aconnection [-form on the Hopf bundle (4.8) | It

dst =

D

R

takes values in the Lie algebra of U, (F) hence is pure imaginary . Its
curvatnre is

Q= dorwaw =0 [Edin he dg Tuw (4.14)

whers
2 5 ra T ‘.
h ab f ‘qu - f’ ga. %b ) \'\mb - L“ba, (415

since 8L s a horizontal U, { Fi-invariant 2-form | it projects toa

a-formaonn FFP O denoted by the same svmbol | Then Q isa

50
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The dual is

T

4 & "
zlsmenton FP

valuated using the metric  ds and a suitable volume

The magnstic pole solution of lower strength  [13]  corresponds

o F=0C and n=1 . The Hopf bundle is

3 cd) - § 1
> P =35

3

with connection

, o 3ds-5dl
Z 1+

(,L)=LL<§UL+

. _ 2
while the melricon 5 isgiven by
did
de¥ = -———-—3_ 5
1+3%
The previous is the standard metric on a sphere of radivg  1/2

expressed in sterecgraphic coordinates |

3 : ]
I = is parametrized by means of Euler angles
L (X-)
£ (¢ bt

)Za_:@. A

EeX+@)
67“ ? oAb

N
o
[
21O

10

. . . 2
the sterecgraphic coordinates for 57 are

d

-L\F g

5= ¢ =7

which gives for u and [

o
i
-
[l
T

when
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Ade o ot o et
L e tential

£

~faw = %{I-COSG}dH’

which describes a magnetic pole of strength { in vnits such that

c:‘u
o

s " -2
=1} anditisdefined everywhers on 57 but the south pole

The BPET sciution of the Tang-Mills equations [ 14 ] corresponds

H and n=1 . The Hopf bundle is
JFoSu@) 1 4
o — e’

. - . s
with coninection wo on 5 and metric ds® on S the saimns a8

in (417) and (4.18) butnow ue Uy (H} and 3§ ¢ H

The local gauge u =1 gives the following gauge potential on B

A Z’ég'féi)g (4.19)
2 A% gy

. . ; Y .
Using Cartscian coordinates i't,.:x;;fj ,z ool B ong may writss

=

&

™

g =U+ix +jy +kz
whers i,i and k  are the qualsrnionic units . If the latiers are
i=y-1'6, , j=\T6 , k=Y

the metricon 57 is given by

dt’ 4 dx®+ dy’+dz

s
(1+ %>

it T S s '
wiile the gange potential s (= V-1 1}
|2



| H

(:‘C‘c;‘tlj - ‘jc‘;t%x&z—zéx}@z +
(tdz -zdt +ydx-xdy) ey ]
which ig just the local expression of the BFST sclution defined everywhere

but the south pole  [48,49]




b Spinor strootures

5.1 Defindtion of spinot structure
In erder to define spinor fields on a manifold M one needs to

intreducs a spdnor structure on it

We shall consider only the case when M is space and time orientable |
Lét G denote the orthogonal group  S0in)  or the proper
Lorentz group  30(1,n-13 with n=dimM .
The first step consists in considering a restriction  O(M)  (see paragraph
1.5) ,if it exists |, of the frame bundle F(M) tothegroup G . The
principal bundle  O(M) isas  SO(n)-bunde [ S0(1, n-1 J-bundle ]
of orientsd or the,;-nu: mal framses . Giving such a restriction is equivalent o
giving a globally defined Rismannian [ Lorentzian ] metric on M
together with a chvics of spac [ space and time ] orientation [w] .
Let. X H —> G be the standard covering homomorphism of

the group G . Of course  H=GSpin{n) for G =3500n) while

& lproper) spinor structure | 50, ;1] ot M if it exists i 3
prolonzation (see paragraph 15 of O} to H i e ,a principal
bundle S} over M with structure group H o together with a

surjective submersion I S — O such that the following disgram




ST 1" S B -~
skl H ——-———————»—} HEDY X G

cominutes | A necessary and sufficient condition for the existence of a

spinor structure on a manifeld M is the vanishing of the second  Btifel-

w.
g

Whitney class wp e H (M,Z,) of M [5051]
Geroch [ 52] has proved that for a SO0 1, 3-bundle of oriented
orthonormal frames over a noncompact four-dimensional manifeld M a
spinoer structure exists if and only if the miﬁdie ig trivial , i 2., ’a.dmits 8
global section ; morecver |, the spinor bundle ifself is then frivial |

On & given manifeld M there mav be tmore than ong spinor
structure . If (5,h ) and (8 ,h') are two such structurss , they
are said Lo be equivalent if there exists an isomorphism o 0§58 — §

{see paragraph 1.5) so that the {ollowing diagram

S{M > S'M)




5.2 Spinor fields
Let 1o (M) —> O(M} beacpinor structure over M and P

a representation o

f H inavector space V. A spinor field k{J of
type (P, V1 on M isasection of # vector bundle of typical fibre ¥V,
agsociated with  S(M)  via the representation £ . Equivalently , one
may define a spinor field of type (P, V) a5 an equivariant
mapping ¢ SIM) —>V suchthat G WA) = P (Ao i)

forany uve SIM) andany /\ e H

5.5 Spinor connection

Let  h:5iM) —> O{M) beaspinor structure over M | A spinor
connection is a connection on the principal tundle [ 53_,’;3»’&] . such a
cenniection is defermined by a connection on OIM) | Although  h s
surjective | its derivative W' is an isemerphism on each fibre and it may
be used fo lift the horizontal space H o, pe OM)  to a horizontal
space at  w e Sk} auch that p = hiu)
I e, :TOM — 3 is the =::;:zm1»;-‘;~::‘.i=m I-form en D) | the

corresponding connestion orm oo, om S{M



¥
w., = A ok oo, (5.1

L

t
' .
where A @ M —> v is the derived mapping of Lis algebras ;
L . . . N
A s an isomorphism since  ker A = 2, lediscrete
In general the connection «w,  is any metric connection on M

Let s:U — ZM) ,UCHM, bealocalsectionof S(M) ;then

hes: U —> O(M) iz = local section of QM)

U

I A=gfco, and [ ={hesico, arethe corresponding pullbacks
of wog and w, to M ,theyarerelated by )\

S = .>\ @ r-l (5

[A)

)
hion  form it is possible to define the covariant
derivafive |

I ¢ cEM) —> ¥V isaspinor field of type {gz , W1, its covariant
derivative ie given by {2.3)

Dy =dy +(p o) . (5.3,

auge s

!
Vel
-

Bonlis

o)
= ot

Thie local expression of uF it the o

By defining D RP =¥ D . the local expression of the covariant

derivative (530 is given by



=5 over origtibed spiisre

let = e Lo orisnted  n-dimen arad

mefric . Esmetnbering that its bundle of criented crthonormal frames is
diffecmorphic to S0{n+1) |, one can easily show that the spinor bundle
may Fe identified with  Spinn+1) [54]

g

Spinf{n+1) —> SO(n+1) —> 5~

101
Pl

o

Hers the bundle map b 53(M) —> O} coincides with X

".l

Particular cases of the sequence  {5.5)

=
I

describe relevant physical

PO FeT R 3 .
, Spinl3y =230z = 5 and  Spini(2) =U(1} ; the

. . : 3 W)
resulting spinor bundle is the Hopf bundle § ——> 5 and

describes the magnstic pole of strength ¢ = fe [1%]

e Ze P
. . -3 :
For n=3% , Spini{4) = 5U{Z) X U2 = 57 X SU0{(2)  and

ot e . .3 et uce2) .3
Spints) = SUE) [’%‘%] ; the spinor bundle 57 % SU(Z) 5—.__> S

with the corresponding connsction W,  gives the meron solution of

Tang-Mills equations \: 6]

i

For n=4 , Ipinl%) 2 Epl2) and  Spin(4) x Sp(l) X Spll

SINEZY ) SUE ['—‘f] ceince spindd) =2 sulZ) @ suil) |, Oy may be

F

-

split in Tweo components both of which project to Splaifipll) =2 3
T | H i 2 - i} -;?. 5 u<2) _‘Lf'
which i the total space of the Hopl btundle 3 3——-——> s . These

e instanton and anti-instanton selutions of Yang-Mills




cage 15 n =4 | The resulling spinor stivciure
gives the sclution of the Tang-Mills equations in eight dimensions found by
Grossman , Eephart and Stagheff [59]
- . . . 8 :
The GES solution consists of a gauge fisld on S with gauges sroup
- . - . - . . N . . ¢ 8
fpin{§) . Moreover , it is invariant under the action of Spin{9) on
[21] . We shall show that this gauge fisld is of the form (5.2} with the
conngction [ chosen to be the Levi-Civita connection of 5
In stergographic coordinates | obtained by projecting from the north
, . . . i . 8
of south pole onto the equatorial plane identifisd with R , the

restriction of the flat metric of R is given by

2 _ 5 Py
Z (d=™) , o2 = &
( I+I*) =1 »=1
By using the orthonormal basis

Lt
LA 2 |

L
et

L]
i

P 2 »n . -
§ = = d=x pos1,.,8 (5.7)

4+t
one gets the Levi-Civita connection  1-forms [t*-u]
v »
oo s 2 (M- d) s
1+x?
and the corresponding curvature  Z-formns

" A AN A

AV .
SAASIE A 4 dx? A da” . {
(4+x*)* '

A ~ A \
i gD o Y Y

N o .
L%t ﬁ'}v} 3 ‘._f“')v =1',...J’;} N ;.j‘”v =_“:’J.~V ="'V‘}N )‘ _,bf:r'a.

basis of  self) . The connection and the curvature may be put in a

L
>



il 4 Va - o

P - T f“_?’\ - - [ ! < -

L IS TV ax {5.100
) ) > -

~ o \Jaf: Al ) B » o N

o= Lol g = 405 da™a da {5.11)
2 I 2 "~

whets the quantities with hiat are matrices

u

From the expressions (5487 and (5.9) one obtains

T (5.12)

>
S

1+ 2> S
A Ly < ‘e 5o
T e > >-13)

1.4 . . i . -4 AL, =
If X sels) — spin(8) s given by A (S d=i Zf\, .
A N
then the matrices Zy\) , {)\»,v =1,.,8 >__JW + L"J** =0},

are hermitian and the set )L iz W} gives g basis of  spintd) .

The spinor connection obiained by lifting  (5.12) is

—

~ 9 .= V) .
oo - iy, x 5 1
AT e T (514

and coincides with the gauge potential derived in [21] . The

corresponding fisld strenght is

~

F

r

FaS
T (4+x)? * ZJ’“" (5.15)

Grosstan |, Eephart and Stasheff characterize thedr solution wz.th &

b,

topological charge which they identify with the Euler number X  of the
Dl £y, Dl 8
spind b -bundle over 3

The Euler number X is defined by [61]
-

Xs - | e 2y

5 )5* hs

where Pf isthe Piaffian snd  F = % nyax*‘% dx¥

W
poasts
P
e

-

Zince the Plaffian is dsfined on ¥ Ior antisvimmetric matricss | formula



{5.16)  makes sense only because i is T i
seié) . This possibility is related to Gl |

atid we shall show how to realize it explicitly .

Let Pr ;s 1,.,8, beeight anticommuting hermitian

malrices

A
\_\J“r\" + 1 PJ” - 2 SJW pov=li B (5.17)
A
Then the matrices 1 3 are given by
AR ,i -0 ~ f...‘ A
iLJw:z;Lr‘y, ‘r:]:%‘ﬁr‘*‘ (5.14)
o A
If the malrices rr' are real , the matricss 1 2 v will he

G Y

antisymmetric and will provide a representstion of  spinid)  in ferms of

N
antisymmetric matrices . A possible choics {or the \_‘),, s is the follewing

[63]

~ ) A ~
r; B >\1000 : D >\2zoa ’ r3 = >\2120 ! 1—; = >\211z
- A ~ »n
(5= Pames e Doy 7 Mgy [ = Aagyy (519)
Here
>‘i3w¢= D ® >\3 ® A, @ >\% (5.20]
with ’/\i = ’\5‘,; \ >\?_ =-i¢;, >\5 = 65 and Gy, 6. &

1

the three Pauli matrices ; >\o isthe 2%Z2 unibmairix |

The matriz {5.19) are of the form

. 0 I,
U=
I, 0

-

b1



i
L]
L=
e
N
(R
et
e

atid the Sy § areseven &$x§  anticommuting matrices .

0 DI A (5.22)
writh
1y =1 N 8
eyt 9 OV » ’ Rk
" =
5 Vooa - -
i Jsefi N ot 3 ~J = i {: .;_r:-f
CEEge Y Rt 523)
and
2 =1, v =2,.,8
res |7 B A
T ot
Vv ﬂ_ ¢
RIS Fovo=2,.,8 (5.24)
. , JPARPES AN e i o
The two sels {12, v ‘g and {1 Z oy S of &X& anfisymmetric
metrices give the Dwo semispings representations of  spinl®) |
& &

Cwing to (5.15) it is possible to break the soluticn  (5.15%) in
fon) -

A +>
A “+ L5
r * Z‘J“’ (5

[‘\.
"‘.d"

v =

IV (et

afid we shall ses that the Two pleces are characterized by opposite values of
the Eulsr number |

The situation here iz analogous to the one in four dimensions where it is

rthe instanton and anti-instanten selution of the

[
[



Tang-hiille equations by exlending the gange group o

spinids = SU{z) x su(zy (57
By using the fermulae for the Plaffian developped by Caianisllo [Jﬂ ,

after some algebra one gets

FH.) 8LO 4 3

Fil —1= 227 & A . A€ {5.27)
2t
and this gives
+ F O , i
%‘sh S Pf( ,,)———» = Eﬁ*——* !,-Tcﬂ.,SB' = *1 (5.25)
s < 410D
These values for the Euler numbers have to be compared with the Eulsr

l

23 . .
number of the tangent bundie of S whichis X =2
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