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1. INTRODUCTION

One outstanding problem in modern elementary particle physics
(1
is the problem of spontaneous symmetry breaking (SSB).
Some of the earliest applications of SSB in particle physics,
(2]
dealt with the chiral symmetries of the strong interactions
and much of the progress of theoretical particle physics has
occurred through exploration of the phenomenological consequences
of spontaneous chiral symmetry breaking. However, the underlying
mechanism of +this phenomenon is still an open problem in the
theory of strong interactions.
As it is well known, SSB can be realized by elementary or composite
( dynamical symmetry breaking (DSB)) scalar fields. In both
cases, the manifestation of symmetry breaking is the presence in
the physical spectrum of a massless particle, the Goldstone
e o
boson, which turns out to be elementary or composite in the
respective two cases. Spin-0 hadrons are bound states of fermions
(quarks and antiquarks),therefore they should not “e described
by fundamental spinless fields. Thus, the realization of the
spontaneous breaking of chiral symmetry in hadron physics is
closely connected with +the realization of the dynamics of the
tightly bound fermion-antifermion states. Here the Goldstone

mechanism is not related to the fundamental Lagrangian but

to an effective Lagrangian of hadron interaction at low energies



when the hadronics structure is inessential.
The successes of the phenomenological description of spontaneous
chiral symmetry breaking in hadron physics (see for example
the numerous sum rules of current algebra, the low energy relations
of pion physics or the analysis of the meson mass relations
which also indicates that pseudoscalar mesons can be regarded
(%)
as "almost' Goldstone bosons), leaves no doubt about the reality
of this phenomenon. This is ‘the reason why the problem of the
dynamical chiral symmetry breaking in QCD,which 1is the only
candidate for a theory of strong interactions, has become of
particular urgency.
Due to the previous motivations,R.Casalbuoni,D.Dominici,A.Barducci,
R.Gatto and I, have started last year with a line of research
intended to study DSB in QCD-1like gauge theories from a dynamical
(5) ,
point of wiew. Our first priority , was to learn how to do a
more quantitative computation of chiral symmetry breaking.
In order to make a systematic analysis ,we have used an effective
potential for composite operators which 1s a convenient modification
(e
of the potential introduced by Cornwall,Jackiw and Tomboulis.
We have assumed that the main contribution to the effective
potential comes from short-distance effects as suggested by
()

recent lattice calculations. with such an approximation[it

is sensible to perform a loop expansion of the effective potential



itself.OQur strategy consists in introducing a parameteria
separating the infrared region from +the ultraviolet one. We
have assumed the self-energy of the fermions as a constant
for energies lower than F_ ywhereas, for greater energies we
(i5)
have taken the behaviour dictated by the operator product expansion.
This ansatz depends on a variational parameter wich is the
fermion condensate renormalized at the point tL . Then, minimizing
the potential with respect to the condensate, we have calculated
the value of the condensate as a function of PL .
We review the basic features of spontaneous symmetry breaking
in sect.2. In sect.3 we recall some fundamental aspects of
the effective potential for composite operators as discussed
by Cornwall, Jackiw and Tom bulis and, in sect.4 we introduce
a modification of the CJT effective action which is more convenient
from a computational point of view. In sect.5 we discuss some
properties of chirally invariant QCD-like “gauge theories and
in sect.6 we deduce from the asymptotical equations for the
Green's rurctions,the UV behaviour for the fermion self-energy.
In sect.7 we show that the results obtained in sect.6 are consistent
with the OPE analysis. Sect.8 represents the central part of
this work. We perform the calculationrof the effective potential
as a function af a variational parametear 'X whose physical

meaning is explained in sect.9. In sect.l0 we discuss the effective



potential using the case in which logarithmic corrections are ne-
glected, for comparison. We find that dynamical symmetry breaking
occurs provided that the coupling constant exceedssome critical
value. Further, in our last section, the dimensional transmutation
phenomenon is analyzed.

In appendix we collect the relevant diagrams we have obtained

by numerical analysis.



2. SPONTANEOUS SYMMETRY BREAKING

The greund state of a theory can be quite generally classified
through the study of the symmetries of the Lagrangian defining
the theory itself. If the Lagrangian admits a continuos symmetry
group G with generators S: satisfying the Lie algebra:
Ls:, sﬁ = ifqu Sk S; € Lie G (2.1)
(3)
the classical Goldstone theorem says that,if there are generators
Rg€ Lie G, such that:
R, 10> # 0 (2.2)
then , together with any generator R, , there exists a massless
particle (Goldstone boson) having the same quantum numbers

of Rg. If we denote by T, the generators of Lie G annihilating the

vacuum, i.e.

T,10y =0 (2.3)
one gets:
[, 5l =15, 1, (2.4)

so they generate a subgroup of G (the stability grerr of the
vacuum). By denoting such a group with H, one sees that the
generators R, lie in the quotient space:
R, € Lie G /Lie H (2.5)
Whén such @%hing happens we say that the symmetry G is spontaneocusly
)

broken down the symmetry H.

The natural question is +then how to study in general such a




problem. A simple way is to consider operators A singlets with
respect to H. In such a situation, let us look at the following

matrix element:

wlAley = LolUTUAU T Uloy = <ol (1-ie8)A' (1€ S) o>z

(2.6)
~  (olAlo> —ie <ol [S,A 10>
ies - , : ‘
with U= e ~ A «ieS selieq 5 A LuaAU-

Now, let us consider the various possibilities:k
i) Selie H, in this case A'= A (because A is singlet under H)
therefore 201 [SIAI 0y =0 =t Siey =0
ii) "8 €Lie G/Lie H; in this case A # A and furthermore if <OlAlOYLD
then <ol [S,AJ10> £0 =t Sio> =0
We see that the breaking G -»H can be tested by the wvacuum
matrix elements of an operator A singlet under H simply by
studying if <ot Aoy is equal or different from zeroc. Generally
speaking we will have <ZolAlo%» = f(g;ﬁﬁ) where g- and m? are the
coupling constants and the mass parameters of the theory. We
will call the space spanned by g, and ni the '"phase space"
of the theory. Therefore, we will have to determine the '"phase
diagram" of a given theory, where each phase will be characterized
by a convenient operator A such that <olAle>» 20

We will call lAl 07 an order parameter.

When A 1is one of the elementary operators of the theory we

say that the theory undergoes a spontaneous symmetry breaking
whereas when A 1is a composite operator we speak of dynamical

symmetry breaking.




3. THE EFFECTIVE POTENTIAL FORMALISM

It is clear that in order to study the problem of symmetry
breaking one has to derive a systematic way to study the matrix
elements of a given operator. In particular for the breakdown
of <chiral symmetry we need to know how to test wether the energy
of the vacuum 1is lowered 1if some fermion bilinear acquires
a non-zero vacuum xpectation wvalue. If the quantity acquiring
a vacuum expectation value 1is a scalar field (f , we can use

()

an object called the _effective potential, which is equal to

the energy of the wvacuum under the constraint that the vacuum
expectation wvalue of &{ has some definite value qL . One needs
only to compute this effective potential and minimize it with
respect to ?c to determine the vacuum values of Lf , so the
various phases of the theory are given by the extrema of this
function. But, if one expects that the breaking of the theory
is due to the formation of scalar bound states (condensates)
playing the role *of the previous elementary scalar field, and
this is +the <case in strongly interacting fermionic theories,
one needs an appropriate generalization of the effective potential
for composite operators. The idea is to introduce inside the
generating functional of the Green's functions of the theory,
sources coupled to the operators we are interested in. For

example, in the case of chiral symmetry breaking which we want




to examine, to produce a vacuum expectation value of the operator
QKP s we must, in principle, turn on some external field
(analogous to a magnetic field orienting a potentially ferromagnetic’
system) coupled to this bilinear, construct the ordered
vacuum in the presence of this field, and then see if the order
in this vacuum survives when we turn this field off. We can
realize this program by introducing a bilocal source coupled
()
to a bilocal product of fermion fields. The generating functional

of the Green's functions will be:(writing down only the dependence

on the fermion fields)

iw (e [ TW)AY P+ PRy
Zlkyg e - P\J_JQ)\@;Q (3.1)
6 :l)

where TI(V ) is the classical action of the theory
N is a normalization factor
q and ﬁ are the usual sources and K is a bileccal source.
We have used the shorthand notation Q’K\? to denote
Jdu*d“é o 0 K&ﬁ(ﬁa‘a) e (4)
in which o, 3 are collective indices for spinor, flavor and
color variables.
We will adjust K(x,y) so that, in the Landau gauge (see later
on): i
Pl
T - dﬂp 1
20V T o Y elo)y = 5, 0eyy = |0 2 (3.2)
@ R k i ! famiy 5 _ 5oy
F - —-(F } 5‘\1’5

for any generalized mass term 2]91}.

Our goal is to determine for which function 2 (p*) this condition
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will be stable if we turn K off.

Let us define the variables:

¢ SW

(X) "401 (K) l’O;“ = e .
ﬁ \{J"L ”Lk g;h(x) (3.3)
“’(:(X) = <ol P, (%) so>‘} . 3W (3.4)
‘ 8");(*)

=

"

In (3.2) we have introduced

. - R Y
5&%(""‘3; = Lol “'})dh‘) ﬁ(«éﬂO}? W : v (3.5)
BY,0 3(4)
which for q = ﬁ = K = 0 coincides with the exact propagator

of the theory. It is easy to verify that:

BW
§ Kap (x9)

which shows the relationship between the bilocal source K

= - SF‘* (4x)- L}’;za)ﬁ‘&) (3.6)

and our variable S.
It ‘is wuseful to exchange S or 2 (see eq.(3.2)) for K as our
dynamical variable. This can be done by Fermorming a double
Legendre transformation of the generating functional of the
(6)

connected Green's functions (in complete analogy with Statistical
Mechanics where we replace the Helmholtz by the Gibbs frec -
energy). Let us define

C(v5s)= Wipkl- 8 oy L Kap BN (3.7)

' oy Rl § ks
| « s p

where now q, ﬁ and K are thought of as functions of qa @‘
and 5, obtained by inverting equations (3.3),(3.4) and (3.6).

-

Differentiating[&ith respect to WL‘QQ and K we obtain:

of - =
— X - ¢ 6P - - - ¢
S \{): g k{)&g Kea Soe M4 kd{:,"['%




i
%fiqa

In particular for vanishing sources, one gets that Xﬁ must

- K
i (3.8)

be stationary with respect to both the variables ‘Pcand S:

obe ﬁcﬂ 3% :
| ﬁ:x:o M=k =0 “=k=0

The first two conditions give essentiélly the equations of
motion of our system while, the third one,is nothing but the
Schwinger-Dyson equation for the fermion propagator.

T“ is the generating functional in \P° and ZPC of the two-
particle irreducible Green's functions expressed in terms of

the propagator 5 and it is called the effective action for

composite operators. r reproduces the standard effective

action when we set K = 0.

Let us start evaluating r in the free field case. One has:
, [NV + 9Ky
W Joeas e
Z[nk]: e > ‘ (3.10)
- _ i [9iD'Y] |
I e

where D(x,y) is the free fermion propagator.

Here we have a gaussian integral, so we can calculate. W:
V\Hf'}ﬁ&] = =1 Tr 0 (fb-‘*cK)ﬂrETY&«(fb") —-Vi (_fDJ‘"K)-"? (3.11)

from which:

1

- («'D'\K)KBV)B

<
2

Wf= ’ﬁp(iw&gyé&
(3.12)
N
5&3 - (\ Y &) AP

that is
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. -4 . P
VST S D o+ K (3.13)
from which it is clear that S represents the fermionic propagator
when the bilocal source K is on. We can invert the relations (3.12):
, =1 e
kl.,g = o Y
= IR
Mo = - LP;:; 22 (3.14)
Lol et
K&Y&, - \50(‘3,1 o(‘B
and evaleate the double Legendre transform:
LT - . -1
T(9,8) = TW)+iTren (¥'S) i Tr (D7) + const. (3.15)
From this equation we get:

_gf - a7 ;i p!
5 (3.16)

&7 :
Then the stationary condition g%": O is satisfied for 5=D
!
that is the free fermion propagator. Evaluating |" at the extremum
one obtains the classical action:
My, 8=0) = J(k) (3.17)
We want now to derive a loop expansion for [1 when we consider
interacting fields. First of all we notice that [1 can be obtained
by performing the two Legendre transformations in a sequential
way, that is  taking first the Legendre transform for fixed
. Pk : .
K, (call it ), and after transforming with respect to K.

13
fl happens to be the ordinary effective action for a theory

described by the classical action:

T . L) + $xY (3.18)
K {14)
Expressing P (Qk by the formal series given by Jackiw, and
’

performing the Legendre transform with respect to K one gets the formal

series for the CornwalllJackiw and Tomboulis effective action:




~12-

M a)- )i Trd (078) -1 TeD's T +const. (3.19)
where I(‘%L) is the classical action
. 3
xﬁgﬁ = ~_~;£-
U =
OYp b da lyzo (3.20)
1
Dap = 51 i = §SY;§ + §~£ﬁﬁ
e —
L OEN 3%53Wd %342 5%@8%* QQﬂ
and 2 generates all the two-particle irreducible (2PI) vacuum
—_
diagrams with respect to the action \y 'S \'}’ + -IVZ"r (Lh"?c)

where I L'P \-Pc) le(\‘{’i-w - Tud (U(Jc) - q’)«g 0‘1“’%!‘? ¥ +

= g;_ii‘“‘}' ézlw'é-
TMObG, b % %\\%ﬂ 3@;3@«

"p"q)c.

Recalling that 5F/as - K and differentiating (3.19) with

respect to S we obtain:

Do) [
\Sd; N z@drﬁ 5 + K&F (3.21)
B
p&
For K = 0 this is just the Schwinger-Dyson equation for the
5T
propagator S. This in turn implies that Y £ is the fermion

self-energy.

(Remark: we want +to consider only renormalizable and chiral
”

invariant actions in four dimensions, then iZDZLP - Ef&p = ! x[&
If we are interested only in solutions translationally invariant
of E%F , which is our case (see (3.2)), we can choose the source
K as a function of (x-y). In such a case we can factorize

out the space-time volume and define the effective potential

V for composite operators:

P(“\LS): ~ V(&%) So\{*x (3.22)
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The formal series for V can be easily obtained from the series
for Ti.

However, one has to interpret the results deriving from the
study of the Cornwall, Jackiw and Tomboulis (CJT) potential
with a certain care. For instance, in the free field case,
it is easy to verify that V is not bounded from below. In fact,
let us +take massless Fermi fields in the Euclidean case and

let us parametrize the propagator in momentum space by:

Sep) = (-ip+ H(p)}‘l (3.23)

Recall +that for Euclidean Fermi fields the effective action

FaY
reads: (o' = ? )

T0,8) = T(W) +Trbu( 's) - Tr(V'S) -Th) +comih. (3.24)

Since we are only interested in the dependence on M we have:

— 0 v — [ N )
\-"('H) = =T bu (PN )4 ir(‘."—l"—:ﬁ?)) + Comst. (3.25)

The first term gives:

-T,&A(-@J,Mp))--gd‘**’ 2p) Badet (-if +MIPNp> =

()4

-J‘i‘ﬂ’ @n)+§"(0) 2pl de@%(#ﬁ“‘f{?))lp -

T j@n)
= jé‘*i—a £p) €adet (-ip41(y)) > jd’*x

and, by using (-;’é*ﬂ)ﬁs(—;?*H) = % (Pl’*' Hl) , we get

“Tebu (AP NR) - -2 jd‘*P D (pb) Jaux .

The second term gives:

4 Sd“rp nip) Sdt’rx
wlo M7
so we obtain (fl*riip7) { F(H) = V(H) Jd*x ]

V(M) - Sd”‘P (-26n (per) v 0 ME ) (3.26)
prrrt
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Let us perform

BY L -aM osHet L 4N (PR .
I e AVRRY) P ALY ) (3.27)
> (P PN P+ M) (PrHY)

The correct value M(p)=0 is a solution to the condition SV(H)/BHﬁ;O,

However +there is another solution at M(p)=p. Further, the
shape of V(M) 1is such that, after attaining a local minimum
at M(p) = O it rises until M(p) = p and then falls off,

)i

going to (—-0Co ) as M— 0o

The stationary . condition gp/gs = O does produce the correct
solution for M but only if interpreted with a grain of salt;
clearly we cannot use standard arguments about the absolute
minimum. In fact the CJT effective action 1is not generally
bounded from below and this problem arises already at the free

case level.
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4. A MODIFICATION OF THE CJT EFFECTIVE ACTION

We present an explicit derivation of an effective action for
composite operators which has the same local extrema as the
cJT one. Our effective action can be shown to reproduce in
guadrilinear field theories , the effective action obtained
with +the method of collective variables at the one-loop level.
It has the advantage of eliminating the problem of unboundness-
below of the potential and, as we shall see,it is very convenient
from a computational point of view.

Recall the formal series for I ' in euclidean space: (from
now on we will denotefyg with q’ and [ with QST )

s

From the very definition of Y1 as a double Legendre transformation

_— I(‘P) - Trdm Sm‘_Tr(D“lS} - Ty + comst. (4.1)

(see (3.7)), it 1is easy to show that +the bilocal source is

the derivative of T‘ with respect to S:
k - ol /55 (4.2)

From (4..) one then gets:

K. &' n - 2T /53 (4.3)

By using this expression in (4.1) one obtains:
chT (U\},g} = IN’)' Tr Q’\A (K"\'b-‘-g- EL> -
83
- Te &(SJ‘ :b__fjl_ K)S} - = IM)) ¥
S
_ Ty (D"+ ?g_f’».] e (vH (m&l)"k) +
55 bs
4 Tr[éjl s‘) e (es) ~Ta
&S
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and using again (4.3):

Teew XL«»« (\bﬂ%\gxy‘»ﬂj: Te b (1 (507 =

= Teba (A-sK)™ -5
one gets our final expression
T = Do Tebn (-55) 2 Te(ks) (4.6)
where
Mo T(9) - Tebw (D= A Tr(ggf} S)JL teomgh, (427
5% 5

is the form of our effective action.

Tt is clear from egs.(4.6) and (4.7) that the following identities

hold:
CaT \k:O - Y1\;=o (4:8)
. ov - v
gr\cj‘rlag \\c.:O ) /ES \k:Q =© (4.9)

Eq. (4.9) means that Tesr and " give both rise to the same
Schwinger-Dyson equation

SV N . ST /gé (4.10)
which is the extremum condition for the effective aétion.
We see that, in order to determine the extrema of the effective
action, the choise Dbetween TksT— and Tﬁ is a pure ma}ter of
convenience. In particular, it will be shown that practical

calculations are greatly simplified by the use of our F1 instead

¥

of eI T , and, in the case of gauge theocries we will deal with,
it turns out that, for any of the ansatz we shall use,
Y‘ , at least at the_,two—loops level, is bounded from helow.

Furthermore our r‘ does not have problems in the free case,
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simply because by ‘turning the interaction off, it reduces to
a constant functional.
We would like to mention another actractive property of the
modified action (4.7).
Let us consider a field theory with quadrilineaf interactions

%)
like +the O(N) scalar model, or the non-renormalizable Nambu

Jona-Lasinio modefl)or the two dimensional Gross—Neveu modefﬁ
All this theories can be reformulated in terms of collective
variables by introducing into the generating functional composite
fields bilinear in the elementary ones.
Defining the effective action for both elementary and composite
fields, one can show, at least at the one-loop level, that
it coincides with (1 (eq.(4.7)), after convenient identification
between the composite fields and the variable S(x,x). For example
let us show how our F‘ reproduces the effective action of the
Gross-Neveu model obtained with the collective variables method.
Such a model is described by the action

BT Sd@x X@‘%qﬁ *59 @‘HL] (4.11)
where \¥ is a Fermi field with N components. |

In two dimensions one defines a Clifford algebra with two

generators

%5;4‘0/\:}" 23/uv gfu : (: _04) (4.12)
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As usual ﬁ%:ﬁ;ﬁ} such that
Ts - 4
Slb,/" 7?‘53’0 (4.13)
B/;"' & Y-8 [P
The action I is invariant under the discrete chiral transformation
\3(} » s ‘3{ because ’\J.{)K/“\*’ — @de['
Yy - -y (4.14)
This invariance ; which forbids a mass term for the fermion in
the action) is dynamically broken and the fermions acquires
,‘avdynamical mass.
It is possible to reformulate the theory in terms of & collective
variable.The idea is to introduce inside the generating functional
a scalar field , having the same transformaticn properties
of T?+ : in such a way we substitute the original four-Fermi
interaction with a Yukawian coupling of the fermions with
the auxiliary scalar field (.
This generating functional is .
: o [ 1 - —
Z[V}] ) %Sﬂ)ufb’;@g ex[‘{)aa‘{’ 'iﬁ' +30’\M’ 4- V\\{)-{-\{}iﬂ (15)
This is now a quadratic form in the fermionic fields, so it
is possible to perform the functional integration over 4’ and :P-
The result is (-Leti Teb (3+9¢) +30)
Z(n] = ,{3\5-’)@@ e (4.16)
where we have +turn the fermionic sources off because we are

not interested in amplitudes with esternal fermions, while



we have introduced a source J for T .
For a constant U =G, , one can read directly from (4.16) the
expression for the effective potential for the Gross-Neveu
model to the one-loop level:

Vie): Lat- N SCV“PE L (pet -uf GL‘) (4.17)

2
where we have calculated
CTe b (13490) = 13%‘;’,&?\ fudet ($+9e)1p>=
. i]d% O (- pPreg'nt) Bdlx

we have Vperformed a Wick rotation and factorized out the space-—
time volume. (Remafk: the integral in (4.17) is UV divergent
and we have to regularize it with a cut-off procedure and then
to introduce a counterterm to subtract the divergent contribution.
We will not speak about these problems here).
Let us now perform the N—% £ limit with %?N =4 = const,
N being the number of fermionic components. In this limit all

the diagrams with two or more loops go to zero at least as

1/N. Let us consider for instance

fig. 1
Remember that in the loop expansion for the effective potential
one has to calculate all the one-particle irreducible vacuum

(1)
diagrams with respect to the action shifted by Je¢:

) - FUI-AT) 4 47Tt -y o
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The diagram in Fig.l is the only one contributing to the two
loops term in the effective potential. Let us calculate it

in the N —4® limit:

%zNjit_E d..z_\f b ";"%U{_. Q—%Gc -
S

. Y (gt ) (428 k] ! ~
= 2‘(% >(() U /)k‘z—m‘g F‘Lq %‘ZO-'L\- “2+ 1{}""{ NP N

It follows that V( o, ) as given in (4.17),that is at one loop
level,is exact in this limit.

We want <+to show now that our effective action for composite
fields Y1 ,reproduces (in the N -» (=~ limit),the effective action
just calculated with the collective variables method.

We are only interested with AWy = 4%’?: 0 so we put directly

ﬁ¥2 @hu= O in the effective action. Then one has:
. > 1 A
IE);‘(? = ® — - 1@&{3 (4.18)
6%{3%\&)&lk‘?:o

In the N —»po limit, the main contribution to rz(O,S) is given

by the diagram:

fig.2
that is
’7 Lat {42 _(t 3)‘- rr 8%
iz = 2»? % s - Lr (4.19)
To compare with the previous results, we assume S diagonal

in the flavor and in the Lorentz space:

Sol%;) (X;\;{} < - 2“3!_;3..

.
T.lx) 5@;5 E’j i,j=1,..,n (4.20)



N
Then, in the N —spo  limit, (ir §)* dominates on (fr s°) and we

get:
2 ¢
M2 - %Sd x Se 09 (4.21)
We have also:
gpa - [ S;i(x')‘) - __2] GC(X} (4.22)
S Sat(xix) !
and
BFL S - * z S‘)j (X‘x S;.‘(\"lk) = ‘2P
Tr [’5‘5‘ =9 [ = (4.23)
By substituting in
- )
Cog) = -iTrbs v - Y T .S’.Elg)—%wucws%. (4.24)
(0,5) (iv- D) -T2
which is the form of our Eﬂ in the Minkowski space, we have:
M(s) - —ijdzx Q':(x) i et (09 +%W’g> (4.25)

from which one derives an effective potential coinciding with

the expression (4.17).



5. CHIRAL SYMMETRY BREAKING IN QCD-LIKE GAUGE THEORIES

We present here an application of the method for calculating
the effective potential within the functional formalism, to
SU(N) color gauge theories with massless quarks. We will assume
that +the main contribution +to the effective potential comes
from the short—distambe effects. With such an approximation,
in virtue of the asymptotic freedom of the gauge theories,
it is sensible to performe a loop expansion of the effective
potential, and <to consider only the lowest order contributions
in the gauge coupling constant (two fermionic loops).

The calculations are for 8‘:0 ( & is the parameter connected
with axial anomaly). We will see that the phase diagram shows
two phases: the chiral phase and the broken phase into the
diagonal flavor subgroup. In particular, spontaneous chiral
symmetry breaking occurs, when the coupling constant in the
infrared regime exceedes some critical value (see later on).

The classical Lagrangian density of the SU(i} gauge field theory

we are considering is:

Lo B (15 0:85 1" A (T ) P8 & proagpe,

4 ¥ (5.1)
-+ %‘noﬂ terms + @3duge .;.Vx(h% .
where %%A i=1,..,n A=1,..,N are n massless fermions

each of them being assigned to the same representation

r of the gauge group,



—23-

a

T a=1,..,N-1 are the hermitian generators of the

gauge group in the r representation,

oy o e 9 _ ‘ 'l & 0
},{_vmji:.rl.\_)t = T{A\)’@UAK& ?EA?-|I“\‘J / ‘Ar =’A\ﬁ{

and t* are the generators of the gauge group in the

adjoint representation.
This Lagrangian 1is invariant under the transformations of the
flavor group U(n) x U(n%s More precisely we have the invariance
under the global chiral SU(n)Lx SU(n& group and the U(l)TRgroup.

L
. . - iA

(the divergence of the singlet axial-vector current )SY = Q&AKPEE\P
connected with the U(l)!‘_R group,is non zero even in the chiral
limit due to the anomaly)

The chiral SU(n)L X SU(n)R symmetry implies the conservation

of 2(51—1) currents (all of them are gauge group singlets):

[ - AN jA
. - Ari
JL?L N % \’:ETKS (23\3 g
4 t 4 (5.2)
) i (' i T
- ) x (s i)
JR‘L = U(',A .G”TL = ky
where QY[Q,‘ are the matrices of the fundamental representation

of the SU(n) algebra.The U(l)Hﬁ symmetry implies the conservation
. - Al

of “%fhe vector current \)%: W K}‘?A; .The invariance of The
Lagrangian density with respect to the transformations of the
chiral group garantees that the mass term in the femion propa-
gator will never appear in any order of thr perturbation theory.In
fact, the structure of the propagator calculated in perturbation

theory 1s a consequence of +the invariance of the vacuum with

respect to the following transformations:



Uy. 1oy =0 U?’S o> =0 (5.3)
with 2"
-1 Z
Jy YU, = 2 G (x)
- N
U- ¥ = x) e
' l-{(ﬁ) (){ k? ) (5.4)
; Ry
Ul 90 Uy - e feds Pxy
- - HUXAR o
07 T ug = oo EE
then
SE): Lo TWDYOYOY> =
= ol TY &Q(K}UrUr'iq’{O}Ur!O> = (5.5)
(22" Sy
and - e % Bx)e
’ SCx) = %‘p{f‘(’b’s%‘) S(x) emp (3?6’5?{'3
Therefore [Ar,ﬁl:o ’ %KS g"i SB -0 (5.6)
so S, perturbatively calculated, 1is diagonal in the global

group indices and has the form:
: (5.6)

Z() P
spontaneous symmetry breaking, SU(n)L x SU(n)R — SU(nl&R'

S(F) =

Under

When relation (5.3) 1is violated, a mass term in the fermion
propagator can appear:

; ( 5.7)

OB -
Z(pt) P+ 2 (p")

Thus the dynamical realization of spontaneous chiral-symmetry

breaking,requires necessarily to go beyond the framework of

perturbation theory.



6. ULTRAVIOLET ASYMPTOTICS OF THE FERMION SELF-ENERGY.

As preliminarly considerations, we will obtain some restrictions

on +the mechanism of spontaneous chiral-symmetry breaking directly
(12)

from the equations of the theory. In particular we will consider

some restrictions which follow from the asymptotical equations

for Green's Functions.

Let us use for this purpose the Ward identities relating the

(o) v
unrenormalized proper axial-vector vertex functions r;u with
the fermion Dbare propagator S(o) (A is an ultraviolet cutoff)

N (O)P R ¥ ‘:O}'] . { -1 ¥
PY L @.a)- \{5% S (g1 S (qt}% s (6.1)

s
(we are dealing with a chiral invariant Lagrangian so ’ar ESFO )
where P=qg -q,

1
s is the inverse bare propagator

(o)
Q,ﬁ, are the bare amputated vertices of the colorless

axial-vector currents )5: =q’5\,‘65 %"df :

o o lo) 5 : iq %1 -;qn(;
S0 17 @) $7q)) = [dhdin e .

o\ Tl ey (o) Y (%) 10>

which satisfies to the equations of the Bethe-Salpeter type:

(o)

F(ow ] - 2’” Qfﬂﬁs)wa . g’"\d‘w\ K, f‘hQ}K)' (6.2
sy G4y ™ 2 ; (T Mpap 6.2)

' 1;%(0\ C“r"-‘{-?\) FS?MY(?JY' k) S!Q}CK)]O(‘V‘
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1

4 it ’

[ .8

fo f

k%p

where K is the fermion-antifermion scattering kernel.
In +the lowest order approximation X consist of the single gluon-
exchange graph in which lowest order expressions are used for

both the gluon propagator and the gluon-fermion vertex function:

K il
— it
i < ’l

et P 4,

By substituting (6.2) into (6.1) we get:

o) - A “
(% 28776 i ) 27 - ch Ko,y (007 K)-

) ame AP -
) 1 (6.3)
(el ‘v AT . ero) ¢ to YA
[y (7 s b ) ) e,
that is
Ve A7 S +1 Sl ’ = gr 5
QK -% SORER L%)ia & P 2 (f&)jl; (6.4)

Mk (o) . e FANNRY
+3 C%; k\’{b;rf(\%.q“g} [S (Qf)'%% A % KS?(@]O!‘F

}

=7

92
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Now, by taking the limit P=0 and defining 9=%t% we get:

A v lO o
[ €7 + sy, - 3@1 Ko 29[S (65
(e}
+ ¥ S (k)l\ok\?‘\

Recall that we have parametrized

& N ®\ V ‘
[.S( )(q)} H (2@( )q - 2@t } (6.6)
that is
Cay:  TE§ + 1 3
22@)qr - 3 (6.7
By using them into (6.4) we get:
) £l
(o, 770 [ oy 200 oo
F ’ (2‘“’%)\& () '
or equivalently
I\ ( +] <
\%Lep ?m(‘ﬂ & d‘lk k;%amg(q < (S‘ ;(\‘-}5‘ Z” {) )&\*\‘ (6.9)
{%* T i
In the lowest order cof berturbation theory
L
LS e 90 = -1 (-ig 2 ay) ¢, (¥ )P’@ ! ]}\W (q-¥) (6.10)

where C,= =" =2 T 1™
=Y
D =1 —(1-
po (0= 1, (9, (1-2) 9%,
qe
Qur calculations will be performed in the Landau gauge, that is
with oL =0.

Going to renormalized quantities:

Se)- Z\{,—‘ < () : (6.11)
2V e -Z(pt)




2(’\%,\,) - E\P 2103 (VL\) ’ Z‘(Pm): Z({/ S{o) (P\,) (6.12)
2 o .
and ko{‘?ww (:C’uk\) - Z\}, K(i;’ﬁ,d‘r«‘ (q.k) (6.13)

being K the proper four-fermion scattering amplitude,one obtains

the equation:

Z(qr). \"o¢ o , (5.
(ESLU{% (Ci )., g@‘g}i k@,)gﬁ(‘%&) (S(ﬂ?fg Z{xl)g\t))d“r“ (6.14)

where everything is expressed in terms of renormalized quantities
and the cutoff dependence relies only in the upper limit of
integration.

to -
Let us go over the deep euclidean region of momenta in eq.(6.14).

Since the ultaviolet asymptotics of Z(a%* ) andi%P&\Kq,k) are

o
insensitive to the mass term, they should not be changed when
spontaneuos chiral symmetry breaking 1s taken into accont.

Therefore,in the leading logarithmic approximation, one cah

take for them the expressions following from the rencrmalization

(As)
group analysis. The kernel K is a proper four-fermion scattering
(&)
amplitude so it rescales in the following way:
3(,t)
-4 j‘) av Pl

Maqr) = AT K(FaaE e P e

e

where p is a reference scale of momentum

- is the renormalization group parameter

A ljp_ b

7

g(g,t) is the running coupling constant which in the

leading logarithmic approximation is given by:




g'L

3%(a, &A_q: - (6.16)
T L+ 2% Ou B2
2b P
where b 247 ivalently b
re bs————— ; uivalen
IIN on or equi ently by
v eX 6.17
g Ceh) = 25/%@, (6.17)
Naen
where f\QLﬁ is the renormalization group invariant mass: the
free parameter of the theory (In QCD, ka&N'ZSO Mev),
fu 2y
and KQ(%E - %' d Y
CiQuti
(6.18)
= o3
BE) = S
Al 3+

In words,according ;to the renormalization group analysis, the
behaviour of <the kernel as a function of the asymptotic momentum
p and the renormalized fermion-gluon coupling constant g, is
governed by 1ts behaviour as a function of a finite momentum
P and of the running coupling éonstant glg,t). In thé F-%ﬁﬁ
limit, thanks to the asymptotic freedom of the quark-gluon
interaction, g(p%z ) —s O, so it is meaningfull to approximate
the kernel K with the lowest .perturbative order. Recalling

that in the Landau gaugeb; =0 at this order, we get:

Qoo Klpan) = 25 ¢ o) (M hlgha %ﬁ (gru-ﬁv) ;

P Pt i

-

3

(6.19)
. v P v
= 1G4 (e) (e, (0l L (8- TP
P P
Analogously for Z(p% ), which represents the fermionic wave-
function renormalization parameter, in the p— oo limit,

the renormalization group analysis gives (in the Landau gauge):
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Lo Z2(rPg,r) = A (6.20)

P e

In this way pa (qz’) represents the dynamical mass function of
the theory W1@1) = mz} Zﬁﬁ) We observe that the expression
B(QY)

(6.19) for the kernel K is not merely the ladder approximation,
but, with the inser tion of +the running coupling constant,
it takes automatically into account the fermion-gluon vertex
perturbative corrections at least din the leading logarithmic
approximation; this 'improved" ladder approximation faithfully
represents the complete (relevant) kernel, and not merely the
asymptotic 1limit of the ladder graph. Further,we assume the
validity of the usual arguments reading that the region kﬂ(ﬂ-lr’>>AEub
gives the main contribution to the integral on the right-hand
side of (6.14) in the limit g% —» oo . In this region

SIK) ' ~ - (6.21)
2§ 3

substituting in eq. (6.14):

(), 20 = 16" e gy 0o | ;wf_«zﬂ

(K)o s
@ @-c) [(6.22)

Lry &

from which:

Z(‘il) = - 3iC Ad‘«m 31(@'@") t (6.23)
h3
@n* kt (a-k)+ 7

So, performing a Wick rotation, we find that eq. (6.14) in

the Euclidean region at ql —s v takes the form:

Z(‘(L) - —3&' ng A 461. ((‘]—k—)“) 7o) (6.24)
leTr 4 it (aoe
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In the leading logarithmic approximation/in the region tﬂ Qﬂ-&YL >7”décn
the function g® ((q—k)L ) can be substituted by the function
gt(qt) for Q&>¥ﬁ and by g-(k%) for qzé;hﬁ « In fact in the region
qLM’J" K> f\‘k&c% ; @Jﬂ}" > /\zxﬂtm one has:

4% ((a-1v) = ‘%/&‘ 4t (g ™ L[l ar =)

h!
3
Accs q o

and analogously for k2 >QZ , e s> Neacp ‘ q- ) 5> Algey

2
(@) = 2 - et
%v / s tﬁ/lchtn cﬁ )

summing up

gt ((a+)) = Ba=Kt)lar) +8 (-9 §70<) (6.25)

We substitute in (6.24):

) - % H“d‘*wm ) L,
lena L Jgv et (K- | (6.26)

1
4 | duicarq) Zel) L)
S: % 1 ) kr (G-

and then we integrate over the angles:

de_ . %fdkl Kt oda

]

; (6.27)
AL e e(k-q)f*e(q-k)f:)
-jd'q* @-wy e < k q
The final result is:
. Ax
Ziat) = 3G A1 atfal !
i lwl“ %M&L‘)*
» 1 |8 (6.28)

®

L
+ e jq dkt Z(LL)—k
QL
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For the determination of the ultravioclet asymptotics of the

dynamical mass function < _ (q%*), one has to solve (6.28) with

5
the wupper limit of integration equal to ﬁ\ and only after

to perform the AN = oo limit. Only in this way we will have

a criterion to choose between the distinct asymptotic behaviours
e
of z”

Eq. (6.28) can be transformed into a differential equation:

let us differentiate with respect to qf in it:

L
d Z(qy) 3 d (%%qﬂ) : =
dqt  Temt dqr \ 4 de’ Z(et) (6.29)
]
So
1 1
4 Z7(qY) 9
= 32 (6.30)
N LCD) dat "‘%( dil Z(x)
dq“( ——-—-—-q’— ) 1 [ Jo

By differentiating once again we find out that the solutions

of (6.28) satisfy the second order differential equation:

4
leat 4 4 Tq) |
dg» \ "q. )

From {(5.29) we get

L
2 NEL A -

Cll 429 N %i}l?z@)- %(?J o\kLZ(kz) (6.32)

dq‘b Q’lv/\t 7 ?Z:Aq, o
and from (6.28)

A\.
Z(q) N G aet 7(e) (6.33)
q?,»/\" Tb—%L ‘_Q—L— q'l:/\l
so
- |
“C\eu ﬁl(q") + ,] R Z(cg?.) -

d bu g 1 ‘q‘:/\‘L
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A
= (2 Olﬁq”) A4 Bl
T Tem \ A9 Jg.p do o-54)

Hence the solutions of (6.28) must satisfy the boundary condition

q 4z (1 - o tn 2 yZa) | =0 (s

dq? d ewqt gL A"
The general solution of (6.28) takes the form:
Z(Qz> = G 2—1(52‘1)—1- €y 2o (‘?"‘) (6.36)

and the functions'ZJ(qL) i=1,2 have the ultraviolet asymptotics

of the form:

_3Gb
2,(8%) ~ (/?/mi:_'_ )S“L (6.37)
Neoca
3¢t
) A~ L [ A5\ -1 (6.38)
q+ f\qom

As it can be verified by substituting Z‘(ql) and Z;(db) respecti-

vely in (6.31) and by taking the asymptotic limit §X—s0° .

A
So, calling d=3CZb/BTrL and q_:ln :1,, we get:
Necs
- - (6.39)
() ~ e L oeapd
( ) ({’ ape V? q‘L "L

By substituting into the boundary condition we obtain:

; -l 4 d- d-1
ATt T e T L g () o e

[E g5 AL
and retaining only the leading contribution for large values
R
of /\ we get: (remember that, for example, d=4/9 in QCD
with three flavors)
3GL
ST - 1 3Gh (A AL m“‘z (6.41)
A &gm 2

QUD
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This 1is the relation between the coefficients €y and €3 which

must hold in order to satisfy the boundary conditon (6.35)
I3

for large but finite values of /\.

Now we <can remove the cut-off A finding that the constant

c goes to zero in the A= 1limit. Therefore the ultraviolet

asymptotics of the dynamical mass function is given only by

z;) that is:
L 3(119 _l
q T
PACO RS AR (“eh ,.._)
1 qrae A N (6.42)

This can be justified in an intuitive manner: the asymptotic
behaviour of E; (g* ) in (6.37), exactly corresponds to what
we find from a straightforward renormalization group analysis
when we start with an explicit chiral symmetry breaking i.e.
with a bare fermion mass different from zero. In fact the calcula-
tions of the Z} solution from the improved ladder approximation,
exactly corfespond to the computation of the anomalous dimension

K;n . So Z; (qf) does not differ from the case in which quarks
have nc--s2ro bare mass and A (q") does not have a purely
dynamical origin. Hence;we expect that the solution which actually
represents chiral symmetry realized in the Goldstone mode

has the softer asymptotic behaviour of Z:L.
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7. OPERATOR PRODUCT EXPANSION ANALYSIS

We want <to show that our results on the asymptotic behaviour
of the dynamical mass function are consistent with the operator
(5}

product expansion (OPE) analysis.

We will apply the OPE +to the quark propagator of our chiral
symmetric quark-gluon model. The wutility of this program rests

(1)

on a ‘theorem which states that the Wilson's coefficient function
in the OPE reflects the symmetries of the Lagrangian. In particular
if the Lagrangian is chiral invariant, we can compute the
coefficient functions for large space-like momenta (so the
running coupling constant 1is small} in perturbation theory,
since perturbation theory does give the correct chiral transforma-
tion properties. All spontaneous symmetry breaking resides

in the vacuum expectations of the local operators.

Remember that we have parametrized:

. Q% .
tz gdux e k <O|T k{”{x) —\T/[O){O> = tv ( ! } =
)

q_3q

= LZ(_}._ZEQ—— )
q1- 4]

where +%r 1is a trace on color and spinor indices, T (qf) is

(7.1)

the quark self-energy and 7Z(g% )=1 in the Landau gauge. For
large Euclidean values of qz' we can consider the operator

product expansion of the left-hand side of (7.1):

igx —
tz&,,wx cq <ol Tet) Ty o> - 5, £,(q) <ol "oy =

= Q) colLio> + €@) <olg¥lod + .
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—— — A y
where 4”¥ = %; (O} K¥z~(03 i.e. is a Lorentz scalar and
color singlet (for simplicity we are considering only one flavor).

The «esas in (7.2) stand for terms with operators of higher

>\

- -1- + PRI ]

4

<
-

fig.3

—

Let the operators On’ w and Q’ be renormalized aﬁ F.. Standard

renormalization group analysis of the Wilson coefficient functions

(%)

c,, gives:

E Qdpdt) | Talt)

4 - - —
”\(ql%] H) = € e Cm(ﬂ,%(@r&);ﬁ) (703)
or equivalently 3 (ae
j% ) e I
T P,(x) —
Cm (Ci' ‘3‘ !.4) = e CM( 9, %(%‘{:)‘i) (7.4)
where a - :s a reference scale of momentum (we will choose 1t

equal to rt b
t=1n q/ q
d* s do are the dimensions of the fermionic operator and

of 0, in momentum space,

s(g,t) is the running coupling constant = %(f?
B ’ o
Im= Z,Kq,+ 62; with 3* and 6mf the anomalous

dimensions of the fermi field and the 0,
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124 O?
it ol Z¢ : o Ok Z o
Jy= 2 26 b Ou op
and F(ﬁ) = 1‘- g_?_f_

For q% large enough that g(q*) is small, the c,(a) are calculable
in perturbation theory and behave as canonical powers of g
times calculable logarithms. So the operators of higher dimensions

in eq.(7.2) have coefficients that are down by negative pOWErs

[4a)] ;q” ; (@) = c{‘*

of q.In fact,on a pure dymensional ground:

and every other operator in the expansion 1is multiplied by

a coefficient which goes to zero when qz—+m> ,faster than c4

n .
and cL

Let us calculate c, (q). The diagrams contributing are:

\,
Y
3

= o T
1 (a) (b)
fig.4
To the zero order in g (graph (a)),we have:
a4

iq¥ — - B ig¥
dk e o THA \PPB(o‘iiivu} = gdbxe OAR SGTYW .
7.5

ey . .
RN R G g

To the second order in g (graph (b)),we obtain zero in the Landau

gauge. In this way,when we take the trace over the spinor indices,
we obtain a vanishing contribution.

For the calculation of cl(q) we need U;: 5§* to o(gz).

2
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Let us compiute the graph:

k K
4 p-X \ 4
N

which gives the lowest order contribution to K?w.

(-i9)" G J,‘* e 2 LY (@w - @-wmu) L -

@U)L" P (p ) (‘;::)"
_ ,3;1CzJ§¥ s zetG [ gk K (7.6)
‘ é @7" )z‘ Kt {k-P)’L ST* ) (P_h)s,

This integral is UV divergent.Regularizing it with a cutoff /\

we find the divergent part equal to:

2+
29102 fu .ﬁ; (7.7)
lok™ N

where }L is the renormalization parameter.

This divergent contribution will be compensated by the counterterm

%2@+

So,to the gb order, we have:

2py. A= 3w L (7.8)
“Tewz 'Fz : )

Remember that:
=°P -y -1
Ty > TEY Fy
but,since in the Landau gauge the fermion wave function doesn't

renormalize to the one loop order, we simply have:

20, = - 33% A (7.9)
. i(’nt ‘,u.

L owmZhe | G (7.10)

\éoi _
Tt [ Ch {N
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The diagrams contributing to c are:

\

i
+
A4

Yo ¥ ¢ w ¥

fig.5
To the zero order in g (graph (a)),we have in the short-distance
limit:

gx — d* o{q¥< [ ¢o¥ o) to
{:zjec}:}@l F(x) ¢fo)foy - ~ x & © 7 =

e
(7.11)
< —ku)t §Ug) ol yplo>
To the second order in g (graph (b)),we have:
iqx A, NTOA N Mo & ( 3
iﬁdux e <ol TE ) §, ) [T ja 4 Beg)y " A ()¢ %)}
[-ig T (ot FRYY AL ¥ | 10
4
By wusing | the Wick theorem and by introducing the
Fourier transformations for the propagators one gets:
f?¥ — _ \ e k2
£ kd‘tx € <ol | #(x)q;(aq!'\}ﬁ - :za c, SA,E‘; J‘ﬁf: dtz e
L)L
| otgY) )

(ﬁ“)@ [ Qe (‘,kﬂ)r.(hq}u] (b’”%‘} B‘rs.

(eq)® (eqly
[ Al ig? Gio
F ol T () iy (0 o> = 3igtCy %; ol f Y lo>
Hence,to O(g?h)
Gfq, gq)) v - amrsi) 3G 1a) (7.12)

qq
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We are not interested in the 6. —function term since it does
not contribute to the connected quark propagator, so we will

not consider it. By substituting in (7.4)

. [T 1S
gy = SiCs ”%%1) '3 Bix) (7.13)

of
remembering that Tm{x)= &¢%(x§= 3G x* (in the Landau gauge)

&n?
and
RGO = X5 b 24T%
2b N —2n
we get:

-4
Cz(qlrl) ~ SKCL ﬁ) (M ) d: §_L—_\_C_L (7.14)

aw AR N
that is: .
/,()M L -d q'L d-|
(] M\ ~ 6ibC1 \ L L ‘Q"‘ cl ) (7.15)
! Nocs ql Naocp )
let us insert this asymptotic behaviour in (7.2):
19% — -4
kzxo\‘fx e ol Tyix) Glo) o>~ 6ibla (“Q“E_‘f ] .
q-roo Alecs
’ L a (7.18)
-\
. ‘%L ( X{m) 2o\ Py o>

and by comparing with (7.1) we deduce the asymptotic behaviour
of the quark seli encrgy:

L4 PN
2@t ~ 6bCa (&L\ 40\‘”"0?%1 @“% ) (7.17)

o AN Alocs Qep

(the 4N factor comes from the trace over spinor and color indices)
which is just the asymptotic solution Zﬁ/ of eq.{6.38) which

satisfies the boundary condition (6.35).
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In section 8 we will wuse this asymptotic behaviour for our
variational ansatz of the guark self-energy.

If we include explicit chiral symmetry breaking with a small
mass term in the Lagrangian, we can deduce in a straightforward
manner the asymptotic behaviour of the quark mass function.
The prescription is j ust as before: the coefficient functions
are computed in perturbation theory but now including an explicit
mass in the Feynman rules.

We parametrize again: -S‘{“J = i/ C?- Z[qz)

and renormalize the theory in a way that the renormalized quark
propagator in perturbation theory reads:

= a*my(;z) (7.18)

q= -

D @)

(Landau gauge)

Then the OPE analysis will give this asymptotic behaviour foer@l):

\d —
@) ~ m | 3@y 3¢, <oldYiox
Z Q) qiave F) %1(?4") ) + r,\. |
-4
3 . (7.19)

s, (32(‘?'”3
q= 34+

where we are neglecting effects ot 0(m%/g*).

As we have already observed,the first term,proportional to

the ex?licit chiral symmetry breaking parameter m,corresponds

to the 2% (q*) solution of the second order differenktial equation
for the self-energy (6.31).This term dominate in the G-
limit showing that 7 (qz ) has a softer asymptotic behaviuor

when symmetry breaking is dynamical then when it is not.
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8. EVALUATION OF THE EFFECTIVE POTENTIAL

With all these conclusions in mind, we are ready to study
dynamical symmetry breaking in QCD-like gauge theories using
an effective potential approach for composite operators.

Let wus evaluate the effective action for QCD-like gauge theories
within our modification of CJT functional formalism. To this
end, 1t 1s enough to take into account fermion condensates.
S0 we shall introduce only a bilocal source K(x,y) coupled
to the fermion bilinear C%(x)%’(y) in the euclidean generating

functional of the theory:

Wik} - [I(‘HA&-C) +
2l - e - S@«f@)#\r De e

1
N (8.1)
+ Tt T ]
a o w S
Remember that I( ¢ ,AtL ,¢) is the gauge theory action; q&,qd
are the wusual local sources and +the o4 index is a collective
one for spinor, flavor and space-time variables (for the sake
of simplicity we have not written down explicitly the local
source terms for gauge bosons AF‘ andghost fields c). Furthermore
we will not be interested in amplitudes with external fermions.

Therefore, we will put @c and %c equal to zero in the effective

action. The expression to be evaluated is then:

NG - ——Tr()w(% + §:;Q_T"L) LT (& S) _n, (8.2)
S 5SS



with SQP =‘§é&——

At the lowest order in the loop expansion (two loops), {1 is

given by the following diagram:

fig.6
In order to evaluate this diagram, one has to decide the form
of the vertex and of the gluon propagator. As we have already
seen in the discussion of the kernel of the Bethe-Salpeter
equation for the proper axial ~vector vertex, we can improve
the lowest perturbative approximation by taking into account
the renormalization group effects. We will use these arguments
here toq. In fact, as we have already underlined, we assume
that the main contribution to the effective potential comes
from the short-distance effects. For large mo. .menta, the property
of asymptotic freedom of QCD, gives the possibility to neglect
multiloop contributions to the effective potential. For these
reasons the renormalization group analysis allows to use the
free vertex and gluon propagator in the calculation of the
diagram in fig.6, and to improve this approximation with the
running coupling constant. But, as far as the vertex is concerned,
the situation 1S more subtle, because/ in principle/one can run

in some difficulties in order to satisfy the Ward identities.
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Let us examine this point. Remember that we have parametrized:
5-—\ . s A Z( T
(M= -2 p + Z(F) (8.3)

The Ward identity for the vertex function reads:
AL A
(‘L-‘IL)F M §(0) - S (0,) = - 2@, « 2@+ 24) - Tl%)  (s.0)

This equation can be satisfied by taking:

e i v Gt o (B0 o 3 (5803, +
(a,q.)* (8.5)

+ Z(q) - Z(A) ]

However, in the evaluation of the previous vacuum contribution,
(fig.6), RL is always saturated with the gluon propagator.
Therefore,if we adopt the Landau gauge (transverse gluon propagator),

we can safely use the free expression for the vertex.

Then, we get the following form for PL

(8.6)

Moo o_Llde % Gafpal Te [SH)TY,-
2 @ o, Cleal T [56) T

ST W] D‘“"(P“?)jd“x
( ( F.z)suu“ = (mz)mwk.)

Here, we have assumed a fermion propagator function only of
the space-time difference, S(x,y)=S(x-y). From this, translational
invariance of the effective action follows, and as a consequence

J

the space-time volume S :1JA4X factorizes out. In eq.(8.6)

INME (Bw - ) L (8.7)
ke k
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'TQ‘ are the generators of +the gauge group in the fermion
representation and %,(p,q) in the leading log approximation
is given by: (see (6.25))

)= Blpa) 4(p) « ©03-7)30) (6.8)
where g(p) is the running coupling constant. However the
running coupling constant becomes singular for pz.: Aﬁkg where
A(kb is the renormalization group invariant mass. The singularity
is of «course due to the use of perturbation theory in a region
where the coupling becomes strong. Unfortunately, in eg. (8.6)
one has to integrate upon all the range of momenta and consequently
cne has to make some ansatz for the coupling constant in the
infrared region. Under the assumptions made, the theory should
not depend too much from the infrared behaviour of the various
guantities, therefore we will assume that g(p) 1is a constant
for energies lower than the scale f( we introduce to separate
the large distance and small distance effects. That is, we

(4)

will write:

Q" t‘il,/f\.kncg
ORENTD [ Op-p)+ Olpp) ———

(8.9)
13
D P//\lQLb
where g*( l+) is the coupling constant renormalized at %k :
t .QB . b: fn_lﬂ"—}—-
%(ﬁy = " ! (/MN"-Q(’?) (8.10)

'eu ﬁl / }\‘-05(}
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¥

fig.7

In order to evaluate {; it is convenient to parametrize the
fermion propagator in the following way:

[S(P)]Z; = %ﬁ (i A;(P‘)/f; + Bij (?‘“3) (8.11)
Our methed will consist in making a convenient ansatz for
B(p¥ ) in terms of a set of parameters related to the fermionic
condensates and then) in minimizing the effective potential
with respect to these parameters. In this way we will able
to explore the possibility of dynamical symmetry breaking.
Substituting in eqg. (8.6) and taking the +trace over the K -

matrices, one finds:

[dep o%g L Teeyafany] D _
Q = bNIRLC, X@""@W{ XLB(?)%@. ﬂ (¢-9)

(8.12)
— 2t KA(:")A(CC)] E(P;‘%)\I 2t (?9)
where E&/ is the Casimir of the fermion representation, the
trace is only on the flavor indices 8 = 8;3 } ﬁ\: l\ﬁ
Ly = .y m

D) = L

Pz and
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, [ 2 1)2“

[fPlﬂ% + P4 l A

\ _—": P i 7
(P9 (P-9) (8.13)

Elg)y- 1-1
) 1
In eq. (8.12), gz ( P»j ) does not depend on the angle between
P and g (see eqg. (8.8)), therefore one can perform the angular

integration by the help of the following formulae:

Sdsz . AT e (2.14)
P-al P4

jd.ﬂ. T (8.15)
(P-q) Pq |p-qt]
Then, it follows:
jd& E(pgq) =9 (8.16)
We see that [1 does not depend on A(pﬁ); this is obviously

related to the fact that there is no wave function renormalization
in the Landau gauge. In fact, from equation (8.2), one gets
the Schwinger-Dyson equation (see (4.10))
A ST/
=t 9 4+ »l
ST o= LVAS (8.17)
which 1s the extremum condition for +the effective action. By

using (8.6) for {é_ we obtain, in the momentum space:

(8.18)

AL b d4q T Sf%)Tc“Xu e ({)—‘y)‘?\?(?'ﬁ)
S b g, T ”

By using the expressions(8.3) and (8.11) for S~'and S respecti-

vely and evaluating Tr S'} and T{(zﬁ,{ é"') yone finds:

() - 3G gd‘jﬁ R(qr) D(>-9) ¥ (p-2) (8.19)

@n¥
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Z() = 4- }UWC( Alq )E(p,c}>?(90> (8.20)
(&

Using again eq. (8.16), we see that in the Landau gauge, and
at this order of approximation , Z(g)=1.

We are now left with the following expression for TL

J4p gt s
= 6NRCG &é;i (ézg% b YB{PZ) b(qt)] D(p-9) 9%(p-9) (8.21)

It turns out that the more convenient variable for our variational

problem is not B(p), but rather Or& . This last quantity
=

coincides with the fermion self-energy when the Schwinger-Dyson

equation (see (8.17)) - is satisfied. (that is on the extremum

of the action). Furthermore, the expression (8.21) for

T% can be simplified a lot by reexpressing B(p) in terms

‘\.T,
of ©Olz |, By defining
¢S
= éﬂl
zlp= =) (8.22)
o~
( Z (p) = 7 (p) when we turn off the external source, that

is at theextremum of I ), we get from eq. (8.21):

d¥q RA) S
(P)= 3¢ B@Tﬁ* e 3 (r-9) (8.23)

Performing the angular integration by means of eq. (8.14) we

get:

(%54

2(p) -

G Lj"" 9°dg B@) | T gtr)efr-q) ~

g P
+ %"ﬁ‘?) @(‘k?)}

(8.24)
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This integral relation can be easily inverted by applying an
appropriate differential operator to both sides of this expression,

Let us do it in two steps: first of all we apply d

dp
d Ty d T 3G WW by
+ 20 ( d z 2
= ﬂ U Oﬁ) {3) ﬂ.\ (8.25)
= 3¢ d /%2@) Fd q* B(9)
B Ap \ P~ 1
Dividing this expression by :%_ (i%§§2> and differentiating
once again with respect to p/ we get finally:
‘t ~—
2 azlp)
B(p) - i d l' 1. —_— (8.26)
¢ 3d — (O (P} d
3¢, Prap l olp o ) p
The big advantage we get from this invertion is that we can
reexpress XL by using the Euler theorem for homogeneous functio-
nals:
2T e ) 4
A, = Te (9_%3) = e (ZS) (8.27)
S
that is
. avg [ 3 47
Ll dp £ Z(?) d
L= T= : T 8.28
3G, JD i dp (‘@2(?)) o!;: ( :

(as wusual tr is the +trace on the flavor indices). Integrating

by parts, we get:

s T z o
Mo- 20 g tv_(zm "!‘m) .
3, d (%WN) of
dp \ "po o}
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bo 5 3

L] j dp b (oﬁ@)
N 8.29
3, L d /cal(p)\ .‘ dp ( )

OrP \ pr/
This expression 1is completely general, however if we assume
=

that 2 (p) has the same momentum behaviour as the self-energy
(eq. (6.42)), we get that the finite term goes as —{‘;’ times
logs for p— R . As far as the behaviour for p—0 is

concerned, let us consider the relation:
S= AP <R = (-sf « i)"‘ (8.30)
( remember Z=1 in the Landau gauge), from which we get, after
diagonalization in flavor space:
\ z
Pz‘r Tt : F“—x— L

(8.31)

~A
Taking eq. (8.24) at the extremum, where <2 = 2 and using
the relation (8.31) we obtain the Schwinger-Dyson eguation

for 2 ,which for p = O gives:

: bo
D Z(p) = 3¢ da q- 2a) ¢
B0 by - — 9 ) (8.32)
o 4 ar+ Z4q)
7
This integral is convergent for q"—;m ,because =z 2—7—’ A!Ci
= PO
_ )
Now suppose that 2(4)- 9 for g —» 0 with & > 0. Then at the
. . : : . +&
lower limit of integration, the Integrand goes like g and

therefore the limit in (8.32) is finite,contrarily to the assumption,
It follows that for p — 0, Z (p) must go to some finite constant.
We will assume the same kind of behaviour for p -5 0 also for 2.

Therefore,using our preferred renormalization point },L ,we
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will make the following ansatz:
PL
A N T 1 Q“ /hknb A
2 0) = ke LBGp)# 8 (1) Ly 2 [ — (8.33)
J ) ﬁ L r P)+ (Fi (?) %zﬁﬁ( }b_kyhé. K
H
i,j=1,...,n

with d=30%b/8ﬁ1 =9C, /(11N-2n).

T

TG(

B2 A
VA §

fig.8
\
The constants 1L will be our variational parameters. In other
>~
word57 we assume a constant behaviour of 2 in the infrared
region and the OPE prediction for momenta greater than F— .

With +this kind of behaviour the finite term in eg. (8.29) can

be completely neglected. In fact g%é = 0 at p=0. However,
P ~
notice that also for a smoother behaviour of 2 for
- p —» 0, there is always the term
2 = -4
(_d_ ba_(_m) _ (; .\%s)
dP P p-o P3

responsible for the vanishing of the finite term for p - 0.

With these considerations in mind we get:

o _IN {)QC; \ ty d3lp) 1%
T ¥ . o (8.34)
3, d [9te) e
dp \Tpo }

This expression can be further simplified by evaluating the
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derivative of 2 , from eqg. (8.33):

R RPN (T(v}
a I ) T | F>?[P) ' (8.35)
v g df@%
e Ay

where we have defined

, d
Tp)- ()g” P /Neco ) (8.36)
Qu \“L/f\laﬁb

Inserting (8.35) into eqg. (8.34) one gets:

- -2aq }*‘(ﬁ \er? Fd (?fﬁf’)
SCL %1(V1) " dP olPL

(8.37)

+ 2F Y4 ‘ 2*p [ Rt 2
e dp %i{@}) P4 &?3) b A
dP L pe

Integrating by parts the first term one finds:

TL, = ‘ZN St tl# % 4~ yk {éijp ‘

J A
ey | M)y & 5

(8.38)

l‘éﬁf_‘i chal Rl O
pr Ay

2
Notice that YL is definite positive becaucs™ ji %(P) 4(3
dy pr
~S
and also that/with our ansatz for < }the infrared region (p 4rk)

does not contribute.

Using again the Euler theorem, eq. (8.2) can be rewritten as:

I P an b (P4 37
0 - — + 2 (8.39)
- -2 g, P
where z has ©been diagonalized in the flavor indices by a

unitary transformation. We get in this way our final result:
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n
M. N vy T \1(7(;\;‘ (8.40)
4TV 1= .
!
where /Xi are the eigenvalues of the matrix ”Xi , and

- TL T 'H".‘. 1 — L
\j(m'}}} A %4“5’@? « 3l 3T Ly
g0 L) (o) | A
J d}a F],
Lt (8.41)

¥
e Lo e B (P 4

be 3 ot (e 90P)
- A B (X R TR).

Apart from an infinite additive constant which can be removed

Dﬂ
adding L (\d? PE’ Pu F?“ , \/(X) is a completely finite quantity,
(o]

rM
o
both in the wultraviolet and in the infrared regime. The theory
is regularized in the infrared by the assumed constant behaviour
of the self-energy for P - 0, whereas the convergence in the

ultraviolet follows <from the physical meaning of >( which will

be explained in the next section.
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9. THE PHISICAL MEANING OF 7{

Our variational parameter X can be related to the fermionic
condensate when evaluated at the extremum of the action. This
can be seen directly by comparison of our ansatz, (eq.(8.33),
with the OPE expansion given in eq. (7.17). It is however instru—
ctive +to derive this  relation by direct calculation. If we

evaluate the fermion propagator at equal space-time points,

in terms of a cut-off /\ , we have:
_ A -
<o | qk¥§d>A = —Gﬁﬁw B d%p't} ( ? + Z‘) (5.1)
Pe T

where the trace is over spinor and color indices. This integral
is wultraviolet divergent, and its leading divergence can be

evaluated by using the asymptotic behaviour for 2., (eg. (8.33)):

A
Ll P io>p = b Ed—fg%a(?) ( Q»\?[/Mm )drx o
A F /Aoib
N /
Nor ab“(m’%\‘?‘u
ALY R Hl\emj

Recalling that b/d = 8W/3C, we get:

Lot /\//\o_u) d /K

Q2
2

— 3
Loy, 4N p (9.2)
3G9 Lo [ o
The composite operator qhy must be renormalized. From the

renormalization group analysis we can derive the relation between

_ )
4@V¥‘%!Q>i\ and the condensate renormalized at the pointﬁ:
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_ [ 2 T s \d
<0£ !\%)\‘\)\0>Q =l —
\ _ﬁu A/Aam,}

Therefore, our variational parameter tx is proportional to

40\\?LHO>/\ (9.3)

the condensate:
4N }Lz L -P//\o_(/) ; X
2 gy L P [Aaco

The relation is, of course, particularly simple by choosing

(9.4)

Lol DY \0>FL =

Y- as renormalization point:

3
I N
Zbiﬂi’)qlsio\}u_ = i_tf— /X (9_5)
\ R, %zq&)
It follows that iX has operator dimension equal to three.
However, due to the chiral invariance, linear terms in

't are forbidden so that the potential ‘V must start at
A
£

least with 1& in an expansion in the composite field. Therefore,
due to the absence of operators with dimensions lower or equal
to 4, no UV divergences are expected in.v . This explains the
result founded at the end of the previous section. Equation
(9.5) shows that ﬁX is nothing but the ordc>-uarameter of
the theory relatively to the chiral symmetry. We will study
v as a function of"X , and the phase in which V is a minimum
for nonvanishing values of ’X will correspond to the chiral

symmetry breaking phase.
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10. DISCUSSION OF THE EFFECTIVE POTENTIAL

Let us start evaluating the effective potential in a situation
in which one neglects the logarithmic corrections. It corresponds
: e Ppg,
to a fixed coupling constant g*(p) = gb(r), and to F%P) :( hacs
L r/l\acg

equal to 1 (this is equivalent to take equal to zero the anomalous

dimension of :§* which is proportional to d ) .

This approximation is equivalent to neglect all the corrections
coming from the renormalization group equation. The reason
why we are interested in this simplified case is that, as we
shall verify later on, +the qualitative conclusions are not
different from the complete case, and also gquantitatively the
differences are not very large. However, in this simple case one
can evaluate v analitically and this will turn out to be
very useful also to wunderstand the asymptotic behaviour of

)

the complete case. Then,by calling V' ® the potential without

the logarithmic corrections, we get:
\ ! L W
VI = e Xt - g g B (4 X) (10.1)
o (g X
(e 3 ( + —-)
-5, 90y P
where we have introduced the quantity:

C - it

—_— (10.2)
R 32(}“>

It 1is interesting to notice that the phase structure of the

theory depends now from the single com Hnation szlﬁg .




The integrals in eq.(lO.l) can be evaluated esplicitily and

the result is:

AL XY
@ L b A - xR
N* (%)= (c Z) QX w Gk
(10.3)
_ \5_}7\‘*!3 - ,,2-’\(1/5
4 (5\_”@\% \Yik%).

From this egquation we get easily the pehaviour of V‘dfor small

fields:
< L L
v s et 2t - Z‘I”XL* % (10.4)
40 le
and for large fields:
NCI Xt - Tt (10.5)
X oo VAR

From (10.4) we see that’at the point c=1 an instability occurs,
and in fact,by a careful numerical analysis of eq. (lO.S),one
findas that the theory breaks spontaneously the chiral symmetry
for ¢ < 1 that is for °( %:gk\ v :%:\i .In QCD with triplet

fremions the critical point is for 0§==

&)=

Furthermore, from eq.(10.5), it follows that/ along the direction
~

choosen in the functional space 1in which Y (p) lives, the
effective potential is bounded from below.
In +the appendix we have some diagrams showing the behaviour
of v¥(X). In FIG.1 v is plotted as a function of X for
four values of ¢ and in FIG.2 the phase transition is showed

. )
by plotting V (c, X).
Furthermore,if we want to consider also the pseudoscalar bound-

states, we have to parametrize the fermion propagator in this
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way :

SEY = (siad + @a@%c) - (- 2p+7 +ifs 2s |

(10.86)

The calculation are exatly the same as before. In fact, making for
fa¥i
Zg(pl ) an ansatz of the form: (recall that we are neglecting
log@
Tor) = TR 100 o) ()
s(p7) = N 1P P-) (10.7)
the final expression of V“},due to the explicit chiral invariance,
L —7 XL
will follow simply by substituting X = T into eq.(10.5).
(o) L.
In FIG.3 Y% (Y,'ﬁ ) is plotted. For c¢=1 it has a minimum for
'X = W = 0 while in FIG.4 we see that for c=0.6 we have degenerate
minima lying on a circle.
In the particular case in which we neglect the logarithmic
corrections, one can study the contribution of the infrared
behaviour to the effective potential.
First of all, we notice that, with our ansatz, such a contribution
is not present in fl ,and therefore all the infrared effect

comes from the second term in eq. (10.1).

In this way we get:

< T 1 '
\/U(J CX 4L ln [10Y) +8L)(‘*/5 b - LT .
* (1+ %)

Y Tl s 2%
P ET v‘s’x%>

1

(10.8)

Vig = —z_ﬂ(t_/_LL N (\+7<1) u[}?ﬁ B ‘_;%L (10.9)
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The behaviour for small fields is given by:

(o}
Vou = (C—D‘t\ ~* (10.10)
X=0 :
N N (10.11)
\ o~ 5 7
A-+0Q

whereas for large fields we get:

{o
VO oy o oA st

VY X50e ER'ES (10.12)
VO N LY (10.13)
? AT 4

We see that the critical point is very sensitive to the infrared
behaviour; however,if +the symmetry is badly broken, that is
if ¢ <L« 1,7 the minimum of the potential is very large and
one can reproduce 1t by using the asymptotic behaviuor (10.5).

In fact from (10.5) one has:

‘ Y %z —
dve o 25X - 2w B X, =Xt
AY o X S E (10.14)

that is ,the smaller is ¢ the larger is the value of the extremum
of the potential. In such a situation, the influence of the
infrared part is less and less effective decreasing c¢. In practice
it turns out that for ¢ & 0.3, the minimum evaluated with (10.12)
differs of about 20% from the one evaluatd?w.th (10.5).

From this considerations, it appears plausible that,at least
for ¢ ié 0.3 our ansatz is not very sensitive to the paricular
form that we give to the infrared part and, furthermore, the
ultraviolet appears to dominate in agreement of our initial
hypothesis. From the phenomenological study in the massive

case, 1t turns out that the relevant value for ¢ is ~ 0.32
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(see sect.ll). Also, eq. (10.5), is very accurate in order
to get the minimum of the potential, in fact, the error at
c=0.5 is only 5%.

One can study numerically the minima of the pptential of eq.(10.1)
and determine the behaviour of the minima itself with ¢ (remem ter
c= 8“3/361 8‘(%) ). Due to the connection between :X and the
condensate rencrmalized at f. (see (9.5)),we get the behaviour of
4@;?>Y& with the coupling constant. This is illustrated in

FIG.5 (see appendix), where the ratio

- | L
I L c ¥
N pd 2nt (10.15)

is plotted as a function of c , showing explicitily the phase
transition happening at c=1.

Let us go back now to the complete case with logarithmic corrections
taken into account. First of all we will show that also in
this case the effective potential V(X ) of eq. (8.41) is bounded

from [Elow.To this end Le: us consider:

bo ) L
Vi) - vy - drﬁxj)g dp )[%i") ‘;{iﬂ +

2 4 [ aqup)\ L PF
g fr r dp { e
b LE\e 4 Fp) (10.16)
—?‘i ap ¢ A (1 5 35

r SR

with Vio) given by eq.(10.1). In this expression, the first term

is positive definite because fi (6Z(P)) 40 ; as far as

dp br
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the second termis concerned, one has to study the quantity

Lo P//\&ua\d"‘

(31(” gi E“/f\qw/ (10.17)

The expression (10.16) is positive definite for A¢1.

Because p > \‘* it follows that A &1 according to (d-1)gO.
We have d:3bC2 /BTf'that is d=9C2/(llN—2n) then, in QCD with
color triplet fermions (N=3, C, =4/9), one has d=12/(33-2n)
and d <1 only for n¢ 21/2. Sc the expression (10.16) is positive
definite if we have less than six families.

In such a situation we are guaranteed that V is buonded from
below, because V('X)},’V@( Y) for any value of ?( .

As far as the critical behaviour is concerned, one has to study

v ( /X ) numerically. Now, V(X) is a function only of the ratio
K&- ; one can show that there is dynamical symmetry breaking
QD

for ‘l//\q . { 1.355 which corresponds to Ag = L(}L)/4?77 0.33W
c

in QCD with color triplet fermions. In FIG.6 (see appendix)

we have plotted the potential as a function of 'X in the case

of QCD with n=3,for three values of ?{/AQCD .

)
Remem kr that, in the previous discussion we have found a broken
phase occurring for O -)“/2.

We conclude that the overall qualitative picture remains unaltered
when we take the logarithmic corrections into account and ,

‘also quantitatively, the observable quantities do not change

very much (13% for }i/l\ﬁcn).
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11. DETERMINATION OF 91(F>

We have shown that the effective potential 1is UV finite due
to the non-appearance of operators of dimension £ 3.

However, this situation is peculiar for +the massless case,
because if a mass term is allowed/a linear term in the conden;ate
can appear in the potential. Correspondingly one expects a
divergence to come out. We can illustrate this situation in
the simplified case 1in which the logarithms are neglected.
Furthermore, Jjust as an illustration'is convenient to consider
the case of a single flavor. The effective potential is gotten
exactly performing the same calculations as before, except

A A
that now D — /}-;fﬁt . The ansatz that we use is thg

same as in the massless case and the final result is:

M- Nbta ¥ f‘*‘af&“[f* (2« k)] (11.1)

where we have introduced a cut-off /\ and:

.’M); U{4-4)+ %i 9(‘3") (11.2)

Expanding the log for large y (we have again subtracted an
infinite constant), we get:

A [m

i(auxﬂ@ L m K
%x b ab T v > % (11.3)
The first term 1is quadratically divergent, but it does not

A
depend on the field K and it can be removed. The second term,
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linear in the condensate, gives the expected logarithmic divergence.
By calling S = <0i@4&o>r' , one can write the divergent piece

in the following way:

(11.4)

3 L CZ, AA T
_fmsg = - ) bl ﬂl}ms
len™ P

which is nothing but the divergence corresponding to the following

diagram: =Y
i .
= - r’J\:lﬂ‘\
wm .
div. dw.
m

The effective action can then be renormalized by adding
Bhﬁssl,to eq. (%1.1). However, there is a condition that

K . . - ,

\ must satisfy in the m —0 limit. In fact, let us consider
the generating functional of +the connected Green's functions
Vd in the presence of a small mass term. Because we can think

g4
to add the mass by the replacement K(x,y) —>K(x,y) + md (x-y),
we can write:
' SW (k)

=y Wilor)+ | %% m
W{“\""‘\, w:o o CR(%,%) (11.5)

where a trace over spinor and color indices is understood.
Then, we can evaluate the effective action at its extremum (K=0),

obtaining:

F{Vﬂ) = VV(LM:OX =>

w-;O
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‘ £
+
=5 W00} - jd‘fx Sixx) = Vo) s (11.6)
W+ o0 Exte.
because f;ﬁng is nothing hut minus the condensate. Therefore

we have to require:

Qi Lot O A (11.7)

This is a not trivial pondition, and we shéll see that it determi-
nes indeed the coupling constant at the point ?k. The situation
is very much similar to what happens in other massless models,
and it 1is nothing but dimensional transmutation working for
us. In fact, one has to appreciate that }L is not really intro-
duced 1in the theory as a parameter, buf rather as a privile ged
renormalization point, and eq. (11.7) tells us that we can
fix g at the point %k and parametrize the theory in terms of
P— itself.

Now, in‘ order to soclve for %l(ﬁ) , we need to expand (11.1)

for small m. We get:

A/?“" 3 'er‘ + 5"”552':
_ Npbn d 2m X N
N %& 2K B S RO
(11.8)
.l + NX msSL
) Wm0 26

where we have defined:

- "lﬁi K @EW% F}(zu Ak

Nm (X) + Nw (X)

(11.9)

1l

and we have separated the infrared part from the ultraviolet

one. We get:




, L
Nm(ﬂ = XL . !-;:i (11.10)
Ny (X) = %/QM (‘”\“7L} (11.11)
Our boundary condition (11.7), requires that:
N{X() = 2e (11.12)

where X (c) is obtained extremizing f? at m=0. Having determinred
’X {c), one can plot N('X‘(c)) and solve eq. {11.12), (see
fig.6 in appendix). The result is c¢x0.32. Notice that also in

this case h%VCX) is dominating over ﬁhR(X)for large values

of'X ; in fact:

1
N _— — 33l 11.13)
1&(7() Sl 2X (
2, Pu X (11.14)
—1
NU\J (X) X /5
Because q¥(0.32) ~ 2.5, again the influence of the infrared

part in fixing c¢ 1is only of the order of 10%.
As we have seen, the condition {11.7) plays a crucial role
because it allows us to eliminate ga(rd and to remain with

a theory which depends only from a mass scale.




CONCLUSIONS

We have shown that in

symmetry breaking can

exceeds some critical

SU(n)_ x SU(n)

flavo
" r

SU(H)LﬁR

The effective

However, it acquires
turn on a mass term

(equivalent to
us to eliminate the
parameter r—.
In principle the
some
Such a calculation

evaluating the

potential

This

the Adler

parameter
physical Quantities
is

effective

—66—

massless QCD-like gauge theories chiral

occur provided that the coupling constant

value. In such a situation the

group breaks down to the diagonal subgroup

we have found i1is UV and IR finite.

a logarithmic divergence as soon as we

fact gives rise to a boundary condition
and Dashen mass relation),which allowes

coupling constant in favour of our scale

can be determined by evaluating

s

like the pion decay constant 5 -

feasible in our formalism simply by

action for non constant configurations

of the pion field. .l value one finds in this way is
@o)
1* & 300 Mev to each corresponds a value of /\Qco 2 250 Mev.




APPENDIX

CAPTION TO FIGURES

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

Behaviour of Vm% X) near the critical point c=1

Phase transition by plotting mG c,X)

Behaviour of V”k‘ﬁ, A ) at the critical point c=1

Behaviour of é?;?,x ) in the broken phase (c=0.6)

The condensate is exhibited as a function of ¢

Behaviour of V(X) near the critical point %ﬂ =1.355
i

QD

Graphical solution of the eq.(11.12)
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