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INTRODUCTION

Seme years ago, Parisi and Wu proposed a new method of
quantization based on a s schastic differential equation (the
Langevin equationj(1).

The original reason for introducing this method is that it is
possible to study gauge theories without the necessity of fizing
the gauge, as it is usually dene in the standard perfurbative
approach by the introduction of the Faddsev-Fopov ghosts.

Another interesting feature of the stochastic qudnmmun
comes from the possibility of using the Lang revin equation as an
alternaﬁm:— method with respect to the formulation of the theory

on the lattice for computer simulations.

4

Morsower the stochastic quantization provides a nsw

-

]

concephual point of visw in Quantum Field Theory and it can be
applied in many differ enf, cases. For instance 1 it has besn uged to
study the large-1 reduction of the Egnchi-Eawal model; it has
teen shown the link bebwesn it and the supsrsy rmetry or with
the Micolai mapping. Stochastic quantizafion provides alse a new,
not pr::—-ftl_l.rtw.‘rzvr ultraviclst regulator.

This lact feature of the stochastic quantization su poeals A new
way of doing rsal computations of some physical system.

The main purposs of this work is to use = this new method o
compute  the crifical ex onents of a well known thres

dimensicnal systemn.



The system we are looking at is described by a scalar field in
a three dimensional euclidean space with a four bosons
anto-interaction. &s it is known, the infrared divergences don't
allow a computation in three dimensions in the usual
perturbative approach. Up to now this system has been studied
by means of the &£ -expansion (2} to exiract the crifical
sxponsnts, one makes the computations in four dimensions and
then sxfrapolates the results to d=3  considering £ =4-d=1 a5 3

mall parameter. This procedurs s then just tified since the ﬁ
function ezibits an infrared stable fized point of ordsré (3, 4).

Using the stochastic quantization we can aveld the &£ -
expansion and study the syshem at the physical dimengsicn d=:
this can be dene by substifufing the Markovian characier of the
stochastic evolution with a nen- Markevian one. This pI'lf:ﬁfi«:iéE: a

PR R S AT et 1%
repd coenting the non - harke g Dre 0

....n

i & minimal sublraction  scheme of fhe renorma Jization

procedurs. For a articuiar value of the requlator the system iz

1-

renormalizable in d=3 dimensiong and o we Gan =:?.fi:f1'.r'11;1'1.‘-.t% the
critical sxponents using the method inref {3 4 1

In the first section of this work the stochstic quantization is
introduced and the method of computing the critical sxpensents is

described; in the second section the first order computations ars




referred (55 in the third section there are the second order
computations; in the last section the link with the & -expansion is
chown and thers are the conclusions.

More on stochastic quantization can be found in ref (&1



SECTION 1

| STOCHASTIC QUANTIZATION

To be general enough, let us consider a scalar fisld ina d
dimensional euclidean space plus a fictitions time dimensioi: cl)

& (zt), witha A $* interaction. The classical action is:

- fabe L gofmenldd gt o

The Langevin equafion

) 4)()( l:)_.- D-:-m]C#? f(x,t)

(31}
43("1
‘%z st s & Gaussian randoin SOUXcs; then it satisfiss
CGxt) §lat)> = 2 SOe—x)S(t-E)
4

<f(¥x/t\)---(f(7(2u,tzu)> Z ,T <§(M;E‘)§(ﬁtj)>

all, |, poirs (4"
cowm bsmations
Let us denote the solution of the Langsvin equation 153
ctD‘gt“ S, We are interested in the tinfinit litnit of the averags owst

of the product of 4> SRR

<4>g<x~e>-~<i>g<x..,e)>=S,% bl 48] (5



where W({ <i> 1) is a probability distribution satisfying the

Fokker-Planck equation

IV . S Wit 4 L 88 Wide)
YE §4* §¢ 3¢ (6}

The t infinit limit of W ( the equilibrium distributicn ) is the

[l

usual weizht exp{ -S{ ¢ )} of the Feynman path inteoral
< T ? p fm)

formulation (7). So the quantum Green funclions are given by:

G(hl[ Cb(xs)». . ¢(Xn}) = %i‘:\o ( dD(X“t')... 4}()6“)&)) ( 7 _;‘

Morsover it can be proved that the equilibrium is not
affected by the cheice of the initial condition (7).
The solution of the Langevin equation can be given in ferms
of an integral equation:
L0

d(x t) = S G(x-};e_e')[«;(x;y) _ % ¢3(x',l"} R .

where G-z t-t iz the stochastic propagator, satisfying:

(Df: - Bx-!-mz)c(x—)f'; E-t')= Sle=x") S (k- t")

(41
I p-spacs: T (g 11=0itlexp(-(fnlit) {107

The form of 2q.(8) is suitable for a perturbative expansion:

b=Gxf - ‘Q\‘i G+(Gs$) s 3(—3.)7'6*(4#;)"(4;?)3;.

3] |
os{edfastensileerial sfortepllont <0
3 & (11}

. n



The perturbative expansion has a diagrammatic

interpretation in terms of the Feynman rules:

a) Every propagator G{q,T-t) :aline T B S t
b) End lines G*¢ :aline T---------- )4
: o P, B d0(s4o.)(-
¢} Every vertex 1,&>< . @n) 3(z; pe)( :_3.’)

d) Intezration over momenta and times for every vertex and

Craoss

diagrames:

s 3t << : \v 4,:+O(«\"}{1,--
(123

In computing the corrslation functicns of e (7) , ths

A

.
N

contractions between the % 's produce the loops of the usual

o

gquantum theory and thersfore the ultravislet divergencss The
contraction of equivalent branches of the tree diagrams produce
some combinatorial factors. To caloulate them one must count the
number of equivalent confractions in a given graph, starting from

© the free diagrams, bul we saw that the following ruls works



£} the total combinatorial factor in front of & graph is given
by the number of independent choices for the external legs,
times a 3! for every vertexdivided by the factorial of the
number of the topologically equivalent lines inside the graph. &5
an example it is shown the first order correction to the c{; -

correlation :

* éiP‘:tT‘l&{q;t}} = t’——*‘qt + (- 3"}(+Q__‘ + ‘Q—*‘.ﬁ

31 3
(13)

It is essv to check that in the tinfinit limit this reproduces

¢

Pl y F ol Amaa o 1t the 4.
the noual first ordet correci Hon to the mass in the 4) th*"""}‘f}*

2 STOCHASTIC ANALYTIC BEGULARIZATION (A 1.

The I‘-e‘I&ﬂ{OViEtn character of the stochastic evolution is given
by thw locality of the nolse -noise corrslation, eq.(4). An
alternative way to regularize the theoty, instead of using
dimensional or cut-off regularizations, comes from the possibility
of substituting the Markovian process Witl 4 1t ~f-Markowvian ons.
& nice featurs of this regularization is that all the s sytametriss of
the Langsvin equation have Destl preset wed, It is sufficient to
substifnte the o - function of eq.(4) with a mors spreaded

function; the width of this distribution is essentially the regulator



if in the limit for it going tw zero the § -function is

reproduced:

TGyt = 2 Siz-y) 2(T-8)  lim g{T-t)= §(T-t) (14

0

<4(p,T) glath= 2 §ip+q) g{T-til 2 ) (147
According to ref (B}, we will uge for g AT-L

g (T-t) = 2 [Tt (15

The advantage in doing so is that , with thie regulator, the

IR

diverzences will appear as poles in o, and it will be natural to
nge a minimal subtraction scheme for the rencrmalization of the

of arkitrary

theory. In fact, the function of eq. (15 has a z=ro
ordsr at T—> t for sufficiently large o , and thersfore it
1»—~uljr1:es any i rer gence; the physical mit ocours nmrr at ¢=0
and so only logarithmic divergencies confribute to it. In this way
we ges thal this ~--u1rfr1"qhun shows the same featurss of
analytic of dimensional regularization, but it doss nc i change the
Langevin eq. The regularization enfsrs the theory only af the

level of the loops in the Green functions computations.



2 REHORM LIZATION.

Dimensicnal analysis: from eq.14) we find that dim % -

=3/2+1-0  From the Langevin ¢q. we find dim ¢=d/2-1-0
dimA=20c+4-d =20+ & £=4-d {16}

Eq.(16] suzgsests that the theory iz rencrmalizable when the
condition 2 +¢ =0 is safisfied; in d=3 this gives ¢ =-1/2. This
will be confirmed by a power counting analysis.

‘Power counting: from the perturbative expansion of ed. (12}
we can see that every free graph has one uncrossed external ling
E, : 2W+1=E. crossed external lines E  whers ¥ is the number of
vertices of the graph ; I-¥-1 internal lines I . Zince Green
functions ars given by the confraction of free diagrams , in

gefsral & graph will have E, external uncrossed legs, E crossed

=0

lezs , L loops , M infernal crossad lines , I internal uncrosssd

lines and WV wertices , with the relations:

2WHE, = 2V+E, V= L-1+(E,+E. }/2 {17

Since the integration over the motmenta is Gaussian, it can be

done at once for every graph; then one must perform th»»



intezration over the intermediate times. It easy to see that

the diverzencs cames when all the intermediats times go to the

largsst time of the graph ( because in this limit there is no more

& exponential damping in the momenta integration J. In general

we Cafl parametrize the difference of the times t; from the largsst

time T in soms way, for ezample in polar coordinates :

T-t;= r -times{ angular variables) (153

The overall diverzence now appsars as a divergsncs for r— a.

The variable r has a power -d/2 for every loop L a power (o=~ 13

for every crossed internal line M; a power M-1 from ths

differential of the M intsrnal times:

AL s Me-1)  N- -D.-

- ©odes e ode g

Sines M= 2M +V -1 combining .19 with eq.{17 7, we et
E izt Rt
D/2-(d/2-2-0 L+ 3+ ¢ - 3/2+ ) E, - Ee/2 (20)

From &4.(20), we g2 that the theory is renormalizable if the

PI

3 given Gresn function (B, and E. given)

ie independent of the ordsr of the perturbalion #xp ateion L, and

therefors when

=0 td -2 or 20%E=0 (213

o



Eq. 21 gives us the way out for avoiding the usual & -
expansion. In fact , if ome dossn’ t use the stochastic
regularization, eq. 21 is simply € =0, so the only possibility of
studying this model would be by means of the - expansion
around d=4. Thanks to the stochastic regularization, we “;—:- that
it is possible to study the model dirsctly at d=3, since for eo=-1/2
the theory is still rencrmalizable. Morsover if we interpret o and

€ as 2 independent regulators of the theoty, we see that thers
exsists 2 straizht line in the 2-dimensional space of - and £
given by eq.(21), on which the theory Is ren normalizable. It is
possible to choose any point on this line to perfcrm the
computations; (o7 =0; £=0] gives the €-expansion; {00 =-1/2; g=1]
gives the purely stochastic case we will study; but perhaps some

intermediate choice for o and e can be an improvement of the

€

4 <« fh)'s:'cdl

fo;nf

E-expansio
e P h

¥

;0)



Once ¢q.(21) has been satisfied, ¢q.(20) gives the superficial
degree of divergence of the graphs with a fized number of
crocsed and uncrossed external lezs The divergenc es appsar for
D30, and the logarithmic divergences appear as poles for D=0

Stochastic case {o-=-1/2; £=1})

Eo, =1 E.=1 D=2 gives a quadratic diverg:

ale]
-,'[)
...J
('[)
P
=
s\l
in
s

renormalization) and 2 logarithmic divergences as it will be seen

\5 .

later { wave function rencrmalizations ).

| ]

E.=0 D=1 gives no divergsnce , since D=1 cannot
give any pole. This fact can be undsrsfood in terms of
countertermeto cancel a diverzence of this kind , one should put
a counterterm in eq.{14) , but this would be non-local in time,
while the divergenc s appsar as local terms in timeand space.

E,=1 E. =3 D=0 oives a logarithmic divergence
(ren-&rmalizati«::nn\‘r.:-f the coupling constant).

g -gupansion case (07=0; £=0k

Thars ars the sams divergencss for Ex1 E=1, E=1 E=3 , bub
new also the case E =2 E =0 gives a logarithmic divergence as
nowe eq.f 147 is local in time too (renormalization of the random
source 4 ) We have invesfiga ted also this case becouse we wank

to use the stochastic method also for =0 ¢=0in order to have a

]

check of the whols computation: the results in this last case must
be the same of that of the usual perturbative € - sxpansion we

- , i

can find on some reference( for instance on ref. (3

“

— el —



The divergenc es have to be reabsorbed by counterterms, so
it is convenient writs the Langevin equation in the renc srmalized

fornm:

20°+€
Z 3 b +Zyprmtsst )z Sep Lo BB

whets /u is the momentutn scale at which renormalization is

done. The wave [unction rencrmalizafion con 1stant £ ocan be
identified after the rescaling:

o=l Z s
t= ol -2z ¢ o =Ze/Zg (2]

which leaves sq.[14] unchangsd. Eqi22]) bew

s

[y
=
'
<T
(41

-7 - )
Z *7 Z (De D+M+£"‘2)cbg-i\.//‘z+€ ng;fZ;qS L 4]

i [
4 o=z 7%4 5! 4} i‘,b T
Z "'Z& Z(P Zg =7 R, oo
&% usnal, to renormalize the theory , we will look at the 1

to the ellit;-’i.j iRy

anctions in the stochastic propagators, it is mors

I”IH

convenient to take the Laplacs transiorm of the

) (n+1)
]-1 ‘.‘,2“-:“?;}?,'.,3;:‘= [E Aty F [‘,..rr‘ w7, x._ rrfx - Z :"i‘ i) RSy
1]



The logarithmic divergenc e can be computad at ¢.=0, while
the quadratic divergences 'will give a pole in the derivative with
respect to the 5. and also a contribution in the derivative with
respect to the external momenta p, 3. The procedurs will be:
compute only the logarithmic divergent part of the 1Pl graphs
and reabsorb it into the appropriate counterterms{Minimal

Subtraction Schemse).

I3

In the case O =-1/2 £=1,as we saw, there is no divergencs

associated to the noise-noise corrslation function, and so 2 ¢ = 1;
mersover, since the renormalization of the mass is given bY
divergenc es appearing as poles timss m” in the massless case we

are interested in there is no mass rencr rmalization:

b 2 o
a§=1 o for m=0 sz=u a7

pand 3 4,%*11‘1 begin at order 04 A since there are no ofher

oraphs butthoseshown in eq. (13} at order 0 Ajand they give no
confribution .

- 14



4. THE MASS IMSERTION.

One of the crifical exponents we are going to computs is
related to the anomalous dimension of the mass insertion
opsrator : A @x8. It is useful , at this point, to show how to
renormalize it. We introduce the mass insertion as an external

operator, defining a total action:
=5, +j b'(xt) dx (25

The renormalization of the operator can be performed by

studying sotne Green function of the exfernal operator; we choose

]"‘(A 7 7']
(ghytl= & <dlxt) @y,t_»gm (29}
8A =0
Inn the stochastic formalism this can be dons c-:un:.1-’1~r1nﬂ the
exira term 24 qBa:;,t; in the Langevin equation as a new vertex
T----@®----t = G{ pT-t! 24 . Because of the form of the Green
functicn we are interssted in, only the linsar terms in A will be

inwolved. The perinrbative expansion of 4) i o

= X + /x+’«' //x+ X + +
T e v,

+3—£®—x+3—e// <<x+

> SN

+ 2 /); <:,.. // 8—x + 0f A3) (30

_15_



Eq.(30) gives the & field to be used to compute the Green
function of eq.(29). As usual loops will appsar and the
divergences must be rsabsorbed in the mass inserclion

counferterm: the rencrmalized Langsevin equation now reads:

~~—
(S8

- - e
(2% 2,00, = ';A:”‘V/“ i 2p2 by §

. . - . - A2 .
The REenormalization Group equation for the [ (#, ), invalvs a

constant defined by:

2 2 .
& = Zyat 27
LJ.B (PB ...?14.*9‘ R ( u}
2z 4}18 related to the stochastic constant 2wee are compnting:

A

X ) . . (4,2
7 zives the anomalons dimension of the F 7

{f;.

Y= 3 nZge [ 4)
é" /A —— “‘4) n_,x".t..
X— '5/4 Bave.

_ 1B



5. THE CRITICAL EXPONENTS .

Our goal is the computation of the critical exponents Y’dnd ?
in order to compare them with the valuss taken from the € -
zpansion and from the high temperafure expansion, thal we can

find on some refersnce{ses(3)pag.236). In statistical phisycs, yris

feid

the exponent describing the scaling propertiss of  ths
susceplibility in the critical region |y is related fo the scaling
properties of the correlation function : {3)(4) ":,

L ~|T- |7 Glr)~rd*27

In the field theorstical approach to statistical physics, ons can
see that y is essentially the ancmalous dimension of the 2-
points Green function ; y-is related to the anomalous dimension of

the mass inssrfion opsrator Yee From ref. {30, pag. 235, we ol

R ! (360
Z-y

thir—y;m:t‘: been defined in eq.(34). y is defined as

c = dlnZ (37}
Tk ’“0/4 AIB | -

Since we identify the critical exponsnts from the scaling

-
T

— LI



properiies of the Green functions , and the Gresn functions
bezin to scale near the fized points of the 3 - function, we must,
first of all, study the (3 - function. We must look for the zeros of
the A - function, verify that thers sxsists an InfraRed stable fized
point, and then compute the anomalous dimensions af the valus
of this fized point; extrapolating to the physical valus =0, we
will get the critical exponsnts.

& technical remark: in computing the Rencrmalization Group
Structure fanciions /% X; Y% we must first of all | werily that
they are finite quantitiss . This i= a non trivial stsp of the
compuiations, and alse a  check for them, since  ihs
renormalizaticn constants | in general, have not only the simpls
poles, but also poles of arditrary order. To get finife gquanfitisz

thers must be an sxact cancellafion of thess not simpls poles,

~18-



SECTION 2

FIRST ORDER COMPUTATIONS,

{. THE (-FUNCTIOHN.

The renormalization ¢f the coupling constant |, in general,
involves the computation of the wave function and of the veriex

renormalization constants:

A d/ﬂ Tr,"nafcq'a)
8 =M by Le Lo R

Sincs we saw that the first contributions to 2, and 24, ars of

2 . L. oo . , -

order A7, at first order if is sufficient to compute only 22
- - e 2 I
Ly = 1 +4 ggf‘v+ I Lt

Thers ie only one confribution to the -points Dunction

(41)
The result is finite if:
2



We gef §,Z,= 3

R is the residual of the single pole ; since the divergence is
logarithmic the divergent part of the graph can be obtained at

zero external momenta. Using the Feynman rules we have:

T, 7 SJ‘(K _K*E-75) )e-z)
ar ¢ -
; @Q = e Blt-n) e eft-z,)
-Ka(zz‘?a) oy
‘e 6(zs-27,) | T-zl " dtdndz
(44}

The interration over K is Gaussian and can be performed at

Cge
_BK* % 4
S;"K e - T2 A% gl2k-t-v, .
(2_”4{ . (Z .n.)d ’ V0]

The intesral over the fimes can be hrealken into thrse

intezrals, according o the tms or¢ derings:

al 13737 30 BBnyTye, S R2TU3% 2
The first two are squivalent | so we must do bwo integrals

£ Ty T, J J
szj d'r;S d'tzg dz, T* (26-2,-7)% (2,0}
0 A (Z?T}

4 T, T d -
I::= o S dT7 X a('CgI dz, I‘_f (Zﬁ'—' ?2."7-'4}){: (?g-' Tz]d:‘l
) © 73 CZT()J {4 5y

20

—_—i e



Lst us consider the first one. It is conwvenient to do the
following change of variables: when there ars n cronclogically

ordersd timss
Tota vty .. 2 b3k we Catl put

Lo=T(1l-o) £,=T(1-oo)

L= T4 1 -od, .o ) and the interral become
i

T k. B [f
SDJ{:,'J dEay - Jl‘zja{f = ﬁJO( Th ‘n-a h-zd,,

I_r‘l

- (47)

. The integral I, now reads:

4, A A
-"’(§? oy ety dty £ty E 5 (10 %@x-dz)gmé}

2

The integration over &, o frivial; the intesration over &
¢ - 1 s"" s - o
produces a factor { oo+ 2 - 4/2 ) and this is the pols at d=3 for

o”=-1/2 ; the intes

o

ration over o, gives the residual of the pols
and could be dons taking d=3 and o =-1/2, but one must be
careful since at o, —a 1 the integrand behaves as (1-of,) ;iinxi thiis
iz not integrable . To give a ssnse to the intecral an analviic

confinuation in o is needed:

Py
Wi
]

I“=(—L—)J—_¢t—7 IJe( o(‘ (l.;.d )%( og) =

(4

Sy

-4 _21



The second integral can e dong in the same way and we gst:

Ic-(;%;_)sﬂ- ( )(4-1) (497

2

=)

Finally we gat:

DivPart of ¢*) =R/w = I+ 1+ I, =(27/')

Trlg ( Z-L)( - ‘”}‘

_[1 )3 1 R = )3 .
207 | w E (501.

comiment on the result for the £, : the factor B comes from

th

34

integration over the moments; we aspect such a factor to
appear elevated to a powsr egqual to the leops number and so it

could be reabsorbed redefining the coupling constant
E=AR (51

The factor 3in §,2, has a pursly combinatorial origin: it is the
number of the channels contributing to the [ “lat this order
Therefore we don't expect relevant differences betwesn the
stochastic case and the £- expansion af this order. In fact, lef ns

compute the - function:

RPN I N PV P PacI T
RN e a/u‘%[/“ -

:—w,\ 4 BRAZ -I-O(,\a)

g
:‘:‘!

Jug

a0
—_—S -



The p- function has a zsro at
A= &
T 3R | (53)
It is important |, at this point , to notice that since the slops of
the A- function in the fized point is positive, the fized point is an
InfraRed stable point and, since AV is 0 {(w) a perturbative

approach to the infrared region is justifisd.

2 THE W&SS THIERTION |

First of all, we want to computs y- &S we saw, since there is
no contribution of order A to the wave function renormalization,
h =0 and the equations {33} and (36) semplify in

NGNS o 54

From the expansion of eq{30) of | we ses that the Green

function for the mass | insertion is:

)—1(/4;2): Z, *(‘%)3! +0(A7

{ E\E]-‘I
Putfing Z,= 1+4 5, Ly W get

\ 4z, - ADiv. Partof é =0 and then 42, = Raw (56

I - -
Frou e (54) we g5t

X;,_: D AJZA

) -@heofi)=- 72 w(,e;ﬁﬂ

. ¢ ,.l

3
w

v
L_pd



Al the fized point of 2q.(5 31 and exfrapolating to the physical

value o= 0 {w =1} we obtain the critical expenent Y':

= l+_‘_R_u_{ e 4.4'_.'1_ .
2 3R Wi £ {5a)

= =L [-Rd)

&5 expected we got the same result of the ¢ - expansion; this
is an indication that the followed procedure is correct and so we

ase of the second order

(%)

can 2o to the more interssting

computations , where differences are expected to arise.

3. THE WAVE FUNCTION BENCRMALIZATION.

Before going o the second order | let sketch how the

3,

reniormalization of the wavs function can be deneld),

For the renormalized wersion of the Langevin equation

(T

(eq.(22)), we can define a renormalized stochastic propagator:

-PiZ e -

G(t)=8(t) | e 7z, (54
The Laplace transformn of this | with respect fo ) inveried s

=l - s
J S . 2 (B

Taking the powsr of A the inverse of the prop _vr:ttuf is

(2} 2
r 2,3 u“s —Divr«arfol( A/}jX}l}ﬂ! @ (617

— 24 _



The graph we are looking at has two differsnt divergances:
one in the derivative with respect to s, giving the counterterm
Z,, and one in the derivative with respect to p°, giving the
ceunterterm . 2y The computation of the divergences can be
done as shown in the previous paragraph, but now the intsgral
oiving the residual is not so simple, and has to be dong
numerically. To do the integral with the analytical continuation
numerically is not straightforward, and some trick must be

inventsd a8 we will show in the next section. The results ars:

Re Z,-1-(AR)V1ERe
E =1- Rl
1 I ;o

Rp= 026420004 Rp= 0.19620.003 (62)

fized point we have found. The resull is

h_=0.05520.001 (&3
- iy LK%
to he comparsd with

o= 0019 of the ¢ - expansion and

J.= 0.0420.01 of the high temperaturs expansion. (18]
From thess data it is clear that it will be wery inferesting to

cee which will be the second ordet corrections for both Y‘:a.ndzz .

[
>



SECTION 3

SECOND QORLER COMPUTATIONS.

1. THE GRAFHS FOR THE ‘ﬂ-FUI*ICTIOI*I.

(% - function can be

The graphs contributing to the
constructed starting from the expansion in tree diagrams of the

fisld ¢, given by eq.(12). Since we are looking at the 1PI Green

function ]_1 "j) we nezlsct all the 1P reducible and all the non local

in time graphs. Thersfore the graphs we are looking for can be

=g wie el the {ollowing

Dol

Pl

ey

fag
o
o0

>

Y
t‘l‘
A

sraphs: from

Contracting pairs of oros

s diagram a)

the fres

30.(31)°

Type 1

T};rp.;:a; 0

X =

—



G 261/

T

Type 11 Typs V
(65al

and from the tree diagram bl

3.(31)?
T T

Type 111 Type IV

whers the combinatorial factors have besn explicitly shown,
The IV and ¥V typss have a subloop with a cross on sach line of
the loop; we know that this ki ind of sublos 2 15 ne 't diver gent and
so these graphs have a divergencs cofning from the larger loop @ a
wence. On the ofher hand |, the other oraphs

have divergent subloons and so we aspect them to show a doubls

n-

#

pole plus a simpls pole structure. For exampls the types O i
ssgentially contributing just with a doubls pols: its diverging part

is the square of that of the simpls leop we studisd in section 2, as

3

- SO M P .
can be easily seen:

Divergent part of fype 0 = (E/w ) (56

A

_—a -



Thiz gives rize to the problem of the cancellation of the
doubls poles: in fact in the - function the double pole can be , at
best, multiplisd by @ and so thers must be a cancellation | in

order to get a finite (3- function.

2. THE DOUBLE POLES Z‘J‘Il ELLATION.

. f .
Let us compute the B - function at order A" We write:

= no= o =(TF2)

w - - i e
Af/" lv & A lg =iy Lg (67)
and

T 2( by 25"1 H
Zp=1+d JR/w + Addv 5= 1+1 g2  with
§2 =l =17 8,2,- {0+ 2147 (B3
whers 5 2 2y A11 5134) are given by o (621
-t~
/(/( Ly ~5 AQ/:
B

% 443 A . e
= cw )l RN 2w hI, - 2N w et de}Jzz.‘; ey

(&)
sines 5 s has only single poles, the divergsnt ferm must be

2 P9 =2wd’ 70)



The conclusion is that , in order fo get a finite A - function ,

J, 2, must exibit a double pole part with the form:

2 .
JZZ,, = gR +single pole part
wl

o
—.J
foa—ry

P

This is not only important from a theorstical point of vigw,
but it provides also a check of the combinatorial factors we have
computed. It will be shown later that the double pole of the typs
I, 11, 111 appears with a coefficient 1/2 in front of it {in 2eneral it
appears with a factor one over the leop number ), so lef us

compute the double pole contribution to &2, -

rw‘]: (-AZV)—'—-é + 3 (-AZ«)Z)©< i

, 3 , :
Taking the A~ terms and only the double poles with their

coefficients we et the following relation for the doubls pole part

‘-l o
- ";i —



of §2,:

2 3 .
A5, 3R 124 3R -3 R (1424 141)=0 (73)
w w 2 Z

Mol

2
and then  §,Z,/= 9 R (74]
wl
Pouble p«-l(,

The cancellation has besn proved and we will not worry any
mors of the doubls poles in £, In the same way we can prove the
cancellation ¢of the doubls poles in the mass insertion and in the
wave  [unction rencrmalization. For  the mass  insertion .
expanding the logarithm of eq{34) in powers of A

and
decomposing 2t in the standard way, we get

2 R 2 2 v
- W&A%az‘b =/;(A>[E+z,wzzf -A@)w@]-
s MR- w 2l wd ()3 R0 v o(43)

2
therefors 2 Ly = 2 ( 5—) {751
4 w -
Pouble F,[g
For the wave function, writing
- 2 £ g
Z=1+ A1+ AdZ (76
w

and sxpanding again the legarithm of 2q.(37), wet gst:

_



/- /3‘(“)[“ By 347Gy o(w?)]

- 2w ,\Z% AR N _3e X7 rol 49

&/

therefore  d Z! = Z"z;‘z (77}

vo‘( ‘[O Po{e

The form of the double pole parts of Zg*and I will be

proved in the corresponding paragraphs.

A THE CALCULATION OF THE GRATPHE,

v s Tranarr fomrr Fo s#A s o Asnids sl at - .
ALl \"x‘: Lauddts a’":‘ LAnA 8y LAY LACLLINALTS TALSF ".ﬂ-’"..’hl'? lv":’.l"}-g‘, T“\‘T':% '} ‘5’ f“}d j‘g"’

forget of them and leck at the single pole part; we must extract
explicitly the divergence and then we are 1eff with a multipls

4. -

integral, giving the residual we have to cwmpm— This intesral
will be dene numerically, with some trick in order fo make the
analytical confinuation we  disoussed  before. Two  differsnt

methods will e used {or the

II'..‘

raphs of type I, 11, 111, and graphs
of Type IV, V, cince they are two different Kinds of graphs. Since
the technigque is the same for any member of the two groups, we
will shiow only an example for case. Let us begin with the type
using the Feymman tules we can write b and make the

integration over the momenta at once:



_.A BK e 2p-KG J -
o g J"pd K =T_(AB- c")’Ji (78)
enFEn)® (e

The integral now reads:

¢ & ke b k 3
= Sde. JJQJJQ dz, |dz |ds, 6(t,-7).

o 0
'ITJ o? ‘ d'-l[ =] 2 -é'
* -z-."z'zl T;-Z},’ (AB-C ) 2
(.z_n)zd
with &= 2t -T- G B=2t,-4,-7, C=t,-k (79)

Now wee break the tims intsrvals in a Subloop intsgration for
the times t,,7;, 7, with t, external time; HNext infezration for the
times t,, 7, . with £ external time; then we break the Sand H
intezrations in all the possible time orderinge { nine cases, but
really less due to symmetry in exchanging times ) Lei us
consider one of thiscases: Lot gt Ly Ly gz . Weoan do

: ipe d af - £ e, I B
two chanzes of variables of the Kind of eq.047} and we gat

=y

I=c%R" ST [ dd; 0{/3‘ tzr‘%‘do{ﬂf-é o
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-~
! +
N 2
=
> T
w >
~
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This is the form of all these integrals: the first line in eq.(80)
is commmon, the second one is different case LY case, in the sense
that the various a, b, are given by differsnt combinations
thed;'s and fi's. It has to be noted that, but for b, the variables
defined in eq (30) depend on ;3 foe 2 35 while the divergence
comes from the o, and f4 integrations. First of all we can add
and subtract the intecral with the second line evaluated at o, =0;
let 1g call this integral T-

{
g

3 #-d - _
I=T1RZSE;J4"A ; o(i(r' 2.[1)‘ %.C 42’.‘,(2/52(!-—%) .

Thiz zives a doubles pols; now we maks the substifution of

variables in the infegrand of I - I o =2 3

- 72p2 l l 20 +3-d ,’{3‘ d
...I_:O" R J/J’I/))l AX X0-+f—/2'

[/ ©

[c - xe2b )7 c*



Writing 1/ % (0 1-2)+6(x-1 )).-*'CJ‘,we can make at once
the integral for x> L:

l ;. d
Sodﬂ’l [5‘24'4-3—01 [ dx xo‘H /2‘(._‘,_. ) )

l C%

2
L cE )
S 2 r+2-d (33

This is again a double pole; adding this with the double pole

of 2q.{81), we get finally a double pole multiplied by 1/2, a5 we
nad to prove. What is left is the single pols; the integration in I
can be dons, giving the divergsnce and the residual can be

f

computed:

- 1p%
1-If o )-)dz ] B
sgle 2 (5r2-4) )y 7 l(C-2aR)% ¢k
-d | GEY
+ £ 7z ‘ZM _Q_
o
whers we made some nsaful changss of variables {generaling

1

[xY]

o the logarithm). The sxpression for the residual of the single

u;n]_r-:‘ 15
¥ l

¢ = R | da, dd; dpsdps d7 dp, (-, ) " (1-3 )

_d -d -
.{_'__[(C—-Za&)/’-_ C ”?-]+c %&:%}

Z

T



To do this integral is not straightforward, since analytical
continuation in o is needed. We used the generalization o mors

variables of the following trick: consider the integral

!
1{e)= X..:u (1-aY F{a)
If 11m F(« ) #0,the integral is not definsd for 67 = - 1/2.

Haow add and subfract F(L X

-{

dq(l—q)mf:(:) + Ad((-o()a’ F(M’F(l)il:

7

= 1/ F{1}+anintegral definedat o= - 172 since now
-1 ¢ = . .
(1-a F (F(a] -Fal}}fv{I—Q,I%andthemtegrandw
intecrabls.

Thersfors

. ot e R N .

i \dd i 1 -di Fi{dy= - 2F 1/ +fd {1-dqi (Fla}-Fily
G-t fad
i 1)

The programs periofining multidimensional integrals have
peat tested nsing this procedurs on well known integrals and fhis
results have been quite zood.
ccause of the form of the grapias ¢

method was nob suitable and we used another fechnique. A8

before we broke the tims inbervals in arder to transform the

DS
[



3

absolute values of the crossed internal lines mto simple
differences; then we use the variable transformation of eq.(47);
in this way the divergence arises when some of the new
variables go fo zero together. Since we ars 10-3};111;::5 for the
divergent part only, we can restrict ourselves to the region of
integration where Z «r &1 of the hypercube of size 1 of the
diverging variables o, . This can be dons multiplying the intezral

by

!
gal) S(A- Zo{:)= 9(1-';0(;) 571

aives the divergence; we Can set A= 0in the residual integral
and we can do it again using the analvtical continuation
technigque.

The numerical intsorals have been dong using programe

whose kernel was a CERN program performing multidimensional
infeorals with the Monte Carle procedurs. all these programs

have been tested on fest functions in order to opiimize the ratic

time and acouracy. Ancther important test of these programs has

j ATT 1~ L S T 1+t -~ T erill Aicsvree s
sl g.{"?tfi L..':f iz g£- :::;I sncion compuialions we will Gisfuss in

the next eschion.  We  have c&mputed Fwrenity -four
five-dimensional intesrals with an acouracy of about 107 The

recsulls ars:

2 |::'1

-— oo
-



Typs 1 S = RZZL( 0.00£0.08 )
Type I 5y = R‘ZL{ 0.0020.04)
Type 111 S, = R‘Z‘t_:: 2.07:0.03)
Typs IV Sw

R}i 7.2820.1)
Type V. Sy= R’i—{l.ﬂﬁ.:@.oﬁf (38]
where S;is the residual of w-'. Taking infto account all the

combinatorial factors the sum of the tws loops contributions is:

3 3

’3”_"_£=‘3'!:‘_(Sr+—1-sﬂ+-l—sua+.I_Sn/*'.l..sv:(
4w 4w 2 ¢ 4 4

<
1]
Ll
[ )
152
-
—

1)
Writing AR =k, from eq.(69) we find that the 8 - function is:

Pl - _w it 3K —a K+ 0(0)

mam—

K

’hl—ﬂzr- e =-% [ Re + g(# - U]:- 9.0 0.4 (a0}

The fixed point now is

K™ = %_/ r oo wiro(w?) (91]
27

We are now in the position for computing rather easily the

correction to the ancmalous dimension of the mass inger tion. In
o F(’«) :

fact the graphs confributing o the enter alsg in the mass

Angertion, computation.

DIFS)
N |



4. THE CRITICAL EXPONENT )Y~

From the expansion of the fisld 4[> (eq.(30]), we et the two

I 02
loops contributions to the '

F(A;Z) _ /.Xi Za + 3{(_%) g 2y 2y +(3.{)2-§_j.1)2 ﬁ;—
i) G o) B o

+ O(Aa)

4
=
N o~
Ja

\'-/f'-’
+

(92)

We see that ars involved the previous studied graphs of type

0, 11, 111, ¥. The second order ferm in Z, is

2= 2(2)- U &

@ w 4
with U&= So + glll + 1L Sy = 2.62*+0.07 (93]
2
The double pole part of §Z,is that we aspected (275} in

order to get X;znn1’r~ Expanding in powers of d eq.(33) we get

§z Elgfrv:-m Jz 2

§2 24 = 2(% [UA'I';EE—KP]

~~
AN
[ AN
“ean



=R+ FRY L (U 3R-RI= koK
2

where o= 1612004 (95]

T - *
We then computs X;z at the fixed point .

¥ .9 -
X‘@:— w + Wz{ E,C-ra.} ___1_ +i':1f;wg} (GE)
3 27

The critical exponsnt Y is now obfained sxpanding eq.(36}in

Powers ol w

y—.=1+%+

Extrapolating to w =1, this gives

Y‘ = 1.27¥0.01 [aay

This is our result; it is really a good ons, becanss we

remember that from the €- expansion we o EEIN = .24 and the
<

-~ P

value of the high temperature expansion is Yo = 125020003, {1
Wit ic {afd serr i Arvdrr s sndsnriation AF Fhio seitisnd

IO LICLe Ao 191l LIkdew 12 WALLL K l‘- LLLTT DDLU LA L) LLLTS oL Bl

gxponsnt - The strategy to follow is clsar,

N



do the computations; up to now we have besn abls to extrac
the double pole of the wave functien renormalization and pmved
the validity of the cancellation (ses eq.(77)) (see Appendiz A
The caleulation of the residus of the single pole part will be our
next geal; this is highly non trivial, since we must analyvze thres
locps graphs with an sxfernal momentum diffsrent from 2ero.

Let us mention that the results we gof, ars given by an
asyvnphotic expansion in w andit could De necessary to Use somes

resummation technique, as if occurs in the £- expansion (11).



SECTION 4.

1. THE &-EXPANSION CHECE.

We want now to use the same fechniqus of the stochastic
graphs shown in the other secticns, to compute the £- expansion.
This provides a total check of the whols method; in fact ths
results can be in agresment with thess, for instance, of ref (3],
only if we had the right graphs, combinatorial factors, there was
no mistake in the infegrals and in the rencrmalization procedurs
and s on. The only thing nof needed now is the analytical
confinuation in the integrals , but this has been tested bsfors.
The e-sxpansion simply corresponds to taking the limit for o=0
and d=4. The graphs are the same as before, with the same

combinatorial fachors; the only substitntion in the graphs is:

v{y
L2 o
|
o~
—_—
9
L
[
(70
———
"r
1
(4 24
~——
i
e

The intsorals are now stmpler than in the stochastic cags: less
variables of infesration, no analvtical continvation, no breaking
i T E L et L 5o R o~ 34y P
in time infsrvals is needed. The ta hhi\i‘d" RS 111‘-.:}.7\:'-1113:, the T

leops integrals iz exactly the same of the slochastic case, o we
check it too, An important difference is that now there is ancther

diverging graph:

P

~ 4l



giving a remormalization to the noise-noise correlation

function: a Z¢ is needed, and one has to take it into account in

u

1

g

computing the rencrmalization constants. Calling k= A R wher
R'=(277 }Ifwe can compars our reeults with thoseof ref (3
pa

L

o
[A%]
e:N

§-254.

STOCHASTIC &- EXE. USUAL  &- EXP.

- . 2, K ,
Za=1+kie +2k /e -kUa /e

U, = 05000800002 =12

e e bl s

" e f NP T P
Lv= 1+Ej}.‘-,"£ +1’\. ’x,&:.{,"E - 1;\‘; ,:'2 4

Vo= 299980002 Y

A & W=

P R
X—= 1..::"3_1: ! l:.{ : :.'IU X-: 117:'”-_.3‘::

The agresment belween the values computsd with stochastic
methods and that of the literafurs i perfect, and is the best

XL

Froof that all we have dons is correct,



2. CONCLUSIONS .

We have shown that stochastic gquanfization with stochastic
regularization provides a good and well defined way of deing

renormalization compuiaticns; it alse provides a new way of

studying statistical systems in the fisld theorstical framework, in

‘-l

alternative to the € - expansion. The results we got for the

V

critical ezponents with this new method, are as good as thoss
obtained by other methods, and we find indications that new
informations can be obtained with respect to the &£ - expansion.
Morsover thers ig the possibility of improving the methed vsing
3 mixzed stochastic and  &- expansion. Stochastic quantization is
not only a new point of view in quantum physics, but it becomes
so A new powerful practical method for studying renormalization

of quanium systems.

T A CTRIOET I AT
:l Léll-_; IR LEIH_TP',?J.EL" L :l' .

Thiz work has besn dong in collaboration with Professor
Roberto _I:e:ngx:::e_; I oweuld like to thank him for everything he
taught to me and for his constant inferest and sncouragement,

Many thanks alse to Dr. ] Alfare and Dr. M. Parga for many

uminating dizoussions.
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APPENDIE & .

In this appendiz we show the proof that the doubls pole part

of the wave functon renormalization is exactly thai given by

e (771 . At order thres loops there are thres araphs contribufing

o the <¢f>,L £> cotralation functisn, constructsd by contraction of

<

the Y fres diagrams in the expansion of the feld ¢

i
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whete G, and Gé atre the residuss

t

of the polss in the

' 2
. i .. 2 . .
derivatives with respect to s and prespectively. Al order A e

oads
[ S

Ge

J
L w

§22u =

The doubls pole part of the thres loops 2t
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- : 3
Summing the A” contribution we gst:

A R e Sl Rl

(&7

The constants Sa 2, and §7, are
D.R. w* 0-e. “* (& A0
)

l' k)

dng eq.{4.4) info account, 2

532 :}. E(_;f'-}-.l- '_Z_f‘_{’.-.-ZE’C {};g:}
A
D.2.

()]
sﬂ

as statsd by :‘:q {770, E-::; &6 can ‘r.:«g.-* pI'{ﬂ.?e-.‘i wrifing the

l

pole part as the product of the divergences of the subloops

nugmeer of diverging subleeps divided by the leop numbs

b

a cosfficlent. This coefficlent furns oul to be nothing

3
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