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INTRODUCTION

The first toroidal figures of equilibrium appeared in the literature
in 1789 when Laplace constructed eguilibrium configurations with such a topology
for modeling Saturn's rings. In the recent years there has been a growing
interest in such bodies since other astrophysical objects may be medeled through
them (e.g. QSOs).

Although very recently Papaloizou and Pringle (1984) have shown the
very important result that non self-gravitating torii around a central bodies
possesses a global non-axisymmetric instability which acts on dynamical time
scale, there are still gocd reasons for finding the equilibrium configuration
of self—gravitating toril around massive objects in the framework of general
relativity.

Papaloizou and Pringle use linear theory and it is not sure if including
non-linearity we can have stabilizing effects. Moreover and more importantly
it is not clear what physical effect will produce this instability. In both
cases the answer could come from considering the full non linear perturbed
eguations and solve them numerically. In order to do that one should know
the initial equilibrium configuration to start off.

Beyond this general considerations there are more specific astrophysical
motivations that suggest to study that configuration.

The best model for @QS0s and active galactic nuclei is that of a thick

accretion disk arcund a black hole (for a complete review see Rees, 1984). The



luminesity of thick radiation pressure supported accretion disks is écnnecteﬁ
with their masses: low mas disks have toosmall surfaces to radiate at sufficient
power. Moreover it has béen shown (Abramowicz et al., 1982) that runaway
instabilty (i.e. very fast mass exchange through the cuspe of the equipotential
surfaces in the accretion disk model) is important for at least some realistic
accretion disk models of active galactic nuclei. Both general relativity and
self-gravity of the disk are important for discussing this instability.

Both effects are still important when a very close binaryneutron stars
is considered. It has been suggested (Paczynski, 1984) that tidal forces can
destroy the secondary. The material endowed of angular momentum may form a
very thick disk whose mass is comparable with that of the primary.

Numerical calculations of dynamical relativistic collaps (Nakamura, 1981)
have shown that during the collapse a ring forms due to shedding. It is very
interesting from this point of view to see what value of a/m will have such a
configuration.

It is not clear yet if the post-Newtonian dynamical instability at
e = 0.985 in the Maclaurin spheroids leads to ring-like structure (Bardeen,
1971). Wong (1974) using Newtonian theory analized this conjecture and reached
the conclusion that toroidal figures do not branch off from the MacLaurin
spheroids. It is our opinion that the dynamical instability is a relativistic
effect since only a post-Newtonian analysis has showed it.

A1l the mentioned reasons are good ones in our opinion for carrying
out a study of general relativistic self-gravitating torii with or without a

central body.



This thesis review all of those theorems and results obtained in the
past which , in our opinion, are important to know in order to deal with
rotating fluid masses with payticular attention to torii.

The plan of the thesis is as follows. In Cap. I we discuss the theorems
and results obtained in the framework of Newtonian theory for figures of
equilibrium. Cap. II discuss them inside the theory of general relativitity.

Cap. III contains a description of the main method used for that purpose.



CHAPTER ONE

EQUILIBRIUM CONFIGURATIONS IN NEWTONIAN THEORY
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§ 1. Some general results

Before going on to discuss some particular equilibrium configuration models
we give here a small but important group of results that apply not only to rota
ting stars but they are so general that hold for any rotating fluid masses: ‘A _
more complete and extensive exposition devoded for rotating stars can be found
in the book by Tassoul (1978).

A rotating fluid mass is in hydrostatic equilibrium when the gravitational
attractiaon is balanced by the outwards centrifugal and pressure forces. In cyli

ndrical coordinates (r,z,f) specifying rotation to be about the z axis, the

hydrostatic equilibrium egs. are the following

QP _ Q¢ Lot (1.1)
Oy @)
| QP oY
/5"(3 = - 552;‘ (1.2)
where £ Py ¢>, and JL are respectevely the mass density, pressure, gravita

tional potential and angular velocity. In addition to the above egs., an equati
on of state and boundary condition must be specified.

The integration of egs. (1.1) and (1.2) depends on the P -/ relation and
on the rotation law. Great simplifications come if we assume that the fluid is
a barotrope ( p function only of/:) and V2 fﬁnction only of the distance r from
the rotation axis. In this case the equations are integrable since it does exit
a centrifugal potential.

Another simplification 'is provided by the Lichtenstein's theorem: rotating
fluid masses for which the angular velocity does not depend on z have a plane
of symmetry perpendicular to the axis of symmetry. This theorem, first proved

for rigid-body rotation and uniform density (Lichtenstein, 1933) has been exten



ted even to differential rotation with non uniform dénsity (see Stoeckly, 1965),
When the potential is expanded using orthonormal polynomials (see later) this -
symmetry requires only even terms in the series.

All these results are derived only from the condition of mechanical equi~
librium and are valid for any rotating systems. However they do not provide any
idea on the distribution of angular momentum or the rotation law.

Constraints on the rotation law come from considerations of dynamical and
thermal stability.

The usual approach to stability consists of considering small perturbations
of the system and therefore studying the linearized time-dependent equaticons of
hydrodynamics. Since the problem is linear the space variable x can be separated
from the time so one can search for normal-mode solutions for the displacement

of the form
?(x,t) = *%(x,w) e’ (1.3)

The equations then will provide a dispersion relation from which one can study
the sign of uiz. It turns out that if KUZL 0 the system will be unstable since
the perturbation will increase in time, and if {u2> 0 the system will be stable
(the onset of instability occurs when w2= 0,which is called a neutral mode). In
the first case we say that the system is dynamically or thermally unstable if
the characteristic time-scale of the instability is of the order of the free-
fall time (G;S)pkL or of the order of the Kelvin time GM2/LR respectevely.

The main criterion is the Hgiland one which states that a general non-ise
ntropic configuration is dynamically stable if on each surface of constant entro-

py s the specific angular momentum 2= {erl[f mist beincreasing function of r

al/ar » 0 (1.4)
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In view of these results a’model of a rotating configuration can be speci
fied giving the total mass M, the total angular momentum J and a distribution
of specific angular momentum satisfying the above criterion. Then fixing the
mass one can construct a seguence of models with different amounts of rotation.
Besides J, one is free to use another parameter which will charéterizes the main
features along the sequence. In the case of a spheroid it is natural to use as
a parameter the eccentricity since it gives an idea of how fast is the rotation.
But the most convenient is provided by the ratio of rotational kinetic energy K

to the gravitational potential energy
T = K/|W| (1.5)

By virtue of the virial theorem, a rctating configuration in egquilibrium composed

of perfect fluid must satisfy

2K +W+3([T-1)U=0 (1.6)
where r— is the adiabatic index and U is the internal energy. Since the last
term must be positive otherwise the configuration would be radially unstable we
have

2 K £ |w] . (1.7)

then

027 &£0.5 (1.8)

This parameter gives us a qualitative idea about the concepts of slow and rapid.::

rotation according to the inegqualities



K <& |wi slow rotation

K ~ [w] rapid rotation

§ 2. Equilibrium configuration of ellipscidal shape.

Hydrostatic equilibrium of rotating stars has been studied using differant
approaches. As a first approximation one can assumethat the configuration is
incompressible and rotates with the simplest rotation law, e.g. uniform rotation.
These medels can be thought of as a particular case of the more general centrally
condensed polytropic bodies, rofating with a differential law. Making this gene-
ralization cone éan divide the approaches used so far into four groups. The first
one adeopts models in which the equipotential surfaces are level surfaces of trac
table coordinate systems. This is applied to homsgeneous and uniformly rotating
bodies no matter how rapid is the rotation. The second is a modification of the
first and treats slowly rotating objects whose equipotential surfaces deviate
only slightly from simple surfaces (Chandrasekhar - Milne expansion). The third
group uses a variational method in which the changes of the parameters descri-
bing the model are chosen among the ones which minimize the total energy (Roberts,
1962). The fourth group uses the most straighforward approach, that is the direct
integration of the partial differential equations of equilibrium. This method
has no limitations and can study as precisely as desidered centrally condensed
uniformly retating or differential stars. Different numerical methods used for
this purpose will be discussed in Cap.III.

Since, as we éhall see, homogeneous uniformly #otating bodies share many

properties with the differential polytropes, we discuss those first.
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Congider a body with constant density, uniform reotation and ellipsoidal

shape with semi axis lenghts a

10 2o a3 parallel to the axes xl, %, and x_. of

2 3
a Cartesian frame of reference corotating about the xa—axis. The hydrostatic

equilibrium egs. (1.1) and (1.2) have to be solved simultaneousely with the

Poisson equation, which in this case assume the form

A
e = A i =1,2,3 (1.9
S m 2T CFA %, J (1.9)
J
Ry
where P
AJ =a, a, a3 5 (1.10)
(a7 + u)
¢ J
2 2 2 2
AS =
A (al + u)(a2 + u)(a3 + u) (1.11)

Putting (1.9) into (1.1) and {1.2), integrating we get
e 2 2 g% B
=L ey - n G A + & (1.12)
p//a > ( z) ~ Jor 9 ©

Then the isobaric surfaces are given by

2 2 -
(A, - JZ ) ”’ng*(gz— L )"‘tzl + Asﬂjz;(g T?‘:c%st (1.13)
' 2n6 0 2nGp NG

Since the boundary of any configuration, by convention, is defined by the

condition p = 0 it is an isobaric surface. Then, in order that the boundary

of the ellipsoid -
2 z z
X o (1.14)
—-—]-fa + }..% + -—wé— -t
Q’l Q‘E q‘.’ﬂ

coincides with one of the surfaces defined by eg. (1.13) we have
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L 2
2/ n JL 2 ﬁ. = Z‘ﬁ
—ra V2@
! ( ‘ za%p ) ¢ (ﬁg znﬁp) 3 073 (1.15)

z
and eliminating the JZ terms
2.1 2 (2 T -
&, (Aa“Aa) + (af-e; ) as fiz = © (1.16)

or solving with respect A2/2 G

z z
N alh-a, A, a, Ax-q;ﬂrs_ qfﬂwa;ﬂ; (1.17)

206 p at-as ar QF

which holds if a, £ a, - Then inserting into (1.16), (1.17) the definition

(1.10) of the AJs' we find

z
nL ) Q QL - (53 du 0o (1.18)
(@, +1«L>(Qé'?u-) "'Q{-k L(.) ya!

i

also
S 2 0,03 /2 o2 “ {u (1.19)
s £ (Q(~'q3) z o ’
20 Gp Q. (efu) (af4s) 4
o]
and similar expressions in which a  is replaced by a2 and vice versa. Since

(1.18) can be satisfied in two ways it follows that under the assumptions made,

two eguilibrium configurations are possible, namely, the axisymmetric (a1 = az)

MacLaurin spheroids and the triaxial (al £ a } Jacobi ellipscids. Another

2

immediate result comes from (1.19): since the left hand side is not negative

it must be a, » a or a, za that is the rotation axis is always the smallest.

1 3 2 3

Consider first the Maclaurin spheroid. If we introduce the eccentricity

e = { - ) . (1.20)
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eq. (1.19) can be written as

AZ - A - (-e?) Ay (1.21)
zm.’”r/e ‘

where now, Al and AS are only functions of e

>
(i-e -t (1~et)
A = —— s £ - — (1.22)
v
212
el t—~¢g -1
AZ - ....2;; - .__.(..._,,_ZWL mha g (1'23)
£ [

The associated relevant quantities can also be computed

4 2 z\L

W= TQ, (e—e)L{a (1.24)
2 Mgt ' ‘

I=z a, (1.25)

J=1JL (1.26)
3 eé’i—ez)%

= o s_..._;:.._..!___.]._ 1 (1.27)
2 e h e

and a sequence of axisymmetric models can be constructed for all the various
values of e (or 7 ) forming the socalled MaclLaurin sequence.

Jacobi considered the case al> a2;*a3. The resulting models are triaxial
ellipsoids and on solving eg. (1.18) one discovers that they exist only in
the range ¥, <7%0.5 (Zé: 0.1375). This means that only rapidly rotating
configurations can have triaxial symmetry.

The main features of the two sequences are shown in Figs. 1 and 2.

Figure 1 shows that the eccentricity is an increasing function of the para-

meter ¢ . In Fig. 2 the dimensionless guantities
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1.28)
m?—ﬁ (
() (1.29)
J = e, 1.29
(r*a)?
- i/2 . -
where a = (alagaa) , are plotted. The full lines refer to the Maclaurin

sequence, whereas the dashed lines refer to the Jacobi one.

If we consider a star contracting slowly conserving M and J, 3 will
increase monotonically as do ¢ and e, the object becomes progressively more
oblate and it ends up as an infinitely thin disk. Moreover it can be seen
that when Os.tfi% the Maclaurin spheroids are the only possible equilibrium
configurations, whereas to each value of 2 in the range % e?7£0.5 corresponds
two figures of equilibrium.

In Fig. 3 the total mechanical energy K + W in units of gT?Gf>M§2 is
plotted against 3. The figure sho&s that the Jacobi ellipsoid has lower
mechanical energy than the Maclaurin spheroid with the same M, J and volume
V. Therefore if some dissipative mechanism reduces the total energy, the
MacLaurin spheroid will evolve to the Jacobi ellipsoid beyond the point of
bifurcation ¢ = 2,. In order to check if this is the case one should solve
the full set of hydrodynamical eguations in which dissipation is included.
Indeed, Press and Teukolsky (1978) integrating the Navier-Stokes Equations
found that the Maclaurin spheroid slowly deforms into a Jacobi ellipsocid. But
an insight into the problem comes from stability analysis. It can be shown
that to the bifurcation point q?corresponds a neutral mode (u? = 0), but
u)2> 0 on beth side of it. Moreover m? =0, at T=7% is a double rooct and two
sequences branch off the Maclaurin sequence at this point, namely, the Jacobi
ellipsoids and thé‘Dedekind sequence of triaxial ellipsoids whose overall sha

pe is stationary relative to an _inertial frame, although fluid circulates

about the least axis. Now, if one includes viscous dissipation it can be shown
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that u? becomes negative beyond T, » and the imaginary part of w is proportio
nal to the viscosity. Then the perturbation increases slowly (on the viscous
time-scale) and the Maclaurin spheroid evolves into a Jacobi ellipsoid mini-

mizing energy. This is the so-called secular instability because it is slow

and needs dissipation to operate. Including dissipation by gravitational
radiation instead of by viscosity, Chandrasekhar (1970) has shown that there

is again a secular instability driven by gravitational radiation reaction

by which a Maclaurin spheroid evolves gradually to a Dedekind ellipsoid.

Miller (1973) confirmed this result by studying numerically the evolution

of the ellipsoidal figures including the effects of gravitational radiation.

Another point of onset of instability occurs beyond ¢, at 2=7=0.2738

along the Maclaurin seguence. Making the mode analysis at this point u)2= 0,

but ufz goes to negative values beyond < no matter what physical process

is going on. At this point the MacLaurin spheroids become dynamically unstable.

It is interesting to note that the axis ratio is 3 : 1 at this point. As we
shall see this ratio is found even for toroidal configurations at the onset
of instability induced by beaded displacement.

The point of dynamical instability on the Maclaurin spheroid can be
reached when viscosity and gravitational radiation reaction work togheter or
when dissipative effects are neglected. Indeed, Lindblom and Detweiler (1977)
discussed the combined effects on the stability of MacLaurin spheroids. They
found thet when both dissipations are considered togheter those instabilities
tend to cancel each other. This cccurs because viscosity and gravitational
radiation reaction cause different modes to become unstable. In particular,
the mode which is unstable to radiation reaction is stabilized by viscosity.
By this cancellation the onset of the secular instability can be delayed to a
value of 7 which depends on the ratio of the strenghts of the viscous and

the gravitational forces. For a particular value of this ratio the stable
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portion of the Maclaurin sequence can extend all the way to the point of the
onset of dynamical instability.

When the dissipative effects are neglected 562 does not assume complex
values and the axisymmetric configuration will follow the MaclLaurin sequence
till the point @ =% in which the spheroids become dynamical unstable with
respect to non-axisymmetric perturbations that transform them to a barlike
configuration.

A point of onset of dynamical instability occurs even in the Jacobi
sequence when 2 = 0.1628. At this point a series of pear-shaped figures
branches off the Jacobi sequence. These figures are secularly unstable and
it is believed, though without any proof, that these figures will split into
two detached masses giving rise to a binary system.

If we relax the hypothesis of homogeneity and uniform rotation\then
the problem of finding equilibrium configurations can be handled only numeri
cally. James (1964) made the first calculations for uniformly rotating poly-

trpes whose equation of state is
p:k/o‘“:k,o (1.30)

where k is a constant depending on the entropy, n and M are the polytropic
and adiabatic index respectevely. He used the analytical continuation method
(see Cap. III) and constructed sequences of axisymmetric models with increa-
sing rotation velocity, keeping constant n and the central density £ . The
range of the polytropic index covered by his calculations is 0<¢nse 3. He
found that when n >0 all the sequences terminate at T= ?:max depending on
the value of n dué to equatorial shedding since the effective gravity at the
equator becomes zero. The most striking result ﬁe found is that for n<0.808

there is always a non-axisymmetric bar mode instability at T e 0.138 irrespe

ctive of n if the sequence extends that far. For n% 0.808 the stars are always
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stable up to the shedding point (Q:mais 0.138). The above results suggest that
uniformly rotating polytropes with n %0.808 cannot store ratational energy to
reach the point € = 0.138. So they are seculariy and dynamically stable
because they cannot rotate rapidly.

A different picture which resembles the MaclLaurin sequence more, comes
out from differential rotating polytropes. Stoeckly (1965) using a finite
difference scheme (see Cap. III) constructed self-consistent models of axisx
mmetric differential rotating polytropes with n = 1.5. The rotation law he used

was

P~

J2(s) = o exp( —c 2 ) {1.31)
Ye

where s is the ‘distance from the rotation axis and re is the equatorial radius.

This form allows some mathematical simplification since in this case the egua-

tion of hydrostatic equilibrium is integrable. Moreover the law (1.31) satisfies

the Hgiland criterion, which demands

or O£c ¢l (1.32)

[¢]
t‘r‘ l”‘n
in
fom

Although, strictly speaking, values of ¢ greater fhan 1 are not allowed, Sioeckly
considered models in which the non-uniformity parameter c ranged from O to

0.15 in order to study medels which ranged from uniform to rapid differential
rotation. Figure 4 shows three models. The results indicate that for small
values of ¢ the sequences terminate with models with zero effective gravity

at the equator {(model B) confirming the result obtained by James. For rotation
that is more non Qniform the equidensity surfaces in the interior of the star
assume a more elliptical shape (model G) and for ¢ » 0.67 models pass from a

cusped interior equidensity surface (model J) to a completely detached ring.
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Ho stability analysis has been provided by StoecklyQ

More recent results have been obtained by Bodenheimer and Ostriker
{1973)' who considered more general polytropic sequences with index Og n g 3.
They used the self ~consistent~-field method presented by Ostriker and Mark
(1968) in which the total potential (gravitational and centrifugal) is
determined by potential theory from the density and velocity distributions,
then the density distribution in equilibrium is deterhined algebrically from
the derived potential (see Cap. III). The two steps are iterated until conver-
gence is reached. Instead of giving as input the angular velocity distribution
they specified the specific angular momentum £ as a function of a Lagrangian
mass defined as the fractional mass contained in a cylindrical element inside
the star. The assumed distributions are obtained by the formulae

N

oy
(1 -m) +c. (1 ~-m) (1.33)

E(m) =Cq*C 5

1

o]

where the constants c %, and o, are chosen to get the angular momentum

0’ v’

distribution of a polytrope with uniform rotation at infinite radius. With
this method they were able to compute sequence that resemble the MacLaurin
ones in all important respects. Indeed, their sequences do not terminate at
low ¢ due to shedding and moreover their analysis of stability (Ostriker and
Bodenheimer, 1973) indicates that the instability points on the MacLaurin
sequence (secular at %,~0.14 and dynamical at ~0.27) seem to be general

features of more realistic models.
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§ 3. Equilibrium configurations of self-gravitating torus with or without

central body.

Spheroidal or ellipsoidal configurations are not the only axisymmetric
equilibrium configurations that have been’studied so far. Toroidal configura
tions have been considered partly because they are the next stage, in order
of complexity, and partly for understanding astrophysical systems which surely
show ring-shaped configurations like Saturn.

Two groups of systems have been taken into account: rings with and
without central bodies. Basic work on the subject includes contributions of
Laplace (1789), Maxwell (1885), Poincaré (1891)and Dyson (1893) who investi-
gated thestability of rings with circular cross section and without central
bodies.

We shall formulate the problem of finding the equilibrium of a self
gravitating ring uniformly rotating about a central body as treated by Laplace.
This description can also be found in Randers (1842).

As a first approximation the gravitational force acting at the surface
of and inside the torus can be replaced by the force at the surface of and
inside an infinite cylinder of the same cross-section and density. This appro
ximation is correct since when the diameter of the torus goes to infinity, it
degenerates to an infinite cylinder. It is not, however, allowed to replace
the potential of the torus with that of the cylinder because the additive con-
stant depends on thebgeometry of the torfis. If we suppose that the ring is
slender , i.e. minor axis << major axis (d«R) then the internal gravitational

potential, in the case of circular cross section, is

V= - 22?4{,0& {?o%? + 4 C!~a—§;)j (1.34)
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whereip is the density and r the distance from the rotation axis. In the case

of elliptical cross section

R ,
v:-znéfaai.vé@gé%; +j('~—c¥(~§f§-§f)j (1.35)

where a and b are the axes of the ellipse in the plane of the torus and per-

pendicular to it respectevely; x and y are cartesian coordinates and

2b za
L - R (1.36)
al+ bt /@ QC+ bt

When a spherical body with mass MC is put inside the ring the hydrostatic
egquilibrium equation gives, following a procedure similar to that for the

MacLaurin spheroids

_;@i_ d4abla-b)
nee (a4 b) (e+b)

(1.37)

and Jzz Fk
— (1.38)
e e R

since the lhs is positive it must be that a >b, that is the torus is flatter

in the equateorial plane. introducing a parameter 5/such that

—t—)—= S (1.39)
@ tay
eq.(1.37) can be written
Q2 ff(** .
= (1.40)

L7 £ o

We see that Jl= O when E’: 0 or 5: + 1. When J = 0 it follows from (1.37)
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that R b (v, then since g,: Ql'has no meaning we can say that there are
two possible cross sections for a ring in eguilibrium at infinite distance
from the central body, one circular with b/a = 1 (ﬁ’: 0) and one completely
flat b/a = 0 ( 5/= 1). It can be seen from (1.38) and (1.40) that as the ring
is posed to a closer distance from the central body,J2 increases and the cir
cular cross-section becomes more and more elliptical, whereas the flat one
becomes less and less elliptical. At a certain minimum distance D, the two
cross .. sections become identical and below this distance no equilibrium is

possible. At this distance /L is a maximum

JC max = 0.2172 (1.41)
Tr[oé
According to (1.38)
3
R
S— £ 0.1629 sl (1.42)
R e

where Ré and [g are the radius and density of the central body respectevely.
Equation (1.42) tells us that the lower the density of the ring compared with
the central body the larger is the radius of the ring compared to the radius

of the central body.

Randers (1942) extended this study considering a spheroid as central
body. Supposing that the ring is infinitely thin and that Ré@fR he found the
almost obvious result that a purely spherical equilibrium is not possible,
even when the body does not rotate, because of the attraction of the ring.
Similarly, the additional outward attraction of the ring destroys the equili
brium’for very flattened spheroids. He even studied for the first time the
stability of such configurations. The results of his analysis shows that

rings are stable to oscillations which expand or contract the radius, but
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unstable against small changes in ellipticity of the cross-section. The flat
equilibrium model will pass over to the configuration of nearly circular
cross—-section which is unstable against freagmentation.

A remarkable step in the study of self-gravitating rings has been ma
de by Osfriker (1964b) who considered slender rings (R>’d) with uniform rota
tion but’with a polytropic equation of state. Using a perturbation tecnique,
he was able to find a quite general solution of the Laplace equation which
applies to any axisymmetric slender body. This method is quite similar to
Chandrasekhar and Milne's gne for rotationally distorted polytropes. In their
work, the undistorted equilibrium configuration wasspherically symmetric and
the purpose was to find the centrifugal perturbing forces on a slowly rotating
body. Ostriker considered as undistorted body a cylindrical polytrope whose
structuge was even found by him inan early paper (Ostriker, 1964a). Treating
the rotétion, the curvature of the cylinder and the presence of a central
body as perturbations he was able to construct equilibrium models for different
values of the polytropic index. The main results can be summarized in two
statements.The equidensity surfaces of the ring are more distorted towards
the center as the polytropic index increases (this seems obvious since as n
increases the fluid becomes more compressible). The second result is that
a central body forces the ring to rotate more rapidly. This is not surprising
since if we put a body in the center of the ring the gravitational attraction
will increase and only Centrifugal forces which have opposite sign can compen-
sate for it.

More recently Shuckhman (1982) studied the equilibrium and stability
of a self-gravitating torus én the field of a large central mass. His model

considered a special rotation law given by

JU= W, (1= ¢ —%) (1.43)
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where V@ and ¢ » 0 are constants. Using this law he found a relationship bet
ween the flattening and the amount of rotation o similar to that found by

Laplace

Z
/A ) g1~ €)
4ﬁ6—/% (1+E)(3-20+ EY)

(1.44)

with &= b/a being the ratio of the axes of the elliptical cross-section.
Here the maximum value of i% depends on the parameter of

The stability analysis was mainly made considering radial perturbations.
Two types of disturbances have been considered: those’ which are symmetric or
antisymmetric about the outer surface of the torus. Only the symmetric pertur-
bations have been found to be unstable. The instability may be dynamical, or
it may be secular if dissipative processes are present. Non radial perturba-
tions with azimutal wavelength much greater than the scale of the cross-section
have been considered as well. It is found that if the torus is very flat these
perturbations will give rise to any instabilities. ’

As far as toroidal configurations without central bodies are concerned
the paper by Dyson (1893) represent the starting point. He considered toridal
figures of equilibrium in which he expanded all the physical quantities in
power series of the aspect ratio (R/d). He showed that wheri the aspect ratio

exceeds 3, tori are unstable against beaded (or sausage) displacements in
which the torus is thicker in same meridians but thinner in others.

A reexamination of these toroidal figures of equilibrium has been
considered by Wong (1974) who was motivated by the conjecture of Chandrase-
khar (1965,1967) and Bardeen (1971) that toroidal sequences branch off from
the MacLaurin seéuences due to instability excited by the post-Newtonian
effects of géneral relativity. Wong constructed self-consistent equilibrium

configurations for homogenecus and uniformly rotating tori using a method
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that we will briefly describe hére, He started with & torus with circular
meridians whose potential was obtained in an early paper (Wong, 1973) as
follows. All the relevant physical quantities are computed by separating
them into two factors, the first is the guantity relative to a spherical
body of the same mass M and density/a while the second is a geometrical
factor which takes into account the deviation from the spherical symmmetry.
In particular, the gravitational energy, the rotational energy and the total

energy are written respectevely as

Em = E:m &, (1.45)
E =E° g (1.46)
r r r

O
E =E " g (1.47)

where the symbol '"o" refers to the associated quantities for the spherical
body and g s gr and g, are the geometrical factors. Expressions for these can
be found in the paper by Wong (1974). It is interesting for our discussion

to define the parameter x
=g + Xg (1.48)

which is a measure of the angular momentum of the torus and it is linked to

the usual parameter ¢ by the relation

T = x.;-»T--—r (1.49)
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Wong uses X as a parameter to ééscribe the toroidal seguences. The result
thus obtained was used as a trial solution for the selif-consistent iteration.
The resultant equilibrium shape determined by that potential will in turn
determine a new equilibrium shape and so on. The iteration is done keeping
the volume constant and it is repeated till convergences of the shapes are
reached. Figure 5 shows the results of these self-consistent solutions for
various values of x, the lenghts being measured in units of RO= (3M/4§ﬂ)1/3.
We see that for x = 2.0 the meridian is circular. As x decreases centrifugal

forces increase and the meridian becomes flatter. According to this calcula-

tion a limit is reached (x = 0.8438) below which toroidal figures of equilibrium

do not exist. This picture is different from Dyson's one upon which Bardeen
based his conjecture. Indeed Dyson's sequences starf at a value of x = 0.917
at which point the Maclaurin spheroid becomes wunstable. Figure 6 shows a
comparison between energies for the MaclLaurin seguence and the toroidal one.
We can see that there are no common points either at x = 0.8437 or x = 0.917.
Aécordingly the toroidal sequence does not branch off from the MacLaurin one.
All of the models discussed in this section are not very realistic because the
hypothesis of homogeneity or solid rotation have never been relaxed together.
It will be worthwhile to reexamine the toroidal figures of equilibrium for
differentially rotating polytropic models. For doing that one should resort
to numerical calculations using a self-consistent method. Moreover a full
dynamical code which includes transport of angular momentum can answer the

problem whether the toriodal sequence branches off from the Maclaurin one.
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CHAPTER TWO

ROTATING STATIONARY AXISYMMETRIC CONFIGURATIONS IN CGENERAL RELATIVITY
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§ 1. Eguations and boundary conditions.

The space~time of a stationary axisymmetric configuration with rotation

is endowed of two Killing vectors fq(and fivﬁuch define the time coordinate

t and the azimuthal coordinate ¥ , namely
. ‘
= Jf §=J‘( (2.1)

S
where é} is the Kronecker's delta function. By transformation of the remaini-
ng two coordinates among themselves the line element can be reduced to the
form (for the general theorv of stationary axisymmetric configurations see

Carter 1973 . 1979)

o zv i 2 ZV(’-ZV
" zme dt BB (dyo wadt)re T fari W) (2.2)

The coordinate r,g}, f are spherical at the asymptotically flat infinity.
The metric functions V,w, B and %f are only functions of r and E}‘since the
symmetries of the space-time. The physical interpretation of these metric
functions appears clear in the reference frame of a zero angular momentum
observers (ZAMO) introduced by Bardeen (1970a). These observers find that
rein?¥'B e_¢ is the proper circumferential radius of a circle around the axis
of symmetryv. The function W is the angular velocity that the ZAMO will acqui
re falling freely from infinity {dragging of the inertial frame) and e_y>is
the so~called "redshift factor" since it connects the proper time of the ZAMO
with the coordinate time (proper time at infinity). The physical velocity v

of the fluid relative to the local ZAMO is given in terms of the angular

velocity of the matter relative to infinity
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¥
W

. = (2.3)
ut

. ¥
“Q‘;{T"z}“

(where U= (ut,u;0,0) is the four-velocity of the fluid) via the relation

-2¥
= (L-w) rovu PBe (2.4)

Moreover since the metric function g,, can have both negative and positive
sign, wherever is g, >0 , no local observer with JL= 0 (stationary at infini-
ty) can exist in such a region. This means that the inertial frame are not at
rest with respect to infinity but are dragged round by the matter acquiring
angular velocity relative to infinity equal to w .

The Einstein's equations take a particularly simple form when they are

projected onto the orthonormal tetrad of the ZAMO (Bardeen, 1970)

2g-2v

Vo(BI) =1 P B V. P ram Be ekt )

’”j (2.5)

V\u),» €T r W7 B ezf 4 (e+p) &

i~u?

- 3 ~av
\7‘ (r/\“f'“. 9’36 (2.6)

9 (rmB UB)z 16T PO B e ST 5

} . H BM; ?7, { v ‘7 z 2 , 3
oz;/u-{»(!—/m),é&qfr -{_5’?[-2/@( -f’/“)’%- +é (;7.,\3\%4“ + z %ﬁ‘.‘{}/« fﬂ(}./«zf%ﬁj
oI B (1 B 2o w1 0P 2

2 ~av 4 2

By s (o) B Dot (= pJpR e (0B g s

z 3 4 N _ ¢
L (p) ity = e (o p ) e d ) G e = (1 B

X (:r l(wf r)z- {{ ‘/“t}{w;/“}zjjﬂ (:24 8)
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In this equations M= cosP and 5? is the three~dimensional derivative opera
tor in a flat three-space with spherical coordinates Ty - The fluid vari
able e and p are the total mass-energy density and the pressure measured in
a frame that comoves with the fluid.

For studying rotating stationary axisymmetric configurations beside
the Einstein's eguations we have to consider the equations of hydrostatic
equilibrium, an eguation of state and the rotation  law. The equation of

hydrostatic equilibrium

™ -0 (2.9)
33

with T9 = (e+p}u1u3 + pglJ can be written as

V6. T2 - T) Dm0 (2.10

In this equations the quantity é is the energy required to inject a baryon

from infinity into the star with zero angular momentum

%: e+p 1 (2.11)

§ = e+p , (2.12)

T is the temperature defined as T =(k/05 )n’ and s is the entropy per baryon.

The energy per barvon 1is

¥ . _.£+tp (2.13)
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A geometrical definition of the specific angular momentum is the following

Using this definition the equation of hydrostatic equilibrium can be put in

the form (Abramowicz et al., 1978)

Vb , .. S 0 @
?4‘6 = - (‘2\ ['@4 (RQ-}J -+ m’* (2.15)

where i} denotes covariant derivative. Then if the star is barotropic we can

define a total potential

Wew +/ oP (2.16)
O

P+e

and use it for defining the boundary as anequipotential surface ('"Boyer's
condition®, Boyer 1965). Moreover, in the isentropic case the surfaces

Jz = const, Q = const, j = const, é’: constaand~¢>= const inside the matter
configuration have the topology of cylinders (von Zeipel's cylinders) and

coincide (Abramowicz, 1974). Introducing then the "von Zeipel's" formulae

4

F=(1-0)exp/| (L-00) " 0a€

Q

we have

g, 0(1-ne) F

G
i

£-¢ (1-ne) F



~-31-

Then given a special form of tﬁe von Zeipel's formulae {i.e. a rotation law)
we can easly solve the hydrostatic equilibrium eguation,

Imposing the boundary conditions for the Einstein equations we should
allow for the presence of a black hole, take into account asymptotically
flatness at infinity and regularity on the axis of symmetry. At infinity e =
p = 0, and the vacuum equations in the limit of weak field (see Chandrasekhar

and Friedman 1972,for example) give
Vo= ~ .2 + O(r“f) (2.17)

which defines the gravitational mass

~
(]

+ O(\'"q) (2.18)

&
L
Al

-

which defines the total angular momentum, and
B -1+ OO (2.19)

From (2.8) it then follows
€= 0@ (2.20)

On the axis of symmetry local flatness implies that the radius of the circle
-y
around the axis r sin%}éf must be egual to the proper circumferential radius

-3
r sin7 B e , then

2 =B (2.21)
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The remaining boundary conditions are on the functions 3;,au and B at
the inner edge. If no black hole is present then the metric functions have
vanishing radial derivatives at r = 0 and vanishing gradients perpendicular
to the axis of symmetry. When a black hole is present the inner boundary con
dition must be imposed on the horizon. Fcllowing Hawking and Carter(1373) the
coordinate locus of the horizon can be made a surface of constant time and
radius

r = h/? (2.22)

2V
where h is a free parameter of the black hole. On the horizon e is zero

2 2y 2ezy
(Yv-be ), The functionsargBde and rge S

must be regular positive of/M
otherwise the intersection of the horizon with a space-like hypersurface
have nct regular two-geometry. Carter (1973) showed that necessary and suffi
cient conditions for regularity at the horizon are that r B éy and uﬁﬁust be
regular functions of A= r+h2/4r and /A in the neighbourhood of the horizon

with

b Qu
— e = (O 2.23
mlkeT: ( )

With these boundary conditions the general vacuum solution for B is (Bardeen,

1973)

o L e W2 ﬂ€+c — 4
Blr,p) = 2 v = (Mar e () (2.24)
£L=0
7
where Ti’zgﬂ) are Gegenbauer polynemials. If ther is no matter between the
horizon and infinity, asymptotically flatness implies bo= 1 and b.: O for 1> 0.
However if matter is present the Q{ should be adjusted to compensate for it.

The total mass and angular momentum of the system can be expressed

in terms of the parameters of the black hole {Bardeen, 1973; Bardeen et al.,
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1973)

[l L Zg
- +j{6£2§ Z”[&%)-%:?{:r +z-}j}x Z?’Ww&{b‘ a4 (i-?::li/ V/n“,§dr9{&#f(f
(2.25)
J = sz 25ma¥ ,Siii)f 5u 20 O/r@&ﬂ/t{ (2.26)

where MH and JH are the mass and the angular momentum of the'hoéle respectvely.

The mass formulae can be written as (Smarr, 1972)

MH = L KS& AH» -+ Z.JZH :H (2.27)

where kH is the gravitational acceleration of the ZAMO at the horizon

k. = (e")lr 2 (2.28)

AH is the surface area of the black hole

T ' ‘
L= 2T (-‘g)l/mm, 99{6‘[3 ’fr]p .\ (2.29)
o T2

>
|

and

Vi

H

i

w)r;.& (2.30)
ra

is the angular velocity of the black hole. Hawking and Ellis (19272) and Carter

(1973) have shown that kH’ AH and JZ.H are constants on the horizon. The angu-

lar momentum of the Black hole is (Bardeen, 1973)

q

4 3 _
Jy=-d {%) j wﬁ@dé}LE Rex :j;» \ | (2.31)
° T2
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If no black hole is present MH = JH = 0. When it is present two parameters
characterize the boundary conditions on the horizon. They can be either the
coordinate radius h/2 and the angular velocity JZH or the surface area AH
and JH.
As we can argue from the above equations the problem of finding equi-
librium configuration of rotating system in general relativity is far more
complicated even in the simplest case of incompressible rigidly rotating fluid.
The difficulty arise by the fact that no general soluticn is known for the
exterior gravitational field. The Kerr sclution can describe a very restricted
class of axisymmetric objects. So one must resort to numerical methods or
approximated tecniques. So far, fcour different lines of research have been

followed. The first one considers the effect of relativity fairly small

(post-Newtonian approximation, hereafter PPN) in which

GM

5 << 1 (2.32)
Rc

The second one considers only slowly rotating objects

2
RPN < -(Z; (2.33)
I
The third and fourth ones apply to rapidly rotating fully relativistic models
by using a variational principle method or by self-consistent-field calculations
respectvely.

We will give here a very brief account of‘these lines of study concen-

trating on the papers we are more interested.



§ 2. Approximated approaches

In many cases where the densities of &he stars are not very high, the
relativistic corrections are guite small and the metric;functions can be ex-
panded in powers of (1/@2), truncating or retaining terﬁs of the order (l/c2)2
according whether a first or a second order approximation is needed. Indeed,
if one would like to take into account effects of gravifational radiation
then the 2% approximation is needed. In a series of papers Chandrasekhar (1965,
1967, 1971) used this equations to study the effects of general realtivity
on the classical Maclaurin spheroids and Jacobi ellipsoids. He showed that
the principal relativistic correction is that the isobaric surfaces are pulled
inwards at the equator and become less eccentric than predicted by Newtonian
theory. Moreover, he found an axisymmetric instability at e = 0.985. This
seems to be a PPN effect. |

Bardeen (1971) reexamined the PPN form of the MaclLaurin sphercid by
using a different method. He gave a detailed discussion of the critical point
at e = 0.985 . At this point, he suggested, a ringlike structure or a central
bulge configuration<may develop according whether dissipation transfers angu
lar momentum inwards or outwards respectvely. Although Wong's Newtonign
calculations do not confirme this conjecture, it will be worthwhile to carry
out a full relativistic analysis as Bardeen himself suggested.

Another approximated method has been developed for those bodies (neutron
stars, white dwarfs and supermassive stars) in which the centrifugal effects
are small compared with the gravitational ones, as is stated in the condition
(2.33). In this case the rotation can be treated as a small perturbation on
an already known non-rotating configuration. The field equations are then
expanded in powers of the angular velocity up to an order which includes

general relativistic rotating effects (inertial frame dragging and deformation

of the shape). Hartle (1987) derived the structure equations corrected to
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second order in JZ.

Since the study of slowly rotating stars lead to an important group
of results, which are confirmed by numerical calculations (see later) we
will briefly describe here the method used.

The idea mainly consists of the following steps

a) A barotropic equation of state is specified

p = ple). (2.34)

b) Values of central'density and angular velocity are chosen (this determines
a unique equilibrium configuration).
c) A non-rotating stellar model is computed via the Tolman-Oppenheimer-Volkoff

eguation of hydrostatic equilibrium

3P
ar (e+d) (franrF) (2.35
dr Y‘(Yﬂzﬁ)
A - an e (2.36)
ol v

The metric that describes the spherically symmetric geometry has the Schwar-

zschild form

as® - e*pmdﬁz{— (a— A%ﬁ}_'o“l_;_ dvz(ﬁe’l«rng‘“&‘e?’) (2.37)

The only field equation is

e 2 olb (2.38)
ol v

d) ¥hen the equilibrium configuration is set into slow rotation the geometry

changes and the perturbed metric is



37

g -

5 . r™ é"q?a(mg*&”’l Pa\)/!'r~a?‘f}f'
9‘52;’9%L!%2€h0+hx%)ja{fi+M AL -t oyl
’ i-z2h

i} ) . (2.39)
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D ’
where '€'= Egﬁ}iﬁ(éﬂiﬁ is the Legendre polynomial of order 2, w is the angular

velocity of the local inertial frame; and ho, h are functions

2 Mo M2 Vo
z
of r and proportinal to v . The expansion in even functions of‘/A is possible

since the equatorial symmetry.

e) The "rate of dragging" is calculated solving the field equation for

-a} :JZ“Q.J

d /r49‘—§§) + 4 fﬂ{ w0 (2.40)
r¢ oy L oy Yody
where
%
iry = ¢ |- 3%3;] (2.41)

f) The deformations of the shape of the star from the spherical symmetry are
calculated solving the remaing field equations with respect to the perturba-

h h_ and v_.

tion factors o' o >

L
Hartle and Thorne (1968) solved numerically the structure equations

for modelling rigidly rotating neutron stars and white dwarfs whose matter

was assumed to obey either the Harrison-Weeler (1965) equation of state

or Tsuruta and Cameron (1966) VK equation of state. Figures 7 and 8 show

the result of this calculations. We can see that the effect of rotation is

not very large.

Those equations have been used for studying uniform slowly rotating

configurations by Chandrasekhar and Miller (1974). The aim of studying
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The results of hartle anéd Thorme showing the effect of rotstion on
the curve of mzss versus mean radius for confizurations composed
of matier obeying the sarrison-%becler eguation of state. fThe
thick curve shows the relstionship for non-rotatines molels and the
thin curve shows that for rotating models with 1! = (w/R? )7,

This is approximately the angular velocity at which mass shedding
octurs and the method is not valid for such rapid roistion, How-
ever, for smaller values of N where the method is valid, the de-~
formation of the mess-radius curve is simply emsller by a factor
UR’/x.  The susll arrows indicate the displacement, with increse-
ing angular velocity, for configurastions with the given central
densities (the logarithz of the cantral Censity in g cz™? is used
&s a parameter along toe curves). To find the mess and mesn rad-
ius of & configuretion wits & given cermtrzl density and given ang-
ular velocity, one moves out slong the appropriate arrow by the
fraction /'R’ /K of the total length of the arrow,
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FIG.&. ‘he effects of rotstion om the messes gnd mesn
radii of configurstions with the Tsurute and
Cameron V, eguation of state. The format of
this figure is the same &8s that of Fig.1l.
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homogeneous bodies is that to see which are the effects of general relativity
on slowly rotating configurations, since stable homogeneous bodies can have
radius R down to 9/8 of the Schwarzschild's radius Rs whereas in the case of
more realistic equation of state the requirements of stability with respect

to radial pulsations restrict the model to radii greater than 2.5 RS (Chandra-
sekhar, 1964). Moreover, since they were interested to mimic a dynamic collapse
their sequence was constructed for different values of R/RS. The main results
of these studies can be seen in figs. 9-11. In fig.9 the ellipticity € of the
body is plotted against R/RS, we can see that € does not increase monotonica
1ly during the contraction but reaches a maximum at R/RSN 2.3 and then decre
ases again. What appears to be happening here is that non linear relativistic
effects enable the inward gravitational forces to overcome the outward forces.
Fig. 10 shows the 1 = 0 deformation of the bounding surface versus R/Rs' This
figure indicates that the mean radius of slowly rotating body is smaller than
that of a non-rotating body with the same central pressure. Figure 11 shows
that as R/R_-> 8/8 the ratio QM/JZ—-? 1 which is the value of this quantity
required for the Kerr metric. Miller (1977) generalized this results to poly

tropic slowly rotating systems.
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§ 3. Rapidly rotating #nd full relativistic configurations

For studying the effects of rapid rotation and of general relativity
altogether, the methods described above cannot be applied anymore. Then one
should use numerical tecniques or variational principles.

The aim of these latter is to find an expression which, when extrimised
under some constraints, can lead to equations and conditions which detérmine
the equilibrium structure of the body in consideration.

For axisymmetric configurations in uniform rotation which are barotropic,
Hartle and Sharp (1965, 1967) developed a variational principle. They gave
expressions for the total mass-energy M, angular momentum J and baryons number
N in terms of the metric functions and density distribution. Applying the varia-
tional principle an equilibrium model is found minimizing M under the constraints
of specified J and N for all the star.

Abramowicz (1970) and Bardeen (1970b) independently developed a rather
more general variational principle for perfect fluid configurations which can
be differentially rotating and non-barotropic. Again here the equilibrium confi-
guration is calculated extremising the total mass under the constrain that J
and N are fixed for each ring of matter belonging to the configuartion in consi-
deration. This was used by Abramowicz and Wagoner (1976) to compute neutron

"stars models.

When the self-consistent-field method is applied in general relativity
the numerical problem becomes more complex since at each stage one should solve
a set of.féur independent elliptical partial differential equatioms: one for
each metric function. Relativistic calculations of this kind have been carried

out first by Bardeen and Wagoner (1971) for disk configurations in which the
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pressure vanishes (see later). Wilson (1972) considered differentially rotating
polytropic bodies with index n = 3. His models are characterized by two quanti
ties: ol , the ratio of radius to thickness, and 5 , the relativity factor

previously used by Bardeen and Wagoner

Y=1-¢ (2.42)

Varying these two parameters he constructed a sequence of models using an 'ad
hoc" distribution of density and angular momentum. He used a full 2-dimensional
finite difference code for solving the exact field equations. Figures 12 and lé
show results of his computations. The binding energy (MO-M)/MO (MO is the rest
mass density) versus 1) is plotted in fig.12; we can see that, for fixed y ,
the binding energy decreases as the configuration becomes more spherelike. In
fig.13 contours of the metric conditions g = O are plotted for « = 6 and
various values of R An ergotorcid is formed for 5% 0.68. In this region the
dragging of the inertial frames is so strong that all the observers are forced
to rotate. Mathematically, an ergoregion is the collection of points at which
the metric function g > O , and hence at which the Killing vector‘fc that is
timelike at infinity is spacelike.

Bonazzola and Schneider (1974) developed numerical methods fof constru-
cting rotating fluid bodies with various pressure-density relations and various
amount of flattening. Their method is somehow the general realtivistic version

of Ostriker and Mark's one in which they used Green's functions tecniques for

putting in integral form the Einstein's equations. However, this paper together



Fig. 12




with that of Wilson are opened to a certain amount of criticism. Wilson's method,
for example, as we already said, places strong restrictions on the distribution
of angular momentum. More importantly, Wilson approximates the boundary condi-
tions garanteeing asymptotic flatness by certain "ad hoc" Newtonian-like condi
tions; and this might lead to significant inaccuracy in highly relativistic
models. Bonazzola and Schneider's method contains artificial restrictions that
cause it to break down in highly relativistic situations before many interesti
ng rotational effects, such as the formation of ergoregions, may appear.

Very detailed seguences have been constructed by Butterworth and Ipser
(1975,1976), Butterworth (1976,1979) using the general relativistic version of
Stoeckly's method (see Cap. III). They used Neumann boundary conditions for
the fhrée elliptical field equations, which were developed'through-five orders
in parameters (mass/radius) by recursive elimination of unknown coefficients
in the expansions of the corresponding potentials.

In the first papers (Butterworth and Ipser, 1975, 1876) the code was
applied to the construction of uniformly rotating homogeneous bodies which:in
certain cases exhibited interesting phenomenae. Specifically, it was found that
unlike the Newtonian sequences of Maclaurin spheroids, fully relativistic se-
quences of uniformly rotating bodies terminate at points where centrifugal
forces balance gravity at the equator (points marked "shed" in fig.i8). Alsoc,
highly relativistic models with sufficient amount of rotation were found to

AR
develogkwithin which observers must rotate with positive angular velocity

dy/dt relative to infinity ( points marked "ergo" in fig.l4). For values of ¥

very low, numerical instabilities prevented to compute complete sequence with
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2
termination points. In fig.15 the eccentricity versus J/M  is plotted. A body
o
. / 2 . . 13
with J/MO ¢ 0.5 reaches a maximum eccentricity £ 0.7 then moves downwards
through states with smaller and smaller values of e. This confirm the result
of Chandrasekhar and Miller already mentioned.

In a further paper Butterworth (1976) considered uniformly rotating

pseudo-polytropes (pa;é}fﬁ). He did a compariscon with the Newtonian computations
made by James. In fig.16 we can see how close are the results between the New-
tonian and relativistic case. The only differénce is that for 4« 2.5 relativistic
objects are more spherical than their Newtoniar counterparts of equal angular
velocity and central rest mass density, while for n »>2.5 they are more flattened.
No ergoregions where found for these objects.

A modificétisn of the numerical method allowed Buttérworth (1979) to
compute solutions with angular velocity decreasing as a function of the angular
momentum (high eccentricity). These models are important not only to extend the
relativistic sequence further, but also to investigate the association between
the termination points on relativistic sequences with the first axisymmetric
secular instability of the MacLaurin spheroids which occurs after the maximum
in angular velocity.

Figure 17 shows that sequences for 5{&0.30 héve maxima in the angular
velocity, whereas seguences with Kg,o.3o terminate at themass-shedding instabi
lity before a peak in the angular velocity is reached. The figure shows that

these calculations are not very accurate since, for instance, the sequence with

¥ = 0.004 does not pass very near to the three points of Mewtonian instabilities
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Fr. 18— The values of B2 {(see Fig. 3 for the definition) for
the final member of each sequence-—y, = 0.004, 0.05, 0.10,
0.154, 0.30, (.50, 0.55, 0.60, and 0.62. Filled circles represent
termination points of the sequences, open circles represent the
values of R¥? for those seguences which for reasons of
eapense have not been continued further. The afrow indicates
the location of the post-Newtonian singuisrily along the’
Maclaurin sequence at a value of RY? = .52269 The dashed
line 1s drawn at the upper himit of ¥.(3) a! which the central
pressure of the spherical solution is inhnite.
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{open circle}.
%
Figure 18, depicts the values of 'g/versus R™ (=angular momentumx(mass

. 1/6 5/3 . . !
density) /(rest mass) } for the final member of each sequence. Not all the
data represent sequence termination points; open circles are simply the last
models have been constructed for reasons of computer expense. From this figure
is not clear whether the locus of the termination points of the relativistic
sequences meets the point on the Maclaurin one at which the PPN corrections
become singular (arrow in the figure) since at low Ef the accuracy of the

method is not high.
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§ 4. Relativistic configurmtions of equilibrium with ring or disk shape

Detailed numerical sclution of the Einstein's equations for the structure
and gravitational field of uniformly rotating, infinitesimally thin disks which
are supported radially entirely by centrifugal forces have been considered by
Bardeen and Wagoner (1971).

Although the infinitesimally thin uniformly rotating disks are too unstable
to fragmentation to be considered seriosly as realistic astrophysical configu-
rations, this paper represent the starting point for the study of relativistic
figures of eguilibrium, since a very detailed tecniques for sclving numerically
the Einstein's equations for stationary and axisymmetric configurations have
been carried out. The gravitational potential and the quantities characterizing
the disk are expanded in powers of the relativistic parameter t;.

In the approximation of infinitesimally thin disk p/e << 1 and the pressure
gradiént force per unit inertial mass V p/(p + e) is significant only in the
direction perpendicular to the plane of the disk where the infinitesimal thick-
ness allows ¥V p to become large enough. Hewever, along the plane of the disk

'V p is finite and the pressure force is negligible compared with the gravi
tational and centrifugal forces. With this simplifications and considering the

equatorial symmetry the field egs. (2.7) has as solution

B=1 (2.43)

Putting p = O the others field equations become
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g - o
AR L A (2.44)
(2.45)

These equations are solved expanding all dimensionless quantities as power series

in 6”. For instance the metric function ¥ is written as

x

Y (€,m; :E 2.46
Ep)) = & AL (2.46)
where f’and T} are oblate spheroidal coordinates. The coefficients Si are
determineddy thelinear partial differential equations obtained putting the expan
sions in the field equations.
The equilibrium configurations are characterized by the rest mass M and
: ~ o)
. s 2
the angular momentum J. Figure 19 shows that the ratic J/M  decreases monoto-
o
nically as E/ increases. For a given total angular momentum there is an upper
limit to the rest mass or alternativaly for fixed M , there exist a minimum
o
angular momentum for which egquilibrium is possible. Moreover the fractional
binding energy Eb/M is plotted against 5’ . The lack of a maximum suggests that
o}
uniformly rotating disks are stable aginst overall gravitational collapse.
Figure 20 shows how the angular velocity J{ increases to a limiting
) . . L2
finite value as g 1 The same figure shows that the ratio M /J —¥ 1 as

E”*? 1. Fig.21 shows the development of ergoregion. Such regions first appears

at 6?J 0.6. Fig.22 shows the proper surface density against the dimensioless
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ratio of the rest mass m of the ring toc its mean proper circunference R and by
(8 = hwiLygy = bW (2.47)
respectevly. Thus the metric function ¥ is written as
A,

vo= ¥+ ¥R e B (2.48)

To first order in m and to second order in u@ , he obtained a sequence of
equilibrium configurations characterized by four parameters: the irrudicible

4
pA
mass Mir = (AH/lBTY)2 of the black hole, R, m, and uﬁ‘. The total mass and

total angular momentum are

3 2 ¢
. . - Aa,
M = Hir + A4~ étbu @ + o Ny W, A d ff {2.49)
3 o He m 3 o
J= 4 N, w, -~ Bury L S/R)T O+ J (2.50)
where j is the angular momentum per unit mass of the ring given by

= LML R/0-3 H\'v/ﬁﬂ/z (2.51)

moreover ¢7 and ff are functions of Mir/R. In fig.23 the main result of this

study is given. There the mass curve for rotating black hole without ring is
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plotted against the angular velocity. The result suggests that the '"Penrose
process" (by whicherenergy can be extracted from a rotating black hole) may be
different for black hole-ring systems than for Kerr black holes. The suggestion
derives from the fact that the total mass for the hole-ring configuratons has
& minimum for non-zero value of u@ . For this reason the black hole still posses
an ergosphere in which particles can have negative energy (as seen from infinity);
such an energy can be in principle extracted. This situation is in contrast
with the Kerr case, where the minimum-energy configuration occurs precisely
when the ergosphere vanishes (ua = 0) that is when further energy extraction:
is impossible. Thus a Penrose process can extract further energy from the system
and this energy cannot comes only from the rotation of the hole, but even from
the ring.

Abramowicz (1982) gives the metric for a self—gravitating ring around
rotating black hole in the case of vorficity—free configurations. With the only

assumption of vorticity-free (\dbz 0) which means constant specific angular

momentum since

-2 -2 / ¢
-wee) RU(vwe)(ve) (2.51)

&

|

|
LY
_

@ £qc, + §vy
g

(2.52)

¢ Gee oy
he has been able to formally solve one Einstein equation reducing the number

of unknown metric functions to only three.



CHAPTER THREE

NUMERICAL METHODS
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§ 1. Introduction

In this chapter we will discuss the main numerical methods that have
been used in the past for computing eguilibrium confipuration in feneral, co
ncentrating more on those developed by James (1964), Stoeckly (1965) and Ostri-
ker and Mark (1968). Although all of them have been constructed for studying
Newtonian configurations, we shall discuss the Stoeckly's one in the general
relativistic version developed by Butterworth and Ipser (1976), since we are
more interested in relativistic configurations.

The aim of these method is to give a tool for solving the field equa
tions (Poisson or Einstein ones) consistent with a given distribution of mat
ter. This problem can be solved by using an #érative procedure which consists
in two steps: the "potertial step" in which the field ecuations are solved
for a given distribution of density and the "equilibrium step" in which a new
distribution of density is computed from the previously potential.

The "potential step" is the more difficult one since the field equa-
tions are elliptical and they should be solved under both inner and outer
boundary conditions. In general these are not known in advance and very often
they are provided by algebraic or differential equations.

The general approach to this problem is that of the application of
the finite difference calculus transforming the partial differential equations
into finite algebraic ones. By using this approach a function is transformed
into a vector of finite dimensions, a differential operator into a matrix
cperator and differential equations into matrix equations. As simple example

let's consider the Poisson eguations for one dimension only

2
d"rx) ' .

/o (%) (3.1)
de /g
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where /Q(X) is the known source function and gé(x) is the unknown potential.
If in an equally spaced grid with step size 4, the differential operator

dzfdxz is approximated by

lsisyd (3.2)

where J is the total number of grid points, then eq. (3.1) can be written as

¢ -2¢,+¢. , -4 2P, (3.3)

This holds in all the grid. Assuming that the boundary conditions are such that

then eg. (3.3) forms a set of simultaneous linear equations

é)l = Wl
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which can be written in compsct form

X (3.7)

where @. and w are colunm vectors and A is the matrix of the coefficients
which in the case of one dimensional problem is tri-diagonal so special tecni-
ques can be applied for solving eq. (3.7).

It is possible to generalize the above outlined method to two or
more dimensions. In the case of two dimensions the functions must be replaced
by matrixes increasing so the necessary memory by a factor given by the number
of grid points chosen for the second dimension. This factor comes even in
the number of operations needed increasing the computational time required.
Mcreover the matrix of the coefficients is not in genera} tri-diagonal even
though it is "sparse', i. e. very few of its eleménts are non zerc, the tec-
nigues used them are more involved than for the tri-diagonal ones.

Problems of storage and of computational time can be avoid if the
original problem of solving the Poisson equation is posed in z different way.
This will be the case if one ‘useés power —~ series (e.g. James, 1964; Ostriker
and Mark, 1968) to represent variations of the physical variables or if one

uses a semidirect integration method (Stoeckly, 1965).
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§ 2. Analytical continuation

Tis method essentially reduce the boundary value problem to a Cauchy
one by using the fact that the potential is an analytical function of the
radial coordinate in the interior of the body in consideration, James (1964)
using this method solved the structure of a uniformly rotating polytropic

system. In this case the Poisson equations can be written as+

oYy, et o T o
f Qf(? )+€ Q/«[ ) QM /Q (3.8)

where

/’z /a//% N ON (3.9)

%: a ol = ar) & (3.10)

7 R
"6y

"f’: oﬁ (3.11)

() ke g ¥

‘ K Fo( 0 —pd) (3.12)
... Y +Z@u=)i<fﬁc% C 7

are the dimensioless quantities used and ;*z cos? . The configuration under
study is divided in three differenfregions . In the first one {(region 1) the
potential & is expanded in power series of g about g: 0. In region 2 this
. expansion is extended by analytical continuation to '?: f%, where ?;is the
polar radius of the configuration. Region 3 is the surface region in which
gésggi with i being the equatorial radius. In this region4$'and{a'are not

analytical functions of ? and it is used a different expansion.

+ Here the sign of the potential is opposite than that defined before.
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H
In region 1, %Y and # are expanded as

Ao €8 F s (3.13)
B ‘)g ‘)OM

&
™

1}

0! % By (W (3.14)

where Pj are Legendre polynomials and Aij’ Bij are coefficients to be deter-

mined. Imposing the boundary conditions at f: 0

ﬂ’: 1 {3.15)

)

~¥ _o (3.15)

“f
from (3.13) we get

= r' )

AOj bgd (3-17)

Alj =0 . (3,18)
Aij and Bij are related each other throughout the relation

B+ -3Gsn]a, =-8_, . (3.19)

which is obtained by putting (3.13) and (3.14) intc (3.8). Moreover according
to Lichtenstein's theorem the configuration must have equatorizl symmmetry.

This means that
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for odd iand j. In addition they vanish when 1« j. The coefficients Bij are

determined as follows. Write the expansion (3.14) in a different way

Pl = Z /ﬁ'(ﬁ) f"' (3.21)

where

7 v o < ., ?Df ,
(D‘j(/‘*/ = % Bv(} J \3.22)

and by the orthogonality of the Legendre polyncmials

i .
B = (5 + <) ! f(;« P- o (3.23)
ij 2 jff‘ /) J (/") /" .

Since we know the values of Aoj and Ali’ using (3.12) and (3.9) we may deter
mine the wvalues of‘/%‘and‘;f. Then using an eleven points Gauss-Lecendre

4
auadrature eq. (3.23) will give the values of Boj and Blj' This in turn will

be used to determine Azj via (3.19) and so on. Eguations (3.17)+(3.20) deter

mines then all coefficients Ai* for i # j . When 1 = j eg. (3.19) is satisfied
o

)

for any value of Aii' Thus any set of coefficients Aii determines a solution
of (3.8).
The /A—Wise expansion in (3.13) and (3.14) is terminated with the

term Pl gﬁ), whereas the "? -wise expansion terminates at 'F::i determined by

9]

the condition

20 -10
max (A ;0 ) = 10 3.24
j 201.] ?9 ( )
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This is an ad hoc criterion chosen by James and it is a comprimise between
the need of extending as far as possible the region 1 and the need to minimi
ze the number of terms in the series expansion.

Once the potential in the first region is found this can be extended
into region 2 by analytical continuation. Suppose region 1 extends to ?::f;

At this peint we know # and (2:f . We now move outwards putting

<%
‘E: ?;»f’q (3.25)

in (3.8), obtaining

ﬂ’li%,% +z1?,__,+..~ﬁ z)fb/«:( ﬂq/a ZFBQ?*Q'Q /0] *f[&?ﬁfs 26)

The series expansions now take the forms

{6
= § ED a&(} " E (/,\) (3.27)
o= 2 g L R (3.28)
{ i J:Q ‘B‘d ’y} d(fﬁ}

Putting these expressions into (3.20) we will get another set of algebraic

equations relating the coefficients wglf%j’with the conditions

Qﬁiz 'y {‘i} - (3.29)
!
¥, = i) (2.30)
J (fo ‘gzz?l

The coefficients < and ﬁé;are then determined using the same tecnique descri-~
<

%
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bed above for determining Aij and Bij relative to the region 1. Once wﬂyare
determined we know ¢ and é%? at a point % determined by a condition simi-
lar to (3.24). Initially is f;: g and the process is repeated until g; is
reached.

In region 3, the potential 4 and the density/QQare not analvtical
functions cﬁ‘? . Tndeed. for some value of polvtropic index the density is

discontinuos across the surfare. In this regiom the~ the exransions used

are of the type

Y =J§> \%,(%)73(/«) (3.31)
HONHD e

S ubstituting the~e +two intF (3.8) and putting

o

Y = 2 “{ (3.33)
d%' b 2
oy . (3.34)
o ¢ J t

the-result is

d o ‘i“-} :'
5?% % = - £ £, | (3.35)

These eguations are integrated from f; to g; by the Runge-Kutta method with

initial values for a,, b, determined from those of ¥ and U at g::? . The
J-J of 4

density is computed inverting (3.32) and using a similar tecnique used in

region 1.

With this method the Poisson equations are reduced to a set of ordinary



=

differential equations which can be solved by using a Runge-Kutta method.
4
The truncation error of this method proportional to h is even related to the

truncation error made on using finite series.
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§ 3. Belf-consistent-field methods

This method is the generalization of the well known Hartree-Fock
procedure to obtain mutual consistent potential and density distribution
for’differential rotating polytropes. The main idea is to relate the poten-
tial and density through integral relations instead of the more customary
differential equations. The boundary conditions will be then naturally
incorporated in the evaluation of the integrals which can be computed numeri
cally more accuratly than differential operators. Once this integral relations
are found the alreadyv mentioned two steps can be evaluated indépendentlx}then
an iteration procedure is needed to obtain self-consistency.

Let's now describe briefly the mathematical tecniques involved.
The‘gravitational and centrifugal potentials are relatgd to the density by

the following integrals

‘53 (’]—T——-’"r dr' ‘ (3.38)
¢ / 1L~ I |

d o' (3.37)

o

where & is the distance from the rotation axis (here (@,¢,z) are used as
cylindrical coordinates), ,8 the specific angular momentum and m is a Lagran
‘gian mass coordinate defined as the fractional mass interior to the cylinder

containing the element of fluid
& taw

&) pem)deie

- -

m(@) = SR ‘ (3.38)
) @ o, efdade!
- {

0 Ze
The general approach to the problem is to recognize linear operator wherever
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they occur, then using analytical expansions with- orthonormal polynomials,
the Mequilibrium" and "potential" steps reduce to algebraic equations which
can be solved by matrix method. For instance ¢ and ~ are related by mean
/
of the linear operator
/ dr' .
C | oo mmm— ’ {3.39)
lr - '}
whose Green's function can be expanded in terms of Legendre polynomials in
the angle gfbetween r and E"the larger and the smaller of which we designa-
ter andr r ectevel
, 2 esp evely

“

: ) Pn(cosa') (3.40)

3

L
=g

% i AT

\ﬁ;r-\

ir - 'l

Thus, if we expand the density in the approximate polynomial form

plez) = Zoa, w2 | (3.41)

a; 4
lzc?t 13

and the gravitational potential in the form

i 1

%('@5,2) 3 v, oz (3.42)
then (3.36) ensures us that we may write

3
i iK1 aji (3.43)

Ye1 = Z B
Y

is the Green's function (3.40). Simce T. . can be evaluated once

where Ti' i 5kl

k1
and for all the potential (vkl) can be calculated from the density (a;j) by
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matrix manipulation,

Using the following dimensionless quantities

= r/R a = T/R

s
it

(3.44)

h = (Mg M= cos & €= z/R

where R is the maximum radius of the star under consideration, Ostriker and

2
Mark (1968) chose to expand the product x/O instead of/4 in a sphere of radius
R, since that quantity appears often in integration of density over volume

"
3 M

_ 2 2 E 2m
fx, = , = A P (14)
(x/w) * /O(X/M) RO wf 1m * o Yot

(3.45)

E~Y

Only even-order Legendre polyncmials are used because of eguatcorial symmetry.

The coefficients Alm must vanish if m«1l in order to maintain continu
ty at the origin. This also implies that the density assumes a finite value
at the center of mass. In addition although the true density vanishes on the
circumscribed sphere, the approximate density will not vanish there, thus
one must add the constraint f(lvﬁ) = 0. Under these constraints the coeffi-
cients Alm are determined requiring that the mean square error between the
particular form (3.45) and the more general is minimum.

Nex%}putting (3.40) into {(3.36) and making use of {3.45) after integra-

tion we get

T oa P
1 — - 47—
_%? S 4 in_21-2 212 1-3 ___ 2m, (5.45)
fot Aol 141) (41-3)

o =

roj w

T Sme2l-1

Similarly for the centrifugal potential. Thus given the density, eqg. (3.46)

gives the potential in analytical form. The next step then is to compute a
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new density distribution with the already determined potential and so on.
The iteration is stopped when a criterion of convergence is reached. For
nearly spherical stars 10-20 iterations suffice to give accuracy of 10—5
(Ostriker and Mark, 1968); for more flattened objects 100 iterations may
be needed.

This method or modifications of it have been widely used for computing
rotating configurations with arbitrary distribution of angular momentum.

Clement (1974} modified the method considering a two dimensional diffe
rence scheme for computing the Poisson equation, using a curvilinear cell
with dimensions Ar and r A9 . He impreved the accuracy but the convergence
was still slow for flattened configurations.

Recently Stahler {1983) modified the method for treating very flattened
objects such as rotating clouds. The main change occurs in evaluating the
gravitational potential throughout (3.36). The integral is computed by summing
over elementary torcid (see fig. 24). The cloud is divided 'into toroids of
rectangular cross-section. The potential is computed at the '"field points"

(w, z) located at the intersection of grid lines. The potential of a toroid
of mass §M is estimated as that from a ring of the same mass located inside
the toroid at (#',z'} ('source point"), whose expression can be given
. o0
5‘?(@,2) = -5(}1 :fJ (y)o (y(é?”wl)exp(-yi—z—:—z—-}) dy (3.47)
o o ot

AT

g
A proper location of the "source point" reduces the inaccuracy of using (3.47).
This is made in three different steps. In the first one the torus is sliced
into horizontal records, then the radius m'of an infinitly ring which can
replace each record is determined requiring some degree of accuracy. Since

we can think that this rings from a "can'" the potential will be computed
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slicing it into ringg asking for the height of the "average" ring (see fig. 25).
If the "source point” apérinside a cylinder sorrounding the rotation axis,
then one has to use the exact formulae for a cylinder.

Although this method requires more computing time for each iteration,
in the case of highly flattened equilibrium configurations it converges with
fewer iterations.

Sgdf-consistent-field methods formulated using integral relations bet-
ween the potential and distribﬁtion of matter has been used by Bonazzola and
Schneider (1974) but as we already mentioned it does not work properly in
highly relativistic regim. The problem being that these integrals contain
the exterior geometry beside the distribution of matter complicating the way
to obtain the solution.

A way out of this difficulty is to use the Stoeckly's method who
developed a difference scheme reducing the number of points and difference
equations by using few points but accurate formulae for one dimension and

_many points but simple formulae for the other. Indeed he used a Gauss-Legen-
dre quadrature approximation along the/M dimensicn and finite difference

along the r direction.
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§ 4. Generalization of Stoeckly's Newtonian method.

Butterworth ;nd Ipser (1976) modified the Henyey-type method used
in Newtcnian theory by Stoeckly for constructing a seguence of models with
various strengths of relativity and varisus amount of uniform rotaticn or
differential rotation.

In the Henyey method the differential equations of stellar structure
are replaced by a set of finite difference equations. Since the equations
are non linear, one starts with a trial model close to eQuilibrium and
solves for the linear corrections. Smilarly in general relativity an initial
approximation for the unknown guantities P,su,B,Sﬁ 4lor-éip is obtained in
one way or another. This approximation is imagined to differ by small

amounts 5? ﬁxv , J’B «+».. from the desired soclution, the field equations are

expanded to first order in Jp, Jw, JB, and a Poisson-like set of partial
differential equations for Jy, Jw, ... is obtained, with source terms that
involve only the initial approximations ¥,w, ... .This set of linearized

equations and another one obtained imposingboundary conditions in a way
explained below are replaced by difference equations on a finite grid in the
(r?M)~plane. The difference equations are then solved for the values of Jlﬁ
Jw,.... , at the grid points and V is repiéced by ¥ +JY in the approximate
solution. Next the chosen equation of state, rotation law and integrated
equation of hydrostatic equilibrium are used to obtain new distributions
of angular momentum and matter. Tﬁese steps are iterated until convergence
is achieved and the changes in guantities at the grid points drop below some
desired upper limit.

The linearized field equations are obtained replacing ¥ , w,B with

Vi+dy, o +dwand B + JB and expanding to first order ina&,J&, and JB. Thus
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we get

[~ 2

= 2 (1) o
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where m= cos & and

[:(f E)Q J (3.51)

The equation for the metric functionf? is already linear.

fm

Beyond the boundary condition at the center (r = 0) and on the axis
of rotation (see Cap. II)} we should impose condition of asymptotic flatness
at infinity. Butterworth and Ipser used expansions in power of 1/r at large
radii of the metric potentials as boundary conditions. These expansions are
cbatined as follows. First the angular expansions are written in terms of or-

thonormal polynomials

M
-

v

(3.'52)

-Tm z
B = Z 5 2L (/M>
l=0
. . 1/2 .
where le is a Legendre peclynomial and T21 is a Gegenbauer polynomial (Morse
and Feshbach, 1953). These polynomials are chosen since PZL’ Pl/u and Ti/z
d 9

are eigenfunctions of the angular parts of the operators ?:(7, E?-rsin9T7and
26302V lof the T .

Ve r sin v respectevely that appears on the lhs’of the field eguations.

Then it is assumed that the radial parts of (3.52) have expansions in powers

of 1/r at large r with leading terms given by

—_— M (3.83)
Ir
)
Wl e (3.54)

3
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Bal {3.55)

The actual expansions then are found substituting inte the field equations
the (3.52) taking into account the orthonormality relations and egs. (3.53)

-{3.55). The results are

+d 2 - = T30 3 Jtrs (3.56)
- v 4
) \
+) = 'r~~—j"2(/”f
s
zJ s IN p é: M ~ g K3 S vgd T *,74
) — i e, §- 3 b= /_"}2 H——,—f?{";‘:%)*—“*’ R
Wy Ts r 5[ M r+L3EG < "J"o/( Jr?
% &Sz-fﬁn)_!_(,»,ﬂ; S
A8 (3T AN ) - Py o
P} Ty
Wi o _ .
+.i s * j ﬁ?ﬂ
pr [Pl N S
e B \ T " ) B 1.5/ /11)& e
va( (H;; o (p)+ (% 2 f)*(z ;-f a () (3.8
o~ - Al
The constants gz’t%c’ and‘%g are the analogues of Newtonian multipole
moments. Unless §21, they cannot be evaluated in terms of integrals over the

matter, like in Newtonian theory because the exterior geometry acts as a sou

rce for those moments. The guantities gél can be evaluated

2)% TR :
~ 16n (=) po2p-ev 13 R
5 i B i /e 12 T ; ' (3.59)
STy vy L LR A G A

et
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Since the difficulty of evaluating ée and L«,Z£it is not possible to
use (3.56)-(3.58) as boundary conditionsat same finite radius r . Butterworth
and Ipser had the clever idea to transform the Diriclet-like boundary condi-
tions (3.56)-(3.58) in Newmann-like ones involving the derivatives, in a way
that we will illustrate here briefly. Consider the metric function *i its

angular expansion is

> [
Q(I‘,/M) = éZ Ve (M T (r) (3.60)
zo

and its radial derivative

X
]

2 v, () Relr) (3.61)

r
] =0

Y

The aim now is to seek expressions for g(
Y

in which the constantsegfare repla-
!

ced by ggk}. This is done simply computing the derivatives of the coefficients
%Cﬁﬂ of (3.56) then subtructing or adding suitable terms one can replace the
constants %; with gch). This functions then can be evaluated, as each radial

function, by using a Gauss-Legendre guadrature

'

’

’?e (r) = % {4€+QJ/ o!/A Y{mp) Ee (r*) (3.62)
~1
The Newmann boundary conditions (3.61) then are linearized ‘obtaing a differe
ntial eguation which will be approximated by finite difference and solved
only on the right hand side of the grid. Similarly the linearized version
of the boundary conditions for w and B can be obtained. However these are

more involved , since one should define new quantities by

O

wlnp) = 2 WD T (#)

£ -0 (3.83)
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< + -

Brpm = 2 BIo R
‘ fzo (3.84)

before transforming the type of boundary conditions. Then one needs to conne

ct the previosly defined gquantities uéér), B”l(r) with the new ones, It turns
4 <4

out that the following sets of equations have to be sclved

- - /

A jEﬁZﬁM W, (¥) (224 - P (v |4 Gt ?w%’ TP g (3 &
ngl:zb PP 2w - m wm—gJ T g o€ 2 b Y .)

i

y awi s —k

BZ“(:}: - e'Z @g(ﬂ/ Le® T om (3.66)
age
. )

With this method the computer essentially decides on the values of the multi
ple moments in a manner consistent with the field equations.

The difference equations are computed on a finite grid in the (rVM)—
plane. The grid consists of a chosen number N of radial spokes emanating from
the origin at the Gauss-Legendres gquadrature values/#’=02/§,“~/ﬁy. A chosen

number I of grid points are uniformly spaced at chosen radial intervals Alr

along each spoke.

B=o

k:!
Czy oz 3 4 9

=4
i

The radial derivative are approximated using central formulae of the

type
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£ () 5 Lo
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4t
whereas the angular derivatives are approximated with sufficient accuracy by
using the Gauss-Legendre guadrature

N

({?{Vt)ﬁ,‘) = Ez Buw £07, pu)

R

Sy
%
T
<
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where

i%’b—' Hu Be () e (/)

o
]
3M§

km fs
i N
i ® 2 2 (0000 He R () B ()

Ny
- 2 0en)(an) Hu e ln) T, ()

are independent of the particular function to approximate and are computed
,throughouttheweightiniq;funcﬁions}%}which are tabulated (see e.g. Kopal,1961).
Here Hm, for m» 2, are to be assigned twice their usual values , since only
quadrature points at non negative/M are used.

When an equation of state, a rotation law and an initial approximation
close to equilibrium are specified, the difference equations are solved by
Gaussian~elimination tecniques for getting OE’. Then ¥ is repalced with Vi I
and this value is used to integrate the hydrostatic equilibrium equation to
get new values of J. and p. These new guantities are used to solve (3.49)

for getting Jw and recompute J/{ and p as before. Solve eg. (3.50) to obtain
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new B, then use eqg. (2.8) to compute §’ aﬁd recompute /2 and p as before. The
iteration is repeated until the process converges.

A meodification of this method has been used to construct a numerical
code able to feollow the full relativistic dynamical collapse into a black
hole of an akisymmetric configurations by Smith (1I983). He used as initial

condition the models constructed by Butterworth and Ipser.
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CONCLUSIONS

The results and theorems presented in this thesis are those we think
are important to know for ccnstructing equilibrium models in general. The
sequence we would like to compute is that of self-gravitating torii in the
framework of general relativity. Since the non—linearity of the Einstein
equations this has to be done numerically. We will apply the method used by
Butterworth and Ipser with suitable modifications in order to take into
account of presence of horizon for instance. As initial approximation for the
field we will choose the Kerr metric supposing that the torus is only weakly
self-gravitating. Solving the Einstein's equations for the corrections to the
metric functions we will iterate between matier distribution and field. When
convergence is reached we start again the iteration increasing the mass of the
torus. This can be done for different values of constant angular momentum. In
this way we may construct two sequences: one with fixed constant angular momen-—

£

tum and diffegpt masses of the torus and another with fixed mass and different

)
- I §
vliues of #Hé.masm. covscare &mniulb, wosdilom |
P ’ o ¥
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