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C1)

This thesis is concerned with the effect of mixing of
hale subbands in Quantum Wells on the optical transitions in a

magnetic field.

The recent improvement in epitaxial growth technigues has
made possible to realize high-guality semiconductor heteros-—
tructures: magneto-optical experiments on these systems have
revealed in the observed spectra complex structures that can-
not be accounted for by simple models of gquantum confinement.
More detailed band structure calculations seem NEcessary in
order to explain the observed features : however, the strong
non-linear behavior of the Landau levels and the relaxation of
the usual selection rules for optical +transitions resulting
irom the coupling between hole subbands, have precluded up to

now & convinocing comparison between theory and experiments.

We zhow that with the explicit evaluation of the transi-
tion strengths, in a six-band envelope- function approach, =&
detailed and almost complete agreement with the observations
is  achieved. The gualitative details of the calculation
depend critically on the sample parameters, implying the pos-
sibility of their precise determination through the comparison

.

between the theory and magneto-optical experiments.

The layvout of the thesis is az follows :

Chapter I contains an introductory review on the electronic

properties of Semiconductor Heterostructures

Chapter 11 describes the wethod, based on  the Envelope-—
Function Approximation, that has been used in our energy

level mcalculation:



€iid

in Chapter III1 illustrative examples of calculated subbands
in SBuperlattices are reported: a brief account of two related

topics is also given ;
Chapter IV deals with Excitons, in tweo and three dimensions :

in Chapter V the calculated interband transition energies and
strengths are compared with magneto-optical experiments on

Gads Quantum Wells:

Chapter VI is concerned with Cyclotron Resonance in Quantum

Well’s structures.
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CHAPTER 1

The steady improvement in the thin-film growth technigues such
as Molecular Beawm Epitaxy (MBE) [1l1 or Metal Organic Chemical Vapor
Deposition (MOCVD) [Z3 , has made possible to realize high quality
semiconductor heterostructures composed of periodic sequences of
ultrathin crystalline layers ( 10 - 1000 g } of alternating semicon-
ducting compounds with interfaces sharp on an atomic scale : these
artificial media exhibit novel properties not shown by their parent
compounds in the bulk.

Interest in Superlattices ( SL ), as these multilayer structures are
usually called, originates from an early proposal [31] cf a one-
dimensional man-made "superlattice" having period shorter than the
glectron mean free path )

Table I gives a list of several BL systems, indicating where the

ma jor interest lies for each of them (from Ref.C51).

These structures are generally grown alternating lattice-
matched semiconductor compounds of group-Ill and group-V or group-ll
and group-IV elements; there are various reasons for this choice :

(13 these compounds have a direct band gap :this means that ,since
they ecan emit or absorb light without the help of lattice vibra-
tians, they are particularly suited for the realization gf aoapto-
electronic devicess

(2) they can be sasily doped ;

(33 they can form various solid sclutions with identieal crystal
struchure and well-matched lattice parameters but with different

energy band gaps.

An almost exhaustive list of closely-wmatched pairs of binary
and elemental semiconductors ,including III-V/II-VI 8L systems, is

given in Ref.Lé&1.
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TabLE L. Semiconducior superiatiices.

Systems

Techniques

Remarks

GaAs-GaAlAsiAlAg)
InAstinGuAs-GaSb{GaSbAs)

MBE. MOCYD, LPE
MBE

Extensively studied
Extensively studied

GaSb-AlSb MBE Metaliurgical and optical properties
inAs-AlSb MBE Optical and magnetoproperties
GaAs(GaPHGaAsP MOCVD, CVD Strained superlattice, luminescence
GaAs-InAs(inGaAs) MDE, MOCVD bleallurgical and light-emitting properties
InP-InGaAs MOCVD Magnetoproperties )
InP-inGaAsP LPE Light-cmitting properties

InSb-GaSb Sputtering Ordered structure, inteediffusion
GaP-AlP Theoretical indirect-direct gap
Ge-GnAsiGoAlAs) MIE Metalurgical properties, defects

Si-5iGe MUBE. CVD Dislncations, mobility enhancement
CdTe-HgTe MBE Zero-bnite gap, metallurgical prohling
PoTe-PbSaTe Hot-wall Interdiffusion, magnetotransport
PbTe-PbGeTe MBE Distocations, Auger profiling
InAs—GaSb-AiSb MBE Polytype superlattice and heterostructure
GaAsin-GaAslp) MBE Doping superlattice, tunable gap

fvom : L.L.Chowna,

. J. Vac. Scl. Technol. B 1 (2}, Apr.~June 1983)

8. structures possess unusual electronic properties

two dimensional character.

The simplest case is that of

Gahs layer sandwiched between barrier-layers of Al,Ga,.zAs

bhand gap is entirely

contained within that of &lGads,

being a function of the alloy composition x (This is an

the so-galled ‘“iLype-1"

SL 3. The nst

potential is the

of guasi-
an undoped
: the Gahs
the latter

example of

sum of the

potential in the & and B layer and of a sguare wave-shaped “"superpo-

“tential®™ which arises from the band gap differences between A and B

materials (fig.2).

For the conduchtion band for example,

the lavers



Quantum-weil structure and  a
corresponding real-space energy band AlGaAs
structure. The schemalic diagram in a
shows compositional profiling in thin layers.
The circle in b represents an exciton 1n the
bulk compound, and the ellipse represents
an exciton conlined i a layer with a low
band gup. Figure 2

Fig.2
b
E Ea ) AEI Canduction band
Energy lev;s- T -H:g;~e;|ergy
5 band gap
E Law-energy
5 . ban: gap
mm Valence band
of one material -say - A- form a series of square shape potential

wells which confine the electrons in the conduction states. The

unantized confinement energies are of the order of :

E, =%h n" /2m*Lg s N=0,1,2. ... (1.1)

where m¥ is the effective band-edge mass for the electron and Lg is
the width of the confining layer.

. To each of these ﬁparticle—in—the—box" levels corresponds a two-
dimensional density of states m*/?ﬁ .For thick AlGaAs barriers,
the associated wavefunctions are mainly localized in the A-layer,
with evanescent wings in the adjacent B layers. In this case,; the
system is usually called a Quantum Well (QW). |

However, if the decay length of the wavefunction in B-layer is ocom-
parable with the width of +the barrier, tunnelling of electrons
through these potential barriers can occuf, leading to the formation
‘of subbands having small but finite widths, which are the SL conduc-

tion bands.

Thus SL‘s present & duality of aspects, the QW aspect  with
gquantized conf inement energies, 2D density of states and localized
wavefunctions, and the SuperlbLattice (S5L) aspect, with strong aniso-

tropy in the Brillouwin zone and the resulting small but finite



bandwidth in the direction perpendicular to the layers.
The parameters (choice of the materials, layer thickness, carrier
concentration, etc.) that determine the SL or QW character, will be

discussed in the next section.

1.1. Superlattices, Quantum Hells & Heterojunctions

The SL periodicity d, superimposed on the lattice periodicity,
leads to a division of the original Brillouin zone in subzones, with
boundaries at wave vectors k=nT/d, n being an integer. In the SL
direction, i.e. perpendicularly to the layers,the original bulk
material bands will be splitted into subbands separated by small
bandgaps (minigaps), see fig.3. The width of these subbands and
minigaps depends on the SL periodicity and on the potential differ-

ence between the constituent layers. Since these subbands are much
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Fig.3
Schematic energy level structure of a type I superlattice. a
shows the formation of subbands and the division of the Brillouin
zbne into subzdnes due to the periodic potential AE . These
subbands result from the difference in band gaps of“the neigh~
bouring materials as shown in b. c shows the charge distribution
in real space for a homogeneously doped superlattice.



narrower than the usual bulk energy bands the inflection point in a

band {(i.e. where the

lower energy and smaller k-vectors

to accelerate

this inflection point (in bulk materials this is practically

sible

it reaches this point); if this happens the effective

sign and

reverses sign again, etc.

so-called

have an oscillatory motion with a consequent emission of

Furthermore, the average

tilted conduction band before it is

increase of the applied

applied to a SL makes the current flowing through it decrease :

system 1is

situation is illustrated in Fig.4 ,from Ref.

example, opens the

very fast response time [81,

Fig. 4

tin principle one could thus

effective mass changes sign) occurs at much

: therefore it should be possible

electrons, with an externally applied voltage, up to

impos—

since the electron would be scattered by a phonon long before

mass changes

the electrons are slowed down by the field until the mass

realize the

Bloch oscillator, since in real space the electrons would

radiation.

distance travelled by an electron in the

scattered decresases with the

voltage; thus an increase of the voltage

the

said to exhibit a negative differential resistance (this

possibility

£C73 5. for

to use a 5L as a rectifier with a

This fact

b

CONDUCTION BAND
- .

CONDUCTION MINIBAND

BLOCH OSCILLATION depends on the fact that a voltage acceler-
ates electrons in the conduction band of a semiconductor but at the
same time tilts the band. Electrons are therefore propelled toward
the upper edge of the band. In a typical semiconductor (a) they never
arrive. Instead they emit phonons, that is, they excite thermal vibra-
tions in the crystal lattice and “fall” to a lower energy. In a superlat-
tice, where the conduction band is split inte narrow minibands, they

do arrive. Specifically, they arrive at the upper edge of the lowest con-
duction miniband (), and on arrival they are reflected. They may os-
cillate repeatedly between the miniband’s edges before they emit a
phonon. Since the miniband is tilted, the emission moves the elec-
tron’s center of mass a certain distance Az (c). That distance de-
creases with increasing tilt; thus an increase in voltage can have the
curious effect of decreasing the current that flows through the crystal,



The electron dynamic in the superlattice direction was analyzed
for conduction electrons in narrow subbands [9] : these calculations
predicted in fact an unusual current-voltage characteristic includ-
ing differential negative resistance. The few experimental evidences
of such effects ( 107 , [11] » were interpreted successfully in

terms of the Superlattice effect.

In practice there are fundawental problewms that make difficult
to see any effect related to the subband width of a 8L. To see this
we must realize what are the fundamental parameters that determine

the 5L dimensionality, that is:

a) penetration depth (related to the band structure)

b)Y mean free path {(related to the scattering processes)

o) screening length (related to the charge distribution)

a) The dimensionality (2D or 3D of a 8L can be characterized
by +the subband width. A flat subband, corresponding to an infinite
effective mass, means that successive layers do not interact (Quan-
tum Well case)

A& QW is an almost ideal realization of the ‘"particle in a box"

model: owing to the confinement of the carriers through the band gap

- discontinuity, the continuous spectrum of electrons and holes in the

direction perpendicular to the layers is split into discrete energy
c§€

levels and the effective band gap E% increases with decreasing layer

thickness {(Quantum Size Effect).

The simple "particle in the box" model {fails however to describe
fully the experimental observations; for example, it neglects exci-
tonic effects which play an important role in these systems: the
excitonic binding energy in a thin Ga As layer is significantly
higher than that in the bulk material, due to the quasi-two dimen-—
sional nature of the exciton.

Furthermore a realistic description of the bulk band structure of
the constituent materials must include necessarily band coupling and
degeneracies. These facts are important especially for the disper-

sion relations in the plane of the layers which is not trivial for



states derived from coupled bands such as the p-like valence bands
of all III-V semiconducting compounds or the k-E coupled conduction
and valence bands of narrow gap materials. We will address these

problems in the 1l part of this thesis.

The length that characterizes the strength of the interaction
between successive layers is the penetration depth of the electron
wavefunction of the lower energy material inside the higher energy
barriers. If the latters are thin enough, the electrons may tunnel
through them into the next well, leading to a finite width of the
subbands in the direction parallel to the plane of the layers("real"
8L .

For free electron wavefunctions the penetration depth is just the de
Broglie wavelength A,=(ﬁa 72m® V;m', where fi is the Planck’s con-
stant, m*the effective mass and V the height of the potential bar-
riers. Typical values for type I-SL are V~100 meV, nme.DSm, lead-
ing to the value A~ 30 Z. 5L’ s with layer thickness of the order
of 20 3 can be easily realized by MBE technigues: hence the con-
straint imposed by the de Broglie wavelength does not prevent the

observation of a 3D character SL.

On the contrary, a much more severe constraint is represented by the

scattering processes:

b) In order to observe a real SL effect the subband broadening
due to scattering must be less than the subband width. This latter,
in the case of a 50 K -5L with a 100 wmeV potential step, is of the
order of 10 meV. The required scattering time can be estimated from
the uncertainty relations and is roughly of the order of 1dd3 S@C.
Although this time can be easily achieved in a normal semiconductor,
in the case of a SL it represents a severe requirement since in
order to acgquire the necessary energy {(say one half of the subband
width) from a reasanable electric field (1 KV/cm), the electron must
have a mean free path of about 1000 K or, equivalently, it wust
traverse 20 layers without being scattered: thus the crystallo-

graphic gquality of the SL must be excellent, i.e. the constituent



materials must have a very accurate lattice match €13,

Although many materials fulfill the requirement of a precise lattice
match (for GaAs/Ga,.xAl. As systems the lattice mismatech is less than
0.15% at 300° K), the Bloch oscillations have not yet been observed.
However, transport measurements have shown tunnelling through wmulti-
ple barriers and band conduction in the 5L direction has been inves-
tigated [i1231.

Recently, magneto-optical experiments on very thin BL in a magnetic
field perpendicular to the growth direction have made possible a
direct observation of wminibands and wminigaps [133.In these experi-
ments the electrons, in order to complete their cyeclotron orbit, are
forced to tunnel through several layers of the SL: the analysis of
the intersubband optical transitions allows for a determination of
the subband width. Furtherwmore, these experiments show that even a
system composed of only 7 lattice planes of GaAs sandwiched between
2 lattice planes-barriers of GaAlAs still behaves like a supeblat—

tice and not as a random alloy of Al atoms in a Gads matrix.

c) A third fundamental length must be considered when free
charges coming from dopant impurities are present :the screening
length. For degenerate materials this length is given by the
Thomas—-Fermi expression /kﬁ=(E§E /6T e® No Yf where Eg is the Fermi
energy, ne is the net free carrier concentration and €& is the
dielectric constant.

For a typical degenerate semiconductor wth n°=5>c'10ﬁ cm-aand & =12,
this results in a screening length of the order oi 90 X .

I1f the layer thickness is much less thanlm” the charge can bhe con-
sidered as homogeneously distributed over the layer; otherwise the
charge will be redistributed across the interface and electrons and
holes will accumulate on the two sides of the interface: this situa-
tion is typical for heterpjunctions. The resulting potential can be

calculated by wusing the Poisson‘s equation: in general the problem

€12 In general; a significant lattice mismatch will be
accommodated by the creation of more or less regularlg spaced misfit
dislocations at the interfaces; these in turn act as rags for free
carriers: the resulting localized charge will shield the electric
field arising from the potential difference between the layers, thus
modifying the energy band line-up.



must be solved self consistently because the charge distribution is
the result of the band structure, that in turn depends on the charge
distribution itself.

Fig.5 shows schematically the band bending profile resulting from
the transfer of charge released from donor or acceptor atoms :@: in
the case represented the heterocjunction is made of n-doped GaAs/p-
doped GaAlaAs. Note the roughly triangular potential well binding
the holes and resulting from the ionization of the impurities in the
depletion layer.

This system, in contrast to SL and W, lacks inversion symmetry @
this leads to a removal of the Kramer’s spin degeneracy (much larger
than the one already present in bulk GaAs because of inversion sym-
metry breaking owing to the difference between Ga and As lonic

potentials).

n-Ga As P-Ga_AL As
AE.

. $
interface
Fig.5

Energy band profile of a modulation
doped heterojunction made of an n-do
ped GaAs layer grown on a p-doped
GaAlAs layer.

Holes are confined near the interfa-
ce where a 2D hole gas is formed.

z is the coordinate of the growth
axis.



1.2. Iwo-dimensiponal electrons in Heterostructures : the Quantum

The possibility of realizing two-dimensional systems of elec-
trons or holes either in QW structures or at heterojunction’s inter-
faces, led to the discovery of the Quantum Hall Effect (QHE) at
very low temperature the Hall resistance?méaf a ZD electron gas sub-
Jected to an intense  magnetic field is gquantized to values
h/nezcwhere n is an integer ), to better than one part in a million
£14] ("Norwmal" QHE ).

This guantization, first observed in 5i-MOBFET, has been wmuch more
extensively studied in GaAs/AlGaAs heterojunctions (see Fig.4) where
high electron mobility has been achieved through modulation doping.
At still lower temperature and higher magnetic field, an entirely
new phenomenon was observed : the guantized plateaus in the Hall
resistivity were found at fractional multiples of h/e? r£151 ("Frac-
tional" QHE ).

Fig.6

Goas SuB~
STRATE

Modulation-doped n-type GaAs—AlGa,_,As heterostructure and its
energy band structure. CB and VB refer to conduction band and valence band
edges; E; and E,; are the energy gaps of AlGa;_,As and GaAs. AE is the
zero-magnetic-field filling of the two-dimensional electron gas lowest quantum
subband, and Ef is the Fermi energy. W is the step height between the GaAs
conduction band and the Al,Ga,_ As conduction band at the interface
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This discovery has spurred a large number of experimental and
theoretical studies. A tentative explanation of such fractional
filling is based C163 an variational wavefunctions which describes
the condensation of a 20 electron gas onto a new state of matter, an
incompressible gquantum fluid whose elementary excitations are frac-
tionally charged.

For a recent review on QHE, see [171,

Hetero-interfaces can be classified roughly into four kinds
type 1, type Il-staggered, type Il-misaligned and type III SL'’s,; as
illustrated in Fig.7.b (taken from Ref. £181 ».

This classification reflects the different ways in which the band-

gap discontinuity Egl—E&z is shared between valence and conduction

bands.

The most investigated case is that of undoped GaAs/Ga,..Al . As
heterostructure where the GaAs bandgap is entirely contained within

that of Ga Al As, leading to the square wave modulated potential for

(a) DOPING SUPERLATTICE

ELECTRONS
CONDUCTION BAND

HOLES  TYPE I -STAGGERED

ELECTRON ENERGY —~~e

Eca ELECTRONE

VALENCE BAND

(b} COMPOSITIONAL SUPERLATTICE

CONDUCTION BAND HOLES TYPE II - MISALIGNED

& ELECTRONS
2
w
4
g A\
&
2 HOLES
e
VALENCE BAND
| I { 1 1
o £ 1 ¥ ¥ _
PZ
DISTANCE x ~——
@  Spatial variation of the Bt
conduction and valence ban- Ts
dedges in two types of superlat- b Discontinuities of bandedge energies at four
tices: doping and composition- kinds of hetero-interfaces: band offsets (left), band

bending and carrier confinement (middle), and super-
lattices (right).

al. Fig.7
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the valence and the conduction band schematically shown in fig.7.a.

This is an example of type 1 superlattice.

The so called "type ll-staggered’ S5L‘s differs from its type I
counterpart by the sign of the band edge discontinuity between the
two components of the structure . In this kind of SL, conduction
and valence subband wavefunctions are concentrated in different
regions: we are thus dealing with an ‘indirect band gap in real
space’. The spatial separation between electron and hole states
reduces the dipole matrix elements for transitions between conduc-
tion and valence subbands, thus increasing considerably the radia-

tive electron—hole recombination time.

The binary system InAs/GaSb (type Il-misaligned) is character-
ized by the very unusual band-edge profile shown in fig.7.b: in this
case the conduction band edge of InAs is lower in energy than the
valence band edge of GaSb, by about 0.15 eV. Charge transfer across
the interface is therefore to be expected: experiments show that
when the layer thickness reaches a coritical value of about 180 Z, a
sudden increase in the effective carrier concentration is observed
Ci13.

This transition can easily be understood in & simple double-
confinement wmodel jfor thicker layers, electrons (and holes) become
less confined and the lowest (highest) subband approaches the bulk
band-edge : consequently, at some point the subbands must cross,
showing a semiconductor-semimetal transition.

Theoretical calculation C£193 based on an EM approach show that actu-
ally a small hybridization gap of a few meV opens up at the Fermi
energy, producing a very narrow-gap semiconductor rather than a sem-
imetal :the semimetallic behavior observed is probably produced by

gxtrinsic effects .

The unique member of the type III family is the II-VI HgTe/CdTe
system ( see for example Ref. [203 ). where HgTe is a zero—-gap
semicondustor due to the inversion of the relative position

of 0¢ and Ug edges; the U3 Light Hole band in CdTe becomes the conduc-
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tion band in HgTe, where their energy difference /A was determined
to be 40 meV.

In a modulation doped superlattice (fig.7a), where the periodic
potential is induced by space charge effects resulting from an
alternated doping (n-GaAs/p-Gahds, for example) of the same semicon-
ductor compound , the spatial separation between the electrons and
their parent donor impurities reduces drastically the Coulomb
scattering and  thus enhances greatly the mobility of the electrons
(peak mobilities of 106Dm2/V5 at 4°K have been achieved, about three
orders of magnitude higher than those measured in bulk materials
£211 3. A recent review on the fundamental properties of Modulation

Doped Superlattices is contained in Ref. L[221].

1.3.1. Strained Laver Superlattices (SLSL)Y

The requirement of a nearly periect lattice watch between the
constituents of a semiconductor-semiconductor interface can, at cer-
tainconditions, be relaxed.

Good superlattices with much more severely mismatched semiconductor
materials than, for example , GaAs/AlGaAs, can in fact be grown
£233. For sufficiently thin layers -up to about 300 Z ~ alternating
materials with lattice constants differing by as much as a few per-
cent will accommodate themselves by elastic deformation to a
compromise lattice constant . Fig.8 shows schematically that there
exists a critical value t¢ for the thickness of an epitaxial layer
grown on a lattice-mismatched substrate that separates the regime of
dislocation formation from that of elastic deformation.
Such "Strained - Layer" 8L come out to be astonishingly free of ﬁhe
interface dislocations that would have destroyed those optical and
electrical properties that are desirable in a &L. In particular,
theoretical and experimental analysis of SLS5L made of mismatched (
Sa’a e 1%) ternary compounds such as In,Ga,.xAs or GaAs,Pi.x,indicate
that by varying their layer thickness and composition one can vary,
continuously and independently of one another, the lattice con-

stants, the forbidden energy gap and the transverse carrier mobility
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) SR P:
i
t>t. E<t.

Fig.8

nf the overall SL [241,

Recently, optical absorption measurements in GaSb/Al18b SLSL have
also shown a reversal of the Heavy Hole and Light Hole exciton peak
position :the ground valence state in these structures is the LH
level C[25]3 . This effect can be understood by noting that : (i) a
biaxial tensile stress resulting from the lattice mismatch, acts on
the GaSb layer, that is stretched in the (x,y)direction of the layer
plane ; (ii) as a result of this strain there is a removal of the
degeneracy of Light and Heavy hole valence bands at'ﬁ=0 { see

£ig.9).

These facts, together with the competing splitting of valence
bands due to the gquantum confinement s are responsible for the
observed unusual behavior. Another consequence of this elastic

deformation in GaSb/AlSb system is an observed band-gap shrinkage of

Biaxial Strain Induced

Energy Bandgap Splitting Fig 9

i .. Representations of the energy-
band-gap splitiings and shilts catised by
mismatch stratn in the epitaxial layer. The

Eg'< EQ Ea v Ey bianial shear strain breaks the degeneracy
' of light- and heavy-hole valence bands at
(JST m]tT) \ m VM_I —_— k=0.
8] % my x5y ] Vlh T
| /TN
V,
1 14 hh
(Jegrmy 21y | VAo L Vi
K20 I
| VAo
w0
Tension No Strain Comproassion

J. Appl. Phys. 87 (12), 15 Juna 1985 - arss
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about 50 meV .

1.4 Band offset in GaAs/Al Ga As heterostructures.

An extremely important input parameter for the calculation of
energy levels in heterostructures is the band gap discontinuity,
i.e. the relative energy position between the conduction band edges
of the two constituent materials (see Fig.10). This parameter
determines the height of the barriers confining the particles in the
quantum wells and thus controls the distribution and flow of mobile

carriers. In spite of its central role this guantity is not accu-

rately known, even for extensively investigated systems like
GaAs/Ga Al As.
As can be seen in fig.10, the published experimental values of Qe

=£§EC/Q£3 are gquite scattered even in recent years, ranging from the
85% of the earliest determination [26] to the more recent &0% £z71 .
The experiments do not seem to indicate any relevant dependence of Q¢
on the Al concentration x.

The most accurate estimate, based on anelastic light scattering by
photoexcited electrons , gave Qe = 0.869 £ .03 (x=.06) C283 : this
method doesn’t suffer from the large amount of uncertainty usually

present in optical determination of band-offset ¢ primarily because

(@) (b)
R T [
ig. [} e ° -+ lAE:
£¥o— + 1
E
i + 3.2
ok Bas
g R ;
Qr s L+
+
L @ GaAs GaAl_As

] L L] + 1
75 77 '79 ‘81 '83 ‘85
year
Experimental determinations of +the conduction-
band discontinuity @ =AE /(E -E } vs. year.
e and + mean that optigal ECY] eféltrical me
thods respectively, have been used. B

Fig.10
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0of the complicated valence band structure and of excitonic effects )
since it involves only electronic subbands . Also, it allows a
direct measurement of the total discontinuity AE = EaTEmu so that
an exact knowledge of the alloy composition x is no longer needed.

Theoretical predictions can hardly be of any help, given the normal
uncertainty (20.1 eV) of the best band calculations in bulk materi-
als. Moreover, the oldest and simplest model used to predict sewm-
iconductor - semiconductor band lineup, based on the assumption that
 the conduction band discontinuity @, is simply eqgual to the differ-—
ence between the electron affinities of the two materials, has pro-

ven to be incorrect [297.
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An approach to the description of electronic states in semicon-
ductor heterostructures that has proved to be simple, versatile and
accurate is based on the "Envelope Function' method ( L3031 , [313 ).
It is instructive to discuss briefly the motion of electrons and
holes in a semiconductor characterized by simple, isotropic ;non-
degenerate conduction and valence bands with an extremum at.ﬁ=0, in
the scheme provided by the Effective Mass (EM) theory, and then con-
sider the problem of imposing the appropriate boundary conditions on
the envelope function at a sharp interface between two different
semiconductors.

The approach to the more complex problem involving degenerate bands
will be treated in Paragraphs 2.3 and in APPENDIX G.

We will quote only the main results of EM theory in a simple
one band case (a detailed derivation is contained in APPENDIX A ).
Consider the motion of an electron in a sewmiconductor ,in the pres-

ence of some additional potential U(?) sthe Schrodinger equation is:
L pP/72m + V(D) + U(P) - E IW () =0 (2.1

For example, U(r) could be the band-bending potential on the right
side of the interface depicted schematically in Fig.5. If the addi-
tional potential is slowly varying and weak, the wave function
Y is approximately given by the_353 expansion ¢ see APPENDIX B for

a detailed derivation) :

. — . —
- - —iLVF(TIT - Ppm - )
F(Bru, () + (1/ml. U (T (2.2)
wran  En(0) - En(O)

W

Egn.(2.2) shows that to lowest order W (¥) is given by a slowly
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varying ‘“envelope " f{function F(T) modulating the rapidly varying
Bloch part uno(;). The second term is a correction arising from the

coupling with other bands, as it is obtained in the k.p methaod .

The envelope function F(F) satisfies the Effective Mass Equa-

tion (A.17), that is :
2 . 2 = - -
L ~¢h7s2m™) Y7 + Uy 1 F(&) =€ E - EL¢O0) 1 F() (2.3}

The energy E of the electron, in the case of a simple,isotropic band

extremum (e.g. the conduction band minimum in GaAs semiconductor )

is given by :
- 2. 2 'S
Entk) = E_(0) + A k /2Zm (2.4a)

where

n¥ ,px
i/m* = 1/m + 2/ L M s % =x or y or z (2.4b)
w'sn EL(0) - E_C(0)

2.2 Boundary conditions for the Envelope Funpction.

In the EM equation (2.3) for the envelope function, all refer-
ence to the wicroscopic structure of the host semiconductor is con-
densed in the effective mass m® and the band edge energy E.. (0).
These two parameters assume different values in the two semiconduc-—
tors; say A and B, making up an interface system.

Thus one could think of writing & more general form of the
eqn. (2.3, in which the effective mass and the band edge vary as a
function of z, the coordinate of the axis perpendicular to the

interface.

) -
Ry T -/m*2) Y 1y FR) = {E - E .(O,2z) - U(BYY F(r)
(2.5)

( z=0 represents the interface plane ). The kinetic energy term in
the first member has been written in a way that restores the hermi-
tean character of the EM Hamiltonian .

Typically, the transition region include only a few atomic layers

the potential term in egn.(Z.5) is thus rapidly varying near the
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interface, contrarily to the fundamental assumption of the EM
theory, and the whole EM formalism becomes guestionable. Neverthe~
less, it is possible to provide the EM equation with boundary condi-
tions that makes it useful also in the case of abrupt junctions, by
means of the following argument.

Assume that an abrupt heterojunction is located at z=0. Then for
z<0, m*=mt and E,(0) = E:(D) i for z20 m*=mz and E.{0) = EE(D) .

One now imposes the reasonable reguirement that F(z) be finite
everywhere : thus the right-hand side of egn. (2.5) is finite, hav-
ing only a finite discontinuity at the interface. The left-hand

side must be similarly well behaved; this implies
d/dz(1/m*)dF/dz is finite for all z (2.4

By integrating the preceding expression between z=~t and z=+ € and
taking the 1limit & —3> 0 one is lead to the conclusion (first
derived in Ref.[301) :

B
(1/me)dF /dz (2.7

F )
(1/m,)dF /dz|=
-€ +&

The existence of stationary states (probability density con-
stant in time) implies that the z-component of the current be the
same on all planes parallel to the interface and therefore also that
its average over a microscopic volume L., including one or few unit
cells, be the same on both sides of the interface. One finds, for

the average current J in A-material :
— N 4
Ja = H/m Inuglﬁ*éalﬂidr = (ﬁ/mi) Im { Fﬁco);iFﬂ(O) ¥ (2.8)
EeS
Therefore the continuity of J implies :

¥ # B
h/mad Im € F (0,2 FPor ¥ = Asm%y Im € F° (0> YozF (O 3 (2.9)

One can see that from the condition (2.7), +together with the

requirement that F(z) be continuous across the junction :
Fh oy = F o™ (2.100

it follows that the current J(z) is continuous across the interface.
It is easy to show furthermore that the Hawiltonian appearing in

eqn.{(2.5) is consistent with the conserved current J(z) sthat is the
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usual continuity eguation holds for the probability density F'F  in

each material:
dIF'1%dt + dT(z)/dz = 0 , i=A,B . (2.11)

It is now clear that the boundary conditions (2.7,2.10) on the
envelope function imply that the average of the probability current
is constant. They are, therefore, significant on physical grounds

and can be safely adopted in the treatment of heterostructures.

From the condition (2.10), the continuity of +the total
wavefunction (2.2) implies €22
T (2.12)

u "

{We drop, from now on,; the subscript ‘0’ in the Bloch part of the
wavefunction).

The preceding equation is plausible, given the structural similari-
ties of the I1I-V cowpounds, as long as one is considering the same

band edge on both side of the interface.

Finmally, it is interesting to note that kinetic energy opera-

tors such as
# A2 AR #
Ci/mwp + p 1/m 1/4

that seem reasonable a priori, are not acceptable in treating abrupt
heterojunctions within the Envelope-Function scheme, since in this
case the plane z=0 acts as an impenetrable barrier and the current

J¢z) is no longer conserved [323.

The simple band approach that has been outlined in the previous
paragraphs cannot be used in practice in wmany situations of

interest. This may happen because of :

a) Band degeneracy near an extremum, as in the valence band wmaximum

€22 It is also assumed that the second term in the wavefunction
(2.2) is =small. :
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at F in all cubic sewmiconductors.

b) Coupling between bands that produces deviations from paraboli-

city, as in the conduction band of direct gap semiconductors.

In the case of GaAs, which is of interest here, this non paraboli-
city has a sizeable effect on levels with energy » 100 meVY above the
band minimum: since this energy is comparable with the confinement
egnergy of an electron in a typical superlattice, this effect cannot

be neglected.

Let’s consider explicitly the case of the III1-V compound GaAs.

In Fig.1l1.a we show the calculated energy bands for GaAs, with the
inclusion of spin-orbit interaction (from Ref.[531). The top of the
valence band is at.?=0; the non-relativistic bands are six-fold
degenerate (including the spin degeneracy) at r point, with sym-—
metry Es(p—like orbitals). The additional spin-orbit interaction
couples operators in spin space and ordinary space and thus reduce
the symmetry : the (5 states are split into "z and '8 states

(fig.11.b); the  upper manifold is four~fold degenerate and can be

(Xg)
(%)

W

(Xg)

-85

(L) Lg
(Xy)
{x,)

1
w) L,

/

()
27141 B
=% (z33) k=(000) k=5 (100)

] Energy bands for GaAs with the inclusion of spin-orbit inter- Fi9.11.bA schematic illustration of the band structure in
action. The irreducible representations for the states of the simple UI-V semiconductors near the [ point. T’ is the conduction
group are supplied in brackets. band, I'y gives the heavy and light holes, and T'; is called the

. spin-splitoff band.
Fig. 11.a
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classified with the total angular momentum gquantum number J=3/2, the
four states thus corresponding to Jz; =+1/2,+3/2 jthe (3 states are
two-fold degenerate and correspond to J =1/2. The -'spin-orbit
interaction is very important in narrow-gap semiconductors, where it
produces valence band splittings as big as the main gap.

In the case of GaAs, the splitting A is found to be 0.341 eV,
while the value of the energy gap is Eg =1.519 eV (at 4°K) .

Even if we regard the interaction between states % and Ug as being
very small, we still have a degenerate problem and we must include
the interaction between the two bands that go into T3 at —L=D. The
problem is to derive an extended version of the Effective Mass equa-
tion ( A.17) in this case : one cannot use the simple procedure of
APPENDIX & ( egns. (A.12) to (A.17) ) =ince the band structure is
not a single valued function of K and cannot be simply written as a
Taylor expansion.

-—%
It can be shown [331 that, in & standard second order k- B

description of & set of coupled band edges at the point of a
-2
direct gap semiconductor, the band structure at a given k-value is

given by the eigenvalues of an NxN matrix :

- o([l bt P
Hij k) =§ﬁ D kukp+é Pii ket E; S (i,3=1,2..,N) (2.13)

where «, 3 run over x,y and z and N is the number of bulk bands that

contribute with comparable weight to the formation of the wavefunc-

tions., The terms PE ke in egn.(2.13), where the matrix P is given
by Pg =h/m{u; | py | u; » 4 represent the first order direct ?-B

interactions between the N bands, while the guadratic terms propor-
tional to the matrix D°° represent the indirect i-; coupling between
two of the N bands via the other bands not included explicitly in
the set. The form of the matrix depends on the choice of the unper-—

turbed functions at k=6.

To give a specific example, consider the é6xé&6 matrix given in
the APPENDIX D ( atomic units ,in which i = m = 1,are used in the
APPENDIX and will be used in the text from now on)  which
represents the conduction band and the upper spin-orbit split com-

ponent of the valence band ¢ Uy and Vg states in Fig.11.b) : this
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matrix is known to give a very accurate description of these bands
near ﬁ=D for materials with large spin-orbit splittings .

One has a conduction band with s—-like character at V} and two spin
states s1 and s . The parameter P is defined in terms of the

interband momentum matrix element
P = -1 <slip Ius (Z2.14)

where Ix>» indicates the valence band state that transforms as an
atomic P, ~like function under the symmetry operations of the cubic
group and Is* indicates the conduction wavefunction at Q.

The effective mass m" appearing in the corresponding diagonal terwms
originates from the coupling to the bands not included in the set,
and primarily from the split-off valence band .

One finds [343 :

m*-4 =1 + 2P?3(E¢—EV+ Ay, where O is the valence band spin-orbit
splitting and E

< sE, are the conduction and valence band edges at

point. & is given explicitly by the following expression [33] ¢
A = (3is4chy <xl(9V¢/9x)p%— @V/3ydp,ly> (2.15%)

where V_ is the periodic crystal potential.

The basis set used consists of the (J,Jz ? functions for a total

angular momentum J = 3/2 [351 :
w, = Ilsft >
we = 13725 372> = 11/V2 (x + iy) %X >
us = 13/25-1/72> = 1-4/N& (x - iydt - V2/3 z & >
(2.16)
Uy = I3 2
ws = 13725 172> = 1-Y273 24 + 1/V6 (x + iy)+ >
Uy, = 13/23-3/2> = 1-Vi/2 (x - iy) ¥ »

where Ix>», ly», lz> are valence p-like band states and the symbols 4

and v denote the spin "up" and “"down" states respectively.
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1f one wishes to consider the energy region close to the
valence band top, then the conduction band can be ignored altogether
, i.8. one removes rows and columns 1 and 4 in the matrix (D.1) (and
renormalize the values of Yy, ¥, ¥, and K as described in APPENDIX
F». The resulting 4x4 matrix is the well-known Luttinger Hamil-
tonian [363 describing the light and heavy hole bands in cubic sem-—

iconductor (see (3.3),(3.4)).

The parameters ¥,;¥:5;%::.X and P are specific of each wmaterial
and represent, together with the band edges positions E; ,the only
input parameters required for the energy band calculation in an EH
Theory. Usually they are determined experimentally by fitting
cyclotron resonance data :stheir values for GaAs and AlAs are listed
in APPENDIX F, those of Al,Ga,.xAs following by linear interpblatiun.
The energy-gap difference between GaAs and Al Ga As, in the region
x § 0.45 where the Al,.Ga _As alloy has a direct gap, can be expressed

‘as [373:
. | : .
E%(x) = E4(GahAs) + 1.155 x + 0.37 x (2.17)
Hers EgGaAs) = 1.519 eV is the value of the band gap at 4£°K.

The extension of the EM egn.(2.3) to the many~-band case, in
analogy with the many-band EM equation used in the theory of accep-
tor impurities [381 , is represented by the following system of N

differential coupled equations [313
I\ .
ZJ»{ Hij (=i¥) + UGB & 3F;(F) = E R(©) (2.18)
4

for the N-component envelope-function F;(F), i=1,25..,N3 H;j is the
Hamiltonian matrix {(2.13). The total wavefunction LP(F) is
expressed, in analogy with egn.(2.2),as

| ~iLV R (B3 By
m{E;<0) — Ep(Od%¥

up (o) ¥ (2.19)

WEy = Z; € F(Rrug (B) + Zin

-

-ty
The second term represents a correction (to first order in k-p) due

to higher bands and can, for many purposes, be neglected.

We note in egn.(2.16) that the kinetic energy part is just
-

obtained by replacing k with -iV in the F-E matrix, and that the

potential energy term is diagonal in the band index jthis is a
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consequence o0f its slow spatial variation :as it can be taken as a
constant in each unit cell,; its off~diagonal matrix elements vanish

by Bloch function orthogonality.

The generalization of the boundary conditions (2.7),(2.10) in
the many-band case is quite straightforward and is discussed briefly

in APPENDIX G.

2.4, Effective Mass ve. Tight-bipding Thepories.

In the EM approximation the superlattice wavefunction is writ-
ten as a linear cowmbination of Brillouin zqne—center bulk states,
with a slowly varying envelope modulation along the SL axis.
Although Envelope-function calculations are found to be in very good
overall agreewent with experiments, there are specific situation
where a more complete description is needed.

This can occur when two or more bulk states with widely separated
wave vectors contribute significantiy to a given 5L state. An esxam-
ple oceours in the 5L subbands above the lowest conduction subband in
the GaAs/AlGahds -8L. &s the subband energies approach the GaAs X-
point conduction band minimum (see the band structure in Fig.11.a),
the 6L states become a mixture of U -point and Ai-point related bulk
states. 8Since the Envelope Function method is based on a single K-
point bulk states only (the U -point in the present case ),this X-

point contribution is omitted.

# second example can occur in 5L valence bands. The Envelope-
Function approximation allows no mixing of bulk HH and LH states in
the 5L wavefunction at the BZI-center (This is immediately apparent
from the expression of the Hamiltonian (D.1) when k,=k, =k,=0 ).

This approximation is realistic as long as the HH and LH states are
sufficiently separated in energy. However, for certain layer thick-
ness and barrier alloy concentration, they can hbe close +to one
ananther. For example, in a Gahks QW between Al Ga,.xAS barriers, with
¥x=0.25 and assuming that the valence band discontinuity is 40% of
the total band-gap discontinuity, a crossover between the first LH

and the second HH subbands is expected when the GaAs layer thickness
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is about 280 A.

This i=U mixing can have a substantial effect on optical and tran-
sport properties, since they depend mainly on the band structure
near the zone-center.

A surprisingly large (~30%) admixture of the LH states in the
highest Heavy hole subband state in a 210 A - GaAs/AlGaads QW struc-
ture was found at ; = 0 by investigating the ©polarization of the
optical emission spectra [891. Attempts to interpret these results
within the Effective Mass approximation and coupling with Luttinger
Hamiltonian yield quantitative disagreement: several other coupling
mechanism (strains in the layers, electric fields, asymmetry in the

Quantum Well), were found to be inadegquate as well.

An alternative approach to the EM one consists in the wuse of
empirical Tight-Binding wmodels, in which the SL wavefunction is
described as a linear combination of atomic-like orbitals.
Tight-Binding calculations have been performed on InAs/GaSb and
GaAs/AlGaAs SL [427 : although in most cases the U -point states are
found to be predominant, a certain admixture of other bulk states
seems necessary in order to describe correctly the aforementioned
particular situations.

A drawbackvnf TE methods is that they lead to big-sized problewms
when they are applied to thick SL's, since the dimension of the Ham-
iltonianvmatrix increases with the size of the repeated unit cell.

Moreaver, the implementation of self-consistent calculations when
charge transfer in the heterostructure is expected, is somewhat dif-

ficult in a Tight Binding approach.

One of the main advantages of the Envelope—-Function method is
that it can be easily extended to include external fields. Here we
shall discuss the effect of an external magnetic field applied per-

pendicularly to the layers constituting the heterostructure.
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Many of the most revealing experiments on 2D systems are per-
formed in an external magnetic field : the reason is that in a two-
dimensional system - for example electrons or holes in an isolated
QW or in the binding potential at the interface of a doped hetero-
Jjunction (Fig.5,4) - a perpendicular magnetic field gquantizes both
available degrees of freedowm, producing an entirely discrete spec-
trum and thus leading to an enrcichment of optical structures and

also to new transport phenomena, like the Quantum Hall Effect .

The inclusion of a magnetic field in the Envelope function for-
malism can be accomplished in the following way L3%3:
the field E =(0,0,B) is described by the vector putential—z (it isg
convenient to choose the gauge with Az=0 ). 1In the ﬁ-; bulk Hamil-
tonian, K is to be replaced by i' = i + (e/o)h . Since the com-

-
ponents of k'’ doesn’t commute :

Cky,kyd = -ite/cHB (2.20)

one must go back te the original Luttinger-Kohn Hamiltonian, ([363
written in term o0f the anticommutators {k i sk; ¥ sto derive the
correct expression when a magnetic field is present.

Also , new diagonal terms arise, representing the direct coupling of
the electron and hole to the field ; the conduction band diagonal

terms in the &x6 Hamiltonian (D.1) now become :
- - 2 ¥e - & N
Hee = EL + (k + BA/C) /2m + (e/Zcm g s.B (2.21)

where s is the electron spin (s,=+1/2) and the effective g-factor
L3

is written, following Roth et al. 431 4, as :

g* = zm /n* (z.22)
For the valence band diagonal elements, one must add the terms :
(e/c)K J,B + (e/cig J. B (2.23)

where Jz is the spin 3/2 matrix operator and Ky;q are two material
parameters [38]. Actually g is very small for the semiconductors of
interest here and will be set to zero.

. +
As a consequence of (2.20), one can define operators ag a 3
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a = (c/?eB)ﬂi(kl(——ik;) oAt = (c/2eBY (K tiky)  (2.24)
obeying the commutation relation Ea,a+3=1 . Thus all terms in k,,ky
in the Hamiltonian can he expressed in terwms of these harmonic
pscillator raising and lowering operators.
It is possible to write a closed-form solution of the eigenvalue
problem only if one takes the axial approximation. In fact, the

full Hamiltonian can be written as @
H = Hawalt Hecwn (Z2.25)

Part of the anisotropy in the (k.,ky ? plane is included in the
Haxin part which has axial symmetry and can be solved exactly. The
other term H,, ,which is neglected in the axial approximation ,has

the forwm :

Ha O. 0o 0 O
2
Hooo = ; where Hy,= Hz A |0 0 & (2.26,27)
o H a’
and
A =3 ReR/2om (¥, - ;) (2.28)

Inclusion of the anisoiropic term proportional to MM =0, - ¥ /2
uncrosses some of the Landau levels but the absolute shifts are
always less than 10% C£511 .

In particular, Landau levels with n and nt4 are coupled by the M-
term. This implies that ,for example, the levels with n=-1 and n=3
in Fig.31 should not cross and that those two levels actually have

mixed n=-1 and 3 character.

Since the effect of this "warping® term is small (see also in
APPENDIX H of this thesis ), we will assume H p = 0 . In this case
one can see by inspection that the solution in each material of the

eigenvalue problew associated with H takes the form :

Fo= (2402)®@, ,6,(2YP, 050200, ,1C4(23Pu.s s (2) Pu o ¢ (2@ .2

n

({

B

29D

where the @_,(x,y? are the harmonic oscillator wave functions with



n = -2, -1, 0, ... and the c, coefficients are automatically van-
ishing for the components with negative oscillator index.
If one lets the a , a+ operators act on the state (2.29), finds
that the effective Hamiltonian in the axial approximation takes the

form

z 2 . 5\ Z . ~
Hip = (Djjiky + Ej20jr + (P + Ajju(n,Brdk,+ C;p (n,B) (2.30)

where j,j' run over the & basis states and A, C matrices represent
the magnetic field induced terms. The explicit expression of H;p is

contained in APPENMDIX E.

~i%/9zin (2.30), the Effective Mass

With the replacement ki
equation Zwaﬁ.= E F; becomes a system of differential equations for
the envelope functions c; (z).

The following conditions wmust be imposed in order to satisfy the
boundary conditions [393 :

) . .
—ily S oo, fz) o+ (1/2)2}'Aﬁ.cj‘(z) continuous for J=1,...,6

o
(2.31)

For the superlattice case, all six CJ(ZJ functions have the common
prefactor expliksg 22 s where ks is a quasi-wmomentum in the SL-
Brillouin zone. For SL with very thick barriers ¢ QW limit Yy  the

latter dependence is very small and can be neglected.
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In a SL one has a very thin Brillouin zone in the Xz-direction
€37 of width 2T /d (d being the 5L period) and one of the usual size
2% /a in the kx s ky direction (a being the lattice constant). One is
dealing, therefore, with a very asymmetric band structure with a
bulk-like band width (~ 10 e¥) in the Ky sky plane and narrow (~ 10
meVl bands in the ky —-direction.

Let’s go back to the k-p matrix (D.1).

The dispersion in the h; direction is relatively simple to handle,
since most o©of the diagonal terms in the matrix vanish for k%,k%=0.
In particular one sees that the Jy=%t3/2 states, corresponding to the

Heavy Holes (HH), completely decouple from the other bands j;their

dispersion is purely parabolic, with an effective mass :

mim = (6 =2%00 (3.1)
In a superlattice geowetry one thus has a Kronig-Penney type of
eigenvalue problem, with the boundary conditions (2.7),¢(2.10). The
dispersion relation can be found analytically and is given impli-

citly by the following equation [307

cos{kad) = caosl{kzs daldocos(kegdeg? -

- A 8 B A . .
=C1/2)tmy Kap /mu ks tmu Kep /Mp Kep Y51in{Kea da 15intkeg de?

(3.2
2 - A,B AB X

where Kapp = ZMy (E - Ev ) and da,ds are the thickness of the A and
B layer respectively. As for Light Holes (LH) and conduction elec-
trons, one still has & 2x2 matrix between s4 and Jz,= +1/2 <{(and an
equivalent one for s¥ and Jp = -1/2 ).

£33 We assume that the growth axis of an MBE heterostructure is
in the <001> direction ,as it usually is .
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Consider now the dispersion for kx,k%#D. It has been shown
£393 that the coupling between HH and LH states via the Luttinger
Hamiltonian matrix elements, together with the requirements imposed
by the SL boundary conditions, results in strong non-parabolic
dispersion of the Sbeands in the plane Ckx,kg).

In Fig.12 results for a 120 Z QW of GaAs sandwiched between
Al,Ga,_.As barriers with ¥=0.21 are shaown : they are obtained L4313 in
the many-band Envelope~Function model Just described ,with the

appropriate boundary conditions . It has been assumed that the con-

Fig. 12

<”D>\<1OD>

|
Dispersion of valence subbands of a 1404 GaAs - 2004
ATxGal_xAs superlattice, with x = 0.21, in the plane
perpendicular to the <001> growth axis. Solid Yines: dis-
persion for k in the <100> or <110> directions. Dotted
Tine: axfal approximation. ko denotes /3401 = 9.24 . 105

cm=l. h and 1 denote “heavy" or "Tight" character at ¥ =
0.
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duction bands are decoupled, so that the hole states are described

by the well-known Luttinger-Kohn Hamiltonian :

Ay B C )

¥

A A 2 B A_ 0 C
H = EJI + fi72m « (3.3)
o A -B
¢t -8* A,
where :
2
Ar = — (% £ ¥ Ckat ky) — (Yz ZUIKs
B o= 2V3 Y0 ke ke? - ifky, ke 1 (3.4)
C = (3 C¥alko-ks ) = 20 %34k ky3

Here E is a unit 4x4% matrix and { , } denotes the anticommutator C47.
The calculation is done within the "axial model" in which [443 the
parameters‘ﬁz and ¥4 in the € matrix elements o0f egn.(3.4) are
replaced by the mean value:§ =(y,+%63272 . €53

{ ¥is Bos Gzare the "true" Luttinger parameters that appear with a
superscript L in APPENDIX F).

With this replacement, the Hamiltonian (3.3) acgquires cylindrical
symmetry about the z-axis and the resulting bands are isotropic in
the k,,,k.é plane. For comparison, the true dispersions for-? in the
£100> and <110* directions are also shown in Fig.12 : the axial
approximation represents a good average of them.

The labels on the vertical axis refer to the character of the solu-
tions at kx=kg=0, where there is no mixing of LH and HH components :

the dispersion along kg is purely parabolic, with effective masses

-4
Jp =£3/Z :  my = (%-2%) m = 0.377 m
(3.5)
e -1
Je =% 1/2 : my = (¥, +2%) m = 0.091 m

€43 We prefer to quote this more general forwm of the L.K.
Hamiltonian written in terms of the anticommutators {kx,ky} in view
of its application when a magnetic field is present : in %his case
the different k-components do not in general commute.

2 The axial approximation becomes necessary in the presence of
a magnetic field applied along the z-direction : in such a case, as
it will be explained in Paragraph 3.3; it is possible to write an
ax@c% sgl?tian for the moticn in the (xyyt-plane anly within the
axial model.
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As soon as one moves out of the'ﬁ=D axis, the mixing of these com-
ponents grows rapidly, leading to strong deviations from paraboli-
city. Notice in particular the first LH subband that starts off
with a positive (i.e. electron-like) mass. The anti-crossing
behavior leads in addition to a HH mass in the first subband heavier
than expected in the absence of mixing.

The strong mixing at ?%D and the conseqguent non-parabolicity were
first pointed out in Ref. C[453,For a symmetry-based Jjustification

of the anticrossing behavior in Superlattices, see Ref.[881 .

He will next see how these non-parabeolicities lead to a compli-
cate non-linear behavior of the Landau level structure when a mag-

netic field perpendicular to the interfaces is applied.

3.2 Oscillatory sclutions inside the gap-.

At this point; a word of caution must be said about the use of
?-E matrices to describe the bulk band edges . The bulk Hamiltonian
matrix (D.13) can have unphysical solutions: these spurious solutions
are oscillatory in nature and correspond to values of the wave vec-
tor k that are outside the first Brillouin zone. They have their
origin in the uncompleteness of the set of basis functions (2.16)
used in the Kane approach, which makes it impossible to satisfy the
periodicity relation E(k)=E(k+2ZTn/a) in the BZ (a is the lattice
constant, n=0,1,2...) L4861 : one must be careful not to include
these solutions in the construction of the superlattice wavefunc-

tion.

We have checked this point in our energy level calculation for
bulk~GaAs by evaluating the expectation value -;§= < --d{e'/dz:2 > for
gach particular level considered.

We found spuriocus, oscillatory ¢ F: *»0 ) solutions, with apparent
Light hole character and with energy inside the energy gap, and
such that.;% % ko= W/a = 0.55 2‘1( a being the GaAs lattice con-
stant ). In the OW case, the acceptable solutions were character-—
ized by a finite value of-E%) much smaller than k,,0f the order of

T/d  as expected.



The Hamiltonian (D.1) is derived in the hypothesis that all the
interacting bands have their double degeneracy (Kramers’ degen-
eracyl. In the absence of spin-orbit interaction this double degen-
gracy is associated with the electron spin that can be up or down
without affecting the band structure.

Even in the presence of spin-orbit interaction this degeneracy
remains, if the crystal has the diamond lattice [331. On the other
hand, the lack of inversion symmetry in =zinc~blend materials like
GaAs allows this degeneracy to be removed, through the appearance of
additional terms,; linear in the wave-vector k, in the off-diagonal
elements corresponding to the four valence states in the matrix
(D.13 L£333.

All these terms are proportional to a constant Cx that has been
recently measured for GaAs [471. For example the splittings A Ey
s DE. for ? along <140> direction between spin up and spin down hole

states are given by :
bEy = (3(3/2» Cuk s AE_ = 3723 C.k (3.6)

The constant C.is found to be Ck(GaAs) = -3.4 meV-X
Since at the wave vectors of interest in SL  problems these split-
tings are extremely small, the linear k terms can be omitted in

practical calculations.

A lifting of spin degeneracy, leading to a more sizeable spin-
splitting of +the valence subbands, results when there is a
reflection~symmetry breaking due to asymmetric Superlattice poten—-
tials. This 1is the case of abrupt heterojunctions like the one of
Fig.5 : the triangular potential well binding the holes clearly
lacks inversion symmetry. The calculated spin-splitting of hole
subbands in a GaAs/AlGafss interface system can be as large as 5 meV

& -
at ke2x10° em” " (see Ref.C481).

dnother example concerns the "graded gap" heterostructures . Con-
sider again the GaAs/AlyxGa As system : if the compositional parame-

ter x varies linearly across the supercell, one obtains the so-
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called "Sawtooth Superlattice", characterized by a spatial, approxi-

mately linear variation of the energy gap and the effective mass

parameters (see, e.g., Ref. L4923 ». Valence subbands are spin-
split due to the inversion asymmetry of this “sawtooth" superpoten-
tial : the splittings, which are very sensitive to the band-edge

offset, vary between 4 and 7 meV at parallel momenta between ™/d and

2%/d £507 .
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Excitons are bound electron-hole pairs and are the lowest elec-
tronic excited states in nan-metallic crystals [£521 .,
In the case of a semiconductor with simple, isotropic valence and
conduction bands with extrema at-;=0, andrassuming a weak binding
liwit, the exciton spectrum is given by the spolutions of an
hydrogen-like Effective Mass equation and has the known form ( see

for example Ref, [533 ) :
* 2
Ew = - Ry /n - (A1)

{the zero of energy is taken at the bottom of the conduction band )

#*
Ry indicates an effective Rydberg
# 4 2
Ry = e M/2f €7 (4.2)

Here (I is the reduced glectron-hole mass, & the electron charge and
the dielectric constant of the host material.
Excitons in opticalyspectra appear as sharp line structures Jjust

below the band gap, in contrast to the broad continuum transitions.

In QW structures, the exciton is modified because of the con-—
finement of carriers in the potential well C&) .
If the layer thickness is sméller than the exciton Bohr radius, the
exgiton shrinks in one dimension: the electron and hole are forced
to move closer to each other and the Coulomb binding energy
increases. In the extreme case of a perfectly 20 exciton, this
binding energy becomes [543 ;

(2% 2
Eg = 4 Ry (4 ,3)

€63 In the following we restrict ocurselves toc the wmost relevant
pase in which both electrons and holes are confined within the same
layer ,as it happens for example in the GaAs/AlGaAs systems.
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This theoretical limit is never reached in real systems, due to fin-
ite barrier effect :it has been shown ( [551 , £753 ) that the bind-
ing energy in a Quantum Well first increases with decreasing layer
thickness Ly and deoreases in very narrow wells, the barrier height
being képt constant. i

The reason for this behavior is fairly simple : as Liis reduced the
exciton wavefunction is compressed in the QW, leading to increased
binding . However, beyond a certain value of Ly the spilling of the
wavefunction in the adjacent AlGaAs layers becomes more important
and this makes the binding energy go closer and closer to the bulk

AlGahAs value.

In bulk GaAs one observes experimentally a single exciton reso-
nance. The reduced symmetry of the QW structures, however, removes
the light and heavy hole band degeneracy, and a two-exciton system
results :in absorption experiments a double peak is observed.

Fig.13 reproduces early optical measurements on GaAs /GahAlAs QWs for
“three different values of the well width Lz (from Ref. Cz2&61 3. The

exciton peak shifts towards higher energies and splits into a LH and

Fig.13

Intensity (arb,units)

155 160 165 190
Energy (ev)

Absorption spectra at 2°K of
4,000 , 210 and 140 A thick
GaAs layers between Al 2Ga BAs

barriers {(after Ref. 20 ).
Dashed lines : schematic 3D
(top figure) and 2D (bottom fi
gure) Density Of States. -
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a HH component as the well becomes narrower and the system becomes
two-dimensional (bottom figure ).

Note also the different structure of the background spectrum due to
transitions to the continuum ,which reflects directly the different
dimensionality of the systems : the dashed lines show ,respectively
in the top and bottom figure, the schematic Density 0f States for 3D
{proportional to VE ¥ and for 2D systems, for simple parabolic
bands: in the 2D case, sach of the two-dimensional subbands gives
rise to a DOS that is independent of the energy and equal to m*/ 7 K
, so that the cumulative DOS for a series of bands will have the

staircase~like form shown.

4.1. Excitons in cubic semiconductors

For realistic calculations of the exciton spectrum in ocubic
—p
semiconductors, the valence band degeneracy near k=0 must be taken
explicitly into account.

The bulk effective mass Hamiltonian for excitons can be written as @

Hew = He(R) = H (R) - & /er Choh)

exc

Here the first term is simply pf/me , the second is the 4x4 Lut-

tinger Hamiltonian (3.3) for the holes,? is the relative coordinate

-

r =T, - ?h . (The electron term and the Coulomb term are assumed to

be multiplied by & unit 4x4 matrix ); the overall momentum of the
-

pair P =’i + Eh is actually a constant of the motion and has been

taken to be zero.
The simplest approximation that can be done on the Hamiltonian (4.4)
consists in the neglecting of the off-diagonal elements ,that are
proportional to ¥, and ¥; , and in retaining only the diagonal aones,
that are proportional to Uy + 1/mz For Gahs, mz = 0.067
¥,=6.85, Yo =2.1, ¥;=2.9 : therefore ¥, +1/me >> Y2, ¥3. Thus one finds
four degenerate exciton states with energy given again by the effec-
tive Rydberg Ry (4.2), with a reduced mass given by /%—i= 3}+1/mf.
In particular R?GMQ=3-9 meV (using the value € =12.57 ,while
the experimental binding energy is ~4.2 meV [261,The corresponding

3 [=4
effective Bohr radius is aj=ﬁz€ iy e® ~ 145 A4, showing that the
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ground state hydrogenic wavefunction is widely spread over the lat-
tice; this result justifies a posteriori, the use of the EM approxi-
mation for this system. The off-diagonal terms of H, can eventu-

ally be included as a second-order perturbation.

In a QW, this procedure cannot be carried out for two reasons
(i) the absence of translational invariance in the z-direction makes
Pz (the z-component of the total momentum of the pair) to be no
longer a good quantum number: (ii}) the boundary conditions depend
separately on the coordinate z, 52, and not on z. - z,only.
This makes the exciton problem in QW structures much more compli-
cated than for the bulk: in fact, a détailed calculation of the
exciton binding energy in a QW has not yet been performed.
4 commonly used simplification (see for example Ref. £561 ) consid-

ers two uncoupled HH and LH bands, with effective masses :

X,~ 2%, in the z-direction

1/my = (4.5)
Byt ¥y in the x,y direction
o+ 2, in the z-direction

1/nt = (4.6)
Ba~ b2 in the x,y direction

Then two sets of excitons result; whose binding energies are
obtained by a variational trial wavefunction ,usually chosen of the

form :
Wi lr) = .0z, 38, (2,08Cn,y,2) (4.7)

Xy¥Y,2 being the relative coordinates :f¢(z) and f,(z) represent the
exact solutions for the finite sgquare well problem, while g (xgy,z?
describes the internal motion of the exciton.

One decisive drawback of this approach is that 1t gives, in the
limit Lz —» o> ,two excitons instead of a four—-fold degenerate ground
exciton state appropriate to a bulk situationisimilarly,as Lz —0,
one gets still two split excitons for the (bulk) materials making up

the walls.
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A more realistic approach should include, at the very beginning, the
admixture between LH and HH subbands, in order to get the correct

asymptotic behavior.
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Consider the following Effective Mass equation describing the
relative motion of an electron - hole pair in the presence of an

external magnetic field parallel to the z-axis L[B3] :

- e 2 —t ~ 2 - -
LR —Ce/20)BAE 2 /2mf+ (P +(e/20)BAF ) /2mi- e“/erd1® (P = E d ®
(4.8)

Here € is the dielectric constant of the host material.
It is a common practice to introduce a dimensionless parameter Y to
indicate the relative strengths of the magnetic field effect and

Coulomb interaction :
e
¥ = A w. /2Ry (4.9}

Hare Aw= eiB/uc is the coyclotron gffective energy, /A being the
reduced electron-hole mass.

Many attempts have been made to solve eqn.(4.8) by perturbation
theory (¥ <<1), by the adiabatic approximation ¥ >>1) and by varia-

tional methods (Ref.[531 and references thereinl.

Let’'s consider the case o0f a h?pothetical Two-Dimensional
hydrogeniec exciton in a uniform magnetic field : this problem is
somewhat related to the problem of excitons in Quantum Wells, due to
the gquasi-2D behavior induced by guantum confinement.

For this 2D case the problem reduces to solve the folliowing dif-

ferential esqguation L5731 :

2 [}
~ﬁ2/2ME1/r d/dr(rd/dr)+m2/rz]R(r)+(—9216r + ezB v’ /8 ciu)R(r)=E R
(4.10)

Here m is a magnetic (integer) gquantum number and the energy E is

related to E as follows 1
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E'= E -~ Clme-me/m.+mi)eB/2ucIn (4.11)

We will consider only the case m=0 . This corresponds to the
"allowed case" of the optical excitation spectrum, which is the most
important from the experimental point of view [531.

We will quote only sowme limiting expressions of the eigenvalue spec-
trum of egn. (4.10), obtained in a WKB approximation, that will be
used later in connection with tﬁe problem of interpreting the exper-
imental data of magneto-absorption in Quantum Wells. For a discus-—

sion of equation (4.10) and its solutions, see Ref.[57]

{a) For vanishing magnetic field ¢ exgiton case ) one has @

2 4
E = -[1/tn+1/2) e 726%¢° , n=0,1,2,... (4.12)

(b)Y For vanishing Coulomb interaction ( Landau level case ) :

E = (n+l/2) ﬁeB/}Lc = 2% (n+i/72) (4£.13)

{c) In the weak magnetic field region ( Y <<1 2

: 2 4, .2
E = -1/(n+1/2) + 5/8¢(n+1/2) % (4.14)

(d) In the strong magnetic field region (Y >>1)

. . e
E = (zn+1)¥ - 3{ % /(Zn+1)} (4.15)

The last type of square root dependence can be obtained by treating
- the Coulomb term eg/gr as a perturbation acting on the ifiree-particle
states in> that are sulutions-of the Eﬁ harmonic-oscillator egua-
tion +to which egn.(4.10) reduces when the Coulomb interaction is
absent. Thus the first order correction to the unperturbed Landau
level spectrum is given by :

| 2

inte?/rin> § e*/a, = (marfde®sczne)® (4.16)

.whére a, is the mean orbit radius for a 2D oscillator of {re-
guency : thus excitonic effects are expected to be less important
for large quantum number n .

In the high field limit Y —¥o0, the second term in (4.15) can be

reglected and one recovers the Landau level free-particle behavior.
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We reported in Fig.14.a the calculated level, solutions of
eqn.(4.10), for field strengths up to ¥ =1. (from Ref. [571 ).
The lowest level (n=0) looks independent of the magnetic field up to
71, but in higher magnetic field region it goes parallel to the

~

corresponding free Landau level, after crossing the E=0 line at ¥y =

12.5 .

In Fig. (14.b) are reported also the calculated relative intensities
for optical excitations in the states m=0, which are proportional to
the squared modulus iR(r=D)Iz, as a function of the guantum number n
for several values of the reduced field . The relative intensity
for the n=0 transition, not shown in the figure, is roughly indepen-
dent of Y and equal to ~ 16 ,in the same units used in the figure.

Apart from the n=0 case, the intensities are essentially independent

of the guantum number n.

2.5~
2.0~
= ; >
12 I B
: w
& Z 15k
v ui
m | ot
z =
z =
L
> .Gk
—
<
4
w
-2f &
C.51-
-4 n=0
] | J i !
0.2 o4 06 08 1.0 o]
Fig. 14.a ks Fig.14.b n
Energv eigenvalues as functions of the Relative intensities vs. the quantum number
mzgnetic feld sirengrh Y The bro- 7 for several fixed values of ¥

ka2n lines denore the free Landau levels.
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Expressions (4.12) to (4.15) form the basis of a simple
interpretation scheme of excitonic effects in magneto-absorption

experiments in QW’s that will be used in the following Chapter.

b.3. Excitonic effect in Magneto—absorption experiments

The structure of the magneto-optical spectra in GaAs QW has
been interpreted by several authors ¢ [583 , C£591 ) in terms of
transitions between free-carrier Landau levels, of which only the
lowest n=0 is affected by appreciable excitonic effects. This is
known, however, not to be the case in bulk GaAs in which Coulomb
binding is significant at high fields even in the higher levels :
the inclusion of excitonic effect is necessary in order to correctly

interpret the observed spectra [&01.

The evident non-linear behavior of the peak positions on wmag-
netic field ,in contrast with the prediction of the Landau level
theory, has been clearly shown for the first time by the wmagnetic
absorption experiments on Ge [611 .

In their pioneering work, Elliott and Loudon ( [623 ; [631 ) con-
sidered the effect of the Coulomb interaction between electrons and
holes in a simple parabolic band picture : their conclusion was that
there is an exciton series associated with each Landau level and
that the most important absorption peaks in the magneto-absorption

spectra correspond to the transitions to these exciton levels.

The problem of complex—-band excitons in a wmagnetic field 1is
much more complicated ( see, for example, Ref. [é&43 Y,although
approximate methods has been developed for the two limiting cases of
high and low magnetic fields when either the Coulomb interaction or

the magnetic field can be treated as a perturbation.

In type-1 Quantum Wells, due to the higher binding energy of
excitons, the effect of the Coulomb interaction is expected to play
a major role in the>interpretation nof magneto-optical spectra, even
at high magnetic fields.

We will take into account excitonic effects in our calculation of

inter-Landau level transitions within a simple scheme (used also in
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Ref. [651) , which follows the treatment of excitons in wmagnetic

field in highly anisotropic system given in Ref. [571.

We already gave a brief account of this theory in the previous Para-

graph.
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CHAPTER V

The energy levels are obtained by soclving the following set of

coupled EM egquations (73
LiHjF =EF (5.1)

where H“ is the Hamiltonian (2.30) and F; is the Jj-th component of

the vector (2.2%9). The total zeroth-order wavefunction is given by

Y o= explikg, z)ZJ- Fiou; (5.2)

and kg, is the guasi-momentum in the SL-Brillouin zone.

We have applied to 2gn.(5.13 the method of solution described
in Chapter I1I, +to obtain the Landau Levels (LL} for electrons and
holes in a QW geometry (i.e. we pubt kg =0 in the expression (5.2)
for the wavefunction). The band parameters used in the calculation

are listed in APPENDIX F.

From the non-parabolic behavior of the hole subband dispersion
with the in-plane wave vector k shown in Fig.12, one can predict a
strong non-linear dependence of the hole energies versus the mag-
netic field strength B : for high oscillator quantum number n this
can be seen from the semi~-classical limit, according to which the

Landau levels of a subband E(k? are given by the correspondence

E (B)Y = EC k=12eBn/c ), for n>>1

€73 We shall consider systems made of intrinsic semiconductors,
for which no charge accumulation in the Quantum Well is expected
in this case the otential term U(r) in egn.{(2.18) is zero,
corresponding to wells with flat bottowm.
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The calculated hole and electron Landau levels for the case of
a 78 K—QN between Al,Ga,_,As barriers (x=0.3) are shown in Fig.15 and
Fig.16 . They are obtained using a 460/40 % rule for the band-offset

( see Section 5.3.1 for a related discussion 2.

Before comparing the theoretical results with magneto-
absorption experimental data, it is wuseful to underline some
interesting characteristics of these level structures.

The most remarkable feature of the calculated hole Landau levels is
represented by their strong non-linear behavior. This nan-linearity
comes from the fact that the HH and LH subbands are decoupled only
at E;D for, equvalently, at B=0). At B#0 Landau levels originating
from the first HH subband interact with LL from the next LH subbands
and give rise to the anticrossing behavior shown in the figure, with
a consequent flattening of the dispersion relation of the HH sub-
bands. In general, this Landau level structure can no longer be

- described in terms of one effective mass per subband.

-003

Fig.15 B/Tesla)

Calculated Landau levels for two hole
-]
subbands in a 78 A GaAs/Al Ga As
- .3 .7
Quantum well.
The numbers are the Landau level indices.
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Fig.16

Calculated Landau levels for two
a

electron subbands in a 78 A GaAs

Quantum Well.

The numbers are the Landau indi-

ces n.
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The electron levels shown in Fig.16 are wmuch more regular,
displaying a simple “Landau ladder" form . Their energy (measured
from the conduction subband edge ¢.at B=0) can be roughly approx-

imated by the "free-particle" expression:
#*
E,= Ahwcn+i/2) + (1/2);Adg”\8 , n=0,1,2... (5.3)

Here ﬁ&f= feB/m*c is the cyclotron energy, MU,is the Bohr magneton
g* the effective g-factor of the electron and n is the Landau level
index. The appropriate effective mass is given, in a three band
model (zee section 5.1) by the following expression [6461 (atowmic

units are used) :
H 2
1i/m = 1/m + (2P /3) L 2/E%+ 1/(E%+A) 3 (5.4)

The g-factor is given, within the same model, by the expression :

#*

2
g /2 =1 - 2P /3L 1/E3- 1/(Eg+L )] (5.4b)

3

We note that the spin-splitting term in egn.(5.3) :
#
Ho =+¢1/72) uslg™ | (5.5)

is very small, due to the smallness of g¥( g*@aﬂﬂ =-0.44) : at 20
Tesla, IHs1 2 0.5 meV.
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#t high fields the electron Landau levels display slight deviations
from a linear behavior, especially for large n : in particular, the
separation between successive levels, at a fixed value of B,
decreases with increasing n.

These effects must be ascribed to non—-parabolicity in the conduction

band due to the coupling with valence band states.

5.1« Non—parabolicity

The mixing between conduction and valence band states via the P
matrix element (2.143 leads to nan-parabolicity in the conduction
band. In & guantizing magnetic field B, within a three band Kane
model that treats perturbatively the coupling between the conduction
and the va}ence ﬁ: and FE edges and neglect the small spin-splitting
terms, the explicit expression of the Landau levels band edge is
given by [C&731 &

£ %
= fHw n+1/720{ 1+ Ez’ﬁCUc (n+i/2) ¥ (5.4)
3

'

E

[a)

where the constant K, is given by :

V2
(1-m*/m° B, (3E, + 4 A + 21 /Eg)
K, = - (5.7)
(Eq + & Y(3Eg + 2 A )

Here m* is the effective band-edge mass as given by egn.(5.4)

For Gaéds, K,= -0.83, assuming an effective mass m* =0.0665m C&81.
The first term in egn.(5.4) describes the undisturbed L
corresponding to a parabolic band and the second represents a small

non-parabolic correction which depends guadratically on B.

A more accurate desoription of non-parabolicity should include
in principle the coupling with higher bands [69] (typically the
and V; conduction band minima in GaAds, see fig.17) ¢ however, the
matrix elements of these interactions are not known precisely enough
and the size of the problem becowes bigger.

For example, a 8x& Kane model, which treats directly the 'ﬁ.'ﬁ cou-
pling between the “: conduction band and the (r:+{§3 valence band

edges, and by perturbation theory the coupling to higher (rii-r;)

fe
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_ Fig, 17 (a) Energy band structure at the T point in five-level

‘approximation. (b) Band edges in a heterostructure with abrupt

interface (the higher conduction band is not indicated).
conduction bands, is found to describe quite accurately the non-
parabolicity up to energies 50 wmeV above the E: conduction band
minimum C£7031.
For higher energies, a 14x14 matrix is required, which considers the
coupling to the second conduction band edges in an exact way.
In particular the 8x8 model systematically underestimate the effec-
tive mass @ In the (110) direction, for example, the effective
masses given by the two models differ by approximately the 16% at
150 meV. [£703.

In a QW, the conduction band can be described again by an
expression of the form (5.6), but in whiech the term H ugf(n+1/2) is
replaced by'ﬁcuf(n+1/2) +‘ﬁ2k%/2m* . The terms in ki arise from
the quantum confinement and make the non-parabolic corrections more

important in heterostructures than in bulk sewiconductors.

-
For a thorough discussion of the k-p description of conduction

band electrons in heterocstructures, see Ref. [&4]
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Let’s consider the process in which a photon is absorbed and an
electron is raised from a valence band-Landau level to a conduction

band one.

The total zeroth-order wavefunction in each material is given by the

expression (see (5.2) and (2.29)) :

é
Wo=2; uj , n=-2,-1,0,... (5.8)

where FY is the j-th cowmponent of the vector (2.29) :

Fo=(o ()P nye, ()P n-1,05(20Pn+1,c, (2P ntt,e0 ()P n,c (22 P n+2d
(5.9)

s, being members of the basis set (2.16) and CPH harmonic oscilla-
tor functions. The ¢ ; (z) envelope-functions must be set to zero
for those components that have a negative oscillator index n @ for
example, when n=-2, only the &-th component c 4 (z) (corresponding to
the 13/23-3/2> HH state) is present in the expansion (5.8).

Indicating with I and F, respectively, the initial (valence) and
final (conduction) states with Landau index n,n' respectively, the

matrix element for direct optical transitions is given by

Mos SWAB-EI1W> =25 <u 1B -Elup> <FlIFR> + X5 - <F IBIFL> S (5.10)

nw

Here we use the compact notation :

#-b — —5
ugtug > Ef uglr) u; (r) dr

cell
<FoiFy = [RGBy dR
cvystat
The indices j,Jj' run over the set of six envelope functions and the
Kronecker’ delta Sﬁ‘comes from_ghe orthogonality of Bloch functions
with different symmetry. Here € is a unit vector in the direction

of the electric field of the incident radiation €52

£82 In these experiments both the incident and emitted radiation
propagate at right angles to the layer plane and parallel to the
magnetic field axis (Farada¥ configuration? : the exciting light is
either left (&%) or right ( ¢~) circularly polarized with respect
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The first term on the right hand side gives the allowed transitions
at ?=D E713. The second term, which is small compared with the
first term, gives the forbidden transitions at ?=D . These latter
arise in zinc-blend materials because of the lack of inversion sym—
metry. We will consider only the first term in (5.10).

The intensity of an inter-Landau level +transition n—3n' between
state I and state F is thus proportional to the squared dipole

matrix element

2 - 2 Y - 2
\M.,m‘l =l{'q/:!p-€l ‘V:‘ \ =lej‘ uylp-& Iu$|>§ c}e(z) cyplz) dzf@jjcpm,d T
x

- 2
=l):jj.(;3’-g)ﬂ\ Teo) ejzidz §, |

(5.113)

where my ,mpare the j~-th and thh component of the vector

M= (nyn-i;n+i,n+t n,n+2> (5.12)

Since the only matrix elements (E-E)ﬁdifferent from zero ,in circu-

larly polarized light, are :

B )" = PPz = (FE),07 = (173 FE) 1"
(5.13)

IE- )1 = 1F )yt

P being the Kane matrix element (2.14), one sees by inspection that

the selection rule
Dn = 1 (5.14)

must be satisfied .

In addition to the selection rule for n, the change in the total

angular momentum must be AMJ= 1 , in the Faraday configuration,

respectively for Cftand 0" radiation : thus the plus sign in (5.14)

holds for one circular polarization of light, the minus sign for the
other.

to the magnetic field direction.
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We summarize in the following table how the various components
of the wavefunction (5.1) are involved in the transitions, for the
two different polarizations. We make use of the shorthand notation
with "up”" and "down" spin for electrons and holes, as indicated on
the left of the figure, together with the angular wmomentum quantum
numbers for each state.

The oscillator strength of an H component is 3 time bigger than the
L one, as a consequence of the paticular form of the atomic-like
dipoles (?x'z)ﬁ(5'13} associated with the basis set (2.16): we thus
gxpect that the transitions from H hole Landau levels be more
intense than those involving L hole levels.

This is represented by the thicker lines connecting the states

involved.

Ct € ise> 3
H4 1372y 372> )

Lt  13/2;-1/2> ) (5.15)
Cé ¢ Isdd )
Lé (13723 1/2>

A S

Hé  13/2;-3/72>

We stress the fact that in a simple scheme that uses only the
selection rule (5.14) to determine the allowed transitions between
Landau levels, far more transitions are predicted than experimen-
tally observed [58] , whereas the mixing between L and H hole sub-
bands; together with the restrictions imposed by (5.15%), makes many
of the allowed transitions have a vanishing matrix element : the
resulting picture of magneto-optical transitions is neither simple
nor obvious.

In addition, transitions that are allowed by the selection rules
stated above can have vanishing matrix elements due to the different
parity of the envelope~-functions Gj(Z) of the initial and {final

state ( see the next Paragraph ).



Thus the explicit evaluation of the matrix elements (5.11)
seems to be a fundamental ingredient in any attempt to make a
detailed and guantitative comparison bhetween theory and experiment.
Before making this comparison, we will discuss briefly in the {fol-
lowing section the essential symmetry properties of the envelope

functions cj(z) appearing in the overlap integrals in (5.11).

5.2.1. Symmetry properties of the Envelope-functions

The 8L potentials that enter into the diagonal terms of the
Effective Hawiltonian governing the envelope functions, are even
with respect to the centers of both the well and the barrier layers
€92 if flat-band conditions prevail, as it is usually assumed in the
case o0f undoped heterostructures, the 5L potential is siwmply given
by the discontinuities AE, NE, in the band edges when going from one
material (A to the other (B) and has the sgquare-wave profile of
Fig.2 .

In the expansion (5.8) each envelope function c;(z), j=1;..,6, is a
solution of a 1%l effective Hamiltonian H ,obtained by projecting
the é&ué& effective Hamiltonian onto the j~th edge.

It can be shown [723 that H contains only even powers of ©/9z €103

thus every o; (2z) can be either even or odd with respect to the

3
reflections in one of the mirror (x,y)-planes bisecting the A and B

layers .
In particular at B=0, when there is no mixing between hole states

sthe usual optical selection rule

m' - m = sven integer (5.16)

is expected to hold, m' and m being the subband indices of the

valence (H or L) and conduction (C) states involved €112

€93 This is strictly true if an{_ inversion-asymmetro effect
asgociated with the zinc-blend lattice is neglected ( "guaSL—Ge"
model 2.

€103 We recall that, in the EHNM agprcach, the z-component of the
wave vector k has to be replaced by the operator kz= —-ifi2/9z which
operates on the envelope functions o ;(z).

€113 It is iwmplicitly assumed that the C-states are essentially
decoupled from the hole states : we found that the hole components
in Landau levels originating fromwm the ¢ subband, with n < 7, are
always less than 5 % of the norm of the eigenvector.
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GaAs GaAlAs
I
H,oo |
Fig. 18 I
Wavefunctions associated
with the highest three Hea ‘
vy hole subbands in a GaAs ‘Z
Quantum Well at B=0 . O — ;
by I
Z , €
(O] Cy
o !
l
H3 Ho
Y
H
[ Ha'
| "
|
!

In Fig.18 we report the zero-field Heavy hole wavefunctions HasHy sH,
for the highest three subbands in a 78 Z GaAs QW : the esven and odd

characters are evident j;the conduction subbands C;ynot shown, exhi-

bit analogous symmetries. The zero-field Hy —% C, transition is

thus parity forbidden, whereas the H;—3 €, one is expected to be

present but with minor strength than the principal Hy —%» C,. The

same is true for L-C transitions.

Consider now the bulk Hamiltonian (E.1). For B#0, the HY state is

coupled with the L% state by a term proportional to kz and to HY by

a term independent of kz. Because ky is odd wunder the reflection

with respect to the mirror planes (see Footnote €23}, an even Htcom-—

ponent will be coupled with an odd Ltand an even Hband vice versa.

A similar argument applies to the coupling between Hé$, L% and Lé

states.

To illustrate this point, we show in Fig.19 the squared ampli-
tudes = (z31%? for each of the hole components (j=2,3,5,6) of the
envelope function (5.8) for the 78 X Gads Quantum Well between
Alx Ga _.As barriers, calculated at B=10 Tesla, plotted as a function
of the SL coordinate z (for the notation, see the first column in
Table 5.15) : the four figures refer to the highest (in energy? four
hole-Landau levels with n=1. The arrow indicates where the inter-

face between Gads and AlGads is located.
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The strong admixture between the H and L components is clearly visi-
only the highest VB1 state displays
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a dominant HY

are mixed wi

Fig.

19

Squared amplitudes associated with the four

components

(indicated in the first -panel)of

the envelope-functions for the four highest

valence states
B=10 Tesla.

with Landau index n=1,

at

The arrow indicates where the interface is.

B2,VB3,VB4 states
character.

th opposite parity.

As anticipated,

The total wavefunction,

doesn’t exhibit any particular reflection symmetry.

We stress the fact that this mixing is peculiar to QW

since

ment

analysis of

magneto-absorption in bulk materials when the magnetic

the approximation kg =0 [733 that is

commonly

not shown,

used

systems,

the kg coupling comes in as a consequence of quantum confine-

in
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field is along the z-direction, is meaningless in this context.

We will exploit the above mentioned symmetry properties of the
envelope- functions in our analysis of magneto-absorption experi-

ments in Quantum Wells.

We made a comparison with the results of excitation spectraos-
copy experiments performed in a 78 A GaAs Guantum Well cladded
between thick AlGaAs layers, at high field (up to 20 Teslay and at
very low temperature, in the Faraday configuration (see Footnote at

page 49 3.

In Fig.20 is shown the excitation spectrum at B=0 : the two
exciton peaks associated with the first H,C, and L,C,transitions are
clearly visible ;3 the two shallow bumps superimposed on the constant
background ( which reflects a quasi-2D density of states )} are
attributed to higher exciton levels, namely HyC,and H,C, -

At B#0 several peaks are observed, corresponding to direct interband

transitions between valence and conduction bands, as the continuum

Hq_Cq.
— )
& Cg_ .E
S
c, 3
|
8
>
a7
H., o
L e
H. [=
iHs —
156 1680 164 168 172
Energy (ev)

Fig. 20

Excitation spectrum at B=0.

On the left part of the Figure the transitions
associated with the observed exciton peaks are
shown.
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states split into Landau levels.

An important input parameter in the calculation is the band-
nffset Q. . (see Paragraph 1.4).
We have estimated this quantity, following Ref. [74] ,by fitting the
energy oaf the observed peaks at B=0 : we attributed the two sharp
peaks and the two shallow ones in Fig.20 +to excitonic transitions
between the conduction € and the Light or Heavy holes (L, H)> subband
edges, as shown in the left part of the figure. The calculated
dependence of the corresponding transition energies upon the conduc-
tion band discontinuity Q. is alsoc shown in the diagram in Fig.21 :
note the strong dependence of the H3C1tran5ition energy on Q.. The
arrows drawn on the left side indicate the experimental observed
values,obtained directly from Fig.20, and corrected for the binding
energies of the excitons :we used for these latter quantities the
theoretical values quoted in Ref. 753 , obtained with a varia-
tional method ( they range from =6 meV for the binding energy of
the HyCyexciton to 10 meV for the L,C.).

i Fig. 21

1.70 Hzcl = Calculated dependence of the

transition energies at B=0

on the conduction-band discon
i it =AE /AE

tinuity Qc . o

The observed transitions,cor
rected for the binding ener-
gies of the excitons as ex -
plained in the text, are in -
H.C dicated by arrows.

[ The bars drawn at QC=O.6 ac-
count for a possible uncer-
tainty of =+ 2A in the well
width.

()]
[8)]
transitions

o AE (eV)

—

Observed

156+ H.G
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We found that the best fit to experimental data is obtained assuming
Qe T 0.6 .Our estimate is in rough agreement with the most recent
determinations of 4. as reported in Paragraph 1.4 . [28]

The bars drawn on the curves at this value, account for a possible

uncertainty of £ 2 A on the GaaAs well thickness.

5.3.2. Caleulated interband transition energies and

In Fig.22 we show the calculated interband transition energies
for both the polarizations of incident light, with intensities
pbtained from the transition matrix elements as given by (5.11)
£L763.

HWe normalize intensities to the wmost intense transition, which is
the ~-2H.4 —% -=-4C4 (¢ ) in our scheme (first line from below in
the spectrum), and plot only those which are at least 5% of that
one €123 .

Solid lines represent transitions with a calculated intensity
between 1. and 0.4, dashed lines represent those between 0.4 and
0.05. With dotted lines we indicate transitions that are smaller
than 5% at some fields but acquire intensity through the admixture
with other states with increasing magnetic field. In particular,
this is true for transitions between Hz and C, which are forbidden
;at B=0, by the selection rule (5.16) but acquire intensity through
the admixture with L states with opposite parity at higher values

of the magnetic field.

Many features are born out by the calculation which are not
obvious on the basis of the calculated Landau levels only. For
instance, the admixture between L and H hole-states in Landau levels
with n»>*0 leads, at fields above 10 Tesla, to a change of slope of

the transition lines, making them less steep at higher fields where

€122 We adopt the following convention to label transitions : the
numbers indicate the Landau level indices of the initial and final
level involved in the transition, while the letters refer to the
character o0f the subband at B=0 ; the subscript m is the subband
index . The two spin-splitted hole ievels, for every Landauindex n
ywill be identified (when necessary? bg giving the spin character
4t B = O (see the left side of Table &.1 for the notation). In
parenthesis we indicate the spin of the final conduction band level.
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Fig. 22

Caléulated transition energies for the
two circular polarizations, as a func~
tion of the field B. Intensities are
normalized to the lowest H -C transi
tion and are represented by :1
dotted lines : intensity less than .05
dashed lineg : between .05 and .4

solid lines ! between .4 and 1.
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they recover in part the character of Light hole ( which ,because of
the particular asymmetry in the diagonal elements of the Luttinger-
Kohn Hamiltonian {(D.1), has a heavier cyclotron mass in the (kx,ky 2
plane 1.

One iwmportant consequence is that the usual practice to derive the
zero-field exciton binding energy in @QW's as the difference in
energy between the ground states and the continuum states obtained
by extrapolation at B=0 of high field data, may in some cases give
an overestimated value for the binding energy : in fact the experi-
mental values for this guantity, derived in the above manner [58]
;are systematically much higher than the theoretical ones ( [771
£7zg81 ).

Note that, in particular for the $° spectra, the transitions
associated with Landau levels that evolve from the zero-field H -C
are always stronger than those involving L-hole states. This makes
that the more or less regular, eqguidistant Landau level-like
features can be recognized both in the experiment and the calcula-
tion. This statement is less true in the more cowplicated <T*spec—

tra.

To give an example of the effect of hole mixing, we report in
Fig.23 the calculated intensities relative to the OH,—%1C,(¥
transition -upper curve- and to the OL,—21C, (¢) transition ~lower
curve~ , as a function of the magnetic field B. On the top of each
figure we show, for various values aof B, the relative weights of the
hole components entering in the envelope~-function of the valence
Landau levels.

At zero field; the second transition is forbidden, in &t polariza-
tion, by the conservation oif the total angular momentum (see the
table 5.15), but at B#0 it acquires intensity through the admixture
with the HJ component of the right parity. At B } 15 Tesla the
intensity decreases again due to an increase of the Lt component.
The first transition, which is parity-allowed at B=0, becomes less
intense at higher fields due to the mixing with the L¥ com-
ponent (see the related discussion in Section 5.2.1).

For comparisocn, we report with dashed lines the intensities of the
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i 100¢

Fig. 23 0 9 ()
Normalized intensities of 50

- the transition OHl—-—> 101(6) ?T TT
(curve b) and OLi-» 1c(+) 2 ? 2 ?
(curve a) as a function of TOC}T ;
the magnetic field B. \ (b)
In the upper part of the s 50+ .
Figure the weight of the ? TT ?
various hole components

in the envelope functions
are shown for different
values of B.

For comparison, the inten-
sities of the corresponding
transitions in bulk-GaAs

are shown with dashed lines.

B (Tesla)

corresponding transitions in bulk-GaAs : it is evident that mixing
effects are peculiar to Quantum Well systems.

A similar analysis is performed on the dHe—24C, (4 ) transition ¢(
Fig.24 ), which is parity forbidden at B=0 : in this case it grows
in intensity as the wmixing with L%t component of the opposite parity
makes a nonvanishing overlap with the even €% state. At fields

higher than 8 Tesla, an odd H% component is picked up, wmaking the

a 100% Fig. 24
% 50 Same as in Fig.z3
% Tf %? gx Jif The transition is the
strong| 2ttt
Ab-A -
o weak
N
-
05
I |

5 10
B (Tesla)
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intensity vanish again. The horizontal 1line drawn at I1/1s= .1
separates the region of "strong" transitions from that of the "weak"

ones for the particular experimental spectra examined.

We compare the ocutcome of our calculation with the experimental
data by using band structure parameters that correctly reproduce the
bulk data ( see next page ) and proceed as follows.

We identify the transitions in Fig.22 with the corresponding ones in
the experimental results ¢ this comparison shows that we could
assign every experimental transition to a calculated one, but that
consistently all theoretical ones were too steep, clearly indicating
a too small electron mass.

We found that an increase of the electron effective mass by 211% isg
necessary to give the correct slaopes of the transition lines. We

will come back to this point in the end of this Paragraph.

In order to take into account the excitonic effects in our cal-
culation (we discuss in Paragraph 4.3 the importance of such effects
in magneto~absorption experiments ) we implemented the simple scheme
described in Paragraph 4.3, also used in Ref. C[651 ,which follows
the treatment of simple-bands excitons in highly anisotropic systems

in an external magnetic field [571.,

In the limit of high magnetic fields, the exciton binding

energy is given by the second term in the expression (4.15) :
# a2
Ee = 3Ry Dy {heB/2(2n+1) U R}} (5.17)

where M is the exciton reduced mass, R? is an effective Rydberg and
D4 is a parameter related to the dimensionality of the excitan .

We subtracted the binding energy (5.17) from the Landau level tran-
sition energies : we found that the best overall agreement with
experimental data at high magnetic field is obtained with Di§0.54 (
We recall that for a strictly 2D exciton Dy= 1, while in the 3D
case D, =1/4 ) [131,



The results of pur calculation are reported in Fig.25, (exci-
tonic corrections included), together with the observed spectra in
the 78 g sample .

Although the transitions have the right slope, few of them have
absolute energy slightly different from the observed ones (typically
deviations of 2 - 5 meV are encountered). However, the strongest
lines, originating from H hole levels come out at the right energy
and with the right slope.

We note by comparing the two figures, that the effect of the exciton
character of the transitions is essential in obtaining not only the
right energy, but alse the right slope for the transitions
corresponding to the lowest three exciton states. An additional
downward shift of = 9 meV has been imposed on the lowest H,C,and L,C,
lines +to fit approximately the lowest state HH exciton. The strong

horizontal line at energy approximatively 1.7 eV is attributed to

the lowest H,-C, exciton transition .
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Comparison between the calculated (1li-
nes) and the experimental transition e
nergies (dots) : excitonic corrections
are included, as explained in the text.
Large dots correspond to strong transi
tions, small dots to the weak ones.
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We see that almost all the weak features of the observed spectra are

accounted for by our calculation.

We compare in Fig.2é6 the predicted intensities at B=19 Tesla
with the experimental ones, for both polarizations @ in order to
mimic the broadening of the observed peaks, we have dressed each of
the indicated intensity bars with a Lorentzian-shaped profile 7 meV
wide,

The differences between the observed Oj.and o~ spectra come out
naturally from the calculation, making the overall agreement satis-

factory.

1t should be remarked that a small change in the relative energy
position of transitions originating from different subbands, such as
LsCyor HyCy,has a sensible effect on the observed spectra. Since
the position of the subbands is extremely sensitive to the values of
the material parameters (thickness, Al content, band-offset mainly)
an exact knowledge of the latters is reguired in order to make a

successful comparison between theory and experiments.

A surprising and puzzling fact is that we need to use a value

for the electron mass at the edge of the conduction band higher ¢ m*

=
o

EXP

intensity (arb.units)

|.r||.l [t TN :"

160 172 160 172
Photon energy (eV) '
Fig. 26

Comparison between the excitation spectra
measured at B=19 Tesla and the predicted
intensities. (In order to obtain the theo
retical curves, each of the indicated in:
tensity bars has been dressed with a Loren
zian-shaped profile 7 meV wide). -

o
o
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= 0.074m ) than the commonly adopted bulk value ﬁ#=0.0655~mE683 P we
have also tried to analyze samples used in different experiments
(L7793 4 [651 ), and consistently arrived at the same conclusion,
i.e. a higher electron mass is needed to fit the experimental data.
This effect is definitively due to the Quantum well : we have veri-
fied +that the bulk-GaAs magneto-absorption spectra [403 are repro-
duced in detail by a calculation of inter-Landau level transitions
when the “correct" electron mass nf= 0.0665wis5 used. { the complete
set of material parameter used is that listed in APPENDIX F ).

The results of this comparison are shown in Fig.27 : solid lines are
the calculated interband transition energies,; in bnthsgnd W-polari—
zation; experimental points are taken from Ref. C6401.The calculated
lines are Jjust rigidly shifted to fit each series of experimental
points : no attempt to include exciton corrections has been made.

In passing, we show in Fig.28 the bulk energy level scheme at B=5 T
t the H and L labels refer to thedeminant character of each Landau
series, when n—>ce. [80].Energies are measured from the conduction

and valence band edges respectively.

At this stage it is not clear whether this higher electron mass
iz a conseguence of a stronger non-parabolicity of bulk-Gads that is
enhanced by gquantum confinement (compare with the discussion in
Paragraph 6.1 ) or it is related to an intrinsic inadeguacy of the
Effective Mass theory to describe precisely the electron dynamic in

systewms with only few lattice planes.
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Fig. 27

63

Calculated interband transition energies vs. magnetic

field for bulk-GaAs,

for both circular polarizations.

The experimental points are taken from Ref.
Solid lines are the calculated transition energies

( see text ).
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Energy level scheme for the

Landau levels in the valence
and conduction bands in bulk

GaAs
del).
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CHAPTER VI

CYCLOTRON RESONANCE IN TWO-DIMENSIONAL HOLE GAS

b1 Cyclotron resonance in 2D - Hole gas in Quantum

Lures

In this Chapter we will give & brief account of Cyclotron Reso-—
nance (CR? experiments in the Two-Dimensional Hole gas in Quantum
well structures : the observed spectra are considerably richer than
expected frowm simple Landau theory {(see below). We want to show how
the essential features of these spectra can be accounted for, at
least in & gqualitative way, by the very unusual dependence on the
magnetic field of the hole Landau levels in GQuantum well systems
{C813,0831,0841,0851).,

Consider the simple, illustrative example of a quasi-free elec—
tron in & crystal placed in an external magnetic field B in the =z-
direction. Assuming a parabolic dispersion relation with an effec-

tive mass m™ ¢ the energy levels are given by @

2
E, = (n+1/2)eB/n*c +-f ks/2m" (6.1)

where kg is the electron wave vector in the z-direction and n is an
integer.

CR follow from transitions between the Landau levels (6.1) ¢ the
resanance condition of the system when interacting with electromag-

netic radiation of frequencyw is just :
w =w, = eB/n'c (6.2)

This simple picture of quasi-free electrons is applicable to real
systems as long as the carrier density is so low that they ococupy

the states near the band extremum.

The situation in QW’s is noticeably different. We have shown in
Chapter 5 how the interaction between L and H hole bands gives rise
to Landau levels that are not equally spaced and have a very nan-

linear magnetic field dependence (see, for example, Fig.15).
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The unequal level spacing gives rise to a multiplet of cyclotron
frequencies at a particular value of the magnetic field instead of
the single frequency (4.2) predicted by a parabolic band model.
This is actually confirmed by CR experiments : in Fig.29.b we repro-
duce, from Ref.C811, the CR spectrum at 9 T in the 2Db-hole gas
formed in the GaAs/AlGaAs Multiple QW structure depicted in Fig.2%9.a
: holes are transferred from the acceptors in the p-doped AlGaAs
into the GaAs Quantum Well, where they occupy, for sufficiently low
densities, the first quantized level at B=0.

For a finite value of the magnetic field s transitions from occupied
Landau levels to empty ones give rise to Cyclotron Resonance spec-
tra.

The two observed peaks correspond to effective masses ﬁ*=0n41 and ﬁ?

=0.23; according to the definition :

efiB/cbE (6.3)

=
m
Here AE is the energy difference between the two Landau levels.

The matrix elements for an optical transition between an ini-
tial hole state characterized by a Landau index n to a final state n'

is given by a term analogous to the second term in (5.10),; that we

ST

feb]
GaAs PO 948 o
p~0 256 A ®
AL GaAs P~2oxi0* 43 A 20 S
P~ 0 256 R periods %
GaAs p~0 944 [ &)
GaAs substrate Z - axis L ! 1 1 )
) 10 20 30 40 50
Frequency (cm™)
(a) Fig.29 (b)

(a) The doping and layering of the Multi-Quantum Well sample
(from Ref. 81 ).

(b) Conductance vs. frequency spectrum at B=9 Tesla.
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rewrite in the following form €142 @

fim A | —_ €in

Mont = CFo IR -E1Fe> 2 m_ <Fm lU-E1F0 > (6.4)

(=]

where instead of the first-principle scalar interaction EJE we
used, following Ref.[?0], the matrix interaction term mOE-G-. The
velocity operator vV is defined in terms of the Effective hole Ham—

iltonian H €152 :
A
(Wid = (1/h) QHjp /Dk; (6.5)

and is also a 4x4 matrix which operates on the Envelope-Functions
IFL >

For cirecularly polarized light %ﬁD tthen Ei; =g, v+t & v, ywhere

= 1/NZ (Ectig and

[}

ve =1/20vx + iy = 1/VZ(QH/Jket iOH/Oky
Y] ¢ +
=(c/eB) pH/pat = ¢ (c/eB) Ca” ,H 1

(we used the definitions (2.24) of the raising and lowering opera-—
-+

tors a ;a Y.

Since by definition H I1F, > =Z; Hnﬁ“= E ﬁ? is straightforward to

show that :

Y] in + fin
Max(ec/eB) (Eq,. —E. }Et<FhEa“lﬁ.> (h.6)

From the definition of the "scalar product" {WIf> (see Footnote AW
and from the orthogonality of the oscillator states with different

index n, one derives immediately the following selection rule :
An =g 1 (6.7

where the + (-3 sign holds for 1left (right) circulariy polarized
light. We underline the fact that the above selection rule pertains

to the axial model only (otherwise the state |F,> would not be a

€149 Here IFn> is the vector state (5.?6 a%pnopriata to t%e axia%
model and the symbol <fI8> stands for :Z SF;(R,z)F;(R,z) di dz ,
being the in-plane coordinate vector.

€153 The valence bands are described by the 4x4 LK Hamiltonian
derived from expression (E.1) by rewoving rows and columns 1 and 4
(curresgonding to the conduction band states) and by renormalizing
the Luttinger parameters ¥ v.s v3 and K as described in APPENDIX F.
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solution of the Effective Mass equation).

If one uses the exact Hamiltonian [91] :
H = Hyua® Hew + He + Heo (6.8

(where Hcoe has the form (2.26) and Hg sHe account for linear k
terms and G-terms [33] that come in when the crystal lacks inversion
symmetry ) the selection rule (6.7) must be relaxed and one has

instead:
An = £+ m s where m is an odd integer (6.9

The terms with m=1 are expected to be strong, while the ones with

m>3 come in with Hceow and would be absent in the axial approximation.

We have performed a calculation of the hole Landau levels, with
the methods described in the previous Chapters, for the case of a 98
A GaAs—-QW between thick AlGaAs barriers, in the axial approximation
and assuming that the band gap difference between GaAs and AlAsGa is
shared between conduction and valence band, respectively, according
to the 60/40 % rule.
Another difference with the case of interband transitions treated
previously is that now we must add to the diagonal terms of the hole
Hamiltonian matrix the electrostatic potential V(z) arising from the
mobile holes in the GaAs Well and from the ionized acceptors in the
p~doped AlGaAs layer (see Fig.2%9.a) .
In principle V(z) should be calculated self-consistently for every
value of the field B ( see Ref.L831) : usually this is done in the
Hartree approximation, where exchange and correlation effects are
neglected (this is a good approximation as long as rg<<1 @ we will
see that this is not the case here). However, such a calculation
implies a heavy computational effort.
We made here the simpler, "“zeroth-order" approximation that consists
in solving the Poisson equation in the presence of a uniform hole
density in the heterostructure and assuming that the doped layers
are completely depleted.
This results in the parabolic profile superimposed on the SL square

wave potential represented in Fig.30 ; the explicit expraession of
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GaAs Al Ga As
0 a a+b
. >z
L T — E
L
Hz

/.

Fig. 30

Valence band energy profile for a
Quantum Well of width a=94% beteen
AlGaAs barriers in the presence of
a2 uniform density of mobile holes
in the GaAs layer. The position of
the first few levels is shown, toge

ther with the 2D Fermi Energy posi-
tion.

V(z), measured from the top of the valence band, is :
Viz) = (2ﬁe2Ns/E)z(1—zfa) (6.10)

a being the Quantum Well width and € the dielectric constant of
GaAs. At the center of the well,|VIT & meV.

The first hole bound states at B=0 are shown in the figure. The
dashed line indicates the position of the 2D Fermi Energy : we used
here the simple expression valid for parabolic bands Egf= A &/m& .
Since at sufficiently low carrier densities we expect the highest
(Heavy hole) subband only to be populated, we use for mn*  the value
of the effective HH mass in the z-direction (3.1) mt =0.377 m .Then
Epg 2.9 meV (measured with respect to the first guantized level) H
we see from the figure that only the highest subband is indeed occu-

pied.

To deduce the CR absorption spectrum from the calculated hole
Landau levels one must consider, in addition to the selection rules,
also the occupation of initial and final states : +transitions that
are allowed by the selection rule stated above take place anly from

a (partially) filled Landau level to a (partially) empty one L[83].
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The filling factor for a 2D system of Ng free-carriers per unit area

in the presence of a magnetic field B is given by
Y = hcNg/eB (6.11)

where Ng is the two-dimensional density of holes €163

Using for Ng the value already guoted, one finds V= 19/B sif B is
expressed in Tesla .For example, the first Landau level is filled
at B=19 T ; the second is partially filled between 19 and 9.5 T,

ato.

In Fig.31 we show the calculated Landau level structure :the
thick line indicates the position of the Fermi level at high fields,
as obtained with the simple filling scheme described above. Two

possible transitions (1—>2 and -2—%-1 ) are also shown.

The resulting transition energies are reported in Fig.32,
together with the experimental results taken from Ref.C8113 €173
: full circles indicate strong peaks while open circles indicate
weak features in the observed spectrum.
- Filling Ffactor

~ 854 3 2 1
. -~0.012 H—p——t : e

F1dg. 31

Landau levels in a 94 Z GaAs H

Quantum Well between thick

AlGaAs barriers. E,-

The Fermi level position for
N5=4.6xlOM'holes/cmZ is in-
dicated for higher fields by
the thick line : its position
at B=0 is also indicated.
The dashed lines show the cal
culated splitting of the Lan-
dau levels with n=-] and n=3
due to the anisotropic term
in the hole Hamiltonian (see
APPENDIX H ). -0032 . N N
0 4 3 12 16 20
B (Tesla)

E(eV)

€167 We used for sim lieity the Landau level degeneracy 3 =eB/hec
appropriate to a parabolic band structure. . )

Ei d In Ref.[B81] these data are fitted using a simple model that
simulate the hole confinement by introducing two ad justable
parameters H anly a rough semiquantitative agreement with

experimental points is achieved.
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Fig.32

Measured cyclotron frequencies
(dots) compared with theory
(lines). Solid circles are
strong transitions, open cir-

; cles are weak ones.
g Theoretical transitions account
- for occupation effects, as de-
L scribed in the text.
The Landau levels involved are
O? also indicated.
@ eo/ 2""’3
o o .
o~ 3_,.4

! 1
5 10 15 20
B (Tesla)

The dashed part of the calculated lines means that the corresponding
transition takes place to an almost full level or from an almost
empty one : these transitions are expected to be weak.

One can see that the effective masses that come out from the calcu-
lation depend on the magnetic field both because the energy differ-
ence AE between two given Landau levels varies with B  in a non-
linear way, and because transitions between different pairs of Lan-
dau levels become possible, depending on the particular value of the

Fermi level Eg.

We see from Fig.32 that a rough semiquantitative agreement with
experimental points is obtained in our model. More sophisticated
calculations of the energy levels of a 2D-Hole gas in a magnetic
field don‘'t do wuch better ([511,0833,C841). A clear interpretation
scheme of CR spectra in 2D-hole gas is still lacking.

In particular, a large splitting of the experimental cyclotron line
{corresponding to the 1—>2 transition in our scheme), occurs in the
extreme guantum regime where only the highest hole Landau level is
ooccupied (V<{1).

This effect has been observed in other CR experiments performed in

heteraostructures [86] and remains essentially unexplained.



APPENDIX A

The Effective Mass Eguation.

This Appendix contains & simple derivation of an Effective Mass
(EM) equation as it is used, for example, in the theory of shallow

impurity states in semiconductors.
The starting point will be eqgn.{(2.1), that we rewrite here for clar-

ity

[ pY/zm + V(B + UG - E 1W (& =0 (A1)

Ve is the periodic potential of the perfect crystal, m is the free
electron mass. We assume that the additional potential U(E) is
slowly varying and weak (in the sense precisely stated below ), thus
acting as & small perturbation. In such é case,; the unperturbed

states are the eigenfunctions of the equation :
Ho  =[ p*/2m + V. (&) IV (P = E (k) Wz () (A.2)
that is, Bloch waves extending over the entire lattiée :
Waa(B) = u, a(®explik ),  w,a(b+R ) = u (™) (A.21)

Here the functions uw;cﬁ) have the periodicity of V;(?),'ﬁ lies in

the first PBrillouin zone and n is a band index running over a com-

plete set of bands.
For U % 0 we expand the solution of (A.1) in the form :
W = La®, ko W (A.3)
This gives a set of coupled linear esgquations in (Pw(ﬁ) H
C E“(—ﬁ)—E ]CP“(T;)+Z“‘;“< “;\IUIWW‘QPCP“*(;‘) = 0 (A4
The potential matrix elements are @

#
W, ol U Waa Ej W (FrU ) Wapttrd? =

[}

G- I | -5y i * -> e ~
=\ expl-itk-k)-rl U(r) u =(riu,girddr (A.5)



We shall consider, in the text, states with energy close to the band
—p

extremum k=0 : in II1I-V semiconductor compounds, both the top of the

valence band and the bottom of the conduction band are located at

this point. We can then make the approximation :

- ~ >
uae(c) = u, (R (A.&)

# .- = Z‘_., = L= . . .
Now u, o (riu,s,(r) =242 AnitBlexpliG r) because of the periodicity in

the direct lattice. Thus :

SWam iU W > =0 = Ah“.cé')jexpc—icﬁ—ﬁ'—é'n-h UCErde (A7)
Z’ A ewd - -
=Lz UCK-K-Gra, (& (A.8)

Lt
Here U{k) is by definition the Fourier transiorm of the potential

At this point we make use of the assumption that U(E) is slowly
varying on the length scale of the unit cell: this means that its
Fourier transform is appreciably different from zero only when the
argument is much smaller compared with a reciprocal lattice vector.
Since we assumed that i,i' are very near the zone center, we can

then ignore in the expansion (A.8) all the terms with E#D H

Wz U 1 Wz > T Uck-koa,,. (9 (A.9)
Furthermore, the orthogonality condition between Bloch functions
requires:

un_juﬁ (BIu (FIAE = A (D) = S, (A.10)

e\t

the integration been performed over the lattice primitive cell
—

{recall that, for any non-vanishing reciprocal lattice vector G :
- .
expi{—-iG-r) = 0 tA.11)

cell
Egn.{(A.4) finally reduces to :

~S -t ._',‘
EER - E 3@, +2 g UR-i @k = 0 (A.12)

—% 5
In the small region around the extremum k=0 s E (k) can be expanded
-5

in powers of k :



¢

-» 2 -2
Enlk) = EL(0) + ~1/2L'<D Entk) /D ki dlpdkyky, (A.13)

In the case of a simple, isotropic, non-degenerate band extremum
(e.g. the conduction band minimum of GaAs direct semiconductor)

eqn.(A.13) reduces to :
- z 2 ¥ .
EL(KY = E (D) + 4/ k" /2m (A.14)

%
m being the effective mass at the bottom of the band and E ,(0) the
band edge.

Egn.(A.12) can be finally written in real space by using the Fourier

transform (FT):
F(P) =27 Quiiexpik-T) (A.153

{ Note that the summation Z; has been implicitly extended over alil
k- space. this makes little difference because of the assumption that

F(k) is strongly peaked ) y and recalling that, in general :

—
EGOQ (K) —FT — Ec-iVH @ () A.16)

One finally finds the following Schrodinger-like equation in T~

space:

2 a
L -ch/2m oV + Uy 1 F2) =€ E - En(0) 3 F(2) (A.17)

Eqn.(A.17) is the Effective Mass Equation familiar from the theory

of shallow impurities.

From (A.3),¢A.6),(A.15) one obtains the total wavefunction in

this approximation :
W = FPiup () (A.17)

The slowly varying function F(pr) is usually called "Envelope Eunc-
tion" (EF).



APPENDIX B.

The i'; method is a powerful subsidiary tool to be used for the
empirical determination of band structure. This method, coupled with
the use of symmetry, shows that the band structure in the vicinity
af a point in-;—space depends on a small number of parameters (band
gaps and effective masses) which may be determined by experiments.
Consider the one-particle problem of an electron woving in a

periodic potential VCC?)= The eigenvalue eguation is :
HY = € p72m +Vo(py 1 = EY ; V (B+RY = Ve (B) (B.1)

-y

R being an arbitrary lattice vector. The wave function ¥ may be

written in the Bloch form :
= - _ -2 Lh - ~
VW = Wit = u,piflexplik-T) (B.2)

Substituting eqn.{(B.2) in egn.{(B.1) one obtains :

-¥ - = > i

£ p2/2m + (ﬁ/m)k-% + ﬁ2k2/2m + Vo lr) 1 u vy = Ev‘(k)unﬁ(r)
(B.3)
Egqn.(B.3) can be written in the form :

[ Hago + Ch/m (k=Ko p + ch¥/2m (k*=k501 v 2™ = E, Wung (B
(B.4)

o 2, 52 A JﬁZ. 2 -

where Hp,= p /72m + (h™/72Zm) ko,-p + ko /2m + V_ (2
(B.5)
Then : Hzo Unz= E“(RQ Unde (B.6)

-ty

When k is near Ko ,the terms added to Hze in the left hand side of
ean.{(B.4) gan be treated by ordinary perturbation theory. This

gives, to second order in (ﬁ'ﬁo) and for a non degenerate band ,:
— - 2 . .
En(k) = En(ko) + Ch/md) (k-kod.B__ +h (k¥-kSr/2m +

L R-%o ) P | 2 (B.7)

R NL ST = -
E (Ko 1=E(Ro?

where H

i

-5 ®@ - - s
, u = (r)puyvgo {rldr {B.8)
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Consider the case in which ko, is an extremum : then the term linear
-

in k is missing and we can always choose axis so that the guadratic

terms in egn.(B.7) have no cross-product terms. Eqn.(B.7) ,for the
lf

particular case k=0, becomes :

2 2
E (K) = E.C ) + ch/2y 8y ke/mh (B.9)
| T Ban |2
1/m% = a/m o+ 2/m® L, - (B.10)

ELCO) - E (O

where-? is a unit vector in the direction of the i-th principal
Aaxis. This shows in particular that the interaction with bands of
lower (higher) energy tends to reduce (increase) the effective mass.
To the same order of approximation, it is possible to express unﬁ(ﬁ)

ot -
in terms of the k=0 functions u,,(r) :

—ly

—9
T - k‘P ) -
Una (F) = Upo(F) + (1/m2 o2 Vo (¥) (B.11)
En(0) - E ()

It is clear that the approximation is good as long as the band con-
sidered is non-degenerate and separated by large gaps from all other
bands.

From (A.3),(A.15),(B.11) we see that the total electronic wave func-—

tion in the EF approximation is (see eqn.(2.17)) :

W =20 W

-5 - — k'pv\\o\' -t
=tn Qikrexplik-Tr{u (P) +L u ()}
o waw M {E _(D)-E (0)F ©

i

- P

iV E I s '
= F(Tlu,, (P) + c/m = Uy () (B.12)
Wi En(0) - Eo(D)

The correction term proportional to the gradient of the envelope
function is essential if one is interested in investigating the
derivative of the wave function 1?(;); this is the case when the
effect of the boundary conditions for the EM equation at the sharp
boundary between two different semiconductor must be taken into

account.



We give the numerical values of some characteristic quantities.
m&,AA swhen appearing in the thired member of each gxpression,are in
unit of the free electron mass m 3 is the semiconductor static
dielectric constant ¢ éG@ﬂs= 12.54 ) ; The dimensionality parameters
DysDy in (C.9) and (C.10) are given by [573

1 { 3D case ) 1/74 { 3D case )
Dg‘ = D4. =
3716 ( 2D pase ) 1 € ZD case )
Effective Bohr radius :
2 -4
a;LA1 = €h /e*n” = 5.202x10"" €/n* c.1)
Dimensionless Wigner-Seitz radius :
— e .o ] 2 -~ 41 -2 %
rs= (WNsd/a ] = 3.371x10° N; €10 en® 1 /e (C.2)
2P Fermi Eperay. one subband gooupied
Egfmevl =T hn, /n*= 2.380x10 "N, C10 Y em™*3/m * (C.3)
Size of the lowest cyclotron orbit :
-3 X L3 2 a2
1 CAJ = theseB) = 2.566%x10 /¢BETD) (C.4)
Landau level Filling factor :
Y = hoNg/eB = 4.136 N.C10" em® 3/B0T3 (€C.5)
Effective Rydherg :
L 4 2.2 4 2
Ry [meVl = e /2h°€" = 1.361x10 ' M/g (C.6)
Effective cyclotron energy :
% # -4 2
h e rmevy = feB/m*c = 1.158x10 BLTI/m (C.7)
Beduced cyclotron energy :
1 -3 -& é 2
Y = hel /2Ry = 4.254x107° (€ sy BETT (C.8)
Exciton binding energy :
# . afg Va
EgLmeVl = 3Ry D4Eﬁe3/2c2n+1yu Ryl = 6.690 D, (BLT1/Zn+1) (C.9)

Exgiton diamagnetic shift 5

2 2 2 - 2
AE CmeVl = ngﬁ“a /4plce® = 1.942x10 b, B ETI/u 2 (C.10)
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APPENDIX E

Band parameters of GaAs and AlAs in atowic units. The {al set
of parameters corresponds to the full 6x6 matrix of table 1. The
b)) set is obtained by removing the explicit coupling of conduction
and wupper valence band. The direct gap, Ea and the valenge band
spin-orbit splitting are in eV . m* is the electron effective mass

in the matrix Dfi

GaAs AlAs
(a) (b (a) (h)
P (eV A) 9.27 _— 9.27 -—-
m 0.198 0.312
¥, 1.91 6.85 1.05 3.45
%2 -0.37 2.1 -0.52 0.68
Yo 0.43 2.9 0.09 1.29
K -1.27 1.2 -1.08 0.12
E 1.519 3.13
JAN 0.34-1 0.275

( Linear interpolation is used for the Al Ga As parameters ).
The parameters appearing in the set (b)) are related to those in the (a)

set by the following relations [460 :

2

Y. =Y, * 2m P/IRE,
2

¥, =¥+ m P/3RE,
2

\63L= Y, + m F/3RTE,

[ -3 a
Y =X+ m P/3R Eg



These are the true Luttinger parameters entering the matrix (3.3)
the contribution of the conduction band being included as a second order cor
The numerical values for GaAs are obtained from cyclotron resonance

experiments, as described in Ref.[871 .

With the value guoted for P one obtains ,in a three-band Kane model,
the following valus for the electron
effective mass at the band-edge (see eqn.(5.4)) :
m¥ =t 1 ¢+ 2m PPC2/E, + 1/7(E,+0)3/36%Y = 0.0665 m
which is the commonly accepted value for m* [487.

Here m is the free electron mass.



APPENDIX &

Boundary conditions for the many-band’ case.

It is straightforward to generalize in the many-band case the
boundary conditions (2.7,2.10). They become (C391,L193)

A 8
Fi(-8) = F+ &) (G.1)
3 z > e «Z

2yt Py — iZ« (D + Dy 2V 3 F. continuous at z=0  (G.2)
4 A

(=12, 00, N
(see Paragraph 2.3 for the exact meaning of symbols).
It is important to stress the fact that the second condition, which
is the analogous of eqn. (2.7)for the simple band case, is derived by
‘using for the wavefunction the expression (2.19), correct to first
- -

order in a k-p expansion. As we already saw, one must also assume

the validity of (2.12) for the N bands of interest.

Let’s specialize these boundary conditions for the case gf an
ideal planar interface between lattice matched semiconductor A and B
and assume that the Hamiltonian H has the form (D.1) appropriate to
& six-band wmwodel. The potential Ur) in the EM egn.(2.18) depends
only on z and k,,kg are thus good quantum numbers. This means that

we can write @

AB . . #.B
Fj (r) = explik, x + lk% vl Fj {z) (G.3)

s0 that egn.(6.2) reads :

6 7 == 3 . EE: D .
Lot Py +L Do+ Dok, 2i Doy F. continuas (G.4)
1 ) S ocaxg 9 4 o 43 0% J

An additional simplification stems from the fact that the matrix
elements Pjj' are the same in the two materials (because the u, ‘s

functions are the same) <Egn.(G.4) thus further simplifies to :

S e o Wy -
4J‘{a=m;D“'+ Dn.>k“ - 21 Djj.BZ ¥ Fy continuous (G6.5)

To determine the eigenfunctions and eigenvalues of the systenm

of differential equations (2.18) with the boundary conditions



(G.1,6.5), a standard method of band structure theory has been used
C407
One defines an " interface functional " I embodying the boundary
conditions, such that if <P = (Fa s FB } is a solution with energy E
of eqn.(2.18) :
HY o \(F £

HE =(D Ha)(F")= E(.FB> (6.6
and if Fﬁ ,FB satisfy the proper boundary conditions at the A-B
interface, then the functional :

{QIH + 11 >
EE(PJ= @ @ (G.7)

AR

iz stationary with respect to arbitrary variations éYP of the

wavefunction q) =(fh ,FB 3 ( that is the variational principle is
valid also for trial wavefunctions that do not satisfy the boundary
conditions? and furthermore E <P 1@ > = {@QIH+11Q>.

Once the interface functional is known ,one can take two suitable
sets of basis functions in A and B ,with the periodicity of the
superlattice; into which to expand FA,FB respectively.

The explicit expression of the functional I is [413] :

CQITIP> = (i/2) FM Tty - BT ety +
(G.8)
+ <FOI Tty - EMITam iEe

T being the current operator averaged over the unit cell (see
def. 2.8).

The eigenproblem can thus be solved through a standard matrix diago-
nalization ,making in addition easier to implement self-consistent

caloculations when charge transfer across the interface is expected.



Effect of the anisotropic part of the Luttinger Hamiltonian when a

We give here a simple estimate of the effect of the anisotropic
part H .,y in the Luttinger hole Hamiltonian (3.3) that is neglected
in the axial approximation.

When a magnetic field of strength B is applied in the z-direction,
Hopcan be represented as (see (2.26),(2.27),(2.28) in the text) :

Hay O 0 o
H.,, = y where  H,= Hy= A o & (H.1,2)
0O H, 0 a* o
and
a =3 heB/zem (v,- ¥ (H.3)

n being the Landau index.

By applying the matrix H.,, to the state |[F, > and projecting the
resulting vector onto <F !, one sees immediately that H.., couples Lan-
dau levels with n and nt4 : this implies for example that the levels
with wn=-1 and 3 in Fig.31 that cross each other at B=17.6 and B=4.8
Tesla , should display anticrossing behavior, having also a mixed n=-1
and n=3 character.

We calculated approximatively the splittings at these two points by

using the formula
AE = 2R, THeg TRl (H.4)
It turns out that :

E

it

0.7 meV at 17.6 T {shown with dashed lines in Fig.32)
0.03 meV at &.8 7T (H.5)>

in agreement with the results of more complete calculations(C513,C841)
The effect of H,, is very small and can,in general,be safely neglected
Note that the first splitting is much greater than the other : this is
simply because the matrix elements of (H.1) are proportional to B and
also because H.. ; when acting on a given state IF.>, mixes the H and
L hole components with the same spin and thus affects mainly levels
with strong admixture of L and H character, like the two that cross at
17.6 T.
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