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Chapter 1
Introduction

Many important achievements have been obtained by modern solid state physics
in the description of the vibrational properties of solids. Model theories of lat-
tice dynamics [1] reached the state in which experimental values can be repro-
duced with great accuracy by fitting the parameters of the model to experi-
ments. However, these last years have seen increased demand for “parameter-
free” approaches, both for the intrinsic theoretical interest and for the funda-
mental role played when the experimental information is lacking or debated.

The first part of the present thesis is inspired by the experimental results ob-
tained at the Geophysical Laboratory, Carnegie Institution of Washington by
Eugene Gregoryanz et al. [2]. The scientific group managed to synthesize Plat-
inum nitride at high pressure and temperature, the new compound was quenched
to atmospheric pressure and room temperature and then characterized by Ra-
man spectroscopy, in situ X-ray diffraction and Synchrotron X-ray diffraction,
among many other experimental techniques. At least to our knowledge, no
Ab-initio characterization of this system has been made so far. An accurate
ab-initio study of this new material could be helpful on clarifying its structural
properties. A second problem treated in this thesis is the one related with the
prediction of a polymeric phase for CO, under less extreme conditions than the
ones reported experimentally so far, by running ab-initio molecular dynamics
simulations on a transition metal-doped CO; system at increasing pressures.

Thus, our aim in this work will be precisely to use one of those parameter-free
approaches mentioned in the first paragraph, namely, the Density Functional
Theory (DFT) in order to simulate the behavior of a given crystalline periodic
system. Some theoretical background concerning Molecular Dynamics and the
DFT techniques, as well as some details on the specific set of computer programs
(espresso ) used for this work are discussed in Chapters 2 and 3.

Chapter 4 treats specific aspects concerning the physical implications of working
at high pressures and hence it clarifies its use as a method for synthesizing new
compounds.

Chapters 5§ and 6 are devoted to the analysis and discussion of the outcomes that
were obtained when applying these techniques to our two particular problems.
Finally, Chapter 7 presents the conclusions and perspectives of this work.






Chapter 2

Molecular Dynamics (MD)
and first-principles
calculations

2.1 MD

Molecular dynamics simulation is a technique for computing the equilibrium
and transport properties of a classical many body system. In this context, the
word classical means that the nuclear motion of the constituent parts obeys the
laws of classical mechanics. This is an excellent approximation for a wide range
of materials. Only when we consider the translational or rotational motion of
light atoms or molecules (He, H2, D2) or vibrational motion with frequency v
such that hv kg T should we worry about quantum effects.

The idea behind molecular dynamics simulations is to enable us to mimic real
experiments, in this sense we proceed in the same way in both cases; first we
prepare a sample of the material that we want to study, we set a mechanism for
measuring observable quantities (e.g., a thermometer, manometer, viscometer,
etc) and we establish a sampling rate for measuring those quantities. The system
evolves following Newton’s equations and since some time for equilibration is
requires, the more we let the system run the best are the statistics that we will
get from our simulations an this will allow better estimations of the measured
quantities.

To measure an observable quantity in a Molecular Dynamics simulation, we must
first of all be able to express this observable as a function of the positions and
momenta of the particles in the system. For instance, a convenient definition
of temperature in a classical many body system makes use of the equipartition

theorem. Thus, we have:
2
mu, \ kgT
< 5 >_ — (2.1)

In a simulation, we use this equation as an operational definition of the tem-
perature. In practice, we would measure the total kinetic energy of the system



and divide this by the number of degrees of freedom Ny. As the total kinetic
energy of a system fluctuates, so does the instantaneous temperature:

T(6)=3 (";Z]\g)) 2.2)

The relative fluctuations in the temperature will be of the order (
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is typically on the order of 10?2 — 103, the statistical fluctuations in the tempera-
ture are on the order of 5-10% . To get an accurate estimate of the temperature,
one should average over many fluctuations.

A typical MD program is constructed as follows:

1. We read in the parameters that specify the starting conditions of the
run.

2. We compute the forces on all particles.

3. We integrate Newton’s equations of motion. This step and the previous
one make up the core of the simulation and are repeated until we are
satisfied with the equilibration + measuring time needed for our statistic
averages.

4. After completion of the central loop (steps 2 and 3) we conclude com-
puting and printing the average of measured quantities, and stop.

2.2 Ab-inito calculations

Ab-inito or first-principles calculations consist on the complete treatment of
the quantum mechanical problem. In the following sections however, we will see
that this is not always possible in practice but the problem still can be addressed
by imposing reasonable approximations to the full problem.

2.2.1 The Crystal Hamiltonian

First of all we will describe the crystal Hamiltonian, that is the one which in
principle contains all the physics of the many body system and from the solution
of which, we would like to derive all the observable quantities. It is:
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The first term is the electronic kinetic energy, being m the electronic mass and
V? the Laplacian acting over the electronic coordinates {r;}. The second term
is the energy corresponding to the motion of the nuclei, where M, is the nuclear
mass and V2 is the Laplacian acting over the nuclear coordinates {Ro}.



The third and fourth terms are the pairwise electrostatic electron-electron and
nucleus-nucleus interactions respectively, where: r;; = [r; — | and Rap =
|Rn — Rg| are the electron-electron and nucleus-nucleus separations of the pairs
which are being considered and Z, represents the charge of the ath nucleus.
Finally, the fifth term corresponds to the electron-nuclei attraction.

From the Hamiltonian given above, is clear that the number of independent vari-
ables in the corresponding Schréinger’s equation is determined by the number of
particles involved (which for a macroscopic crystal is of the order of 10%3¢m=3).
Therefore, a direct solution for such kind of equation is not possible. Hence
when dealing with this kind of problems, people very often try to work them
out by doing different successive approximations which sometimes may compro-
mise the accuracy of the final result, or whose results are not so general, working
then for only a few types of systems.

Very frequently the first of those approximations that people do is the adiabatic
(or Born-Oppenheimer [4]) approximation. This is not very critical in terms of
loss of accuracy, and simplifies considerably the problem so we will explain it.

2.2.2 The Born-Oppenheimer approach

If we divide the system into light particles (electrons) and heavy ones (atomic
nuclei), in thermodynamic equilibrium the mean value for the kinetic energy of
both kind of particles is of the same order but, due to the big mass difference be-
tween protons-neutrons and electrons, the electronic velocities are much faster
than the nuclear ones {(approximately two orders of magnitude). Then, for ev-
ery modification in the position of the atomic nuclei an almost instantaneous
rearrangement of the electrons occurs, following the new nuclear positions. This
allows us to consider, at least to a first approximation, the movement of the elec-
trons as if they were in an irrotational field due to fized nuclei. While studying
the movement of the nuclei, by the contrary, only the potential originated by
the mean electronic spatial distribution (and not the instantaneous one) must
be taken into account. Is this kind of approach which is known as the adiabatic
or Born-Oppenheimer approzimation.

Within this approximation the Schréinger’s equation can be rewritten as:
hz
=Y V2% +Ey(R) | ®(R) =ec®(R) (2.4)
— 2M,

being R = {R,} the set of all the nuclear coordinates and Ey(R) the clamped-
ion energy of the system, which is often referred to as the Born-Oppenheimer
energy surface. In practice, Eg(R) is the ground state energy of a system of inter-
acting electrons moving in the field of fixed nuclei, which obeys the Schrdinger’s
equation Hpo(R)yn = En(R)pn where the Hamiltonian —which acts onto the
electronic variables and depends only parametrically upon R— reads

Hpo(R) = ——ZW Z 2ZZZ‘3 er —RI (2.5)
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This could be simply taken as a rearrangement of the equation 2.3, but it is
important to notice that now the electronic part is decoupled from the rest
and can be solved independently, using the set of nuclear positions R, only as
parameters.

2.2.3 Linear response

From the ground state solution for the electronic Hamiltonian (equation 2.5)
for every R, we are able to obtain the mentioned energy surface Eo(R) which
enters into the nuclear Schrdinger’s equation (equation 2.4), thus determining
the nuclear behavior.

Since the works of De Cicco and Johnson [5] and of Pick, Cohen and Martin [6],
it is well known that the harmonic force-constants of crystals are determined
by their static linear response, establishing connections between the dynami-
cal matrices and the electronic properties of the material. Making use of the
formalism just developed in the previous subsection, we can note that the equi-
librium geometry of the system is given by the condition that the forces acting
on individual nuclei vanish: ‘
OEg(R)

Fo=——5p—==0. (2.6)

Whereas the vibrational frequencies w are determined by the eigenvalues of the
Hessian of the Born-Oppenheimer energy, scaled by the nuclear masses

det L OB (R) —w?
/MM OR,8Rg

The calculation of the equilibrium geometry and of the vibrational properties
of a system thus amounts to computing the first and second derivatives of its
Born-Oppenheimer energy surface.

=0. 2.7)

2.2.4 Ab-initio MD

The calculation of the force acting on every particle is the most time-consuming
part of almost all Molecular Dynamics simulations. For the most simple case
of pair-wise inter-atomic forces, the time needed for the evaluation of these
forces scales as N2. In fealdpplications of the MD technique more sophisticated
and time-expensive algorithms for the analytical calculation of the forces are
used, they include many body terms and parameters that have to be fitted to
experiments. Those algorithms tend to be very precise, but are tunned for de-
termined coordination numbers, pressures, temperatures and other environmen-
tal parameters that the researcher could like to change during the simulation.
Then a parameter free algorithm for the force calculations become desirable, this
is achieved by the Ab-initio Molecular Dynamics technique which uses atomic
forces calculated from first principles, with no dependence on the material. This
is possible only from a full quantum mechanical treatment of the problem and
is in this aspect were the Density Functional Theory together with the concepts
already seen in this chapter play a main role.



Chapter 3

Density Functional Theory

The fundamental tenet of density functional theory is that any property of a
system of many interacting particles can be viewed as a functional of the ground
state density no(r); that is, one scalar function of position ng(r), in principle,
determines all the information in the many-body wave functions for the ground
state and all excited states. The existence proofs for such functionals, given in
the original works of Hohenberg and Kohn [7] and of Mermin [8], are disarm-
ingly simple. However, they provide no guidance whatsoever for constructing
the functionals, and no exact functionals are known for any system of more than
one electron.

Density Functional Theory (DFT) would remain a minor curiosity today if it
were not for the ansatz made by Kohn and Sham [9], which has provided a
way to make useful, approximate ground state functionals for real systems of
many electrons. The Kohn-Sham ansatz replaces the interacting many-body
problem with an auxiliary independent particle problem with all many body
effects included in an exchange-correlation functional. This is an ansatz that, in
principle, leads to exact calculations of properties of many-body systems using
independent particle methods —even though nobody until now knows the exact
formulation for the functional which has to be minimized— and has made possi-
ble approximate formulations that have proved to be remarkably successful. In
the present work we used the Local Density Approximation (LDA), which is one
of those successful, practical but approximate, formulations for the exchange-
correlation functional (being this the crucial part in the Kohn-Sham approach
as we will see) and allow us to obtain good ground state dynamic properties
such as phonon modes, bulk modulus, etc. During the following sections of
this chapter we will try to go deeper into the details and motivations of this
technique.

3.1 Force theorem

An extra advantage of the adiabatic approximation is that due to the assump-
tion that the electrons equilibrate very fast after a nuclear movement, we can
think of them as being always in a steady state which is the fundamental con-
dition for the Hellmann-Feynman force-theorem [11, 12] to be valid.
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The force theorem states that the first derivative of the eigenvalues of a Hamil-
tonian, H), that depends on a parameter A is given by the expectation value of
the derivative of the Hamiltonian, so it can be used in the following way

9By = <\1;A 0H)

oA oA

111A> (3.1)

where U, is the eigenfunction of Hy corresponding to the E) eigenvalue: H ¥y =
E,¥,. Remembering now that, in the Born-Oppenheimer approximation, nu-
clear coordinates act as parameters in the electronic Hamiltonian, Hpo(R),
whose ground state determines the energy surface Fo(R) appearing in the
Schréinger’s equation for the nuclei; the force acting on the Ith nucleus will

then be . OFs(R) . Ol 50 (R) .
.= -2 (1| 222 o)) 62)

where g(r, R) is the electronic ground-state wave function of the Born - Op-
penheimer Hamiltonian® being r = {r;} the set of all the electronic coordinates.
This Hamiltonian depends on R via the electron-nucleus interaction that couples
to the electronic degrees of freedom only through the electron charge density.
The Hellman-Feynman theorem states in this case that

Vr(r) En(R)

3] Z €2 2] e? ZaZp
F, = 5 - < .
/nR(T)BRa 2 i~ Bl dr 5Rx \ 2 24 Rup (3.3)

~

e~ —nucleus interaction completely nuclear part

where ng(r) is the ground-state electron charge density corresponding to the
nuclear configuration R and the completely-nuclear part is just a number which
can be calculated exactly for each of those configurations. The Hessian of the
Born-Oppenheimer energy surface appearing in equation 2.7 is thus, obtained
by differentiating the Hellmann-Feynman forces with respect to nuclear coordi-
nates,

O?Eo(R) _ OFsx _ [ Onp(r) 8Va(r) 82Va(r) .  8°En(R)
BR.OR; ~ OBy ) R, BR. T / ") roR, "t FR.0R,
(3.4)

3.1.1 Density as basic variable

The last equation states that the calculation of the Hessian of the Born - Op-
penheimer energy surfaces requires the calculation of the ground-state electron
charge density ng(r) as well as its linear response to a distortion of the nuclear
geometry, Ong(r)/OR,. The Hessian matrix is usually called the matriz of
the interatomic force constants or simply the dynamical matriz. An important
fact related with these matrices that will be used by our computer program is
that, within the adiabatic approximation, the lattice distortion associated with

1We will always assume during the ab-initio calculations of this work that we are at T=0 K,
i.e. in the ground state.
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a phonon can be seen simply as a static perturbation acting on the electrons,
showing again the connection between the dynamical and electronic properties
of the material and making also easier the phonon calculations. These funda-
mental results, as mentioned at the beginning of this section, were first stated
in the late 1960s by De Cicco and Johnson in (1969) and by Pick, Cohen and
Martin in (1970).

According to the preceding discussion, the calculation of the derivatives of the
Born-Oppenheimer energy surface with respect to the nuclear coordinates re-
quires only a knowledge of the electronic charge-density distribution. This fact is
nothing else than a special case of a much more general property of the systems
of interacting electrons, known as the Hohenberg and Kohn (1964) theorem.

3.2 The Hohenberg-Kohn theorem

According to the Hohenberg-Kohn theorem [7], no two different potentials (dif-
ferent up to a constant) acting on the electrons of a given system can give rise
to a same ground-state electronic charge density. The prove is quite simple and
follows after a Reductio-ad-Absurdum:

Let us assume that there are two external potentials V; (r) and V2(r) which differ
by more than a constant and which lead the same ground-state electronic den-
sity. Then if we consider H; as being the Hamiltonian corresponding to Vi(r)
with ¥ being the ground-state wave function associated with this Hamiltonian,
and assuming equivalent definitions for Va(r), then follows that:

By = (1|H1|¥1) < (V2| H1|¥2), (3.5)

we are here assuming that these are non-degenerate ground states so that, the
inequality holds as stated in the previous formula. Now, using this expression
and rearranging some terms:

(U3 H1|Ws) = (Ug|Ha|Ws) + (V| Hy — Ha|Ts)
: B+ / VA(r) = Va (1) (r)dr, (3.6)

so that
B < By + / Vi(r) = Va () (r)dr- (3.7)

On the other hand if we consider E5 in exactly the same way, we find the same
kind of equation, with subscripts 1 and 2 interchanged,

Ey < By + /[Vz(r) — Vi (r)n% (r)dr. (3.8)

And finally, if we add together (3.7) and (3.8), we arrive at the contradictory
inequality Ey + E» < Ej + FE», which establishes the desired result: there cannot
be two different external potentials differing by more than a constant which give
rise to the same non-degenerate ground state charge density. Then, the density
uniquely determines the external potential within a constant.
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This theorem provides the foundation of what is currently known as density-
functional theory (DFT; Parr and Yang [14], 1989; Dreizler and Gross [15],
1990). It allows an enormous conceptual simplification of the ground-state
properties of a system of interacting electrons, for it replaces the traditional
description based on wave functions (which depend on 3N independent vari-
ables, N being the number of electrons) with a much more tractable description
in terms of the charge density, which depends on only three variables.

To see this, let us take the ion-ion interaction energy (En(R) in equation 3.3)
as a reference point, then we are left with the following expression which is the
one that has to be minimized in order to obtain the ground-sate energy and
electronic density distribution:

Elng] = Flng] + / nR(r)V (r)dr. (3.9)

Here we see that (as in equation 3.3) V(r) is the external potential acting over
the electronic charge density due to the ions and is the remaining part (the one
represented by Flng]), which offers major difficulties. In fact there are two main
problems: the first is that Hohenberg and Kohn didn’t provide an exact form
for the F[ng] functional, and the second is that the conditions to be fulfilled for
a function np to be considered an acceptable ground state charge distribution
(and hence domain of the functional F') are poorly characterized. About the
last problem, one usually has to be content to impose the proper normalization
of the charge density by the use of a Lagrange multiplier; and about the first
problem, that is exactly what Kohn and Sham tried to address so in the next
section we will give a short description of what they did.

3.3 The Kohn-Sham ansatz

As mentioned in the previous section, the Hohenberg and Kohn theorem, states
that all the physical properties of a system of interacting electrons are uniquely
determined by its ground-state charge density distribution. This property holds
independently of the precise form of the electron-electron interaction. In partic-
ular when the strength of this interaction vanishes, the energy functional defines
the ground state kinetic energy of a system of noninteracting electrons, which
can be used as a limiting case or starting point for the construction of a general
functional. This fact was used by Kohn and Sham [9], to map the problem of a
system of interacting electrons onto an equivalent noninteracting problem. To
this end, the unknown energy functional can be cast in the form

Flng) = To[ng] + % / W

drdr! + Eyc[ng) (3.10)
where Tp[ng] is the mentioned kinetic energy functional for a system of nonin-
teracting electrons having a density ng(r), the second term is the classical elec-
trostatic self-interaction of the electron charge-density distribution (also called
Hartree term) and finally a new quantity, Egc[ng], is defined and represents
the so called exchange-correlation energy. The only really unknown quantity is
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this exchange-correlation energy functional® and, in principle, the quality of the
solution of the full many body problem will be only limited by the quality of
the approximation used for it.

In the weakly inhomogeneous case, where the deviation of the density is small
from its homogeneous value, Kohn and Sham proposed that the exchange-
correlation energy can be written as

Eyc[nr] = /nR(r)ezc[nR(r)]dr (3.11)

where €;.[ng(r)] is the exchange-correlation energy per particle of a homoge-
neous system of density n. This approximation implies that an inhomogeneous
system is replaced by a piece-wise homogeneous system; precisely coming from
this reason is that this ansatz, is called the local density approzimation (LDA),
which has been proved to demonstrate the outstanding of the DFT, even when
applied to not very homogeneous systems.

3.4 Plane waves and pseudopotentials

Even with such a big help coming from the simplification mentioned in sec-
tion 2.2.2 and from the power of the Hohenberg-Kohn theorem plus the Kohn
Sham ansatz; the many body problem is still very difficult to solve because if
we want to be precise, we should take into account the field of the bare nuclei
and consider the motion of all the electrons. This involves too many particles
and would give place to extremely long computational times in the sense that
it is very difficult to find a nice type of function which fulfills the conditions of:
matching the Kohn-Sham electronic density accurately everywhere and making
the energy-minimization process easy for standard computer algorithms.

In order to get a further reduction in the computational effort required for the
calculation, but still taking into account the physics of the problem, people de-
fine periodic boundary conditions therefore imagining the system as an infinite
crystal. This offers the possibility of thinking the electronic density as a su-
perposition of plane waves, where the size of the plane-wave basis set used for
each particular problem can be easily tuned by defining an energy cutoff that
automatically will limit the number of components we are able to use. Then,
the goal of this approach is to perform an “easy”calculation by using the mini-
mum possible amount of plane waves for constructing the electronic density, but
without compromising the accuracy. This should work fine for outer (mainly
delocalized) electrons but, for the inner electrons, the electronic densities would
be more accurately modeled if they were worked out through the superposition
of atomic wave functions. This is due to the fact that those electrons are much
more localized and in a plane-wave scheme they would need a much bigger set
of wave functions to be represented accurately.

It is because of this problem that another well known and very common approxi-
mation, called the valence approzimation, is also used. This relies on considering

?Because the energy coming from Tp[ng] can be obtained in an indirect way, see for ex-
ample [13].
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that all the interesting physical properties of the atoms in a crystal are mostly
due to the valence electrons. Under this approximation we will take the core
electrons as entities which are merged with the nucleus in an ion-like struc-
ture. Those ions can then be placed as genuine building blocks of the crystal
because after being conveniently modeled, using a suitable basis set, they (or
at least the main features acting over their valence electrons and which affects
their surface and bonding properties) can be effectively represented through
the so-called pseudopotentials [20, 21, 22, 23] which are artificial, effective and
norm-conserving potentials that, in addition, can be constructed to fit perfectly
in our plane-wave scheme. Of course when constructing pseudopotentials we
are free to decide how many electrons will be considered core ones and how
many will be on the valence region. Even though this differentiation is quite
standard however, the construction of pseudopotentials is an art by itself, and
the most recommended thing to do is to use the well done and tested ones that
are already available in the Internet in sites as www.democritos.it.3.

3.5 The ESPRESSO package

Ab-initio methods based on Density-Functional Theory (DFT) are by now com-
mon and well established tools for studying structural and vibrational prop-
erties of materials on very realistic grounds. The plane-wave pseudopotential
method and the Local-Density Approximation (LDA) to DFT have provided
a simple framework whose accuracy and predictive power have been convinc-
ingly demonstrated in a large variety of systems [24]. The calculation of reliable
phonon spectra and other dynamical properties in real materials is well within
the reach of DF'T.

We will proceed now with the description of the computer package used in this
work whose name is ESPRESSO. It is a modular tool in which each module or
subprogram takes the responsibility for one part of the full characterization of
the system. It is in this way that, for example, the module pw.x is the sub-
program responsible of minimizing the ground state energy by finding the best
possible ground-state electronic density ng(r) through the superposition of a
limited basis set which is composed of a finite number of plane waves. Then,
many other things can be done even in a non self consistent way. For example,
using the ground state set of wave functions found after the minimization with
pW.x, it is also possible (with the same module) to calculate the electronic ener-
gies for an arbitrary set of k-points of the reciprocal space and then construct a
bands-diagram. One can use another subprogram, such as ph.x, that takes this
same optimized set of plane waves, and use it to obtain the phonon frequencies
at certain k-points, in order to construct the phonon dispersion curves associ-
ated with the system.

Another very interesting thing that we can do is to optimize the system’s con-
figuration. This is attained by using the so called relaxation mode within the
subprogram pw.x, in which, one has to give arbitrary initial positions for the
atoms as an input and then the program will try to evolve certain allowed-to-
move parts of the system toward an equilibrium position, were the forces acting

30r equivalently at www.pwscf.org
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over each atom will be zero. This is particularly useful in our first problem,
where there is an uncertainty about the position occupied by the nitrogens in-
side the fec structure formed by the Platinum atoms.

The pw.x program, in general, will not perform the self-consistent energy min-
imizations over the entire Brillouin zone, but will use the available symmetries
of the system to sample an smaller zone so that, the computational effort can be
reduced as much as possible while sampling a representative portion of the re-
ciprocal space. Among the most important parameters in the input file we have:

ibrav is the kind of Bravais lattice we are simulating, ibrav=2 is for fec.

celldm is the lattice parameter of the crystal and is usually given in
Angstroms.

ecutwic is the energy cutoff, which limits the amount of plane waves that
the program will use.

k_points is the number of points in the reciprocal space that the pro-
gram will sample (after symmetry considerations) and in which the self
consistent minimization of the energy will be performed.

nat means number of atoms i-e. how many atoms we will have per unit
cell. in our case we used nat = 2 for PtN and nat = 3 for PtNs.

ntyp means number of tomic species i.e. how many kinds of atoms are
involved, for example ntyp = 2.

ATOMIC_SPECIES is the section where we will have to put the sym-
bol of the atoms, their masses and which are the the files containing the
pseudopotentials.

ATOMIC_POSITIONS; is the section in which we are supposed to
give the spatial distribution of the atoms. In this field during a relaxation
process, it can also be specified which atoms we want to have fixed and
which are free to move.

Finally, for the molecular dynamics simulations, the program fpmd.x (cp.x
in latest versions) was used.
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Chapter 4

Platinum dinitride

There has been considerable interest in the synthesis of new nitrides because of
their technological and fundamental importance [25, 26] . Owing to it having
one of the strongest covalent bonds, Nitrogen is very stable and inert under
normal conditions. Yet Nitrogen reacts with selected elements, forming com-
pounds with a variety of intriguing properties. Some of the nitrides (mostly of
group III and IV elements) produced by various methods are widely used as
optoelectronic materials for example, light-emitting diodes and semiconducting
lasers. Theoretical studies of nitrides are also numerous, covering the topics
of optoelectronics [27, 28], physical and structural properties [27, 29, 30] and
superconductivity [31], the latter due to the fact that another important group
of these materials is the transition metal nitrides mostly known for their su-
perconducting properties [32, 33, 34, 35, 36], most of these transition metals
form nitrides at high temperatures and at either ambient or high pressures (for
example, ZrN, VN, MoN).

Although numerous metals react with Nitrogen, there were no binary nitrides
known of the noble metals. Platinum in the other hand, forms simple binary
compounds with halogens (for example, PtF4, Ptly); oxides and chalcogenides
(for example, PtO, PtS) but it was not known to form crystalline nitrides [37],
in fact, previously, only reactions forming small molecules containing Pt and N
in the gas phase have been reported (diatomic PtN by sputtering [38] and PtN,
PtN, and (PtN)s by laser ablation [39]).

As reported in by Eugene Gregoryanz et al. [2], the reaction between pure Plat-
inum and Nitrogen was first observed in Raman measurements following laser
heating of samples at 2000 K and at pressures above 45 GPa. At lower pressures,
after numerous heatings, the transformation to the nitride phase was never ob-
served, whereas above 45 - 50 GPa the transition proceeds rapidly. For us,
this means that the transition takes place in a point where the pressure reaches
a value in which the crystalline PtN compound is more stable than having a
separated Pt crystal and Ny molecules; and then the complete recovery of the
product when quenched to ambient conditions as they report, would be due to
hysteresis effects. This is confirmed by the finding (also reported by Grego-
ryanz in his paper) that the PtN compound breaks down when temperature is
increased to around 450 K at ambient pressure.
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4.1 Experimental characterization

The paper by Gregoryanz et al.. describes how they discover the presence of
the new compound due to an in situ Raman spectroscopy which showed what
seemed to be a new strong longitudinal optic (LO) mode and a weaker transverse
optic (TO) mode (see Fig. 4.1) being this spectra similar to that of cubic GaN
and InN, though the peaks are shifted in frequency as expected from mass
effects [40, 41].
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Figure 4.1: Raman spectra for the new compound.

After decompression, samples were recovered at ambient conditions and ana-
lyzed by electron microprobe. Compositional profiles showed that the Pt/N
ratio is close to 1:1 but with some variations, pure Platinum remained on the
borders of the sample and also to lesser degree in the bulk. The micro-Raman
spectra measured across all PtN grains studied were identical, being this consis-
tent with essentially no variation in stoichiometry and even more, the strength
and width of the Raman fundamental bands are indicative of well-crystallized
and highly ordered structure.

Multiple characterizations by synchrotron X-ray diffraction showed that all pat-
terns, taken at different pressures, are consistent between them; and PtN can be
indexed as fec for all pressures (with lattice spacing a = 4.8041(2) A at 0.1 M
Pa). Even though the Rietveld refinement demonstrated to be complicated by
the strong Pt signal, the refinement agrees with the non-centrosymmetric space
group F43m, to which the zinc-blende structure belongs, as well as the rocksalt
structure. But even though it is true that the big mass difference between Pt
and N makes it impossible to distinguish between the two structures mentioned
above from the diffraction intensities, in principle the rocksalt structure can
be discarded because it doesn’t have a first-order Raman spectrum, while the
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Quantity Experimental result
Lattice parameter 4.8041(2) A

Bulk modulus Kq 372(+5) GPa

Ko/ 4.0

Phonons at I' (£5cm™1) | 745 — 865 — 895
Formation’s pressure | 45-50 GPa at 2000 K
and temperature.
Conductivity poor

Pt / N ratio close to 1:1

Table 4.1: Experimental measurements for the new compound.

zinc-blende structure has two Raman active peaks which are more in agreement
with the two strong first-order bands observed. However Gregoryanz notes in
his paper the presence of some additional weaker peaks in the Raman spectra
and some extra rings in the two-dimensional X-ray diffraction patterns, whose
texture differs from both Pt and PtN rings. These inconsistencies are attributed
by the author to residual non-stoichiometric material distributed throughout the
sample.

The possibility of having a superconducting material was also tested using a
magnetic susceptibility technique [42] and looking for the superconducting tran-
sition down to 2 K. No superconductivity was found, and this fact together with
the visual appearance of PtN (lustrous and darker than pure Platinum in re-
flected white light, and totally opaque in transmitted light) suggests that the
material should be either a poor metal or a semiconductor with a small bandgap.

Finally, two of the quantities that we were able to test by using DFT, are
the zero-pressure bulk modulus Kg which for this material seems to be very
high, being of the order of 372(45) GPa (about 100 GPa higher than the bulk
modulus for pure Platinum); and its first derivative with respect to pressure,
Ko7 = 4.0. These results were obtained after fitting the evolution of the volume
with pressure by means of a Birch-Murnaghan equation of state. Table 4.1
summarizes the experimental results mentioned in this section.

4.2 Ab-initio characterization

In this section we will show that according to our first-principles calculations,
PtN; having pyrite structure is fully consistent with x-ray, Raman and com-
pressibility measurements of Ref. [2]. Calculations [43] were performed within
the density functional theory using a Perdew-Burke-Ernzerhoff exchange corre-
lation functional [44] and a plane wave basis set for the electronic wave func-
tions with a kinetic energy cut off of 60 Ry (80 Ry for phonon calculations). A
pseudopotential description of the ion-electron interaction [45] was used, with
platinum’s 4s and 4p semicore states explicitly included in the valence. Brillouin
zone integration was found to be converged with a uniform grid of 7 x 7 x 7
points. Structural relaxations were limited to the nitrogen positions, with plat-
inum atoms fixed on the fcc lattice and the experimental zero-pressure lattice
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Figure 4.2: Left: Pyrite Structure of PtN,, space group Pa3. Platinum atoms
(white) form a face-centered cubic lattice, dinitrogen (N2) units (blue) occupy
the octahedral cavities of the Pt lattice. The calculated N-N distance at ambient
pressure is 1.42 A. Right: Rietveld fit using the Pag space-group. Red crosses:
data at ambient pressure (A=0.3738 A); green line: Rietveld fit; black ticks:
PtN; peaks; red ticks: Pt peaks. The most intense Pt peaks are cut off.

spacing (4.8041 A ). A preliminary search [46] on the minimal unit cell contain-
ing one PtN; formula unit (i.e. with the rhombohedral primitive unit cell of the
fce lattice) showed that a structure with an interstitial Ny centered in the octa-
hedral cavity of the Pt fcc lattice, gives an energy which is lower than that of all
previously proposed structures, all of which are based on atomic nitrogen cen-
tered either on the octahedral cavities (rock salt) or on the tetrahedral cavities
(zinc blende and fluorite). A single interstitial N, however, violates the cubic
symmetry of the platinum sublattice and would lead to a sizeable rhombohedral
distortion, which is not observed experimentally. In this work, a deeper energy
minimum is obtained by expanding our analysis to the cubic conventional cell
of the fcc metal lattice. Arranging the nitrogen atoms on the eightfold sites of
space group Pad (see Fig. 1 ) minimizes the quadrupole interaction between
the dinitrogen molecules, thus further reducing the energy, while preserving the
observed cubic symmetry of the metal sublattice. The resulting pyrite isostruc-
ture agrees with all experimental data; indeed, a Reitveld refinement of the
observed diffraction pattern using Pa& (Fig. 1) is indistinguishable with exper-
imental data as compared to the originally proposed zinc-blende structure. In
this structure at ambient pressure, platinum atoms are accommodated on the
Wyckoff site 4a and nitrogen atorus are on the site 8c with x=0.415.

PtN, pyrite is found to have a considerably lower ground state energy than
that of any other proposed structures, rendering the existence of any of these
phases of PtN or PtN; highly unlikely. Moreover, in contrast to the structures
proposed in previous reports, the pyrite phase shows not only mechanical stabil-
ity, but good agreement with both bulk properties and experimentally observed
Raman spectra. Our calculations (see Table 1) show the pyrite structure to be
2 eV per stoichiometric unit lower in energy than the fluorite structure at ambi-
ent pressure. The comparison with 1:1 structures (zinc-blende and rocksalt) is
based on their respective formation energies, and shows that pyrite has energy
0.3 eV (per Pt atom) lower than that of zinc-blende and 0.8 eV lower than
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a B, B B,B’  AE (eV)
Exp2]  4.804 373,4.00 354, 5.23 -
Pyr. (cal.) 4.848 305,4.00 285 550  1.92
Fl. (cal) 4.939 269, 4.00 260,4.73  3.95
7B (cal.) 4760 213,4.00 217,3.62  2.20
RS (cal.) 4471 251,4.00 242,478  2.73
Pt exp.[47] 3.924 275,478 277, 5.23 R
Ptcal.  3.966 242,583 249, 5.23 -

Table 4.2: Bulk modulus (in GPa), its pressure derivative (B'), and equilibrium
lattice parameters (in A), obtained from fitting calculated energies over a range
of volumes with a second order Birch-Murnaghan equation of state. Bold values
were fixed during fitting. Formation energies AE are relative to Pt+Ny for
PtN; compounds, Pt+1N, for PtN compounds.

that of rocksalt. The positive sign of the formation energies in our calculations
reveal, however, that PtN, is unstable towards dissociation into its constituent
elements, at least at zero pressure. This is corroborated by experimental ev-
idence that, below 10 GPa, PtN, dissociates upon mild heating. The PtNs
pyrite structure is characterized by Pt in six-fold coordination with N, with a
calculated Pt-N distance of 2.096 A at zero pressure. Each nitrogen is four-fold
coordinated to three Pt atoms and one N atom. The interstitial dinitrogen unit
has a zero-pressure N-N bond length of 1.42 A , much longer than the molecu-
lar triple bond, and consistent instead with a N-N single bond. The calculated
energy versus unit-cell volume was fitted with the Birch-Murnaghan equation
of state, giving an equilibrium lattice parameter that agrees with experiment to
within 1% (Table 1). The bulk modulus (B) is shown to be considerably higher
than that of both bulk platinum and fluorite PtN,, again in good agreement
with experimental results. The slight overestimation of the lattice parameters
and the underestimation of the calculated bulk moduli with respect to the ex-
perimental results, both for PtN,; and for Pt, are a likely consequence of the
choice of the PBE density functional[44].

In order to check the local mechanical stability of the pyrite structure we
computed its elastic constants. For crystals with cubic symmetry, application
of a single strain to the lattice vectors is sufficient to determine all three inde-
pendent elastic constants [48]. These calculations —in addition to confirming the
values of B calculated from the equations of state— also show pyrite structure
PtN; to be mechanically stable and to have a relatively high shear modulus
(Table 2), an important indicator for hardness in dielectrics [49]. The high
G/ B ratio (G being the shear modulus) or, equivalently, the low Poisson’s ra-
tio (v) points to a high degree of covalency [50], suggesting that intercalation
of the dinitrogen units into the Pt lattice induces a substantial change of the
electronic structure from metallic, in bulk Pt, to covalent in PtN;. Our elas-
ticity calculations for zinc-blende PtN (Table 2) suggest that it is mechanically
unstable, as claimed in [51], but our difference between ¢;; and c¢1o for that
particular configuration is too small to allow us to make conclusive statements
about stability within the approximations used. However, our calculations show
conclusively that zinc-blende as well as rock-salt and fluorite structures are in
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| C11 Cia C44 B G E v
Pyrite 696 83 136 288 221 528 .19
Fluorite 473 160 115 264 136 348 .28
Zinc-Blende | 197 200 22 199 10 30 .48
Rock-Salt 266 221 36 236 30 86 .44

Table 4.3: Elastic constants and elastic moduli in GPa for a variety of proposed
PtN and PtN, phases, calculated in the limit of infinitesimal strain (E is the
Young’s modulus, other quantities are defined in the text). Mechanical stability
for cubic crystals is expressed in the following conditions on the elastic constants
[52]: c4a > 0,011 > IC]_2|, and B = gmgz-gl—z >0.

poor agreement with the bulk properties reported in Ref. [2] (Table 1).

The calculated zone-center vibrational modes of PtNy pyrite, as determined
using density-functional perturbation theory [13], show good agreement with
experimentally observed Raman spectra. Calculated and experimental Raman
frequencies over a range of pressures are compared in Fig. 2a. Calculations
show the existence of two almost degenerate modes giving rise to a Raman
peak around 700 cm~! (Fig. 2a) which was reported but not shown in [2] and
originally attributed to a non-stoichiometry of the samples. The calculated
Raman intensities [53] (Fig. 2b) show the presence of two intense peaks, in
good agreement, with the experimental results, and of three weak modes, two
of which are seen in the experimental spectra. It is interesting to note that all
Raman active phonon modes of PtN;, pyrite, although calculated using the full
cell, arise only from the displacements of the nitrogen atoms, and do not have Pt
components. In fact their frequencies are in fair agreement with those predicted
[54] and later observed [55] for single-bonded nitrogen in its polymeric phase.

Finally, the calculated electronic band structure of pyrite PtNy at zero pres-
sure, reported in Fig. 3, shows a clear insulating character. Band gaps are
typically underestimated within density functional theory, so the calculated in-
direct band gap of about 1.5 eV could correspond to a true gap of 2-3 eV, which
would make PtN, an interesting candidate for optical applications [56]. The
insulating character is consistent with the covalent nature of bonding revealed
by the low Poisson’s ratio.

All the evidences presented so far strongly indicate that the new compound
has a Pad structure with interstitial single-bonded Ng units, hence making it
desirable to find an explanation for how this structure can in effect be responsible
for the hardness and insulating properties of this compound. Insertion of atomic
nitrogen into transition metals is known to lead to an increase in directional
bonding and therefore to an increase of mechanical strength. Grossman et al.
[57] have shown that such changes are more dramatic for early transition metals,
due to the fact that the flat density distribution of the elemental phase is more
heavily altered by the insertion of interstitial nitrogen atoms. Late (heavier)
transition metals have a more corrugated density distributions in their elemental
phases, and therefore should not increase their hardness in the nitride phases,
as shown in [57] for the rock salt phases. A histogram of the density distribution
for pyrite PtN, (Fig. 4) shows however that insertion of dinitrogen in Pt causes
a fourfold reduction of the histogram peak, which is qualitatively comparable to
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Figure 4.3: (a) Calculated and experimental (from Ref. 1) Raman frequencies as a
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Figure 4.5: Left: Histogram of charge densities for bulk Pt (left), for PtNy (right,
black), and for Pt+N; (right, red). Right: Cut of the charge density difference (com-
pound — individual atoms) showing charge displacement.

the reduction observed in Ref. [57] for light transition metals, indicating that
directional bonding with dinitrogen interstitials is stronger than with atomic
nitrogen. Moreover, a comparison of the density histogram of PtNy with that
obtained by summing the densities of Pt and N calculated separately but at
the same lattice positions, shows that, in the compound, the charge density
reaches a lower minimum value than that obtained for the sum of the Pt and
Ny densities. This is also clear from Fig. 4, where a two-dimensional cut of
such charge difference is shown. Besides a noticeable rehybridization of the Pt
semicore orbitals, the figure also shows that, in the PtNy compound, charge
flows from interstitial low-density regions to bonding regions of higher density,
which is again consistent with covalency. The presence of interstitial dinitrogen
units is crucial to explain the insulating character of pyrite PtNj, since all
platinum nitride structures proposed so far contain interstitial nitrogen in the
atomic form and have been reported to be conducting.

In conclusion, in Ref. [2] platinum nitrite was observed as a result of the
reaction of a molecular nitrogen fluid with Pt metal at high pressure and tem-
perature (P ~ 45 GPa and T~ 2000 K). Here, we show that this compound is
PtN; having a pyrite structure consisting of interstitial single-bonded Ny units
incorporated in the octahedral cavities of a fec Pt sub-lattice. This incorpora-
tion implies a change of bonding for N from triple to single, a transition that
molecular nitrogen is known to undergo during amorphization at similar pres-
sures [58]. We therefore argue that pressure-induced changes in the bonding
character of nitrogen are key to understand the synthesis of PtNa.
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Chapter 5

Carbon dioxide

CO, is very stable and very abundant since it is a final residua of many reactions.
So, it contributes to increase the pollution problem and green-house effect, then
it would be desirable to device a method for storing CO in a environmental
friendly fashion. There has been an active research in its phase diagram , but
since the C-O bond in carbon is very strong most of the solid phases we know
for this material are of the molecular kind. One of the most desirable solutions
would be the one consisting on bringing the COs to a phase similar to those
that exist for Si0,, in order to make it stable so it will continue being solid
under normal conditions and this will make possible to get advantages from its
possible technological uses.

5.1 COy’s polymeric phase

As described above, CO, is also very stable and its polymeric phase is, in our
study, a target state which we would like to reach at more reasonable conditions
than the ones proposed up to now. Here ab-initio is used for testing some
physically and chemically grounded ideas.

About the polymeric phase we know that it may be an ultra-hard material.
Science, 284, 788 (1999) and it has been already synthesized in laboratory under
extreme conditions (T=1800 K, P=40 GPa.) Science, 283, 1510 (1999). We also
know that a possible intermediate in this process at high T and P is a Co0y4
ring (Tassone et al, Chem. Phys. Chem., 6, 1752 (2005) which are very stable
structures and have to be avoided in order to reach a real long range polymeric
phase.

Our idea is to dope the molecular COy with titanium, but instead of doing this
by setting an expensive experiment we will use the Ab-initio MD technique to
simulate a box containing 50 CO; molecules + 1 Ti (Cy04), complex and hence
discover if this transition metal can suppress the ring formation and activate
the C-O bond in order to initiate the polymerization at lower tmperature.

Our Ab-initio code uses PBE exchange and correlation, Martin-Trouiller pseudo-
potentials an plain-waves’ energy cut off = 90 Ry. The MD program runs with a
constant pressure algorithm that can be set from the input to reach the desired
pressure since the program can tune the geometry of the cell by applying the
variable cell (Parinello-Raman) technique. Our preliminary results suggest that
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transition metal complexes of Ti may be used to initiate COy polymerization at
ambient temperatures and lower pressures than pure CO,. Beyond completion
of this study we can also consider further extending this paradigm to other
systems, for example to the Ny polymerization.
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Chapter 6

Conclusions

In this project we were not only testing the DFT technique by comparing our
results with already known ones (we did this in chapter 4 for Pt and Ny ele-
ments), but also doing some research effort so that, we were able to find good
clues about some unanswered questions. One of the main conclusions of this
work is that, trusting in a well tested and reliable program as pw.x and ph.x in-
side ESPRESSO0, we can disregard (at least from the DFT-within-LDA’s point
of view) the experimentally suggested zinc-blende and rocksalt structures as the
actual ones for the recently discovered Platinum-nitride compound. These two
structures in spite of being the options preferred by the experimental group who
synthesize the compound are in a very high disagreement with their own exper-
imental data, while we found that PtNo with pyrite structure, is a configuration
much more suitable to explain the observed behavior.

Finally, we are confident about the future of our runs with CQO, since, as we
saw, the first part of the polymerization process has been achieved.
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