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INTRODUCTION

The present work is devoted to discuss some recent results involving
a particular kind of sets of measurable functions, i.e. the decomposable
sets. The defiﬂition of decomposability will be given, together with some
properties of decomposable sets, in Chapter 1.

The main part of this thesis is concerned with multivalued maps having
decomposable values: two selection theorems are proven in Chapter 3. As a
technical tool for them, Chapter 2 contains a discussion of Liapunov's
Convexity Theorem, together with some generalizations.

Most of the results collected in this work have a surprising property:
every statement can be obtained, with possibly few changes and remarks,
from famous statements concerning convex sets, just substituting the word
"convex" by the word 'decomposable". This characteristic has been pointed
out by C. Olech [22]. As an example of these results we mention here the
fact that every decomposable and closed set in a separable Ll— space 1is
an absolute retract. The reason of this analogy lies on the fact that the
convexity is "transferred" from the set of functions into the measure
space which is their domain. In fact, the decomposability property - which
essentially is the possibility of perturbing a function by cutting its
graph on a measurable set and piecing on that set the corresponding part
of the graph of another function -, together with the nonatomicity of a
measure on the domain of the function, provides an interpolation method

which plays the role of convex combinations.




1. THE DECOMPOSABILITY

1.1 INTRODUCTION

A notion of decomposability seems to have appeared first in a paper by
Rockafellar [23] , although it is used, for example, in a two years earlier
article by Olech kZl] concerning optimal control theory, and in Pontrjagin's
Maximum Principle. In the Rockafel;ar work, the definition is given for a vector
space of measurable functions, hence it is added, and not substituted, to a
convexity assumption. The definition we give in Section 1 can be found in a
paper by Hiai and Umegaki [14] , in which it used to define a multivalued
conditional expectation. In the multifunction framework, the decomposability
has been implicitely used first by Antosiewicz and Cellina [1] , later by
Bressan [3] ’ Cellina and Marchi [8],and then appears in its full generality
in a paper by Fryszkowski [11]

In Section 1 we report from [14] an interesting characterization of the
closed and decomposable subsets of Lp. In Section 2 some properties of decompo-

sable sets which make them to look like convex sets are listed. They are due

to Olech [22] and to Bressan and Colombo [4]

1.2 THE BASIC DEFINITION
Throughout this thesis, (T, ¥,yu) denotes a measure space with a o—algebral}
of subsets of T and a positive measure y. Given a p-integrable function f:T +R,

we write fey for the measure having density f with respect to y. We denote by
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o} {Ak : X € Althe g-algebra generated tr = family of measurable sets AAE tﬁ . If
E is a Banach space with norm [{'HE » ™ denotes the vector space of the functions
u : T+E, which are measurable with reszsct tot} and to the Borel subsets of
E, while Lp(T;E) y L<p i:w, is the Banzch space of the functions u €M such
that IIuHE € Lp(T;R) , with norm IIuHP = {f; ]thg d u)l/p (see [24,pag.132]).
* o4
The vector space of the multivalued mazs F from T into the subsets of E which
are (weakly) measurable (i.e. for apy ccen set U EE we have that F—(U) =
={ t€T : F(t)NU £ ¢} e‘} ) is indicated byw . We recall here the basic
property of these multifunctions
THEOREM 1.1 . Let F be a multivalued function from T into the closed nonempty
subsets of E and assume thet E is separzble. Then the following statements are
equivalent :
(1) rF € MU
(ii) (Castaing) there exists a sequence (fn)n in M such that
F(t) = clE {fn(t) :néN} for all teT
For the proof see, for instance, [16] and [15,Thm. 5.6]

We indicate by S? the set of all the Lp selections from F, i.e.

S?: {ueLpﬂﬁm :ult)€&F(t) a.e. in T}

Given two metric spaces X,Y

1]

with distances dx, dY respectively, the distance on their product is d

X
The diameter of S is diam (S) = sup {d(x,v'\ : X,%x' €S }. The set-thecretic

=d_ + dY - The open €-neighborhood of a set SSX is B(S,e) = {xeX; d(x,S)<el.

difference between two sets A,B is written ANB ;3 their




symmetric difference is AAB = (ANB)wW/ZN4A). :ﬁ:A stands for the cardinality

of the set A, while X‘A is the characteristic function of A.

Following [14], we now introduce the main concept discussed in this thesis »

DEFINITION12.A set K< IM is decompcszable if
u'XA + v‘x:l“\AE K whenever u,veK, A€ #.

The collection of all nonempty 'decomp{osa':le subsets of a subspace L of M is denoted

by D(L). . For any set HEL *. , the descomposable hull of H in L is

dec [H] = N{KED(L) ' ; Hck) .

X
Clearly, decL[H] represents the smallest decomposable subset of L which contains H.
The following result provides a characterization of the closed and
decomposable subsets of Lp(T;E) and gives easy examples of such sets. It is
due to Hiai and Umegaki [14, Thm. 3.1]
THEOREM 1.3. Let p be o-finite and E be separable. Then a nonempty closed

subset K of Lp(T;E) , 1Sp < =, is decomposable if and only if there exists

Fem, with F(t) closed for every t €T, such that X = Si

The following Lemma, which is essentially a Lp version of the Representation
Theorem 1.1, will be needed in the proof.
LEMMA 1.4. Let F€M have closed values and let 1<p< = . If Si is nonempty,
then there exists a sequence (fn)n contained in S? such that F(t) = clE {un(t)

«neN } for all t ¢T. Furthermore, for each uES? and € >0, there exists a finite

measurable partition {Al,...,A } of T such that
n

n
Hu - Z_ ui.XA_ ”p< €.
i=1 i

For the proof, see [14, Lemma 1.1, 1.3 ] .




Proof of Theorem 1.3. The decomposability of S§ is obvious. Conversely, let

I((D(Lp(T;E)) be closed and let (gi) [~ Lp be a sequence such that {u (t) : iefN},
Z 1

by Lemma 1.4, is dense in E for all t. Set, for each i, a, = inf {||u, - v|| : veK}
i i D

and choose a sequence {v, _ : j>11} &€ K such that || u, - Vv || + a
ij = i ij 'p i
Define the function F ETTL by setting F(t) = clE {v, (t) 1,521 ; we
1]
p

now prove that K = SF

To see that S? &K, let u g Si and € >0 : by Lemma 1.4 we

can take a finite measurable partition ({ Al,...,A } of T and a subset
n
{ W oyeen,w P& {v. .} such that
1 n ij
n
u - . <
lu-Z wox, I <e
n k=1 k
Since 2. w +X, € K andK is closed, we have that ugK.
k=1 k

Conversely, let us assume by contradiction that K 52 Si

Then we can take u € K, A € h& with p(A) > 0 and & >0 such that

inf || u(t) - v (%) HE > 8 for all t € A.
i z
i,3>1 J
Fix an index 1 such that the set

B=A N {t €T : || ult) - u (t) ”E < 6/3 }
i

I
has positive measure and define the sequence (v') & K by setting
J J

'

L - . 1. > l
ViT R Ty X Qs J o2
Then, since for all t &B
(t) - v, (¢t > t) - t - t) - t > 26 ,
Hui ij( )”E > Jlu(t) vij( )HE [lu(t) ui( )“E 5
we have that, for every j > 1,
lu, =v 10 -a® >
i ij i =
P P
2w, =vo AT = u, = vl
i ij i j p
> Ulu ) = v, (0))P = £) - w(t)||Py du
fB ; L BHIE = 1l (8) = w(e)[12)

which is a contradiction.

GRCIERS




1.3 SOME PROPERTIES OF DECOMPOSABLE SUZS:ZTS OF L1

Throughout this section, 1 denotes a finite, positive and nonatomic measu-—
re, i1.e. there exists no E e'ﬁ§ such that p(E) > 0 and for all measurable
F € E either ®(F) = 0 or u(F) = u(E)

In this case,‘e number of analogies beetween decomposable and convex
subsets of Ll(T;R) - or of Ll(T;E) f can be found. They were first noticed by
C. Olech in [22] . These properties aepend on the fol;owing fact, that will be
discussed in the next chapter : there exists a totally ordered subset
{ Aa : ae[o,l] } of ‘3‘\ such that u(A ) =aplT) for every o €[0,1] ; as a
consequence, any two functions u,v in K can be joined by a continuous path
contained in K. We collect here three theorems about the geometrical and the
topological structure of decomposable sets in Ll. They correspond to the Krein-
Milman's and to the Carathéodory's theorems on the extremal points of a convex
set and to the Dugundji's extension theorem, which we state here for reference.

THEOREM 1.A (Krein-Milmen, Carathéodory). Suppose X is a topological vector space on which X* separa—
tes points. If D is a compact and convex subset of X, then D is the closed convex hull of the set of
itseX‘TemeDOints(wesayﬁ‘lateGDisextremeforDiftheequalitye:XaJr(l—x)bwitho <A
< land a,b€D inmplies e =a=b). When X = R, for any x€D there exist at most n + 1 extreme
points €,0€ 5-..;e of D such that xeco {e , e, ... , el
1 n ° 1 n
THEOREM 1.B (Dugundji). Let A be a closed subset of a metric space X and let D
be a convex subset of a Banach space Y. Then every continuous map f : A + D
nS
has a continuous extension f : X + D.

The following definition allows us to state Theorem 1.A for decomposable

sets.




1 n
DEFINITION 1.5 (Olech). A point w of a decomposable subset K of L (T;R ) is an

. n
extreme point of K if there exists a convex cone CLWR , with the property that

n
Cn(-C) = {0} and C B (-C) = R , such that for each u¢K, w(t) - u(t) €C
for p-a.e. t €T.
n
cR
We recall that, for a convex set D, e is extreme if and only if there
exists a convex cone C, with the property that C A (-C) =w{Oj , such that e - d¢€C
for each d € D. Hence, the above notion of extremality for decomposable sets can
. . i 1
be seen as an analogue to the (pointwise) one for convex sets in L .
1 n
THEOREM 1.6 (Olech). Let K € D(L (T;R )) be closed and integrably bounded (i.e.
. 1 )
there exists m € L (T;R) such that | u(t) | <m(t) p-a.e. in T for every u€K).
Then w € K is an extreme point of K if and only if:~/, w dﬂ is an extreme point
T
of th = {jr udp :ué&kKl}l . Moreover,g(K is a convex and compact subset of
T
n

R, hence the set of the extreme points of K is nonempty.

T n
THEOREM 1.7 (Olech). Let K €D(L (T;R )) be closed and integrably bounded. Then

for each u € 551( there exist at most n + 1 extreme points of K , Woseao,W
n
and a measurable partition of T, Ao,...,A , such that
n
j% W - d = .
f. i‘a ¥ fUd“
T i=0 i T

These two results were stated by Olech [21, Theorems 7.1,7.2] in a diffe-
rent framework and later reformulated in this language [ 22, Theorems 1,2]

The last result of this section has its origin in a paper by A. Cellina[?])
in which it was proven fhat a particular decomposable set K has the compact
fixed point property, that is every continuous map f : K » K with relatively
compact image has a fixed point. This theorem has been later generalized to all
the decomposable sets in Ll by A. Fryszkowski [12] and represents the decomposa-
ble counterpart of the Schauder's Fixed Point Theorem. We state it as a corollary

of the announced analogue of Dugundji's theorem.




1
THEOREM 1.8, Let A be a closed subset of z metric space X. If either X or L (T;E)

. 1
iz separable, then every continuous maz Z:A+- L (T,E) has a continuous extension
A 1 v .-
£:A~L (T;E) such that f(X)g dec [ f£(a)’
1 ) ,
COROLLARY 13 If L (T:;E) is separable, <rer every closed decomposable subset

K§;L1(T;E) is a retract of the whole Scace.

Theorem 1§yiel<s = general fixed point theorem, which
. . 1 .
1s valid for L~ spaces over any abst;ac: measure space (T, % ,u) with a non-
atomic probability measure TR
COROLLARYidO_Every closed decomposable s=t KQI}KT;E) has the compact fixed
point property.

ce g1 . . .
Indeed, if L7(T;E) is separable, then Cerollary149is an immediate consequence
1
of Corollarylﬁ. To cover the case where L (T;E) is not separable, let f:K+K
be a continuous map whose image is relatively compact, and let X be the closure
of the convex hull of f(K). Since X is compact, it is obviously separable.
Using Theorem 1.6} extend the identity map v on XNK to a continuous map ? X - K.
4"

The composition fo. maps X into XK. By Schauder's theorem,it has a fixed

peint ;(EXfWK, which is then a fixed point of f.

PROOF OF THEOREM 1.8,

We assume first that Ll(T;E) is separable. For each X € X~A , take an open
ball B (x,rx) with radius r < % d(x,A). The family { B (x,rx) ;X € XNA D
is an open covering ?f the paracompact Space X N4, hence it admits an open
nbd-finite refinement { Vi 3 161 } . Here T is a possibly uncountable set

of indexes. For each i, choose two points X.€ V. and y_€ A such that
i i i ’




d(xi,yi)< 2 d(Xi.A). Using the Seéparabilizy assumption, select a countable

Subset D= {u ; n>1 1 of £(a) whichk is dense on r(A) . Define the sequence

n
(g ) in L'(T;R) by setts
gk k >0 in T; y setting
m _n
gk(t) = | u (t) = u (t) Il whenever k = 2+ 3" for some m,. 2 1;
om n E ,
g (t) =1 otherwise.

k

Applying Theorem 2.6 below to this Sequence, we obtain g family { ¢(t,2) } of measurable

subsets of T with the properties a) *c). For each i€l , choose u (,)e D such
v(i) ™

that || uv(i) - f(yi) Il < d(xi,yi) . Let {pi(-) ; 1€I} be a continuous

partition of unity subordinated to the covering {V.}. For every n>1 , define
i =

the open set Wn -‘-U{Vi s v(i) = n} ang let qn(x) = (2 pi(x) .
v(i)=n

Clearly, { qn(‘) 7 N 211is a continuous Partition of unity subordinated to
the locally finite open covering {wn} - Construct a Sequence of continuous

functions (hn)n_il such that hn = 1 on Supp (qn) and supp (hn)_C_Wn .
For every x € X~A, define An(x) = z qm(x) » N20 , and consider the function

m<n

Tx) = 3R (xh (x)-2"3"
m,n21

Notice that =< is continuous on X~A and that

n

t(x) > 2" . 3 AV"XE Supp(qm)nSUpp(qn)- (1.1)

We can now extend the map f to the whole space X by setting

-9




fx) if xgA

2, u X
ol n ¢(T(x),ln(x,;\©(r(x),>\n l(X))

if x € X~NA .

"

"
It is clear that f maps X into dec[f(A]! . Moreover, f is continucus on X~A4,

because the functions =<t(:) and A (-)

n (n_z 0) are continuous, the characteristic

. . L. 1
function of the set &(1,)x) varies coniinuously in L (T;R) w.r.t. the parameters

Y
tand A, and because the summation definirz f 1is locally finite. To prove

",
that f is continuous on A, let a €A and ¢ >0 be given. Choose § >0 such that

§ < e/ 12 and || fly) - f(a) ”1< e/ 2 whenever y €A, d{y,a) <1268 .

If d(x,a) < & and eri for some 1€ I, then diam(V ) < 26 , d(x_ ,A) < 33
i i

and d(xi,yi) < 65 . Therefore, pi(x) # 0 implies that d(y.,a) < 9§
i

9

Il £f(y.) - f(a) ||.< e/2 and u - < g,
i 1 | o1 f(a) H1 £
From the last inequality , it follows tha:
Il u - f(a) ”1 < e V‘n such that qn(x) #0 . (z.2)

For any x € X~A with d(x,a)< §, fix an integer j for which q (x) £ O.
J

Using (3.1) , (1.2) and the property c) of the sets $(t,2) , we obtain the

estimate

I £¢a) - ¥(x) I s e - ujn1 + Huj - 2’<x>1|1

. u
J n

A

[y}

+
Ms
=

i

E Xo(r00,0_ (0) ~e(e0) 0 () @

=]
i

T

1]

™

+
Me

o]
[}

J‘T gzj 3f1' X6 (x(x) AL G~ (x) A L G)) du

]
m
+
M e
[Nal
~
tal
~

g . dyu =g+ (x) |Ju, - u £3 .
T 233n . n§1 qn ” i n”1

=]
]
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Since ¢ was arbitrary, this completes :rg proof in the case where L1(T;E)

is separable.

When X is separable, only minor mesi<ications of the above arguments

are needed. Consider again the open ccvering {B(x,r#) 3 X € X~A} and a

locally finite refinement { Vi 3 1€1} . Notice that in this case the set I

is necessarily countable, since XN\ A is separable. For each i, choose x, €V.,
E 1€Y1

yi.eA.such that d(xi,yi) <2 d(xi,A). It now suffices to define the countable

. 1 . .
set D {£(y;) ; i€I} © L (T;E) and arrange its elements into a sequence,

say D { u 3 0zl } . From this point on, the proof runs exactly as in

the previous case.

-11~




2. SOME TECHNICAL RESULTS ON MEASURE THEEQORY.

2.1 INTRODUCTION

In the analysis of decomposzable sets, one of the most important
tools is a method ‘to interpolate among points with continuity, which is not a
convex combination. More precisely, let X be a topological space and L be a
topological Vector space and suppose given a finite open coVering M :(Ui)izl,...,p

of X and a corresponding family of points Y = (y.). 1 in L. The usual
1 1=1l,...,pD

way to '"extract" a continuous function f from the multifunction
x =+ {y :x €U} is to take a continuous partition of unity (m (*))
i i ki i=1l,...,p
subordinate to 1L. and to define
f(x) = ﬁ Tl‘i(X)'yi . (2.1)
i=1
If K is any conV¥ex set containing Y, then f(X) £ K, while if K is not convex,
the property f(X) £ K may be lost. To maintain the relation f(X) € K in the case

1
when L is L (T;E) , a nonatomic measure u over 3‘ is given and K is decomposable,

Antosiewicz and Cellina [1] used the following substitute of (2.1)

P
f(x) = (x)- , (2.2)
Z X Iy ‘
i=1
1 )
ere y. - ; 10, are continuous functions suc a x. (x) =
wh X X L (T; {0,1 t 1 ti h that ) 1
i i

i=1
for ev¥ery x € X . The functions Xi can be constructed by taking a family

A ) of measurable subsets of T such that
o oeD,1]
A € A if o < B
o B = ’
(2.3)
p(d ) = o°u(T) for all a¢[0,1] ,
and by defining a (x) = f m (x) |, a (x) =0 and x, (x) = X, A (see Fig.1).
i i
j=1 a; (X)) e dx)

The existence of a family of sets satisfying (2.3) is equiValeht to the

nonatomicity of u , as it will be shown in the Corollary 2.4 below. The property

-12-




f(X) € K holds by the definition of deccrposability, and f is simply seen to

be continuous ( see Proposition 2.8 belzw).

?

vy
-

o]
}—J

Together with these analogies with convex combinations there is,

however, a major difference.

In Banach spaces, the metric and the algebraic structures are
linked together by the fact that balls are convex . On the other hand, balls
. 1 .
in L (T;E) are not decomposable. The failure of this basic property is a
primary source of technical difficulties. If 5<5L1 and [ly_ - 5 ]Lg p for all

i
ie{l, ... , p}, without additional assumptions on the sets Al the only
available estimate for (2.1) is

£ ¢ - . .

N fooy y Il <po
This bound can be improved if the sets AA are more carefully chosen. In [7]

the author defines the measures y . by Setting
i

A) = .j° -y d & ).
u, (2) Ay -y Iz dw (A€ F )
By Corollary 2.4 below ', one can then choose a family of sets AX

satisfying the additional conditions
pi(Al) =Api(T) ’ (}‘E[Oll] y 1= 1,...,? ) (‘2‘4)
If these special sets are used in (22, the stronger estimate

I feo -y ll<o holds.|
~13-




This chapter is devoted tc construct families (Aa)a for which
(2.4) holds. For a finite set Y of functions, hence for finitely many measures,
the existence of such a family is equivzlent to the Liapunov's Convexity
Theorem, as it will be shown in the next section. In general, (2.4) is not true
for an infinite family of measures (pi)i €1’ as Liapunov's counterexample 2.5
shows. Thus, in order to apply this interpolation method to a space X without
assuming its compactness, a kind of infinite dimensional extension of Corollary
2.4 is needed. We give in the last section two different generalizations: the
first one, Theorem 2.6, provides the desired interpolation, while the second

one, Theorem 2.9, although a more precise analogue to Corollary 2.4, is not

applicable here*

2.2 THE CASE OF FINITELY MANY MEASURES

We state first the famous Liapunov's Convexity Theorem, which is
the foundation of every result presented here.
THEOREM 2.1 (Liapunov). The range of every nonatomic finitely dimensional
vector measure y 1.e. of every (bounded) countably additive function
Vo E& - Rn whose components have no atoms, is compact and convex.

Many proofs of this theorem can be found in the literature; we
report here a simplified rewriting of the convexity part in the paper by
Halmos [13] s Dby whose arguments some of the results stated in this chapter

were inspired.

Before the proof we give some definitions which simplify the
-14-
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(1977,A.M.S. Providence Rhode Island) contains a deep discussion of many theorems
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notations. We recall first that the lenz-< of a finitely dimensional vector

measure Vv, |v | , is the numerical mezzure which is the sum of the total

variation of each component of v ; a mszsure v' over :} is absolutely continuous

with respect to v -and we write v'<< = if [vij<< | v ] .

DEFINITION 2.2 ([7]). a family (A)yern .yr A e:tk, is called increasing if
2,10 e E—

A € A when a < B
a B =
An increasing family is called refininz A€:51 with respect to the measure v

if AO =0, Al =Aand V(A ) =a *v(A, for every a€[0,1]

DEFINITION 2.3 ([13]). A vector measurs v is called convex if for every A

there exists a family (Aa)a refining A withrespect to v ; is called semi-
convex if for every A e‘%& thre exists 2 B € A such that v(B) = v(Aa)/2.

REMARK. The property of convexity says that the range of v is star-shaped
and that the segment [O,V(A)] is covered by the measures of an increasing

family contained in A (see Fig. 2)

W

Fig. 2
PROOF OF THEOREM 2.1 (CONVEXITY PART).
We suppose, for simplicity, that v= (vl,v2) is 2-dimensional and
has positive components.

The proof will be carried out in a few steps:

-15-—




a) a semi-convex measure is convex;
b) the range of a convex measure is ccocnvex;
c) a nonatomic measure is semi-convex (nence it has convex range).

Proof of a). (Fryszkowski [12,Prop. 1.2]). Let Aeft% . By definition there

exist measurable sets A , Ay €A
&

and A' € ANA, such that v(Ay) =% v(A) and
2 2

% %

. ' i
v(Aql‘) :-Z..\)(A) = v(A') ; define A%z Ayz U A : then \)(AS/‘) = fv(A). Using

this method we can construct an increasing family of subsets of A, A , with
o

n n
o =k/2  (nefJ and 0 <k <2 ) such that v(A ) = av(A). Define, for every
[0

0,1 H A = U A . : : . - .
a € | ] o k/2n< k/2n Then the family (AOt)OLlS obviously increasing,
<a

while it also refines A with respect tc Vv, because
v (A) = sup v (A

. . n

i k/2n§,& i k/2

for i = 1,2. O

) = QV,(A);
1

Proof of b). This claim will be proven if we prove the following statement,

which is itself of interest :

bl) let v be a convex measure and let A,B € 59; then for every A €[0,1] there
exist a measurable set C(A) such that

1) ¢(0) = A ; c(1) = B;

2) v(C(A)) = (1 = ) v(A) + av(B)

To prove b_), let (A ) (resp. (B ) ) be a family refining ANB
1 o o o o

( resp. BNA ) with respect to v . Define

C(r) = ( AAB)UA UB
1-x 2

then, 1) is obviuos, while 2) follows from

(C(A)) =v(AnB) + (1 — 1) v(ANB) + 2(BNA)

I

(L = a)[ v(AAB) + v(ANB)] +ap(ANAB) + v(BNA)]

(1 =) v(a) + av(B) . D
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?EEEE_EE‘_Sl. The proof will be carriec by induction. First we show the following
proposition
cl) the range of a nonatomic numerical measure v is the closed interval [0,v(T)]
We begin by showing that every AGB’ such that v(A) >0 contains
measurable subsets of arbitrarily small positive measure. In fact, by definition
A contains some B‘ég‘ such that 0 < v(B) < v(A) ; among the sets B and A NB,
call Al the set whose measure v is‘not bigger than v(A)/2 . Similarly we can
construct a set A2 < Al such that 0 < \)(AZ) < v(Al)/Z, and so on by induction.
Let now a €]0, (T)[ : we can find an Alﬁf}‘ such that 0 < V(Al) < a.

If the equality holds, we have finished; otherwise, suppose to have constructed

a family of pairwise disjoint measurable sets (A')'eI such that E v(A ) < a
i'i i

i€l
(ﬁ#l;h’o ) : we can find a measurable AIQ T \U A such that
€1 '
0 <v(a) <o~ 7 via)
I — ; I
iel

and so on by transfinite induction. In this way we obtain a countable family
of pairwise disjoint sets the union of which has measure a. 0

Let now v= (vl,vz) be two-dimensional. We can suppose that v2 is
absolutely continuous with respect to Vl : in fact we can study the measure
v!' = (\)1 + v2,v2) » which has the preceeding property, and note that

V(B) = %VA) € Vv'(B) = % v'(A).

Our next step is therefore the following :
CZ) let v' be a measure which is absolutely continuous with respect to v and
let (Aa)a be a family refining Ae‘& with respect to v . Then the function
a + V(A ) is continuous.

In fact, let €> O and choose &6 >0 such that JVL B € \3‘
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[v(B)| <8 = [ vi(B)]| <

If < a < @ < land a_ -~ o < §/|{v(A , the
0 £ o oo 2 5~ % <)l n
v _ <
VA, N A )= (e - a ) v(A)] S
2 1
and therefore |[V'(A ) — V'(A )| = |v'(i NA)| < e . 0
o o, 4 d,

End of the proof of c). Let AGG‘; ther, by Cl) there exists a measurable B£A
such that Vl(B) =K1/2 \)l(A). If VZ(B) =% \)Z(A) , there is nothing to prove.
Otherwise, we can assume that \)2(1?:5) <% VZ(A) and \)Z(A\B) >Y \)Z(A) . Applying
proposition bl) to the measure Vv and to the sets B, A\B , we obtain a family

C(X) of subsets of A such that Vl( Cx)) = % \)l(A) , VZ(C(O)) <% \)2(A) and

v (C(1)) > % \)Z(A) . Since v, << vy the continuity property shown in b2)
2

yields a A such that \)2(0(;\_)) =% vg(é) and the proof is concluded. ]

COROLLARY 2.4 (Fryszkowski [11,Prop.l.1] ). Let y be a positive and finite

measure over 3” and let v= (\)1, ... , v ) be a measure absolutely continuous
n
with respect to p . Then if (and only if)  is nonatomic there exists a family
A ) refining T with respect to (v , ... ,v , u).
o ag[0,1] & P 1 n’ M

Proof. Apply parts a) and c¢) of the proof of Theorem 2.1 to the measure

2.3 THE CASE OF INFINITELY MANY MEASURES.

EXAMPLE 2.5 (Liapunov [17]). A 22—valued (hence with infinitely many components)

nonatomic measure of bounded variation whose range is not convex. 5
Let t‘}‘ be the Borel subsets of [0,2r] and m be the Lebesgue measure.

Take a complete orthogonal system (w ) R in LZ([O,ZW];IR) such that every w

n ne¢ n
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2m

assumes only the values #1 and such that w_ = X[O 271 » while -/. w dm = 0
y & n
0

for n > 1 (e.g. the Walsh functions). For each n, define v on ﬁ} by setting
= n

n .
v (E) = 1/2 ~/’,l +w (t)]/2 dm , E € t91 .
n - n
E
Define wv: 3‘—562 as
v(E) = (VO(E),\Jl(E), oo )
Then l|\(E)H2,i2 m(E) for every E 6‘?} , therfore v is a vector measure of

bounded variation which is clearly.nonatomic. We will prove that the range of v

is not convex by showing that there dces not exist a set E Gt} such that

v(E) = v([0,2r])/2 = (w,n/4,n/8, ... ) . Notice first that v (E) = m(E) and

1 X )
v (E) == m(ENU ) , where U = { s €[0,2r] : w (s) = +1 }, for every EI{é%.
n 2n n n n

- . — n+l = n
Suppose that E exists : then we have that 7 = m(E) and /2 = m(E QU )/2 ;
n

since m(U ) = m(E) = 1 , it follows that

n

m(EﬂU’) = /2 =m(E\U_) =m(U\NE) = m([0,2r] \ (EVU ))
n n n

n

21
forn>1 . Define f = y—- - - have that f dm = ¢4~ =0
b XE X[O,Z‘rr]\E we nave A W, m ™
and, for n > 1, that ‘
2%
f fw dn=mU AE) + m{[0,2r]\(E VU ))
n n n
0
=m(UNE) - m(ENU ) - m(U NE) + m([0,2r] \(EVU )) = O.
n n n n

Since f € Lo([0,2np and f # 0, this contradicts the completeness of the system
w) . B

nn {als‘

v
This example shows that Corollary 2.4 is when vy takes values in an
infinitely dimensional vector space. The following theorems extend Corollary 2.4
to the infinite case by allowing the family (A ) to be non costant and to
oo

continuously depend on the components v, of v. The meaning of '"continuous" will
i

be precised in each statement. Up to now, a fully constructive method to

-19-




does not seem to exist.

Ve
Ziven measure v,
i

(At
a

obtain a refining family )a from =
t to v, , which is necessary to provi-

es-an

—=o2C

Hence, the continuity of (A:i)awith r
de a continuous interpolation method, Is the core of the infinitely dimensional

case. In Theorem 2.6 this problem is scived, for countably many measures, by
addina a new real parameter ¥ and by a more precise choice of the (A:i)d In
of continuity follows from a complicated

slightly different kind

a

Theorem 2.9
sets which is originated by Halmes'

interpolation method among measurable

proof of Liapunov's Convexity Theorem
The two following results can be found in [4,Lemma 4.1,4.2] .

THEOREM 2.6.Let (T,% ,u) be a measure space with a g-algebra % of subsets of T

and a non-atomic probability measure p on 4 . Let (g ) be a sequence of

1 , -
non-negative functions in L™ (T;R) with g =z 1. Then there exists a map

BR'x[0,1] +# with the following properties:

¢
i <
a) ¢(1,A1);¢(1,A2) if xl_xz .
< - > -
b) u(¢(11,ll) A ¢(12,12)) ‘ll k2|+ lrl T, s
c) Jr a = A . d y n < 1,
P{T,A) gn ¥ gn H 171 T
T
Ty Tlo 122_0.

e[0,1] ,

A
2

9

for all A, xl
Proof. The Theorem will be proved first in a special case, assuming that
&s)

ﬁ#n 2 0.

=1

’[:g dp =
n
By induction on n, we shall define a sequence of families of measurable
-n_ _
F CF

; »€[0,1] }, n>0, and a decreasing sequence of ¢ —algebras

n
sets {A
A

with the following properties:

. n
i) p(AA) = A

ii)
-20-




iii) An c A whenever ) < 3 ,
AT A - 2
1 2
n n
iv) F = O{AA ;i xelo,1] 1}
v) n(A) =

n
f g, du whenever A€ Z , 1<n.
A

o

To do this,using Liapunov's theorem 2.1 , construct a family of sets {AA}

o

such that i) and iii) hold for n = 0, aré let % be the og-algebra generated
° m
by the sets AA . Let now AA be defined for all 1€[0,1] and all m<n-1, so
that the properties i) % v) hold. Apply Liapunov's theorem to the two non—
. ~n-1 .
atomic measures p and ho=g-u , on the measurable space (T, % ). This
n

n
yields a family of sets { AL i A €[0,1] } such that i), ii) and iii) hold

n
for n. Define &% by iv). We then have

p(a) = J‘gndu (aeF")
A

because the equality holds whenever A = A: for some A, and the family of sets

.n .. . . .. =0
{A) HE \ e[O,l] } is increasing and, by definition, generates & .

?

.

_n 1
If i <n, then A€ # implies A € F D J;n, hence v) is a consequence of

the inductive hypothesis

We now define the sets ¢(7,)) as follows.

If T is an integer, ¢(71,)\) = A; .

If T =n + § with n integer, 0 < § < 1, we consider two cases:
n+1
A

where £ is the smallest number in [b,T] for which the equality

n+1
pal U A" = A holds.

when A < & we set O(T,A) = A 5 when A > § we set &(T,)\) = A§+1LJ Az,

S g
Notice that for any n,s§ the function
n+1. n
g+v(g) = pt A‘S v Ag)
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is Lipschitz=-continuous and non-decreasirz, with p(0) = § , p(l) =1 . In the
case §<i<l, theset {£¢[0,1]; y(z = A} is non-empty, closed and
connected, hence it contains a minimal e_ement. The map ¢ is thus well defined.
The verification of a) is elementary. Zy construction, we also have
u( ¢(r,x))‘f A Y20, 1 €[0,1] . (2.6)
Observe that on %" the measures Blrus oee g-u all coincide
with u = g .u , because of v). Since.‘e(z,x)e 3?n whenever T >n, (2.€)
implies c); To prove b) notice that a) and (7.6) together yield
u( o (1, Al) Ao (1, Az)) = lxl - le A ) Vo A Ay s

Therefore, to establish b), it suffices tc prove the inequality
) A , < 2 - . 2.3
p( ¢(rl x) ) (12 A)) < [rl 12} 2.3)
Moreover, we can assume that T <12 and that T, both belong to the same

interval [n,n+l] . For i = 1,2 , set 6§, = 1. -nand, ifA>5_, let
i i

n+1l n
o{r ,A) = AG U A . Three cases must be considered.
* i &
n+1l
1) If <§; < &, » then ol a) = 4! Tz’x) = A and (2.%) holds
= 1 A
trivially.
\ n+l n n+1
2) If §. e« < § » then  w( o(x_,3) 2 o(c_,1)) < p((A  UA ) A )+
I =" =72 1 2 - 5 £ 8
1 1 1 1 1
n+ n+
({ A A = (A - & 5 - < 2 - = 2 -
+ U\Aal 62 ) = ( l) + 5 él) < (62 51) [Tl 12|
n-_ 1 n n
3) If 61 < 62 < X , observe that Ax SA:+ and A€ 2 AE . Using these

1 2 1 2
relaticns, we obtain

pl ¢(r2,x) ~ ¢(rl,x)) + pf ¢(rl.x) ~ ¢(12,x))

1 1 . +1
< p(An+L ~ An+L) + pl o(< ,X)\(An 3] A" ))
- S ) 1 é €
2 1 11 2
N+
= (6, -8 ) +ul o(x_ ) - wia” tya™)
2 1 1 8 £

1 2
< (8§ - & Ao~ X - (6 - = -
5 (8, l) + [ ( 5 = 6.1] 2!11 12|
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Here the last inequality is deduced fr2- zhe inclusion
n+1l n n+l n+l . n+l n
Aual ) v "N ) ST ua ) .
§ § § 5 £
2 2 2 1 1 2
The above estimates complete the procf c:‘Thwmz.ﬁunder the additional assumption (Z.5)."

To treat the general case, for each n>0, set g = 1 if gn = 0 p~almost
n

-1
everywhere; otherwise define gn = [J. gn du] gn . If
' T

@(t,\)} is a family of sets which $2isfy a) = ¢) for the sequence (g ) ,
. n
one can easily check that these same s=-: satisfy a) :c) for the sequence

(g ) as well. B
n

ht

COROLLARY 2.7. Let X be a separable metric sg ¢z, and let ¢ : X » Ll(T;R),
) : n

h X + [0,1] (n=1), b
n

10

Twl eequences of continuous functions, with
¢n(x) (t)>2 o0 Vx £X, \7[1: €T, and such that { supp(h ) ; n>1} is a locally
finite (closed) covering of X . Then, fs- svery € >0 and every continuous,
-+
strictly positive function §: x . R » there exist a continuous function
+ + r — 3 -- 3
t: X+ R and a map ¢: RX[0,1] +%F which satisfy conditions a), b) in

THEOREM 2.6 together with

c') for all x¢X, Ae[0,1] and n>1l, if h (x) = 1 then
n

| f cpn(x) dp—x-f ¢ (x) dp | < e/4f(x) .
¢(x(x),2) : T T

Proof. Let €> O and be given. For €very x €X , choose an open neighborhood
Ux of x which intersects *the supports of finitely many functions h , so that
n
the set of indexes I = { n ; Ux fisupp (h ) £ ¢} is finite. Set
n
1 )

v (x) =h (x)-¢ (x) € L7(T;R) and define
n n n

V ={x'eu ; x') - . (2.

N . ”"’n( ) vn(x)||1< e /8f(x) ,Vnezx} @.8)

The family { Vx i X€X } is an open covering of the paracompact separable
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space X. Hence, there exists a seguences -~¢ functions k : X =+ [0,1] such
m

countable nbd-finite refinement of

it}

that the family { supp (km) :m>1} ic
v 1 and the sets W= xeX ; k_ (x} =11 still cover X. For all m>1,

select x such that W €V - Define the sequence (g.) in Ll(T;ﬁ) by
m com X j'izo

. . . m
setting : gj =¥ (x) if j=2-3 fzr some integers my,n>1 ; g =1
otherwise. Moreover, set

W) = 2 k(0 (027" 2.9)

m,n>1

The function 1t is continuous, because tre summation in (2.9) is locally finite.

Using TM?orq;-«Z{ construct a map ¢ which satisfies a) c) for the sequence

(g.). 5o We claim that c') holds as well. To see this, fix xé&X, n>1
J JZ

and A€[0,1] . For some index m, x ¢W .
m

If h (x) =1, then
n

|f ¢(x)dp-—lf¢(x)dp|
#(t(x), T o
__f lvnx "‘P(X)Idu + f vn(xm) du—kf!bn(xm)dul+
@(T(X),)\) ¢(T(X)1A) T
+xf Iw(x)—v(x);du

<20l 860 -y (x) | +lf - xf e au |
n T T 2°3

o (t(x),n) 2‘3

By (2.8), since x ¢V » the first term of this last expression is less than
x
m

m _n
e/4 _Q(x) , while the second term vanishes because 1(x) 223 , by @.8).
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+
PROPOSITION 2.8. Let o¢: R x[0,1] »—34 be a map satisfying a) and b) of Theorem

2.6 and such that u(e(T,x)) = A for each T . Let moreover X be a topological

+ 1 i
space and V: X -+ IR ,x: X + [0,1],¢: X = L (T;E) be continuous maps.
Th th X Ll(T E) defined b (x) (x) is

en e map y: > ; efined by X) = X
v y ¢ Xo(g(x) 2 (x))
continuous.
Proof. The characteristic function of the sets ¢(7,)) varies continuously in

1 .
L (TyR), since

1 Xy ™ Hotm ) = #(ETA) 0 alT,n )

by &) of Theorem 2.6. E

The last result of the chapter is due to Cellina, Colombo and
Fonda [7]
THEOREM 2.9. Let:Tu be the set of positive finite measures vy on t% which are
absolutely continuous with respect to the nonatomic measure p » with the
metric induced by the norm || v|| given by the total variation of v, and let
X be a compact metric space. Let moreover x -« vx be a continuous map from X

bd
into qYL» . Then, for every x € X there exists an increasing family (A ) of

a o
measurable subsets of T satisfying
X
v (A7) = av (T) for all og[0,1]
X o X
X
and such that the map x > (A ) is continuous, in the sense that for
o a

every x € X and ¢ >0 there exists a § > 0 such that

X
x,x'" and x" in B(x ,§) implies sup . v (A AA ) < &
° OIE[O ) l] X o [o]

—D25—




3. TWO SELECTION THEOQOREMS.

3.1 INTRODUCTION.

The results to which this chapter is devoted have their origin in
a paper by Antosiewicz and Cellina [1] , where the existence of solutions to a
Cauchy Problem for differential inclusions without convexity of the right-hand
side is proven. Their approach is based on a continuous selection theorem for
the map

L (1"
G:K » 2
x {xleLlChmn) :u(t) eF(t,x(t)) a.e. on I 1} ,
where I is a compact interval and K is a compact set of Lipschitzean functions
from I into mn. This map is easily seen to have decomposable values. In the
proof, an interpolation formula of the type (2.2) is used.

More recently [11] , Fryszkowski introduced explicitely the decompo-
sability in the multivalued maps framework and, by using Liapunov's Ccnvexity
Theorem, stated an abstract version of the Antosiewicz and Cellina selection
theorem, valid for lower semicontinuous maps. The use of Liapunov's theorem
provides almost for free the interpolation formula; hence the complicated
arguments which had to be employed in different versions of Antosiewicz-Cel-
lina theorem (see [3] and [8]) are avoided. The Friszkowski's abstract setting
can be used to prove the existence of solutions to differential inclusions
(see [9]). The compactness hypothesis on the domain of the function, which
is essential in Friszkowski's paper, can be removed by using Thorem2.6. Hence,

in the next section we prove a continuous selection theorem with only a sepa-—

rability assumption on the domain.
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A parallel theory for upper semicontinuous maps with decomposable
values hs been alsc developed. As it is well known, upper semicontinuous maps
admit, in general, only approximate selections. The analogue of Friszkowski's
theorem was proven by Cellina, Colombo and Fonda [6] . In the last section we
prove a theorem, with no compactness assumptions, which is the counterpart of
that one in Sectién 2. Both Sections 2 and 3 are contained in a paper by Bres-
sah and Colombo [4] .

These two results are, again, almost precisely analogous to two
theorems which are valid for maps with convex values. We state them here for
reference.

THEOREM 3.A (Michael's Selection Theorem[19).Let X be a paracompact space and Y
be a Banach space and let F from X into the closed convex subsets of Y be lower
semicontinuous. Then there exists f : X + Y, a continuous selection from F.
THEOREM 3.B (Cellina's Approximate Selection Theorem [2,p. 84] ). Let X be a
metric space, Y a Banach space and F a Hausdorff-upper semicontinuous map from
X into the convex subsets of Y. Then, for every e >0 there exists a locally
Lipschitzean map fE : X =+ Y such that

graph (fe) < graph (F) + eB ,
i.e. £ 1is an e-approximate selection of F, and fE(X) < co F(X).

We recall that a multifunction F : X =~ 2Y is lower semicontinuous
(l.s.c.) iff the set F+(C) = { x€X : F(x)&C } is closed for every closed set
C&Y. Amap F : X =~ 2Y is Hausdorff-upper semicontinuous (H-u.s.c.) iff, for
every:xo&}{and every € > O, there exists a neighbourhood V of x_ such that

F(x) & B(F(x_),e) for all x V.
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3.2. THE LOWER SEMICONTINUQUS CASE.

: 1
THEOREM 3.1. Let ¥ be a separable metric space and let F : X > D(L (T;E))

be a l.s.c. multifunction with closed, decomposable values. Then F has a

continuous selection.

PROOF OF THEOREM 3.1
In what follows, the main arguinents are taken from Er"‘g'] . We list first

some preliminary results.

PROPOSITION 2.2, For every family ¥ of non-negative measurable functions
+ . '

u:T >R , there exists a measurable function v : T » (R+ such that

i) vsu h-a.e. for all u ¢ X .

ii) if w is a measurable function such that wsu yp-a.e. for all

ue_f,then ws VvV 2.

()

Furthermore, there exists a sequence (un) in, Ji/ such that
v(t) = inf { Un(t) ;nz1} .w’for aet in T.
If the family ¥ is directed downwards ( i.e.’if for every u, u' g X
there exists w €X such that w;u and w<u' p-a.e. ), then the sequence
(un) can be chosen to be decreasing,

For the proof, see Neveu QQ, p. 121]
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By ii), the function v is unique up tz py-equivalence. It represents the
greatest lower bound of X%  in the sexnse of p-a.e. inequality, and is
denoted by ess inf {u ; u €X } .

PROPOSITION 3%, Let K be a nonempty, closed decomposable subset of L1 (T;E)

and let y(t) = ess inf { ﬂu(t)”E ; W€X} . Then, for every v, €L1(T;R) such
that v,(t) > y(t) a.e. , there exists an element u, €K such that

I uo(t)HE < v, (t) u-a.e. . : .

EE ; u€K} is a decomposable

subset of L1 (T;R) . Therefore, it is directed downwards. Using Proposition32,

take a sequence (u ) in K such that
n nzt

ol 2 o], Yo<a,cer,
p(t) = lim ”un(t)HE _ u-a.e. .
>

Let now v, be given, with v,(t) > w(t) a.e. | and define the increasin

sequence of sets : T, = ¢ , Tn ={teT ; ”un(t)“E <v ()} ,mz1 .

Observe that u( T ~ 'I'n ) =0 . Define the sequence (wn) by setting

nz0
u (t) if tET\T. k=1, ... , n-1
w (e) = K | ook ’ ’
u (L if ter~ Y I, -
k<n

Since K is decomposable, each v belongs to K . Moreover, the sequence w_(t)
n

is eventually constant for a.e. t €T,and Hwn(t)HEg ”ul(t)”E p-a.e.
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hence, by the Dominated Convergence Theorem, w_ converges in L1(T;E) to
n

some function u, . Clearly, u,€K beczuse K is closed. Finally, if t ¢ T\T :
n n-

for some n, then ”Uo(t)HE =“un(t)HE <wv,(t) . Therefore, u, satisfies (3 1)

PROPOSITION 3.4.L;ﬁ X be a metric space and let F : X » D(L1(T;E)) be a
l.s.c. map with closed decomposable values. For all x €X, set wx(t) =
ess inf {[u(t) “E 35 WEF(x)} . Then the multivalued map P : X -+ L1 (T;R)
defined as

P(x) ={vel (T;R) ; v(t) > 0 () ymae. ) | 3.2)

15 lower semicontinuous.

that, if P(x ) SC for some sequence (x )
n n oz

1 converging to x,, then also

P(x,)SC . To this purpose, fix any V.EP(x,) and take, by Proposition3.3 a
function u, €F(x,) such that Huc(t)HE <v,(t) py-a.e. . Because of the
lower semicontinuity of F, there exists a sequence u g F(x ) such that

n n

u > u, in L‘(T;E). Then, for every n>1, the function v, = ”un"E + v, - "“e”E

belongs to P(xn) which is contained in C. Since the sequence (vn) converges

to v, in the norm of L‘(T;R) and C is closed, this implies v, €C

PROPOSITION 35. Let X be a metric space and let G : X —+ D(L1 (T;E)) be a

l.s.c. map with closed decomposable values, Assume that g : X + }L.1 (T;E) and
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¢ : X - L’(T;[R) are continuous functions such that, for every x €X, the set
H(x) = { ueG(x) ; || ulc) - gfx)(t)][E< $(x)(t) p-a.e.}

is nonempty. Then the map H: X~ D(LT(T;E)) is l.s.c. with decomposable

values.

hence it is decomposable. To check the lower semicontinuity of H, let C be

.any closed subset of Ll(T;E).' It suffices to show that, for any sequence

(xn) in X converging to a point x,, if H(xn)SC for all nz1, then H(x,)<C.

To this purpose, fix any u, €H(x,) . Because of the lower semicontinuity of

G, there exists a sequence u eG(xn) such that u > U, in L1 (T;E). By

possibly taking a subsequence, we can assume that un(t), g(xn)(t), qb(xn)(t)

converge to u.(t), g(xy)(t), ‘¢(x°)(t) respectively, p-a.e. in T. Applying

‘ Egorov's theorem to these sequences w.r.t. the measure ¢(x,»u , for

each 121 we obtain a measurable set T.ST such that u, g(xn) and ¢(xn)

converge uniformly on Ti and f ¢(x,) dpy < 1/1 . For each k21,
T~T.
1

consider the sets

’ ’ — 1
Tp= Ceety s flua(® - exd@ll, < sl=d(@ -1k} .
k k k+1 . : :
Notice that U Ti =T, and TigTi . Hence, for every i21, there exists

k21
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a k(i) such that

J; k(1) ¢(x,) du < 1/1i .

T,
i 71
. v _ k(1) ' . . .
Define Ti = Ti . The sets Ti have the following properties :

f $(x3) du < 2/i | (3.3)

I\T '

1

fu () - g(:\c,,)(t)!lE < ¢(xg) = 1/k(i) , Yt €T, . (3.4)

By (3.4) and by the uniform convergence on 'I'].'. s for all 121 there exigts

some ni such that

- t ! 2n,. 3.
I u () g(xn)(t)HE <olx () ¥t €T} ,nmzn, (®.5)
We can also assume that the sequence (ni)i>1 is strictly increasing. For

each n, choose an arbitrary w gH(x ) and set, for n.sn<n. .
n n 1 1+1

VvV =4y e W e

. . . .
o o XTi, o XT\Ti' Since H(.{n) is

decomposable, Vo éH(xn)‘ . We claim that v, o+ Yo in L1(T;E) » which implies

u, €C . Indeed, for n.< n<ni+1 s (3.3) and (3.5) yield

1
(RN [ v, =G| dy + f (e ) = glx)|| . dy +
¥I~T; S T~T: = =
i i 4
+ g(xo) = u, |l dy + f u - u,ll_du
’I;\Ti” “E - Tj'. ” n ”E -

B 9 (x ) dy o+ [g(x ) - glx,) +f $(x,) dy +||u - u,]
J"l‘\'l‘]." n) Gu ety I TN S P

= [ Do) - 4G ]] + lete) = gGe) Il + 271 4 fJu_ - w |,

As m + += | we also have i+ +=_ hence our claim is proved.
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The next result, concerning the existence of approximate selections, is

the core of the whole proof of Thecram 3.4,

PROPOSITIONZ,&Let X be a separable metric space and let G : X > D(L1(T;E))

be a l.s.c. map with closed decomposable values. Then, for every e> 0 ,
there exist continuous maps fs": X- L’(T;E) anrd 4:6 : X - LT(T;IR)
such that fe is an e-approximate selection of G, in the sense that, for
each x € X, the set

G.(x) ={ uweckx) ; || ule) - £ G (D)) <.¢E(x)(t) p-a.e. }  (3.6)
,is non-empty, and || ¢>E(x) ”1 < € . Moreover, the map x - Gg(x) is 1.s.c.
with decomposable values.,
Proof. Fix €> 0 . For every x €X and GsG(;c), the multivalued map Q defined as

, ) ;
Q) = {veL (T;R) ; v(t) 2 esg inf{”u(t)—u(t)”E; u€G(x)} for a.e. teT}
3.7
is l.s.c. with closed convex values .| To see this, define
F(x) = {u-u;uecx)] . Then the map F is also l.s.c.
with closed decomposable values. By Proposition-?,l-, the multivalued map P

defined in (3.2) is 1.s.c. . Hence Q is also 1.s.c. s because Q(x) is the

ciosure of P(x) , for all x €X. It is therefore possible to apply Michael's
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b

theorem to Q and obtain a continuous selection ¢i 5 B8uch that ¢- _(x) €Q(x)
X,

i

for all x ¢ X and q;).(’a(i'{) 0 . The family of sets

{{xex; l'¢i,ﬁ(x)ll1 < g/b}s FeX , TEG(R)}
is an open covering of the separable metric space X, therefore it has a
countable nbd-finite open refinement { Vn ; n21 } . Let {pn(o)} be a
continuous partition of unity subgardinated to the covering {Vn} and let
{hn(’)} be a family of continuous functions from X into E),ﬂ such that
hn z 1 on supp(pn) and supp(hn)CVn . For every mz 1, choose X _su spch that

v SE{x:;]]¢x L (x)”1 <e/b} and set ¢ =4 - The functions ¢_
n’ n

n n X _ ,u
n’ n
have the following properties
8 GO(E) 2 ess inf {Julc) - w® s uect ), 3.8)
pn(x)'”¢n(X) H1 = p (x)ee/b (xeX, nz21) . 3.9

Corollary ZJ;applied to the sequences {¢n} and {hn} > and to the function £ :
Q(X) = Z hn(X) > yields a continuous function 7: X+ R’ and a
nz1
family {¢(1,A)} of measurable subsets of T satisfiying a), b) and c').

It is now possible to construct the functions £ and ¢ . Set A, =0,
£ 13

3G =3 p (), and define

£ (0 = ré un'x¢(T(x),An(x))\¢(T(X),Xn_1('X)) ’
¢E(x) =¢c/b4 + 2):1 ¢n(x)-x¢(r(x),;\n(x))\Q(r(x),An_1(x)) .
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Clearly, fE and ¢E are continuous, because the above summations are locally
finite. Let GE be defined by (3.6). To check that the values of Ce are
non-empty, fix any x €X. For every n2 1, use Proposition33and select uigG(x)
such that

]fuz(t) - ;n(tN]E < e/4 + ess inf { [ju(t) - un(tM]E s weGx)} @(3.10)

p~a.e. in T. Then

e n.
Y T 22 Yy X¢(T(x),k ()INe (2 (x),A (x))
nz1 n n-1

lies in G(x),because G(x) is decomposable. We claim that ux(EGE(x). Indeed,
(3.8) and (3.10) yield
lu () = £ GO s ) flul(e) - u (8)]] ex (t)
nzl nE ¢(1(x),An(X))\é(T(x),An_1(X))
< ¢€(x)(t) u-a.e. in T.
Hence GE(X) # @ . Being the intersection of two decomposable sets, Ga(x) is
also decomposable. The lower semicontinuity of Ge follows from Proposition 3.5.
To conclude the proof of Proposition3.é, it now suffices to show that

(%) < e for every x . Set I(x) = { n21 ; (x) >0} and notice that
¢e i Py

135 Hix) = Qx) . From c¢') inCorollary 2.7 and (3.9) we deduce

Hcps(xﬁu.; =c/b+ > 8 ()

na1 T ¢\T(x),AnkA/)*@\r\X/,An_1\x)) M

- I(x)-¢ »
e B Bl g tiafeon - [ B

At this stage, everything is ready for the completion of the proof of
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Theorem 3.1,

Let the function F be given. Construct two sequences of continuous maps
fn : X » L1(T;E)‘and ¢n : X > L1(T;R) , and a sequence of l.s.c. multi-
functions Gn with decomposable values » such that, for all xe¢X and n2 1,

i) G (x) = {u€F(x) ; ||lu(t) “fn(x)(t)HE <9 (x)(t) pma.e.} = g )

ii) an(X)(t) - fn—I(X)<t)“E < ¢n(x)(t) + ¢n_1(x)(t) y-a.e. in T (nz2) ,
iii) b GO, < 27"

To do this, define f1 and ¢1 by applying Proposition3.6 with G = F , e= 1/2.

Let now fm . ¢m and Gm be defined so that i) + 1ii) hold for allm=1, ... , n-1.
To construct fn and ¢n s apply again Proposition3.6with ¢ = 2—n, defining

G(x) to be the closure of Gn—T(x) > for all x. By induction, the maps fn s

¢n and Gn can be defined for all m21 , By ii), the sequence (fn)ng1 is

Cauchy in the L1—norm, hence it converges uqiformly to some continuous

function £ : X » L1(T;E) . By i)‘and iii) , dﬂ (fn(x),F(x)) <27t

Since F(x) is closed, this implies that f(x) €F(x) for all x €X , hence

f is a selection of F.
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3.3. THE UPPER SEMICONTINUQUS CASE.
THEOREM 3.7.Let X be a metric space and let F:X+D(L"(T;E)) be a H-u.s.c.
' l .
multifunction with decomposable values. If either X or L (T;E) is separable,
. ‘ 1
then for every €>0 there exists a continuous map f :X+ L (T;E) such that
€

graph {fe}g B (graph {F} ,e).

Moreover, f (X)Q‘deci[F(X)] .
€ L

LEMMA 38.Let X be a paracompact topological space; For every x ¢X, let UX be
an open neighborhood of x and let M(x) be an integer number. Then there exists
a continuous function t: X + R such that 1(x) > min { M(x') ; erx' } for
every x ¢ X.

E_r_*ggf Let { Vi ; 1€1} be an open nbd-finite réfinement of the covering {Ux} s

and let { pi(') i 1el } be a continuous partition of unity subordinated to

{Vi} . For each i, select a point xi such that V., c U . Define
i~ x

i

(x) 2 p.(x) M(Xi) - Clearly, 1 is continuous. Moreover,

ierI

x) >min { M(x.) ; p (x) # 0} 2 min { M(x ) ; xeU }
i i i Tox,
i

2 min { M(x') ; xcUx. |

PROOF OF THECREM 37,

The following proof is an adaptation of the arguments given in [@] .

Assume first that L1(T;E) is separable. Fixe > 0. For every x ¢ X,




choose a number 6(x) € ]0,6/6[ such that F(x') € B(F(x),e/6) whenever
x" €B(x,8(x)), Let { V. s i€Il be a= open nbd-finite refinement of the

covering { B(x,86(x)/2) ; x€X } of X . For each i, choose x; €X such that

= ; i, . .
V. & B(Xi,5(xi)/?:) and select u € F(xi). For i,j €I, choose also Vi sF(xJ)
such that
—— < o - L = N
I, vi s Ml s e/t v dnelu v VERGx))} = e/6 4 dy(u, F(x,)). (341)

Let D = {yn; n21} be a countable dense subset of F(X). For every ie I select &

Ty(i) €D for which flu - Yociy Ny € €/6. The set D' of all functions ge L (T;R) of
the form g(t) = ”ym(t) - yn(t)” » @021, is countable. Arrange its
elements into a sequence, say, D' = {gk s k21} . Let {pi(') s 1€1} be a
continuous partition of unity subordinated to‘the covering {V.} . For every
i

> s .
n 21, define the open set Wn =y {Vi ;s v(i) =n} and let qn(x) = (2% pi(x).
v(i)=n

Clearly, {qn(‘) 3 121} is a continuous partition of unity, subordinated

to the nbd-finite open covering {Wn} . Define

An(x) = 2 qm(x) » (nz20, x€X) . x.12)

msn

For every x €X, take an open neighborhood Ux of x which intersects finitely
many sets V.. Setting I(Ux) ={ie€l:vu nv. =6}, this o
i x i

that N(x) =1$I(Ux) 1s a finite integer. For every couple of indexes i,jeI(u),
b

choose a y %) €D such that

v(i,j,

I Yv(i,i,x) T Vi,j”l < el eN(x). 3.13)




Let M(x) be an integer so large that :=:z set {gk ; 12 k£M(x) } contains
the finite set of functions {“y\i(i) - y*;(i,j,x) I . i, EI(UX)}ED'.
Applying Lemma 38to the collection of nzighborhoods {Ux ; X €X} and integers
M(x) , we get the‘existence of a continuous function 7: X - R such that
(%) 2 min { M(x") ; x GUX,}, (3.14)

Recalling (3.12), the map fs X > L’(T;E) can now be defined by setting

D A () ~o(1(x),0  _(x)) - G-15)
nxl n n-1

Here {¢(7,))} 1is the family of sets coastructed inﬂ)eorsmw, relative tﬂo
the sequence (gk)kzl of the elements of D' , It is easily checked that fE
is continuous and takes values inside dec E-‘(Xg . To show that fc is an

€-approximate selection, fix x €X and define I(x) = {i€1 ; pi(x) =01},
J(x) = {n21; q_(x) = 0} . Notice that §7(x) £ #I(x) < += . Since I(x)
is finite, the‘re exists an T el(x) such that <§= §(x,) = max [8(x.) ; ieT(x)},

ey
For every i €I(x) we have that XieB(xi,a), hence

F(xi) < B(F(xi),E/G) B.16)

Take a point zex such '
ch that xEUZ and M(z) = mip Mx") ; erX,} . For

every n gJ(x), select an index inel(x)SI(U ) such that v(i ) =g Define
Z n L4 A -k

W= >y .
2 \)(ln,l,Z) X¢(r(x),ln(x))\¢(T(X),An_1(x)) ?

= in,i'x¢(r(X),An(x))‘\¢(r(X),An_1(X))
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Notice that w'gF(xz) - For every nelx), using (3.11), (3.13) and B.16)
we obtailn

o =eg gy ol - v

|70 = ¥ . i in,inl +l ii yv(in,i,z)ai

n TG L1l
n

S e/6+ [e/6 + dy (u Flx )]+ eff6 N(z) s 2e . @.47)
. n
Relying on the properties of the sets 3(1,1) and recalling that by @.14)

T(x) 2M(2) , from G.17) we deduce the estimates

I £ G - "”1 =2 ”Yn T ,i,z)“E'Xd:(r(x),A INe(T(x),A . (x))dH
T n n n-1

nz1
= 2, q_(x)

nz1

- | <z §
COENERE S (548)

b =wtlly = 3 ] vy g0y - v, S SN ot LY ST S

= Z My .. = v Gl sHIE) e s :K'I(Uz)'E = ¢e/6. 5.
nEJ(X) V(ln,l,Z) ln,l 1 m _6—?\]'(“2)— (5:’!9)

Putting together (348) and (319), one has
r] ’ s v
4y wer ((X,fE \X)),(Xi,w ))

< dX<X’Xi‘) + Hfs(x) - w“1 +|lw - w'H1 < &6+ 2e/3+ €/6=¢ .

Hence (x,fe(x))EB (graph(F),e) . This completes the proof in the case where
L‘(T;E) is separable .

When X is separable, a slight modification of the above argumentsis
needed. The nbd-finite open covering {Vi ; 1 €I} of X is now countable,
because of the separability assumption. It is therefore possible to define
the countable set D = {ui ;s 1elly {Vi,j ; 1,7€I} and arrange it into a
sequence, say, D = {yn 3 m21 } . After this choice of the set D, the rest

of the proof goes exactly as in the previous case.
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