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Abstract
In an era of unprecedented sensitivity to cosmic gamma rays, it is timely to study
possible signatures rising from Dark Matter (DM) particle interactions. The aim
of the present thesis is precisely devoted to that. We start by presenting a broad
study on physically motivated Galactic diffuse emission models. These derive from
the interaction of Galactic cosmic rays with the interstellar medium and describe
the bulk of photons imprinted in the observed gamma-ray sky. We show how
gamma-ray data offer a complementary deep diagnostic of the standard paradigm
for Galactic cosmic-ray propagation, usually tuned on local cosmic-ray observables.
We present a self-contained discussion about the inferred radial gradients in the
gamma-ray data relative to the Galactic plane region, and interpret them as a
strong hint in favor of a spatially varying diffusion rate for cosmic rays in the
Galaxy. We corroborate this study with a set of distinctive predictions, embracing
the available information on TeV high-energy photon data and the expectations for
a detection of Galactic neutrino fluxes on the basis of current and future neutrino
observatory sensitivities. We, then, scrutinize the claim of a gamma-ray signal from
DM particle annihilation observed in the innermost central part of our Galaxy,
analyzing the gamma-ray data coming from few tens of degrees around the Galactic
center. We show that a spherical excess – interpretable as the annihilation of
weakly interacting massive particles in the Galactic halo – does not stand out in the
data any longer when the effect of the observationally inferred high star-formation
rate in this complex astrophysical environment is considered. Accounting properly
for that in the injection source distribution of cosmic rays, we show that most of
the “GeV excess” has a simple explanation in terms of well-motivated cosmic-ray
physics. We remark, in particular, that with this correction, counts in the residual
map are not only drastically reduced, but also do not spatially correlate anymore
with an approximately spherical morphology. Finally, we critically reassess the
DM content in the satellites of the Milky Way. In order to do that, we develop a
new method, mainly based on the kinematics of the stars in these galaxies, that in
the end provides a conservative estimate of the line-of-sight integrated halo profile
squared for these objects, the so-called J-factor. After carrying out in detail the
study case of Ursa Minor, we present here – as last original contribution in the
thesis – a similar conservative analysis of the J-factor for the whole set of classical
satellites of the Milky Way. In light of our novel approach, we conclude that these
galaxies offer to us a reliable “DM laboratory” where we can probe the freeze-out
mechanism of cold thermal relics in a robust and unique way.
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Preface
In the Galaxy where we are living – the Milky Way – there is much more than
what can be simply perceived at naked eye. There is in particular much more
matter than what we can observe with the most powerful telescopes, and it seems
to be not of a common kind, i.e. it is not made of stars, planets, comets, or
ordinary gas. According to our state-of-the-art knowledge about Astrophysics and
Cosmology, what we are referring to must be made of something completely different
at fundamental level, that for instance cannot be found in any other substance ever
observed or produced so far in our laboratories. This matter component is actually
not a peculiarity of our Galaxy, but it is believed to permeate the whole Universe,
characterizing the evolution history of the latter, allowing for the formation and
growth of structures to happen, at the origin of our existence of today.

Probably mentioned for the first time by Henri Poincaré already in 1906 [10], this
kind of matter has been historically dubbed “Dark Matter” since it does not shine or
absorb light as ordinary baryonic matter does. One of the first historical inferences
about an additional large amount of gravitating matter of different kind from the
stars and gas present in ordinary astrophysical objects, such as galaxies and clusters
of galaxies, dates back to the 1930s. In those years, a pioneer of the field like Fritz
Zwicky had the chance to observe the Coma cluster with unprecedented detail
for the time. These observations were at the basis of his revolutionary study of
the dynamics of galaxies in the Coma, with an innovative approach leading him
to conclude that most of the mass of the system was not in the form of ordinary
bright and luminous matter [11]. Thanks to the tremendous experimental and
technological progress in a lapse of time covering more than 80 years from the
original observations of Zwicky, nowadays we have at our disposal a multitude
of different evidences in favor of the existence of this relevant matter component.
The set of current data in favor of the Dark Matter hypothesis spans a huge range
of scales in orders of magnitude, going from the smallest size of known galaxies,
about hundred million larger than the size of our Solar System, up to the largest
clustered structures we can observe in the Universe today with dedicated forefront
surveys, corresponding to scales ten thousand times larger than the former one.

In spite of this sensational collection of observations, the main ingredient at the
basis of our ability to detect the presence of Dark Matter today remains the same
of 80 years ago: the laws of gravity applied to macroscopic massive systems. At this
point, one may start to be suspicious of how much we have really understood about
free falling apples from trees or Einstein elevators moving upwards and downwards
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in the back of our minds. While doubting possibly represents a good attitude for
a scientist to seriously progress in his own field of research, most of the scientific
community is not really inclined to think that the fundamental explanation to
these puzzling observations should rely on the modification of the known standard
laws of gravity. Indeed, these are precisely tested in the neighborhood of the Solar
System, and seem also to work pretty well at describing the evolution history of
our Universe. In general, when we try to modify gravity at cosmological scales, we
usually obtain a completely altered distribution of matter than the one traced by
galaxies and larger clustered structures that we observe today in the Universe.

At present, the most likely option for Dark Matter is to have as building blocks
some degrees of freedom coming from the world of Particle Physics. Then, it is
probably true that the elementary constituents of Dark Matter must be quite
different from standard known particles. In fact, Dark Matter particles should
not be electrically charged as for instance electrons are, and, more in general,
they should not talk that much with ordinary matter constituents such as protons
and/or neutrons. According to some of the most important informative pictures
we have from rare and very energetic events in the outer-space like the collision
of two galaxy clusters, Dark Matter particles should not even interact too much
with each other. All this already gives us some intuition that the identikit we are
looking for does not match the bulk of known particles discovered so far. The only
exception may be neutrinos that, however, as in the case of modified gravity, would
drive a structure formation history which does not match observations.

As we are going to discuss extensively in the whole thesis, against the odds of the
name, today we really hope to meet the opportunity of detecting some kind of
interaction of Dark Matter particles, in order to learn something more about them
and possibly about the “big picture” behind them. In particular, in astrophysical
objects we do expect a very high concentration of these particles and, hence, it may
be plausible that once in a while two of them may interact yielding, for example,
very energetic radiation as a result of this interaction. The work in this thesis is
actually related to the study of such kind of signals in promising astrophysical
targets, that leave room for a potential indirect detection of Dark Matter particles
through the emission of very energetic photons. Note, however, that this chance
of detection is crucially pending on the fundamental properties that distinguish
Dark Matter from ordinary matter, and as already said before, we still know very
little about them. Therefore, just by chance, the name “Dark Matter” may be also
considered quite appropriate these times for its not-yet revealed microscopic nature
and this thesis may be simply taken as a very modest attempt to shed some new
light on such a dark name.
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1 Chapter 1

The Dark Matter problem

1.1 Evidences in favor of a long-standing puzzle

The seminal papers of Fritz Zwicky have been among the first works pointing
quantitative and methodological evidence for Dark Matter (DM). In its pioneering
study of the Coma Cluster in 1933 [11], he guessed the total mass of the system
to be given as the average mass of a galaxy, 〈m〉 ∼ 109 M�, times the number of
tracers, N ∼ 800, while approximating the physical volume of the cluster with a
sphere of radius 〈R 〉 ∼ 300 kpc. Then, assuming the system to be in equilibrium,
Zwicky applied for the first time the virial theorem to galaxy clusters:

2〈T 〉+ 〈U〉 = 0 ⇒ 〈σ〉 =

√√√√GNN〈m〉
2〈R 〉 ∼ 70 km/s , (1.1)

obtaining a dynamical estimate of the averaged velocity dispersion of the Coma
members much smaller than what inferred from the Doppler shift of the measured
galaxy spectra, 〈σ〉 ∼ 1000 km/s. From the comparison he reached the conclusion:

« If this would be confirmed, we would get the surprising result that
dark matter is present in much greater amount than luminous matter. »

The above observation has set up the stages for what we refer today as the “Dark
Matter problem”, namely what is the nature of this gravitationally inferred matter
component.

More recent studies of galaxy clusters including Coma have actually shown that
most of the baryonic mass in these systems is in the form of hot intergalactic
gas, emitting X rays by bremsstrahlung. Consequently, informations on the main
baryonic component comes from the X-bolometric luminosity, that can be converted
in gas density maps, and from X-ray spectra, that give us access to the gas
temperature profile, to be translated into the gas pressure. Assuming the hot gas
to be in hydrostatic equilibrium within the underlying gravitational well, we can

3



Chapter 1 – The Dark Matter Problem –

Figure 1.1: Composite image of the Bullet Cluster. In the left (right) panel, X-ray
emission in magenta (pink), and strong (weak) lensing contour in blue.
Image Credit: Fig. 7 from Ref. [14] (left panel). X-ray: NASA/CX-
C/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI;
Magellan/U.Arizona/ D.Clowe et al.; Optical: NASA/STScI; Magel-
lan/U.Arizona/D.Clowe et al. (right panel).

then infer the mass profile of the system by:

dPgas

dr
= GN

M(r)ρgas

r2 . (1.2)

For instance, for the Coma Cluster we obtain Mgas/M ' 14% [12], i.e. ∼7 times
more mass than the one expected from the traced hot gas. Interestingly, this
is not the only modern proof of DM in galaxy clusters. Nowadays we have at
our disposal gravitational lensing techniques that allow us to perform a precise
tomography of the gravitating mass distribution within the system, showing among
galaxy mass peaks the presence of a smoothly distributed DM component that
dominates the total potential well [13]. Even more spectacularly, we can perform a
multi-level mapping of galaxy cluster merging events like in the case of the Bullet
Cluster (see, e.g., [14]). As displayed in Fig. 1.1, in this impressive event, the
baryonic hot gas gets shocked in the collision and gets displaced from the bulk of
the gravitating mass as inferred by different lensing techniques. This segregation
of the non-dissipative DM component from the dissipative baryonic counterpart
offers to us a quite unique probe of DM existence.

Another historical piece of evidence in favor of DM falls actually around the 1970s,
when the first explicit statements arguing that additional mass was needed in the
outer parts of some galaxies began to appear in the literature. These claims were
based on comparisons of the rotation curves from 21 cm observations and those
computed from luminous mass profiles measured in photometric analyses, as for
the case of the seminal work on the dynamics of M31 carried out by Kent Ford
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and Vera Rubin [15]. Applying Newtonian gravity, the circular velocity vc of stars
in a galaxy is simply given by:

vc(r) =
√
GNM(r)

r
, (1.3)

where r is the radial distance from the center of the object andM is the correspond-
ing enclosed mass. Assuming that most of the mass is associated to the galactic
stellar disk, for distances beyond the size of the latter M would be constant, and
one would expect a Keplerian fall-off, vc ∝ r−1/2 . Therefore, the observational
evidence in favor of flat rotation curves in the outermost region of galaxies has
immediately captured the attention of the community. Indeed, on one hand, the
puzzling observation was pointing to the existence of an additional matter compo-
nent, clearly extending to distances much greater than the visible mass scale, with
a density profile falling off as ρ ∝ r−2 in the outer region of the system in order to
reproduce the “asymptotic” flatness of the measured rotation curves. On the other
hand, this explanation was putting down roots in the regime of validity of Newton’s
law, as firstly noticed by Mordehai Milgrom in 1983 [16]. The phenomenological
recipe he proposed more than 30 years ago, namely an ad hoc modification of
Newton’s law on the basis of an acceleration threshold parameter to be fixed by
data – the so-called MOdified Newtonian Dynamics (MOND) – is still reliable to fit
hundreds of rotation curve data sets and to explain empirical scaling relation laws
as well. The successful prediction of MOND at the galactic scale motivated further
studies aiming at extending Einstein’s General Relativity (GR) in order to present
a serious competitor to the DM hypothesis. For instance, in 2004 Jacob Bekenstein
has proven the existence of a fully covariant extension of GR able to reproduce
MOND phenomenology at galactic scales, while accommodating post-Newtonian
tests of gravity and taking into account standard results from gravitational lensing
as well [17].

While the interplay between modified gravity theories and the DM-like phenomenol-
ogy is still an active area of research also in light of the issues risen by the Dark
Energy component of the Universe, see e.g. [19], nowadays cosmological precision
tests point to the existence of a dominant matter component of non-baryonic
type. In fact, as a byproduct of linearly perturbed Einstein’s field equations and a
homogeneous and isotropic space-time background, a simple framework as linear cos-
mological perturbation theory allows us to make solid and detailed predictions about
the temperature anisotropies in the cosmic microwave background (CMB). State-
of-the-art measurements by the Planck satellite of the temperature anisotropies,
which are at the level (δT/T )rec ∼ 10−5 , are shown in terms of an angular power
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Figure 1.2: Planck 2015 temperature power spectrum. The best-fit base ΛCDM
theoretical spectrum fitted to the temperature × temperature Planck
likelihood + low angular multiple polarization data is plotted in the
upper panel. Residuals with respect to this model are shown in the
lower panel. The error bars show ±1σ uncertainties.
Image Credit: Fig. 1 from Ref. [18].

spectrum, as the one reported in Fig. 1.2. The fit to such a set of data strongly
points to a “cosmological concordance model” – the so-called ΛCDM [20] – where,
in particular, the energy budget associated to the Universe matter content of today
must be dominated by a pressureless fluid component, ΩDMh

2 = 0.1197±0.0022 [18],
with ΩX ≡ 8πGNρX/(3H 2

0 ) and h = H0/(100 km s−1 Mpc−1) ' 0.7. This value is
indeed much greater than the baryonic counterpart Ωbh

2 = 0.02222± 0.00023 [18],
which is in very good agreement, e.g., with the total baryon density required to
match measured primordial light element abundances as predicted in standard Big
Bang nucleosynthesis [21].

The existence of this cosmological pressureless matter fluid – what we may refer
to as the cold DM (CDM) paradigm – is of fundamental importance for the
evolution of the Universe. Indeed, baryons and photons in the Early Universe until
recombination, i.e. for redshifts greater than zrec = 1090 were tightly coupled,
sharing the same perturbations. If we would not include the presence of some
uncoupled fluid component baryons would not have got enough time to form the
structures we see today. Indeed, in the analogous cosmological picture without
DM, the matter density contrast, δ ≡ δρ/ρ, would be small even today [20,22]:

δ0 = (1 + zrec)δrec ⇒ δ0 ∼ 10−2 , (1.4)
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where δrec ∼ (δT/T )rec. The O(1) over-densities we see populating our local
observable Universe clearly rule out this scenario. Pending on the right amount
of CDM abundance, after recombination baryons can quickly fall into deeper DM
gravitational wells and, tracing the growth of the DM density contrast, can reach
O(1) over-densities at the suitable time to explain the distribution of galaxies and
galaxy clusters we see nowadays. Therefore, the detailed picture of the evolution
history of our Universe depicted from, e.g., the temperature anisotropies of the
CMB and the linear matter power spectrum of galaxy distribution catalogues, is in
firm support of CDM. The same picture also suggests that a change in the laws
of gravity in place of CDM is likely a scenario poorly supported by data. Indeed,
a modification of the laws of gravity qualitatively implies a substantial change in
the playground shared by all the cosmological species present in the Universe. As
pedagogically illustrated in Ref. [23], even if candidates like Bekenstein’s Tensor-
Vector-Scalar theory may be tuned to get the right “boost” in the growth of
amplitudes, all modified gravity theories known at present systematically fail at
reproducing the correct shape of, e.g., the matter power spectrum, as well as
the peaks in Fig. 1.2 of the CMB temperature power spectrum, providing an
inconsistent description of up-to-date cosmological data.

1.2 Educated guesses on Dark Matter properties

Given the set of observational evidences presented above, if we still stick to GR
and we leave also aside quite radical options such as, e.g., very early time collapsed
objects like primordial black holes [24], it is certainly true that DM is needed and
it is likely in the form of some kind of particle. In this respect, one may list a set
of rules that can, at most, be very mildly violated:

1) DM is optically dark and dissipationless. Its electromagnetic coupling must
be suppressed to not spoil e.g. the shape and amplitude observed in the
matter power spectrum already at the linear level, and to not contribute
significantly to background radiation at any frequency. Moreover, evidences
in favor of extended triaxial DM halos [25] suggest that DM cannot cool
radiating photons (or in any other way). This is in net contrast to baryons,
that can efficiently cool sinking in the inner regions of galaxies, possibly
forming axial-symmetric structures as for the case of the Milky Way (MW).

2) DM is collisionless, at least on galaxy cluster scales. If DM-DM interaction
is too strong, spherical structures would be obtained rather than triaxial.
The observed ellipticity in galaxy clusters may imply constraints on the
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self-scattering DM cross section, hinting to σDM . 0.02 cm2 g−1 [26]. More
robust analyses on the morphology of several merger systems like the Bullet
Cluster have been recently obtained, yielding σDM < 0.47 cm2 g−1 at 95%
C.L. [27]. Note, however, that if DM self-scattering turns out to be velocity
dependent such as in the case of very light force carriers mediating the
interaction [28–30], these constraints apply only on large scales. Moreover,
controversial observations in tension with the bound coming from merging
systems like the Bullet do exist, see the puzzling case of Abell 520 [31]. A
deeper understanding of this merging cluster system may actually lead to a
new fundamental paradigm concerning the nature of DM [32].

3) DM is smoothly distributed, i.e. it does not have a granular structure in
known astrophysical systems. Indeed, a granular distribution would provide
time-dependent gravitational potentials, affecting the stability of astrophys-
ical systems. Several searches for micro-lensing events towards the Large
Magellanic Cloud have excluded a dominant granular component in DM halos
for massive compact objects in the range of 10−7 - 10 M� [33], while from
the study of wide binary stars it is possible to extract an upper bound close
to 40 M� [34].

4) DM must behave like a classical fluid at least down to galactic scales, namely
where we have evidence for it to be confined. If we suppose DM to be a boson
with mass m and velocity v, we can then require to behave classically down
to the typical size of MW satellites and obtain the following condition:

λDe Broglie = h

mv
. 1 kpc ⇒ m & 10−22 eV

(
120 km/s

v

)
. (1.5)

For a kpc-sized halo of total mass M ∼ 109 M� , we expect a virial velocity
v ∼

√
GNM/R ∼ 70 km/s, which implies a lower limit for the mass of

bosonic DM of about 10−22 eV. Thanks to its ultra-light mass, the bosonic
DM saturating the lower bound in Eq. (1.5) – known as Fuzzy DM [35] –
represents a viable solution to the tensions that seemingly arise when the
standard CDM paradigm is probed into the deep non-linear regime at redshift
z ∼ 0 [36,37] (see the last section of Chapter 4 for further details). A similar
argument holds also for fermionic DM [38], where the lower bound turns out
to be more severe due to Pauli exclusion principle:

M ∼ m
4π
3 R3

∫
d3p f(~p ) . m

4π
3 R3

∫ d3p

h3 ∼ m
(
Rmv

h

)3
, (1.6)

where f , m and v are the phase-space distribution, the mass and the velocity
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of the particle, R the size of halo and M the corresponding enclosed mass. In
the chain above, we have used 0 ≤ f(~p ) . h−3 (h being the Planck constant)
due to Fermi-Dirac statistics. Therefore, plugging in the same reference values
as before:

m2 &

√√√√M (
h

R v

)3

⇒ m & 0.3 keV , (1.7)

which is in the ballpark of more refined recent estimates for fermionic DM [39].

5) DM is not hot, namely it cannot be relativistic (roughly) at matter-radiation
equality, since as previously discussed matter perturbations need to grow at
that time. Indeed, as long as the kinetic energy dominates over the potential
one, the free streaming of DM particles washes out the formation of structures.
We can introduce the free-streaming length as the comoving distance between
DM production at time ti and the onset of structure formation, ∼ teq :

λFS =
∫ teq

ti
dt′
v(t′)
a(t′) , (1.8)

and use it as a standard ruler for the typical length scale at which collisionless
particles feel gravitational clustering. The integral in Eq. (1.8) is dominated by
the time interval when the particle is fully relativistic, i.e. v(t) ∼ 1 , ∀ t . tnr .
Assuming tnr ≤ teq and setting Tnr as the temperature saturating 3kBT . mc2,
typical values for tnr yield [40]:

λFS ∼ 2 tnr

anr
∼ 0.4 Mpc keV

m

Tnr

T
⇒ λνFS ∼ 40 Mpc 30 eV

mν

, (1.9)

where we have considered to be in radiation domination and we have traded
in the last step Tnr/T for Tν/T = (4/11)1/3, valid for light neutrino species in
a standard cosmological scenario. From the estimate in Eq. (1.9) we can see
that neutrinos with eV masses are “hot” DM candidates, i.e. λFS ' λeq ∼ 10
Mpc, which would imply the erasing of all small scale structures at first and
top-down formation history where large structures are supposed to fragment
into smaller ones. Since cosmological measurements support instead the
opposite bottom-up picture with hierarchical growth of structures, Standard
Model neutrinos cannot be the bulk of the DM component. Interestingly,
in “warm” DM scenarios, where λFS ∼ 1 Mpc, small-scale perturbations
can be washed out and, therefore, candidates such as sterile neutrinos [41]
may alleviate the apparent difficulties of CDM at reproducing the low-mass
end of the halo mass function [42]. However, strong constraints apply to
this class of models as well, e.g., from the Ly-α forest data [43], limiting
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the phenomenological viability of warm DM candidates. This also probably
suggests that CDM (λFS � Mpc) is still today the most robust framework
where model predictions meet an overall good agreement with a broad variety
of astrophysical and cosmological measurements [44].

To conclude, a multitude of observations is clearly pointing to the need of some
degrees of freedom, gravitating as ordinary matter, but with otherwise suppressed
couplings. On the basis of the five points listed above, it turns out that these degrees
of freedom cannot fit in the spectrum of elementary particles of the Standard Model
(SM). Therefore, up to possibly not-yet detected exotic bound states of quarks [45],
addressing the DM problem likely represents today one of the most compelling
patterns towards a foreseeable New Physics (NP) discovery.

1.3 The Lee-Weinberg proposal and New Physics

According to Eq. (1.5) - (1.6) it is possible to gain some general, (almost) model-
independent statement about the mass range of DM particles by the simple obser-
vation that DM must form galactic halos. As we are going to see in what follows,
folding in assumptions about the evolution of the DM density in the Early Universe
allows us to motivate more specific mass scales, possibly meeting NP expectations
rising from mere theoretical arguments in Physics Beyond the SM (BSM).

1.3.1 The (not-so) WIMP miracle

Let us consider a new massive particle species χ in the thermal bath of the very
Early Universe, with a lifetime τχ & τUniverse ∼ 13.8 · 109 yrs. If χ would not be
interacting with any of the other species present in the bath, its number density
nχ in an expanding homogenous and isotropic Universe would be conserved in a
comoving volume:

dnχ
dt

+ 3Hnχ = 0 ⇒ nχ ∝ a−3 , (1.10)

with H the Hubble parameter, da/dt = aH, and a the scale factor. Of course, the
picture gets modified if we allow χ particles to annihilate and be produced in pairs
by 2→ 2 interactions with the thermal plasma. The r.h.s. of Eq. (1.10) is no longer
vanishing and it must contain a term of “particle loss” due to χχ annihilation,
hence proportional to n2

χ, as well as a term of “particle gain”, proportional to the
number density of the species A and B producing χ . Moreover, if we assume
A, B and χ to be in thermal equilibrium at the very early stages of the Universe
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expansion history, detailed balance implies:

neq.
A neq.

B = (neq.
χ )2 , (1.11)

where neq.
S is denoting the thermal equilibrium distribution of the species S.

On physical grounds, the proportionality constant we expect to appear in Eq. (1.10)
must be related to the cross section characterizing the annihilation rate of χ ,

Γχ = nχ 〈σv〉 . (1.12)

The thermally averaged annihilation cross section introduced above can be computed
according to the following relativistic single-integral expression [46]:

〈σv〉 = x

8m5
χK

2
2(x)

∫ ∞
4m2

χ

ds̃
(
s̃2 − 4m2

χ

)√
s̃ K1

(
x

√
s̃

mχ

)
σ(s̃) ' C(0)+3

2C
(1) x−1+ . . .

(1.13)
where

√
s̃ is the center of mass energy of the process, x ≡ mχ/T , and Kn is the

modified Bessel function of the second kind. In the case of non-relativistic species,
〈σv〉 may be expanded taking the non-relativistic limit: the S-wave contribution
then proceeds through C(0,1,...), the P-wave through C(1,2,...) and so forth, with
velocity v =

√
3/x in natural units (kB, c = 1). Given the all set of arguments, we

can heuristically justify the Boltzmann equation governing the evolution of nχ ,

dnχ
dt

+ 3Hnχ = 〈σv〉
[
(neq.

χ )2 − n2
χ

]
⇒ x

Y eq.
χ

dYχ
dx

=
Γeq.
χ

H

( Yχ
Y eq.
χ

)2

− 1
 , (1.14)

where in the last step Yχ ≡ nχ/s – with s being the entropy density of the thermal
bath – and we have exploited the entropy conservation per comoving volume,
assuming that the Universe can be approximated to be an iso-entropic system. In
the early stages of the radiation dominated era, we can assume the temperature
to be much larger than the mass of thermal bath states as well as x� 1 . Hence,
according to Eq. (1.14), the evolution of χ in the primordial Universe must be first
of all characterized by a phase where the species number density is tracking its
original relativistic equilibrium distribution:

Γeq.
χ ∼ O(10−1)× T 3〈σv〉 � H ∼ O(10)× T 2

MPl
⇒ Yχ = Y eq.

χ , (1.15)

where we have reported also the typical order of magnitude of numerical pre-factors
which include the internal degrees of freedom of χ and of the relativistic species
active at very high temperatures. As time goes by, the Universe expands and cools
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down, so that, depending on the mass and interaction strength of χ, the above
condition may not be satisfied anymore. In particular, let us assume the existence
of a temperature T (χ)

nr such that for T . T (χ)
nr , x & 1 . Here, χ follows a second

phase of evolution: as a non-relativistic species, its density features an exponential
Boltzmann suppression. Physically, for T . T (χ)

nr χ annihilation still takes place,
but the typical forward reaction creating χ pairs is now kinematically forbidden.
At this point, pending on the value of 〈σv〉, the particle χ may decouple from the
thermal plasma before its complete extinction. Indeed, as the Universe expands, it
becomes increasingly harder for a χ particle to find a partner to annihilate with. As
a consequence of that, its yield Yχ may freeze out. From Eq. (1.14), the condition
of freeze-out for χ requires xf.o. such that:

Γeq.
χ ∼ H ⇔ √

xf.o.e
−xf.o. ∼ O(102)× 1

mχ〈σv〉MPl
. (1.16)

Plugging this expression into the definition of the yield of χ at freeze-out gives:

Yχ
∣∣∣
xf.o.
∼ O

(
10−3

)
× xf.o.

√
xf.o.e

−xf.o. ∼ O
(
10−1

)
× xf.o.

mχ〈σv〉MPl
. (1.17)

Eventually, assuming again to be in an iso-entropic Universe, the last estimate
allows us to compute the relic abundance that χ has today:

Ωχh
2 ≡ ρ0

χ

ρ0
crit.h

−2 =
(

s0

ρ0
crit.h

−2

)
mχYχ

∣∣∣
xf.o.
' 1011

3

(
mχ

102 GeV

)
Yχ
∣∣∣
xf.o.

∼ O
(
10−1

)
×
(
xf.o.

30

)(1018 GeV
MPl

)(
10−8 GeV−2

〈σv〉

)
, (1.18)

where we have used the typical values s0 ' 3000 cm−3, ρ0
crit. ' 10−5h2 GeV cm−3.

Remarkably, if for the species χ the assumption of cold relic comes together with a
thermally averaged cross section in the ballpark of the one for weak interactions
– where σEW/m

2 ∼ G2
F ' 10−10 GeV−4 – the corresponding estimate of its relic

abundance can return the known density of DM today. If we restrain to 20 .

xf.o. . 40 (a range we may justify a posteriori), we can estimate through Eq. (1.16)
the corresponding typical range of masses:

mχ ∼ O(102)×
(

10−16 − 10−9
√
xf.oe−xf.o

)(
1018 GeV
MPl

)(
10−8 GeV−2

〈σv〉

)
GeV , (1.19)

that for the nominal values above corresponds to 10GeV . mχ . 102 TeV . The
lower extreme of this range becomes effectively a lower bound on the mass of χ if
the species is charged under SU(2)L ⊗ U(1)Y of the SM. This phenomenologically

12



Chapter 1 – The Dark Matter Problem –

Figure 1.3: Evolution of the abundance of a non-relativistc species as a function
of x = m/T . The thick curves show the number density normalized to
the initial equilibrium value, for different choices of annihilation cross
section 〈σv〉 and mass m . Results for m = 100 GeV are shown for
weak interactions, 〈σv〉 ' 10−8 GeV−2, (dashed red), electromagnetic
interactions, 〈σv〉 ' 10−3 GeV−2 (dot-dashed green), and strong
interactions, 〈σv〉 ' 103 GeV−2 (dotted blue). For the weak cross
section the thin dashed curves show the mass dependence for mχ = 103
GeV (upper dashed curve) and m = 1 GeV (lower dashed curve). The
solid black curve shows the evolution of the equilibrium abundance for
m = 100 GeV. Image Credit: Fig. 1 from Ref. [47].

interesting scenario has been historically explored in 1977 by Benjamin W. Lee
and Steven Weinberg in their seminal study on cosmological heavy neutrinos [48]1.
The upper extreme of the mass interval corresponds instead to the upper limit
one can set from unitarity arguments on the cross section of χ, since it cannot
be arbitrarily large as a function of energy [50]. Such a bound, however, may be
model-dependent on the basis of the underlying UV theory [51].

The fact that a cold relic in the Early Universe, with 〈σv〉 of about the weak
interaction cross section, is able to explain the observed ΩDMh

2 and, moreover, has
a mass that can be accommodated close to the electroweak scale ΛEW ∼ 102 GeV,

〈σv〉 ∼ G2
F T

2
f.o. ⇔ mχ ∼

√
〈σv〉

10−8 GeV−2

(
xf.o.

30

)(10−5 GeV−2

GF

)
300GeV , (1.20)

is commonly referred to as “weakly interactive massive particle (WIMP) miracle”.

1The cosmological lower bound on heavy neutrinos was originally obtained in Ref. [49], few
months before Lee-Weinberg’s paper. I thank Subir Sarkar to have made me aware of that.
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In Fig. 1.3 we show the number density normalized to the initial equilibrium value
for a non-relativistic species as a function of x = m/T , where m has been set
to be O(ΛEW). As displayed in the figure, the freeze-out yield of the species is
inversely proportional to the value of the thermally averaged annihilation cross
section. According to Eq. (1.18) and Fig. 1.3, weak-scale non-relativistic species
with typical cross section of electromagnetic or strong interactions would annihilate
too efficiently in the Early Universe to explain the whole DM relic density we
measure today (besides not being a reliable DM candidate, see the five rules in the
previous section).

As we are going to recap in what follows, the weak-scale “WIMP miracle” has
become one of the most influential paradigm for DM as well-motivated theoretical
models can embed such candidates, while an ongoing broad experimental effort
is currently probing larger and larger portions of the corresponding parameter
space. However, despite an intensive program targeting expectations like the one in
Eq. (1.20), it is worth noting that the relation obtained in Eq. (1.18) is not really
peculiar to the electroweak scale. Indeed, using e.g. the nominal values of 〈σv〉 and
MPl reported above, it is possible to obtain from Eq. (1.16) xf.o. ∼ O(10) with a
large range of values for mχ. As a consequence, the relic abundance computation in
Eq. (1.18) is essentially sensitive to 〈σv〉. This fact actually opens up the possibility
to play with a much wider band of allowed masses for thermal DM than the one
suggested in Eq. (1.19). For instance, assuming a dominant s-wave contribution,
the thermally averaged cross section can be parametrized on dimensional grounds as
〈σv〉 ∼ α2

χ/m
2
χ, where αχ is the dimensionless coupling characterizing the strength

of χ interactions. Then, looking back to Eq. (1.18), one can take αχ arbitrarily
small while keeping the ratio α2

χ/m
2
χ fixed to get the desired DM relic density [52].

1.3.2 WIMPs and the hierarchy problem

In quantum field theory, order of magnitude estimates of dimensionless couplings
and dimensionful ones turn out to be very different on simple dimensional grounds.
Indeed, if no symmetry principle is at hand, dimensionless couplings may be
expected to be generically of O(1) [53]. On the other hand, dimensionful couplings
should be of the order of the largest mass scale in the theory, to the appropriate
power [54]. However, when a symmetry is restored in the limit of a coupling
(dimensionless or not) going to 0, it is “natural” to expect for the value of this
coupling an arbitrarily small number. These considerations are at the basis of what
we refer today as “naturalness” and the intimately related “hierarchy problem” of
scales in High Energy Physics [55].
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To see this guiding principle at work, let us suppose to have as a UV complete
model the Yukawa theory in 4 space-time dimensions:

LUV = ψ̄(i/∂ −mψ)ψ + 1
2∂µφ ∂

µφ− m2
φ

2 φ2 + gYφψ̄ψ , (1.21)

where a massive fermion ψ is coupled to a massive scalar φ with a trilinear interaction
of strength gY . We have assumed a Z2 symmetry, φ → −φ, for the scalar, and
ignored the renormalizable φ4 term, which is not important for the discussion that
follows. Setting the highest scale of the theory to be ΛUV ≡ max (mψ,mφ), we
can integrate out the heavy degrees of freedom and study Eq. (1.21) in the full
IR regime. It is easy to see that in the limit where mφ � mψ, we end up at low
energy with a Fermi-like theory of four-fermion interactions with coupling g2/m2

φ,
whereas in the opposite situation we get (at dimension 4) an ordinary φ4 scalar
theory. Matching at 1-loop level the (1-particle irreducible) 2-point functions of UV
and IR theories, the IR spectrum of the Yukawa theory is characterized by [56]:

ΛIR = mψ(ΛUV)
[
1− g2

Y

16π2

(
5
4 +

m2
ψ

2Λ2
UV

)]
if mφ � mψ ,

Λ2
IR = m2

φ(ΛUV)− g2
Y

16π2

(
20 Λ2

UV −
64
3 m

2
φ

)
if mψ � mφ , (1.22)

where we have used dimensional regularization (note that all power-like divergences
in this regularization method identically vanish) and the MS subtraction scheme.
We have set the matching scale at ΛUV and introduced the IR energy scale, ΛIR, as
the physical mass of the particle present in the low energy spectrum of the theory.

From Eq. (1.21) above, we can note that in the case of the light fermion the UV
sensitivity of the IR scale is pretty mild: the quantum correction to the mass of
the fermion is proportional to the mass itself, and, hence, in the limit mψ → 0
it is stable under quantum corrections. Indeed, a symmetry originally lying in
the UV theory, namely the invariance under chiral transformations, ψ → eiγ5θψ

(combined with the Z2 invariance of the scalar), is restored in the massless limit:
consequently, fermion masses can be naturally small. This fact stands out in net
contrast to the opposite scenario where the scalar is the light degree of freedom in
the IR. The quantum correction in ΛIR is now of O(Λ2

UVg
2
Y
/(16π2)), which implies

that any small fluctuation g + δg in the UV theory is reflected in the IR by a large
radiative effect. This extreme UV sensitivity follows from the lack of an underlying
symmetry when in the Yukawa Lagrangian, Eq. (1.21), we take the limit mφ → 0 .

The SM Higgs boson falls in this unpleasant situation: its mass, mh ∼ O(ΛEW),
is quadratically sensitive to any NP scale ΛNP & ΛEW. While state-of-the-art
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experimental measurements of electroweak and strong couplings, supplemented by
the SM renormalization group evolution, offer an important hint for NP existence
already at ∼ 1016 GeV [57], we may (naively) expect quantum gravity effects to
become non-negligible at ∼ MPl. This would suggest ΛNP ∼ 1018 GeV, implying
a very fine-tuned Higgs mass against large UV radiative corrections. While from
the mere theory side hierarchy problems do not lead to real inconsistencies in a
quantum field theory, the quest for naturalness has been historically the main
driving force to motivate BSM physics at ΛNP ∼ ΛEW, providing a guide line for
extensions of the SM where the Higgs mass turns out to be technically natural.

One of the most elegant solutions to the hierarchy problem in BSM physics is
certainly provided by Supersymmetry (SUSY). In SUSY theories, the Poincaré
group is enlarged to contain transformations generated by anti-commuting fermionic
operators mapping bosons to fermions and viceversa [58]. For instance, promoting
φ to be complex in order to match the number of degrees of freedom of ψ, the
SUSY version of the Lagrangian in Eq. (1.21) would require fermionic and bosonic
pairs to share the same energy mass scale, being one the super-partner of the
other. Hence, the enhancement of space-time symmetries in SUSY theories allow
the scalars to inherit the chiral symmetry of the fermions. As a straightforward
consequence, the exact manifestation of SUSY in Nature would ensure the mass of
scalar particles to be radiatively stable under quantum corrections.

It is easy to see that SM bosons and fermions cannot be the super-partner of
each other, since they do not show any degeneracy in mass and, moreover, they
carry different quantum numbers. Hence, even in its most economical realization
– the Minimal Supersymmetric Standard Model (MSSM) – any SUSY extension
of the SM predicts the existence of SM super-partners, with (at least) some of
them expected to be found around the scale of SUSY breaking, ΛSUSY. Up-to-date
searches at the Large Hadron Collider (LHC) put severe constraints, e.g., on the
mass of squarks and gluinos, the super-partners of quarks and gluons, starting to
probe ΛSUSY above the TeV, i.e. ΛSUSY & 10 ΛEW . Therefore, even if SUSY would
be a symmetry chosen by Nature, current null results at colliders imply a mild
hierarchy problem – the so-called “little hierarchy problem” [59] – forcing the Higgs
mass in SUSY extensions of the SM to be tuned (at least) at the % level [60].

In spite of any hierarchy problem, SUSY remains a very welcome opportunity
for BSM models [61, 62]. Indeed, it allows for an exact unification of the SM
gauge couplings, possibly accounting also for current bounds on the lifetime of
proton decay. Moreover, the typical spectrum of these models quite remarkably
contain viable DM candidates. For instance, if we take the general MSSM, we
can see that phenomenologically dangerous terms allowing for baryon and lepton

16



Chapter 1 – The Dark Matter Problem –

number violating processes arise already at the renormalizable level. In a bottom-
up approach, to avoid unsuppressed ∆B,∆L 6= 0 operators we may invoke the
conservation of a discrete symmetry like R-parity [63]:

R = (−1)2j+ 3(B−L) , (1.23)

where j is the spin of the particle with baryonic charge B and leptonic charge L.
According to Eq. (1.23), SM particles have positive R quantum number, while their
super-partners have R = −1. Consequently, this Z2 symmetry distinguishes SM
particles from SUSY counterparts, and implies that the lightest supersymmetric
particle (LSP) of the MSSM is stable. Interestingly, in many MSSM realizations
one of the four neutralinos can usually be identified as the LSP of the theory.
Neutralinos are mass eigenstates of a linear superposition of the super-partners
of the Higgs and of the SU(2)L ⊗ U(1)Y neutral gauge bosons, namely the two
neutral higgsinos, the neutral wino and the bino:

χ̃ 0
i = hui H̃

0
u + h

di H̃
0
d + wi W̃

0 + bi B̃
0 . (1.24)

So, in the framework of the R-parity conserving MSSM the lightest neutralino
typically corresponds to a stable particle with electroweak quantum numbers.
Therefore, it represents a very appealing WIMP DM candidate [64].

Neutralinos in the Early Universe can decouple from the primordial plasma as
cold thermal relics, following the picture drawn in detail in the previous section.
They can reproduce the DM measured abundance of today even in the simplest
phenomenological versions of the MSSM [65,66]. Looking back at Eq. (1.24), if we
wish to identify the DM candidate with a pure state neutralino, while in the case of
bino DM the annihilation rate in the Early Universe is usually too small and easily
overcloses the Universe, a pure higgsino with mass ∼ 1 TeV and a pure wino with
mass ∼ 3 TeV are typical benchmark scenarios that correctly yield the right DM
abundance. Interestingly enough, the latter may be phenomenologically disfavored
by DM indirect searches [67–69]. Eventually, one may look for more complicated
situations, motivated by the desire that the LSP mass should be as close as possible
to ΛEW . In this case, the DM neutralino should contain mostly a bino component,
and an additional ingredient that allows to increase the corresponding annihilation
cross section 〈σv〉 is required. Mechanisms such as co-annihilation (e.g. with a stop
or a stau) and resonant annihilation through on-shell mediators (e.g. the Z 0 or
the Higgs) [70] make the bino-like neutralino generally able to reproduce Planck’s
value of the current cosmological DM density. Finally, it is worth noting that the
right DM relic abundance may also be obtained through an appropriate balance of
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bino and higgsino and/or wino mixtures, corresponding to the phenomenological
window of the so-called “well-tempered” neutralino [71].

Eventually, we wish to remark that many other alternatives to the WIMP paradigm
may be considered to account for the fundamental origin of DM, and some of them
may be found to be as well-motivated as WIMPs in relation to open problems
in Particle Physics [72]. In particular, we would like to mention the gravitino as
other viable DM candidate in SUSY models [73,74]; composite DM in non-minimal
realization of composite Higgs models [75,76], where the dynamically emergent scale
of compositeness is supposed to address/alleviate the hierarchy problem [77]; the
sterile neutrino in relation to the mechanisms at the origin of SM neutrino masses
and baryon asymmetry of the Universe [78, 79]; the axion, namely a naturally
light massive scalar [80, 81] that elegantly accounts for the absence of CP violating
processes in Quantum Chromodynamics [82,83], such as the neutron electric dipole
moment, and that, at the same time, offers a rich cosmological picture where it
may behave as cold DM [84].

1.4 Looking for thermal relics in the sky

In the LHC era, high energy proton-proton collisions allow us to look for possible
production of new stable (or long-lived) massive particles that may be potentially
identified as DM. Dedicated searches at collider exploit the tag on events, e.g., with
a single jet or photon plus missing transverse energy, possibly related to a boosted
pair of undetected colorless and electrically neutral massive particles [85]. While
being an important complementary “DM tool”, collider searches, according to this
kind of signatures, cannot really assess the DM nature of the missing energy and,
hence, must be supplemented by more targeted experiments on DM detection.

After 30 years from its original proposal [86], today we are looking for DM imprints
in underground labs with an unprecedented level of sensitivity, in the attempt to
measure the recoil energy from elastic/inelastic scattering of local DM particles
with nucleon constituents of apposite target nuclei. Notable examples on the
experimental side are detectors based on cryogenic technologies [87], sensitive to the
excitations of, e.g., germanium or silicon crystals, and noble liquid experiments [88],
that are monitoring scintillation signals in, e.g., liquid argon and xenon.

Unfortunately, no clear evidence in favor of a positive detection has been singled
out so far neither at the LHC nor in the underground labs designed for a DM
direct detection. These null results have been translated into a relevant set of
limits for the mass and the coupling of DM particles in many BSM proposals. For
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instance, concerning SUSY model building, bounds from direct detection signals
definitely exclude sneutrinos, scalar super-partners of SM neutrinos, as viable DM
candidates in the MSSM (but not in its extensions, see e.g. [89,90]). With the most
notable exception of a detected event rate in favor of a DM annual modulation
signal, claimed by the DAMA/LIBRA collaboration already few years back [91]
and possibly soon confirmed/disproved by next-generation facilities [92], direct
detection searches are currently setting very strict limits on the strength of DM-
nucleon interactions, excluding at 90% C.L. weak-scale DM with spin independent
scattering cross section & 10−45 cm2 [93].

Very intriguingly, the quest for a DM discovery may potentially undertake a different
path than the one beaten by the two techniques just mentioned. Indeed, since we
have inferred so far the existence of DM only on astrophysical and cosmological
scales, it may be reasonable to expect a DM particle signal arising from astrophysical
systems and/or cosmological measurements. In particular, astrophysical objects or
peculiar regions of the sky characterized by the indirect (gravitational) evidence
of large DM densities may be of fundamental phenomenological relevance. In
fact, they may represent “natural boost factories”, potentially able to strengthen
typically faint signals as the ones expected from “collisionless” particles.

Mostly targeting the picture of thermal relics described in Section 1.3.1, indirect
searches for DM are based on the challenge of detecting possible yields from DM
particles annihilating (or decaying), in correspondence of DM overdense regions. If
we assume DM pairs to annihilate in the final state f with a thermally-averaged
cross section 〈σfv〉, the corresponding annihilation differential rate consists in the
annihilation rate per particle times the number of pairs annihilating in a differential
volume dV :

dΓ(f)
ann = ρ [r(ψ, `)]

mχ

〈σfv〉 ×
ρ [r(ψ, `)]
2 dχmχ

`2d` dΩ(ψ) , (1.25)

where we have assumed a spherical DM density ρ, and r can be taken as the radial
distance between the annihilation event and the center of the system, and here it is
a function of the line-of-sight distance of the observer, `, and the angular aperture,
ψ, away from the center direction. The factor dχ = 1 (2) reflects the possibility
that DM particles may (not) correspond to their own antiparticles. From Eq. (1.25)
we can easily compute, e.g., the total flux of the prompt photons related to the
annihilation of DM thermal relics:

dφγ
dEγ

=
∑
f

∫ dΓ(f)
ann

4π` 2
dN (f)

γ (Eγ,mχ)
dEγ

= P (Eγ,mχ)× J(∆Ω) , (1.26)
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where in the last step we have conveniently grouped together factors closer to
Particle Physics and those instead pertaining more to the Astrophysics community.

The “particle factor” in Eq. (1.26) includes the spectral emissivity dN (f)/dEγ of
the annihilation final state f as a function of the photon energy and the mass of
the DM together with the total velocity-averaged annihilation cross section 〈σtotv〉
and the branching ratio bf ≡ 〈σfv〉/〈σtotv〉 :

P (Eγ,mχ) = 〈σtotv〉
8π dχm2

χ

∑
f

bf
dN (f)

γ (Eγ,mχ)
dEγ

. (1.27)

Note that the above result holds as long as 〈σv〉 does not depend strongly on the
velocity, as it is the case for S-wave production according to the expansion shown
in Eq. (1.13). The typical mean velocity of the DM particles today in the halo of
our Galaxy can be roughly estimated to be 〈v〉 ∼

√
GNMMW/RMW ∼ 200 km/s,

which implies that P-wave thermal relics will not give in general any detectable
indirect detection signal due to the suppressed velocity in comparison to the one at
freeze-out, 〈v〉 ∼ c/3 . On the other hand, a velocity dependence in Eq. (1.27) may
be an important particle boost factor in the case of models featuring Sommerfeld
enhancement [94], namely a quantum non-relativistic effect due to the modification
of the wave-function of DM particles that can self-interact via long-range mediator
exchanges before annihilating. For instance, in the MSSM Sommerfeld enhancement
can play an important role both in the computation of the DM relic density as well
as in the study of indirect signals of pure wino DM [69,95].

The “astrophysical factor”, also known as J-factor, is the line-of-sight integral
within an angular aperture ∆Ω of the DM halo density profile squared:

J(∆Ω) =
∫

∆Ω
dΩ

∫
l.o.s.

d` ρ2 [r(ψ, `)] . (1.28)

As expected on physical grounds, Eq. (1.26) tells us that to maximize the chance
of a detection of photons from DM annihilation we have to conveniently choose
astrophysical targets with high J-factors, i.e. with a high Dark Matter concentration.
Note that analogous formulæ can be derived also in the case of decaying DM,
where the “astrophysical factor” will be only linearly sensitive to the halo density
profile. Of course, the signal-to-noise ratio of the sample chosen for a possible
DM particle discovery does not depend critically only on the J-value, but also
on the astrophysical processes characterizing the sample background/foreground
relative to the wavelength investigated. In Chapter 3 and 4 we will study two of the
most promising targets for DM indirect detection according to their corresponding
J-factors, namely the innermost degrees surrounding the Galactic Center and
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the MW dwarf spheroidal galaxies. Dwarf spheroidals are milestone examples of
DM-dominated objects that contain few stars and low gas densities and, hence, are
potentially ideal DM laboratories, leaving also room, together with galaxy clusters,
for possibly broad multi-wavelength analyses [96]. In contrast, the region around
the center of our Galaxy is a very complicated astrophysical environment. Despite
the promising J-value (3 - 5 orders of magnitude bigger than the typical ones for
MW dwarfs) due to the high DM content and the proximity to us, the Galactic
Center region is generally polluted by large systematic uncertainties stemming from
multi-wavelength backgrounds and foregrounds that are hard to estimate precisely.

Among the possible messengers for indirect searches, gamma rays play a leading role
as they propagate essentially unperturbed to us, retaining the directionality from
the origin of their emission. This allows us to potentially extract both morphological
and spectral informations from gamma-ray emitting sources. Remarkably, any
DM signal in the gamma-ray band should show a spatial correlation with the
gravitationally inferred DM halo distribution. Weak-scale DM particles as WIMPs
are supposed to yield such kind of signals [97]. Indeed, weak-scale thermal relics,
being non-relativistic, may annihilate even today in galactic halos with typical
center of mass energy EC.M. ' 2mχ ∼ 2ΛEW, which turns out to be a sufficient
energy budget for DM final states f to open up a gamma-ray window of secondary
emitted photons with Eγ & MeV and sharply cut off at Eγ ∼ mχ .

So, the kinematics related to today’s thermal relic annihilation actually determines
the properties of the photon energy spectrum. In Fig. 1.4 we show typical spectral
features expected from the annihilation of weak-scale DM. For instance, in the
case where DM annihilates into two-body final state channels containing at least
one photon (e.g., γγ, γZ 0, γh), we have that the spectrum of the signal is simply
mono-energetic line,

dN

dEγ
∝ δ(Eγ − E) , with E ≤ mχ . (1.29)

A hint of such a peculiar signature, implying Eγ = mχ in the γγ channel, was
found a few years back in the publicly available data of the Fermi Large Area
Telescope – currently surveying the sky in the gamma-ray band since 2008 – at the
photon energy Eγ ∼ 130 GeV, from the analysis of an extended region containing
also the Galactic Center [99, 100]. Unfortunately, up-to-date analyses, including
the one of the Fermi collaboration itself [101], do not find any evidence for this
spectral feature in the data anymore, suggesting probably a statistical fluctuation
(for very recent studies on the impact of statistical flukes in Particle Physics see,
e.g., Ref. [102, 103]). From the theoretical point of view, photon spectral lines
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Figure 1.4: From Ref. [98], various gamma-ray spectra expected from weak-scale
DM annihilation, all normalized to N(x > 0.1) = 1. Prompt emission
spectra from quarks, W± and Z 0 DM final states (gray band) look
very similar. In the same figure, for two different energy resolutions
∆E/E, a box-shaped spectrum due to DM cascade decays, a bump-
like spectrum due to virtual internal bremsstrahlung from charged
mediators, and the spectral line from DM annihilation into γγ.

arise only at loop level for a (supposedly) neutral DM particle, with a relative
suppression factor typically of the size of α2

e.m./(4 π)2 ∼ O(10−7) (for an explicit
computation in the MSSM see Ref. [104]).

Falling in a different energy range than the one targeted for a WIMP detection –
the observation of a sharp spectral emission peaked around ∼ 3.5 keV, observed
by two independent groups in the analysis of X-ray spectra of several galaxy
clusters [105, 106] – has recently triggered a renewed interest on spectral line
signatures in BSM scenarios. However, the interpretation of this signal in terms
of a genuine DM signature has been iteratively criticized in literature due to the
generally complex analysis of all the de-excitation atomic lines falling in the energy
range of the observed X-ray spectra [107,108]. At present, the true origin of the
signal is still a matter of ongoing debate, but the recent null findings from the
observation of Draco dwarf spheroidal with the deep XMM-Newton survey [109,110]
reasonably disfavor the DM interpretation of the signal detected, instead, in galaxy
clusters.

Depending on the exact energy resolution of the instrument, gamma-ray spectral
lines may not be further distinguished from other peculiar spectral features yield
by annihilating DM. Among these distinct signatures, we can consider, for example,
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virtual internal bremsstrahlung, which results in a broadening of the spectral line
signal towards lower masses [99]. Another highlighted possibility in literature has
been the box-like spectrum [111], that arise in scenarios where the DM particles
annihilate into a pair of final states that subsequently decay into γγ. The two
situations are respectively reported in Fig. 1.4 with red and blue lines. Recently,
it has been shown that DM self-annihilating into two Dirac fermions, which then
decay into another fermion and a photon, offers a quite characteristic triangular
spectral feature to possibly be searched for as well in the gamma-ray sky [112].

Most commonly, thermal relics will likely annihilate into ordinary SM particles such
as leptons, gauge bosons, and/or quarks. These yields may produce a secondary
photon component either through final-state radiation or in the shower of their
decay products, such as π0 decays into γγ coming from hadronic showers. Looking
at Fig. 1.4, we can see that, to first approximation, the secondary photon spectrum
so produced is essentially featureless, with a rather soft cutoff at the kinematical
limit Eγ = mχ, and it is very similar in shape for all the channels, without a strong
dependence on the value of mχ. Note, however, that refinements to this general
picture do exist. For instance, model-independent electroweak corrections apply to
all the SM final states whenmχ & ΛEW, giving an important imprint on the spectral
shape of the single SM final state f [113]. Moreover, in the case of leptonic final
states, radiated high-energy photons related to the energy losses of the particles
propagating in the astrophysical medium may be relevant as well [114]. State-of-the-
art predictions for these spectra can be found in the encyclopedic work of Ref. [115].
As shown in Fig. 1.4, the signature of secondary photon emission coming from SM
yields of DM usually shows up as a broad bump-like excess to be detected on top of
the expected astrophysical gamma-ray background. We will see in Chapter 2 how
much, in general, we understand about this astrophysical background. Interestingly,
a gamma-ray continuum excess has been reported in several gamma-ray analyses
of the inner few tens of degrees around the Galactic Center, with a statistically
strong evidence in favor of a spectrally and morphologically WIMP-like signature
exactly like the one just discussed here. We will dedicate the entire Chapter 3 on
this exciting claim about a potential DM particle discovery.

Another very promising indirect messenger of the nature of the DM particle may
be neutrinos. They, indeed, can offer a diagnostics for DM annihilation very similar
to the one presented for gamma-ray photons. In particular, Eq. (1.26) holds also
for neutrinos, with the obvious substitution in Eq. (1.27) of the neutrino spectral
emissivity from SM yields. In contrast to the case of gamma rays, a DM signal
of high-energy neutrinos is not expected to have many astrophysical background
counterparts. However, the typical cross section related to neutrino interactions is
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relatively small, the reason why it is very challenging to detect a signal from them.
The current null results of up-to-date dedicated searches with gigantic neutrino
observatories such as ANTARES and IceCube set upper limits on 〈σv〉 that are
competitive with gamma-ray ones only for few final states and for DM masses
above the TeV [116,117]. Remarkably, neutrinos offer another peculiar diagnostics
for DM particle interactions. In fact, the orbit of DM particles populating the halo
of our Galaxy may have the chance to pass through a massive celestial body, like
the Sun or the Earth. This would give a small probability to have a scattering of
DM particles on ordinary matter, possibly diverting the orbit of the DM particle to
one which is gravitationally bound to the massive body, and hence via subsequent
scatterings, allowing the DM particle to sink at its center and build up a local DM
overdensity there. Therefore, the annihilation rate into Standard Model particles
of putative DM concentrations at the center of the Sun or of the Earth may give
rise eventually to distinctive high-energy neutrino fluxes, representing one of the
most peculiar signatures of DM particle interactions [118–121]. Indeed, this kind of
DM signature not only involves the knowledge of the DM halo density profile, but
also requires the particle velocity distribution, as it also needed by direct detection
experiments. The most updated searches for DM annihilation in the Sun, operated
by the IceCube collaboration, provide at present the strongest available upper
limits on the spin-dependent scattering cross section of DM on a proton [122],
excluding weak-scale DM with scattering cross sections greater than ∼ 10−40 cm2

(∼ 10−38 cm2) for an assumed W−W+ (bb̄) annihilation channel.

Finally, the other tool we may want to consider for indirect searches are the
fluxes of charged particle we can detect in our local environment. At first glance,
charged particle yields may seem much less appealing than high-energy photons and
neutrinos as indirect messengers of the nature of DM. Since they are charged, their
propagation is affected by the structure of magnetic fields in the Galaxy. Therefore,
these messengers do not retain the directionality from their emission, and, hence,
cannot provide any precise morphological information on a DM signal. Moreover,
high-energy electrons and protons are copiously produced in the outer-space by a
large amount of standard astrophysical processes/sources. However, the amount of
antimatter we find in our local observable Universe is notably tiny in comparison
to ordinary baryonic matter. This opens up the possibility to search in our local
environment for antimatter yields [123–126], given the expected low astrophysical
background. At the same time, DM thermal relics will be, in general, democratic
in the production of yields of matter and antimatter. Hence, DM is expected
to have a good signal-to-noise in antimatter channels. Today, thanks to current
facilities, such as PAMELA and AMS, we can measure with satisfactory precision
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the local flux, e.g., of positrons and antiprotons, two data set on antimatter that
are leaving us room for a possible concrete detection of some DM particle signal.
The interpretation of these data depends, however, crucially on our knowledge
about the production and the propagation mechanisms of charged particles in the
Galaxy, which bring us directly to one of the main topics of next chapter.

25



2 Chapter 2

Diffusion in the GeV-TeV

gamma-ray and neutrino sky

2.1 Cosmic rays as particle discovery tools

Some of the historically most important steps in Particle Physics have certainly
deep roots in the field of Cosmic-ray (CR) Physics: cosmic rays have been the initial
playground that allowed particle physicists to make discoveries of fundamental
relevance.
One of the first pioneer studies in CR physics needs to be addressed to Victor
Hess, at the beginning of the last century: his historical balloon flight allowed
the measurement of an ionized radiation in the atmosphere, whose intensity was
increasing with greater altitude. Subsequent studies pointed to the fact that this
radiation was of a high-energy kind, and it was penetrating the atmosphere while
getting partially absorbed by the latter. The lack of a day/night variation and the
absence of a correlation with the position of the Sun suggested in the end that the
origin of such a radiation was of a “cosmic” kind. A following set of observations
highlighted the correlation of locally measured CR intensities with the dipolar
structure of the Earth magnetic field, leading to the conclusion that CRs should
have been mainly composed of charged particles. The outstanding discoveries
that followed those years revolutionized the knowledge of Particle Physics: the
experimental evidence in favor of antimatter with the first detection of antiprotons
and positrons, the measurement of heavier replica like the muon, the birth of
hadron spectroscopy, and the contemporary validation of theoretical milestone
proposals like e.g. the Dirac equation and the Yukawa theory. Such a prolific
series of discoveries set up the stages for the advent of particle accelerators and,
consequently, starting from the second half of the last century, the study of CR
physics has been gradually pertaining to a more Astrophysics-inclined audience.

Interestingly, nowadays we are back to a renewed interest on the interplay between
CRs and Particle Physics. At present, the state-of-the-art measurements of CR
observables on one side and the progressing theoretical development of CR theory
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modeling on the other one, may offer to us a unique window to study possible
indirect imprints of Dark Matter (DM) particle interactions. As already discussed
in Chapter 1, the possible identification of yields from the annihilation or decay of
DM particles is currently one of the most valuable opportunities in the challenge
of a New Physics discovery. Several controversial signals are in support of these
exciting times, e.g. the rise at high energy in the positron fraction firstly measured
by PAMELA [127,128], the very recent antiproton to proton ratio in the preliminary
data set of the AMS-02 collaboration [129], and last, but absolutely not least, the
debated anomaly observed in the gamma-ray wavelength at the center of the Galaxy,
that we will be discussing extensively in Chapter 3.

In this Chapter we briefly overview some of the salient CR features known at
present for what concerns in particular the transport of these high-energy particles
in the Galaxy. Then, we present a novel phenomenological model for Galactic CR
propagation that takes into account all up-to-date measurements of local CR fluxes
and constitutes at the same time a new reference scenario in the field. Indeed,
the model we propose is able to provide for the first time a coherent picture of
the gamma-ray sky we map today with unprecedented level of precision thanks to
the spectacular reconstruction done by the Fermi Large Area Telescope (Fermi-
LAT) survey. We close this chapter describing the interesting predictions that
our Galactic propagation model features for TeV gamma rays, and discussing in a
multi-messenger approach the smoking-gun predictions of the model for high-energy
neutrino events morphologically correlated with the Galactic plane.

2.2 A brief overview on Galactic Cosmic-ray Physics

A qualitative picture of what we know at present about CRs is well drawn by
the all-particle spectrum displayed in Fig. 2.1, as a joint effort of a multitude of
particle detectors mounted on flying balloons or in spacecrafts, and of ground-based
experiments as well.

The plot shows in particular the cumulative intensity of all CR species as a function
of the kinetic energy per particle. Despite the several orders of magnitudes ranging
along the y-axis and the x-axis, the flux is to a first approximation described by a
single power law, namely ∼ E−3. Such a power law description starts to do a good
job at energies above ∼1 GeV, i.e. when the effects arising from the modulation
potential of the Sun start to be less important in our local environment. It goes
all the way up to very high energies, ∼ 1020 eV, that should be considered a high-
energy cutoff for a twofold reason, because of the so-called GZK cutoff [130,131] –
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Figure 2.1: Spectrum of several cosmic-ray species as a function of the kinetic
energy per particle. Over a very broad energy interval the flux of
the all-particle spectrum falls off approximately proportional to E−3.
Around E ∼ 0.5× 1020 eV an abrupt flux reduction is predicted, the
GZK cutoff.

a theoretical upper limit on the energy of CRs experimentally acknowledged almost
a decade ago [132] – and also for the known sources and mechanisms at the basis
of CR acceleration. On closer inspection, the all-particle spectrum shows at least
two main features: a softening (i.e. a steepening of the spectral index) of the
power-law spectrum around 1015 eV – the so-called “knee” – and a hardening (i.e.
a shallower spectral index) roughly above 5× 1018 eV – the “ankle”, that nowadays
we believe to be connected to a change in the cosmic-ray species contribution – not
all the species contribute in fact in the same way at a given energy – and even
more importantly to a change in the origin of the cosmic-ray population. Looking
at Fig. 2.1, it is indeed commonly retained that below the knee CRs are merely of
Galactic origin, while above the ankle they are purely extra-Galactic.

A zoom on each species contributing to the all-particle spectrum of Fig. 2.1 teaches
us that great part of these high-energy particles corresponds to relativistic protons,
while the rest is constituted of heavier nuclei (mostly Helium). It is important
to notice that all these particles do not propagate in the vacuum, but in an
environment that can provide many back-reactions. So, in the study of CR physics
it is of primary importance to characterize all the different components making up
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such an environment. For Galactic CRs, the environment polluting CR propagation
corresponds to the so-called interstellar medium (ISM) [133]. The ISM can roughly
be defined as a relatively dense (∼1 atom per cm−3) material between stars,
composed mainly of atomic and molecular Hydrogen, with a smaller percentage
∼10% of large grains made of heavier elements. On top of this gas and dust
components, the ISM features a notable population of low frequency photons, with
typical energy density of ∼ eV cm−3, the so-called interstellar radiation field (ISRF),
which is made of UV, visible and infrared light components together with the cosmic
microwave background (CMB). Moreover, there is a magnetic field permeating the
whole Galaxy [134] – i.e. the ISM is magnetized – with a strength of a few µG
on average, even though in molecular clouds its value may be order of magnitude
larger. As a crucial consequence of that, CR cannot propagate ballistically from
their emitting sources, but are subject to the effects of the magnetized medium
they travel through, as we are going to discuss in the following.

Interactions with the Galactic ambient components will also lead to important
imprints in CR phenomenology. For instance, very high-energy electrons will
lose energy mainly in the vicinity of the injection sources through synchrotron
radiation, and up-scatter low energy photons from the ISRF. MeV-GeV electrons
can eventually radiate energetic photons via bremsstrahlung while traveling in the
ionized medium. Relativistic protons, on the other hand, while lose a negligible
fraction of energy in the ISM, via radiative emission undergo hadronic proto-
reaction with σpp ∼30 mb in a chain e.g. like p + N → X + N + π (most often
p + p → p + p + π0, p + p + π0 + π+ + π−). As we are going to see in the next
sections, the presence of pions as final states gives us a diagnostics in favor of
both hadronic accelerators and propagation. Indeed, the corresponding pion decay
channels, manly

π0 → γγ , π+ → µ+νµ → e+ νe ν̄µ νµ , (2.1)

offer to us the unique opportunity of a detailed multi-messenger approach in CR
studies through gamma-ray and neutrino observations operated with unprecedented
accuracy by current facilities. Finally, from heavier nuclei we have hadronic
processes of spallation and/or fragmentation kind: heavier target nuclei can either
interact with the ambient field or radioactively decay, producing lighter daughter
nuclei as secondary components. The existence of such secondary components on
top of primary ones bring us directly to next topic, that is the evidence in favor of
CR diffusion in the Galaxy.
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2.2.1 Hints for diffusive propagation in the Galaxy

Focussing on CR energies lower than 1015 eV, i.e. Galactic CRs, the chemical com-
position we observe from local CR measurements is very similar to the abundances
we can trace back for the elements in the Sun, looking at the absorption lines in
the ambient gas. As shown in Fig. 2.2, there is a fair good match between the two
sets of abundances that suggests a stellar origin for Galactic CRs.

Figure 2.2: Relative abundances of cosmic-ray species (black line) compared
against the Solar system ones (red line).

However, a closer look at Fig. 2.2 shows some dramatic discrepancies as well. E.g.,
the enormous enrichment in the CR abundances of Lithium, Beryllium and Boron
with respect to the Solar counterparts. Today, we read this mismatch not only
as a proof of the interaction of CRs with the ambient components, but also as
a strong indirect hint in favor of a diffusive motion of these relativistic particles
in the Galaxy. Suppose that the ambient around the Sun is the typical ambient
for a star, i.e. the typical ambient which reflects stellar nucleosynthesis. Then, a
source is evolving and polluting its environment with its own yields, and, eventually,
through some acceleration mechanism injecting these yields out in the interstellar
medium as CRs: these species of CR are what we call primary CRs, namely cosmic
rays that are synthesized and accelerated in the sources. According to Fig. 2.2,
there is however a component that is initially not much present in the sources.
This kind of species we dub it a “secondary”, since it is supposed to get important
contribution along the propagation of the primaries, via their interactions with the
ISM. The final result is the more democratic distribution we observe for Galactic
CR, represented by the black line in Fig. 2.2.

As we are now going to discuss in some detail, the existence of secondary CRs on
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top of primaries support the hypothesis of a diffusive mode for CR propagation.
For the purpose, let us introduce the concept of grammage, namely the amount of
traversed material by a CR species along its propagation:

X ≡
∫
d` ρISM(`) , (2.2)

and let us assign to the primary (secondary) species a density np (ns). Introducing
the interaction depth λp,s = m/σp,s (neglecting the mismatch in mass between the
two species), we can write an equation of evolution for the two densities along the
trajectory parametrized by the grammage:

dnp
dX

= −np
λp

,

dns
dX

= −ns
λs

+ Pp→s
np
λp

, (2.3)

where in the second line we considered the reaction p+N → s+N ′, introducing
the probability associated to the secondary production, Pp→s ≡ σp+...→s+.../σp. We
have obtained a set of two coupled differential equations, whose solution yields the
following secondary to primary ratio

ns
np

= Pp→s
λs

λs − λp

[
exp

(
−X
λs

+ X

λp

)
− 1

]
(2.4)

Looking again at Fig. 2.2, we can now use Eq. (2.4) to study the Li-Be-B cycle of
secondaries against the C-N-O cycle of primary species. From nuclear physics [135]
we can borrow the estimate of the interaction depth for the two sets of species,
λC−N−O ' 6.7 g/cm2 and λLi−Be−B ' 10 g/cm2, together with the spallation
probability Pp→s ' 0.35 for energies around the GeV. Taking into account the
measurement carried out for local CR observables like B/C we know also that
nLi−Be−B/nC−N−O ' 0.2. So, we are in the position to infer the total grammage
related to the conversion of C-N-O into Li-Be-B, that is Xp→s ' 4.3 g/cm2.
Now, the estimate of such grammage can be compared with the typical value one
would expect from the propagation of CRs in the Galaxy. The disk of the Milky
Way (MW) is characterized by a gas density nH ∼ 1 cm−3, and it has a thickness
of about h ∼ 100 pc. Now, if CRs would travel ballistically, one would have a
primary component that is transversing the thin disk of gas only once, yielding a
corresponding grammage of X1 cross ∼ mp nH h ' 10−3 g/cm2. This is three orders
of magnitude smaller than what needed to correctly match the measured abundance
of secondaries over primaries. This result suggests that CRs are likely to cross the
Galactic disk multiple times.
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As we will try to address in the next paragraph, CR propagation around the
disk pretty resembles Brownian motion, due to the random walk triggered by the
magnetic irregularities present in the Galactic environment. A lower bound on
the timescale associated to the propagation of the primary components through
the ISM can be estimated as the number of times the primary species cross the
disk times the single crossing time interval, tprop & Xp→s/X1 cross × h/c, yielding
roughly tprop & 5 · 106 years. Note that we have derived this as a lower bound
since the time that the particle spends only in the thin disk is likely shorter than
the Galactic timescale of CR propagation, supposed to be at least an order of
magnitude greater. Indeed, the effective propagation region is correlated with the
extension of the magnetic field in the Galaxy, usually thought as a magnetized halo
of height ∼ 30− 70h.

2.2.2 Charged particles in magnetic inhomogeneities

As already anticipated, the turbulence glued to the ambient magnetic field is
supposed to be at the basis of CR diffusive motion. We expect the influence of the
ambient magnetic field on CRs to lead us to an equation of the following kind:

∂n

∂t
+ ~∇ · ~J = Q , (2.5)

where the condition of diffusive regime implies the vector current to be ~J = −~∇n.
In order to derive the diffusion equation of the kind of Eq. (2.5), let us start
from the simple study of a charged relativistic particle moving in an environment
like our Galaxy, characterized by a regular large scale magnetic field component,
~B = (0, 0, B), on top of which are also present magnetic inhomogeneities, δ ~B. For
a particle of charge q and momentum ~p = mγ~v, the dynamics is dictated by the
Lorenz force:

d~p

dt
= q

[
~v

c
∧
(
~B + δ ~B

)]
. (2.6)

Switching off the irregular component, the particle spirals along the direction of
the regular magnetic field and the solution to the equation of motion is simply:

vz = v
(0)
‖ ,

vx = v
(0)
⊥ cos(ΩLt) , (2.7)

vy = v
(0)
⊥ sin(ΩLt) ,

where ΩL corresponds to the Larmor frequency of the paticle, ΩL = q B/(mcγ). If
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we now switch on the stochastic fluctuation δ ~B, in the limit where | ~B| � |δ ~B|, the
so-called quasi-linear approximation, the motion of the particle is sizably affected
by this perturbation only along the direction of the regular magnetic field:

dp‖
dt

= p
dµ

dt
= q

(
~v

c
∧ δ ~B

)
· p̂‖ , (2.8)

where p ≡ |~p |, which is a constant of motion, and we have introduced for the purpose
the pitch angle as µ ≡ cos

(
p̂ ∧ B̂

)
. The perturbation above is intimately related to

the effect of the turbulence present in the ISM, manifested by the so-called Alfvén
waves, propagating in the intergalactic plasma. These magnetohydrodynamic waves
are characterized by a velocity vA of the order of ∼ B/

√
4πρmedium: plugging in the

typical value for the Galactic regular magnetic field of order ∼ µG and a reference
value for the density of the gas in the ISM, ∼cm−3, we estimate vA to be ∼ 2× 106

cm s−1, i.e. Galactic Alfvén waves are non-relativistic. This consideration allows
us to undertake the static limit for δ ~B, and write for a single mode k in the rest
frame of the waves:

δBx = δB sin(k z + ϕ) ,
δBy = δB cos(k z + ϕ) , (2.9)

where ϕ is an arbitrary phase. Exploiting the definition of the pitch angle and
inserting Eq. (2.9) into the expression of Eq. (2.8), one gets the master equation
for the diffusion in pitch angle:

dµ

dt
= q

c

√
1− µ2

mγ
δB cos [(ΩL − kvµ− ϕ) t] , (2.10)

where vµ is the velocity of the particle in the z direction along which particle
motion is not influenced by the regular magnetic field component (see Eq. (2.8)).
Integrating Eq. (2.10) in time, a small variation ∆µ has 0 mean with respect to an
average on the random phase ψ. At the same time, the corresponding variance is
not vanishing and after a few steps of integration reads as:

〈∆µ∆µ
∆t 〉ψ = q2(1− µ2)

m2c2γ2 (δB)2
∫ ∆t

−∆t
dt̃ cos

[
(ΩL − kvµ) t̃

]
, (2.11)

so that for a large time interval ∆t the above expression collapses to

〈∆µ∆µ
∆t 〉ψ = π(1− µ2)ΩL

(
δB

B

)2

kres δ (k − kres) , (2.12)
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where we have defined the resonance wavenumber kres ≡ ΩL/(µv) = 1/(µ rL). From
Eq. (2.12) we conclude that the variance of the pitch angle is not vanishing when the
Alfvén wave mode k is resonating on kres. This result indicates that modes matching
the Larmor radius size of the particle are of particular importance. For scales k−1

much greater than rL, the particle spirals around a slightly bended magnetic field
with a small gyroradius, “surfing” the perturbation. In the opposite limit, the
particle does not see at all the perturbation, spiraling along the direction of the
regular magnetic field. In both cases, the particle propagates without experiencing
any significant change in the directionality of its motion. When k−1 ∼ rL, we
are instead in a resonant limit where the incoming direction of the particle gets
significantly affected by the presence of the ambient magnetic inhomogeneities.
Going beyond the single mode study, we have to consider a power spectrum of
modes P(k) ≡ 8πk2(δB(k)/B)2, that after an integration over all the Alfvén wave
modes leads to a generalization of Eq. (2.11):

〈∆µ∆µ
∆t 〉ψ = π

2 (1− µ2) ΩL kresP(kres) . (2.13)

The expression obtained above is intimately related to the definition of the diffusion
coefficient in pitch angle, namely

Dµµ ≡
1
2〈

∆θ∆θ
∆t 〉ψ = π

4 ΩL kresP(kres) , (2.14)

where θ is denoting the angle between the momentum of the particle and the
direction of the regular magnetic field.

In the rest frame of the Alfvén waves the diffusion coefficient in Eq. (2.14) charac-
terizes the resonant response of the charged particle to the presence of magnetic
inhomogeneities in the medium: the net effect we find is an isotropization of the
pitch angle, which happens to be on a timescale τ ∼ D−1

µµ . This result can be easily
translated in the lab frame as a sort of resonant scattering of the charged particle
with the Alfvén waves, with an associated scattering length λ ∼ (v± vA) · τ ' v · τ .
By simple dimensional analysis, also in real space the propagation of the particle
must be characterized by a (spatial) diffusion coefficient:

Dzz ≡
1
2〈

∆z∆z
∆t 〉ψ ∼

λ2

τ
∼ v2

Dµµ

' v2

ΩL kresP(kres)
. (2.15)

We can conclude that the isotropization of the pitch angle in the rest frame of
the Alfvén waves is effectively described by a Brownian-like motion of the particle
in the lab frame, where the observed spatial diffusion is intimately related to the
non-zero variance of the pitch angle, as computed in Eq. (2.13).
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2.2.3 The cosmic-ray transport equation

As of now, we have focussed our attention on the motion of a single particle. We
can generalize the previous discussion considering now an ensemble of particles
described by a phase space distribution function f(~x, ~p, t), and supported by a
probability density function Ψ(~p,∆~p ) related to the transition from momentum ~p

to ~p+ ∆~p due to the interaction with the stochastic fluctuations in the ambient
magnetic field. Note that, from detailed balance, the probability density for a
transition ~p→ ~p−∆~p, represented by Ψ(~p,−∆~p), should be equal to Ψ(~p−∆~p,∆~p ),
describing the transition ~p−∆~p→ ~p. Implementing the quasi-linear approximation
in momentum space, i.e. requiring |∆~p |/|~p | � 1, at second order in |∆~p | detailed
balance implies:

〈∆pi 〉∆~p = 1
2
∑
j

∂

∂pj
〈∆pi∆pj〉∆~p , (2.16)

where 〈. . .〉∆~p involves an average with measure d∆~p Ψ(~p,∆~p ). Exploiting the
definition of Ψ, the evolved phase space density in a time lapse ∆t must be:

f(~x+ ~v ·∆t, ~p, t+ ∆t) =
∫
d∆~pΨ(~p−∆~p,∆~p )f(~x, ~p−∆~p, t) , (2.17)

where ~v denotes the charged particle velocity in the rest frame of the Alfvén waves.
The above expression can be expanded again at second order in |∆~p | according to
the quasi-linear approximation. Moreover, we can take the static limit and expand
it at linear order for ∆t/t� 1 as well. With the help of Eq. (2.16), after simple
algebra we get to an evolution equation of the following kind:

∂f

∂t
+
∑
i

vi
∂f

∂xi
=
∑
j,k

∂

∂pj

[
Dpjpk

∂f

∂pk

]
, (2.18)

where we introduced the diffusion coefficient in momentum space as

Dpipj ≡
1
2〈

∆pi∆pj
∆t 〉∆~p . (2.19)

Assuming as before ~B = B · ẑ and trading the previous average on ψ for an
equivalent average on the momentum variation ∆~p, the diffusion coefficient in the
pitch angle is Dµµ = δizδjzDpipj/p

2. Then, isotropization in the pitch angle yields:

∂f

∂t
+
∑
i

vi
∂f

∂xi
= ∂

∂µ

[
Dµµ

∂f

∂µ

]
. (2.20)

The expression obtained is a Boltzmann equation: the left-hand side corresponds
to the classical Liouville operator acting on f, while the right-hand side is indeed a
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sort of collisional operator establishing for f diffusive motion in the pitch angle.
Moving to the Galactic rest frame, we can obtain a differential equation for f that
closely resembles the structure just derived in the Alfvén wave rest frame [136,137]:

∂f

∂t
+
∑
i

ui
∂f

∂xi
− 1

3
(
~∇ · ~u

)
p
∂f

∂t
=
∑
j,k

∂

∂xj

[
Dxjxk

∂f

∂xk

]
. (2.21)

Comparing with Eq. (2.20), the drift term in the Liouville operator is now charac-
terized by a velocity ~u which is the result of the sum of the Alfvén wave velocity
~vA and an overall velocity component associated to the bulk motion of the plasma
in the lab frame. Such a term comes together with an adiabatic energy loss term,
mainly due to possible convective effects in the Galactic plasma. On the right-hand
side, the isotropization in pitch angle is again translated into spatial diffusion,
in the same fashion of Eq. (2.15). In particular, taking the propagation of the
Alfvén waves to be along the direction of the regular component ~B = B · ẑ, the
following relation between diffusion coefficient in pitch angle and in real space
holds [136,137]:

Dzz = v2

8

∫ +1

−1
dµ

(1− µ2)2

Dµµ

. (2.22)

The transport equation in Eq. (2.21) describes the evolution of Galactic CRs
according to a diffusive motion in an environment characterized by a large scale
magnetic field and stochastic fluctuations on top of it, possibly supplemented
also by non-negligible convective winds. The rich physics of convective-diffusive
transport encoded in this theoretical framework can be expanded to take into
account other important physical effects for Galactic CRs. The most notable one
is probably related to the non-zero velocity ~vA that magnetic inhomogeneities have
in the plasma, resulting in a time-varying magnetic field impacting CR motion as a
net acceleration effect, different from the main acceleration of CR injection sources.
Such an effect can be shown to yield a diffusion term in momentum space [136,137]:

1
p2

∂

∂p

(
p2Dpp

∂f

∂p

)
, (2.23)

where Dpp ∝ v2
A p2/Dzz [138] for Alfvén waves propagating along the regular

magnetic field component. On general grounds, we need to have also a term
representative of net energy losses, particularly relevant for CR species like electrons:

− 1
p2

∂

∂p

[
p2dp

dt
f

]
, (2.24)
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where the continuous loss rate dp/dt depends on the kind of process (for instance,
synchrotron and inverse Compton rates are ∝ p2). In the end, an evolution equation
for CRs must feature also a source term, q(~x, ~p, t), capturing the CR injection
mechanism of the species, and a loss term, denoted here simply as −f/τloss, to
take into account the loss of the species due to possible spallation processes and/or
radiative decays [139].
Eventually, we can write such a generalized transport equation for Galactic CR
propagation in terms of the particle density per unit of momentum and volume [140]:

∂N
∂t

+ ~∇ · (~uN )− 1
3
∂

∂p

[
p
(
~∇ · ~u

)
N
]
− ~∇ ·

(
D~x~x

~∇N
)

− ∂

∂p

[
p2Dpp

∂

∂p

(
N
p2

)]
+ ∂

∂p

(
dp

dt
N
)

= Q− N
τloss

, (2.25)

where by definiton N ≡ p2 ∫ dΩ~pf(~x, ~p, t) and Q ≡ p2 ∫ dΩ~p q(~x, ~p, t).

A solution of Eq. (2.25) generally requires a detailed numerical study. Several
dedicated codes for the purpose are available in the literature [141–146]. However,
it is illustrative to discuss some simplified version of Eq. (2.25) that provides useful
physical insights. For instance, we can trade the spatial diffusion operator for an
effective time of confinement and treat the whole Galaxy as a sort of box, in which
CRs are randomly walking up to the point where they hit one of the box boundaries
and consequently they leak out. In this simple framework, we can get an estimate
of the typical time of CR diffusion in the Galaxy. Such a drastic simplification of
Eq. (2.25) is the so-called leaky box approximation, that allows us to write:

∂N
∂t

+ N
τdiff (p)

= Q(p) , (2.26)

assuming we are in a regime of pure diffusion. If we further assume that equilibrium
has been reached between the injected CRs and the ones escaping from the box,
we can neglect time dependence in N , i.e. we can work in the steady state limit,
and trivially solve Eq. (2.26):

N = Q(p) τdiff (p) . (2.27)

Since the number density of a secondary component will be sourced by the primary
one, the secondaries over primaries ratio can be easily predicted to be:

Ns = Qs τdiff ∝ Np τdiff ⇒
Ns
Np
∝ τdiff . (2.28)

From Eq. (2.28) we conclude that the relative abundance of secondaries over
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primaries probes the timescale for confinement of CRs in the Galaxy, or equivalently
the spatial diffusion coefficient in the CR transport equation, Eq. (2.26), since
by dimensional analysis τdiff ∼ H2/D, where H captures the typical size of the
box. On physical grounds, particles with greater rigidities should escape more
easily from the Galaxy given their greater Larmor radius: this suggests that the
spatial diffusion coefficient must be a monotonic increasing function of rigidity.
Supplementing Eq.(2.28) with such expectation, we have a theoretical prediction
that nicely fits the trend of available experimental data: at energies above few
GeV, data points of local CR observables like B/C show indeed a power-law
behavior decreasing with increasing kinetic energy per nucleon (see e.g. Fig. 2.6
and the discussion below). Taking the diffusion coefficient to be a power-law in
rigidity, D(R) = D0 (R/3 GV)δ, – an ansatz supported on the theory side by
analytical approaches to magnetohydrodynamics turbulence [137] – state-of-the-art
measurements of this observable points to δ ' 0.5, with a normalization D0 ' 1028

cm2 s−1. The sort of flattening we can instead observe in B/C data at lower
energies stems from the fact that diffusion stops to be the dominant effect, and
other timescales reasonably come into the game, e.g. the one associated to the
presence of convective winds, τcov ∼ H/u, and/or also the one related to momentum
dependent re-acceleration effects, τre−acc(p) ∼ p2/Dpp.

Doing such a “clock setting” using different indicators is, of course, an opportunity
we would not want to miss: according to Fig. 2.2, different patterns of secondaries
over primaries allow to check out the same CR transport properties. At present,
measurements of CR transport properties from heavier elements are affected by
larger error bars than those in B/C data, but they will likely improve in the forth-
coming years thanks to the operating AMS-02 magnetic spectrometer. Remarkably,
we have other kind of secondaries at our disposal, namely the ones corresponding to
antimatter CR species. Notable examples of this kind are antiprotons, a component
in local CRs that is roughly at the level of 10−4 compared to the measured proton
flux, mainly originating from the inelastic collision of primary protons with the ISM
according to the reaction p+H → p̄+ 3p . Such inelastic scattering see antiproton
production kinematically disfavored at low kinetic energies, while an expected peak
at production falls around Ep̄ ' 1 GeV. While these features are nicely reproduced
by data, the local p̄ over p ratio does not really feature at high energies the expected
depletion due to the CR diffusive regime, but is rather compatible with a flat p̄/p
flux [129] While such a trend still falls withi the several uncertainties plaguing the
theoretical prediction [147,148], next high-energy measures of this observable may
provide a clearer indirect evidence of some exotica injecting antiprotons in our
local environment.
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A slightly different discussion is required for positrons, the other interesting kind
of antimatter we can locally observe. Indeed, high-energy leptons feature large
energy losses, which imply a new timescale competing with the diffusion one. The
transport equation governing e± propagation is of the kind

∂N
∂t
−D∆N − ∂

∂p

(
dp

dt
N
)

= Q (2.29)

where inverse Compton scattering on the photon background and synchrotron
radiation define the typical timescale for energy losses, τEloss(p) ∼ p/|dp/dt| ∝ p−1.
The solution of Eq. (2.29) is given by a Green function that boils down to:

N ' Q(p) τEloss√
D(p) τEloss

. (2.30)

For primary electrons this result implies a scaling N ∝ pαe− δ2− 1
2 , where αCR is

the spectral index of the injected CR species. On the other hand, positrons
in the Galaxy are believed to originate as a secondary component arising from
the collisions of relativistic protons with the ISM gas according to a chain like
p + H → . . . → π± → µ± + . . . → e± + . . . . The source function of positrons is
then expected to scale as:

Qe+ ∝ Np nH σp→e+ ∝ Qp τdiff ∝ p−αp−δ, (2.31)

where we have implemented the rather simplistic approximation of an energy
independent cross section σp→e+ , and used the fact that the relevant timescale
for propagation of high-energy protons is the diffusion timescale, and defined αp
the spectral index for the proton injection source function. Plugging this result
in Eq. (2.31), we can predict the scaling of the propagated positron flux over the
electron one: Ne+

Ne−
∝ p−αp+αe−δ , (2.32)

with αe the spectral index at injection for the electron source distribution. In the
hypothesis that CR primaries are accelerated in the same kind of environment, the
injected spectral index should not differ much going from one species to another.
Consequently, the ratio of secondary positrons over primary electrons is predicted
to scale down in the same way as for the B/C case, probing in a similar fashion local
CR diffusion. The rise at high energy in the positron fraction originally detected
by PAMELA in 2009 [127], and subsequently confirmed by Fermi-LAT [149] and
AMS collaborations [150], constitutes a substantial deviation from the prediction of
Eq. (2.32). While the origin of this anomaly generated an exciting brainstorming
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in the DM community (see e.g. [151, 152]), this observation can be reasonably
correlated to the local effects of a nearby primary e+ source [153, 154], maybe
a pulsar [155], since its environment is generally characterized by high-energy
outflows of electromagnetic radiation in a highly magnetized medium, leaving room
for copious e± pair production in the Galaxy [156].

Figure 2.3: Full-sky image at energies greater than 1 GeV based on five years
of data from the LAT instrument on NASA’s Fermi Gamma-ray
Space Telescope. Brighter colors indicate brighter gamma-ray sources.
Image Credit: NASA/DOE/Fermi-LAT collaboration.

So far, we restricted our discussion of the physics encoded in Eq. (2.25) on the
basis of local CR observables. As anticipated at the beginning of this section, today
we can observe the Galaxy shining in the gamma-ray band, as displayed in the
beautiful picture of Fig 2.3, thanks to the photon count mapping by the Fermi-LAT
experiment. Since 2008 Fermi-LAT has been surveying the gamma-ray sky between
about few hundred MeV and few hundred GeV with unprecedented sensitivity
and resolution. The corresponding detailed picture of the Galaxy provided to us
represents a unique opportunity to probe our current knowledge of CR propagation
in the ISM. Indeed, the bulk of photons detected by Fermi-LAT is expected to be
associated with diffuse emission from the MW, due to by Galactic CRs interacting
with the ISM gas and the ISRF photons via production and decay of π0s, inverse
Compton, and bremsstrahlung. Consequently, the study of the gamma-ray sky
offers a novel diagnostics of CR transport, allowing us to test what we have learnt
so far from local CR measurements and eventually to go beyond: as we are going
to discuss in detail in what follows, the global characterization of CR transport
in the whole Galaxy may indeed differ from the one extrapolated from our local
environment.
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2.3 Gamma-ray diagnostics of cosmic-ray transport

As hinted by the large photon flux along the Galactic plane in Fig 2.3, there is a
striking consistency between general features in the diffuse gamma-ray maps and
the diffuse gamma-ray flux models. Predictions mainly rely, on the side concerning
emitting targets, on (indirectly) measured gas column densities and ISRF models,
while, on the side of incident particles, on propagation models tuned to reproduce
locally measured fluxes.
When addressing at a quantitive level the quality of such match between predictions
and data, most analyses have mainly developed optimized models looping over
uncertainties on the emitting targets. In particular, in Ref. [157] the authors –
besides allowing for a radially-dependent rescaling of the ISRF and different values
of the spin temperature of the 21 cm transition (used to trace the atomic Hydrogen
component in the ISM) – adopt a tuning of the poorly known conversion factor
between the observed CO emissivities and the molecular hydrogen column densities,
usually dubbed XCO. In Ref. [157] it is shown that such approach is sufficient to
generate models in agreement with the data within about 15% in most regions of the
sky. A remarkable exception is the fact that this procedure tends to systematically
underestimate the measured flux above few GeV in the Galactic plane region, most
notably towards the inner Galaxy.

Fig. 2.4 shows the spectrum for the gamma-ray flux measured by the Fermi-LAT
in the energy range between 300 MeV and 100 GeV and a large angular window
encompassing the inner Galactic plane (5 years of data, within the event class
ULTRACLEAN according to Fermi tools v9r32p5, as described in [158]). The yellow
band corresponds to the point sources (PS) modeled using the 2-years Fermi-LAT
Point Source Catalogue via a dedicated Monte Carlo (MC) code that looped over
the uncertainties on the spectral energy characterization of each source. The
brown line is the contribution of the extra-Galactic gamma-ray background (EGB)
obtained by a full-sky fit of the data for |b| > 20◦. The double dot-dashed line
and gray triangles are, respectively, the prediction and residuals for the Fermi
benchmark model, labelled SSZ4R20T150C5 (FB hereafter), selected for Fig. 17 in
Ref. [157], and reproduced here using the GALPROP WebRun [144,145]: while the
model is optimized at low energy, it gives a poorer description of the data at high
energy, a feature that is generic for all models proposed in that analysis.

The selected angular window is interesting because the diffuse emission from the
inner Galactic plane is potentially a precious source of information for CR transport
modeling. Being the region with largest gas column densities, it is the brightest zone
of the sky and, unlike other regions where the interplay among components allows
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Figure 2.4: Upper Panel: Comparison between the gamma-ray flux computed with
the CR propagation model proposed (KRAγ total flux: solid black line;
individual components shown) and the Fermi-LAT data (purple dots,
including both statistic and systematic errors) in the Galactic disk.
For comparison, we also show the total flux for the FB model defined
in Ref. [157] (double dot-dashed gray line). Lower Panel: Residuals
computed for the KRAγ and FB models.

more modeling freedom, its flux is predominantly shaped by only one contribution,
namely the π0 decays of Eq. (2.1), especially when looking at intermediate energies.
The π0 emissivity spectral index is roughly equal to the incident proton one [159],
hence the inner Galactic plane allows an indirect measurement of the CR proton
slope towards the center of the Galaxy, far away from the region where direct
measurements are available. This aspect is seldom emphasized, since the standard
approach consists in solving the propagation equation for CR species under the
assumption that diffusive properties of CRs are the same in the whole propagation
volume. This implies reducing the spatial diffusion tensor in Eq. (2.25) to a single
constant diffusion coefficient D(R) = D0(R/R0)δ, whose scaling δ on rigidity R
and normalization D0 are constrained by local CR data (a range between about
δ = 0.3 and about δ = 0.85 is allowed [160–162]). Such hypothesis freezes the
proton spectral index – and therefore the π0 spectral index – to be very close
to the local one everywhere in the CR propagation region. For this reason, in
Fig. 2.4 and in the following, the gamma-ray flux is multiplied by E2.8

γ , since
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α = 2.820±0.003 (stat) ±0.005 (sys) is the proton index measured by the PAMELA
experiment in the range 30 GV–1.2 TV [163], in agreement with recent updates
from AMS-02 [129]. The FB model gives a slightly rising curve since it assumes
α = 2.72.

These considerations motivate us to go beyond standard approaches to diffusion in
CR transport, using as a guideline the Fermi-LAT gamma-ray data.

As previously derived, the diffusion term stems from a macroscopic effective de-
scription of the microscopic interplay between CRs and the magnetohydrodynamics
turbulence. In the framework of quasi-linear theory (QLT), δ is related to the tur-
bulence power spectrum introduced in Eq. (2.13) (well-studied regimes correspond
to δ = 1/3, i.e. Kolmogorov-like turbulence and δ = 1/2, namely Kraichnan-like
turbulence, see e.g. Ref. [137]). As we have seen, QLT is based on the assumption
that the turbulent component of the magnetic field is subdominant compared to
the regular one. Such hypothesis does not seem to be supported by most recent
models for the Galactic magnetic field [134,164]. Studies based on non-linear theory
approaches, on the other hand, find more involved environmental dependencies,
resulting in different scalings in different regions of the Galaxy, and deviations
from a single power law in rigidity [165, 166]. Eventually, an additional element
to take into account is the possibility that CRs themselves generate the turbulent
spectrum responsible for their propagation [167], introducing local self-adjustments
in propagation. Given this set of arguments, in the following we propose CR trans-
port models phenomenologically based on Eq. (2.25) with a diffusion coefficient
characterized by a spatially variable δ(r), highlighting how they naturally improve
the description of gamma-ray data.

2.3.1 Gamma-ray-driven preliminaries

In order to follow a data-driven approach, we first of all quantify the change of the
gamma-ray slope along the Galactic disk and estimate the resulting discrepancy
between the FB model and the actual data. We report in Table A.1 the power-law
index obtained by fitting the Fermi-LAT gamma-ray data in the energy window
Eγ = [5− 50] GeV, and in the second row of Table 2.2 the χ2 of the FB model.

Crucially, we observe the power-law index to range from E−2.47
γ to E−2.60

γ , thus
resulting in a gamma-ray flux much harder than the prediction of the FB model,
especially in the central windows. We can conclude that these data, taken as a
guideline, show a hint of a slope change with l. Note that while in the innermost
windows one may be reasonably tempted to translate the measured spectral index
as the one associated to π0 emission only, in the outermost windows considered
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in Table A.1 the gamma-ray emission has on top of the π0 emission a sizable
contribution from point sources and Inverse Compton emission.

sky window α sky window α
(|b| < 5◦) (Φ ∼ E−αγ ) (|b| < 5◦) (Φ ∼ E−αγ )

0◦ < |l| < 10◦ 2.55± 0.09 40◦ < |l| < 50◦ 2.57± 0.09
10◦ < |l| < 20◦ 2.49± 0.09 50◦ < |l| < 60◦ 2.56± 0.09
20◦ < |l| < 30◦ 2.47± 0.08 60◦ < |l| < 70◦ 2.60± 0.09
30◦ < |l| < 40◦ 2.57± 0.08 70◦ < |l| < 80◦ 2.52± 0.09

Table 2.1: Energy slope of Fermi-LAT gamma-ray data on the Galactic disk. The
power-law index has been obtained by fitting the data in the energy
window Eγ = [5− 50] GeV. We average in latitude over the angular
interval |b| < 5◦.

Turning our attention to the quality of the fit, the FB model is worse in the
innermost windows (e.g. |l| < 10◦ and 20◦ < |l| < 30◦, with |b| < 5◦), it improves
going towards outer longitudinal values (50◦ < |l| < 60◦, with |b| < 5◦), but remains
poor considering in average the whole Galactic disk (|l| < 80◦, with |b| < 5◦).

χ2 values 0◦ < |l| < 80◦ 0◦ < |l| < 10◦ 20◦ < |l| < 30◦
(25 data points) 0◦ < |b| < 8◦ 0◦ < |b| < 5◦ 0◦ < |b| < 5◦

χ2 KRAγ 11.30 3.79 12.27
χ2 FB model 53.00 74.83 70.04

50◦ < |l| < 60◦ 0◦ < |l| < 180◦ -
0◦ < |b| < 5◦ 10◦ < |b| < 20◦ -

χ2 KRAγ 11.50 6.94 -
χ2 FB model 24.85 17.60 -

Table 2.2: Results of the χ2 analysis for the fit of the Fermi-LAT gamma-ray
data. For each angular window considered, we provide a comparison of
the performance for the case of the Fermi-LAT benchmark and for the
one of the novel model here proposed.

In order to have a deeper understanding of the discrepancy, it is important to
trace, for each line of sight (l.o.s.), which portion of the Galaxy the emission comes
from. For this reason, in Fig. 2.5 we plot the relative contribution to the total
π0 emission for three reference l.o.s. as a function of the Galactocentric distance,
r. At large values of the Galactic longitude l (where the FB model performs
better in reproducing the gamma-ray data) the emission is dominated by the local
environment; instead, the closer to the center we look, the wider the relevant region
gets, with the central rings contributing as much as 20% for the Galactic center
window (where the FB fit gets worse and data turn out to be significantly harder).
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Figure 2.5: Relative contribution (upper panel), and power-law spectral index of
the π0 emission (lower panel, with scaling ∼ E−αγ ) for three reference
l.o.s. as a function of the radial distance from the Galactic center.
The FB (KRAγ) model corresponds to thinner (thicker) lines. We
average in latitude over the interval |b| < 5◦.

In the lower panel of Fig. 2.5, we show the power-law spectral index of the π0

component as a function of r: as expected, for the FB model we find a constant
value equal to the measured local proton spectral index.

Driven by these results, we argue that the FB model should be corrected in such
a way to get a significantly harder propagated proton index for smaller values of
r, while still matching local CR observations. We stress again that, in the sky
windows where the emission is mostly local (at high longitude or high latitude),
and the contribution of IC and point sources to total emission is relevant, we never
observe a gamma-ray slope equal to the local π0 slope.

2.3.2 A novel phenomenological model

We propose a propagation model based on the following three ingredients:

i) Bearing in mind the motivations outlined above, we drop the oversimplified
assumption of constant diffusion, and we open up to the possibility that the
slope of the diffusion coefficient δ is a function of the Galactocentric distance.
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ii) We allow for position-dependent convective effects. The presence of a signifi-
cant convective wind in an inner region of the Galaxy is indeed motivated
by the X-ray observations by the ROSAT satellite [168], and may affect
cosmic-ray propagation [169].

iii) We consider the XCO profile, related to the conversion between measured
CO emissivities and HII column densities, to get larger values in the outer
part of the Galaxy. This hypothesis stems from the existence of a gradient
in metallicity across the Milky Way [170]. The metallicity is a result of
stellar and Galactic chemical evolution: it is higher towards the Galactic
center, and decreases going outwards. Since lower metallicities imply less
dust shielding [171], it is conceivable to expect larger values of XCO in outer
regions of the Galaxy.

For the purpose, we have solved E. (2.25) for each CR species phenomenologically
relevant for our analysis, implementing the above listed ingredients in the numerical
package DRAGON [141,143]. Then, we have computed the diffuse gamma-ray maps
through another dedicated code, GammaSky, used recently e.g. in [172–174], which
exploits the gamma-ray emissivities reported in Ref. [174] and it is nicely interfaced
with the output provided by DRAGON.

As a starting point, we consider the Kraichnan diffusion model defined in Ref. [175]
(labeled KRA therein).1 As a first step, we modify δ introducing a functional
dependence on r: the simplest – a posteriori – sufficient guess, turns out to be

δ(r) = Ar +B , (2.33)

with local normalization δ(r�) = 0.5, and – to avoid unrealistically large values –
frozen at given radius rmax, δ(r > rmax) = δ(r = rmax). For rmax > r�, the choice
of rmax does not impact on the gamma-ray diffuse emission (the gas density drops
off in the outermost regions of the MW), and CR local observables show also a
weak dependence on it. Consequently, we safely set rmax to the nominal value of 11
kpc, The free parameter A is fixed by fitting the gamma-ray data in the energy
range Eγ = [5− 50] GeV. To this purpose, we have analyzed the Galactic disk |b|
< 5◦, |l| < 80◦ in eight longitudinal windows of 10◦ each.

The energy spectra we obtain from this procedure correctly reproduce the measured
slope in all the studied sky windows but overshoot the data at low energies, in
particular at small longitudes. To tame this problem, in the inner region with
r < rw, we allow for a strong convective wind with uniform gradient in the z-

1We checked that the same conclusions can be reached starting from the Kolmogorov and
thick-halo diffusion models also defined in [175].
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Figure 2.6: Comparison between the local B/C ratio in the KRAγ model and the
corresponding experimental data. We show two different values for the
Solar modulation potential, 500 MV (dashed line) and 200 MV (solid
line). Data points refer to different experiments: ACE [176], HEAO-
3 [177], ATIC [178], CRN [179], CREAM [180], PAMELA [181] and
AMS [182].

Figure 2.7: Comparison between the local antiproton flux in the KRAγ model
and the corresponding PAMELA data [183]. We use a fixed Solar
modulation potential of 750 MV.

47



Chapter 2 – Diffusion in the GeV-TeV gamma-ray and neutrino sky –

direction. We extract rw and the intensity of the convective gradient by fitting the
low-energy data with Eγ < 1 GeV. Concerning the molecular hydrogen, we assume
– in units of 1020 cm−2 K−1 km−1 s – XCO = 1.9 at r < 7.5 kpc, and XCO = 5 at
r > 7.5 kpc, in order to correctly match the normalization of the observed flux for
Galactic longitudes roughly greater than 50◦.

The last step of our method consists in verifying a posteriori that the corrections
described above do not spoil the prediction for local observables: we find that
just a small tuning in the value of the normalization of the diffusion coefficient
D0 and in the source spectral index αp are needed for the purpose. In Fig. 2.6 we
show the model prediction against the data of the local diffusion indicator B/C,
while in Fig. 2.7 it is displayed the comparison with data for the antiproton flux.
More precisely, we compared against the measured fluxes of proton, Helium and
heavier nuclei (up to Fe), leptons, and 10Be/9Be . Concerning the Beryllium ratio,
the compatibility between the observational evidence of strong winds in the inner
Galaxy and the constraints from the radioactive isotopes may be a problem (see
e.g. [169]). Nevertheless, in our case the Galactic wind is not present locally and
therefore we have a satisfactory agreement with data also for this CR observable.

All in all, we report the following nominal values for the parameters described above:
A = 0.035 kpc−1, rw = 6.5 kpc, du/dz = 100 km s−1 kpc−1, D0 = 2.24 × 1028

cm2s−1, α = 2.35. The model also features a vertical dependence of the diffusion
coefficient, D(z) ∝ exp(z/zt), where the halo size zt is conventionally set to be 4
kpc. We have labeled this model KRAγ.

2.3.3 Looking at different patches of the sky

We show in Fig. 2.4, 2.8, and 2.9, the gamma-ray spectra for the KRAγ model
in three relevant sky windows: the Galactic disk, a small window focused on the
Galactic center, and the mid-latitude strip with |l| < 180◦, 10◦< |b| <20◦.

In Fig. 2.10 we show the longitudinal profile. We remark that the model is not
optimized for high longitudes (|l| > 100◦), where the observed gamma-ray radial
emissivity seems to fall less fast than the observed radial distribution of sources
and gas, that hence lead to a much steeper prediction [185]. This is the so-called
“gradient problem”: this discrepancy can be reabsorbed either by a rescaling of
the π0 component, motivated by the possible presence of neutral gas not traced by
HI and CO emission lines [186], or by a position-dependent normalization of the
diffusion coefficient [173], or an altered source term [187] with respect to the one
adopted in our study [133].
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Figure 2.8: The same as in Fig. 2.4 but considering the angular window |l| <
10 ◦, |b| < 5 ◦.

In table 2.2 we list the χ2 for our optimized model, showing a remarkable improve-
ment with respect to the FB model.

There are alternative scenarios which have been proposed to account for tilted
gamma-ray fluxes, see e.g. [157,188–190]. Regarding some of these, however, we
would like to remark here that:

• following Ref. [191], we find that a population of unresolved pulsars, with
the same properties of e.g. the observed Fermi-LAT ones, gives an extra
contribution to the total gamma-ray flux more than one order of magnitude
smaller than needed;

• running a dedicated MC code where an analytical solution of the diffusion
equation with proper boundary conditions is implemented, as described
in [192], we simulate Supernova explosions with a reasonable rate ' 3/century
distributed according to the source term presented in [133]. Fitting each
realization with a power-law ansatz, we find that fluctuations in the proton
spectrum due to the stochasticity of the sources never exceed – even in the
inner Galactic region – the few percent level;

• testing the possibility of an enhanced IC emission, we find that a rescaling of
the ISRF by one order of magnitude, together with a factor of 10 decrease
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Figure 2.9: The same as in Fig. 2.4 but considering the strip |l| < 180 ◦, 10 ◦<
|b| <20 ◦. The azure band represents the contribution of the Fermi
bubbles according to Ref. [184].

in the XCO, may solve the discrepancy; however, in this case the bulk of the
gamma-ray flux would have a leptonic origin, in contrast with the observed
correlation with the gas distribution as shown in Fig. 2.10.

We can conclude this section remarking that a solution to the problem of modeling
the gamma-ray emissivity in the Galaxy leads to a new perspective where properties
of CR diffusion change through the Galaxy. While locally detected secondary
species as the Boron, generally used to tune the relevant propagation parameters,
are produced only within few kpc from the Earth and hence do not probe the
conditions in the central region of the Galaxy, secondary gamma-rays, produced by
the interaction of CR nuclei (electrons) with the interstellar gas (radiation), can
actually offer a deeper insight of Galactic CR transport. Moreover, it is conceivable
that CR diffusion – due to a stronger star forming activity and peculiar magnetic
field strength/geometry – behaves differently in the inner Galactic region. For
instance, the behavior of δ(r) envisaged in Eq. (2.33) may be connected to a smooth
transition between a dominant parallel escape along the poloidal component of the
regular Galactic magnetic field [134] present in the innermost part of the Galaxy
(where δ is supposed to be smaller) and a perpendicular escape to the regular
component in the outer regions of the MW (where the scaling of the diffusion
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Figure 2.10: KRAγ longitudinal profile at fixed energy Eγ = 10 GeV. We have
averaged in latitude over the angular interval |b| < 5 ◦.

coefficient results to be steeper). The model introduced here – the KRAγ – is
obtained without relying on tunings of astrophysical ingredients such as the ISM
gas distribution, the XCO conversion factor, the source distribution or the ISRF,
in contrast to the set of models studied e.g. in [157]. At the same time, the
KRAγ keeps track of the locally measured CR spectra, performing an overall good
agreement with local CR data as well.

2.3.4 Predictions of the model at the TeV scale

The diffuse emission traced by Fermi-LAT along the Galactic plane is not the only
puzzling observation in the gamma-ray band for standard propagation models.
Interestingly, conventional CR models cannot explain the large gamma-ray flux
measured by the Milagro observatory from the inner Galactic plane region (|b| <
2◦, 30◦ < l < 65◦) at 15 TeV median energy [193,194]. In particular, conventional
models tuned to reproduce Fermi-LAT data [157] – such as the FB model previously
introduced and conveniently re-labelled here KRA (it features a constant δ = 0.5) –
seem to fail in the match of the Milagro measurement, as displayed in Fig. 2.12.

The Milagro anomaly is an open issue also for the CR models that try to go
beyond the standard lore. Optimized models in the inverse Compton component,
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see Ref. [195], accounting for the EGRET GeV excess [185] and accounting also
for reproducing the Milagro result as well, are now ruled out by Fermi-LAT [196].
The challenge of this observation still holds also for the recent CR models in [197],
which consider the PAMELA hardening in CR proton and Helium fluxes [198] as a
result of the Galactic CR acceleration mechanism.

In this respect, it is certainly interesting to see how non-standard diffusion models
as the KRAγ behave in the angular window and energy bin of the Milagro excess.

Figure 2.11: The computed proton and Helium (in the insert) spectra at the Solar
circle predicted by KRA and KRAγ models as described in the text.
Predictions are compared against a representative set of experimental
data [198–201]. All spectra account for Solar modulation with a
potential of 0.5 GV.

In order to do so, given the energy scale we are now considering, it is important
to assess in the analysis the effect of p and He spectral hardening inferred from
PAMELA [198] – recently confirmed by AMS-02 [206] – and CREAM [199] data
above ∼250 GeV/n. We consider in the following the two possibilities:

1) a local hardening originating from nearby supernova remnants (see e.g. [207]),
namely a stochastic effect that averages out on large scales and, hence, has
no counterpart in the Galactic CR population used in this work;

2) a global hardening originating from a spectral feature in the rigidity de-
pendence of either CR source spectra or the diffusion coefficient (here we
only consider the former case, as both scenarios have the same effect on the
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Figure 2.12: Diffuse emission gamma-ray spectrum from the inner Galactic plane
(|b|<2 ◦, 30 ◦< l <65 ◦) computed for the reference models discussed
in the text. Predictions are compared with Fermi-LAT and Milagro
data. The Milagro differential flux reported here is 17% lower with
respect to the flux reported in 2008 [194] due to the assumption of a
spectral index of 2.4 instead of 2.7 [202]. The expected sensitivities of
HAWC [203] and CTA [204] are reported. The spectral components
are shown for the KRAγ model only. The Fermi-LAT data points
refer to 5 years of data, within the event class ULTRACLEAN,
according to Fermi tools v9r32p5, as described in [158]. Point
sources taken from the 3FGL Point Source Catalogue were subtracted
from the data [205].

gamma-ray diffuse emission).

In both cases we assume that above 250 GeV/n the CR source spectra extend
steadily up to an exponential cutoff at the energy Ecut/nucleon. As shown in
Fig. 2.11, we have decided to consider two representative values of this quantity,
namely Ecut = 5 and 50 PeV in order to match CREAM p and He data and to
roughly bracket KASCADE [200] and KASCADE-Grande [201] high-energy proton
data at the same time. Spectra of heavier nuclei in the PeV region are actually not
very much informative given the large experimental uncertainties on their elemental
spectral shapes and normalizations.

Exploiting once again the DRAGON and GammaSky packages, we compute the gamma-
ray emissivities according to [174], taking also into account the energy dependence
of the pp inelastic cross section, which is significant at the TeV scale [159]. We
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Figure 2.13: Longitude profile at 15 TeV for the reference models discussed in the
text compared with Milagro data. We have averaged in latitude over
the angular interval of |b| < 2◦.

disregard in the computation the effect of gamma-ray opacity due to the ISRF,
since it is supposed to be negligible up to a few tens of TeV [208].

Our results are shown in Fig. 2.12. As mentioned in the above, a representative
conventional model, namely the KRA, cannot account for the flux measured by
Milagro from the inner Galactic plane at 15 TeV even including the CR spectral
hardening required to match the PAMELA and CREAM data. The KRAγ setup,
instead, is evidently successful, especially when a global hardening is assumed.

In Fig. 2.13 we also compare our results with the longitude profile at 15 TeV
measured by Milagro. Although the data do not allow any strong claim, we can
notice a mild better match of the KRAγ model with data in the region highlighted
by the light-yellow vertical band.
We can conclusively state that the prediction of the KRAγ in the TeV region of
Milagro is a remarkable result since:

• it supports the model in a higher-energy regime, providing the first consistent
interpretation of Milagro and Fermi-LAT measurements;

• it reinforces the arguments in favor of a non-local origin of the hardening in
the CR spectra above 250 GeV.

Another intriguing discrepancy present in the predictions of conventional CR
models stems from the measurement performed by the H.E.S.S. collaboration in
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Figure 2.14: The computed gamma-ray diffuse emission from the Galactic ridge
region is compared with Fermi-LAT and H.E.S.S. data. For each
model the spectrum normalization has been varied to minimize the
residuals against the data. While the related reduced χ2 for the KRA
is 3.99 (2.92) with (without) hardening, the KRAγ with (without)
hardening yields 1.79 (2.27). The spectral components are shown for
the best-fit KRAγ model only.

the innermost part of the Galactic ridge region (|l| < 0.8◦, |b| < 0.3◦) [209]. The
diffuse spectrum measured by H.E.S.S. for 0.3 . Eγ . 10 TeV in that region is
well described by a power law E−αγ with index α = 2.29 ± 0.07 ± 0.20. This is
significantly harder than what expected from π0 decays if a CR spectral shape
identical to that found in the Solar neighborhood is assumed around the Galactic
center. Since the emission is spatially correlated with a complex of giant molecular
clouds in the central 200 pc of the MW, the authors in [209] suggest the hardness
of the observed spectrum to be connected to freshly accelerated CRs from a local
source in that region. Indeed, local CR accelerators are reasonably expected to
be found in the rich environment around the Galactic center and the same past
activity of Sagittarius A∗ may have played an important role, as recently noticed
in [210]. However, if one can assume that the CR diffuse sea is smooth at scales of
O(102) pc and that it does not exhibit strong fluctuations on such small scales, it is
compelling to see if the H.E.S.S. hardening may be related instead to the transport
properties of CRs in the steady state limit.

Interestingly, the predicted CR density and gamma-ray diffuse emission at 1 - 10
TeV is appreciably larger in the KRAγ scenarios than in conventional models,
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especially in the inner few degree from the Galactic center, where the gas column
density is larger. Adopting the detailed gas distribution of Ref [211] for the ISM in
the inner Galaxy, we show in Fig. 2.14 the prediction of the KRAγ compared to
H.E.S.S. data on the Galactic ridge region. For the purpose we have rescaled the
nominal prediction of the KRAγ models by a factor of 0.3 in order to minimize the
residuals against the H.E.S.S. data together with Fermi-LAT ones above 10 GeV.
This factor can be actually justified by the smaller value of the conversion factor
XCO expected in the central region of the MW [211]. From the residuals reported in
Fig. 2.14 we can conclude that the KRAγ prediction offers an interesting alternative
explanation of H.E.S.S. observation. This result supports again the hypothesis of
global hardening in CR primary spectra, already envisaged by our study of the
Milagro excess.

2.4 Picking up multi-messenger opportunities:
predictions for the Galactic neutrinos

As we have already observed in Eq. (2.1), among the yields of the interaction of
high-energy protons with the ISM there is a copious production of neutral and
charged pions: as a result of their decays, we expect a relevant production of
secondary high-energy photons as well as of neutrinos. Given their weak interaction
with the environment, neutrinos are the ideal cosmic-ray species we may look for:
as in the case of photons, their propagation keeps track of the directionality towards
the origin of emission, but differently from gamma rays it is not affected by any
absorption. Indeed, the interaction with the background light is negligible even for
ultra-high-energy neutrinos. Clearly, a very small interaction cross-section, namely
σ(TeV - PeV) ∼ pb - npb, has also the net drawback of a particularly challenging
experimental detection.

In the most recent years, a tremendous effort on the experimental side allowed us
to open the era of high-energy neutrino astronomy. Today, we have eventually at
our disposal gigantic detectors like the IceCube experiment [212]: being currently
the largest neutrino observatory in the world, placed at the South Pole, it deploys
a set of photo-multiplier strings deep in the ice, forming a structure able to cover
an effective volume of the size of a cubic kilometer. At the end of 2013, IceCube
collaboration announced the detection of 28 neutrinos of extraterrestrial origin
in the 30 TeV - 1 PeV energy range [213,214]. An year after 9 more events were
reported, with the highest energy event at Eν ' 2 PeV, reinforcing the evidence
of an excess with respect to the expected atmospheric background (estimated by
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experiment via dedicated Monte Carlo showering analyses) up to 5.7σ [215]. The
inferred flavor composition, compatible with an equal mixture of electronic, muonic
and tauonic neutrinos, is also expected if their origin were astrophysical [216, 217].
More recently, a preliminary analysis based on four years of data has risen the total
number of high-energy starting events (HESE) to 54 [218], establishing at more
than 6 σ of confidence level the extraterrestrial nature.

The astrophysical spectrum inferred by IceCube on the basis on the three-year
data set is fitted by a power law with index α = −2.3± 0.3 above 60 TeV [215],
while the preliminary four-year data analysis favors a slightly steeper spectrum,
α = −2.58± 0.25 [218]. Although a statistically significant departure from isotropy
cannot be claimed yet, the recent analysis in Ref. [219] shows that the angular
distribution of HESE allows up to 50% of the full-sky astrophysical flux to have a
Galactic origin (see Fig. 2.17 below). Moreover, a hint of a harder spectrum in the
Northern Hemisphere may be found in the recent study of the collaboration on the
muon neutrino events coming from the Northern sky [220].

Although the origin of this radiation is still unclear, the discovery has triggered many
different studies proposing several types of extra-Galactic sources, see e.g. [221–223].
The possibility of a sizable contribution of Galactic origin is also compelling,
within the uncertainties on the angular reconstruction of the HESE. However,
freshly accelerated CRs from Galactic sources, undergoing hadronic scattering
with gas clumps, cannot explain the steepness of the neutrino spectrum measured
by IceCube and are in tension with Fermi-LAT upper limit on the correlated
gamma-ray emission [224]. On the other hand, if the local CR spectrum is assumed
to be representative of the entire Galactic population, the predicted neutrino
spectrum [225,226] derived from hadronic interactions between Galactic CR sea
and ISM is significantly lower than the one measured by IceCube. Under the
conventional assumption that the same CR transport properties hold throughout the
whole Galaxy, only between 4% - 8% of the HESE can be typically accounted [197].

The results derived in the previous section showed that the hadronic emission
computed with the KRAγ setup above the TeV is significantly enhanced with
respect to the conventional model predictions. Then, it is certainly interesting to
see how this reflects in the high-energy neutrino channel and how the corresponding
prediction compares against the recent data from IceCube. To compute νe and νµ
production spectra we use the emissivities provided in [174] for projectile energies
below ∼ 500 TeV, while we adopt the emissivities provided in [159] when above
that energy value. We account for neutrino oscillations considering the effect of
an almost equally redistribution in the composition among the three flavors [227].
We only consider proton and Helium CRs/gas, since heavier nuclear species give a
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negligible contribution in the energy range of interest [228].

Figure 2.15: Full-sky neutrino spectrum (all flavors, both neutrinos and antineu-
trinos) predicted by the KRAγ and KRA models (with global CR
hardening), adopting two different choices for the CR high-energy
cutoff. We also plot the combination of the Galactic (KRAγ) and a
benchmark extra-Galactic spectrum. The extra-Galactic flux is con-
sistent with that inferred from IceCube collaboration in the northern
hemisphere [220]. The models are compared with the 68% confi-
dence region for IceCube astrophysical neutrino flux obtained with a
maximum-likelihood (yellow region) [219] and the three years HESE
(green points) [215].

In Fig. 2.15 we present the full-sky total neutrino spectrum (all flavors, including
antiparticles) computed for the KRAγ and KRA models with global CR hardening,
and compare it to IceCube results. Our prediction for CR conventional setups
(KRA model) is in good agreement with Ref. [197], where the benchmark Galactic
model accounts for 8% of the flux measured by IceCube above 60 TeV, for a CR
spectrum similar to the one used here above 50 PeV. On the other hand, the
KRAγ predicts a neutrino full-sky spectrum two times larger above 10 TeV: the
model prediction is consequently only 4 times smaller than the best-fit of the
astrophysical flux measured by IceCube on the whole sky. We remark that another
analysis [230], based on an extrapolation of Fermi-LAT data, points toward a non-
negligible Galactic contribution to the full-sky neutrino flux due to a hard diffuse
CR spectrum. In that study the authors address the (softer) locally observed
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Figure 2.16: Neutrino spectrum (all flavors, both neutrinos and antineutrinos) in
the angular window |l| < 180 ◦, |b| < 7.5 ◦ predicted by the KRAγ

and KRA models (with global CR hardening), adopting two different
choices for the CR high-energy cutoff. We also plot the combination
of the Galactic (KRAγ) and the extra-Galactic spectrum inferred
from [220]. The spectral data points are derived from IceCube spectral
measurements reported in [215]. Following the guideline in Ref. [229],
data points have been properly normalized in order to consider the
neutrino events reconstructed inside the region of interest (ROI).

CR spectrum to the effect of one or more local sources. Differently from our
model, such a scenario still has to be validated against Fermi-LAT data. Setting a
threshold energy at 60 TeV and convolving the KRAγ spectrum (with Ecut = 50
PeV) with IceCube HESE effective areas [214], the expected number of neutrino
events in three years of IceCube observation represents roughly 15% of the published
sample [215]. These rates are well above those expected due to atmospheric muons
and atmospheric neutrinos at those energies and confirm the spectral comparison
between KRAγ and IceCube data.

From Fig. 2.15 we can clearly see that another component – most likely of extra-
Galactic origin – needs to be invoked in order to account for all of IceCube events.
Here we assume this component to be isotropic and use the astrophysical muon
neutrino IceCube measurements from the Northern Hemisphere [220] – where the
Galactic emission should be roughly an order of magnitude smaller than the total
flux – to probe its spectral properties. Although the Northern spectral slope is
statistically compatible with the full-sky one, given the hint of a steeper spectrum
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in the Southern Hemisphere, it is interesting to check if the combination of our
Galactic prediction and the extra-Galactic flux inferred from the aforementioned
muon neutrino measurement provide a better agreement with the data. For
illustrative purposes, in Fig. 2.15 we show the effect of adding an isotropic extra-
Galactic emission to the Galactic neutrino emission computed with the KRAγ

model, with a spectrum given by IceCube best-fit of ΦNorth
νµ [220] multiplied by three

to account for all flavors. As already said, the nature of such emission is still under
debate: as pointed out e.g. in [231] and [232], neither blazars nor star-forming
galaxies can provide more than a subdominant contribution, given the constraints
imposed by the gamma-ray extra-Galactic background inferred from Fermi-LAT
data. The plot in Fig. 2.15 shows how the KRAγ is contributing to the IceCube
full-sky spectrum together with the assumed extra-Galactic component.

If we now focus the analysis on the Galactic plane region, we expect neutrinos in
the Galactic emission to be maximal there, as also suggested by the brighter red
strip in the right panel of Fig. 2.17 below. Interestingly, if we assume the same
extra-Galactic flux inferred from Ref. [220], the neutrino spectrum measured by
IceCube in the window of the Galactic plane can only be explained within the
KRAγ scenario, as displayed in Fig. 2.16. An enhanced extra-Galactic component
is required instead when we consider the prediction of conventional models.

2.4.1 A smoking-gun region: the inner Galactic plane

Figure 2.17: Left panel:The cosmic neutrino sky-map obtained with 3 years of
IceCube data. Red cross: Track- like events. Red dots: Shower-like
events. The gray surfaces indicate the estimated angular uncer-
tainties for each of these 37 events. Only 3 of these events can be
associated to the region |l| < 30◦ and |b| < 4◦, highlighted in red.
Right panel:The sky-map of neutrino events obtained with KRAγ at
1 TeV (the shape does not change significantly at larger energies).
The same inner region is highlighted by the green box.
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Given the interesting result we got for the prediction of the Galactic emission of
neutrinos in Fig. 2.16, it is worth further exploring the inner Galactic plane region
with the study of the Galactic “ridge”, namely on the inner Galactic plane window
defined by |l| < 30◦ and |b| < 4◦. Indeed, most of the events expected in this region
of interest should likely correspond to Galactic secondary neutrinos. Remarkably,
there is a set of three shower-like events in the IceCube HESE sample potentially
correlated with this patch of the sky, as highlighted in the left panel of Fig. 2.17.
Moreover, current and incoming Mediterranean telescopes, given their position,
are particularly suitable for a dedicated study of the Galactic ridge. Recently, the
ANTARES collaboration [233] has released an upper limit on the muon neutrino
flux based on the result of an unblinding analysis regarding the events collected
between 2007 and 2013 in the energy range 3 - 300 TeV [234].

Figure 2.18: Solid and dashed red (blue) lines: expected neutrino spectra (all
flavors, both neutrinos and antineutrinos) in the inner Galactic
plane region computed for the KRA (KRAγ) models for two different
cutoff values. We also show the maximal flux, estimated considering
three years of IceCube HESE as described in [229], the constraint
from the ANTARES experiment [234,235] (1500 days of experiment
livetime between 2007 and 2013) as well as the deduced sensitivity
of the future Mediterranean observatory KM3NeT [236, 237] with
four years (∼ 1500 days) of livetime.

In Fig. 2.18 we compare the νµ flux computed in the KRA and KRAγ scenarios
against a set of three distinct experimental informations. First, we can observe that
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the prediction of KRAγ is in good agreement with the maximal flux inferred from
the fraction of IceCube HESE sample, whose angular reconstruction is compatible
with the Galactic ridge. We can note that there is a large enhancement (almost a
factor of 5 at 100 TeV) in the neutrino flux obtained with the KRAγ model with
respect to the one of a conventional scenario. This implies that the expected flux
from conventional CR models may require very long times of observation even by
future telescopes such as the KM3NeT observatory [237], while the prediction of
the KRAγ model is well above the sensitivity of four years of KM3NeT data taking.
We wish to emphasize how the KRAγ neutrino flux is already close to the recent
upper limit set by ANTARES. Collecting more statistics, the experiment has room
for further improvements in sensitivity before the end of the current year [234] and
hence there may be good odds for an exciting detection.

2.5 Confirmations and perspectives

The existence of radial gradients in CR transport, supported by the interplay be-
tween what we can measure in the local neighborhood of the Solar system and what
we can indirectly infer in the Galaxy with multi-messenger and multi-wavelength
searches, triggered the interest of several recent studies in the community.

Most notably, a new characterization of the diffuse Galactic gamma-ray emissivity
has been singled out by the Fermi-LAT collaboration in [238]. Exploiting the spatial
correlation between the gamma-ray data and a linear combination of maps for the
interstellar gas column density, organized in several Galactocentric annuli, and
inverse Compton emission produced in the Galaxy, the Fermi-LAT collaboration has
been able to estimate the intensity of the Galactic diffuse components with a direct
fit to the gamma-ray data rather than through the computation of secondaries
from an assumed set of CR densities and production cross-sections. A similar
template-fitting methodology has been also applied in [239], yielding to analogous
conclusions about the characterization of the diffuse components.

Remarkably, while the measured gas emissivity spectra confirmed that the cosmic-
ray proton density decreases with Galactocentric distance beyond 5 kpc from the
Galactic center, a softening of the proton spectrum with Galactocentric distance
has also been found. As ultimately discussed in [240], these findings represent a
challenge for standard calculations of CR propagation based on assuming a uniform
diffusion coefficient within the Galactic volume. They may be also an indication
for non-linear CR propagation, in which transport is due to particle scattering and
advection off self-generated turbulence. Interestingly, the effects of self-generated
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diffusion may be also at the basis of a viable explanation to the PAMELA hardening
of CR proton and Helium spectra [167].

The evidence for a gradual spectral softening while moving outward from the
center of the Galaxy to its outskirts is an important confirmation of the effect
phenomenologically captured by us in Eq. (2.33), promoting the scaling of the
diffusion coefficient with rigidity to be spatially dependent. The successful validation
made by Fermi-LAT of our new proposal for CR transport is reported in Fig. 2.19.

Future measurements from next-generation gamma-ray surveys will be able to
further probe our understanding of the intimate connection between CR transport
and the observed gamma-ray sky. For instance, as displayed in Fig. 2.12, the future
sensitivity of CTA [204] and HAWC [203] will definitely shed new lights on the
impact of non-standard CR diffusion in the very high-energy gamma-ray band.

Figure 2.19: Radial distributions across the Galaxy from Ref. [238] of (a) the
gamma-ray emissivity per H atom measured at 2 GeV; (b) the proton
flux integrated above 10 GV, with the prediction from CR conven-
tional models [157]; (c) the proton spectral index with statistical
error bars and the prediction for proton rigidities above 1 TV from
the same conventional models (solid line) and from the KRAγ model
(dashed line). In all plots, the horizontal bars span the radial widths
of the gas annuli used for the measurements. The two data points
with smallest Galactocentric radii have large systematic uncertain-
ties [238].
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From this perspective, the recently opened era of neutrino astronomy we are now
living in is even more precious. As highlighted by Fig. 2.18, the joint observational
effort of experiments like IceCube and ANTARES, and of incoming ones like
KM3NeT, may constitute a unique opportunity to push forward our knowledge
about the essential ingredients on the Galactic CR diffusive motion. On more
general grounds, the study of the neutrino sky certainly offers a complementary way
to the picture of the Galaxy we are able to draw in detail with current observations
in the gamma-ray band, and may represent at the same a new important particle
discovery tool for the scientific community [241].
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3 Chapter 3

The GC GeV gamma-ray excess

3.1 A gamma-ray excess around the Galactic center

As we have extensively discussed in Chapter 2, there is a quite remarkable agreement
between models for the diffuse gamma-ray emission in the Galaxy and data from
the all-sky survey from the Fermi Large Area Telescope (Fermi-LAT). A fairly
good match [157] is obtained in most regions of the sky implementing only minor
readjustments to a standard recipe [242] based on:

i) supernova remnants (SNRs) as cosmic-ray (CR) sources;

ii) the steady-state propagation of CRs in the Galaxy as tuned on local CR
measurements;

iii) gamma-ray emitting targets, namely the gas of the interstellar medium
(ISM) and the interstellar radiation field (ISRF), as indirectly derived from
observations at other wavelengths.

According to what we have illustrated in the previous chapter, a notable exception
to the successes of this framework is a systematic underestimate of the flux above
the GeV in the inner Galactic plane [1]. As already mentioned, a discrepancy be-
tween the predicted CR spatial density profile and the one inferred from gamma-ray
emissivity along the Galactic plane is also found [173]. Another example of inter-
esting features present in the gamma-ray sky are the so-called Fermi bubbles [243],
lobes with hard spectrum extending from the GC out to about 40◦ in longitude and
50◦ above and below the Galactic center (GC). They are most likely associated to
the signal with similar morphology previously discovered at microwave frequencies
and dubbed WMAP haze [244]. Finally, a roughly spherical excess in the inner few
degrees from the GC and peaking at an energy of few GeV has been firstly noticed
in Ref. [245] and its origin, as we are going to discuss in the present chapter, is
still a matter of a fascinating debate in the community.

State-of-the-art N-body simulations [246,247] clearly show an extended Dark Matter
(DM) halo embedding the Milky Way (MW), with a central density enhancement
co-located with the GC. Hence, in case DM particles annihilate in pairs giving
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rise to a gamma-ray yield, the DM gamma-ray flux would scale with the square
of the DM density profile, the GC is expected to be the brightest DM source. In
the latest years a growing number of studies have been dedicated to the search
for DM signals in the gamma-ray emission from the innermost degrees around
the GC. Along this direction, the first claim of a statistically significant excess
in Fermi-LAT data around the GC region dates few years back: [248, 249] have
identified a bump-like feature peaking at 2-5 GeV in the innermost two degrees
of the inner Galaxy, on top of the estimated astrophysical background. Both the
spectrum and spherical morphology of the signal could be easily accounted for
by annihilating DM. A refinement of this conclusion has been successively done
in Ref. [250], with the help of a slightly improved astrophysical background built
upon analytical models for the gas distribution in the Galactic disk. The excess
emission has been further characterized with a radial volume emissivity profile
falling off as a power law in Galactocentric distance with scaling index that ranges
from 2.2 [251] up to 2.4 [252]. While the spectrum peaked at few GeV is broadly
demonstrated to be consistent with a signal from DM annihilation, power-law and
log-parabola spectra of possible other sources have been also proposed in order to
describe the spectral residuals featuring the excess [252,253].

Despite the compelling features of the signal matching the predictions of annihilation
of DM particles, the uncertainties on the modeling of the Galactic diffuse emission
(GDE) within the inner few hundred pc from the GC and the limited knowledge of
point sources (PSs) in the inner Galaxy have not allowed the alleged claim to be
promoted into a genuine discovery [157, 254]. A crucial step forward in favor of
the DM interpretation has been provided by the more recent studies on region of
interests (ROIs) of tens of degrees around the GC: in the DM scenario, indeed, the
spectral and morphological properties of the excess emission should not pertain
only to the innermost few degrees from the GC [255, 256]. The first strong hint
about this fact has come from Ref. [257] in the ROI correlated with the presence
of the Fermi bubbles, i.e. up to tens of degrees in latitude: a detailed inspection
of the gamma-ray emission in this region has allowed the authors to connect the
spectral feature visible in the low-latitude bubbles to the extended counterpart of
the inner GC excess. This study has been independently confirmed by [158] and
has characterized the excess to be extended out to at least 2-3 kpc from the GC.
Eventually, a more general scrutiny of the gamma-ray emission from the central
regions of the MW has been carried out in [258], exploiting particular event cuts
to Fermi-LAT data in order to optimize the resolution of the gamma-ray maps.
This procedure has led the authors to single out a statistical preference of about
30σ for the inclusion of the dark matter template in the analysis, pointing to the
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Figure 3.1: From Ref. [292], the spectrum of the GCE emission for the best-fit
model found in that analysis (black dots) together with statistical and
systematical (yellow boxes) errors. The dashed blue lines delineate the
envelope of the GCE spectrum for all the 60 GDE models considered
in that work.

very appealing scenario of Weakly Interacting Massive Particles (WIMPs) as early
Universe thermal relics [258]. This result has resonated on the particle community
triggering several theoretical embeddings of the picture from the DM model-building
side [259–287]. At the same time, best-fit DM benchmarks compatible with the
GeV excess have shown some tension when compared to null findings from other
DM indirect searches [147,148,288–291].

In spite of the high statistical significance of this gamma-ray anomaly, it is important
to stress that also in the context of an extended ROI of tens of degrees around the
GC, it is extremely difficult to provide a solid evidence in favor of DM annihilation,
mainly because of the dominant background represented by gamma rays originating
from the interactions of CRs with the ISM and the photons of the ISRF. This
has motivated a closer investigation of the impact of the Galactic diffuse emission
(GDE) on the robustness of such claim [292, 293]. In particular, considering an
extended ROI of 20◦×20◦ around the GC and excluding the potentially problematic
strip of the innermost two degrees in Galactic latitude, the authors of Ref. [292]
have assessed in a comprehensive manner the systematic uncertainties related to the
modeling of diffuse backgrounds, studying both theoretical model systematics, which
are related to variations in the different possible models for the GDE, and empirical
model systematics, namely data-driven uncertainties estimated by an analysis
of residuals from a large number of test regions along the Galactic disk (see the
discussion in ?? for further details). As it stands out in Fig. 3.1 taken from Ref. [292],
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the empirical and theoretical systematics are roughly of the same order in the energy
range and ROI considered. According to the correlated errors derived through a
principal component analysis in [292], a critical reassessment of DM interpretations
has recently enlarged the best-fit scenarios of WIMP candidates [275,277] able to
explain the GC excess. At the same time, a more complicated morphology like a
spatial dependence of the energy spectrum, or simultaneous contributions from
different physical mechanisms have been envisaged as a feasible fit of the excess
within the uncertainties in Fig. 3.1. For instance, an inverse Compton (IC) emission
from leptonic burst-like events has been recently studied in detail in Ref. [294],
with the conclusion that a combination of two burst events may provide a good
fit of the excess spectrum, although with quite unnatural values of the involved
parameters (e.g. extremely hard source spectral indices).

In the end, the seminal study in [292] has highlighted to the community the
interesting aspect that a spherical and spectrally uniform excess emission around
the GC would not only be in very good agreement with data, but may seem
remarkably stable against GDE variations in state-of-the-art gamma-ray analyses.

3.2 Towards an ordinary astrophysical explanation

The GC region, namely the inmost few hundred parsecs, is one of the most
challenging from the point of view of the theoretical modeling for the diffuse
gamma-ray emissivity. All the three ingredients we listed for the standard recipe
at the beginning of the chapter show problematic aspects. First of all, catalogues
used for CR source distributions, mainly the observed distributions of SNRs [295]
and pulsars [296,297], are not optimal for the inner Galaxy. The fitting functions
extrapolated from such catalogues, and used for CR transport studies and to derive
gamma-ray emissivities in numerical propagation codes such as Galprop [139,144,
145,242] and DRAGON [141,143,226], simply fall off close to zero at the GC. While
this approximation has a negligible impact on a general analysis of the emissivity
of secondaries in the Galaxy like the study illustrated in Chapter 2, it may become
crucial when the analysis focuses exactly on the details of the GC region [298].
As we are going to analyze in what follows, it should be of primary importance
to consider in this context the very active star forming region emerging from
multi-wavelength surveys of the central Galaxy.

From the point of view of CR propagation, there are several features making it
likely that transport properties in the GC region differ significantly from average
properties in the Galaxy as fitted to local CR data. E.g., the GC region seems
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to host strong magnetic fields, at the level of 50-100 µG [299], much above the
estimated average value within the disk or the CR diffusive halo, probably impacting
on the structure and effective values for the diffusion tensor appearing in Eq. (2.25).
Also, very strong convective effects have been claimed in this region [300, 301],
in analogy to outflows from external starburst systems, as well as from the fact
that at the GC there is a violation of the correlation between far-infrared and
radio continuum luminosities observed for systems with in-situ energy losses of CR
electrons. Most importantly, the density distribution and dynamics of molecular
gas at the GC is still actively investigated, see, e.g., [302].

The most robust analyses providing evidence in favor of a GeV excess in the
inner Galaxy are based on the template-fitting method, see for instance [258,292].
Extensively used for the analysis and subtraction of CMB radiation foregrounds,
this technique has led, for example, first to the identification of the WMAP haze
and then successfully applied to search for its (alleged) gamma-ray counterpart,
the Fermi bubbles. The rationale of this procedure is to test whether, on top of
small-scale discrepancies, the GDE model captures the correct intermediate-to-large
scale morphologies, or data favor extra contributions with different angular imprint
in the region under investigation. Morphological templates are assigned – based on
theoretical modeling and/or observations – to components connected to different
physical emission mechanisms, such as: the component taken as the sum of the
term due to the production and decay of π0 plus bremsstrahlung emission, both
related to the gas distribution in the Galaxy; the IC term, as correlated to the ISRF
model; and the isotropic template for the extra-Galactic background component.
Each template is then let free to fluctuate, independently for each energy bin, to
find the configuration providing the best fit to the data. In this way, one accounts
for possible spectral distortions and normalization uncertainties of the different
components within the theoretical model. Indications for an extra component can
be claimed if a significant improvement of the overall fit is found when repeating
the same exercise with an additional physically motivated template.

In the following, we concentrate on the choice of templates for the CR-induced
components and on the impact of such choice on the evidence for the excess. As
discussed above, none of the ingredients of the “standard” theoretical model setting
those templates are actually optimized for the GC environment. At the level of
proper statistical assessments of the goodness of the fit to the data, a comparison
between alternative theoretical models is a very hard task due to small-scale
discrepancies which have a significant impact on statistical estimators and prevent
a reliable comparison with the data. In order to alleviate these problems, we have
adopted therefore the template-fitting strategy, described in the next section.
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As a preliminary step, we have tested a few hypotheses on whether significant
changes in the CR transport equation would mimic the required morphological
features characterizing the observed emission in the GC region. In our attempts
we have included a sampling of radial dependences for the diffusion coefficient as
in Eq. (2.33) and also anisotropic diffusion. At this level, in agreement with and as
an extension of the results in [292,293], we have not found suitable configurations.

We have turned then to considering an adjustment in the choice of the CR source
function, introducing, as a new ingredient, a steady-state source located at the
GC and with a narrow spatial extension – few hundred pc. As already mentioned
above, the GC seems indeed to harbor significant star formation and a large rate
of Supernova explosions compared to the average value in the Galaxy: according
to [303], the star formation rate (SFR) in the inner few degrees away from the GC
is of order 1% of the SFR in the Galaxy, making it roughly a factor of 250 higher
than the mean rate in the Galaxy. This should be the consequence of two facts:

i) the presence of a large reservoir of molecular gas filling the inner part of the
Galactic bulge (the Central Molecular Zone (CMZ) [211], extending up to ∼
200 - 300 pc away from the GC);

ii) the very peculiar physical properties of this environment, where the ISM
appears significantly hotter, more turbulent, and more magnetized.

Solid evidence for the high SFR level comes from infrared observations – performed
with the Hubble Space Telescope – of some extremely dense stellar clusters in the
inner 50 pc (the Central, Arches, and Quintuplet clusters). These structures are
rich of young, very hot stars that are many times larger and more massive than
the Sun, see, e.g., [304, 305]. Moreover, many isolated Wolf-Rayet Stars and O
Supergiants were observed in the inner 100 pc [306]. The Supernova explosions
connected with this relevant star formation activity are expected to accelerate a
large amount of CRs. While this contribution has no impact on the local CR fluxes,
it drives major consequences on gamma-ray emissivities in the GC region, as we
shall see in a moment.

We take as reference case the fit of the data for “standard-lore” CR templates,
re-derive the improvements in the fit obtained when including the DM template,
and then compare such refinements to those we can obtain in the case when the
new CR templates are adopted. From such a comparison we are going to show
that the two scenarios are in most respects equivalent and hence that the “excess”
can be almost entirely reabsorbed within a framework involving only a minimal
picture of steady-state propagation of CRs. Note that the approach we follow
is the appropriate one to realistically reproduce the energy dependence of the
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diffuse emission template. Indeed, while the Dark Matter morphology is fixed at
all energies, the IC, π0 and bremsstrahlung ones change in energy as a result of
CR transport. It is therefore extremely important to incorporate the contribution
related to the new source directly into the original diffuse emission template rather
than study an extra-component directly on the residuals of Fig. 3.1.

3.2.1 The template-fitting analysis

Let us describe in some detail the method that we use to compare our proposed
astrophysical scenario with the DM interpretation of the GC excess.

The starting point of the analysis is to compute a physical model for the CR
distribution in the Galaxy obtained solving Eq. 2.25 with the help of a numerical
package like e.g. DRAGON.

We then perform a line-of-sight integral and obtain the gamma-ray sky-maps from
' 0.3 GeV to ' 300 GeV using GammaSky, taking into account the decay of neutral
pions produced by collision of CRs with the interstellar gas, the IC scattering of
CR leptons on the diffuse radiation field and the bremsstrahlung emission due to
CR leptons interacting with the interstellar gas.

Exploiting such description of the diffusion emission induced by the CR interactions,
we model the gamma-ray sky as a linear superposition of the following templates:

• π0-decay + bremsstrahlung template, produced with GammaSky from the CR
distributions computed with DRAGON, adopting the same gas model taken of
the latest public version of Galprop CR package [144,242];

• IC template (produced with GammaSky). Here we use the leptonic distributions
calculated with DRAGON and the most recent ISRF model included in [144,242];

• isotropic extra-Galactic background (EGB) template with a spectrum taken
from a recent analysis of the Fermi collaboration [307];

• PS template, obtained from the 4-year Point Source Catalog (3FGL) provided
by the Fermi collaboration [205]; the angular resolution of the Fermi-LAT
instrument is taken into account smoothing the emission of each PS according
to the Fermi-LAT point spread function (PSF), modeled using the Fermi tool
gtpsf;

• Fermi bubbles template with morphology and spectrum as derived by the
Fermi collaboration in [184];
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• a DM template obtained integrating along the line of sight the square of a
generalized NFW profile:

ρ(r) = ρ0

(
r

rs

)−γ (
1 + r

rs

)−3+γ
, (3.1)

where r corresponds is the Galactocentric distance and the scale radius rs is
fixed to rs = 20 kpc, while the normalization ρ0 is chosen in order to obtain
a DM density at the Sun position ρ(r�) = 0.3 GeV cm−3, with r� = 8.5 kpc,
and the inner slope is set to γ = 1.26,1 as in [258].

We consider 5 years of Fermi-LAT data, within the event class ULTRACLEAN. We
use the Fermi tools v9r32p5 to perform analysis cuts and to compute the exposure
of the instrument. Events with zenith angles larger than 100◦ are rejected. We
also apply the following selection cuts: (DATA_QUAL==1) && (LAT_CONFIG==1)
&& (ABS(ROCK_ANGLE)<52) && (IN_SAA!=T). The exposure maps are computed
using the response function P7REP_ULTRACLEAN_V15. The data are organized in 30
energy bins from 300 MeV to 300 GeV, equally spaced on a logarithmic scale.

We work with the HEALPix tessellation scheme for all our maps [308]. We choose
a resolution nside = 256, corresponding to a pixel size of ∼ 0.23◦. Finally, the
templates and the Fermi-LAT data are smoothed to a common angular size using
a gaussian kernel. In this way all the maps have the same angular resolution.
For this purpose we use the HEALPix routine smoothing. We follow the method
in [158] using ftarget = 3◦ for Eγ < 0.6 GeV and ftarget = 1◦ for greater energies.
We checked that our results are insensitive to such smoothing choices, with the
exception of the low-energy portion of the spectrum (Eγ . 1 GeV), where the
recipe adopted for the smoothing of the templates has a non negligible impact on
the result, see below for further details.

At the end of this process, we perform the template-fitting analysis. We focus on a
region of interest (ROI) defined as:

|l| < 20◦; 2◦ < |b| < 20◦,

with l and b the longitude and latitude Galactic coordinates. For each energy bin,
we construct then the following Poisson likelihood function:

− 2 ln(L) = 2
∑
i

[ei − oi ln(ei)] + 2
∑
i

ln(oi!) + χ2
ext , (3.2)

1We have checked that different values of γ do not alter the conclusion of our analysis. In
general, we have found that profiles with γ ' 1− 1.6 are preferred by data.
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where the index i labels each pixel inside the ROI, and we have introduced the
following quantities:

- oi is the number of observed events, i.e. the Fermi-LAT data;

- ei is the number of expected events, that can be written as a linear combination
of the events corresponding to the templates described above:

ei =
∑
k

αk e
(k)
i , (3.3)

where k runs over the different templates.

The counts are obtained multiplying the differential flux per unit of solid angle by
the Fermi-LAT exposure map, the energy bin width and the solid angle per pixel.
Eventually, the Fermi bubbles and the isotropic emissions are better determined
with observations outside our ROI. For this reason, we have introduced in Eq. (3.2)
a penalty factor χ2

ext for their coefficients:

χ2
ext =

∑
h

φ2
h (1− αh)2

ε2h
. (3.4)

where h now only refers to the Fermi bubbles and isotropic emission templates.
φh and εh are the nominal fluxes and uncertainties taken from the Fermi analysis
mentioned above.

The minimization of the statistical estimator in Eq. (3.2) provides the best-fit
values of the coefficients αk in each energy bin.

Concerning the treatment of point-source emission, we have checked the possibility
of introducing a masking procedure to mitigate their role in our analysis and/or
account for reconstruction faults. Masks of two types have been considered: a
sharp cut around each PS of all pixel within a 68% containment radius, depending
on energy and sharply increasing at E . 1 GeV, as obtained from the PSF of
the instrument Fermi tool gtpsf. We have also exploited the soft mask suggested
in [292], according to which the contribution of each pixel to the likelihood is re-
weigthed depending on the flux from the PSs expected in that pixel. Consequently,
this mask lowers the impact on the likelihood of pixels whose counts are dominated
by PSs. We have found, however, that our results are not severely affected by
adopting any of these masks and hence we are going to disregard the masking
procedure for simplicity in what follows.
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3.2.2 A suitable benchmark model

Having set the framework, we are at the point of introducing a benchmark case
to examine whether, within the template-fitting analysis, a properly modified CR
emissivity model can be considered equivalent to introducing the DM template.

We have chosen as starting point for the CR propagation framework one of the
reference cases in [292], labelled “Model A” in that analysis. This model has
a standard scaling of the diffusion coefficient with rigidity (a Kolmogorov-type
δ = 0.33), and reasonable values for the normalization of the diffusion coefficient
(5·1028 cm2/s at 4 GV), the height of the diffusion halo (4 kpc), and the Alfvén speed
(32.7 km/s); moreover, the model features a moderate convective wind gradient
(50 km/s/kpc). The injection slope is a broken power law. For the hadrons the
indexes are 1.89 (2.47) below (above) the reference rigidity of 11.3 GV, while for the
electrons 1.6 (2.43) below (above) 2.18 GV. The model has a sharply enhanced IC
component obtained by rescaling the normalization of the CR electrons by a factor
' 2 with respect to local measurements, as well as a ' 40% increase in the ISRF;
the synchrotron energy losses are also enhanced, adjusting the overall normalization
of a conventional large-scale magnetic field model for the Galaxy in such way that,
after the rescaling, it matches the claimed value of about 50 µG at the GC. While
the latter assumptions make the model not compatible with local CR measurements,
we remind that the goal of the template-fitting analysis is not to find a model
valid in the whole Galaxy, but rather to describe in detail the morphology of the
GC region (i.e. reproducing at the same time the local measurements and other
observables is well beyond the scope of this kind of analyses).

As also discussed in [292], the specific choice of propagation parameters is not
crucial for the template-fitting analysis. The point is that the free floating of
the individual templates in each energy bin always tends to readjust the input
model towards a preferred output, carrying in the end common features, such as an
enhancement in the IC component. Model A seems to be preferred in [292] since
implies the smallest changes in normalization and spectral features between input
and output model (namely the minimum of the likelihood function is reached for
the smallest departure from 1 of the coefficients αk introduced in Eq. (3.3)). It is
also one of the cases in which the template fitting gives a very clean indication, over
a large span of energy bins, for a sharp improvement in the data fit when including
the DM template: we take the challenge to focus on this sort of “worst-case scenario”
to test whether our alternative picture can perform equally well. On the other hand,
we stress again that, as tested on a few sample cases, changing the propagation
setup would only impact on minor details of the fit, leaving the overall picture
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substantially unchanged.

Model A adopts as CR source function a smooth interpolation from a SNR catalogue
[295]. As already mentioned in Section 3.2, this term clearly does not satisfactorily
describe of the Galactic bulge region. We consider then an extra steady-state
source term, which we model as a Gaussian (hereafter “spike”):

Qspike = Q0 e
−(r/σ)2

. (3.5)

In the following, we are going to express the normalization Q0 of this source in
terms of N , i.e. the ratio (in percentage) between the volume integral of the spike
and the volume integral of the conventional source term, namely

N ≡ Q0

∫
d3x e−|~x|

2/σ2
/∫

d3xQconv.(~x) . (3.6)

The definition of N provides a simple way to compare against observational
constraints, since the novel CR injection term in Eq. (3.5) should be correlated
to the Supernova explosion rate in the central region of the Galaxy and, hence,
on the SFR rate as well. Therefore, according to Eq. (3.5) and Eq. (3.6), the
relevant parameters describing the new ingredient under consideration are the
spatial extension σ and the normalization N of the spike.

In our ROI the spike mainly affects the IC template, since the region containing
most of the π0 and bremsstrahlung emission is masked out2. The additional
contribution due to the spike impacts on the IC template as shown in the upper
panel of Fig. 3.2 where we plot the total IC longitudinal profile for different spike
widths. On the lower panel, we show instead the contribution to the IC emission
from the spike only and compare it to the DM template. The plots are produced
for sample gamma-ray energy values.

It is important to notice that, while on the morphological side the two scenarios are
similar, in the spike case we are not treating the extra ingredient as an independent
term, rather we are correlating its spectrum to the overall IC emission.

2We remark that the reference model considered here is not tuned for the Galactic plane, within
2◦ in latitude. In this region, a much more detailed treatment of the astrophysical ingredients
(concerning both the emitting targets and the CR transport properties) would be in order.
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Figure 3.2: Upper panel: The IC longitudinal profiles integrated in the range
2◦ <|b|< 5◦ for two reference values of Eγ and for spikes with different
widths (σ = 200 − 400 pc). We remind that the normalization of the
spike is set in such a way to absorb most of the GC excess. We checked
a posteriori that the chosen value is compatible with astrophysical
estimates regarding the SFR in the GC region.
Lower panel: The IC profiles at 0.5 GeV for the spike terms with
different values of the width σ in Eq. (3.5) compared against the
corresponding profile from a DM-like template.
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3.2.3 Results: energy spectrum and test statistics

We have chosen σ = 300 pc as a sample value for the spike width, roughly matching
the size of the CMZ. The choice of N is based on two objective requirements3: the
value cannot be too large, since the SFR in the GC cannot exceed few percent
of the total rate in the Galaxy; moreover, we verify a posteriori that the spike
emission absorbs the majority of the GC excess (to put it another way, it means
that if we include in the fit of the reference model the DM template as well, the
latter should be used only marginally).

Our analysis is based on the comparison between the reference model described
above, and the case in which we add to Model A a DM template, the latter modeled
according to the modified NFW distribution in Eq. (3.1). The inclusion of a DM
template in the fitting procedure in addition to standard astrophysical background
models – like the Model A considered in this analysis – provided the most striking
evidence supporting the DM interpretation of the GC excess. As already noted
at the beginning of the chapter, in Ref. [258] the addition of the DM template
dramatically improved the fit up to an overwhelming high level of statistical
significance. For this reason, it is mandatory to compare the performances of the
spike model with those of the DM template. In what follows, we present the results
of our analysis in three subsequent steps: we first analyze the result of the template
fit in terms of energy spectra, then we provide a more quantitative discussion based
on the likelihood analysis, and finally we offer a more direct comparison with data
based on the analysis of gamma-ray profiles along three complementary directions.

As far as the energy spectra are concerned, Fig. 3.3 encodes the results of our
template-fitting analysis. In the upper panel, the best fit obtained for the Model A
including the DM template is displayed. As described in the caption of Fig. 3.3,
we explicitly show for all components both pre- and post-template fitting values.
As expected, the fit heavily uses the DM template, and the corresponding energy
spectrum (magenta diamonds in Fig. 3.3) clearly shows the familiar bump-shaped
form peaked at few GeV, in good agreement with that predicted from a WIMP with
∼ 45 GeV mass annihilating, among other possibilities, into bb̄ [115]. For illustrative
purposes, it is also instructive to look at the residual map – i.e. the difference in
counts between data and model evaluated at the best-fit point – obtained without
the inclusion of the DM template. We show this residual map in the upper left
panel of Fig. 3.4 for the energy window Eγ = 1 - 10 GeV, where the presence of
an excess distributed around the GC stands out in full glory. This excess is fully
absorbed by the DM template in the fit, as shown in the upper right panel of

3We refer the reader to Section 3.2.4 for a more complete discussion about the impact of different
values of σ and N .
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Fig. 3.4, where we present the residuals after template fitting including the DM
template.

Let us now turn the attention to our reference model. In the central lower panel of
Fig. 3.4 we show the pattern of residuals replacing the DM template with the spike
(N = 2.2%). The resulting pattern looks pretty much similar to the one exhibited
by the DM case. In the lower panel of Fig. 3.3, instead, we consider the possibility
of having at the same time the spike and the DM component. The contribution
of the DM template is now significantly reduced, is consistent with zero (within
the statistical error bars obtained from the fit) in a large energy range, and – most
importantly – gives rise to a roughly featureless spectrum.

Precisely in this energy range, 1 - 10 GeV, our model (without DM) gives a descrip-
tion of the gamma-ray emission quantitatively similar to that of the Model A+DM.
In other words, most of the GC excess is absorbed by the spike, and the presence
of an extra DM template only gives a slight improvement in the fit. In order to
support this statement and to further scrutiny the performance of our model, we
can consider now the upper left panel of Fig. 3.5 where we compare, for each energy
bin, the test statistic (TS) of the models we are studying. The TS is defined by
TS = −2∆ logL, where L is the likelihood defined in Eq. (3.2).

First, we show the improvement in the TS obtained adding the DM template to
the Model A. More precisely, the yellow dashed line with open circles in Fig. 3.5
represents the square root of the difference −2 logLModel A + 2 logLModel A+DM

(hereafter, ∆TS). In terms of energy spectra, the case Model A+DM corresponds
to the one displayed in the upper panel of Fig. 3.3. The plot clearly shows the
improvement in the fit due to the presence of the DM template. If taken at face
value, it corresponds to a statistical preference of about 15σ at the position of the
peak. Of course, we remark that this value should be taken cum grano salis, since –
in addition to the extremely small statistical errors – Fermi-LAT photon counts are
plagued by unavoidable systematic errors difficult to assess and hence not taken
into account in the likelihood fit [292]. However, it is indisputable that including
the DM template greatly improves the fit; therefore, it is crucial to compare this
result with the performance of our spike.

The green solid line with filled circles represents the improvement in the fit (quan-
tified by ∆TS) obtained considering our reference spike model with respect to the
Model A. The plot highlights that our scenario – without any DM contribution –
performs better than the starting Model A, and gives a result comparable (even at
the level of statistical preference) with the DM case. For completeness, we also
show the TS for the combination of the spike and the DM template. The green
solid line with open circles represents the corresponding ∆TS, so that negative
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Figure 3.3: Upper panel: Model A+DM. Lower panel: Model A+spike+DM.
Spectrum of the various contributions to the total gamma-ray flux
(light and dark grey dashed lines) compared to Fermi-LAT data. The
violet band represents the systematic uncertainty on the spectrum [157].
For IC (light blue), π0+Bremsstrahlung (red), EGB emission (brown)
and Fermi bubbles (green) dot-dashed lines show the nominal spectrum
(pre-fitting) while points and dashed lines are the post-fitting values.
Uncertainties bands and central values for bubbles and EGB are taken
respectively from [184] and [307]. Magenta diamonds: DM contribu-
tion. PS template (orange dashed line) is not touched by the fit. The
error bars on the templates are obtained from the fitting procedure.
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ModelA
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Counts-Model, Eγ = 1− 10 GeV
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Figure 3.4: Residual counts obtained for the Model A (left upper panel, without
the inclusion of DM template), for the Model A + DM (right upper
panel), and for the reference model described in Section 3.2.2 (lower
central panel, without the inclusion of DM template). See text for a
detailed discussion.

values indicate a statistical preference for the addition of the DM template. In
terms of energy spectra, this situation corresponds to the upper panel of Fig. 3.3.
The TS plot shows that the addition of the DM template slightly improves the fit
in the energy window Eγ = 1 - 10 GeV. However – as already noticed discussing
the energy spectrum in Fig. 3.3 and the residual map in the right panel of Fig. 3.4
– this improvement is mild given that the majority of the excess has been absorbed
by the presence of the spike. Moreover, the residual spectrum absorbed now by the
template in Eq. (3.1) is not resembling anymore – neither in spectral emissivity
nor in normalization – possible distinct features of WIMP pair annihilation.

Let us now pause a moment to summarize what we have found.

Looking at spectra and ∆TS, we have clarified that the presence of the spike –
even in the simple realization provided by Eq. (3.5) and discussed here – provides
a viable astrophysical alternative to the DM interpretation of the GC excess.

In the following, on top of the information carried by the energy spectra in Fig. 3.3
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Figure 3.5: Top left panel: we compare the test statistic (TS = −2∆ logL, we
show the square-root of TS) of the models we consider; a positive
difference between two models means that the second model per-
forms better. Yellow filled circles: −2 logLModel A + 2 logLModel A+DM.
Green filled circles: −2 logLModel A + 2 logLSpike. Green empty circles:
−2 logLSpike+DM + 2 logLSpike.
Top right panel: we compare the χ2 of the longitude profiles for
the same models. Filled circles: χ2

Model A − χ2
Spike. Empty circles:

χ2
Model A − χ2

Model A+DM.
Bottom panels. the same as the top right panel, for latitude and radial
profiles.

and the TS in the upper left panel of Fig. 3.5, we would like to get more deeply into
the details of the ROI by analyzing latitude, longitude and radial profiles. As we
are going to see, this may offer to us a more transparent picture of the performance
of our spike in reproducing the gamma-ray data throughout the ROI.

81



Chapter 3 – The GC GeV gamma-ray excess –

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Galactic longitude l @deg.D

G
a
la

ct
ic

la
ti

tu
d
e

b
@d

eg
.D

Latitude
profiles

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Galactic longitude l @deg.D

G
a
la

ct
ic

la
ti

tu
d
e

b
@d

eg
.D

Longitude
profiles

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Galactic longitude l @deg.D

G
a
la

ct
ic

la
ti

tu
d
e

b
@d

eg
.D

Radial
profiles

Figure 3.6: Control regions used for the computation of the gamma-ray latitude,
longitude and radial profiles. See the text for details.

◦ Latitude profiles. These profiles most closely reflect the morphology of the
excess. The GC excess extends far away from the GC itself, out to at least
10◦ in latitude [158, 257, 258]. This is clear from the latitude profile shown
in the central and lower panels of the right column in Fig. 3.7 where, at the
reference energies Eγ = 2.12 GeV and Eγ = 10.64 GeV, the DM template
gives a sizable contribution to the total count density up to |b| ∼ 10◦. From
the central and lower panels of the left column in the same figure, we see that
the spike gives a comparably good fit, since the role of the DM contribution
is essentially played by the enhanced IC emission due to the extra electrons
emitted in the spike, and radiating on the ISRF up to fairly large latitudes.
This effect is confirmed by the lower-left panel of Fig. 3.5 where it is shown
that, in the mid-energy region, the spike provides a fit of the latitude profiles
remarkably close to the one obtained by using the DM template. As far
as the low-energy region is concerned, in the lower-left panel of Fig. 3.5
we observe that, in the first two energy bins, the DM template produces a
slightly better fit if compared to the spike. We investigate this point in the
upper panel of both left and right column in Fig. 3.7, where we zoom the
latitude profiles in the data bin with central energy Eγ = 0.424 GeV. While
the DM contribution is suppressed at low energy (see also Fig. 3.3, upper
panel), the steady-state emission of the spike, being correlated to the overall
IC component, cannot be equally suppressed (at least in the simplified model
studied in this paper), and therefore leads to a slight overshooting in the
region 3◦ .|b|. 5◦. We would like to remark however that the apparently
large difference (χ2

Spike − χ2
Model A+DM ∼ 50) reported in Fig. 3.7 for this low-

energy bin is likely affected by the fact that we included in the computation
of the χ2s only statistical errors. Indeed, the systematic errors are estimated
for the integrated spectra only (' 5% at Eγ = 562 MeV [157]) and a better
understanding of this uncertainty would presumably change the rules of the

82



Chapter 3 – The GC GeV gamma-ray excess –

Figure 3.7: Left column: the latitudinal profiles for our best case at several en-
ergies. From left to right, 400 MeV, 2 GeV, 10 GeV. Red circles
(triangles): π0+Bremsstrahlung contribution, pre- and post-fitting.
Blue circles (triangles): IC contribution, pre- and post-fitting. Ma-
genta triangles: total model, to be compared with Fermi-LATdata.
Right column: the same plots for Model A+DM (DM contribution in
forest green triangles).
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Figure 3.8: The same as Fig. 3.7 for the longitudinal profiles.

comparison, ameliorating the discrepancy.

On the basis of these considerations, we can therefore conclude that the spike
provides a fit of the latitude profiles comparable in quality with the one
obtained using the DM template.
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Figure 3.9: The same as Fig. 3.7 for the radial profiles.

◦ Longitude profiles. We can start again our discussion from the mid-energy
region, focussing our attention on the central and lower panels of the right
column in Fig. 3.8. For these energy bins the bump-shaped form of the GC
excess distinctly stands out. Even in this case, we notice that the spike
provides an excellent fit to data, comparable in quality to the DM template.
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This is confirmed by the central left panel of Fig. 3.5, where we show the
comparison between ∆χ2

DM and ∆χ2
Spike: no significant discrepancy is reported,

and in the mid-energy region the spike perfectly substitutes the DM template.
In the low-energy region, while the spike seems to improve the fit if compared
with the Model A as suggested from the upper-left panel of Fig. 3.5, we find
in the first three bins a net preference (up to χ2

Spike − χ2
Model A+DM ∼ 100)

for the DM template. Moreover, differently from what we have observed for
latitude profiles, in the low-energy range the agreement with data worsens
when we introduce the spike. Indeed, from Fig. 3.8, taking the bin with
central energy Eγ = 0.424 GeV, it seems quite clear that the presence of the
spike is disfavored since it produces a visible overshoot of low-energy longitude
profiles in |l| . 4◦. This is what happens in the first three energy bins from the
upper-left panel in Fig. 3.5 and seems to be in contrast with the information
carried out by the TS. The simplistic assumptions on the CR modeling from
one side, and the unknown systematics on Fermi-LAT counts from the other
one, may provide arguments in favor of alleviating the discrepancy at low-
energy between the TS and longitude profile in Fig. 3.5 for the case of the
spike. Actually, exploring better the impact of our smoothing procedure in
the analysis, we have found that the low-energy tail of the spectrum (below 1
GeV) is very sensitive to the results of the adopted smoothing algorithm. In
particular, if we choose the alternative strategy of smoothing only the GDE
templates, applying a convolution with the Fermi-LAT PSF, and leaving the
PSs, exposure, and count maps untouched, in the case of the spike we find for
Eγ < 1 GeV a worsening of the TS (in the first two energy bins

√
-TS ' 10,

then it rapidly improves).

We can conclude that while our spike scenario is very competitive in the mid-
energy region with the DM one, it fails to account for low-energy gamma-ray
data along the Galactic longitude direction. Given its successful prediction in
the mid-energy region – where the evidence of the GC excess is most robust –
the simple proposed adjustment given by Eq. (3.5) may be too simplified to
work fine on the whole spectrum of energies measured by Fermi-LAT. For
instance, the associated CR injection spectrum may be not the same as the
ordinary source term, and it may possibly feature a spectral break at low
energies. However, the non-standard acceleration mechanism behind such
ad hoc injection spectral break may be hard to foresee. Low-energy effects
on CR modeling like convection or re-acceleration may also turn out to be
very important in this context: unfortunately, an analysis with more physical
insights – i.e. truly based on the propagation properties of CR primaries
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rather than on a free-floating of templates performed independently on each
energy bin – is extremely challenging, since the GC “excess” arises only as
an effect at the level of few % in Fermi-LAT data.

◦ Radial profiles. at last, we discuss radial profiles. From the right panel in
Fig. 3.6 we first notice that the adopted binning spans a wider region of the
ROI compared to the previously discussed profiles. Indeed, the comparison
between ∆χ2

DM and ∆χ2
Spike in the lower-right panel of Fig. 3.5 closely resem-

bles the TS. The spike provides a very good fit, comparable in quality with
the DM template both in mid- and low-energy regions. The only exception
is represented by the first energy bins, but the same arguments outlined
for latitude profiles hold true. The radial profiles in the top and bottom
rows in Fig. 3.9 show in detail – considering the usual benchmark bins at
Eγ = 0.424, 2.12 , 10.64 GeV – the performance of the spike with respect to
the DM template. It is clear as the modified IC emission, altered by the
presence of the spike, mimics the DM contribution up to

√
l2 + b2 ∼ 10◦.

To summarize, if we focus on energies greater than 1 GeV, namely the energies on
which the GeV excess at the GC is mostly based, the analysis of latitude, longitude
and radial profiles enforces what already found in the study of the TS. Motivated
by the high star formation expected in the region around the GC, we can confirm
that the presence of the spike in our reference model depicts a viable astrophysical
scenario, potentially able to address most of the putative excess at the GC.

3.2.4 Discussion

Although we have presented in detail a viable working scenario, for the sake of
completeness it is worth mentioning that several variations are possible.

• First of all, we show that the nice agreement with the data obtained for the
reference case, can be extended to different values of σ (see Fig. 3.10).

In particular we verified that, going down to σ = 200 pc and up to σ = 400
pc (with a proper rescaling of Q0 in Eq. 3.5), all the results of the previous
section are almost unchanged. Interestingly, in all cases the optimal value of
N does not change much.

We remark that spikes more extended than those considered here are in
tension with astrophysical observations, since the evidence for a significant
star-forming activity is confined in the inner part of the Galactic bulge, and
the SFR is expected to steeply decrease at r ' 0.5 kpc.

87



Chapter 3 – The GC GeV gamma-ray excess –

100 101 102

Eγ [ GeV ]

20

15

10

5

0

5

10

15

20

√ T
S

σ = 400 pc , N = 2.5 %

σ = 200 pc , N = 2.4 %

σ = 100 pc , N = 2.5 %

Figure 3.10: Upper panel: TS, as shown in the upper-left panel of Fig. 3.5, for
different values of the spike width, namely σ = 100 − 400 pc.
Lower panel: Radial χ2, as shown in the lower-right panel of Fig. 3.5,
for different values of the spike width, namely σ = 100 − 400 pc.
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On the other hand, for small values of σ, below 200 pc, the fit of gamma-ray
data with the spike significantly worsens for mid and lower energies , indicating
an unsatisfactory description of the gamma-ray emission: in particular, a
narrow spike exacerbates the problems highlighted in the previous section
with longitude profiles. The origin of the problem is twofold: on one side, to
roughly match the SFR in the CMZ, the normalization of the spike source
term is relatively enhanced with respect to the choice of spike with greater
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width σ, which implies a more pronounced central bump in the best-fit IC
longitude profile; moreover, the shape of the IC emission for a narrow spike
is significantly steeper than larger values of σ, as shown in Fig. 3.2. The
resulting morphology is not only greatly disfavored by the low-energy tail of
the spectrum, but it starts to be problematic also above the GeV.

• In order to provide a more realistic description of the inner Galaxy, one
should take into account how the complex interplays in the GC environment
impact on CR transport properties.

In particular, we know that the regular Galactic magnetic field has a complex
structure: besides a well-known pattern lying on the Galactic plane, in the
detailed analysis of Ref. [134] the authors point out the existence of a X-shaped
magnetic field component extending from the GC up to a Galactocentric
radius r ' 4 - 5 kpc and to z ' 2 - 3 kpc. CR diffusion is expected to be
anisotropic: according to the quasi-linear theory, valid in the low-turbulence
limit, parallel diffusion should dominate over the perpendicular one, leading
to an efficient CR escape due to parallel diffusion in the vertical direction.
We checked several values of the ratio between the perpendicular and parallel
diffusion components of the diffusion tensor (Dzz/Drr) for each value of σ,
but we did not find any relevant and solid improvement in the quality of the
fit valid in the whole energy range.

• Although we chose Model A as a reference case, we verified that our results
are not strongly dependent on the CR transport model. The same trends we
discussed in detail in the previous section emerge if other CR propagation
models are adopted. In particular, we have considered the conventional KRA
model described in [175], and Model F in [292]. In both cases, we find that
the spike plays a crucial role when the template-fitting algorithm is applied,
and all the results presented in the previous section still hold.

The latter two points likely stem from the limitations that a standard template-
fitting analysis implies in this context. Indeed, we wish to stress once again that
although the template-fitting method is very powerful in addressing morphological
agreements or flaws of a given theoretical model, there are some clear drawbacks
on the information we can extract out of it. Since the free-floating of the templates
is realized in each energy bin independently, the gamma-ray spectral features
corresponding to the different components can be seriously altered, loosing their
original spectral correlation in energy, and resulting in little control on the way the
physical properties of the CR transport model are in general modified.

89



Chapter 3 – The GC GeV gamma-ray excess –

Eventually, we wish to remark that the additional source term proposed here
provides extra gamma-ray emissivity also at energies larger than the GeV range
analyzed in this work, with a progressively smaller angular extent in the leptonic
channel, given that, due to the increase in the energy loss efficiency, electron
diffusion is reduced on a shorter scale. This prediction may be tested in the near
future, in the perspective of comparing low- and high-energy measurements by
experiments such as ASTROGAM [309] and GAMMA-400 [310].

3.3 A confirmation of our findings

The inadequacy of the standard GDE models used for the analysis of the gamma-ray
emission from the GC region has been more recently addressed in [311,312]. Also
in the case of Ref. [311,312], the main motivation at the basis of the work comes
from the expectation for a significant production of Galactic CRs in observed
star-forming regions like the CMZ, along the lines of what already discussed at the
beginning of Section 3.2.

In their study, the authors have first of all hypothesized that a fraction fH2 of
CRs has been injected with a spatial distribution tracing the density of collapsed
H2 in molecular clouds, with the remaining fraction 1 − fH2 reflecting instead
the injection of CRs due to the traditionally used distribution of SNRs [295–297].
They have consequently employed new high-resolution three-dimensional H2 density
maps that utilize gas flow simulations to resolve non-circular velocities in the
inner Galaxy [313]. Moreover, they have assumed a simple power-law model for
the star-formation rate [314] triggered in molecular clouds, characterized by a

Figure 3.11: The azimuthally averaged surface density of CR source distributions.
For more details, see the caption of Fig. 1 in Ref. [312].
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Figure 3.12: From Ref. [312], the IC emission over the inner Galaxy at the fixed
energy Eγ = 2.12 GeV when adding a Gaussian CR spike of width
σ = 200 pc and proper normalization to fit the GeV excess versus
the canonical model of [311,312].

spectral index ns and a critical density ρc under which such star formation is frozen.
Eventually, they have corrected the traditionally used source term through an
additional CR injection contribution that traces the novel 3D H2 gas distribution
derived by them:

Q(~r ) ∝
 0 if ρH2 < ρc

ρnsH2 if ρH2 ≥ ρc
. (3.7)

Such a source term reflects non-axisymmetric features like the bar and the spiral
arms of the MW disk, that can be imprinted in the details of a 3D template for
ρH2 . Beyond such refinements, the radial profile of this source term looks most
importantly peaked towards the GC: as displayed in Fig. 3.11, the resulting total
CR source term closely resembles the effect of the spike introduced by us in Eq. (3.5)
on top of the standard source term. We can conclude that the main picture provided
by our Gaussian ansatz for the radial profile of the new source term in the central
region can be further supported and validated by a better physical modeling of the
source distribution, exploiting the correlation with the gas density as in Eq. (3.7).

In the top-left panel of Fig. 3.12 we show the IC emission for the spike scenario
with width σ = 200 pc and proper normalization to fit the GeV excess and the
canonical star-formation based model of [311,312] over the inner Galaxy ROI at
the peak GC emission energy. While the morphology associated to the inverse
Compton emission from our Gaussian spike is completely spherically symmetric (at
least in the case of an isotropic diffusion tensor), the one of the fH2 = 0.2 model is
elongated along the plane. Note that the latter is more realistic, since in reality,
the height of the CMZ is quite small, with σz ' 45 pc [211] rather than the few
hundred pc implemented in our model. Making it more realistic would imply to
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differentiate between the size of the radial width of the Gaussian source profile and
the one related to its axial extension, namely σr ∼ O(100) pc, while σz ∼ O(10)
pc. Notice also that the fH2 = 0.2 model in Fig. 3.12 features an axisymmetric
structure from the MW bar which extends toward positive longitudes.

Despite some difference at the quantitative level, the overall picture of the study
described above is qualitative the same provided by us in the previous section and
the results in [311,312] fully support our conclusions. Performing a template-fitting
analysis focussed on three distinct ROIs – the full sky, the inner Galaxy and the
inner 15◦ × 15◦ around the GC – and studying the impact of the main parameters
characterizing the H2 gas model, namely fH2 , ns and ρc, the authors in [311,312]
reach the following main conclusions:

• GDE models of the full sky strongly favor a CR injection distribution that
includes a counterpart to star-forming regions;

• the features of the GC excess are significantly affected by the choice of the
CR source distribution: postulating 20 - 25% of the cosmic-ray injection to
trace the distribution of H2 regions improves the global fit to the observed
gamma-ray data, while it also decreases the intensity and significance of the
GC excess;

• while ns and ρc do not play a fundamental role in the final outcome of the
analysis, a typical value of fH2 ∼ 0.2 - 0.25 supported by the multi-wavelength
analysis of the CMZ implies that the original roughly spherical morphology of
the GC excess can get distorted at the level of being not compatible anymore
with a DM interpretation.

In addition to the above results, the same authors have notably found a substantial
improvement of the description of low-energy gamma-ray data (i.e. Eγ . 1 GeV) by
implementing a radially outflowing wind at the Galactic Center, again supported
by multi-wavelength evidence in favor of large wind speeds (i.e. & 500 km/s) in
the region (see, e.g., the detailed discussion in Ref. [315]). In the end, both our
findings and the ones successively obtained in [311,312] point to the existence of a
degeneracy between the intensity spectrum, and morphology of the GC emission
and an enhanced IC emission near the GC, possibly connected to (physically
motivated) CR injection sources in the environment.

A similar result has been recently claimed by the Fermi-LAT collaboration as
well [316]. The collaboration has analyzed the 15◦× 15◦ region around the GC with
specialized GDE models tuned on the gamma-ray sky out of this ROI. Finding
point-source seeds for the same region using a method that does not rely on details
of the GDE, the corresponding PS and GDE templates have been combined in
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a maximum-likelihood fit to determine the interstellar emission across the inner
∼ 1 kpc around the GC and PSs over the region. The outcome of the analysis
indicates that the inferred PS contribution can account only for the 15% of the
emission, showing at the same time good correlation with the already known 3FGL
catalogue [205], while best-fit GDE models in the ROI are characterized by a ∼ 20%
component mainly due to IC from the inner region. In doing so, weakly asymmetric
residual counts around the GC have been also found – but with large noise – for
energies greater than 2 GeV. The collaboration has then studied the impact of
a model for these residuals with a spatial distribution that peaks near the GC.
While no explicit interpretation of the residuals has been provided, the Fermi-LAT
analysis shows that the range of spectral parameters defining a model for the
positive residual strongly depends on the assumed GDE. Moreover, despite the
additional parameters introduced by the template for the residuals, the post-fitting
IC flux still remains the dominant interstellar emission component over the inner
region around the GC. According to Ref. [316], such finding suggests that CR
electron and/or ISRF intensities in the ROI are likely higher than those usually
implemented in baseline GDE modeling [157, 195]. Therefore, this result stands
out along the lines of our refinement of GDE templates in virtue of the expected
environmental complexity in the GC region.

3.4 Alternative scenarios and general outlook

The fact that CRs are injected in the central regions of the MW offers a valuable
astrophysical explanation at the basis of the high statistical significance of the GeV
excess. Besides this compelling possibility, a few competing scenarios accounting
for an “extra component” have been suggested as well.

Among the proposed explanations, a non-thermal bremsstrahlung emission from a
population of electrons scattering off neutral molecular clouds has been considered
in [317,318], while in [319] the authors have studied the interactions between the
gas and protons accelerated by the super-massive black hole sitting at the GC.
While those mechanisms may contribute to the excess emission in the innermost
GC region, where the gas distribution is pretty uncertain, an extended signal up to
a few kpc is very unlikely for these cases. Burst-like events connected to an active
past of our Galaxy have also been investigated with interest [298,320]. As already
mentioned at the beginning of this chapter, the typical scenario arising from these
cases is not very good at reproducing both the observed energy spectrum and the
spatial morphology of the excess and – as a standalone solution to the problem – it
is probably already disfavored [294].
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A much more vivid debate in the community instead pertains to the role of
unresolved PSs. In fact, whether or not there may be a plausible correlation
between a yet-undetected PS population around the GC and the GeV excess signal
is still a matter of ongoing investigation.

In this respect, as originally noted in Ref. [321, 322], promising candidates are
millisecond pulsars (MSPs), i.e. pulsars with a rotational period of about few
milliseconds, originating from old neutron stars that spun up through accretion of
matter. The expected prompt gamma-ray emission from MSPs has soon appeared
to be compatible with the excess spectrum peaked at few GeV [252,253,322,323].
Moreover, the MSP distribution is expected to correlate with the star distribution,
and therefore, in the bulge region of the Galaxy it may extend far enough from
the Galactic plane so that the spatial morphology of the GC excess can also be
addressed [251,324].

On the other hand, stringent constraints on the MSP hypothesis, coming from our
current observational knowledge about these astrophysical objects, must be taken
into account. Exploiting the limits from the observed distribution of Fermi sources
– including both sources known to be MSPs, and unidentified sources which could
be associated to pulsars – in [325] it has been claimed that MSPs cannot account
for more than ∼10% of the GeV excess in the inner Galaxy. In Ref. [191] the
observational information on MSPs coming from the Australia Telescope National
Facility has been collected together with the Fermi-LAT pulsar catalog in order
to model the spatial distribution and gamma-ray emission of MSPs in the Galaxy.
Through a dedicated Monte Carlo simulation, the authors have also obtained
that the prompt emission from the population of predicted pulsars in the GC
region (within the 1σ statistical uncertainty band) is roughly an order of magnitude
smaller than the excess spectrum. Using the observed population of bright low-mass
X-ray binaries (progenitor systems of MSPs) to estimate the number of MSPs
in the inner Galaxy, in Ref. [326] the estimated contribution to the excess from
these PSs has resulted being even smaller, around 1 - 5%. Moreover, stemming
from measurements in the local Galactic environment, the modeling of the MSP
luminosity function, along with the number of PSs resolved by Fermi allowed the
authors to derive an upper limit on the MSP diffuse emission in strong tension
with the hypothesis that most of the GC excess is originating from these objects.

On the basis of such findings, the viability of MSPs as an explanation to the
GC excess should be considered as severely challenged. However, in Ref. [327] a
parametric approach aimed at minimizing underlying theoretical priors involved
in the estimate of the MSP gamma-ray luminosity function, together with the
systematics associated to the Fermi PS catalogue, has shown that an unresolved
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bulge population of MSPs is still a viable candidate for most or all of the GC excess
within current observational and theoretical uncertainties.

Triggering renewed interest in the community, the MSP interpretation of the GC
excess has received recent support by the results of two studies dedicated to an
improved targeting of PSs [328,329]. Implementing different statistical techniques,
these two analyses obtain a very similar conclusion: studying the statistics of
clustering in the photon measured count maps, there is a very high evidence in
favor of a hitherto undetected population of (MSP-like) PSs, able to fully absorb
the GeV gamma-ray excess. While the agreement between the two independent
works is remarkable, both analyses are not free from certain limitations. First of
all, the results of both studies are based on the analysis of one single energy bin –
in correspondence to the inferred peak of the GC excess. This is demanded by the
particular statistical methods implemented, which require a very large collection
of photons in order to provide an informative statistical estimator. However, as a
consequence of that, no spectral information imprinted in the observed counts can
be either extracted from or exploited in these studies. Second, the impact of GDE
models in this kind of analyses may be much more dramatic than what has been
suggested in Ref. [328,329]. Both studies have considered only few simple variations
of conventional diffuse emission templates, already finding a non-negligible impact
of this ingredient in the final outcome. Most importantly, GDE models optimized
for the inner Galaxy, i.e. with non-vanishing CR injection profile at the GC,
have not been considered yet and therefore, their (likely relevant) impact on these
analyses remains to be addressed. Eventually, as already envisaged in [328] and very
recently investigated in Ref. [330], this kind of analyses may be potentially affected
by relevant systematics. Indeed, the map of photon count residuals can possibly
contain small-scale spatial structures due to the mis-modeling of backgrounds and
foregrounds. Through the application of the statistical techniques in Ref. [328,329],
these spurious features may be erroneously interpreted as sub-threshold PSs, as
explicitly highlighted in [330].

To conclude, we wish to stress once again that the detailed features of the gamma-
ray emission at the GC are prone to large systematic uncertainties stemming from
bright astrophysical diffuse emission which must be removed in order to infer a
putative “excess”. As a result of that, it is probably very difficult to pin down
a reliable estimate of the emission from dim PSs in the GC region [316]. From
this perspective, it is even harder to claim any detection of some more exotic
component – as it may be represented by Dark Matter particle annihilation – with
any statistical confidence level. At the qualitative level, it is probably fair to say
that a more convincing and complete picture of the gamma-ray emission at the
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GC will be involving both a more realistic treatment of CRs in the region as well
as a refined estimate of the emission from faint sub-threshold PSs.

Note that all the inconsistencies discussed so far may strongly point to such a
combined scenario. On one side, as it stands out e.g. from Fig. 3.5, the original
GC excess does not seem to be completely addressed by improved GDE models in
the region. As already mentioned, the same conclusion has also been corroborated
by [311,312] and by the Fermi-LAT collaboration [316] as well. On the other hand,
a standalone explanation with a MSP-like population in the bulge region of the
Galaxy still looks very contrive. Most recent investigations on the characterization
of such population [331] and its correlation with globular clusters in the region [332]
keep pointing to a strong incompatibility with the standard properties expected
from already known pulsars. Of course, one may still remain completely agnostic
about the nature of the members of this undetected population and assume that no
obvious counterpart of them shows up in the local Galactic environment. Leaving
aside this rather conservative perspective, very recent studies [330,333,334] have
focussed on the potentially informative high-energy tail of the excess spectrum in
the inner Galaxy. For instance, in the context of pulsar interpretations, a high-
energy tail could be naturally accommodated through the secondary gamma-ray
emission of high-energy electrons accelerated in the pulsar magnetosphere and then
interacting with both the ISM gas and the photons of the ISRF. Depending on
the annihilation channel and the particle mass, also a DM interpretation of the
excess could leave an important imprint at high energies via secondary emission,
and a distinction between the two scenarios may be ideally possible [333]. While
at present there is no definite clue for such a kind of “high-energy excess”, a mild
hint in favor of a radially spatial variation in the high-energy part of the excess
spectrum has been recently noticed in [330, 334] and it certainly offers another
compelling aspect to be further investigated in future analyses.
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4 Chapter 4

Dwarf spheroidal galaxies

and Dark Matter limits

4.1 The satellites of the Milky Way

In Chapter 3 we have analyzed in detail the region around the Galactic Center
(GC), highlighting on one side the appealing role it is playing in indirect detection
searches for Dark Matter (DM), but also stressing the difficulties one inevitably
encounters in the interpretation of a signal coming from such a rich and complex
astrophysical environment.

The dwarf spheroidal satellites (dSphs) of the Milky Way can be certainly considered
a prime target for Dark Matter indirect detection searches as well [335, 336]. First
of all, they are relatively close to us and have fairly large DM densities [337–341],
and hence are expected to have among the brightest DM-induced emissivities.
Differently from the GC region, dSphs seem to be really ideal “DM laboratories”:
intrinsic emission from standard astrophysical sources can generally be neglected
(they host old low-luminosity stellar populations and tiny – most often below
detection sensitivities – amounts of gas [342,343]); at the same time, most dwarfs
are located at intermediate or high galactic latitudes where Galactic foregrounds
are suppressed.

Multi-wavelength campaigns have therefore been promoted to search for DM
signals, with some of the most impressive results obtained with γ-ray telescopes:
e.g., the Fermi collaboration has recently published updated limits on weakly
interacting massive particles (WIMPs), excluding pair annihilating cross sections
at the level of WIMP thermal relic cross sections for DM masses lighter than about
100 GeV [291, 344]. Limits from these searches may be meaningfully translated
into Particle Physics constraints (see e.g. [345–347]) and, as already mentioned
at the end of Chapter 1, they seem to be in tension with the most popular DM
interpretations of the GC excess [275,277].

A few of the proposed signals (including the γ-ray flux fromWIMP pair annihilations
just mentioned or, e.g., the X-ray signal from sterile neutrino decays [41]) are
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connected to prompt emission from DM particles [115]. As we have described in
Chapter 1, in these cases the flux predictions can be conveniently factorized into
a term depending on the DM particle physics embedding (specifying, e.g., for a
WIMP: the mass, the annihilation cross section and the emission yields), and a
term depending on the distribution of DM in the dwarf. For reader’s convenience,
we recall here the definition of the J-factor for DM pair annihilation signals, namely
an angular and line-of-sight (l.o.s.) integral of the square of the DM density profile:

J ≡
∫

∆Ω
dΩ

∫
l.o.s.

d` ρ2(~x) . (4.1)

The tight constraints on particle DM properties claimed from dwarf surveys reflect
the assumption that fairly small observational and theoretical uncertainties affect
these astrophysical factors: e.g. in the analysis of [291] mentioned above, limits are
derived exploiting the full ensemble of known dwarfs and introducing a likelihood
in which the J-factor dependence for each dwarf i follows a log-normal distribution
of given central value log10(Ji) and width σi. For most of the so-called classical
dwarfs – namely the only 8 dwarfs known before the first discoveries of ultra-faint
ones as a byproduct in large scale structure surveys [348] – the assumed values of
σi are of the order of 0.2 [291,349,350]. This translates into an uncertainty on J of
about a factor of 1.5. At a superficial level, looking at Eq. (4.1) and assuming as
known the distance of the object as well as – most crucially – the shape of the DM
density profile, one would deduce that the normalization of the density profile can
be inferred from observations with an uncertainty at the 20-25% level.

Indeed, once a specific approach has been adopted in determining such normal-
ization, it is in general true that, in case of the classical dwarfs, the quality of
kinematical data is adequate to provide fairly small statistical errors [351]. On the
other hand, it is a much more delicate issue to address intrinsic systematic errors
of the theoretical models and their impact on parameter determinations, including
the normalization and more critically the J-factor itself.

Analyses in the literature give contradictory results: e.g. [352] presents a compre-
hensive discussion of the impact of different theoretical assumptions on interpreting
kinematical data within the framework of the Jeans equation (a moment projection
of the collision-less Boltzmann equation) in the spherical symmetric limit; they
conclude that systematic biases and uncertainties on the J-factor for classical
dwarfs are up to a factor of 3 to 4, including a rather mild impact of a factor of 2.5
from the effect of the dwarf being a triaxial system rather than a spherical one. On
the other hand, the authors in [353] (see also Ref. [354]) show that the impact of
axisymmetric models for non-spherical DM structures can be much more dramatic
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on the mass at a reference radius, and hence the normalization of the profile,
pointing to uncertainties of factors as large as 10 even for the classical dwarfs.
However, a recent update along these lines [355], targeted on assessing J-factor
uncertainties using non-spherical Jeans equations, finds quite milder differences
in the comparison with up-to-date analogous studies treating MW satellites as
spherical systems [291,356,357].

In the following, while still assuming as theoretical playground the Jeans equation
for a spherically symmetric system, we aim to discuss the impact of the method
that has been adopted in its solution by the vast majority of recent analyses. This
goes into two steps:

1) to introduce parametric forms for the quantities appearing in the equation,
namely the DM mass profile and the number density and velocity anisotropy
profiles of the stellar populations used as dynamical tracers;

2) to sample the relative parameter space via Monte Carlo techniques in order to
perform Bayesian inference, despite some loose theoretical and observational
guidance.

In particular, it is well known that the stellar anisotropy profile introduces patterns
of degeneracies in the result and is unfortunately scarcely constrained by obser-
vations. Several recent studies seem to indicate a minor impact on the J-factor
estimates [351,356–362], however they mostly refer to “blind analyses” involving a
marginalization over a parameter space and integration measure which, not being
driven by observations or by theory, are essentially an arbitrary choice.

Here, instead, we are going to examine the problem under a different perspective,
exploiting an approach in which the Jeans equation is so-to-speak “inverted”,
rewriting the DM mass profile in a form in which its dependence on the stellar
anisotropy profile becomes explicit. This method was originally outlined in two
parallel analyses, see [363,364]. We re-derive in full detail the inversion formula in
Appendix B.2, providing a new compact form of it, suitable for numerical analyses.
We then use it for the first time to discuss J-factor estimates: our efforts, indeed,
go in the direction of providing a systematic study of dSph J-factors without the
need to marginalize over unknown parameters.

4.2 The spherical Jeans analysis

Mass models for dwarf satellites of the Milky Way are most commonly derived
exploiting a stellar population as a dynamical tracer of the underlying gravitational
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potential well (and hence of the dominant mass component, namely the DM mass
profile). Supposing that the tracers belong to a non-rotating pressure-supported
population in dynamical equilibrium, one can assume that the stellar density
function obeys a time-independent collision-less Boltzmann equation, to be solved
projecting out velocity moments. Going to the limit in which the stellar and DM
components are spherically symmetric, the second moment projection reduces to a
single Jeans equation [365,366], usually recast in the form:

dp

dr
+ 2 β(r)

r
p(r) = −ν(r) GNM(r)

r2 , with p(r) ≡ ν(r)σ2
r(r) . (4.2)

This equation shows that the radial dynamical pressure p(r), the product of
the tracer number density profile ν(r) and the radial component of the velocity
dispersion tensor σ2

r (r), can be expressed in function of ν(r) itself, as well as of the
total mass profileM(r) and the orbital velocity dispersion anisotropy β(r). The
latter involves also the other two diagonal components of the velocity dispersion
tensor σ2

θ and σ2
φ, being defined as:

β(r) ≡ 1− σ2
θ(r) + σ2

ϕ(r)
2σ2

r(r)
. (4.3)

β(r) parametrizes the deviation of the velocity ellipsoid from a sphere of radius
squared σ2

r = σ2
θ = σ2

ϕ [366,367]. By definition, β(r) can cover the range (−∞, 1],
where the lower (upper) extreme corresponds to tracers moving on purely circular
(radial) orbits. The formal solution of Eq. (4.2) is:

p(r) = GN

∫ ∞
r

dr′
ν(r′)M(r′)

r′2
exp

[
2
∫ r′

r
dr′′

β(r′′)
r′′

]
. (4.4)

The difficulty in fully exploiting this approach is that, despite the assumption
of dynamical equilibrium and spherical symmetry at the bases of Eq. (4.2), the
problem still involves three unknown functions: M(r), ν(r) and β(r), to be inferred
from only two quantities connected to observations:

1) the stellar surface density, namely:

I(R) =
∫ ∞
R

dr
2r√

r2 −R2
ν(r) , (4.5)

(here and everywhere in the following “R” refers to the l.o.s. projected radius,
while “r” is the radius in the spherical coordinate system centered on the
dwarf) which, assuming constant stellar luminosity over the whole system,
is proportional to the surface brightness as mapped in photometric surveys
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(see, e.g., [368]);

2) the l.o.s. velocity dispersion σlos(R), which traces the only velocity component
accessible to spectroscopic measurements [340,341]; the l.o.s. velocity disper-
sion profile can be expressed in terms of the radial dynamical pressure [369]:

σ2
los(R) = 1

I(R)

∫ ∞
R

dr
2r√

r2 −R2

[
1− β(r)R

2

r2

]
p(r) . (4.6)

The mapping of the three unknowns into two observables is usually done by
introducing parametric forms for the three unknowns: the template for ν(r) is
typically related to a I(R) supported in stellar photometric studies, such as the
Plummer [370], the King [371] and the Sersic [372] profiles. The mass profileM(r)
originates from DM density profiles ρ(r) usually motivated by:

- numerical N-body simulations of hierarchical clustering in cold DM cosmolo-
gies [373], such as, e.g., the Navarro-Frenk-White (NFW) profile [374] (with
a 1/r singularity towards the center of the system and a scale radius rn to
set the transition into the 1/r3 scaling at large radii);

- phenomenological studies [375, 376] on the distribution of DM in galaxies,
such as, e.g., the Burkert profile [377] (in this case the characteristic scale rb
sets the size of the inner constant density core, before the transition again
into the 1/r3 regime at large radii).

Finally for what regards the stellar anisotropy profile β(r), templates assumed in
the literature (see e.g. [378–380]) reflect more simplicity arguments rather than
profound physical motivations, ranging from some constant value to functions
connecting two asymptotic values at large and small radii, eventually with some
parameter setting the sharpness of the transition.

Attempts to break the degeneracy in Eq. (4.2) between M(r) and β(r) using
higher velocity moments [339, 381–385] or the determination of multiple tracer
populations [386–388], together with the progress of N-body simulations [389–391],
may represent a promising future opportunity to fully overcome current study
limitations due to l.o.s. measurements available for these systems [392].

Given the large parameter space at hand, one needs an efficient scanning technique
and careful addressing of error propagation: for ν(r) (or directly for I(R)) a
frequentist fit of data is usually implemented, in case of the classical dwarfs most
often referring to the data compilation in [368]. On the other hand, all recent
analyses explore the parameter space connected toM(r) and β(r) introducing a
likelihood addressing the matching of the theoretical model for σlos(R) with data,
and employ a Markov Chain Monte Carlo (MCMC) sampling in the context of
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Bayesian inference. After a choice of priors and integration measures – which in
case of the anisotropy function, as for the choice of the functional form, seem
essentially arbitrary – one derives posteriors for the parameters definingM(r) or
ρ(r), as well as for derived quantities such as the J-factor introduced in Eq. (4.1)
above. While this procedure gives for the classical dwarfs posteriors on J with
small error bars, it is not transparent what is the impact of having selected given
parametric forms, priors and integration measures, especially in the case of β(r)
for which a robust physical guidance is still missing.

4.3 General trends from an inversion formula

As mentioned before, the method we build on here has been already outlined in
two parallel analyses, see [363,364]. The starting point relies on the observation
that the two available observables, namely Eqs. (4.5) and (4.6) above, correspond
to the Abel transform f of a function f̂ :

f(x) = A[f̂(y)] =
∫ ∞
x

dy√
y − x f̂(y) ⇔ f̂(y) = A−1[f(x)] = − 1

π

∫ ∞
y

dx√
x− y

df

dx
.

(4.7)
In fact, looking back at Eq. (4.5) the surface density I(R2) is the Abel transform
of the number density profile ν(r) (everywhere in the following we will use Î(r2) to
indicate the number density profile instead of ν(r)). In a similar fashion, introducing
the projected dynamical pressure, P (R) ≡ σ2

los(R) I(R), this expression can be
manipulated (see Appendix B.2 for a detailed derivation) inverting it into a formula
for the radial dynamical pressure:

p(r) = [aβ(r)− 1]
∫ ∞
r

dr′Hβ(r, r′) dP̂
dr′

(4.8)

where P̂ (r2) is the inverse Abel transform of P (R2) and we defined:

aβ(r) ≡ − β(r)
1− β(r) , and Hβ(r, r′) ≡ exp

(∫ r′

r
dr′′

aβ(r′′)
r′′

)
. (4.9)

Inserting this result into the Jeans equation [366], Eq. (4.2), one can find the mass
profile of the system:

M(r) = r2

GN Î(r)

{
−dP̂
dr

[1− aβ(r)]− aβ(r) bβ(r)
r

∫ ∞
r

dr′Hβ(r, r′) dP̂
dr′

}
, (4.10)
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with
bβ(r) ≡ 3− aβ(r) + d log aβ

d log r . (4.11)

An expression equivalent to Eq. (4.10) can be extracted from Ref. [364], while
Ref. [363] gives explicit formulas for several simple anisotropy models; it is however
the first time such a compact form in terms of observables is given, showing that
the mass profile depends on the anisotropy profile only through the function aβ(r)
as defined above. The expression in Eq.(4.11) shows that, at given aβ(r), the mass
profile can be properly reconstructed if the projected dynamical pressure can be
efficiently constrained from data. From the expression just derived one can read out
the behaviour of the mass function in some special limits that will be useful in the
discussion below. First of all, in case of isotropic stellar orbits, namely β(r)→ 0
for any r (and hence aβ(r)→ 0):

Mβ=0(r) = − r2

GN Î(r)
dP̂

dr
. (4.12)

For circular orbits instead, i.e. β(r) → −∞ for any r (and hence aβ(r) → 1,
bβ(r)→ 2):

Mβ→−∞(r) = − 2
GN Î(r)

∫ ∞
r

dr′r′
dP̂

dr′
. (4.13)

Eq. (4.10) is derived under the hypothesis β 6= 1. To take the exact radial orbit
limit it is simpler to notice that the radial pressure for β = 1 (i.e. aβ → −∞) takes
the form:

pβ=1(r) = −rdP̂
dr

, (4.14)

and replacing this into the Jeans equation, Eq. (4.2), one finds:

Mβ=1(r) = 1
GN Î(r)

d

dr

(
r3dP̂

dr

)
. (4.15)

4.3.1 A mass estimator for dwarf galaxies?

As first noticed in MCMC analyses, regardless of what is assumed for the stellar
velocity anisotropy β(r), all models fitting the l.o.s. velocity dispersion profile tend
to have approximately the same mass at a scale corresponding to about the surface
brightness half-light radius [393–400]. In Ref. [364] a rationale for the existence of
such a mass estimator is provided through an analytic manipulation of the solution
of the Jeans equation. Briefly recapping their argument, it is useful to consider
the difference between the mass profileM(r) for a generic anisotropy profile and
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Mβ=0(r); after some algebra one finds:

M(r)−Mβ=0(r) = −β(r) r σ2
r

GN

(
d log Î
d log r + d log σ2

r

d log r + d log β
d log r + 3

)
. (4.16)

Among the terms within brackets on the r.h.s., towards the outskirts of the dwarf,
the logarithmic derivative of the stellar number density Î(r) rapidly varies from
close to zero to a negative number. In the same region, the l.o.s. velocity dispersion
is generally close to being flat and also σ2

r is arguably not too rapidly varying. If
one now assumes that also β(r) does not have a sharp change in that region, the
difference in Eq. (4.16) is approximately zero at the radius r∗ defined as:

−d log Î
d log r

∣∣∣∣∣
r=r∗

= 3 . (4.17)

Since this condition does not depend on β,M almost matchesMβ=0 at r∗ regardless
of the stellar anisotropy:

M(r∗) 'Mβ=0(r∗) '
3
GN

〈σ2
los〉 r∗ ≡M∗ , (4.18)

where in the second step the symbol 〈 〉 stands for a weighted average on the
stellar number density, and 〈σ2

los〉 has been factorized out in computing P̂ (r) and
implementing it in Eq. (4.12).

We can check here this result with the formulas derived at the beginning of this
section. We start from a simple model where σ2

los(R) is assumed to be just a
constant σ2

los, and the stellar profile is described by a Plummer model [370], a case
in which the Abel transform can be performed analytically:

I(R2) = I0

πR2
1/2

1
(1 +R2/R2

1/2)2 ⇔ Î(r2) = 3I0

4πR3
1/2

1
(1 + r2/R2

1/2)
5
2
. (4.19)

Under these two working hypotheses, the mass profile in the isotropic case has also
a simple analytical form:

Mβ=0(r) = r σ2
los

GN

5 r2/R2
1/2

1 + r2/R2
1/2

, (4.20)

while Eq. (4.17) gives r∗ =
√

3/2R1/2. Assuming also a constant anisotropy profile,
β(r) = βc, in the upper panel of Fig. 4.1 we show the relative difference in mass
|∆M(r)|/Mβ=0(r) ≡ |Mβ=βc(r) −Mβ=0(r)|/Mβ=0(r) versus the quantity 2aβc ,
useful to have circular and radial stellar anisotropies equally spaced in the segment
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Figure 4.1: Upper panel: Difference in mass profiles, ∆M(r) ≡ Mβ=βc(r) −
Mβ=0(r), relative to the isotropic case,Mβ=0(r), for the model with
constant σlos, Plummer stellar profile and constant orbital anisotropy,
as a function of 2aβc . The orange, light blue and dark blue curves
correspond, respectively, to a radius equal to r∗ =

√
3/2R1/2, 5% lower,

10% larger. Lower panel: Isolevels for fixed relative mass difference
in the plane 2aβc versus r/r∗ within the same set of assumptions. The
vertical orange line indicates r∗ as expected mass estimator.
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[0, 2] (i.e. 0 corresponds to radial, 1 to isotropic and 2 to circular orbits). The solid
orange line corresponds to r = r∗ and shows that in the specific simple model under
consideration the goodness of r∗ and M∗ as mass estimator is within a level of
about 8% going to circular orbits, while it degrades to 10% and larger towards radial
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orbits (in the purely radial limit derived in Eq. (4.15) the discrepancy reaches the
value of 75%). Also shown in the plot is the relative mass difference at r = 0.95 r∗
and r = 1.1 r∗ for which there is a better match, respectively, in the radial and
circular regimes, as well as a larger discrepancy in the opposite regimes. In the
lower panel of Fig. 4.1 we show the isolevels for fixed relative mass difference in
the plane 2aβc versus r/r∗; one can see that – still in the same model introduced
above – the mass difference is minimized along a curve that is slightly tilted with
respect to the estimator proposed in Eq. (4.18), r = r∗. On the other hand moving
away from r∗ the match rapidly diminishes in one of the two regimes; for example,
taking r = R1/2 ' 0.82 r∗ as estimator radius is in our example a significantly worse
choice, with relative mass differences at the level of 15% for purely circular orbits
and raising up to the level of 150% in the radial regime. The 3D half-light radius
proposed in [364], namely r1/2 ' 1.3R1/2 ' 1.06 r∗ for the Plummer case, actually
provides a better choice.

The failure ofM∗ as an exact estimator stems from the fact that even assuming
that σlos is constant, for β 6= 0 there is still a non-negligible radial dependence in
σr (for β = 0 one trivially gets σr(r) = σlos). This is shown in Fig. 4.2 where we
plot the logarithmic derivative of the radial dynamical pressure versus r/r∗. This
quantity is related to σr(r) via:

d log p
d log r = d log σ2

r

d log r + d log Î
d log r , (4.21)

and hence, for β = 0 and constant σlos, it coincides with the logarithmic derivative
of the stellar number density Î. In Fig. 4.2 −d log Î/d log r is plotted with a dashed
line; by definition it crosses the value of 3 at r∗. The blue band on the upper
panel shows the span in the logarithmic derivative for p(r) when varying βc in the
whole range of (−∞, 1] (respectively, upper and lower boundary of the band). The
intersection of the band with the horizontal line at the value of 3 gives the shift on
r needed to get ∆M = 0; the one with the vertical line at r = r∗ gives instead the
magnitude of the departure ofM∗ from being an exact mass estimator.

Although the assumptions in the model we considered may appear rather drastic,
the trends displayed are actually general. First, the hypothesis of constant σlos is
not critical. Taking into account that available kinematical informations (see, for
example, the binned data in [397]) suggest l.o.s. velocity dispersions to be nearly
flat in the region around r∗, we can parametrize σlos(R) via the linear expression
c0 + c1R/R1/2 and vary the slope c1/c0 in a generous range encompassing trends
usually reported in literature, as e.g. those in [397] (note however that the error
associated to an overall normalization, while propagating onM∗, does not enter in
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Figure 4.2: Upper panel: Logarithmic derivative of the dynamical pressure for a
simple model with constant orbital anisotropy and Plummer stellar
profile versus r/r∗. The blue band is relative to the case of constant
l.o.s. velocity dispersion and βc varied in (−∞, 1], while the green
one is obtained assuming a linear form in R/R1/2 with slope ± 6%
and β = 0. Lower panel: Same quantity assuming constant σlos and
β = 0, but for the stellar profiles introduced in Eq. (4.19), Eq. (4.22)-
(4.23). The bands reflect typical uncertainty on the characteristic
scale parameter of the stellar template.

Exp 3D

Exp 2D

Plummer

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

r / r*

-
d
lo
g
p
/
d
lo
g
r

relative mass differences). As can be seen in the upper panel of Fig. 4.2 the impact
of this uncertainty is marginal with respect to the one due to the orbital anisotropy.
The same conclusion holds when considering also the second ingredient at hand,
the modeling of the stellar distribution. As alternatives to the Plummer model, we
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introduce the two following exponential templates:

I(R2) = I0

2πR2
e

exp
(
− R

Re

)
⇔ Î(r2) = I0

2π2R2
e

K0

(
r

Re

)
, (4.22)

for which r∗ ' 2.54Re ' 1.51R1/2, and:

I(R2) = I0

4πr2
e

R

re
K1

(
R

re

)
⇔ Î(r2) = I0

8πr3
e

exp
(
− r

re

)
, (4.23)

for which r∗ = 3 re ' 1.48R1/2 (Kn(x) is the modified Bessel function of the
second kind). The functions above qualitatively reproduce typical realizations of
a multi-parameter template like the Sersic profile, while differing substantially in
the inner region from the Plummer model (the King model is instead qualitatively
equivalent to the Plummer). Back to the working hypothesis of constant σlos and
β = 0, we plot in the lower panel of Fig. 4.2 the logarithmic derivative of p(r) as a
function of r/r∗ for the three stellar profiles. The uncertainty bands displayed are
obtained by the generation of a set of surface brightness mock data with binning
and associated errors matching typical photometric maps of the 8 classical dSphs
as in [368]. Although within a given stellar profile the impact on M∗ from our
estimated uncertainty on r∗ is negligible as shown in Fig. 4.2, a higher impact
derives from the mis-reconstruction of the stellar profile within a wrongly assumed
parametric form, see the shift in r∗ with respect to the observable radius R1/2

between the Plummer model and the two exponential profiles.

To summarize this part of the discussion, we find that the uncertainty on the dwarf
mass estimator is dominated by the kinematical determination of the normalization
on σlos as long as models with radial-like tracer orbits are not included in the
analysis. While general criteria hinting for unphysical phase-space densities in
connection to radial-like tracer orbits are present in literature (see e.g. [401,402]),
a rigorous theorem for the exclusion of these scenarios holds only at the center of
the system [403].

4.3.2 Extrapolating to inner radii: density profiles

While in the standard approach to solve the Jeans equation, Eq. (4.2), physical
mass profiles are automatically obtained imposing a “physical” parametric ansatz,
there is no a priori guarantee that the procedure proposed here gives physical
outputs. A first basic check is on the positivity of the solution of Eq. (4.10) at
any radius. E.g. in the simplified model introduced above one finds a non-trivial
constraint on the allowed range of orbital anisotropies. This is shown in Fig. 4.3
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Figure 4.3: Isolevel forM = 0 in the plane βc - r/r∗ assuming a Plummer stellar
template: The red dashed line corresponds to the case of constant
σlos and delimits the region above the curve where M > 0 from
the one where the mass becomes negative. Exploiting a quadratic
expression in R for σlos(R), we plot also a dark red (light red dashed)
line that corresponds to a convex (concave) tilt in the extrapolation
of the constant σlos value towards inner radii, using as a reference
c2/c0 = 0.5 and c1/c0 = −0.8, (c2/c0 = −1.4 and c1/c0 = 2.3).

in the plane 2aβc - r/r∗, where isolevels for M = 0 are displaced in the limit of
constant orbital anisotropy, marking the minimum radius at which a solution of
Eq. (4.10) is positive. In particular, the red dashed line corresponds to the case of
constant σlos and Plummer surface brightness. One can see that, within this setup,
positive mass solutions can be extrapolated down to r = 0 only when βc ≤ 0. On
the other hand, the extrapolation to r → 0 critically depends on what is assumed
for the extrapolation of σlos(R) for R→ 0. To sketch this effect we introduce as
sample parametrization for the l.o.s. velocity dispersion the form:

σlos(R) =
 c0 + c1(R/R1/2) + c2(R/R1/2)2 iff R/R1/2 ≤ 1/2 ,

constant iff R/R1/2 > 1/2 .
(4.24)

Fig. 4.3 shows that an inner concave tilt of σlos(R) forces to restrain to progressively
more negative values of βc (with aβ approaching 1), while a concave one allows for
radially anisotropic stellar velocity profiles.

In general, the positivity of the mass is not the only condition we would like to
supplement the Jeans inversion with: e.g. the mass profile should not decrease
going to larger radii (i.e., up to the cutoff of the profile). In the following, we will
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be actually more restrictive and define as a physical outcome of our inversion the
model satisfying the following requirements:

M(r) > 0 , ρ(r) = 1
4πr2

dM
dr

> 0 , dρ
dr
≤ 0 ∀ r > 0 . (4.25)

Assuming that the density of the DM profile ρ(r) provides the dominant component
to the dSph potential well, the third condition ensures the potential well to be
monotonic and hence provides a necessary condition of stability for the model.
Checking a posteriori these conditions, ρ(r) is simply obtained taking the derivative
of the mass function, Eq. (4.10):

4πGN r
2 ρ(r) = − aβ bβ

[
1− aβ −

d log Î
d log r + d log aβbβ

d log r

] (
1
Î

∫ ∞
r

dr′Hβ(r, r′) dP̂
dr′

)

− [1− aβ] d
dr

(
r2

Î

dP̂

dr

)
+ aβ

[
d log aβ
d log r + bβ

](
r

Î

dP̂

dr

)
. (4.26)

Among the three terms on the r.h.s., only the first contributes in the limit of
isotropic motion of the tracers (β → 0 or equivalently aβ → 0); assuming also that
the l.o.s. velocity dispersion is constant, one simply finds:

ρβ=0(r) = σ2
los

4πGN r2
d

dr

(
−rd log Î

d log r

)
. (4.27)

For such profile to have a core (namely: d log ρβ=0/d log r → 0 for r → 0), the
logarithmic slope of the stellar density profile needs to scale as r2 towards the
center of the system. E.g., considering a multi-parameter stellar template like the
Zhao profile [404]:

Î(r) = Î0(
r
rs

)γ [
1 +

(
r
rs

)α] δ−γα , (4.28)

where γ and δ represent the inner and outer slope of the profile, and rs and α

the scale radius and the smoothness of the transition between the inner and outer
scaling, the logarithmic slope is:

d log Î
d log r = −γ − (δ − γ)

(
r
rs

)α
1 +

(
r
rs

)α , (4.29)

and a cored profile is obtained only in case γ = 0 and α = 2. For any γ > 0 the
scaling of the DM profiles jumps to 1/r2, as in the isothermal sphere model.

Looking back at Eq. (4.19), one sees that the Plummer model belongs exactly to
the class of the Zhao profiles providing a core in ρβ=0(r) if σlos is constant. This is
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Figure 4.4: Upper panel: Density profile of the system in the model with constant
σlos and isotropic tracer orbits, for the choices of stellar template: a
Plummer model, an exponential profile for the stellar density and for
the surface brightness. The error bands reflect the uncertainty on the
stellar model assumed as in Fig. 4.2. Each profile is normalized to ρ∗ =
ρ(r∗) in the Plummer case. Lower panel: Density profile assuming the
Plummer surface brightness and β = 0, parametrizing σlos(R) with a
linear expression in R (green band) and angular coefficient varied as
in Fig. 4.2. In the same plot, the effect on ρ(r) due to a departure
from a constant σlos for radii R ≤ R1/2/2, slightly tilting its constant
profile according to a convex (concave) quadratic ansatz in R, i.e.
using c2/c0 = 0.1 and c1/c0 = −0.3 (c2/c0 = −0.1 and c1/c0 = 0.3).
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also shown in the upper panel of Fig. 4.4, where we plot the result for the inversion
within the assumptions of constant σlos and β = 0. In the same plot we show also the
resulting case of the two exponential stellar templates introduced in Eq.(4.22)-(4.23).
Note that an exponential surface brightness implies a logarithmically divergent
stellar number density and hence a scaling of the inner density of (r log r)−2, while
the (cored) exponential stellar density gives a 1/r inner density scaling, standing
in between the cored case and singular isothermal sphere. Indeed, the Plummer
model is the simplest stellar template we can consider which provides a core in the
density profile. Since cored profiles are of particular importance when estimating
minimal values for the l.o.s. integral of squared densities, it is the case we will
concentrate on in the following.

Before discussing the case of β 6= 0, it is interesting to assess how the density profile
is affected by a mild departure from the approximation of constant σlos. The green
band in the lower panel of Fig. 4.4 shows the very mild impact on ρ(r) when we
implement the linear scaling of the l.o.s. velocity dispersion already introduced
in Fig. 4.2. For the quadratic scalings already implemented in Fig. 4.4 – even
using much milder concave and convex tilts for σlos(R) – one sees instead a rather
drastic change in ρ(r), with a sharp enhancement of the inner density for a convex
perturbation and an unphysical solution induced by the concave tilt. Associating
the trends seen in both panels of the figure, one can deduce that a cored profile,
standing also at the border with unphysical solutions, is obtained in the inversion
procedure only via a fine adjustment between the trend imposed by the choice of
stellar number density profile and that from the R→ 0 scaling of σlos(R).

We are now in the position to address the implications on ρ(r) of a non-vanishing
orbital anisotropy, considering first of all the case in which it does not depend on the
radial coordinate, i.e. β(r) = βc. Looking back at Eq. (4.26), also the second and
the third term on the r.h.s. give a contribution to ρ(r); the second term however
has the same r → 0 scaling as the first, hence does not alter the discussion just
presented for ρβ=0(r). The third term instead introduces a non-trivial dependence
on aβc of the inner radial slope. Assuming aβc 6= 1, the scaling can be read out
from the corresponding logarithmic derivative diminished by 2 (taking into account
the r2 factorized on the l.h.s. of Eq. (4.26)):

d

d log r

[
log

(
1
Î

∫ ∞
r

dr′Hβ(r, r′) dP̂
dr′

)]
− 2 = −2− aβc −

raβc dP̂
dr∫∞

r dr′r′aβc dP̂
dr′

− d log Î
d log r .

(4.30)
In general the term −2− aβc is the most relevant, driving ρ(r) to a scaling that
is even more singular than the singular isothermal sphere in case of circularly
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anisotropic profiles; the term in the logarithmic derivative of Î can at most mitigate
the singularity in case Î itself is singular. The third term on the r.h.s. of Eq. (4.30)
is in general less relevant; for constant σlos and a Plummer Î, in the limit r → 0 it
is equal to 0 if aβc ≥ −2, and to aβc + 2 for aβc < −2. In this last case, one would
apparently get a cored profile; note however that ρ(r) is obtained by summing this
contribution to the first two terms in Eq. (4.26), and, in the same limit, these drive
ρ(r) to an unphysical result, with the negative mass solution already discussed
above. Analogously to what is shown in Fig. 4.4, a proper readjustment of the
inner radial scaling of σlos(R) would be needed, requiring however a even more
severe tuning to get physical solutions with a core [405], since σlos(R) impacts also
on the scaling in Eq. (4.30).

A further subtle point regards the limit of aβc → 1. When βc approaches extreme
negative values, the logarithmic derivative of Î appears as an extra multiplicative
factor in the third term on the r.h.s. of Eq. (4.26) and hence its radial scaling
(the logarithmic derivative of the logarithmic derivative of Î) should be added to
Eq. (4.30). Referring again to the Zhao profile in Eq. (4.29), this contribution is 0
if γ 6= 0, it is equal to +α if γ = 0. Back to the Plummer model and constant σlos
one would then find a scaling of the density profile that goes like r−2−aβc+α → 1/r,
as opposed to r−2+aβc valid for 0 < aβc < 1.

In the upper panel of Fig. 4.5 we show the slope of the density at the fixed value
r = 0.05 r∗ as a function of all the set of aβc that provide a physical solution (see
Eq. (4.25)) in our Jeans inversion approach. The resulting blue band in the plot
highlights qualitatively the trend analyzed so far: exploring even smaller ratios
of r/r∗, one would retrieve the linear −2− aβc scaling with sudden transition of
d log ρ/d log r to 0 at aβc = 0 and to −1 at aβc = 1. Once we leave the center of
the dSph to move towards its outskirts, such a behaviour related to the allowed
physical solutions gets relaxed: e.g. at r = r∗/2, within the uncertainty of the
Plummer profile, physical densities are allowed up to βc = 1/2, scaling with a
power law index between −1.5 and 0, as represented by the blue band in the lower
panel of Fig. 4.5. Also shown in the same figure is the value of the profile at the
two chosen radii normalized to ρ∗ = ρβ=0(r∗). In the central region of the system
there is a smooth, but sharp, variation of the density varying aβc , spanning roughly
two orders of magnitude. On the other hand, at large radii the variation in ρ(r) is
within 50%.
The subtle limit aβc → 1 could have been inferred also looking at the behaviour of
the mass profile in the case of purely circular stellar motion. In fact, for the model
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Figure 4.5: Upper panel: Logarithmic slope (blue colour) and density profile nor-
malized at ρ∗ = ρβ=0(r∗) (yellow colour) for a physical model imple-
mented with Plummer stellar density and constant σlos as a function
of the allowed values of aβc and at the fixed ratio r/r∗ of 5%. The
bands are related to the error on the characteristic scale radius of the
Plummer profile. Lower panel: Same kind of plot produced at the fixed
ratio r/r∗ of 50%. Note that the values of aβc for which the model is
physical span in this case the whole possible range, βc ∈ (−∞, 1].
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implementing a constant σlos and Plummer surface brightness Eq. (4.13) goes as:

Mβ→−∞(r) = 2R1/2 σ
2
los

3GN

2
(

1 + r2

R2
1/2

)5/2

− r3

R3
1/2

(
5 + 2 r2

R2
1/2

) (4.31)

and in the limit of r going to 0 becomes

lim
r→0
Mβ→−∞(r) = 4R1/2 σ

2
los

3GN

. (4.32)

We observe that the case of constant orbital anisotropy going to −∞ is the only case
when the condition ofM(0) = 0 is not met in this model, mimicking the scenario
of a black hole at the center of the dwarf supporting the velocity dispersion. With
the logarithmic slope of ρ(r) approaching −3, the mass profile gets a larger and
larger contribution close to r = 0. The log divergence is avoided via the appearance
of the black hole-like feature and hence a discontinuity in the density profile:

ρ(r)β→−∞ = 5σ2
los

6π R2
1/2GN

(
R1/2

r

)2
1 + r2

R2
1/2

3/2

− 3 r

R1/2
− 2 r3

R3
1/2

 , (4.33)

holding a logarithmic slope equal to −1 at the center, as anticipated.

We summarize the results of this section, briefly recapping what we have achieved
so far with our method. First, we have highlighted the existence of possible
unphysical solutions encoded in the general master formula, Eq. (4.10), derived by
inverting Eq. (4.2). Physical solution within this approach require the following
two conditions:

i) M(r) > 0 ∀ r > 0

ii) M(r′) ≥M(r) ∀ r′ ≥ r

Then, we have made a step forward deriving Eq. (4.26) to study the density of
non-rotating pressure-supported systems like dSphs. In order to deal with a physical
density, we have supplemented the latter with the following third condition:

iii) ρ(r′) ≤ ρ(r) ∀ r′ ≥ r

We have primarily focussed our attention on the trends of the inner density profile of
the system for several tracer density templates and l.o.s. velocity dispersion profiles,
see Fig. 4.4, under the assumption of an isotropic tracer motion. Eventually, we
have analyzed in details the benchmark scenario of σlos and stellar Plummer model,
varying the orbital anisotropy βc, as reported in Fig. 4.5.
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4.3.3 J-factor scalings

The simple form of ρ(r) derived in the circular anisotropy limit may be taken as a
good starting point to discuss J-factor trends in the inversion approach considered
here. Indeed, integrating the square of the profile in Eq. (4.33) following the
definition in Eq. (4.1), we can get an analytic form for J . In Appendix B.1 we
provide an expression for the J-factor, see Eq. (B.11), which is valid in the limit
of distance D of the dwarf much larger with respect to the typical transverse size
of these galaxies (note that the “optimal” angular aperture ψ ∼ 0.5◦ is usually
considered in literature, see e.g. [349,352,358]). In the case at hand it gives:

Jβ→−∞ = 1
πD2

σ4
los

R1/2G2
N

5
63

[
68 + 140Z + 245Z3 + 168Z5 + 40Z7

−(68 + 40Z2) (1 + Z2)5/2
]
−−−→
Z→∞

340
63π

R3
1/2

D2

(
σ2
los

R2
1/2GN

)2

,(4.34)

where the quantity in the last brackets is an energy density and the dimensionless
ratio Z = R/R1/2 is introduced to take into account a possible finite size R of the
spherical halo density ρ(r).

Plugging in Eq. (4.34) typical values for dSphs, namely σlos ∼ 10 km s−1, R1/2 ∼ 0.3
kpc and D ∼ 100 kpc, one gets a J-factor of about 1018 GeV2 cm−5. Notice that
this is not a totally realistic case since the black hole mass one would infer from
Eq. (4.32) would be ∼ 107 M�, possibly consistent with kinematical observables,
but likely too large to be found at the center of these galaxies [406,407] .
Even in case of perfect isotropic motion of the stellar tracers an analytic expression
for the density profile, Eq. (4.27), and the J-factor can be provided:

Jβ=0 = 25
4πD2

σ4
los

R1/2G2
N

[
Z (−3 + Z2) (5 + 3Z2)

12 (1 + Z2)3 + 5
4 arctanZ

]

−−−→
Z→∞

125
32

R3
1/2

D2

(
σ2
los

R2
1/2GN

)2

, (4.35)

that is about a factor of 2 larger than the β → −∞ case. The picture for constant
orbital anisotropies related to physical solutions (still taking σlos constant and
Plummer profile) is shown in Fig. 4.6: we plot a function J̃(r) appearing as a linear
measure in the J-factor computation (the area under each curve represents the
J-factor, up to the normalization factor J̃β=0(r∗)), see Eq. (B.10). Therefore, the
general trend for the J-factor at constant σlos can be drawn: starting from the
J-value corresponding to the case of β = 0, the J-factor increases going to smaller
values of βc, with an inner cusp appearing and at the same time a reduction of the
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Figure 4.6: Integrand of the J-factor in radial coordinates according to Eq. (B.10)
for different realizations of constant orbital anisotropies in a model
with constant σlos and with a Plummer stellar template. We as-
sumed a distance D = 102 kpc and an angular aperture ψmax ' 0.5◦,
normalizing J̃(r) at the reference value J̃∗ = J̃β=0(r∗).

contribution at larger radii, up to the exact circular limit, when the central cusp is
suddenly reduced in correspondence to the discontinuity of ρ(r) .

As anticipated, the picture above is expected to provide a rather conservative
estimate of the J-factor: leaving a cored stellar template in favor of a more general
Zhao profile, Eq. (4.28), with γ > 0, or an exponential template, like the Sersic
one, would enhance the inner density profile and hence the J-value; moreover, an
inner convex tilt in the profile of the l.o.s. velocity dispersion would go in the same
direction. A concave perturbation to a flat σlos would offer a way out to lower
the J-value, but would apply only to the cases of circular-like stellar orbits, where
the density is relatively cuspy, to not generate unphysical outputs like the one
previously encountered in Fig. 4.4. Therefore, discarding the “extreme” solution
of the Jeans inversion at β → −∞, the lowest J-factor emerging from a physical
model in Fig. 4.6 corresponds to the case of perfectly isotropic stellar motion, given
by Eq. (4.35).

Within the same framework, this conclusion can be modified once we follow a
more conservative approach in extrapolating the inner density of ρ(r). Indeed,
one may question whether the basic assumptions involved in the derivation of
Eq. (4.2) itself, most importantly the spherical symmetry of the system, should
be trusted down to exceedingly small radii, imposing by construction a choice
of coordinates which are singular in the origin and also extrapolating σlos in a
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region which is simply not accessible to data. An alternative is to introduce a
saturation scale rc so that ρ(r ≤ rc) = ρ(rc); in Fig. 4.6 one sees that a relatively
small inner cutoff, i.e. rc/r∗ ' 0.1, has an important impact on the inner density
profiles with −∞ < βc < 0 and hence on the corresponding J-factors. Focussing
on the area below each curve of Fig. 4.6 one can easily visualize that in the case of
βc ' 0, the J-factor is almost insensitive to an inner cutoff, while for a negative
orbital anisotropy, a very small rc can significantly enhance the J-value with respect
to what can be obtained with a more conservative cut on the inner density. In
the exact circular orbit limit the J-factor is again quite insensitive to the choice
of rc. Note that with the implementation of rc 6= 0, the density ρ(r) related
to very negative orbital anisotropies is now smoothly tracking the – previously
discontinuous – case of circular orbits. Therefore, the flattening of the density due
to the a non-vanishing inner cut allows for lower J-factors than the one obtained
at β = 0. At the same time, one should not forget that lower orbital anisotropies
in this context would imply growing black-hole-like features up to the questionable
point that an important contribution to the total mass of the system comes from
the center of the system. Note also that – in contrast to the approach followed in
this work – a physical black hole at the center of the dSph may be instead modeled
so to strengthen the DM annihilation signal from the galaxy. This possibility has
been explored in, e.g., [408,409].

Focussing on the minimum J-value one can obtain, we can now address the impact
of a radial dependence in the orbital anisotropy function. In what follows we will
assume the orbital anisotropy profile to be well described by the rather general
form provided in [380]:

β(r) =
β0 + β∞

(
r
rβ

)ηβ
1 +

(
r
rβ

)ηβ , (4.36)

offering an interpolation between the tracer behaviour at the center of the system,
set by β0, and the one towards the outer part, set by β∞, with characteristic scale
and sharpness between the two regimes respectively determined by rβ and ηβ.
Note that, on general grounds, for solution to be physical satisfying the conditions
in Eq. (4.25), a sharp radial dependence in β(r) (such that its derivatives would
even impact on the scalings discussed looking at Eq. (4.30)) can be implemented
only together equally sharp variations of σlos(R) in R; we will provide an explicit
example in the next section, enlightening also the level of tuning involved.
Here we will consider instead smoother behaviour for β(r), assuming then, without
loss of generality, a constant σlos and referring to the trends illustrated in Fig. 4.4
for its extensions.

We have seen in Section 4.3.1 that a notion of a mass estimator for the system is
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Figure 4.7: Left Panel: Reference density profile obtained by minimizing the J-
factor at givenM∗. In the same panel, three solutions of Eq. (4.26)
matching the reference ρ(r) in the simple model of constant σlos and
with Plummer stellar profile and with orbital anisotropy profile β(r)
given in Eq. (4.36), defined by the set rβ/r∗ = 3, ηβ = 3, β0 = 0 and
β∞ = −4, 0, 1, light orange, dashed blue and dark red line respectively.
All the profiles are normalized to ρ∗ = ρβ=0(r∗). Right Panel: Corre-
sponding J̃(r) function, Eq. (B.10), whose integral yields the J-factor,
for the same set of density profiles. We assumed a distance D = 102

kpc and an angular aperture ψmax ' 0.5◦, normalizing J̃(r) at the
reference value J̃∗ = J̃β=0(r∗).

to some extent available thorough the mass enclosed in r∗. We can exploit this
information to find the density profile that minimizes the J-factor. This can be
done introducing a simple broken power-law ansatz for ρ(r):

ρ(r) = ρ0

(r1

r

)α1

θH (r1 − r) +
n∑
i=2

i−1∏
j=2

(
rj−1

rj

)αj (ri−1

r

)αi
θH (−∆ri) θH(∆ri−1)


(4.37)

with ∆ri ≡ r − ri, αi being the logarithmic derivative of the profile within the
radial interval [ri−1, ri], θH(r) the Heaviside step function, and the normalization
ρ0 derived from the conditionM(r∗) =M∗. For a givenM∗ (as following from the
approximate relation in Eq. (4.18)), the J-factor can be minimized as a function of
the αi and ri. In Fig. 4.7 we show the outcome of this procedure in the sample case
of 4 power-law indices; we imposed as constraints −31 ≤ αi ≤ 0 and r2 ≤ r∗ < r3:
not too surprisingly the result is that the profile minimizing the J-factor at given

1Here we are also assuming the mass profile to grow at least logarithmically with the radius, as
e.g. for a NFW profile.
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M∗, drawn with a black dashed line, is cored for r . r∗ and it drops to 0 as fast
as possible for larger r . We checked explicitly that such result is independent of
number of power laws assumed to model ρ(r).
This result provides an independent check about our findings at constant orbital
anisotropy: as long as the volume integral of the density profile at r∗ encloses the
whole mass in r∗, i.e. no black-hole-like feature is present, the physical configuration
that has the minimum J-factor happens to be at β = 0, namely when ρ(r) features
an inner core.

In Fig. 4.7 we report with a dashed blue curve the density profile obtained from
the Jeans inversion procedure with β = 0, constant σlos, Plummer stellar profile
and same M∗ of the reference density. The good agreement with the latter in
the innermost part of the profile does not leave so much room for improvements.
Indeed, exploiting the orbital anisotropy form of Eq. (4.36), a good match to the
black dashed line requires β0 = 0 to generate an inner core. Moreover, one needs
rβ & r∗ to have such a core as extended as in the reference case. Consequently, one
ends up to require ηβ & 1 (but not too large in order to not invalidate conditions in
Eq. (4.25)) to get an appreciable departure from isotropy with β∞ 6= 0. We display
this set of results in the left and right panel of Fig. 4.7:

• in the left panel we show two different configurations of the density profile
with β(r) 6= 0 in the outskirts of the dSph, through a mildly circular-like or a
purely radial value assigned to β∞ ; both profiles do not provide a dramatic
improvement in matching the reference density;

• in the right panel we see that the J-value corresponding to the case of β∞ < 0
has slightly increased, while the radial case gives slightly lower values of J
(an effect anyhow at the per mille level). Note however that in the limit
of β∞ = 1 the density is almost turning to an unphysical profile, since an
unphysical ripple is starting to appear.

We can then conclude this section stating that in the search for density profiles that
minimize the J-factor – within a given massM∗ at the radius r∗, as constrained by
kinematical data – a radial dependence in the unknown orbital anisotropy profile
does not significantly alter the picture previously outlined assuming constant βc.
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4.4 Ursa Minor as a study case

4.4.1 A few generalities on the dwarf

Ursa Minor is most often referred to as the target for which both signal and
background are most reliably estimated, providing a very competitive limit on
annihilating DM models. As discussed in the first analysis on Milky Way satellites
by the Fermi collaboration [349] (assuming NFW DM profiles and a fixed angular
acceptance of solid angle ∆Ω = 2.4×10−4 sr), and in agreement with previous anal-
yses [335], Draco and Ursa Minor are the prime targets among the classical dSphs.
Ref. [410], assuming instead a Burkert profile and performing an optimization of
the angular acceptance, has discussed uncertainties in the gamma-ray background
determination, concluding that Ursa Minor is the favorite target from this point of
view, followed by Sextans which however provides less stringent constraints, while
large uncertainties lie in Draco and Sculptor. All this motivated us to consider
Ursa Minor as a suitable sample object for the purpose of our study.

We briefly summarize here the main characteristics of this satellite, specifying some
of the choices for the data set considered in the phenomenological analysis that
follows. The wide field photometry study in [411] finds that Ursa Minor hosts a
predominantly old stellar population, with virtually all the stars formed before 10
Gyr ago, and 90% of them formed before 13 Gyr ago, making it the only dSph
Milky Way satellite hosting a pure old stellar population. Using the magnitude
of the horizontal branch stars and comparing with Hipparcos data on globular
clusters the authors determined the distance of Ursa Minor from the Sun to be
D = 76 ± 4 kpc, in agreement with the determination from [412], but larger than
the mid 1980’s value of 66± 3 kpc quoted in [413, 414]. As pointed out in [415],
the difference is mainly due to the absolute magnitude calibration of the horizontal
branch; standing in between are the values of 70± 9 kpc [416] and 69± 4 kpc [417].
Here we choose to adopt the mean value D = 66 kpc from the old determination
of [413,414], since most often the same has been done in the most recent literature
discussing J-factor uncertainties, see, e.g., [357]. Note that, while we will be mostly
concerned about relative shifts on J-factor determinations connected to the solution
of the Jeans equation, switching from 66 kpc to 76 kpc would imply an overall
decrease in values quoted below of about 25%.

Regarding the stellar surface brightness, the one of Ursa Minor shows the largest
ellipticity among all classical dwarfs (excluding Sagittarius that is suffering heavy
tidal disruption), with mean value of ε ≡ 1 − b/a (where b/a is the minor over
major axis ratio) estimated in [368] to be 0.56± 0.05. Nevertheless, most analyses

121



Chapter 4 – Dwarf spheroidal galaxies and and Dark Matter limits –

treat Ursa Minor as a spherically symmetric system, with stellar surface brightness
to be fitted with a template, most often via the Plummer, the King or the Sersic
model. We will follow [397,398] which suggest to adopt the Plummer model, also
in view of the discussion on stellar number density profiles in the previous section.
While the value of the normalization parameter I0 in Eq. (4.19) does not need to
be specified in the Jeans analysis as well as in its inversion, as projected half-light
radius we assume R1/2 = 0.30± 0.02 kpc, estimate originally obtained in [368] from
a geometric average of the corresponding half-brightness radii along the semi-major
and semi-minor axis of the projected stellar profile.

In what follows, the computation of the l.o.s. integral of ρ2(r) of Ursa Minor will
always refers to pointing to the center of the system with the optimal angular
aperture ψmax = arctan(2R1/2/D) ' 0.5◦, as most often adopted in literature (see
e.g. [291,357]). J-factors will be computed according to Eq. (B.9), integrating up
to an estimated outer radius R = 1 kpc (changing this to an arbitrarily larger
value, as a negligible numerical impact, generally at the per mille level).

4.4.2 Jeans inversion with Ursa Minor data

The starting point of our phenomenological analysis on Ursa Minor is a χ2 fit of
the binned l.o.s. velocity dispersion data from [397]. We consider two possibilities
for the fit:

i) the standard approach in which σlos(R) is computed solving the Jeans equa-
tion, see Eq. (4.4)-(4.6), for given parametric forms of the DM density ρ(r)
and of the orbital anisotropy β(r) (in the following we will refer to this
procedure as parametric fit);

ii) a direct fit of the data within a given functional form for σlos(R) (in the
following: σlos -driven fit).

The result of the fit according to four different benchmark cases is shown in Fig. 4.8.
The two parametric fits correspond to a cuspy and a cored ρ(r), namely a NFW and
Burkert halo density together with the assumption of constant orbital anisotropy.
The other two cases considered are of the two simplest σlos -driven kind, namely
constant σlos(R) and a linear regression in R. The best-fit parameters and the
corresponding χ2

red ≡ χ2/n.d.f. are given in Table 4.1; as it can be seen all the four
benchmarks provide fairly good fits and comparable χ2

red.

Fits of the l.o.s. velocity dispersion data are taken as an input for the procedure
of inversion of the Jeans equation, to reconstruct – at given β(r) – the DM mass
and density profiles, and hence study how the minimal J-factor of Ursa Minor, i.e.
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Figure 4.8: Binned l.o.s. velocity dispersion data for Ursa Minor dwarf galaxy
from [397]. Best-fit curves are also shown according to four benchmark
cases: a parametric fit with a NFW or Burkert density profile together
with the assumption of constant orbital anisotropy, and a σlos -driven
fit assuming σlos(R) to be a constant or a linear function in R.

Table 4.1: Best-fit values for the parameters involved in the fit of Ursa Minor data
from [397] for the four reference cases under scrutiny. We minimize
a χ2 estimator under the assumption of Gaussian distributed data,
using MINUIT package [418] and estimating the confidence level (C.L.)
intervals for the fitted parameters with the MINOS algorithm.

Benchmark Parameters Mean value 68% C.L. χ2
red

NFW
rn [kpc]
ρn [GeV]
βc

0.61
2.59
-0.83

[0.14 , 2.94]
[0.30 , 35.68]

[−3.02 , −0.19]
1.41

Burkert
rb [kpc]
ρb [GeV]
βc

0.28
12.77
-0.36

[0.12 , 0.54]
[5.59 , 55.13]
[−1.63 , 0.10]

1.44

σlos = c0 c0 [km s−1] 8.38 [8.03 , 8.73] 1.32

σlos = c0 + c1
R
R

c0 [km s−1]
c1 [km s−1]

7.94
1.99

[7.32 , 8.56]
[−0.29 , 4.27] 1.35

the 2σ lower limit of the probability distribution of J , depends on the assumed
β(r). The different choices of σlos(R) have been considered to check whether the
parametric fit from an a priori physical model and/or the σlos -driven fit (agnostic,
but non-necessarily corresponding to a physical model) may be introducing a bias
in the analysis. Incidentally, the parametric fits also allow for a cross-check on the
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Figure 4.9: Mass and the density profiles reconstructed via the Jeans inversion
(JI) algorithm taking as input the parametric fit of σlos(R), in case
of the NFW (upper panel) and Burkert (lower panel) best-fit values
reported in Table 4.1.
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accuracy of our numerical implementation of the inversion procedure. In Fig. 4.9
we show profiles reconstructed via Eq. (4.10) compared against the initial NFW and
Burkert parametric forms. The latter are given as an input to derive the parametric
fits for σlos(R), which are displayed in Fig. 4.8. To perform this exercise we used
the best-fit values specified in Table 4.1. The displayed reconstruction of the mass
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profile for both cuspy and cored cases comes with a level of accuracy better than
the per mille in the whole range of the binned dispersion data of Ursa Minor, i.e.
40− 750 pc; relative differences above few percent arise only at inner radii much
smaller than 10 pc. A similar level of accuracy is found for the reconstruction of the
inner density profile, for which we also show the relative percentage difference in the
insets below the two plots. The density ρ(r) of parametric fits can be conveniently
evaluated via an iterative difference quotient algorithm [419] applied toM(r).

4.4.3 Inversion and MCMC with constant anisotropies

When investigating the impact of orbital anisotropy on density profiles and J-factors
the emphasis will be on discussing minimum values consistent with kinematical
observables. In fact, since the DM velocity averaged pair annihilation cross section
〈σv〉 accessible to gamma-ray observations scales with the measured flux φγ as
〈σv〉 ∝ φγ/J , the lowest J-value allowed by Ursa Minor data can be directly linked
to how much the upper bound on 〈σv〉, reported e.g. in [350] for this galaxy, can
be relaxed. As shown in Section 4.3, the minimum J-value turns out to be weakly
affected by a radial dependence of the anisotropy profile as long as σlos(R) is mildly
varying in R as well. Thus, we can restrict our phenomenological analysis to the
simple case of β(r) = βc without loss of generality in the conclusions.

Starting with the four benchmark cases for σlos(R) shown in Fig. 4.8, in the upper
panel of Fig. 4.10 we show results for log10 J as a function of the value assumed for
βc and in the range corresponding to models satisfying the set of conditions for a
physical model, see Eq. (4.25): for the parametric fits only values of βc lower or
equal than the one assumed for computing σlos(R) are allowed; for the σlos -driven
fits, the Jeans inversion procedure gives physical models up to βc = 0. Note,
in particular, that for all the four benchmarks considered, radial-like anisotropy
profiles provide unphysical solutions. This finding is actually in agreement with the
requirement of a positive stellar phase-space density at the center of the system as
studied in Ref. [403]. The behavior of log10 J as a function of βc is qualitatively the
same for all the four scenarios: for a given stellar surface density and σlos(R) when
starting from βc close to 0 and going to progressively larger circular anisotropy the
density profiles becomes progressively more concentrated and hence the J-factor
grows. This growth proceeds up to the level one starts to see the turnaround in
logarithmic slope already appreciated in the upper panel of Fig. 4.5 when getting
close to the pure circular orbit limit. The decrease in J-factor at this turning point
becomes even more pronounced since we are taking here the conservative view of
not extrapolating the profile obtained from the inversion procedure all the way
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to r → 0. We rather introduce an inner density cutoff ρ(r < rc) = ρ(rc), with
rc = 10 pc as sample value avoiding an extrapolation to radii smaller than the order
of magnitude of the radius in the innermost bin of σlos data. The two benchmark
σlos(R) obtained from parametric fits are both characterized by a concave inner
tilt; this makes the density profile shallower than those for the σlos -driven cases at
small negative values of βc and hence we find lower J-factors. On the other hand,
the same concave tilt partially washes out the cancellation we discussed for purely
circular orbits, as well as makes the effect of the internal cutoff less severe, and
hence drives a less pronounced decrease of the J-factor at very large negative βc. In
the upper panel of Fig. 4.10 we show also the 1σ band for the Ursa Minor J-factor
adopted in the Fermi-LAT analysis of Ref. [291] (scaled to the same dwarf distance
D adopted here): the minimum J-values for the parametric fit cases are obtained
for the same βc implemented to generate the σlos(R) profiles and are within 2σ
with respect to Fermi quoted values (we take the Fermi band as visual guide only
and do not intend to make any statistical statement at this point). For the case
of σlos -driven fits, i.e. when assuming a constant σlos(R) or a linear regression,
the minimum J turns out to correspond to the circular orbit limit; in particular
to the sample benchmark with constant σlos(R) the minimum J is roughly 4σ
away from the nominal value in [291] for Ursa Minor, driving – as naive estimate
– a relaxation of the extrapolated limit on 〈σv〉 of a factor of few. On the other
hand, these correspond to rather extreme configurations, with, as explained in the
previous section, extreme cusps which would be developing in the very inner region
of the system (even below the cutoff radius we are considering), finally shrinking
to a 1/r profile and a central “black hole”. The mass at the center of the system
for βc . −100 would be of the order of 106 M� or larger: while physical black
holes could be motivated in connection to flat inner densities, see, e.g., scenarios in
Ref. [420], such black-hole masses seem to be at the edge of current observational
limits available for Ursa Minor [421,422].

In order to provide a more robust statistical assessment of these findings, we also
present here the results of a Bayesian fit of Ursa Minor σlos binned data, computing
the J-factor through the inversion formula for a finite grid of constant orbital
anisotropies. We have exploited for the purpose two different parameterizations
of σlos(R), namely the same linear expression in R already introduced, and the
following polynomial form (recall that R is the outer radius and we picked as
reference value 1 kpc):

σlos(R) = c0 + c1/2

√
R

R + c1
R

R + c3/2
R

R

√
R

R . (4.38)
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Figure 4.10: Upper panel: J-factor as a function of constant orbital anisotropy
βc for the four benchmark cases at hand. An inner cut of 10 pc
is applied to all the physical densities as described in text. In the
plot also the representative 1σ band for the J-factor of Ursa Minor
assumed by Fermi-LAT in the most recent analysis on DM limits from
dSphs [291]. Lower panel: 68% and 95% probability region associated
to the J-factor as a function of βc from the MCMC we performed –
in the context of the Jeans inversion approach proposed – with the
BAT library [423]. We considered two different parameterizations of
σlos(R), as reported in the legend.
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This form can nicely interpolate among the four benchmarks in Fig. 4.8 within a
broader set of behaviours, including eventually convex and concave tilts at small R.
To perform our MCMC analysis we use the Bayesian Analysis Toolkit library
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Figure 4.11: P.d.f. posteriors of the parameters which define the polynomial form
for the l.o.s. velocity dispersion profile according to Eq. (4.38).

[423], assigning generous flat priors to the coefficients defining σlos(R) – namely
c0 ∈ [−30, 30], c1/2 ∈ [−200, 200], c1/2 ∈ [−250, 250] and c3/2 ∈ [−500, 500] – and
performing a total of 108 iterations distributed in 20 chains. In each iteration of
the MCMC we invert the Jeans equation for all the set of βc considered, computing
the density profiles via Eq. (4.26) and the J-factor when the physical conditions
in Eq. (4.25) are met. As a result of this involved procedure, we are eventually
able to compute the posterior probability density function (p.d.f.) of log10 J for
each of the selected constant anisotropies, i.e. without any marginalization over
unknown parameters unrelated to observable quantities. Indeed, in contrast to other
approaches, we wish to note that the MCMC we have performed here actually aims
at sampling the parameter space related to a simple phenomenological expression
for σlos(R), without any further theoretical or experimental input. As shown in
Fig. 4.11, the posterior distribution of the parameters defined in Eq. (4.38) are
very well constrained despite the initially assigned large flat priors.

In the lower panel of Fig. 4.10, we plot the 68% and 95% probability region of
log10 J for orbital anisotropies in the range −100 . βc ≤ 0, finding again for the
linear parametrization of σlos(R) that the minimum value of J happens in the
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Figure 4.12: Posterior probability density function of log10(J) for a constant
orbital anisotropy βc = 0,−1,−107 obtained through our inversion
of the spherical Jeans equation. The darker colored area in each
distribution corresponds to the 68% probability region, the shader
one accounts for the 95%.

circular orbit limit, with precise value sensitive to the choice of inner cutoff radius
at 10 pc. While the more general parametrization in Eq. (4.38) encodes the linear
behaviour as well, the latter becomes now only a special realization of it, and
consequently populate the tail of the distribution in log10 J when one probes lower
ad lower stellar anisotropies. This trend of the posteriors of log10 J is summerized
in Fig. 4.12, where we show three illustrative cases, highlighting with the color code
their 68% and 95% probability area (defined from the local mode of the p.d.f.).

Eventually, we can conclude that the lowest J-value is again found in correspondence

Table 4.2: 68% and 95% minimum J for the two different parameterizations of
σlos(R) used in our MCMC and related to our Jeans inversion approach.
In the last column we report the relaxing factor one can naively derive
for the constraints of DM particle properties comparing our J-value
at 95% probability with the 2σ Fermi-LAT minimum value for Ursa
Minor in [291], namely min JFermi

@ 2σ = 3.5× 1018 GeV 2 cm−5 after the
appropriate rescaling to the distance of the dSph used in our analysis.

σlos(R) min J@68%(95%) [GeV2 cm−5] min JFermi
@ 2σ /min J@95%

c0 + c1R/R 1.09× 1018 (9.12× 1017) 3.83
Eq. (4.38) 2.34× 1018 (1.86× 1018 ) 1.88
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to the isotropic stellar motion when considering the case of Eq. (4.38), while it
is provided by the limit of circular-like orbits in case a linear form for σlos(R) is
implemented (together with the caveats of the related black-hole feature discussed
above). For what concerns the bounds on the cross section of a DM annihilating
pair, in Table 4.2 we report the naive maximum relaxation one can apply to these
limits for the study case of Ursa Minor: at 2σ upper bound on 〈σv〉 should be
relaxed by a factor roughly ranging from 2 to 4.

4.4.4 Minimal J-factors for NFW and Burkert profiles

While the general impact on J for spatially dependent orbital anisotropies has been
qualitatively discussed in Section 4.3, we try to address here a slightly different,
though related issue: within a physically motivated ansatz for the DM density
profile of the system, what is the orbital anisotropy profile compatible with the
velocity dispersion data that, at the same time, provides the smallest J-factor
possible for the galaxy?
Assuming a rather general form for the profile of β(r), we can answer this question
quantitatively taking again Ursa Minor as our study case.

Using as reference parametric forms the NFW and Burkert DM density profiles,
these are completely determined by only two parameters, namely a characteristic
scale radius rs and a normalization ρ0. As discussed in Section 4.3.1, in case of
nearly flat projected l.o.s. velocity dispersion profile in the outskirts of galaxy –
as, for instance, shown by Ursa Minor kinematical data in Fig. 4.8 – the massM∗

enclosed within the radius r∗ (close to the half-light radius of the stellar profile and
defined as the radius at which its logarithmic slope is equal to -3, see Eq. (4.17))
is nearly independent of the assumed orbital anisotropy profile. So, to a good
approximation, we can trade the normalization of the DM profile ρ0 byM∗:

M∗ = 4π
∫ r∗

0
dr̃ r̃2 ρ(r̃; ρ0, rs) ⇒ ρ0 = ρ0(M∗, rs) . (4.39)

This expression then sets the normalization of ρ to be a function of rs andM∗,
with in turn the latter being set in terms of the normalization of σlos. At fixedM∗,
the J-factor for the profile becomes only a function of rs and selecting the minimum
J fixes this parameter as well, fully determining the density profile. Eventually,
assuming a definite form for the stellar anisotropy, one is able to read the profile
from a fit of the dispersion data.

In Fig. 4.13 we show the logarithm of J as a function of the scale radius rs for
both the NFW and Burkert cases fixing M∗ = 1.82 · 107M�, as follows from
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Figure 4.13: Upper panel: J-factor for the NFW and Burkert profiles as a func-
tion of the scale radius rs, after fixing the density normalization
assumingM∗ = 1.82 · 107M�. The dashed horizontal lines highlight
the minimum J-value compatible with such constraint. Lower panel:
The fit of the l.o.s. velocity dispersion data of Ursa Minor considered
in our analysis using NFW and Burkert profiles that minimize the
J-factor according to the constraintM∗ = 1.82 · 107M�.
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applying Eq. (4.18) to the Ursa Minor σlos binned data. Analogously to the
results in Section 4.3, for both the NFW and Burkert profiles, the minimum of J
corresponds to an intermediate value for the scale radius rs such that the density
profile flattens as much as possible in the inner part, and falls off rapidly in the
outskirts. Comparing the two cases, the lowest J-value corresponds once again to
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Table 4.3: Nominal best-fit values of the orbital anisotropy parameters (ηβ & 103)
fitted using NFW and Burkert profiles that minimize the J-factor
according to the constraintM∗ = 1.82 × 107M�.

ρ(r) rs [kpc] log10(J [GeV 2cm−5]) β0 β∞ rβ [kpc] χ2
red

NFW 1.16 18.55 -8.0 0 0.15 0.98
Burkert 0.25 18.41 -5.0 0 0.15 1.17

the most cored of the two density profiles. The radius rs that minimizes J at fixed
M∗ is reported in Table 4.4.

Having selected within this approach one NFW and one Burkert profile, we search
for a compatible orbital anisotropy profile through Eq. (4.4)-(4.6), using Ursa Minor
velocity dispersions data and the 4 parameter function in Eq. (4.36) for β(r). The
corresponding best-fit σlos(R) are plotted in the upper panel of Fig. 4.13 and are
generated in both cases by a β(r) making, in correspondence to the deep in σlos(R),
a violent transition between a mild circular orbit regime to a purely isotropic tracer
motion. The nominal best-fit values of the anisotropy parameters are collected in
Table 4.4, together with the χ2

red of the fit related only to the stellar anisotropy
degrees of freedom.

Since the value of log10(J [GeV2 cm−5]) for Ursa Minor reported by the Fermi
collaboration in [350] is respectively 18.92± 0.19 and 18.82± 0.20 for an assumed
NFW and Burkert density (considering a distance D of 66 kpc), according to our
findings in Table 4.4, the minimum possible J compatible with a mass estimator
of 1.82 × 107M� and a NFW or Burkert profile is essentially within the 2σ
range of the corresponding Fermi-LAT quoted value. An uncertainty toM∗ can
be naively associated from a simple constant fit of the dispersion data, namely
σM∗/M∗ = 2 σσlos /σlos. Then, at 2σ we find that the minimum mass estimator
isM∗ = 1.52 × 107M� and the corresponding J-factor in Table 4.4 shifts to the
value of 2.49× 1018 GeV2 cm−5 for the NFW profile, 1.8× 1018 GeV2 cm−5 for the
Burkert case. It follows that relaxation of the DM particle physics limits for the
cuspy or cored case results only in a factor of 1.39 or 1.46, respectively.

Hence, we conclude that, when assuming standard functional forms for the DM
density profile, such as NFW and Burkert ones, as long as there is a good notion
for the mass estimator of the dwarf, we do expect Fermi-LAT bounds on DM pair
annihilation to be generally robust, even against the extreme case of a dramatic
radial dependence in the profile of the tracer orbital anisotropy.
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4.5 New J-factor estimate for the eight Classicals

On the basis of the general trends derived in Section 4.3 with the inversion
method implemented for the spherical Jeans equation, a data-driven analysis
concerning a conservative estimate of the J-factor can be applied to any dwarf of
adequate kinematical data, along the lines of the detailed study carried out for
Ursa Minor. The requirement is certainly fulfilled for all the classical satellites of
the MW [340–343].

Table 4.4: Structural parameters (distance taken from [342], half-light projected
radius from [368]), and best-fit value a constant l.o.s. velocity dispersion
reported for all the classical satellites of the MW. The kinematical data
for the dSphs are taken from [397].

Classical dSph D [kpc] R1/2 [kpc] σlos = c0 ± σc0 [km/s] χ2
red

Ursa Minor 66 0.30 8.38± 0.34 1.32
Sculptor 79 0.26 8.32± 0.18 1.40
Draco 82 0.20 8.62± 0.40 0.77
Sextans 86 0.68 5.99± 0.27 1.00
Carina 101 0.24 5.76± 0.21 1.40
Fornax 138 0.67 9.57± 0.14 1.21
Leo II 205 0.15 7.04± 0.45 0.44
Leo I 250 0.25 9.17± 0.41 0.47

In Table 4.4 we report distances from the Sun [342] and projected half-light radii
inferred from photometric measurements [368]. Using the set of l.o.s. velocity
dispersion data available in [397] for all the eight galaxies, we also report the best-fit
value to the binned kinematical data points of each object assuming a spatially
constant l.o.s. velocity dispersion profile, together with its standard deviation and
the reduced χ2. From the latter we can see that kinematical data of all the classical
dwarfs adequately support the simple ansatz of constant l.o.s. velocity dispersion.
A pretty low reduced chi-squared, χ2

red ∼ 0.45 , is obtained for Leo I and Leo II
dwarf galaxies. This is not really due to the inadequacy of the ansatz of a constant
dispersion profile, but mostly because of the modest number of stellar members
lying in these two objects, and because of the relatively large errors attached to the
measured velocity dispersions, probably related to distance that separates them
from us.

Using as a fiducial model for each object a constant σlos = c0 and a Plummer
surface brightness with characteristic radius R1/2, Eq. (4.26), supplemented also by
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Table 4.5: Minimum J-factor at 1σ and 2σ obtained for all the classical dSphs
using the informations in Table 4.4. All the J-factors have been com-
puted using an internal cut for each dwarf of 10 pc and the outer radius
R reported below. The comparison with the corresponding value quoted
by the Fermi-LAT collaboration is carried out taking into account the
appropriate rescaling to the distance of the dSph used in our analysis.

Classical dSph R [kpc] min J@ 1σ(@ 2σ) [GeV2 cm−5] min JFermi
@ 2σ /min J@ 2σ

Ursa Minor 1.0 1.10× 1018 (9.18× 1017) 3.80
Sculptor 1.25 9.56× 1017 (8.74× 1017) 2.36
Draco 2.0 1.22× 1018 (1.0× 1018 ) 2.59
Sextans 1.25 6.83× 1016 (5.63× 1016 ) 12.88
Carina 1.0 1.40× 1017 (1.20× 1017 ) 3.94
Fornax 2.0 2.18× 1017 (2.05× 1017 ) 3.34
Leo II 2.0 1.09× 1017 (8.28× 1016 ) 2.70
Leo I 2.2 1.42× 1017 (1.18× 1017 ) 1.91

the assumption of constant orbital anisotropy, reduces to:

ρβc(z) = 5 c2
0

4πGNR2
1/2

(1− aβc)
3 + z2

(1 + z2)2 + aβc(3− aβc)
[
− 1

1 + z2

+
(

6− aβc −
5

1 + z2

)
z−aβc−2(1 + z2)5/2

∫ ∞
z

dz̃
z̃1+aβc

(1 + z̃2)7/2

] , (4.40)
where we have set by convenience z ≡ r/R1/2. From Eq. (4.40) we can easily
compute for the fiducial model of each dwarf the corresponding J-factor as a function
of the constant orbital anisotropy, Jβc [c0]. In this framework, the comparison with
Fermi-LAT bounds can now be easily obtained by defining that the N σ lower
bound on J corresponds simply to:

min J@Nσ ≡ min
βc∈(−∞,1 ]

Jβc [c0 −Nσc0 ] =
(
c0 −Nσc0

c0

)4
min

βc∈(−∞,1 ]
Jβc [c0] . (4.41)

The above definition is statistically meaningful as long as the probability distribution
of J at given βc is Gaussian. In the MCMC analysis of the previous section this
has turned out to be true for the case of the linear parametrization of σlos(R).
Consequently, the assumption of Gaussianity underlying Eq. (4.41) is well justified.

In Table 4.5 we have collected our main results. All the J-values have been
computed assuming ψmax = 0.5◦, since this is most often quoted in literature as the
optimal angular acceptance [291,357]. Moreover, in integrating Eq. (4.40) along
the l.o.s., we have implemented an inner cut of 10 pc and an outer cut R on the
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Figure 4.14: J-factor as a function of constant orbital anisotropy βc for all the
classical satellites of the MW. The dashed green line represents
the J-value corresponding to the best-fit constant l.o.s. velocity
dispersion reported in Table 4.4, while the darker (lighter) green
band encapsulates the 1σ (2σ) statistical uncertainty associated to
σlos. Also reported the 1σ band of the J-factor used in Ref. [291].
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density profile, as reported in Table 4.5. As for Ursa Minor, the choice of these
values are again related to the order of magnitude of the first and last projected
binned radius of the kinematical data set of each dSph in Ref. [397]. Finally, we
show in Fig. 4.14 the J-factor for all the Classicals as a function of the constant
anisotropy parameter βc up to βc ' −103. We remind that, within the chosen
working setup, physical profiles are obtained from Eq. (4.40) only for βc ≤ 0.

As it stands out from Table 4.5 and Fig. 4.14, the economical method presented
here yields for Ursa Minor results affine to the ones obtained in the previous section
with the more involved MCMC analysis. Indeed, the integration for the J-factor
is dominated by the inner part of the density profile, where the linear term in
σlos(R) = c0 + c1R/R is suppressed both by R/R � 1 and c1/c0 � 1 . In Fig. 4.14
we find also the same behavior of J as a function of βc for all the Classicals, given
the same underlying fiducial model. From Fig. 4.14 we can clearly see that the
dwarfs that present the largest span in J – more than two order of magnitudes for
Sextans and Fornax – are also the ones characterized by the larger half-light radius.
This trend is also confirmed by the fact that the dashed green line of the best-fit
for Leo II covers less than one order of magnitude in J .

In Table 4.5 we report min J@ 1,2σ of each of the analyzed objects. We can observe
from Table 4.5 that each of the Classicals cannot relax the corresponding Fermi-
LAT upper bound at 2σ on s-wave DM thermal relics by more than a factor of
∼ 4, with the notable exception of Sextans, in which case the 2σ Fermi upper
limit on 〈σv〉 gets relaxed according to our conservative estimate of the J-factor
by more than one order of magnitude. The J-factor of Sextans adopted by the
Fermi collaboration seems to be quite large also if compared with other recent
estimates in literature, see, e.g., Ref. [357]. In particular, comparing our results
about min J@ 1,2σ with those reported in Ref. [357] for the MW satellites, we never
find differences with factors greater than ∼ 5 .

4.6 Open problems and opportunities

While sensitivity projections for DM limits/detection in the analysis of dwarf
spheroidals remain particularly promising [424–426], pinning down a definite form
for the DM profile of the MW satellites may be definitely of much broader relevance.
As briefly mentioned in Chapter 1, within a cosmological context, dwarf spheroidal
galaxies play today a central role in the understanding of possible controversies
related to the small-scale predictions of the standard cold DM (CDM) paradigm.

CDM high-resolution N-body simulations typically predict subhalo mass functions
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of MW-sized main halos scaling like dN/dM ∝M−1.9 [427], with about 20% of the
mass in subhalos, and a large number of not-yet-observed satellites in the MW.
However, the “missing satellite” problem [428] has potentially been ameliorated
with the advent of new surveys sensitive to extremely low-luminosity dwarf galaxies
such as the recently discovered ultra-faint dSphs [348].

On the other hand, issues about the inner shape of the density profiles of the DM
halos hosting galaxies – the “core-cusp” problem [429] – and the phenomenological
inadequacy of NFW-inner cusps arising in CDM simulations [374], are still very
debated subjects in literature, not only connected to the physics of baryonic feedback
and star formation, but possibly also related to the fundamental properties of
DM particles [430,431]. For what concerns dwarf spheroidal galaxies, this issue is
still very open since – as we have explicitly seen in our study case of Ursa Minor
– kinematical data can support fairly well both cusps and cores in virtue of the
mass-anisotropy degeneracy. From this point of view, it would be very interesting
to investigate the “core-cusp” problem in MW satellites putting our inversion
method in the context of a mass-anisotropy breaking pattern. While attempts
to break the mass-anisotropy degeneracy based on the identification of different
chemo-dynamical stellar components provides possible evidence of a core in Fornax
and Sculptor [386, 387], opposite conclusions can be reached as well [388]. On
top of the multi-component stellar populations, another possibility to attack the
mass-anisotropy degeneracy may be offered by higher moments of the Boltzmann
equation for the tracers of the system. For instance, its fourth moment yields a set
of differential equations connected to the (potentially) observable kurtosis [384,385].
An inversion method for higher moment equations is still missing.

Finally, risen only few years back, we have to face today the so-called “too big to
fail” problem [36]. Indeed, the existence of a good mass estimator at the half-light
radius according to Eq. (4.18) allows one to have a reliable measurement of the
subhalo mass function in the MW, to be compared with the expected population
of subhalos found in numerical simulations of MW-size halos. It turns out that
CDM-predicted subhalos are usually too massive and too numerous to be easily
identified with the typical internal kinematics from known MW dSphs. At the
same time, quite intriguingly, such predicted very massive subhalos should have
triggered star formation much more efficiently than in MW satellites. While our
study confirms the goodness of the MW satellite mass estimator at the basis of the
“too big to fail”, the very recent CDM N-body simulation in Ref. [432] seems to
suggest that (possibly fine-tuned) mechanisms of baryonic physics may have played
a quite relevant role in the evolution history of the predicted, but not detected,
massive subhalos, in contrast to the original expectations from Ref. [36].
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Closing remarks
A striking set of evidences is presently supporting the existence of Dark Matter
(DM), i.e. the main constituent of the matter density in our observable Universe:
making up roughly 26% of the total energy budget present in the Universe, they
span an impressive range of scales in orders of magnitude, bracketed from below
by the kpc size of the smallest observed galaxies, and from above by the tens of
Mpc of the large-scale structures in the local Universe, aiming to a comprehensive
picture about Nature itself. As of now, we know that DM has been playing the
role of main character in accounting for the formation and evolution of structures,
at the origin of life itself. However, after more than 80 years from the first indirect
gravitational evidence, we still have very few informations about the fundamental
building blocks of this dominant matter component. Addressing the “DM problem”
is one of the most compelling challenges to undertake in Science today.

Thanks to the experimental sensitivity reached by a multitude of astrophysical and
cosmological surveys in the last few decades, the set of different measurements we
have nowadays at our disposal for the study of DM constitutes the pieces of an
intricate puzzle. Once we have joined them all together, we get an informative
identikit of some new degrees of freedom pertaining to the world of Particle Physics,
rather than pointing to a modification of the laws of gravity or to the presence
of a large amount of very faint massive compact objects. The resulting picture
cannot single out an exact profile about the particle DM nature. However, a very
simple paradigm like the freeze-out of a cold thermal relic in the early stages
of the primordial Universe fits particularly well with deeply motivated theories
beyond the Standard Model such as, e.g., Supersymmetry, projecting us onto the
phenomenological window of the weak interactions of a weak-scale massive particle.

On the basis of these general considerations, illustrated in more detail in Chapter 1,
the work of this thesis has been devoted to the study of the imprints in the gamma-
ray sky coming from the annihilation of DM thermal relics, possibly occurring
still today in galactic halos. This scientific investigation is generally demanding,
but certainly urgent in these times, given the golden era we are living in with
very precise measurements in the gamma-ray band, that stem from the realm of
ground-based Cherenkov telescopes and, most importantly, from the continuous
monitoring of the sky performed on-flight by the Fermi-LAT experiment.

In particular, in Chapter 2 we have set up the stages for the study of the gamma-ray
sky, scrutinizing its main component coming from the interaction of cosmic-ray
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particles with the interstellar medium. We have shown how gamma rays represent a
complementary tool to learn about the propagation properties of charged particles
out of the context of the set of cosmic-ray measurements available in our local
environment. We have presented a phenomenological cosmic-ray propagation model
characterized, in particular, by a radial dependence on the spectral index of the
diffusion coefficient, reproducing state-of-the-art high-energy gamma-ray data, and,
moreover, making distinctive predictions for the flux of Galactic neutrinos, with a
detailed comparison with current and future neutrino observatory sensitivities.

We have scrutinized in Chapter 3 the claim of a clean gamma-ray signal from
DM particles annihilating in the innermost central part of our Galaxy, analyzing
the current gamma-ray data from the Galactic center region with the attempt
of providing a careful interpretation of them. We have shown that, indeed, a
net extended spherical excess – compatible with DM annihilation – stands out
in the data as long as we completely ignore the effect of the high star-formation
rate present in the region, that reasonably turns out into an injecting source of
cosmic-ray particles previously missed in the literature. As highlighted in the final
part of the chapter, further independent investigation of this effect by other groups,
including the Fermi-LAT collaboration itself, leads to conclusions similar to those
obtained in our study. This confirms the important role played by the physically
expected injecting source of cosmic rays at the center of our Galaxy in relation to
the interpretation of the so-called “GeV excess” at the Galactic center.

Finally, in Chapter 4, in opposition to the case of the Galactic center, we have
analyzed the DM content of some of the most compelling targets for a DM particle
indirect detection, the dwarf spheroidal galaxies of the Milky Way, characterized by
large mass-to-light ratios, low backgrounds/foregrounds, and being relatively close
to us. We have critically refined the estimate of astrophysical boost factors for a
gamma-ray signal from DM annihilation in these objects. We have developed for
the purpose a novel approach based on a direct link with the available kinematical
and photometric informations for these galaxies. We have carried out in detail the
study case of Ursa Minor and – as last original contribution in the thesis – we have
extended the analysis to the whole set of classical satellites of the Milky Way. In
light of the comparison of our findings with the literature, we can conclude that the
classical dwarf spheroidals stand out as remarkable “DM laboratories”, offering to
us quite robust constraints from null findings in indirect DM searches and possibly
offering new insights to go beyond the standard lore of the cold DM paradigm.
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A Appendix A

A spiky investigation on

subregions around the GC

In Chapter 3, the predictions of the benchmark model introduced in Section 3.2.2
have been compared against the case of Dark Matter (DM) within the region
of interest (ROI) defined by Galactic longitudes |l| < 20◦ and Galactic latitudes
2◦ <|b|< 20◦. The results of the template fitting in the ROI show that the model
proposed provides an overall good description of data, competitive with the one
hold by DM. Using the best-fit components of our study in the full ROI, we can
further investigate the comparison between the spike scenario and the DM one in
a set of subregions of the ROI. In literature, the analysis of slices of the ROI has
been indeed relevant to establish the morphological characterization of the excess
emission, turned out to be almost spherical around the GC [292].

We report below the performance of our reference case against the DM one looking
at the residuals with data in the predicted spectrum for each of the subregions
defined in Table A.1 and illustrated in Fig. A.1. As displayed in Fig. A.2 - A.9, the
reference case provides a good description of data in each of the subregions within
systematic uncertainties. While the DM offers a slightly better agreement with
data, the spike scenario can reproduce the morphology of the observed emission
from the ROI with comparable accuracy.

ROI Definition ΩROI [sr]

Region I, II
√
l2 + b2 < 5◦ , ± b > |l| 6.0 · 10−3

Region III, IV 5◦ <
√
l2 + b2 < 10◦ , ± b > |l| 1.78 · 10−2

Region V, VI 10◦ <
√
l2 + b2 < 15◦ , ± b > |l| 2.93 · 10−2

Region VII, VIII 5◦ <
√
l2 + b2 < 15◦ , ± l > |b| 3.54 · 10−2

Table A.1: Definition of the subregions for the morphological characterization of
the GC excess emission. We remark also that every ROI has |b| > 2◦ .
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Figure A.1: Subregions of the full ROI, namely |l| < 20◦ and 2◦ <|b|< 20◦.

Figure A.2: Predicted spectrum for the spike and DM scenario in Region I.

Figure A.3: Predicted spectrum for the spike and DM scenario in Region II.
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Figure A.4: Predicted spectrum for the spike and DM scenario in Region III.

Figure A.5: Predicted spectrum for the spike and DM scenario in Region IV.

Figure A.6: Predicted spectrum for the spike and DM scenario in Region V.
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Figure A.7: Predicted spectrum for the spike and DM scenario in Region VI.

Figure A.8: Predicted spectrum for the spike and DM scenario in Region VII.

Figure A.9: Predicted spectrum for the spike and DM scenario in Region VIII.
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B Appendix B

J-factors and Jeans inversion

in spherical systems

B.1 Computing J-factors: the easy-peasy pieces

The angular + line-of-sight integral of a spherically symmetric source takes a simple
form when the observer looks at the center of the source. In such case, introducing a
change of coordinates that fully exploits the symmetry of the problem, the J-factor
computations reduces to a single radial integration over the DM density squared
times an appropriate radial window function. We briefly resume here the steps to
perform this convenient mapping.
Consider an observer O pointing towards the center of the astrophysical system
under study, located at the distance D, with an angular acceptance ∆Ω. In the
coordinate system centered on O – see Fig. B.1 – Eq. (4.1) can be written as:

J = 2π
∫ cosψmax

0
d cosψ

∫ `+(ψ,R)

`−(ψ,R)
d` ρ2 [r(ψ, `)] , (B.1)

where ψmax is obtained from ∆Ω = 2π
(
1− cosψmax

)
and R is the radial boundary

for the spherical system. In Eq. (B.1) the explicit expression for r(ψ, `) is given by
the geometrical relation:

r2 = `2 +D2 − 2 `D cosψ , (B.2)

and the extremes of integration `+ and `− are the solutions of the equation above:

`±(ψ, r) = D cosψ ±
√
r2 −D2 sin2 ψ . (B.3)

The values of ψmax, R and D correspond to the set of data needed to determine the
J-factor. Note that one can also trade line-of-sight angles for line-of-sight projected
radii, replacing ψmax with Rmax as given by tanψmax = Rmax/

√
D2 −R2

max. In light
of the axial symmetry along the line of sight of O, it is sufficient to perform a
two-dimensional mapping in order to move to the coordinate system centered on
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the halo density. Following Fig. B.1, the new set of coordinates (R, r) we want to
introduce is related to the starting pair (`, ψ) by:

d
(

cosψ
)

= dR
∂

∂R

√
1− R2

D2 and ± d` = dr
∂

∂r

(√
D2 −R2 ±

√
r2 −R2

)
.

(B.4)
Thus, we can easily rewrite Eq. (B.1) in the new coordinate system as:

J = 4π
D2

∫ Rmax

0

dRR√
1− R2

D2

∫ R
R

dr√
1− R2

r2

ρ2(r) , (B.5)

and exchanging the order of integration we get:

J = 4π
D2

 ∫ Rmax

0
drρ2(r)

∫ r

0

dRR√(
1− R2

D2

)(
1− R2

r2

) (B.6)

+
∫ R
Rmax

drρ2(r)
∫ Rmax

0

dRR√(
1− R2

D2

)(
1− R2

r2

)
 , (B.7)

where now the R integral can be performed analytically in both terms. Introducing
the dimensionless radial function:

W(r; s, t) ≡ 1
D2

∫ t2

s2

dR2

2
√(

1− R2

D2

)(
1− R2

r2

) = r

D log
(√
D2 − t2 −

√
r2 − t2√

D2 − s2 −
√
r2 − s2

)
,

(B.8)

R

O

R r
ψ

D

�+
�−

Figure B.1: L.o.s. integration (light blue segment) in (R, r) coordinates (in red)
of an observer O with angular aperture ψ, placed at a distance D
from a spherical system of finite size R.
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we obtain then that the J-factor can be evaluated by a single integral formula:

J = 4π
∫ R

0
dr J̃(r) , (B.9)

where the integrand J̃ is a function of the radial coordinate r and carries the
dimension of ρ2(r):

J̃(r) = ρ2(r) [W(r; 0, r) θH(Rmax − r) +W(r; 0, Rmax) θH(r −Rmax) ] , (B.10)

with θH(r) being the Heaviside step function.
In case of r ≤ Rmax and Rmax � D, the function W(r; 0, r) is very well approxi-
mated by r2/D2, while for greater radii W(r; 0, Rmax) rapidly decreases towards
the limit 1−

√
1−R2

max/D2.
Thus, choosing an angular aperture ψmax so that Rmax/D � 1, since usually
ρ(r) rapidly approaches 0 with increasing radius, Eq. (B.9) can be numerically
approximated as:

J ' 4π
D2

∫ R
0
dr r2 ρ2(r) . (B.11)

In Section 4.4 we presented all the results for the computation of the J-factor making
use of the full expression in Eq. (B.9)-(B.10). However, the approximation above
performs better than the per mille level already for D ∼ O(102) kpc, ψmax . 1◦.
Note that if we would have studied the case of decaying DM particles (see e.g. [433])
rather than DM pair annihilation, the analogous of Eq. (B.11) would have allowed
us to focus directly on the mass profile, Eq. (4.10), without the need to compute
the density profile and to argue the validity of its extrapolation to inner radii.

B.2 Jeans inversion in spherical systems: the details

In this appendix we review the “inversion” of the Jeans equation for spherical
systems. We start following the procedure outlined in [364], and we end with a
general expression for the inverted mass profileM that holds for any generic l.o.s.
velocity dispersion and surface brightness profile. Our derivation is valid for a
generic orbital velocity anisotropy, requiring only β(r) 6= 1 ∀ r. Inversion formulas
for specific anisotropy models can be also found in [363].

A good starting point to derive the inversion formula is the definition of the projected
dynamical pressure, P (R) ≡ σ2

los(R) I(R), see Eq. (4.6), split into two integrals
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with integrand modified by adding and subtracting the term p(r) β(r)/
√
r2 −R2:

P (R) =
∫ ∞
R2

dr2
√
r2 −R2

p(r) [1− β(r)] +
∫ ∞
R2

dr2
√
r2 −R2

(
r2 −R2

) p(r)β(r)
r2 ;

(B.12)
the second contribution on the r.h.s. can be rewritten as:

∫ ∞
R2

dr2√r2 −R2 d

dr2

[
−
∫ ∞
r2

dr̃2 p(r̃)β(r̃)
r̃2

]
, (B.13)

and integrated by parts obtaining:

1
2

∫ ∞
R2

dr2
√
r2 −R2

∫ ∞
r2

dr̃2 p(r̃)β(r̃)
r̃2 , (B.14)

with the boundary term at r2 → ∞ in the integration by parts vanishing under
the assumption that p(r)β(r) drops to 0 faster than 1/r, i.e. the same assumption
which had already to be valid for Eq. (4.6). Then, the projected dynamical pressure
reads:

P (R) =
∫ ∞
R2

dr2
√
r2 −R2

{
p(r) [1− β(r)] + 1

2

∫ ∞
r2

dr̃2 p(r̃)β(r̃)
r̃2

}
; (B.15)

making it explicit that the quantity in the curly brackets is the inverse Abel
transform of P (R). Indeed, assuming that P (R) vanishes at large R faster than
1/R, one is formally allowed to invert this expression to find:

p(r) [1− β(r)] + 1
2

∫ ∞
r2

dr̃2 p(r̃)β(r̃)
r̃2 = − 1

π

∫ ∞
r2

dR2
√
R2 − r2

dP

dR2 , (B.16)

and performing another integration by parts,

p(r) [1− β(r)] + 1
2

∫ ∞
r2

dr̃2 p(r̃)β(r̃)
r̃2 = 2

π

∫ ∞
r2

dR2√R2 − r2 d2P

(dR2)2 . (B.17)

We can now differentiate the equation above in the log measure dr/r to get:

[1− β(r)] rdp
dr
−
[
β(r) + r

dβ

dr

]
p(r) = −2r2

π

∫ ∞
r2

dR2
√
R2 − r2

d2P

(dR2)2 , (B.18)

i.e. a first order differential equation for p(r) analogous to Eq. (4.2), where the
substantial difference lies on the presence of the second derivative of P (R) in place
of the first derivative of the gravitational potential. The formal solution for a
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physical radial pressure vanishing at infinity is:

p(r) =
∫ ∞
r

dr̃
2r̃

π [1− β(r̃)] exp
{
−
∫ r̃

r
dr′

β(r′) + r′ dβ
dr′

r′ [1− β(r′)]

} ∫ ∞
r̃2

dR2
√
R2 − r̃2

d2P

(dR2)2

(B.19)
and, exchanging the order of integration, it can be rewritten as:

p(r) = 1
π [1− β(r)]

∫ ∞
r2

dR2 d2P

(dR2)2

∫ R2

r2

dr̃2
√
R2 − r̃2

Hβ(r, r̃) , (B.20)

where Hβ(r, r̃) was defined in Eq. (4.9). Finally, plugging this result in Eq. (4.2)
we get:

M(r) = r2

GNν(r)

 2 r
π [1− β(r)]

∫ ∞
r2

dR2
√
R2 − r2

d2P

(dR2)2 −
 β(r)

r
+ dβ

dr

1− β(r) + 2β(r)
r

 p(r)
 .

(B.21)
Taking into account that:

i) ν(r) is the inverse Abel transform Î(r2) of the surface brightness I(R2);

ii) the Abel integral transform satisfy the property that, if f(x) = A[f̂(y)], then
df/dx = A[df̂/dy];

iii) it is convenient to introduce aβ(r) using the definition given in Eq. (4.9);

it is then easy to rewrite the above inversion formula for the mass in the compact
form given in Eq. (4.10).
In case the computation of the inverse Abel transform and its derivative becomes
numerically challenging, alternatively the mass profile can be calculated as a single
integral of the second derivative in R2 of the projected dynamical pressure over a
kernel depending on r. In this form Eq. (B.21) just reads:

M(r) = r

GN π ν(r) [1− β(r)]

∫ ∞
r2

dR2 d2 P

(dR2)2 W̃β(r, R) , (B.22)

with the kernel being:

W̃β(r, R) = 2r2
√
R2 − r2

− β(r)
1− β(r)

(
3 + d log β

d log r − 2 β(r)
)∫ R2

r2

dr̃2
√
R2 − r̃2

Hβ(r, r̃) .

(B.23)

Eq. (B.22) is the form which has been used to compute mass profiles corresponding
to projected line-of-sight velocity dispersions derived from a trial parametric form of
the DM density profiles, the “parametric fit" cases we introduced at the beginning
of Section 4.4.2. To reach the exquisite precision level displayed in Fig. 4.9, rather
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than computing σlos(R) alone, it was actually useful to implement the analytic
expression for d2P/(dR2)2 one finds taking the definition Eq. (4.6), supplemented
by Eq. (4.4), and performing a few manipulations:

d2 P

(dR2)2 = GN

2

∫ ∞
R

dr√
r2 −R2

[
Mi(r)ν(r)

r2

]
(

1− R2

r2

)
1
R

(
∂K1

∂R
+ ∂K2

∂R

)

− K1(r, R) +K2(r, R)− 2K3(r, R)
r2

− 2
√
r2 −R2

∫ r

R

dr̃√
r̃2 −R2

[(
1− R2

r̃2

)
1
r̃ R

(
∂K4

∂R
− ∂K5

∂R

)

− K4(r̃, R)−K5(r̃, R)
r̃3

]
exp

[
2
∫ r

r̃
ds
βi(s)
s

] ; (B.24)

whereMi(r) and βi(r) label, respectively, the mass and orbital anisotropy profiles
taken as trial initial step, while the five integral kernels just introduced are the
following dimensionless functions:

K1(r, R) =
[
1 + βi(r)

(
2− 3R

2

r2

)](
d logMi

d log r + d log ν
d log r − 3

)
,

K2(r, R) = βi(r)
[
6R

2

r2 + d log βi
d log r

(
2− 3R

2

r2

)]
,

K3(r, R) = βi(r) + β̄i(r)
(

8− 9R
2

r2

)
,

K4(r, R) = 2 [1 + βi(r)]
[
βi(r) + β̄i(r)

(
2− 3R

2

r2

)]
,

K5(r, R) = βi(r)
d log βi
d log r + β̄i(r)

[
d log β̄i
d log r

(
2− 3R

2

r2

)
+ 6 R

2

r2

]
, (B.25)

with the auxiliary function β̄i(r) given by:

β̄i(r) = βi(r)
[
1 + βi(r)−

1
2
d log βi
d log r

]
. (B.26)
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