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Introduction

The present work re-enacts the classical theory of t-structures re-
ducing the classical definition given in [BBD82, KS90] to a rather
primitive categorical gadget: suitable reflective factorization systems
(Def. 2.3.1, 2.3.9), which we call normal torsion theories follow-
ing [CHK85, RT07]. A relation between these two objects has
previously been noticed by other authors [RT07, HPS97, BR07]
on the level of homotopy categories. The main achievement of
the present thesis is to observe and prove that this relation exists
genuinely when the definition is lifted to the higher-dimensional
world where the notion of triangulated category comes from, i.e.
stable (∞,1)-categories.

Stable (∞,1)-categories provide a far more natural ambient to
interpret the language of homological algebra: the main concep-
tual aim of the present work is to give explicit examples of this
meta-principle.

To achieve this result, it seemed unavoidable to adopt a pref-
erential model for (∞,1)-category theory: instead of working in
a ‘model-free’ setting, we choose the ubiquitous dialect of Lurie’s
stable quasicategories; discussing to which extent (if any) the results
we prove are affected by this choice, and establishing a meaningful
dictionary between the validity of the general statement 3.1.1 in
various different flavours on ∞-category theory occupies sections
A.5 and 3.3; despite the fact that this is one of the most important
issues from a categorical point of view, a rapid convergence of the
present thesis into its final form has to be ensured; hence, we will
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defer a torough examination of the topic of model (in)dependence
to subsequent works.

The first part of the thesis (Ch. 1–3) builds (or rather, ‘rein-
terprets’) the calculus of factorization in the setting of ∞-catego-
ries. The desire to link this calculus with homological algebra and
higher algebra deserves further explanation.

The language of factorization systems proved to be ubiquitous
inside and outside category theory (among various different appli-
cations now established in the mathematical practice, the ‘modern
view’ in algebraic topology revolves around the notion of orthog-
onality and lifting/extension problem, as it is said in the first pages
of [Whi78]. The modern ‘synthetic’ approach to homotopy theory
inescapably relies on the notion of a (weak) factorization system
([Qui67, DS95, Rie11]).

In light of this, finding ‘concrete’ means of application for the
calculus of factorization should be a natural step towards a pop-
ularization of this pervasive and deep language. And among all
the various fields of application, homological algebra, a peculiar
kind of ‘abelian’ homotopy theory, should be the most natural test
bench to measure the validity of this effort. Despite the intrinsic
simplicity, almost a triviality, of Thm. 3.1.1, and despite the fact
that the author feels to have missed such an ambitious task, the
pages you’re about to read should be interpreted in this spirit.

Structure of the thesis
The thesis is the results of a re-organization and methodical ar-
rangement of the papers [FL15c, FL15a, FL15b, FL16] (all written
having my advisor as co-author) appeared on the arXiv since Au-
gust 2014; the content is essentially unchanged; some sections and
subsections (like e.g. 1.5, 1.5.2.1, 3.2, a renewed proof of 4.3.20,
and Ch. 6) do not appear anywhere at the moment of writing(1),

(1)June 10, 2016
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but contain little new material and serve as linking sections mak-
ing the discussion more complete and streamlined, developing
certain natural derivations of the basic theory which would have
easily exceeded the average length of a research paper.

Figure (1) below depicts the dependencies among the various
chapters: a dashed line indicates a feeble logical dependence,
whereas a thick line indicates a stronger one, unavoidable at first
reading.

The first three chapters expose the main result of the present
work, summarized as follows:

For each stable ∞-category C there is a bijective cor-
respondence between t-structures on the triangulated
homotopy category Ho(C) and suitable orthogonal
factorization systems on C called normal torsion theo-
ries.

This constitutes the backbone and the basic environment in which
every subsequent application (the theory of recollements in stable
∞-categories in Ch. 5, and Bridgeland’s theory of stability condi-
tions in Ch. 7) takes place.

The main original contribution given in the present work is the
‘Rosetta stone’ theorem proving the quoted remark above; this is
the main result of [FL15c], the only preprint that, at the moment
of writing, has also been published by a peer-reviewed journal.

There are several minor results following from the ‘Rosetta
stone’, like the fact that constructions one can perform on normal
torsion theories are (at least to the categorically-minded) more na-
tural and canonical than the corresponding construction in ho-
mological algebra, done on bare t-structures.

A word on model dependency
Ideally speaking, if there is an equivalence between two models
for ∞-categories (say, red and blue ∞-categories), these two mod-
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els both possess a notion of factorization systems and a calculus(2)

thereof; moreover, these two notions of factorization system cor-
respond each other under the equivalence of models. Turning this
principle of equivalence and correspondence into a genuine theo-
rem is often a subtle matter (apart from being inherently difficult
and a delicate issue, this is perhaps due to the fact that the author
ignores how to retrieve such a result in the existing literature): it
is however possible to recognize at least three different settings
having each its own ‘calculus of factorization’:

• stable model categories, where one can speak about ho-
motopy factorization systems following [Bou77, Joy04]; this
leads to define homotopy t-structure on stable model catego-
ries as suitable analogues of normal torsion theories in the
set hfs(M) of homotopy factorization systems on a model
category M.

• dg-categories, where we speak about enriched (over Ch(k))
factorization systems (see [Day74]); this leads to define dg-
t-structures as enriched analogues of normal torsion theories
in the set of dg-fs(D) of enriched factorization systems on a
dg-category D.

• derivators, where we can define t-derivators via a (genuinely
new) notion of factorization system on a derivator, and rec-
ognize the analogue of normal torsion theory in this setting.

At the moment of writing, all these points are being studied, and
will hopefully appear as separate results in the near future.

A word on the state of the art
Drawing equally from homological algebra, algebraic geometry,
topology and category theory, the present work has not a single,
well-defined flavour. Several sources of inspirations came from
classical literature in algebraic topology [HPS97, Tie69, Hel68];

(2)By a ‘calculus’ of factorization systems we naïvely mean an analogue of the
major results expressed in Ch. 1, translated from the red to the blue model.
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several others belong to the classical and less classical literature on
algebraic geometry [Ver67, Bri07, Bri09, BO95]; others belong to
pure category theory [RT07, CHK85, JM09, KT93, LW, Zan04],
and others (see below) do not even belong to what is canonically
recognized as mathematical literature.

The approach to the theory of ∞-categories taken here will cer-
tainly appear rather unorthodox to some readers: [Lur09, Lur11]
have taught to the author more about 1-categories than he did
about ∞-categories. This, again, must be attributed to the igno-
rance of the author, which is more comfortable with the language
of categories rather than with homotopy theory.

Notation and Conventions
Categories (in the broad sense of ‘categories and ∞-categories’) are
denoted as boldface letters C,D and suchlike, opposed to generic,
variable simplicial sets which are denoted by capital Latin letters
(this creates an extremely rare, harmless conflict with the same
notation adopted for objects in a category: the context always al-
lows to avoid confusion); functors between categories are always
denoted as capital Latin letters in a sufficiently large neighbour-
hood(3) of F,G,H,K and suchlike; the category of functors C→D
is denoted as Fun(C,D), DC, [C,D] (or, at the risk to be pedan-
tic, as (Q)Cat(C,D)); morphisms in Fun(C,D) (i.e. natural trans-
formations between functors) are often written in Greek alpha-
bet; the simplex category ∆ is the topologist delta, having objects
nonempty finite ordinals ∆[n] := {0 < 1 · · · < n} regarded as cate-
gories in the obvious way; we adopt [Lur09] as a main reference
for ∞-category theory, even if we can’t help but confess that we
profited of every single opportunity to deviate from the aesthetic
of that book; in particular, we accept the (alas!) settled abuse to
treat ‘quasicategory’ and ‘∞-category’ as synonyms; any other un-

(3)The set A of letters of the English alphabet admits an obvious monotone
bijection A

φ−→∆[26]; define a distance on A by putting d(−,=) △= |φ(−)−φ(=)|.
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explained choice of notation belongs to folklore, or leans on com-
mon sense.

A general working principle of stable ∞-category theory is that
homological algebra becomes easier and better motivated when
looked from a higher perspective(4). To refer to this more natural
environment we will often call the stable setting any theory of stable
∞-categories.

A non completely standard choice of notation is the following:
each time a concept notion appears together with its dual, we write
co/notion to denote that we refer to notion and conotion at the same
time. So, if we write ‘C is a co/complete category’ we mean that C
is both complete and cocomplete, and if we write ‘co/limit’ we are
speaking about limits and colimits at the same time.

About the kamon on the titlepage
The titlepage contains the kamon of the Tachibana branch of
Yoneda (!) family, traditionally drawn [TM02] as a tea-berry (a
t-berry!) inside a circle (‘丸茶の実’, maru Cha no Mi):

A word on the way I drew diagrams
Basically every existing package to draw commutative diagrams
sucks. Starting from this undeniable truth, I spurred P. B. (see
the acknowledgements) to write a tikzlibrary capable to produce
beautiful and readable diagrams on both the coders’ and the read-
ers’ side. The result is repo-ed here under the name koDi.

koDi acts via three different kinds of command: a \lattice en-
viroment, where to put the objects of the commutative diagram:

(4)This rather operative and meta-linguistic principle is sketched in our Ap-
pendix A, where a complete proof of how triangulated category axioms follow
from the ‘pullout axiom’ A.2.3 is worked out in full detail.

https://github.com/paolobrasolin/koDi


vii

each object of a \lattice is included in a \obj #; environment, and
a command \mor, which produces a chain of morphisms of vari-
able length, all linked by arrows -> having different styles (basi-
cally those of TiKZ).

Each \obj #; environment allows the user to label the node
with a tag which can be internally referred in a \mor environment:
so, for example, an intelligent way to rename the node γ(X̂ s,λ0) is
\obj (gX-l0):{\gamma(\widehat{X}^\textsf{s},\lambda_0)}; whereas
an arrow γ(X̂ s,λ0)→Y can be written \mor gX-l0 -> Y;.

Since an example is worth a thousand words, here is the code
producing diagram (3.6).

X≥0 X X<0 X≥0[1]

Y≥0 C X<0 Y≥0[1]

Y≥0 Y Y<0 X≥0[1]

τ≥0( f )[1]τ≥0( f )

τ<0( f )

e f

m f

f

\begin{kD}

\lattice[mesh]{

\obj (Xge):X_{\ge 0}; & \obj X; & \obj (Xle):X_{<0};

& \obj (Xge+):X_{\ge 0}[1]; \\

\obj (Yge):Y_{\ge 0}; & \obj C; & \obj (Xle '):X_{<0};

& \obj (Yge+):Y_{\ge 0}[1]; \\

\obj (Yge '):Y_{\ge 0}; & \obj Y; & \obj (Yle):Y_{<0};

& \obj (Yge+'):X_{\ge 0}[1]; \\};

\mor Xge -> X -> Xle -> Xge+

{\tau _{\ge 0}(f)[1]}:-> Yge+ 2- Yge+';

\mor Xge swap :{\ tau _{\ge 0}(f)}:-> Yge

dashed ,-> C {crossing over},-> Xle '

{\tau _{<0}(f)}:-> Yle -> Yge+';

\mor Yge 2- Yge ' -> Y -> Yle; \mor Xle 2- Xle ' -> Yge+;

\mor[swap] X e_f:dashed ,-> C m_f:dashed ,-> Y;

\mor[dashed ,near start] X f:r> Y;

\end{kD}
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A less serious introduction

To the reader

Le anime, al contrario delle lame,
si affilano evitando ogni contatto.

Elia Spallanzani

Ciò che stai per leggere è il prodotto di un lavoro di indagine
che esula enormemente dalla matematica; parlare di algebra omo-
logica, di teoria delle categorie, di geometria, topologia o fonda-
menti è funzionale a uno scopo diverso dalla “semplice” matema-
tica. Come conseguenza, questo lavoro contiene diverse cose in
aggiunta ad essa: la mia visione della materia, che ho raffinato (o
peggiorato, o irrigidito) negli anni; dosi molto elevate di un discu-
tibile, troppo personale senso estetico; un ancor più discutibile
gusto per il citazionismo e diverse idee che, cresciute in libertà
nell’arco di anni, non sono state smussate, semmai affilate, pro-
prio perché intoccate. Non ultimo, un certo rifiuto per le scene,
la predilezione per la calma esatta che precede una tempesta al
suono metallico che fa il denaro, o al caos di una conferenza affol-
lata solo per dare ai suoi partecipanti un pretesto per una vacanza
in montagna o al mare.

Se c’è del bello e del valido in queste pagine, il merito è essen-
zialmente tutto di Domenico: la conquista impagabile di questi
anni è sapere di essere riuscito a guadagnarmi non già la parità pro-
fessionale, ma anche l’amicizia di un individuo di questa caratura,
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che merita un ringraziamento a parte non solo in qualità di rela-
tore.

Domenico mi ha insegnato diverse cose; solo alcune, le meno
importanti, riguardano come si fa il Matematico. Se in queste
pagine c’è del brutto, la colpa è mia, che ancora non ho capito
bene come si mette la maiuscola a questa ambiziosa parola.

Questa tesi deve molto, nel bene e nel male, a I. Calvino, J.L.
Borges, G. Perec, R. Queneau (e altri patafisici), D. Aury, E. Spal-
lanzani e altri autori reali o immaginari. Essa è ispirata alle loro
opere nello stesso modo, e nello stesso senso, in cui è ispirata ad
altre, che parlano di matematica in un senso più palese e tecnico.

Ovviamente ne risulta solo una brutta copia; un prodotto
strano, un poco più lungo e di forma sgraziata, che non le per-
mette di essere a suo agio in nessuno dei due regni del sapere. Ciò
che la salva probabilmente è lo spirito con cui è stata scritta: di
questa sezione mi sono impossessato per esporlo al meglio delle
mie capacità. Nessuna ambizione ad essere diverso o speciale,
qui; solo la consapevolezza che far sembrare questo lavoro “come
tutti gli altri” avrebbe tradito la parte di me che, fin da quando
ha voce per esprimerla, insegue e propaganda l’assoluta, irremovi-
bile unitarietà di tutti i saperi umani. L’idea folle di questi anni
(assecondare la quale equivale a macchiarsi di una colpa più grave
dell’idealismo) per cui vi è un solo soggetto; seguire questa idea
implica che citare nello stesso luogo W. Blake, la Genesi, Watch-
men, A. Crowley e i testi di scherma e mistica orientale è null’altro
che un modo di alludere a questa unità, a questa ingombrante
inseparabilità, a questa molteplice connessione. Suggerire questa
idea è quel che mi interessava raggiungere quando ho iniziato; il
resto, tutto il resto, è funzionale a tale obiettivo.

Tra le cose buone di questi anni c’è di più, e di più prezioso di
una “tesi di dottorato”: ho avuto accesso al cuore di alcune per-
sone, che probabilmente avrebbero fatto le stesse cose nello stesso
modo, ma che con me le hanno fatte (spero) con maggiore gioia.
Ho regalato amore, e se a volte ho chiesto qualcosa in cambio, è
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stato perché avevo messo sul piatto la moneta più preziosa di cui
disponevo: quel che ho fatto, e le ragioni che mi hanno mosso
nel farlo erano un atto d’amore verso la bellezza che vedevo. Per
questo, titolo di dottore o meno, ho già vinto qualcosa: poco,
e non mi basta ancora, ma qualcosa che altri non possono dire
di avere, sono qualcosa che altri (quelli che “non rivendicano
originalità di pensiero”) non possono dire di essere. E voglio
continuare, anche se questa incalcolabile ricchezza è talmente
sottile da passare invisibile attraverso il setaccio delle valutazioni
istituzionali (quanto hai scritto, mai il perché ; quanto hai raccolto,
mai quanto hai seminato) perché ho una responsabilità di men-
tore e compagno di viaggio, verso persone che probabilmente non
conosco ancora, ma a cui non per questo tengo di meno.

Ciò che è più prezioso, allora, non sono i teoremi che sono,
siamo riusciti a dimostrare, e le definizioni che sono riuscito a sbir-
ciare nel Libro del Sommo Fascista mentre questo era distratto.
La cosa più preziosa di questo testo non c’è scritta altrove perché
l’avrei potuta comunicare solo attraverso una complicata parola di
una lingua dell’emisfero boreale di Tlön, o con un complesso ter-
mine ithkuil: sta nelle persone che mi hanno accompagnato in
questi anni, in quelle che hanno deciso di smettere di farlo, e in
quelle che ho mandato via io.

Alcuni tra i teoremi che stai per leggere hanno il tepore es-
tremamente specifico e gradevole che l’automobile lasciata al sole
fa quando verso la fine di marzo smette di fare freddo, altri sono
intrisi della puzza di fumo che ha la tua giacca quando passi la gior-
nata sugli scadenti ma irrimediabilmente romantici mezzi pub-
blici di una città che ha solo due linee di metro ma ne sogna al-
meno quattordici; alcuni sanno di sangue o di lacrime, perché un
pugno ti ha rotto le labbra, e per qualche settimana non riesci a
parlare, e altri esistono solo perché ad un certo punto qualcuno
mi ha aperto la porta di casa sua quando ero fragile e avevo il
cuore spezzato; alcuni sono spariti, non li trovo più perché sono
un grafomane molto disordinato, ma mi ricordo bene com’erano
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fatti. Devo solo riscriverli come si deve e sperare che non li trovi
prima Y , “un poco arrugginiti per la pioggia del mercoledì”. Altri
sperabilmente verranno nel futuro, prossimo o lontano: in fin dei
conti, io sono solo uno scriba al servizio di una donna bellissima,
che parla poco anche a chi se lo merita più di me. Tutti, nessuno
escluso, sono un talismano che porto con orgoglio, per lenire la
mia anima dall’assurdo inconsolabile di cui sono intrise le cose
mondane.

Come sempre, stilare un elenco esaustivo di tutte le persone
che blablabla è un obiettivo perso in partenza, e dunque blabla-
bla. Dato che però di qualcuno mi ricordo, nomino almeno loro.
L’ordine è solo quello che mi suggerisce la mia memoria ubriaca
(non c’è altra condizione ammissible che un leggero stordimento,
adatta a scrivere questa parte di tesi, e questo stordimento si può
ottenere solo col sonno o con l’alcool).

(1) Jow, detto Wanny the dog, detto Giuditta, detto Fonso,
detto Drugo, detto Sergente, detto …Se ho imparato qual-
cosa fuori della matematica, probabilmente il merito è suo.
C’è una linea molto sottile che unisce “la Settimana Alge-
bristica” a “I smoke for my glaucoma”: Fonso è l’unico che
riesce a percorrerla dritta, rimanendo in entrambi i con-
testi uno degli amici migliori che potrei sperare di avere.
Fortissimo.

(2) Lamù, a cui va tutto l’amore che riesco a conchiudere in un
bacio, che sa allo stesso tempo di granita al limone e delle
lacrime di uno che si commuove fin troppo facilmente.
Spero col passare del tempo mangeremo gelati sempre
più grossi, pranzando davanti a tramonti sempre nuovi,
guardando però sempre lo stesso mare.

(3) John von Neumann, che capirà un giorno che tipo di ric-
chezza si porta dentro; quello stesso giorno capirà come met-
terla a frutto, e spero di essere nei paraggi per imparare qual-
cosa di meraviglioso. Il mio scopo, nel farmelo amico, è
difendere la sua dedizione, il candore con cui ama, in un
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senso ancora perfettamente vergine, quella donna bellissima
che sussurra nel buio.

(4) Delizia e Delirio, che probabilmente non ha idea della ra-
gione per cui la sto ringraziando, ed è giusto che sia così.

(5) Saezuri, che si chiederà anche lei perché la sto ringraziando:
la ragione è in un parco giochi alle pendici dei colli Euganei.

(6) Morgana, perché è la seconda persona che, se Grothendieck
l’avesse conosciuta, le avrebbe detto “ton cœur est un cardi-
nal inaccessible”.

(7) Xena, perché una delle cose migliori di questi anni è averla
vista crescere mentre io cercavo il bambino (quello che, den-
tro di me, sa stare solo), e aver capito come far combaciare
questi movimenti in direzioni opposte.

(8) la cerchia di f&h, che mi piace pensare comunicherà
mediante bestemmie e offese alle rispettive madri anche
quando saremo adulti e dovremo invitarci, probabilmente,
a fare una vacanza in montagna. Aver riunito queste per-
sone nello stesso luogo è stato un contributo infinitesimo
alla crescita di individui già grandi, che sono tuttavia fiero
di avere dato.

(9) il nipote di Quillen, che forse si illudeva di aver trovato un
mentore e che è stato, al contrario, più di una volta fonte
di esempio. Io ho solo innaffiato una pianta già forte, alla
cui ombra, un giorno, sarò felice di studiare sorseggiando
un the.

(10) Michele G., cui rivolgo i sentimenti migliori che un uomo
possa provare: un rispetto fraterno, una enorme invidia per
come sa essere solido nei propri principi, aperto all’altro e
onesto come pochissimi altri individui che ho mai potuto
conoscere.

(11) 5nuff, probabilmente l’individuo più sfaccettato che io ab-
bia mai conosciuto, e probabilmente l’unico che ha potuto
dirmi una certa frase in un certo modo in un certo posto con
un certo effetto.
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(12) Jean Rostand, con cui mi sono divertito a incazzarmi per
finta, così come ad incazzarmi davvero, e a volte non si è
nemmeno capita molto la differenza. È giusto così.

(13) Sofia Bond, perché è la terza persona che, se Grothendieck
l’avesse conosciuta, le avrebbe detto “ton cœur est un cardi-
nal inaccessible”.

(14) LauraM., cui non potrò che far leggere questa tesi nell’aldilà,
ma che mi fa da esempio anche da lì: se ho qualche speranza
di essere diventato un dissidente colto, il merito è stato tutto
suo. E soprattutto, è stata lei a farmi conoscere Borges (es-
sendo, credo, solo parzialmente conscia delle conseguenze
catastrofiche del gesto).

(15) Salvo, che sa dire la cosa giusta ad un’anima in pena quando
questa ne ha bisogno; se questa tesi è scritta in questo modo,
e non in un altro, è (de)merito anche suo. È stato un arbitro
di eleganza, un esempio di stile, un suggeritore di mantra
che aiutassero in momenti difficili, o un ottimo contrap-
punto per condividere i momenti felici. Semplicemente, mi
è stato amico anche quando era difficile.

(16) Sergio B., perché mi ha aiutato a realizzare che la tua proba-
bilità di rimanere in quel gioco di scimmie ammaestrate che
è la vita accademica è inversamente proporzionale a quanto
sei strano, e mi ha quindi fatto capire che non avevo la mi-
nima speranza di carriera.

(17) Rahil, perché ne invidio la determinazione a rialzarsi, il
gusto per l’arte sacra, e perché mi diverte l’assoluta incapa-
cità di comprendere certi suoi messaggi ♡.

(18) la mia vicina di casa cisoceanica, a cui non ho paura di
rivelare una antica ma irrimediabile, incurabile cotta. An-
che lontani un mare, spero che i tuoi momenti bui possano
finire: sappi che ti voglio bene senza remora o dubbio.

(19) ¿, che non è ancora il momento di ringraziare, ma è bene
portarsi avanti con il lavoro.

(20) Palo Barsolny, a cui troppo presto, o per meglio dire giusto
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in tempo, ho messo [ML98] in mano; sono contento di aver
corso il rischio di distruggere Tutto con quel gesto. Sono
contento di averlo perso e ritrovato. Giusto in tempo, o per
meglio dire al tempo giusto. Non ultimo, è lui che ha creato
koDi.

(21) Nash, il cui candore fa perdonare qualsiasi stranezza. “La
più grande pena che quest’uomo deve vivere è la consapevo-
lezza quotidiana che il mondo reale è un luogo molto peg-
giore di un film di Miyazaki.”

(22) Alcuni luoghi mi hanno dato casa: mi risulta impossibile
non ringraziarli.

• Pelagia, affinché riacquisti il senno che ha perduto.
• Teodora, la prima ad accogliermi e nello stesso tempo

a farmi sentire straniero.
• Cosima, che ad un passo da Ko-de-mondo ha rapito il

mio cuore.
• Berenice, che accoglie tutti quelli che trova, a con-

dizione che non dia fastidio non essere i primi ad esser
passati per quel letto.

• Patrizia, che è la donna troppo piena di sé per non ac-
cenderti di desiderio.

• Rebecca, la donna altera che se vuoi stare con me va
bene, ma decido io quando ci vediamo.

• Teresa, nelle cui stanze tutte uguali è facile perdersi.
• e tante altre, mete di una notte oppure oggetto di fan-

tasie su quanto costi trasferirvisi.
E poi la Gattara, che non ho ancora capito dove sia finita; la Gnà,
che è la prima persona a causa della quale questa tesi non parla
di pannelli solari al silicio; Nancy, che nonostante qualsiasi calma
interiore io continuerò a chiamare così; il musicologo che mi ha
insegnato la grafologia mentre tornavo da Parigi; quattro ore di
meditazione in un parcheggio su cosa fare della mia vita; l’odore
di piscio in certe strade, cui finisci per affezionarti sapendo di non
poterle cambiare; una certa vegana dal bel faccino; il capodanno
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nella casa di montagna del Drugo; il pensiero di realizzare Il Pi-
anotm, che ancora mi tiene sveglio la notte a immaginare; tutti i
libri che avrei voluto scrivere io; la metafora dei telescopi; il 19
che non arriva mai e che non ho mai avuto il coraggio di pren-
dere fino al capolinea; l’Aleph e lo Zahir (non so decidere di chi
ho più paura); il centro culturale Multiplo; gli sbirri e il reato che
mi hanno perdonato (forse); il punto più basso che ha raggiunto
il mio morale quando (per un attimo) ho pensato che avrei potuto
chiuderla a chiave in casa. Dipanare questo intricato gomitolo è
stata la fatica di questi anni, che ancora dura e forse non finirà mai.
Grazie di avermi dato così tanto da fare.

Riuscire a scrivere questi ringraziamenti, con queste esatte pa-
role, è stato a volte l’unico motivo che mi ha fatto vincere l’orrore
verso questo documento, o verso le persone, cose o situazioni
che hanno tentato di distruggerlo. Perché effettivamente ci sono,
come è naturale, anche una serie di persone cui auguro di bruciare
all’inferno più in fretta e con maggior dolore di quanto già non li
costringa a fare la loro quotidiana miseria.

Ringrazio anche loro, e forse specialmente loro: hanno
tracciato un margine molto nitido che mi ha fatto capire cosa
non sono, cosa non riuscirei ad essere o a diventare nemmeno
provando a portare una cravatta.

Un punto imprecisato di S2,
June 10, 2016
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Chapter 1

Factorization Systems

1.1 Overview of factorization systems.

It isn’t that they can’t see the solution.
It is that they can’t see the problem.

G.K. Chesterton

This first chapter deals with the general definition of a facto-
rization system in the setting of ∞-categories, as given by [Lur09]
and [Joy04, p. 178].

We do not claim originality here, aiming only at a balance be-
tween the creation of a flexible and natural formalism, to be used
along the subsequent chapters, and the necessity of rigor and ge-
nerality.

Current literature seems to be too poor and too rich at the
same time, when dealing with factorization systems; several au-
thors often decide to rebuild the basic theory from scratch when
they prove a new result, as there are several slightly different
flavours in which one wants to interpret the basic idea behind
the definition (that is, factor every arrow of a category into two
distinguished pieces).

Since simple and extremely pervasive structures are often di-
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scovered independently, an accurate overview of the topic is some-
what impossible; we can however try to date back to the pionee-
ring [ML48], published in 1948 (!) a forerunner to the modern
notion of factorization system (see in particular axioms bc1–5).

With the passing of time, it became clear that together with
unique factorization, the orthogonality relation between the arrows
of two classes E,M⊆ hom(C) played an essential rôle in the defi-
nition of a factorization system.(1) Another forerunner of the mo-
dern theory is Isbell’s [Isb64] (there, the author doesn’t mention
orthogonality, but clearly refers to what in the subsequent [FK72]
will be called in this way); his work was first popularized in the
lucid and methodical presentation of the latter paper, which to-
gether with [CHK85] has been a fundamental starting point, and
a source of suggestions for the main result exploited all along this
work: reflective subcategories of a category C originate from the calcu-
lus of factorization systems. This will be the main theme developed
in the following chapters, and will culminate in Ch. 3 with the
proof of our “Rosetta stone” theorem.

1.2 Markings and prefactorizations.

καὶ στήσει τὰ μὲν πρόβατα ἐκ δεξιῶν αὐτοῦ τὰ δὲ ἐρίφια ἐξ
εὐωνύμων.

Matthew 25:33

(1)However, the rôle of uniqueness is much more essential (see Remark 1.4.8):
even if factorization of arrows with respect to a prefactorization is unique, a
strictly unique factorization with respect to two classes implies orthogonality
between the classes; from time to time we will need to exploit this useful re-
mark, first observed by Joyal and used in [Joy] as definition of a factorization
system. In any case, assuming the orthogonality relation and the factorization
property as primitive and unrelated properties is a common practice.
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Definition 1.2.1.
[
Marked simplicial set

]
: Recall that a marked

simplicial set X consists of a pair (X ,S), where X is a simplicial
set, and S⊆ X1 is a class of distinguished 1-simplices on X , which
contains every degenerate 1-simplex.

Remark 1.2.2. The class of all marked simplicial sets forms a cat-
egory sSetς, where a morphism is a simplicial map f : (X ,SX ) →
(Y ,SY ) which respects the markings, in the sense that f (SX ) ⊆ SY ;
the obvious forgetful functor

U : sSetς → sSet (1.1)

admits both a right adjoint X 7→ X ♯ = (X , X1) and a left adjoint
X 7→ X ♭ = (X , s0(X0)), given by choosing the maximal and min-
imal markings, respectively (mnemonic trick: right adjoint is
sharp, left adjoint is f lat).

Notation 1.2.3. A marked ∞-category simply consists of a marked
simplicial set which, in addition, is a ∞-category. From now on,
we will consider only marked ∞-categories, and occasionally con-
fuse X and X ♭.

Definition 1.2.4.
[
Orthogonality

]
: Let f , g be two edges in a

∞-category C. We will say that f is left orthogonal to g (or equiva-
lently that g is right orthogonal to f ) if in any commutative square
∆[1]×∆[1]→C like the following,

A X

B Y

gf α (1.2)

the space of liftings a rendering the two triangles (homotopy)
commutative is contractible.(2)

(2)By requiring that the space of liftings α is only nonempty one obtains the
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Remark 1.2.5. This is Def. [Lur09, 5.2.8.1]; compare also the older
[JM09, Def. 3.1].

Remark 1.2.6. “Being orthogonal” defines a binary relation on
the set of edges in a marked ∞-category C, denoted f ⊥ g.

Notation 1.2.7. We denote ⊥(−)⊣ (−)⊥ the (antitone) Galois con-
nection induced by the relation ⊥ on subsets S ⊆ C1;(3) more ex-
plicitly, we denote

S⊥ = { f : ∆[1]→C | s ⊥ f ,∀s ∈ S}
⊥S= { f : ∆[1]→C | f ⊥ s,∀s ∈ S},

and we consider the adjunction ⊥(−) : P (hom(C)⇆P (hom(C)) : (−)⊥.

Definition 1.2.8.
[
Category of markings

]
: If C is a small ∞-

category we can define a poset Mrk(C) whose objects are markings
of C and whose arrows are given by inclusions as subsets of C1.

Remark 1.2.9. The maximal and the minimal markings are, re-
spectively, the terminal and initial object of Mrk(C); this category
can also be characterized as the fiber over C of the forgetful func-
tor U : sSetς → sSet. Moreover, the Galois connection ⊥(−)⊣ (−)⊥

defined above transports on an analogue adjunction on Mrk(C),
via the obvious identification.
notion of weak orthogonality. In the following discussion we will only cope
with the stronger request, but we rapidly address the issue in Def. 1.3.12 and in
the subsequent points.

(3)Recall that if R ⊆ A×B is a relation, it induces a Galois connection

R(−) : P (A)⇄P (B) : (−)R ;

“negative thinking” tells us that this is simply the nerve-realization adjunction
generated by R regarded as aΩ-profunctor (Ω can, but must not, be the Boolean
algebra {0,1}). This remark has, however, little importance in the ongoing dis-
cussion, and serves the only purpose to use the word “profunctor” in the present
thesis which would have otherwise lacked at least an explicit mention of coendy-
stuff.
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This remark leads to a second

Remark 1.2.10. The correspondence ⊥(−) ⊣ (−)⊥ forms a Ga-
lois connection in the category of markings of X ; the maximal
marking, and the marking Eqv made by all isomorphisms in C ex-
change each other under these correspondences. More precisely,

Proposition 1.2.11. The following conditions are equivalent, for
f : ∆[1]→C:

(1) f is an isomorphism;
(2) f ∈C⊥

1 ;
(3) f ∈ ⊥C1;
(4) f ⊥ f .

Remark 1.2.12. The technique applied here (devise suitable lifting
problems which, solved, prove the claim) is a standard trick in the
calculus of factorization systems: we will use arguments like the
following all along.

Proof. This case is extremely simple and paradigmatic. It is evident
that the implications 1 ⇒ 2 ⇒ 4 and 1 ⇒ 3 ⇒ 4 (the inverse of f ,
composed with the upper horizontal arrow of a lifting problem,
does the trick); to close the circle of implications, it is enough to
show that 4 ⇒ 1: this is evident, since the solution to the lifting
problem

ff α (1.3)

(where horizontal arrows are identity maps) must be the inverse
of f (in ∞-categories, there is a contractible space of such inverses,
accordingly with Def. 1.2.4).

Proposition 1.2.13. There exists an adjunction

�(−)⊣ (−)� : QCat/X∆[1] ⇆
(
QCat/X∆[1]

)op
(1.4)
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“lifting” the Galois connection �(−)⊣ (−)� : Mrk(X )⇆Mrk(X ).

This can be seen as a ∞-categorical version of [Gar09, Prop.
3.8].

Remark 1.2.14.
[
Orthogonality and locality

]
: There is an-

other notion of orthogonality of an object X with respect to a
morphism f ∈ hom(C); given these data, we say that X is right-
orthogonal to f (or that X is an f -local object) if the hom functor
hom(−, X ) inverts f .

If C has a terminal object ∗, this notion is related to Def. 1.2.4,
in the sense that X is right-orthogonal to f if and only if the ter-
minal arrow X →∗ is right orthogonal to f . For this reason, we
always refer as object-orthogonality as orthogonality with respect to
terminal arrows. (Obviously, there is a dual notion of left-object-
orthogonality between f and B ∈C, which in presence of an initial
object reduces to left orthogonality with respect to ∅→ B).

Notation 1.2.15. Extending a little bit more this notation, we can
speak about orthogonality between two objects, without introduc-
ing new definitions: in a category with both a terminal and initial
object (which, since our blanket assumption in all the remaining
chapters is to work in a stable ∞-category, will always be the case)
we can say that

• Two objects B and X are orthogonal if hom(B, X ) is con-
tractible; we denote this (non-symmetric) relation as B ⊥ X .

• Two classes of object H and K in C are orthogonal if each
object H ∈H is orthogonal to each object K ∈K; we denote
this situation as H⊥K

This notation will greatly help us in Ch. 3 and 4

The following nomenclature is modeled on the analogous ca-
tegorical notion of a prefactorization system introduced in [FK72].

Definition 1.2.16. A pair of markings (E,M) in a ∞-category C
is said to be a (∞-categorical) prefactorization when E = ⊥M and
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M=E⊥. In the following we will denote a prefactorization on C
as F= (E,M).

Remark 1.2.17. The collection of all prefactorizations on a given
∞-category C forms a poset, which we will call pf(C), with respect
to the order F= (E,M)⪯ F′ = (E′,M′) iff M⊂M′ (or equivalently,
E′ ⊂E).

Remark 1.2.18. It is evident (as an easy consequence of adjun-
ction identities) that any marking S ∈ Mrk(C) induces two canon-
ical prefactorization on C, obtained sending S to (⊥S, (⊥S)⊥) and
(⊥(S⊥),S⊥). These two prefactorizations are denoted S⊥ e ⊥S, re-
spectively, and termed the right (resp., left) prefactorization asso-
ciated to S.

Definition 1.2.19. If a prefactorization F on C is such that there
exists a marking S ∈ Mrk(C) such that F=S⊥ (resp., F= ⊥S) then
F is said to be right (resp., left) generated by S.

Remark 1.2.20. Since in a prefactorization system F= (E,M) each
class uniquely determines the other, the prefactorization is char-
acterized by any of the two markings E,M and the poset pf(C)
defined in 1.2.17 can be confused with a sub-poset of Mrk(C) de-
fined in 1.2.8; accordingly with 1.2.17 the class of all prefactoriza-
tions F = (E,M) on a ∞-category C is a poset whose greatest and
smallest elements are respectively

⊥(C♯)= (Eqv,C1) and (C♯)⊥ = (C1,Eqv). (1.5)

Definition 1.2.21. If f : ∆[1] →C is an arrow in C, a factorization
of f is an element of the simplicial set Fact( f ) defined to be the
upper-left corner on the following pullback diagram

Fact( f ) C∆[1] ×C∆[1]

∆[0] C∆[1]

⌟ (1.6)
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A factorization σ ∈ Fact( f ) will usually be denoted as (u,v) and the
sentence “(v,u) is a factorization of f : A → B” will be shortened
into “ f = u◦v : A → F → B” for an object F determined from time
to time, and called the factor of F.

Remark 1.2.22. Notice that since C is a ∞-category, so is Fact( f )
for f : A → B; its morphisms can be depicted as commutative
squares

F B

A F ′

φ (1.7)

where φ : F → F ′ is a morphism between the factors, such that the
two triangles are commutative. Moreover (see the introduction),
we will only consider factorization which are functorial, in the ob-
vious sense of being given as functors out of the arrow category
C∆[1].

This isn’t too restrictive an assumption, since the factorization
systems relevant to the present work are all functorial (see, in par-
ticular, the proof of our 3.1.1).

Remark 1.2.23. A useful characterization of orthogonality
available in 1-categorical world is the following: given f : A →
B, g : X →Y , we have f ⊥ g if and only if the following square

hom(B, X ) hom(B,Y )

hom(A, X ) hom(A,Y )

(1.8)

is a pullback (the proof of this fact is immediate). This charac-
terization can be used to define enriched factorization systems (see
[Day74, LW] and our discussion in §3.3).

This characterization exports, mutatis mutandis, to the ∞-cate-
gorical setting: see [MG14, A.4.(41)]
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1.3 Factorization systems.
A basic transition step from prefactorizations to factorizations is
the following result, which is the analogue of the classical results
about uniqueness of a factorization with respect to a prefactoriza-
tion system:

Remark 1.3.1. If f : ∆[1] → C is a morphism, and F = (E,M) ∈
pf(C) is a prefactorization system on the ∞-category C, then the
subspace FactF( f ) ⊆ Fact( f ) of factorizations (e,m) such that e ∈
E,m ∈M, is a contractible simplicial set as soon as it is nonempty.

Proof. It all boils down to solving the right lifting problem: if
f : X → Y can be factored in two ways (e,m), (e′,m′) ∈ FactF( f ),
the first lifting problem gives “comparison” arrows X ⇆ X ′, and
the other two (together with essential uniqueness of the factoriza-
tion) entail that u,v are mutually inverse.

A X ′ A X A X ′

X B X B X ′ B

e′

v

m

e
u

m′

e

m

m

e vu

e′

m′

m

e′
uv (1.9)

Definition 1.3.2.
[
F-crumbled morphisms

]
: Given a prefacto-

rization F ∈ pf(C) we say that an arrow f : X → Y is F-crumbled,
(or (E,M)-crumbled for F= (E,M)) when there exists a (essentially
unique, in view of Remark 1.3.1) factorization for f as a composi-
tion m◦ e, with e ∈E, m ∈M; let σF be the class of all F-crumbled
morphisms, and define

pfS(C)= {F |σF ⊃ S}⊂ pf(C). (1.10)

Definition 1.3.3. A prefactorization system F= (E,M) in pf(C) is
said to be a (∞-categorical) factorization system onC if σF =hom(C);
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factorization systems, identified with pfhom(C)(C), form a sub-
poset fs(C)≤ pf(C).

This last definition (factorizations “crumble everything”, i.e.
split every arrow in two) justifies the form of a more intuitive pre-
sentation for a factorization system onC, modeled on the classical,
1-categorical definition:

Definition 1.3.4.
[∞-categorical Factorization System

]
: Let

C be a ∞-category; a factorization system (fs for short) F on C con-
sists of a pair of markings E,M ∈Mrk(C) such that

(1) For every morphism h : X → Z in C we can find a factori-
zation X e−→ Y m−→ Z, where e ∈ E and m ∈M; an evocative
notation for this condition, which we sometimes adopt, is
C=M◦E;

(2) E= ⊥M and M=E⊥.

It is useful to introduce the following alternative formalism to
express the class of F-crumbled morphisms:

Definition 1.3.5.
[
The “#” symbol

]
: Let C be a ∞-category and

A,B⊆ hom(C); we denote A #B the class of all f ∈ hom(C) such
that there exists a factorization f = b ◦a with a ∈A,b ∈B.

It is obvious that for each prefactorization F= (E,M), σF =E #
M and that a prefactorization F = (E,M) is a factorization if and
only if E #M=hom(C).

The proof of the following lemma is an immediate conse-
quence of Def. 1.3.5, 1.2.4:

Lemma 1.3.6. Let C be a ∞-category, and letA,B,C,D ∈Mrk(C).
• If A⊥C and A⊥D, then A⊥ (C #D);
• If A⊥C and B⊥C, then (A #B)⊥C.

Remark 1.3.7. The collection of all factorization systems on a ∞-
category C form a poset fs(C) with respect to the partial order
induced by pf(C).
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Remark 1.3.8. In presence of condition (1) of Definition 1.3.3,
the second condition may be replaced by
(2a) E⊥M (namely E⊂ ⊥M and M⊂E⊥);
(2b) E and M are closed under isomorphisms in C∆[1].
Notice that this is precisely [Lur09, Def. 5.2.8.8].

Remark 1.3.9. Condition (2) of the previous Definition (or the
equivalent pair of conditions (2a), (2b)) entails that each of the
two classes (E,M) in a factorization system on C uniquely deter-
mines the other (compare the analogous statement about prefac-
torizations): this is [Lur09, Remark 5.2.8.12].

It is often of great interest to determine whether a given class
right-generates or left-generates (Def. 1.2.19) a factorization system
and not only a prefactorization: a general procedure to solve this
problem is to invoke the small object argument.

Theorem 1.3.10.
[
Small Object Argument

]
: Let C be a ∞-

category, and J ∈ Mrk(C). If for each f : I → J in J the functor
hom(I,−) commutes with filtered colimits, then J⊥ is a factoriza-
tion system on C.

Remark 1.3.11. Let C be an ∞-category with initial object ∅. If
a classK is generated via the small object argument by a small set
then 0/K is generated as the object-orthogonal of a small set.

1.3.1 Weak factorization systems.
We will not make use of the content of this subsection, as our main
results unavoidably needs uniqueness for solutions and factoriza-
tions; we only record this definition for the sake of completeness.

There is a more general notion of weak factorization system
on a ∞-category, again modeled on the 1-categorical notion. This
“weakness” shows up in two respects:

• Orthogonality is no longer strong: in ∞-categories, this
means that the space of solution is no longer contractible,
but only nonempty.
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• Factorization is no longer unique up to a unique equiva-
lence: this means that there are possibly many different con-
nected components on the space of factorizations.

A 1-dimensional example of such a structure is the pair of classes
(Mono,Epi) in the category Set of sets and functions; there seems
to be no mention of this condition in the world of∞-categories, in
[Lur09] or [Joy04] (this could possibly be related to the fact that
the concept of “monomorphism” does not naturally belong to the
world of ∞-categories, see also 1.5.6 below).

However, a tentative definition of a model ∞-category has been
given in [MG14], with applications to Goerss-Hopkins obstruc-
tion theory. [MG14, §2] contains plenty of examples of weak fac-
torization systems in ∞-categories.

Definition 1.3.12.
[
Weak orthogonality

]
: Let f , g be two

edges in a ∞-category C. We will say that f is weakly left orthogonal
to g (or equivalently that g is weakly right orthogonal to f ) if in any
lifting problem like (1.2) the space of solutions a is nonempty.
We denote this binary relation as f ⋔ g, and the resulting Galois
connection ⋔(−)⊣ (−)⋔.

Now, a weak prefactorization system is a pair of classes F =
(E,M) ⊆ hom(C)×hom(C) such that E = ⋔M, M = E⋔. A weak
factorization system is a weak prefactorization system such that
every arrow is F-crumbled (Def. 1.3.2).

Weak factorization systems are organized in a poset wfs(C)
which contains as a sub-poset fs(C) of Def. 1.2.8.

It is possible to relate weak orthogonality to strong orthogonal-
ity, and give conditions ensuring that a weak factorization system
is indeed strong: see [RT07, §1] for further details, and consult
[MG14] for further information about model ∞-categories.

Example 1.3.13. A Quillen model structure on a small-bicomplete
∞-category C is defined by three markings (Wk,Fib,Cof) such
that
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• Wk is a 3-for-2 class (Def. 1.4.6) containing all isomorphisms
and closed under retracts;

• The markings (Cof,Wk∩Fib) and (Wk∩ Cof,Fib) both
form a weak factorization system on C.

1.4 Closure properties.

Definition 1.4.1.
[
Closureoperators associated tomarkings

]
:

Let C be a ∞-category. A marking J ∈Mrk(C) is called
w.) wide if it contains all the isomorphisms and it is closed un-

der composition;
A wide marking J (in a ∞-category C which admits in each case
the ∞-categorical co/limits needed to state the definition) is called

p.) presaturated if is closed under co-base change, i.e. whenever
we are given arrows j ∈ J, and h such that we can form the
pushout

A X

B Y

h

j′j ⌜ (1.11)

then the arrow j′ is in J;
q.) almost saturated if it is presaturated and closed under re-

tracts (in the category C∆[1]), i.e. whenever we are given a
diagram like

A A′ A

B B′ B

i r

i′

u v u (1.12)

where ri = idA and r′i′ = idB, if v lies in J, then the same is
true for u;

c.) cellular if it is presaturated and closed under transfinite com-



1.4. Closure properties. 14

position, namely whenever we have a cocontinuous functor
F : α→ J(4) defined from a limit ordinal α admits a compos-
ite in J, i.e. the canonical arrow

F(0) // F(α)= lim−−→i<α F(i) (1.13)

lies in J;
s.) saturated if it is almost saturated and cellular.

All these properties induce suitable closure operators, encoded as
suitable (idempotent) monads on Mrk(C), defined for any pro-
perty p among {w,p,q,c,s} as

p(−) : S 7→ p(S)= ∩
U⊇S

{
U ∈Mrk(C) |U has property P

}
(1.14)

In classical category theory, the cellularization c(−) and the satura-
tion s(−) of a marking J on C are of particular interest (especially
in homotopical algebra), in view of what we state in Prop. 1.4.3.

Remark 1.4.2. A little more generality is gained supposing that
the cardinality of the coproducts or the transfinite compositions in
C is bounded by some (regular) cardinalα. In this case we speak of
α-saturated or α-cellular classes, and define the closure operators
of α-cellularization and α-saturation, etc.

The following Proposition is a standard result in the theory
of factorization systems, which we will often need all along the
discussion; a proof for the 1-categorical version of the statement
can be found in any of the provided references about factorization
systems.

Proposition 1.4.3. Let (C,S) be a marking of the cocomplete ∞-
category C; then the marking ⊥S of C is a saturated class. In partic-

(4)This notation is a shorthand to denote the fact that each edge F(i ≤
j) : F(i) → F( j) is an element of J; alternatively, we can regard this notation
as consistent, via the obvious identification between markings on C and full
subcategories of C.
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ular, the left class of a weak factorization system in a cocomplete
∞-category is saturated.

Completely dual definitions give rise to co-p-classes.(5) again,
suitable monads acting as co-p-closure operators are defined on
Mrk(C), giving the dual of Proposition 1.4.3:

Proposition 1.4.4. Let (C,S) be a marking of the cocomplete ∞-
category C; then the marking S⊥ of C is a co-saturated class. In
particular, the right class of a weak factorization system in a com-
plete category is co-saturated.

Proposition 1.4.5. Let C be a ∞-category and F= (E,M) ∈ fs(C);
then E∩M equals the class of all equivalences in C.

Proof. Again, the proof in the 1-categorical case can be found in
any reference about factorization systems. The idea is extremely
simple: if g ∈ E∩M then it is orthogonal to itself, and we can
invoke 1.2.11.

Definition 1.4.6. Let S ∈ Mrk(C); then, for each 2-simplex in C
representing a composable pair of arrows, whose edges are labeled
f , g, and f g we say that

• S is l32 if f , f g ∈ S imply g ∈ S;
• S is r32 if f g, g ∈ S imply f ∈ S.

A marking Swhich is closed under composition and both l32 and
r32 is said to satisfy the 3-for-2 property, or a 3-for-2 class.

Proposition 1.4.7. Given a fs (E,M) in the ∞-category C, then
(1) If the ∞-category C has K -colimits, for K a given simplicial

set, then the full subcategory of C∆[1] spanned by E has K -
colimits; dually, if the ∞-category C has K -limits, then the
full subcategory of C∆[1] spanned by M has K -limits;

(5)Obviously, wideness and closure under retracts are auto-dual properties.
The definition of transfinite op-composition needed to define co-cellularity may
be difficult to guess; see [Joy04] for reference.
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(2) The class E is r32, and the class M is l32 (see Def. 1.4.6).

Proof. Point (1) is [Lur09, Prop. 5.2.8.6]; point (2) is easy to prove
for 1-categories, and then the translation to the ∞-categorical set-
ting is straightforward.(6)

It is a remarkable, and rather useful result, that each of the
properties (1) and (2) of the above Proposition characterizes fac-
torizations among weak factorizations: see [RT07, Prop. 2.3] for
more details.

We close this section with an useful observation, showing that
in Def. 1.3.4 “factorization is all what matters”: asking two classes
(E,M) to uniquely crumble every morphism f ∈ hom(C) entails
that (E,M) are mutually orthogonal classes.

Remark 1.4.8. Let F= (E,M) be a pair of wide markings such that
every f ∈ hom(C) has a unique factorization f = m◦e with m ∈M,
e ∈E; then, F is a prefactorization, i.e. E⊥M.

Proof. Given a lifting problem

A X

B Y

u

m′′e′′

v

(1.15)

we can factor u as m◦e and v as m′◦e′, so that the square becomes

A U X

B V Y

e m

m′′e′

e′ m′

(1.16)

(6)This translation process being often straightforward, here and everywhere a
bibliographic support is needed, we choose to rely on classical sources to prove
most of the result involving ∞-categorical factorization systems. This should
cause no harm to the reader.
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Now, the factorizations (m′′◦m, e) and (m′, e′◦e′′) must be isomor-
phic by the uniqueness assumption, so that there exists an isomor-
phism U ∼= V which composed with e′,m gives a solution to the
lifting problem.

1.5 A second glance to factorization.

一条の矢は折るべく十条の矢は折るべからず

Japanese proverb

We add here a different presentation of ∞-categorical factori-
zation systems, faithfully following [Joy04, pp. 178—].

Definition 1.5.1.
[
Orthogonality and Fillers

]
: Let C be a ∞-

category, and u : A → B, f : X → Y two edges of C. We define the
space Sq(u, f ) of commutative squares associated to (u, f ) to be the
space of simplicial maps s : ∆[1]×∆[1] → C such that s|∆0×∆[1] =
u, s|∆[1]×∆0 = f .

A diagonal filler for s ∈ Sq(u, f ) consists of an extension
s̄ : ∆[1] ⋆ ∆[1] → C (where ⋆ denotes the join of simplicial
sets, see [Joy04, §3.1 and 3.2]) of s along the natural inclusion
∆[1]×∆[1]⊂∆[1]⋆∆[1].

Remark 1.5.2. Denote by Fill(s) the top-left corner of the fiber
sequence

Fill(s) X∆[1]⋆∆[1]

∆[0] X∆[1]×∆[1].

q

s

⌟ (1.17)

The simplicial set Fill(s) is a Kan complex, since q is a Kan fibration
(as a consequence of [Joy04, Prop. 2.18]).

This leads us to the following
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Definition 1.5.3. We say that the edge u is left orthogonal to the
edge f in the ∞-category C (or f is right orthogonal to u) if Fill(s)
is a contractible Kan complex for any s ∈ Sq(u, f ). We denote this
relation between u and f as u� f .

A first and natural task is to prove that the two relations ⊥
and � defined on the set of edges C1 of a ∞-category coincide:
this is immediate since ∆[1]⋆∆[1] = ∆[3] ([Joy04, p. 244]) and
since “solved commutative squares” can be identified with simpli-
cial maps ∆[3] → C (there is a unique edge outside the image of
∆[1]×∆[1]⊂∆[1]⋆∆[1]; this is the solution to the lifting problem).

Given this, for the rest of the section we will stick to the nota-
tion f ⊥ g to denote orthogonality in this sense ([Joy04] uses the
same symbol and takes 1.5.1 as a definition).

Proposition 1.5.4. Factorization systems can be lifted along left or
right fibrations: if p : C→D is such a simplicial map, and (E,M) ∈
fs(D), then (p←(E), p←(M)) is a factorization system on C.

Corollary 1.5.5. As a consequence, since the simplicial maps
C/X →C and CY / →C are left/right fibrations, every factorization
system on C lifts to a factorization system on the slice/coslice
∞-category. This is the ∞-categorical version of the classical state-
ment saying that a factorization system on C induces factorization
systems on all co/slice categories C/X and CY /.

1.5.1 A factor-y of examples.

[Joy04, pp. 178—] is an invaluable source of examples for facto-
rization systems on ∞-categories; a standard technique to provide
such examples is to reduce suitable “niceness” properties for cate-
gories (like regularity or exactness, or the possibility to find “Post-
nikov towers” for morphisms) to the presence of suitable factori-
zation systems on it.

This general tenet remains valid in ∞-categories.
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Remark 1.5.6. We must observe, here, that it is rather difficult
(i.e. rather more difficult than in 1-categories) to produce intuitive
examples of factorization systems in ∞-category, as many of the
1-dimensional examples rely on the intuition that (Epi,Mono) is
a well-behaved and paradigmatic example of such a structure in
many categories (such as sets, toposes, abelian categories…: the
factorization systems such that every E is a epimorphism, and
every M is a monomorphism are called proper in [FK72, Kel80]
to suggest how this notion is common and familiar).

This cannot be achieved in ∞-category theory, as [Lur09, p.
562] conveys the intuition that the notion of monomorphism
is not as meaningful in ∞-category theory as it is in 1-category
theory (compare, however, the statement that every topos has
an (Epi,Mono)-factorization system with the existence of a “Post-
nikov” factorization system on each ∞-topos, [Lur09]).

Several construction can be performed inside the category of
categories with factorization system: these are classical definitions
that can be recovered in every text about factorization systems (es-
pecially those with an interest towards model categories).

Example 1.5.7.
[
Co/products, co/slices

]
: Let C be a ∞-cate-

gory; then every co/slice of C inherits a factorization system from
F= (E,M) ∈ fs(C) obtained by putting

E/X = {(Y , f )
φ−→ (Z, g) |φ ∈E}

M/X = {(Y , f )
ψ−→ (Z, g) |ψ ∈M} (1.18)

(the definition for coslices CX / is analogous).
Let {Ci} be any small family of ∞-categories; the product ∏Ci

of all the elements of the family inherits a factorization system
from a family Fi = (Ei,Mi) ∈ fs(Ci), defined by putting∏

Ei = {( f i)i∈I | f i ∈Ei ∀i ∈ I}∏
Mi = {(g i)i∈I | g i ∈Mi ∀i ∈ I}. (1.19)
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A similar definition works for coproducts: the coproduct
⨿

Ci

inherits a factorization system defined in a dual fashion (an arrow
f ∈⨿

Ci lies in one and only one Ci∗ ; f ∈⨿
E if and only if f ∈

Ei∗).

Example 1.5.8.
[
Surjection-mono factorizations

]
: We say

that an arrow f : X →Y in a ∞-category is monic if the square

X X

f
��

X
f

// Y

(1.20)

is cartesian. The class of monic arrows in C is collected in a mark-
ing Mono(C)=Mono.

The class of surjective arrows is defined to be the class ⊥Mono(C);
we say that the ∞-category C has a surjection-mono factorization if
the prefactorization (⊥Mono(C),Mono(C)) is also a factorization
system.

Definition 1.5.9.
[
Regular ∞-category

]
: A finitely com-

plete ∞-category is said to be regular if it admits a pullback-stable
surjection-mono factorization system; the coherent nerve of the
category of Kan complexes, as a full sub-∞-category of the nerve
of the whole sSet, is regular. Notice that this is the ∞-categorical
counterpart of Barr-regular categories.

1.5.2 Chains of factorization systems.
Definition 1.5.10.

[
k-ary factorization system

]
: Let k ≥ 2 be a

natural number. A k-fold factorization system on a category C con-
sists of a monotone map ϕ : ∆[k−2]→ fs(C), where the codomain
has the partial order of Def. 1.2.17; denoting ϕ(i) = Fi, a k-fold
factorization system on C consists of a chain

F1 ⪯ ·· · ⪯ Fk−1, (1.21)
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This means that if we denote Fi = (Ei,Mi) we have two chains –any
of which determines the other– in hom(C):

E1 ⊃E2 ⊃ ·· · ⊃Ek−1,

M1 ⊂M2 ⊂ ·· · ⊂Mk−1.

The definition of a k-ary factorization system is motivated by
the fact that a chain in fs(C) results in a way to factor each arrow
“coherently” as the composition of k pieces, coherently belonging
to the various classes of arrows. This is explained by the following
simple result:
Lemma 1.5.11. Every arrow f : A → B in a category endowed with
a k-ary factorization system F1 ⪯ ·· · ⪯ Fk−1 can be uniquely fac-
tored into a composition

A E1−→ X1
E2∩M1−−−−−→ X2 →···→ Xk−2

Ek−1∩Mk−2−−−−−−−−→ Xk−1
Mk−1−−−−→ B,

(1.22)
where each arrow is decorated with the class it belongs to.
Proof. For k = 1 this is the definition of factorization system: given
f : X →Y , we have its Fi1 -factorization

X
Ei1−−→ Zi1

Mi1−−−→Y . (1.23)

Then we work inductively on k. Given an arrow f : X →Y we first
consider its Fik -factorization

X
Eik−−→ Zik

Mik−−−→Y , (1.24)

and then observe that the chain i1 ≤ ·· · ≤ ik−1 induces a (k−1)-
ary factorization system on C, which we can use to decompose
Zik →Y as

Zik

Eik−1−−−−→ Zik−1

Eik−2∩Mik−1−−−−−−−−−→ Zik−2 →···→ Zi2

Ei1∩Mi2−−−−−−→ Zi1

Mi1−−−→Y ,
(1.25)
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and we are only left to prove that Zik → Zik−1 is actually in Eik−1 ∩
Mik . This is an immediate consequence of the left cancellation
property for the class Mi1 . Namely, since Mi1 ⊆Mi2 ⊆ ·· · ⊆Mik ,
and Mik is closed for composition, the morphism Zik−1 →Y is in
Mik . Then the l32 property applied to

Zik → Zik−1
Mik−−−→Y (1.26)

concludes the proof.

1.5.2.1 The transfinite case.

We are now interested to refine the previous theory in order to
cope with possibly infinite chains of factorization systems. From
a conceptual point of view, it seems natural how to extend the
former definition to an infinite ordinal α; it must consists on a
“suitable” functor F : α→ fs(C).

The problem is that suitable necessary co/continuity assump-
tions for such a F might be covered by the fact that its domain is
finite (and in particular admits an initial and a terminal object):
in principle, dealing with infinite quantities could force such F to
fulfill some other properties in order to preserve the basic intuition
behind factorization.

We start, now, by recalling a number of properties motivating
Def. 1.5.10 below.

Notation 1.5.12. A factorization system on C naturally defines a
pair pointed/co-pointed endofunctor on C∆[1], starting from the
factorization

X Y

F( f ).
←−
F ( f )

−→
F ( f )

(1.27)

(This has also been noticed in [Lur09]). A refinement of this no-
tion (see [GT06, Gar09, Rie11]) regards this pair of functor as a
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pair monad/comonad on C∆[1]: in this case F : C∆[1] →C is a func-
tor and f 7→ ←−

F ( f ) has the structure of a (idempotent) comonad,
whose comultiplication is

F f
←−
F (

−→
F ( f ))

//

−→
F ( f )

��

FF f
−→
F (

−→
F ( f ))

��

Y Y

(1.28)

and f 7→ −→
F ( f ) has the structure of a (idempotent) monad, whose

multiplication is

X
←−
F (

←−
F ( f ))

��

F f
←−
F ( f )
��

FF f −→
F (

←−
F ( f ))

// F f .

(1.29)

Remark 1.5.13.
[
On functors to posetal categories

]
:

(Small) posets form the category PCat of (small) posetal cate-
gories (categories where every hom-set is either empty or has one
element).

This category is reflective in Cat, since we have an adjunction

PCat(pC,P)∼=Cat(C,P). (1.30)

(The poset p(J) results as the partially ordered set Ob(J) where A ≤
B iff there is an arrow from A to B.) Hence functors J → P are
uniquely determined by a monotone function p(J)= J → P, with
respect to this order on J.

Remark 1.5.14.
[
On (co)limits in slice categories

]
: Slice and

coslice categoriesCX / andCX / are complete and cocomplete when-
ever C is: colimits in CX / and limits CX / are simply reflected by
the natural forgetful functor U : CX /,CX / →C, so that the limit of

a diagram j 7→
[

X
↓

A j

]
is simply the arrow

[
X
↓

lim←−C
j

A j

]
(and dually for
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colimits in CX /); limits in a slice category, and colimits in a coslice
category are, generally, more difficult to compute.

The general recipe for (say) colimits of a functor F : J → CX /

exploits the isomorphism

Fun(J,CX /)∼= FunF (J◁,C) (1.31)

where J◁ is the category [0]⋆ J obtained freely adding an initial
object, and FunF (J◁,C) is the category of functors J◁ →C which
coincide with F when restricted to J⊂ [0]⋆ J.

Now fortunately, whenever the indexing category is connected,
limits in slice categories, and colimits in coslice categories are
again reflected along the natural forgetful U : a particular appli-
cation of this result, when J is an ordinal regarded as a category,
serves to state the following definition.

Definition 1.5.15. Let α be an ordinal. A α-ary factorization sys-
tem, or factorization system in α-stages, on C consists of a monotone
function α→ fs(C) : i 7→ Fi such that, if we denote by

X //

←−
F i( f ) ""E

EE
EE

EE
E Y

Fi( f )
−→
F i( f )

<<yyyyyyyy

(1.32)

the Fi-factorization of f : X →Y , we have the following two “tame
convergence” conditions:

lim←−−
i∈α

−→
F i( f )= lim←−−

i∈α

[
Fi( f )
↓
Y

]
=

[ X
↓
Y

]
; lim−−→

i∈α

←−
F i( f )= lim−−→

i∈α

[
X
↓

Fi( f )

]
=

[ X
↓
Y

]
lim−−→
i∈α

−→
F i( f )= lim−−→

i∈α

[
Fi( f )
↓
Y

]
= 1Y ; lim←−−

i∈α

←−
F i( f )= lim←−−

i∈α

[
X
↓

Fi( f )

]
= 1X

(all the diagrams have to be considered defined in suitable slice
and coslice categories) which can be summarized in the presence
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of “extremal” factorizations

X
f

//

lim←−i

←−
F i f AA

AA
AA

AA

AA
AA

AA
AA

Y X
f

//

lim−→i

←−
F i f   

@@
@@

@@
@@

Y

X
lim←−i

−→
F i f

>>~~~~~~~~
Y

lim−→i

−→
F i f

~~~~~~~~

~~~~~~~~

(1.33)

Theorem 1.5.16.
[
The multiple small object argument

]
: Let

J1 ⊆ ·· · ⊆ Jn be a chain of markings on C; if each class Jα has
small domains then applying n times the small object argument,
the extensivity of the ⊥((−)⊥) and (⊥(−))⊥ closure operators entails
that there exists a chain of factorization systems(⊥(J⊥

n ), J⊥
n

)⪯ ·· · ⪯ (⊥(J⊥
1 ), J⊥

1
)

(1.34)

(the order relation is that of Def. 1.2.17).
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Chapter 2

Reflectivity and Normality

We now translate in the setting of ∞-categories the main defini-
tions and results exposed in [CHK85], with a special attention to
the setting of Lurie’s stable ∞-categories. We take for granted all
the basic definition of stable ∞-category, t-structure and proper-
ties thereof, exposed in appendix A.

The paper [CHK85] extensively describes various types of re-
flective subcategories of a given category C obtained by means of
factorization systems on C. A number of results are discussed and
applied to additive and abelian categories, pointed categories, etc.
leading to the notion of a normal torsion theory.

Among these results, one the most interesting for the present
purposes is the antitone bijection established between localiza-
tions of C, collected in the poset Rex(C)(1), and factorization sys-
tem F= (E,M) such that both classes are 3-for-2 in the sense of our
1.4.6: this analysis paves the way to the foundations for a “theory
of torsion and torsion-free classes” in non additive categories, and
it is a starting point to motivate the ∞-categorical translation for
the theory.

The present chapter profits from the blanket assumption of sta-
bility for the ∞-category C; here a triangulated structure on the

(1)This notation may appear deceiving: “Rex” stands here for reflections, and
not for right exact.
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homotopy category Ho(C) is induced by easy and categorically na-
tural axioms, verified at the “higher” level, and universal proper-
ties utterly simplify the proof of the analogy “co/reflective pairs”
= “t-structures”. This allows to obtain a rather primitive statement
(hinted in [AHHK07, BR07], and others, but never extracted from
the land of folklore: for a discussion on this point, see 2.3.8): this
result is called “Rosetta stone” theorem in 3.1.1, and constitutes
the backbone of the thesis.

We now sketch the content of [CHK85, §6], and offer a ∞-ca-
tegorical counterpart thereof: given a reflective factorization system
F= (E,M) (Prop. 2.1.6) on a ∞-category with initial and terminal
objects, the classes

0∅/E △= {X ∈C |∅→ X ∈E},

M/1 △= {Y ∈C |Y → 1 ∈M} (2.1)

are respectively a coreflective and reflective subcategory of C. A
number of additional requests on F ensure that these two subcate-
gories behave well under several other constructions, or enjoy ad-
ditional properties of mutual interaction (e.g. determining each
other up to equivalence, via the object-orthogonality relation).

This is, again, a chapter devoted to purely categorical results;
we can nevertheless outline a couple of interesting points, even at
this level of abstraction.

In their exam of [CHK85], the authors of [RT07] outline a
sequence of implications between the properties of (semi-left/-
right-)exactness, simplicity and normality of a torsion theory F, and
confess a certain difficulty in exhibiting a non-artificial example of
a non-normal torsion theory; they conclude, then (with a certain
coherence in the choice of notation), that the notion of non-
normality is somewhat pathological, and suggest ([RT07, Remark
4.11]) that there are few (if any) examples of a non-normal torsion
theory.

In 2.3.16 we prove that, in the setting of stable ∞-categories,
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the three notion of exactness, simplicity and normality collapse
into a single notion (simply called normality); this result deserves
further investigation in light of the use of reflective factorization
systems in [BJ01] and in view of the fact that any category A has
a (canonically constructed) stabilization Sp(A), where the asim-
metry between normality, semi-exactness and simplicity stated in
[CHK85, §4.4] disappears.

Notation 2.0.1. A blanket assumption throughout all this chap-
ter is that C is a ∞-category with an initial and terminal object,
respectively denoted ∅ and 1: subsequently we will specialize this
assumption asking that C is stable (so in particular it is pointed
and finitely co/complete). Other specializations (like in Def. 2.2.1
or 2.2.3) will be always notified to the reader; here we do not strive
for a particular sharpness in statements and proofs: several results
are still valid outside our main case of interest (i.e. when C is not
stable, but still has finite limits or is at least pointed).

We denote τC the class of the terminal morphisms {tX : X → 1 |
X ∈C}, and Rex(C) be the poset of reflective subcategories (B,R)
of C (where R : C→B is the reflection functor, left adjoint to the
inclusion).

2.1 The fundamental connection.

菩提本無樹，明鏡亦非臺。
本來無一物，何處惹塵埃。

Huìnéng

The aim of the present section is to re-enact [CHK85, Prop.
2.2], where the authors build a correspondence between pfτ(C)
(see Def. 1.3.2) and Rex(C).

Proposition 2.1.1. There exists a(n antitone) Galois connection
Φ⊣Ψ between the posets Rex(C) and pfτ(C), where Ψ sends F=
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(E,M) to the subcategory M/1 = {B ∈ C | (B → 1) ∈M}, and Φ is
defined sending (B,R) ∈Rex(C) to the prefactorization right gener-
ated (see Definition 1.2.19) by hom(B).

Proof. A complete proof can be found in [CHK85]; we prefer only
to give a sketch of such argument. The definition of the two func-
tions Φ,Ψ turns the verification that the two form a Galois con-
nection into a straightforward check, and all the other main steps
of the proofs are resumed in the following remarks.

Remark 2.1.2. The action of the functor R : C→M/1 is induced
on objects by a choice of F-factorizations of terminal morphisms:
X e−→ RX m−→ 1. On arrows it is obtained from a choice of solutions
to lifting problems

A RB

RA 1

e f

m

m

R f (2.2)

Remark 2.1.3. Showing that there is an adjunction R : C ⇄
M/1: i boils down to showing that C(−, X ) inverts each reflection
A → RA; this is an easy consequence of the arrow-orthogonality
between

[ A
↓

RA

]
and

[ X
↓
1

]
, equivalent to the object-orthogonality on[ A

↓
RA

]
and X ∈M/1.

Remark 2.1.4. The unit idRex(C) ⇒ ΨΦ of this adjunction is an
isomorphism. The comonad ΦΨ⇒ idpfτ(C) is much more intere-
sting, as it acts like an interior operator on the poset pfτ(C), sending
F to a new prefactorization F◦ = (E◦,M◦) which is by construction
reflective, i.e. satisfies F◦ = F (whereas in general we have only a
proper inclusion F◦ ⪯ F deduced from M◦ ⊆M).

What we said so far entails that

Proposition 2.1.5. The adjunction Φ ⊣ Ψ restricts to an equiva-
lence (a bijection between posets) between the reflective prefacto-
rizations in F ∈ pfτ(C) and the poset Rex(C).
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Proposition 2.1.6. F ∈ pfτ(C) is reflective if and only if E is a 3-for-
2 class (see Definition 1.4.6), or equivalently (since each E-class of
a factorization system is r32) if and only if E is l32.

Proof. It is an immediate consequence of [CHK85, Thm. 2.3],
where it is stated that g ∈E◦ iff f g ∈E for a suitable f ∈E.

Remark 2.1.7. We can also state a completely dual antitone bijec-
tion between the poset coreflective subcategories, CoRex(C), and
the poset of (pre)factorization systems pfι(C) factoring initial ar-
rows ι = {∅→ X | X ∈ C}; this is defined via the correspondence
F 7→ ∅/E = {Y ∈ C | (∅ → Y ) ∈ E}; the coreflection of C along
∅/E is given by a functor S defined by a choice of F-factorization
∅ e−→ SX m−→ X .

Remark 2.1.8. We can also define coreflective factorization sys-
tems, and prove that F is coreflective iff M is r32, and bireflective
factorization systems as those which are reflective and coreflective
at the same time: as these will consistute the main object of study
of the present and subsequent chapters, we gather these remarks
into a precise definition.

Definition 2.1.9.
[
Reflective factorization system

]
: A bire-

flective (pre)factorization system F= (E,M) ∈ pf(C) is a (pre)factorization
system such that both classes E,M are 3-for-2 classes.

2.2 Semiexactness and simplicity.

The guiding motto in the life of every natural
philosopher should be, seek simplicity and distrust it.

A.N. Whitehead

A fairly general theory, subsumed in [CHK85], stems from the
above construction, and several peculiar subclasses of (co)reflective
factorization systems become of interest. We now concentrate on
semi-exact and simple factorizations:
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Definition 2.2.1. A semi-left-exact factorization system on a finitely
complete C consists of a reflective F= (E,M) ∈ fs(C) such that the
left class E is closed under pulling back byM arrows; more explic-
itly, in the pullback

A B

C D

e

m

e′ ⌟ (2.3)

the arrow e′ lies in E.

Equivalent conditions for F to be semi-left-exact are given in
[CHK85, Thm. 4.3]. There is a dual definition of a semi-right-
exact factorization system.

Notation 2.2.2. We call semiexact a factorization system which is
both left and right exact.

Another important class of factorization systems is made by
simple ones in categories with finite limits and colimits, where F

gives “a simple rule to factor morphisms”. More precisely, if C has
pullbacks, we can define

Definition 2.2.3. A left simple factorization system on C is a re-
flective F ∈ fs(C) such that, if we denote by R the reflection C→
M/1, with unit η : 1C ⇒ iR (often denoted simply as η : 1C ⇒ R
with an harmless abuse of notation), associated to F, then the F-
factorization of f : X →Y can be obtained as X → RX ×RY Y →Y
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in the diagram

X

RX ×RY Y RX

Y RY

ηX

R f

ηY

f

⌟

(2.4)

obtained from the naturality square for f .

Simple factorization systems are, in other words, such that the
canonical arrow X → RX ×RY Y lies in E (the pullback arrow
RX ×RY Y → Y always lies in M, by the 3-for-2 closure property
of M).

Remark 2.2.4. Every semi-left-exact factorization system is left
simple, as proved in [CHK85, Thm. 4.3]. In the 1-categorical set-
ting, the converse doesn’t hold in general (see [CHK85, Example
4.4]), whereas our Prop. 2.3.15 shows that in the stable ∞-catego-
rical world the two notions coincide. This is a first evidence of
the peculiar and really symmetric “internal behaviour” of a stable
∞-category (the proof of our 2.3.15 makes essential use of the pull-
out axiom, which is only valid and nontrivial in an ∞-categorical
setting).

Remark 2.2.5. There is an analogous notion of right simple facto-
rization system: it is enough to dualize Def. 2.2.3; dualizing also
[CHK85, Thm. 4.3], it is possible to prove that semi-right-exact
factorization systems are right simple.

An useful result follows from the semi-exactness of a factoriza-
tion system F whose both classes are 3-for-2 (these last are called
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torsion theories in [RT07]; see our Def. 2.3.1 for an extensive dis-
cussion).

Proposition 2.2.6. Let F be a semiexact (Def. 2.2.1; its domain
of definition is, in particular, finitely co/complete) torsion theory
with reflection functor R : C→M/1 and whose coreflection is S:
then we have that

SY ⨿SX X ∼= RX ×RY Y (2.5)

for any f : X →Y .

Proof. The claim holds simply because semiexactness gives the F-
factorization of f : X → Y as X → RX ×RY Y → Y (on the left),
and X → SY ⨿SX X →Y (on the right).

There is a more explicit argument which makes explicit use of
the orthogonality and 3-for-2 closure property: consider the dia-
gram

SX X RX ×RY Y RX

SY SY ⨿SX X Y RY

σX

R fS f

ηY

ηX

w

σY

(2.6)

where η is the unit of the reflection R, σ is the counit of the
coreflection S, and the diagonal of the central square is filled by
f : X → Y . Now, denote P = RX ×RY Y and Q = SY ⨿SX X the
arrow

[
X
↓
Q

]
is in E, and the arrow

[ P
↓
Y

]
is in M, as a consequence

of stability under cobase and base change (see Prop. 1.4.3); this
entails that there is a unique w : Q → P making the central square
commute. Now, semiexactness entails that X → P → Y and
X →Q →Y are both F-factorizations of f : X →Y , and since both
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classes E,M are 3-for-2, we can now conclude that w : Q → P lies
in E∩M, and hence is an equivalence (see Prop. 1.4.5).

2.3 Normal torsion theories.

We have normality. I repeat: we have normality.
Anything you still can’t cope with is therefore your
own problem.

D. Adams

Refining the blanket assumption of the initial section, we now
assume that C is a stable ∞-category, with zero object 0 =∅ = ∗.
Following (and slightly adapting to our particular case) [RT07, §4]
we give the following definitions

Definition 2.3.1.
[
Torsion theory, torsion classes

]
: A torsion

theory in C consists of a factorization system F = (E,M) (see Re-
mark 2.1.8 and Def. 2.1.9), where both classes are 3-for-2 (in the
sense of Definition 1.4.6). We define T(F) = 0/E and F(F) =M/0
(see Prop. 2.1.1, and Remark 2.1.7) to be respectively the torsion
and torsion-free classes associated to the torsion theory.

Remark 2.3.2. [RT07, 3.1] Let C be a ∞-category with termi-
nal object ∗; then the class F(F) is firmly E-reflective, meaning that
any morphism A → F with F ∈ F(F) is isomorphic to the object
RA ∈F(F). This directly follows from the uniqueness of the F-fac-
torization.

Remark 2.3.3. In view of Prop. 2.1.6 and its dual, the torsion and
torsion-free classes of a torsion theory F ∈ fs(C) are respectively a
coreflective and reflective subcategory of C.

If we F-factor the terminal and initial morphisms of any object
X ∈C, we obtain the the reflection R : C→M/0 and coreflection
S : C→ 0/E, and a “complex”

SX → X → RX (2.7)
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(in the sense of pointed categories), i.e., a homotopy commutative
diagram

SX X

0 RX

(2.8)

We deduce this commutativity from the orthogonality condition:
the lifting problem

0 RX

SX 0

(2.9)

has unique solution the zero arrow SX → RX , so that the space
C(SX ,RX ) is contractible: since there cannot be nonzero arrows
SX → RX , the claim is proved.

Proposition 2.3.4. Let C be a stable ∞-category with a normal
torsion theory F = (E,M), having coreflection S : C→ 0/E. Then
the following conditions are equivalent for an object X ∈C:

(1) X is a S-coalgebra, i.e. there exists an arrow c : X → SX such
that SX

σX−−→ X c−→ SX is the identity of SX ;
(2) X ∈T= 0/E;
(3) X ∼= SX ;
(4) X ∈ ⊥{SA → A}, i.e. X is left-object-orthogonal (Def. 1.2.15)

to each coreflection arrow SA → A.

The present statement results from a mixture of [RT07] and
[Kel80, Prop. 5.2]; we address to these sources the interested
reader.

Obviously, a dual result can be stated and proved with basically
no effort:

Proposition 2.3.5. LetC be a stable ∞-category with a normal tor-
sion theory F= (E,M). Then the following conditions are equiva-
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lent for an object X ∈C
(1) X is a R-algebra;
(2) X ∈M/0;
(3) X ∼= RX ;
(4) X ∈ {A → RA}⊥, i.e. X is object-orthogonal (Def. 1.2.15) to

each reflection arrow A → RA.
Remark 2.3.6. Given the closure properties of the classesE,M, we
can define natural functors F : C→F and T : C→T taking F X as
the homotopy pullback, and TX as the homotopy pushout in the
diagrams below

F X SX X 0

0 X RX TX .

⌟ ⌜ (2.10)

We now come to the gist of the present chapter, i.e. the defini-
tion of a normal torsion theory and its relation with the notion of
t-structures, which will occupy entirely Chapter 3 with the proof
of the Rosetta stone theorem.

An initial step to motivate the quest of a class of factorization
system describing t-structures (identified with the pair of subcate-
gories called aisle and coaisle in the literature, see [KV88]) in stable
∞-categories starts precisely from the observation that suitable ad-
ditional properties of a co/reflective subcategory B ⊆ C translate
into properties of the associated co/reflective factorization system
Φ(B)= F.

Torsion theories in a stable ∞-category, in the form of bireflec-
tive factorization systems, produce such pairs of well-behaved core-
flective/reflective subcategories via the correspondence (E,M) 7→
(0/E,M/0); so we are only one step away from characterizing t-
structures: we only lack axiom (iii) of Def. A.3.2.

It turns out that the possibility to put every object X into a
distinguished triangle (or, better to say in our setting, a fiber se-
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quence)
X≥0 X

0 X<0

⌟⌜ (2.11)

is equivalent to the request that (E,M) be a normal factorization
system on C; in a nutshell, the idea is the following.

General torsion theories generate a sequence SX → X → RX
whose composition is the zero morphism; the factorization sys-
tems rendering this composition also an exact sequence are called
normal (the term is borrowed from [CHK85] who first studied the
notion, reprised n [RT07]).

A normal torsion theory is a factorization system F =
(E,M) such that the diagram

SX X

0 RX

⌟⌜ (2.12)

is a pullout.

As discussed above, it is fairly natural to define functors F and T
taking respectively the fiber of the coreflection and the cofiber of the
reflection morphism. Normality involves the alternate procedure,
considering the fiber K X of the reflection X → RX and the cofiber
QX of the coreflection SX → X . A priori, there is no way to con-
trol the subcategory where the functors K ,Q take value: the idea
behind a normal torsion theory is that in certain situation this is
possible, as the two functors K and Q do not introduce new infor-
mation, as they are respectively isomorphic to S and R.

Remark 2.3.7. This terse characterization of normality, and espe-
cially our Remark 2.3.16 which states that left, right and two-sided
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normality all coincide in a stable ∞-category, seems to shed a light
on [CHK85, Remark 7.8] and [RT07, Remark 4.11], where the
non-existence of a non-artificial example of a non-normal torsion
theory is conjectured.

Remark 2.3.8. The present analysis owes to [RT07, CHK85,
BR07] an infinite debt; it may appear strange, hence, that such
may different sources ignore the possibility to turn this suggestion
into a precise statement.

Indeed, somehow mysteriously, [RT07, §4] seems to ignore ap-
plication of the formalism of torsion theories to the triangulated
world, even if its authors point out clearly (see [RT07, Remark
4.11.(2)]) that

It [our definition of torsion theory, auth.] applies, for
example, to a triangulated category C. Such a cate-
gory has only weak kernels and weak cokernels and
our definition precisely corresponds to torsion theo-
ries considered there as pairs F and T of colocalizing
and localizing subcategories (see [HPS97]).

Even more mysteriously, another encyclopedic source for a “calcu-
lus of torsion theories” in triangulated categories, [BR07], explic-
itly says (p. 17) that

Torsion pairs in triangulated categories are used in the
literature mainly in the form of t-structures.

and yet it avoids, in a certain sense, to offer a more primitive char-
acterization for t-structures than the one given ibi, Thm 2.13.

This situation indicates well a general tenet according to which
working in the stable setting gives more symmetric and better mo-
tivated results.

The “Rosetta stone” theorem casts a shadow on the homotopy
category T=Ho(C), giving a similar but insufficient characteriza-
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tion of t-structures as those factorization systems in T which are
closed under homotopy pullback and pushouts in T.(2)

Definition 2.3.9. We call left normal a torsion theory F= (E,M) on
C such that the fiber K X → 0 of a reflection morphism X → RX
lies in E, as in the diagram

K X X

0 RX

⌟ (2.13)

In other words, the E-morphisms arising as components of the
unit η : 1 ⇒ R are stable under pullback along the initial M-
morphism 0→ RX .

Remark 2.3.10. This last sentence deserves a deeper analysis: by
the very definition of RX it is clear that RX → 0 lies in M; but
more is true (and this seemingly innocuous result is a key step of
most of the proofs we are going to present): since M enjoys the
3-for-2 property, and it contains all isomorphisms of C, it follows
immediately that an initial arrow 0→ A lies inM if and only if the
terminal arrow A → 0 on the same object lies inM. The same rea-
soning applied to E gives a rather peculiar “specularity” property
for both classes E,M:

Lemma 2.3.11.
[
Sator Lemma

]
: In a pointed ∞-category C, an

initial arrow 0 → A lies in a class E or M of a bireflective (see
Remark 2.1.8) factorization system F if and only if the terminal
arrow A → 0 lies in the same class.(3)

Notation 2.3.12. This allows a certain play for a little abuse of
notation, in that we can say that an object A of C lies in a 3-for-2

(2)This result is part of a work in progress [LMV] and will hopefully introduce
a subsequent joint work exploring the shape of the “Rosetta stone” in the setting
of stable derivators.

(3)The so-called Sator square, first found in the ruins of Pompeii, consists of
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class K if its initial or terminal arrow lies in K: in this sense, a
left normal factorization system is an F such that the fiber K X of
X → RX lies in E, for every X in C.

Equivalent conditions for F to be left normal are given in
[RT07, Thm. 4.10] and [CHK85, 7.3].

Remark 2.3.13. There is, obviously, a notion of right normal fac-
torization system: it is an F such that the cofiber QX of SX → X
lies inM, for every X inC. In the following we call simply normal,
or two-sided normal a factorization system F ∈ fs(C) which is both
left and right normal.

Now we come to an interesting point: in a stable ∞-category
the three notions of simple, semiexact and normal torsion theory
collapse to be three equivalent conditions.

To see this, we have to prove a preliminary result:

Proposition 2.3.14. For every object X , consider the following
diagram in C, where every square is a pullout.

SX ⊕RX [−1] SX 0

K X X QX

0 RX SX [1]⊕RX

m′′ σX

ρX e′′

(2.15)

the 5×5 matrix
s a t o r
a r e p o
t e n e t
o p e r a
r o t a s

(2.14)

where the letters are arranged in such a way that the same phrase (“sator arepo
tenet opera rotas”, approximately “Arepo, the farmer, drives carefully the
plough”) appears when it is read top-to-bottom, bottom-to-top, left-to-right,
and right-to-left.
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Then the following conditions are equivalent for a bireflective fac-
torization system F= (E,M) on C:

(1) F is left normal;
(2) F is right normal;
(3) F is normal;
(4) RX ≃QX ;
(5) SX = K X ;
(6) SX → X → RX is a fiber sequence.

Proof. We start by proving that the first three conditions are equiv-

alent. If we assume left normality, then the arrow
[

QX
↓

SX [1]⊕RX

]
lies

in E, since it results as a pushout of an arrow in E. So we can
consider

QX RQX

SX [1]⊕RX R(SX [1]⊕RX ) 0

e′

m′e′′

e m

(2.16)

F-factoring the morphisms involved (notice that R(SX [1]⊕RX )∼=
RX ): R(SX [1]⊕RX ) = RRX = RX since RS = 0. Thus RQX ∼=
RX , which entails

[
0
↓

QX

]
∈M, which entails right normality. A

dual proof gives that (2) ⇒ (1), thus right normality equals left
normality and hence two-sided normality. Now it is obvious that
(6) is equivalent to (4) and (5) together; the non-trivial part of the
proof consists of the implications (1)⇒ (4), and dually (2)⇒ (5).
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Once noticed this, start with the diagram

SX X

QX

0 RX

m

e

m′

(2.17)

and consider the canonical arrow QX → RX obtained by universal
property: the arrow

[ 0
↓

RX

]
lies in M (this is a general fact); left

normality now entails that
[

0
↓

QX

]
∈M, so that

[
QX
↓

RX

]
lies in M too

by reflectivity.

A similar argument shows that since both
[

X
↓

QX

]
,
[ X

↓
RX

]
lie in

E,
[

QX
↓

RX

]
lies in E too by reflectivity. This entails that

[
QX
↓

RX

]
is

an equivalence. Conversely, if we start supposing that QX ∼= RX ,
then we have (left) normality. This concludes the proof, since in
the end we are left with the equality (4)⇐⇒ (5).

As previewed before, the three notions of simplicity, semiexact-
ness and normality collapse in a single notion in the stable setting:

Proposition 2.3.15. A torsion theory F is left normal if and only
it is semi-left-exact in the sense of [CHK85, 4.3.i], namely if and
only if in the pullout square

E X

Q RX

ρXe′

m

⌟⌜ (2.18)

the arrow e′ lies in E. Dually, a factorization system F is right nor-



2.3. Normal torsion theories. 44

mal if and only it is semi-right-exact in the sense of (the dual of)
[CHK85, 4.3.i].

Proof. Consider the diagram

K X E X

0 Q RX

e

m

e′⌟⌜ ⌟⌜ (2.19)

where the arrow Q → RX belongs to M. On the one side it is
obvious that if F is semi-left-exact, then it is normal (just pull back
two times e along M-arrows). On the other hand, the converse
implication relies on the pullout axiom: if F is normal, then K X

lies in E; but now since the left square is a pullout, the arrow
[

E
↓
Q

]
belongs to E too, giving semi-left-exactness.

Remark 2.3.16. The three notions coincide since “classically” we
have

slex→ simple→normal, (2.20)

whereas in our setting the chain of implication proceeds one step
further and closes the circle:

slex→ simple→normal ⋆−→ slex. (2.21)

This gives a pleasant consequence:

Remark 2.3.17. In a stable ∞-category the F-factorization of
f : A → B with respect to a normal torsion theory is always

A → RA×RB B → B, (2.22)

or equivalently (see Prop. 2.2.6)

A → SB⨿SA A → B. (2.23)
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A useful remark appearing in [RT07, §4.6, 5] (here adapted to
the stable case) is the following: torsion and torsionfree classes of
a torsion theory in a stable ∞-category are closed under extension.

Definition 2.3.18. Let K⊆Ob(C) be a class of objects in a stable
∞-category;K is said to be closed under extension if for each pullout
square

A B

0 C

A //

��

B

��

0 // C

(2.24)

such that A,C ∈K, then also B ∈K.

Proposition 2.3.19. Let F= (E,M) be a torsion theory in a stable
∞-category C; then the classes 0/E, M/0 of Def. 2.3.1 are closed
under extension.

Proof. We only prove the statement if A,C of diagram (2.24) lie in
0/E; the proof for M/0 is identical. Now, it is enough to consider
the diagram

0 A B

0 C

0

(2.25)

where we have A,C ∈ 0/E, i.e. A → 0,C → 0 lie in E; the arrow
B → C is in E since E is closed under pushout; so B → C → 0 is in
E.
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Chapter 3

The “Rosetta stone”

3.1 t-structures are factorization systems.

Acaso un arquetipo no revelado aún a los hombres,
un objeto eterno (para usar la nomenclatura de
Whitehead), esté ingresando paulatinamente en el
mundo; su primera manifestación fue el palacio; la
segunda el poema. Quien los hubiera comparado
habría visto que eran esencialmente iguales.

[Bor97], El sueño de Coleridge

This is (both form a conceptual and order-theoretical point of
view) the central chapter of the thesis, where we prove our main
result: we gathered enough material and mastery of the iaidō of
factorization to embark on a complete, exhaustive proof of our
“Rosetta stone” theorem 3.1.1, i.e. to prove that in a stable qua-
sicategory, normal torsion theories correspond to t-structures, via
the following dictionary.



3.1. t-structures are factorization systems. 48

Normal torsion theories t-structures
F= (E,M) t

(T,F) (C≥0,C<0)
hom(T,F)≃∗ hom(C≥0,C<0)= 0

factorization of initial/terminal reflection/coreflection functors

We provide an introduction to t-structures in A.3; the interested
reader can also consult classical references as [KS90, BBD82] and
the unique (at the moment of writing) reference for t-structures
in stable ∞-categories, [Lur11].

In some sense, the present result, which turned out to be the
main conceptual achievement of the present work, stemmed from
the innocuous desire to better understand [Lur11, 1.2.1.4], which
defines t-structures on a stable ∞-category C as classical t-struc-
tures on the homotopy category Ho(C). Albeit true, this result
seems to hide part of the story. A deeper analysis of it, motivated
by the desire for a more intrinsic characterization of t-structures,
motivated the following statement:

Theorem 3.1.1.
[
the Rosetta stone

]
: Let C be a stable ∞-cate-

gory. There is a bijective correspondence between the class of nor-
mal torsion theories F = (E,M) on C (in the sense of Definition
2.3.9) and the class of t-structures on C (in the sense of Definition
A.3.2).

The proof of this result will occupy the entire chapter, and will
be followed by examples coming from homological algebra and
algebraic topology, showing how to reinterpret classical construc-
tions in light of this result.

To simplify the discussion we will deduce 3.1.1 as a conse-
quence of a number of separate statements.

The strategy is simple: we first construct the pair of correspon-



49 3.1. t-structures are factorization systems.

dences

normal torsion theories t-structures

t(−)

F(−)

(3.1)

We are obviously led to exploit the fundamental connection ex-
posed in §2.1:

• Given a normal, bireflective factorization system F= (E,M)
on C we define the two classes (C≥0(F),C<0(F)) of the t-struc-
ture t(F) to be the torsion and torsion-free classes (0/E,M/0)
associated to F, in the sense of Definition 2.3.1.

• On the other hand, given a t-structure t = (C≥0,C<0) in the
sense of Definition A.3.2, we have to define classes F(t) =
(E(t),M(t)) which form a factorization system. If τ≥0,τ<0 de-
note, respectively, the co/truncation of the t-structures (Re-
mark A.3.4), we set:

E(t)= { f ∈C∆[1] | τ<0( f ) is an equivalence};

M(t)= { f ∈C∆[1] | τ≥0( f ) is an equivalence}. (3.2)

The language developed throughout the previous chapter will give
a mangeable (in fact, several many others) characterizations of
these two classes of morphisms.

Half of the proof for Thm. 3.1.1 consists in a mere recasting
of the definition of normal torsion theory, to check that the pair
(C≥0(F),C<0(F)) really is a t-structure:

Proposition 3.1.2. The pair t(F) is a t-structure on C in the sense
of Definition A.3.2.

Proof. The orthogonality request is immediate by definition of the
two classes (see Remark 2.3.3). As for the closure under positive/-
negative shifts, (A → B) ∈ E entails that (A[1] → B[1]) ∈ E since
left classes in factorization systems are closed under (homotopy)
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colimits in the arrow category (see Prop. 1.4.7) and in particular
under the homotopy pushout defining the shift A 7→ A[1] on C.
This justifies the chain of implications

X ∈C≥0(F)⇐⇒
[ 0
↓
X

]
∈E=⇒

[
0
↓

X [1]

]
∈E⇐⇒ X [1] ∈C≥0(F). (3.3)

The case of C<0 is completely dual: since M admits any limit,[ X
↓
0

]
∈M implies that

[
X [−1]

↓
0

]
∈M, so that C<0(F)[−1]⊂C<0(F).

To see that any object X ∈ C fits into a fiber sequence X≥0 →
X → X<0, with X≥0 in C≥0(F) and X<0 in C<0(F), it suffices to F-
factor the terminal morphism of X obtaining a diagram like

X e // RX m // 0 (3.4)

and then to take the fiber of e,

K X X

0 RX

⌟⌜ (3.5)

Set X≥0 = K X and X<0 = RX . Then X<0 ∈C<0(F) by construction
and SX ∼= X≥0 ∈C≥0(F) by normality.

In order to prove, now, that the pair of markings F(t) is a fac-
torization system on the stable ∞-category C, we use the data of
the t-structure to produce a functorial factorization of morphisms,
and we recall ([Lur11, Def. 1.2.1.4] and our Remark A.3.7) that a
t-structure on C corresponds to a classical t-structure on the tri-
angulated homotopy category of C; this allows a certain freedom
in moving between data living in C and their “shadow” living in
Ho(C), at least as soon as these data involve only homotopy invari-
ant information associated to the t-structure.

Finally, we use the characterization exposed in Remark 2.3.17
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of the factorization functor in terms of its pair reflection/coreflec-
tion.

Recall that by Def. A.3.2.(iii) every object X ∈ C fits into a
distinguished triangle X≥0 → X → X<0 → X≥0[1]. This triangle
in Ho(C) is the image of a fiber sequence (denoted with the same
symbols) in C via the homotopy-category functor, and can be
lifted to such a sequence: this entails that given f : X →Y we can
build the diagram(1)

X≥0 X X<0 X≥0[1]

Y≥0 C X<0 Y≥0[1]

Y≥0 Y Y<0 X≥0[1]

τ≥0( f )[1]τ≥0( f )

τ<0( f )

e f

m f

f

(3.6)

where the decorated square is a pullout (so C ∼= X<0×Y<0 Y , a char-
acterization willingly reminiscent of simplicity for the would-be
factorization of f ), and hence the dotted arrows are determined
by the obvious universal property. Now, mapping f to the pair
(e f ,m f ) is a candidate factorization functor F : C∆[1] → C (a te-
dious but easy check) in the sense of [KT93].

Now, we have to summon a rather easy but subtle result,
[KT93, Thm. A], which in a nutshell says that a factorization
system on a category C is determined by a functorial factorization
F such that the arrows me f , em f are invertible (the meaning of
this notation is self-evident). Functors satisfying this property
are called Eilenberg-Moore factorization functors in [KT93].(2) More

(1)This construction, and the link with Remark 2.3.17 was suggested to us by
E. Wofsey in a public discussion on Mathoverflow [Wof].

(2)These are not the weakest assumptions to ensure that F(F) = (EF ,MF ) ∈
fs(C): see the final remark in [KT93] and [JT99, 1.3].
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precisely, if one defines

EF = {h ∈C∆[1] | mh is invertible}

MF = {h ∈C∆[1] | eh is invertible}, (3.7)

then (EF ,MF ) is a factorization system as soon as e f ∈ EF and
m f ∈MF for any morphism f in C.

Remark 3.1.3. Before we go on with the proof notice that by the
very definition of the factorization functor F in (3.6) associated
with a t-structure above, we have thatMF coincides with the class
of arrows f such that the naturality square of f with respect to
the “truncation” functor τ<0 of the t-structure is cartesian: we de-
note this marking of C as Cart(τ<0) adopting the same notation
as [RT07, §4]. This is willingly reminiscent of our characterization
of simplicity via pullbacks given in Def. 2.2.3.

Lemma 3.1.4. The homotopy commutative sub-diagram

X≥0 X

Y≥0 C

(3.8)

in the diagram (3.6) is a pullout.

Proof. Consider the diagram

X≥0 X

Y≥0 C Y

0 X<0 Y<0

e f

m f

τ≥0( f )

τ<0( f )

⌟⌜

(3.9)
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where all the squares are homotopy commutative and apply twice
the 3-for-2 law for pullouts.

Lemma 3.1.5. Let F : f 7→ (e f ,m f ) be the factorization functor
associated with a t-structure by the diagram (3.6). Then τ<0(e f )
and τ≥0(m f ) are equivalences.

Proof. Since τ<0τ≥0 = 0, by applying τ<0 to the pullout diagram in
C given by lemma 3.1.4, we get the pushout diagram

0 X<0

0 C<0

τ<0(e f )⌜ (3.10)

in C<0 which tells us that τ<0(e f ) is an equivalence. The proof
that τ≥0(m f ) is a equivalence is perfectly dual and is obtained by
applying τ≥0 to the marked pullout diagram in (3.6).

It is now rather obvious that a proof of the equations

EF = τ−1
<0(Eqv); MF = τ−1

≥0(Eqv) (3.11)

will imply that F is an Eilenberg-Moore factorization functor.
Once proved this, it is obvious that the preimage of a 3-for-2 class
along a functor is again a 3-for-2 class in C, and this entails that
both classes in F(t) are 3-for-2. We are now ready to prove

Proposition 3.1.6. The pair of markings F(t) is a factorization sys-
tem on the quasicategory C, in the sense of Definition 1.3.3.

Proof. By the very definition of the factorization procedure, and
invoking the pullout axiom, we can deduce that the arrow f lies
in EF if and only if it is inverted by τ<0; this entails that EF =
τ−1
<0(Eqv). So it remains to show that MF = τ−1

≥0(Eqv). We have al-
ready remarked that MF =Cart(τ<0), so we are reduced to show-
ing that τ−1

≥0(Eqv) = Cart(τ<0). But again, this is easy because on
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the one side, if f ∈Cart(τ<0) then the square

τ≥0( f ) ⌟⌜ (3.12)

is a pullout since τ≥0 preserves pullouts, and yet τ≥0τ<0( f ) is the
identity of the zero object. So τ≥0( f ) must be an equivalence. On
the other hand, the stable ∞-categorical analogue of the triangu-
lated five lemma (see [Nee01, Prop. 1.1.20]), applied to the di-
agram (3.6) shows that if τ≥0( f ) is an equivalence then e f is an
equivalence and so C ∼= X , i.e., f ∈Cart(τ<0).

Remark 3.1.7. As a side remark, we notice that a completely
dual proof would have arisen using D = Y≥0 ⨿X≥0 X (see Lemma
3.1.4) and then showing first that F(t) is the factorization system
(Cocart(τ≥0),τ−1

≥0(Eqv)) and that Cocart(τ≥0)= τ−1
<0(Eqv).

This is in line with remark 2.3.17.

To check that F(t) is normal, it only remains to verify that any
of the equivalent conditions for normality given in Proposition
2.3.14 holds, which is immediate. This concludes the proof that
there is a correspondence between normal torsion theories and t-
structures: it remains to show that this correspondence is bijective,
i.e., that the following proposition holds.

Proposition 3.1.8. In the notations above, we have F(t(F))= F and
t(F(t))= t.

Proof. On the one side, consider the factorization system

F(t(F))= (τ−1
<0(Eqv),τ−1

≥0(Eqv)), (3.13)

where the functor τ<0 is the reflection R obtained from the F-fac-
torization of each X → 0, as in the fundamental connection of
§2.1: X e−→ X<0

m−→ 0. Recall (Remark 2.1.2) that the action of
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τ<0 : C →M/0 on arrows is obtained from a choice of solutions
to lifting problems

A
e′ f

//

e
��

τ<0B

m′
��

τ<0A
τ<0( f )

::vvvvvvvvv

m
// 0.

(3.14)

It is now evident that τ−1
<0(Eqv)=E. Indeed:

• If f ∈ τ−1
<0(Eqv), then in the above square e′ f = τ<0( f ) e,

which is in E since E contains equivalences and is closed
for composition. But e′ lies in E, so that f ∈E by the 3-for-2
property of E;

• If f ∈ E, then e′ f is in E and so in the same square we read
two lifting problems with unique solutions, which implies
that τ<0( f ) is invertible.

On the other side, we have to compare the t-structures t =
(C≥0,C<0) and t(F(t)). We have X ∈ C≥0(F(t)) if and only if[ 0
↓
X

]
∈ E(t). Since E(t) = τ−1

<0(Eqv), we see that X ∈ C≥0(F(t)) if
and only if X<0

∼= 0. But it is a direct consequence of Lemma 2.3.4
that X<0

∼= 0 if and only if X ∈ C≥0. Dually, one can prove that
C<0(F(t)) = C<0 (but this, in view of Remark A.3.8, is superflu-
ous).

3.2 Examples.

Stand firm in your refusal to remain
conscious during algebra. In real life, I
assure you, there is no such thing as
algebra.

F. Leibowitz

We gather here a series of classical and less classical examples
(more will be given in the subsequent chapters), heavily relying on
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existing literature. As a consequence, this section is more sketchy
and gives several (even non trivial) statements without proof.

Example 3.2.1.
[
Bousfield localization of spectra

]
: The cat-

egory Sp of spectra furnishes the most natural example of a stable
∞-category; a classical construction in [Bou79] endows Sp with a
t-structure for each object E, whose right class (and whose reflec-
tion functor) is called E-localization; we define the subcategories

TE = {X ∈ Sp | X ∧E ≃∗} (3.15)
FE = {Y ∈ Sp | [X ,Y ]≃∗∀X ∈TE}=T⊥

E (3.16)

These two classes form a stable t-structure tE in the sense of 4.4.3
(the notation is chosen to inspire the correspondence between TE

and torsion objects, and between FE and free objects.
We now want to characterize the factorization system corre-

sponding to this (stable) t-structure under the Rosetta stone the-
orem. We start recalling that [Bou79, Lemma 1.13] ensures that
TE is generated under homotopy colimits by a single element GE,
and that FE is precisely the right object-orthogonal to this single
object; now let g : ∗→GE be the initial morphism in Sp, and let

FE =
(⊥

({g}⊥), {g}⊥
)
∈ pf(Sp). (3.17)

Theorem 3.2.2. The pair of markings FE is a normal torsion the-
ory, and corresponds to the E-localization of Sp under Thm. 3.1.1.

Proof. It is basically a way to rewrite [Bou79, 1.13, 1.14] replac-
ing object-orthogonality and generation with arrow-orthogonal-
ity and generation (this can be done in view of 1.3.11), and sub-
sequently to check that the prefactorization left generated by g
coincides with F(tE) of Def. 3.2.

The above example survives to the category of chain com-
plexes of abelian groups, giving the p-localization of the category
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Ch(Z); the two contexts are linked by [Bou79, §2] (see in partic-
ular [Bou79, 2.4, 2.5]). For another glance to p-localization see
Example 3.2.6 below.

Example 3.2.3.
[
The p-acyclic t-structure on Ch(Z)

]
: Let p ∈

Z be a prime, and let A ∈ Ch(Z) be a chain complex of abelian
groups. We say that A is p-acyclic if (i) A is projective and (ii)
the tensor product A ⊗Z Z/pZ is nullhomotopic; the class of p-
acyclic complexes is denoted p-Ac. We call p-local complexes the
elements of (p-Ac)⊥.

The pair
(
p-Ac, (p-Ac)⊥

)
induces a t-structure on the category

of chain complexes; the reflection with respect to this t-structure
is called p-localization, and it is defined by

A 7→ Â := lim←−−n

(
A⊗Z/pnZ

)
(3.18)

Since it is a homotopy limit of p-local chain complexes, we con-
clude that Â is again p-local.

Example 3.2.4.
[
The standard t-structureonchain complexes

]
:

Def.A.3.1 defines the canonical t-structure on the derived category
D(R) of a ring R as the pair of subcategories

D≥0(R)= {A∗ ∈D(R) | Hn(A∗)= 0; n ≤ 0}

D≤0(R)= {B∗ ∈D(R) | Hn(B∗)= 0; n ≥ 0}

The construction of F(t) provided by (3.6) gives the following defi-
nition for the two classes of chain maps inCh(R): E(t) (resp. M(t))
is the class of arrows such that the negative (resp. positive) trunca-
tion is Working out the details, this means that the factorization
of f : X∗ →Y∗ is defined via the pullout

X X<0 ⊕Y<0 Y Y (3.19)

where the object X<0⊕Y<0 Y is defined to be the mapping cone of
the map ( f<0,ρY ) : X<0⊕Y →Y<0.
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Example 3.2.5.
[
The standard t-structure on spectra

]
: The

stable ∞-category of spectra carries another t-structure, whose left
class is determined by those objects whose homotopy groups van-
ish in negative dimension (recall that a spectrum has homotopy
groups in each, possibly negative, degree).

We can reproduce the above argument to find the correspond-
ing factorization system.

Example 3.2.6.
[
The p-local/p-complete arithmetic square

]
:

Let p ∈Z be a prime number; a spectrum E ∈ Sp is called p-torsion
if for every x ∈ π∗(E) there exists a n = nx such that pnx = 0. The
full sub-∞-category of p-torsion spectra is coreflective in Sp, via a
coreflection Gp(−) → (−); this means that every spectrum X has a
p-torsion approximation fitting into a fiber sequence

τp X → X → X
[ 1

p
]

(3.20)

the rightmost object of which is called the p-localization of X . The
class of p-torsion and p-local spectra form mutually (object-)or-
thogonal subcategories of Sp, and together they form a t-structure
called the p-local t-structure.

Let again p ∈Z be a prime number; a spectrum E ∈ Sp is called
p-complete if the homotopy limit of the tower

E
p−→ E

p−→ E
p−→ ·· · (3.21)

vanishes. The full sub-∞-category of p-complete spectra is reflec-
tive in Sp, via a reflection X → X̂ p; this means that every spectrum
has a pcompletion

(3.22)

fitting into a fiber sequence Gp X → X → X̂ p, the leftmost object
of which is called p-torsion approximation. These data determine
another t-structure on Sp, called the p-complete t-structure.

These two t-structures can be arranged into a so-called arith-
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metic square or fracturing square, i.e. in the following diagram

Gp X X
[ 1

p
]

τpGp X X X̂ p
[ 1

p
]

τp X X̂ p

⌟⌜ ⌟⌜

(3.23)
Such a diagram, canonically built from the prime number p alone
and the spectra E (and functorial in this argument), contains an
impressive amount of informations that we now attempt to char-
acterize more explicitly:

(1) the two squares are pullout;
(2) the two sequences τpGp X → Gp X → X

[ 1
p
] → X̂ p

[ 1
p
]

and
τpGp X → τp X → X̂ p → X̂ p

[ 1
p
]

are long exact fiber se-
quences (this means that X̂ p

[ 1
p
]∼= τpGp X [1]);

(3) the diagonals are fiber sequences by construction.

Motivated by this example, we give the following

Definition 3.2.7.
[
Crimson t-structures

]
: Let t1,t2 ∈ ts(C) be

two t-structures; the two are called crimson, or fracturing, if the two
fiber sequences S1X → X → R1X and S2X → X → R2X arrange
into an hexagonal diagram

S1X R2X

S2S1X X R2R1X

S2X R1X

⌟⌜ ⌟⌜

(3.24)
natural in the object X , such that properties (1)–(3) above hold.
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3.3 Model dependency

One might wonder, at this point, to which extent the “Rosetta
stone” theorem is true in other models for (∞,1)-category theory.
Apart from stable ∞-categories, extensively treated in the present
work, we know (see , A.5) there are many, well suited to the de-
scription of homological algebra:

(1) (stable) model categories;
(2) (dg-)enriched categories;
(3) (stable) derivators.

It is really tempting to think that a “generic object” C of any of
these higher categories is a “model-free” (stable) (∞,1)-category,
and possesses a natural notion of t-structure; with the possible ex-
ception of stable derivators(3), each of these models is rich enough
to interpret a notion of “factorization system on C”, and then the
fundamental connection between reflective (pre)factorization sys-
tems on C and reflective sub-∞-categories of C; each of these mod-
els is powerful enough to interpret the notion of normal torsion
theory, and subsequently of t-structure, taking the former as the
definition of the latter.

A major achievement of our Rosetta stone 3.1.1 is, hence, the
possibility to give the notion of t-structure a meaning in several
different categorical contexts, like enriched categories and model
categories.

The scope of the present section is to pave the way to specu-
lations in this respect, and will hopefully be a starting point for
future investigations. We start recalling the various flavours of fac-
torization systems we have to cope with, in studying (stable) (∞,1)-
categories.

(3)As mentioned elsewhere, at the moment of writing there is a work in
progress in this direction, [LMV].
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3.3.1 Enriched factorization systems.
Intuitively, an enriched factorization system in an enriched cate-
gory C ∈ V -Cat consists, according to [Day74, LW] of a pair F =
(E,M) of classes of morphisms in C such that E= ⊥M, and M=
E⊥, where the orthogonality relation is defined in V -Cat by an en-
riched analogue of Remark 1.2.23, and such that every arrow in C
is F-crumbled in the obvious sense. More explicitly, if V is an en-
riched symmetric monoidal category with finite limits, then f ⊥ g
in V -Cat if and only if the square in (1.8) is a pullback in V :

C(B, X ) C(B,Y )

C(A, X ) C(A,Y )

⌟ (3.25)

This formalism applies well to simplicial(ly enriched) categories,
and more precisely in the stable setting, to dg-categories, which
can be regarded as particular examples of simplicial categories via
Dold-Kan correspondence.

Remark 3.3.1. In the case of simplicially enriched categories the
above definition admits an equivalent reformulation relying on
the adjunction

C : sSet⇆ sSet-Cat : NsSet (3.26)

In particular, for each C ∈ sSet-Cat we define:
• a “lifting problem” as a map C(∆[1]×∆[1])→C;
• a “solution” to the lifting problem is presented by an exten-

sion over C(∆[3])=C(∆[1]⋆∆[1]) (which nevertheless is only
sSet-equivalent, and not isomorphic, to C(∆[1])⋆C(∆[1])).

(These definitions work well only when C is Bergner-cofibrant
[Ber10])

Mild assumptions on C (see [Rie14]) ensure that enriched fac-
torization systems on C and 1-dimensional factorization systems
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on |C| (the Set-category naturally associated to C) are in bijection.
This paves the way to the following definition of t-structure in a
dg-category:

Definition 3.3.2. A t-structure on a dg-category A is an enriched
factorization system (E,M) such that

(1) the two classes of morphisms E,M are 3-for-2;
(2) the coreflective/reflective pair 0/E, M/0 have co/reflection

functors S,R respectively, and each object X ∈ A fits into
a pullback and pushout square

SX X

0 RX

⌟⌜ (3.27)

3.3.2 Homotopy factorization systems.
Model categories M possess a notion of “homotopy” factorization
system, which induces a 1-dimensional factorization system on the
homotopy category Ho(M); the following defintion is taken from
[Joy04, Def. F.1.3]:

Definition 3.3.3. LetM be a model category with model structure
(Cof,Wk,Fib). A pair (E,M) of classes of maps inM is a homotopy
factorisation system if

(hfs1) the classes E,M are homotopy replete;
(hfs2) the pair (E∩ Cofcf,M∩Fibcf) is a weak factorisation sys-

tem in Mcf, where for K⊆hom(M) we denote Kcf the mor-
phisms in K having co/fibrant co/domain;

(hfs3) the class E is r32, and the class M is l32.

It can be shown ([Joy04, Prop. F.2.6]) that a homotopy factori-
zation system determines a unique factorization system on the ho-
motopy category Ho(M); also, several theorems of the calculus of
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factorization survive to this setting, and most notably the closure
properties of §1.4 taking care to replace every co/limit appearing
there with the appropriate homotopy version: so, in particular we
have ([Joy04, Prop. F.4.8])

Proposition 3.3.4. The right class of a homotopy factorisation
system is closed under homotopy base change. Dually, the left
class is closed under homotopy cobase change.

This paves the way to the following definition of a t-structure
in a stable model category:

Definition 3.3.5. Let M be a stable model category; a homotopy
normal torsion theory on M is a homotopy factorization system
(E,M) on M such that

(1) both E,M are 3-for-2 classes;
(2) the subcategories 0/E, M/0 (defined in the same fashion as

(2.1)) are respectively coreflective and reflective, and the co/-
reflection fit into the homotopy-pullback-and-pushout dia-
gram

SX X

0 RX

⌟⌜ (3.28)
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Chapter 4

Hearts and towers

In the present section we exploit the description of t-structures as
normal torsion theories of Ch. 3 to discuss two apparently sepa-
rated constructions in the theory of triangulated categories: the
characterization of bounded t-structures in terms of their hearts,
and semiorthogonal decompositions on triangulated categories. In
the stable setting both notions stem as particular cases of a single
construction.

In analogy with the example of the Postnikov decomposition
of a morphism f : X → Y of spaces (or spectra, or objects of a
∞-topos), we construct (Def. 4.2.6) the tower R{i j}( f )(1) of a mor-
phism induced by a Z-equivariant, J-family of normal torsion the-
ories {Fi}i∈J , i.e. a monotone function J → fs(C) “taking normal
values”, which is equivariant with respect to an action of the group
Z on both sets.

As we will see along the chapter, a natural way to encompass
these structures is to vary the action on the domain of the J-family
(choosing diffferent Js and different actions on J will result in dif-
ferent kinds of t-structures for the values J(λ). We will concentrate
on the following two “extremal” examples:

• For J =Z with its obvious self-action, we recover the classi-

(1)Pron. rook; it is the same rook of the game of chess.
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cal notion of Postnikov towers in a triangulated category en-
dowed with a t-structure (and a fortiori, the notion of Post-
nikov tower in the category Sp of spectra), and subsequently
we give a neat, conceptual proof of the the abelianity of the
heart of a t-structure in the stable setting, basically relying
on the uniqueness of a suitable factorization.

• For J a finite totally ordered set, or more generally any set
J with trivial Z-action, we recover the theory of semiorthog-
onal decompositions [BO95, Kuz11], showing in Thm. 4.4.9
that such a J → fsν(C) consists of a family {Fi}i∈J of stable
t-structures. This is a classical result.

4.1 Posets with Z-actions.

為無為。事無事。味無味。

Laozi lxiii

This section has an introductory purpose, aimig to introduce
the terminology about partially ordered groups and their actions,
and then specialize the discussion toZ-actions on partially ordered
sets.

We do not aim at reaching a complete generality, but instead at
gathering a number of useful results and nomenclature we can re-
fer to along the present chapter. Among various possible choices,
we mention specialized references as [Bly05, Gla99, Fuc63] for an
extended discussion of the theory of actions on ordered groups.

Definition 4.1.1. A partially ordered group (“po-group” for short)
consists of a group G = (G, ·,1) endowed with a relation ⪯ which
is a partial order and a (two-sided) congruence on G, namely for
any g ⪯ h and a,b ∈G we have

(i) a · g ⪯ a ·h and
(ii) g ·b ⪯ h ·b.
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Remark 4.1.2. We should draw a distinction between a left po-
group (satisfying only property i above) and a right po-group (sat-
isfying only ii). At the level of generality we need ignoring this
subtlety is absolutely harmless.

A supplementary motivation to choose this slightly looser de-
finition is that it seems more natural for a group to be ordered by
a two-sided congruence, since in this case inversion (−)−1 : G→G
is an antitone antiautomorphism of groups, i.e. we have that

• g ⪯ h ⇐⇒ h−1 ⪯ g−1;
• The set G+ of positive elements, i.e. the set {g ∈ G | 1 ⪯ g} is

closed under conjugation.

Definition 4.1.3. A homomorphism of po-groups consists of a
group morphism f : G → H which is also a monotone mapping.
This, with the obvious choices of identities and composition,
defines a category POGrp of partially ordered groups and their
morphisms.

Definition 4.1.4. Let G be any group. A G-poset is a partially
ordered set (P,≤) endowed with a group homomorphism G →
Aut≤(P) to the group of order isomorphisms of P.

Remark 4.1.5. Obviously, the former definition of G-poset is
equivalent to the following one: a G-poset consists of a poset (P,≤)
with a map a : G ×P → P satisfying the well-known properties of
a group action, and furthemore such that for each g ∈G, p ≤ q ∈ P
one has a(g, p)≤ a(g, q).

Lemma 4.1.6. The category Pos of partially ordered sets and
monotone maps is cartesian closed.

Proof. This is a classical result; there is only one way to endow a
product P ×Q of posets in such a way that the universal property
of the product is satisfied, and there is only one way to endow the
set of all monotone functions between two posets with a partial
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order relation to obtain the adjunction

Pos(P ×Q,R)∼=Pos(P,RQ). (4.1)

Proposition 4.1.7. When G is a po-group (G,⪯), the action map
a : G × P → P defining a G-poset is a monotone mapping if we
endow G ×P with the product order; equivalently, the map G →
Aut≤(P) is monotone if we endow the codomain with the order
inherithed from the inclusion Aut≤(P)⊆ PP .

Proof. Straightforward, unwinding the definitions: Def. 4.1.4 can
be reinterpreted in light of this viewing G endowed with the trivial
partial order where x ⪯ y if and only if x = y.

Definition 4.1.8. A Z-poset is a partially ordered set (P,≤) together
with a group action

+P : P ×Z→ P : (x,n) 7→ x+P n (4.2)

which is a morphism of partially ordered sets, when Z is regarded
with its usual total order.

Remark 4.1.9. It is immediate to see that a Z-poset is equivalently
the datum of a poset (P,≤) together with a monotone bijection
ρ : P → P such that x ≤ ρ(x) for any x in P. The function ρ and
the action are related by the identity ρ(x)= x+P 1.

Notation 4.1.10. To avoid a cumbersome accumulation of indices,
the action +P will be often denoted as a simple “+”. This is meant
to evoke in the reader the two most natural examples of a Z-poset,
described below:

Example 4.1.11. The poset (Z,≤) of integer numbers with their
usual order is a Z-poset with the action given by the usual sum of
integer numbers. The poset (R,≤) of real numbers with their usual
order is a Z-poset for the action given by the sum of real numbers
with integer numbers (seen as a subring of real numbers).
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�
Remark 4.1.12. If (P,≤) is a finite poset, then the only Z-action
it carries is the trivial one. Indeed, if ρ : P → P is the monotone
bijection associated with the Z-action, one sees that ρ is of finite
order by the finiteness of P. Therefore there exists an n ≥ 1 such
that ρn = idP . It follows that, for any x in P,

x ≤ x+1≤ ·· · ≤ x+n = x (4.3)

and so x = x+1.

Notation 4.1.13. An obvious terminology: a G-fixed point for a
G-poset P is an element p ∈ P kept fixed by all the elements of G
under the action +P . An important observation is that an element
p of a Z-poset P is a Z-fixed point if and only if p+P 1= p.

Lemma 4.1.14. If k ∈ P is a ≤-maximal or ≤-minimal element in
the Z-poset (P,≤), then it is a Z-fixed point.

Remark 4.1.15. Given a poset P we can always define a partial
order on the set P ∪ {−∞,+∞} which extends the partial order on
P by the rule −∞≤ x ≤+∞ for any x ∈ P.

Lemma 4.1.16. If (P,≤) is a Z-poset, then (P ∪ {±∞},≤) carries a
natural Z-action extending the Z-action on P, by declaring both
−∞ and +∞ to be Z-fixed points.

Proof. Adding a fixed point always gives an extension of an action,
so we only need to check that the extended action is compatible
with the partial order. This is equivalent to checking that also on
P ∪ {±∞} the map x → x+ 1 is a monotone bijection such that
x ≤ x+1, which is immediate.

Posets with Z-actions naturally form a category, whose mor-
phisms are Z-equivariant morphisms of posets. More explicitly, if
P and Q are Z-posets with actions +P and +Q , then a morphism
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of Z-posets between them is a morphism of posets φ : P →Q such
that

φ(x+P n)=φ(x)+Q n, (4.4)

for any x ∈ P and any n ∈Z.

Lemma 4.1.17. The choice of an element x in a Z-poset P is equiv-
alent to the datum of aZ-equivariant morphism φ : (Z,≤)→ (P,≤).
Moreover x is a Z-fixed point if and only if the corresponding mor-
phism φ factors Z-equivariantly through (∗,≤), where ∗ denotes
the terminal object of Pos.

Proof. To the element x one associates theZ-equivariant morphism
φx defined by φx(n)= x+n. To the Z-equivariant morphism φ one
associates the element xφ =φ(0). It is immediate to check that the
two constructions are mutually inverse. The proof of the second
part of the statement is straightforward.

Lemma 4.1.18. Let φ : (Z,≤) → (P,≤) be a Z-equivariant mor-
phism of Z-posets. Then φ is either injective or constant.

Proof. Assume φ is not injective. then there exist two integers n
and m with n > m such that φ(n) = φ(m). By Z-equivariancy we
therefore have

xφ+ (n−m)= xφ, (4.5)

with n−m ≥ 1 and xφ =φ(0). The conclusion then follows by the
same argument used in Remark 4.1.12.

Lemma 4.1.19. Let φ : (P,≤)→ (Q,≤) be a morphism of Z-posets.
Assume Q has a minimum and a maximum. Then φ extends to a
morphism of Z-posets (P ∪ {±∞},≤) → (Q,≤) by setting φ(−∞) =
min(Q) and φ(+∞)=max(Q).

Proof. Since min(Q) and max(Q) are Z-fixed points by Lemma
4.1.14, the extended φ is a morphism of Z-posets. Moreover, since
min(Q) and max(Q) are the minimum and the maximum of Q,
respectively, the extended φ is indeed a morphism of posets, and
so it is a morphism of Z-posets.
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4.1.1 J-families of t-structures.
The main reason why we are interested in the theory of Z-poset is
the following result we already used in Ch. 2, Ch. 3 (and recalled
also in A.3.11):

Remark 4.1.20. Let C be a stable ∞-category. Then, the collection
ts(C) of all t-structures on C is a poset with respect to following
order relation: given two t-structures ta = (C≥a0,C<a0)(2) and tb =
(C≥b0,C<b0), one has ta ⪯ tb iff C<a0 ⊆C<b0.

The ordered group Z acts on ts(C) in a way that is is fixed (Re-
mark 4.1.9) by the action of the generator +1; this maps a t-struc-
ture t= (C≥0,C<0) to the shifted t-structure t[1]= (C≥0[1],C<0[1]).

Since t ⪯ t[1] one sees that ts(C) is naturally a Z-poset (this
follows from A.3.11).

Notation 4.1.21. If t = (C≥0,C<0) is a t-structure on C, it is cus-
tomary to write C≥1 for C≥0[1] and C<1 for C<0[1], so that t[1] =
(C≥1,C<1), and more generally C≥n := C≥0[n], C<n := C<0[n] for
each n ∈Z, so that t[n]= (C≥n,C<n).

We now have the natural desire to consider families of t-struc-
tures on C indexed by an arbitrary Z-poset J, as in the following

Definition 4.1.22. Let (J,≤) be a Z-poset. A J-family of t-struc-
tures on an stable ∞-category C is a Z-equivariant morphism of
posets t : J → ts(C).

More explicitly, a J-family is a family {t j} j∈J of t-structures on
C such that

(1) ti ⪯ t j if i ≤ j in J;
(2) ti+1 = ti[1] for any i ∈ J.

Remark 4.1.23. A natural choice of notation, motivated by the
“Rosetta stone” 3.1.1, is the following: a J-family of t-structures
is the same as a J-family of normal torsion theories on C (or,

(2)The baffled reader is invited to look at Notation 4.1.24.
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more formally, the maps F(−) and t(−) defined in the proof of
the Rosetta stone become isomorphisms in the category Z-Pos for
a suitable choice of partial order and Z-action on normal torsion
theories).

Motivated by this remark, we feel free to call “J-family of nor-
mal torsion theories” any monotone function J → ntt(C) which
is also Z-equivariant.

Notation 4.1.24. For i ∈ J, will write C≤i and C>i for C≤i0 and
C<i0, respectively. With this notation we have that ti = (C≥i,C<i).
Note that, by Z-equivariancy, this notation is consistent. Namely
ti+1 = ti[1] implies C≥i+10 =C≥i0[1] and so

C≥i+1 =C≥i[1]. (4.6)

Similarly, one has
C<i+1 =C<i[1]. (4.7)

We underline how in this choice of notation the condition ti ⪯ t j

for i ≤ j translates to the very natural conditionC<i ⊆C< j for i ≤ j.
Notice that this is basically [GKR04, Def. 3.1].

Example 4.1.25. A Z-family of t-structures is, by Lemma 4.1.9,
equivalent to the datum of a t-structure t0 = (C≥0,C<0). One has
t1 = (C≥1,C<1) consistently with the notations in Remark 4.1.20.
Notice that by our Remark 4.1.12, as soon as C≥0[1]⊂C≥0 (proper
inclusion), then this proper inclusion is valid for all n ∈Z, i.e. the
orbit t+Z is an infinite set.

Example 4.1.26. A R-family of t-structures is the datum of a t-
structure tλ = (C≥λ,C<λ) on C for any λ ∈ R in such a way that
tλ+1 = tλ[1]. Such a structure is called a slicing of C in [Bri07].(3)

Example 4.1.27. [A tautological example]: By taking J =
ts(C) and t to be the identity of ts(C) one sees that the whole

(3)This is not entirely true, as will appear clear in Ch. 7, but it’s a good approx-
imation of the definition given there. [Bri07] imposes more restrictive condi-
tions to ensure “compactness” of the factorization. Compare also [GKR04].
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ts(C) can be looked at as a particular J-family of t-structures on
C.

Remark 4.1.28. The poset ts(C) has a minimum and a maximum
given by

min(ts(C))= (C,0); max(ts(C))= (0,C). (4.8)

which correspond under the bijection of Thm. 3.1.1 to the max-
imal and minimal factorizations on C respectively, and will be
called the trivial factorizations/t-structures.

Hence, by Lemma 4.1.19, any J-family of t-structures t : J →
ts(C) extends to a (J ∪ {±∞})-family by setting t−∞ = (C,0) and
t+∞ = (0,C).

Definition 4.1.29. Let t be a J-family of t-structures. For i and j
in J we set

C[i, j) =C≥i ∩C< j. (4.9)

Consistently with Remark 4.1.28 and Notation 4.1.24, we also set

C[i,+∞) =C≥i; C[−∞,i) =C<i (4.10)

for any i in J. We say that C is J-bounded if

C= ∪
i, j∈J

C[i, j). (4.11)

Similarly, we say that C is J-left-bounded if C = ∪
i∈J C[i,+∞) and

J-right-bounded if C= ∪
i∈J C[−∞,i). This notion is well known in

the classical as well as in the quasicategorical setting: see [BBD82,
Lur11].

Remark 4.1.30. Since C[i, j) = C[i,+∞) ∩C[−∞, j) one immediately
sees that C is J-bounded if and only if C is both J-left- and J-
right-bounded.

Remark 4.1.31. As it is natural to expect, if i ≥ j, then C[i, j) is
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contractible. Namely, since j ≤ i one has C< j ⊆C<i and so

C[i, j) =C≥i ∩C< j ⊆C≥i ∩C<i =C≥i0∩C<i0 (4.12)

which corresponds to the contractible subcategory of zero objects
inC (this is immediate, in view of the definition of the two classes).

Remark 4.1.32. Let t be a Z-family of t-structures on C. Then C is
Z-bounded (resp., Z-left-bounded, Z-right-bounded) if and only if
C is bounded (resp., left-bounded, right-bounded)with respect to
the t-structure t0, agreeing with the classical definition of bound-
edness as given, e.g., in [BBD82].

Remark 4.1.33. If t is an R-family of t-structures on C, then one
can define

Cλ =
∩
ϵ>0

C[λ,λ+ϵ). (4.13)

These subcategories Cλ are the slices of C in the terminology of
[Bri07].

Remark 4.1.34. For any i, j,h,k in J with j ≤ h one has

C[i, j) ⊆C⊥
[h,k), (4.14)

i.e., C(X ,Y ) is contractible whenever X ∈C[h,k) and Y ∈C[i, j) (one
says that C[i, j) is right-orthogonal to C[h,k), see Notation 1.2.15). In-
deed, since C< j =C< j0 =C⊥

≥ j0 =C⊥
≥ j, and passing to the orthogo-

nal reverses the inclusions, we have

C[i, j) ⊆C< j =C⊥
≥ j ⊆C⊥

≥h ⊆C⊥
[h,k). (4.15)

Definition 4.1.35. Let (C,t) be a stable ∞-category endowed with
a t-structure, arising from the normal torsion theory F = (E,M).
For each n ∈Z, let C≥n and C<n the reflective and coreflective sub-
categories of C determined by the t-structure t.

Then t is said to be
• bounded if ∪C≥n =C;
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• limited if every f : X →Y fits into a fiber sequence

F X 0

0 Y C

e[b]m[a] f⌟⌜ ⌟⌜ (4.16)

where F = fib( f ),C = cofib( f ), and m[a] ∈M[a], e[b] ∈ E[b]
for suitable integers a,b ∈Z;

• narrow if C=∪
a≤bC[a,b), where C[a,b) =C≥a ∩C<b.

Proposition 4.1.36. Let (C,t) be a stable ∞-category endowed
with a t-structure. Then t is narrow if and only if it is bounded, if
and only if it is limited.

Remark 4.1.37. We say that an f : X →Y in (C,t) is limited between
a,b ∈ Z if there exists a diagram like (4.16) for f ; we say that f
is limited if it is limited between a,b for some a,b ∈ Z. In this
terminology, a t-structure t is limited if and only if every f : X →Y
is limited with respect to t.

Proof. It is rather obvious that t is narrow if and only if it is limited,
so we can reduce ourselves to prove that bounded and limited t-
structures coincide.

This is a consequence of the application of the following

Lemma 4.1.38. Let f : X → Y be limited between a,b; then f
belongs to M[a+1]∩E[b−1].

Proof. We can reduce the result to an easy consequence of the Sator
Lemma 2.3.11. Moreover, we only prove that f ∈M[a+ 1], the
proof that f ∈E[b−1] being dual.

By the abovementioned Sator Lemma,
[F
↓
0

]
∈M[a] if and only

if
[ 0
↓
F

]
∈M[a]; but now F ≃ C[−1] in diagram (4.16), and

[
0
↓

C[−1]

]
∈

M[a] implies that
[ 0
↓
C

]
∈M[a+1].
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Now we can return to the proof of the initial result, implicitly
invoking Lemma 4.1.38 when needed: if t is a limited t-structure,
then every

[ X
↓
0

]
is limited between aX ,bX , hence

[ X
↓
0

]
∈M[aX +1],

so that X ∈ C<aX ; in the same way
[ 0
↓
X

]
∈ E[bX −1], so that X ∈

C≥bX−1 and X ∈∪
u,vC[u,v). The other inclusion is obvious.

Conversely, if t is bounded, we have that each object X lies in
E[uX ]∩M[vX ]; so if we consider the following diagram of pullout
squares

Y [−1] 0

F X 0

0 Y C

m[vX ]

m[vY ]

(4.17)

we deduce that the arrow
[F
↓
0

]
belongs to M[v], where v =

max{vX ,vY }, as a consequence of the stability under pullbacks
and the 3-for-2 closure property of each class M[n].

Reasoning in a perfectly dual fashion, we deduce that
[ 0
↓
C

]
∈

E[u], where u = min{uX ,uY }, so that each f : X → Y is limited
between u,v.

4.2 Towers of morphisms.

אִישׁ יִשְׁמְעוּ, לאֹ שְׂפָתָם--אֲשֶׁר שָׁם, וְנָבְלָה נֵרְדָה, הָבָה,
רֵעֵהוּ. שְׂפַת

[ER77], Genesis 11:7

In the remainder of this section, J will be a fixed Z-poset and
ti will be the ith element of a J-family of t-structures on C; Fi will
denote the corresponding J-family of factorization systems.
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We recall Def. 1.5.10, and in particular that

Lemma 4.2.1. The chain i1 ≤ i2 ≤ ·· · ≤ ik determines a k-fold
factorization system inC in the sense of Def. 1.5.10. Namely, every
arrow f : X →Y in C can be uniquely factored into a composition

X
Eik−−→ Zik

Eik−1∩Mik−−−−−−−−→ Zik−1 →···→ Zi2

Ei1∩Mi2−−−−−−→ Zi1

Mi1−−−→Y .
(4.18)

Proof. This was proved in Lemma 1.5.11.

Lemma 4.2.2. Let i, j be elements in J and let X be an object in
C≥ j (see Definition 4.1.29). If a morphism f : X →Y is in Ei∩M j,
then cofib( f ) is in C[i, j).

Proof. Since X is in C≥ j, 0 → X
f−→ Y is the (E j,M j)-factorization

of 0 → Y (in particular, X ∼= S jY if S j denotes the coreflection
of C on C≥ j; see our Def. 2.3.2 of “firm reflectivity” and [RT07,
Prop 3.2]). Since the factorization system F j is normal, hence semi-
right-exact, we have the following pullout diagram:

X Y

0 cofib( f )

E j

M j

M j

E j (4.19)

Hence cofib( f ) is in C< j. On the other hand, f is in Ei, which is
closed under pushouts, and so 0 → cofib( f ) is in Ei, i.e., cofib( f )
is in C≥i.

An immediate corollary of 4.2.2 is that the cofibers of each
f j : Yi j →Yi j−1 in the k-fold factorization obtained via 4.2.1 belong
to the subcategories C[i j−1,i j). This remark is the basic building
block of the tower of f .
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Corollary 4.2.3. Let i1 ≤ i2 ≤ ·· · ≤ ik an ascending chain in J.
Then for any object Y in C, the arrows f j : Yi j → Yi j−1 in the k-
fold factorization of the initial morphism 0 → Y are such that
cofib( f j) ∈ C[i j−1,i j), where we have set ik+1 = +∞ and Y+∞ = 0
(and, similarly, i0 = −∞ and Y−∞ = Y ) consistently with Remark
4.1.28 (and its dual).

Proof. From the k-fold factorization

0
Eik−−→Yik

Eik−1∩Mik−−−−−−−−→Yik−1 →···→Yi2

Ei1∩Mi2−−−−−−→Yi1

Mi1−−−→Y , (4.20)

and from the fact that Ei1 ⊇ Ei2 ⊇ ·· · ⊇ Eik and each class Ei j is
closed for composition, we see that Zi j is in Ci j and the previous
lemma applies.

Firm reflectivity implies the converse of 4.2.2:

Lemma 4.2.4. Let i ≤ j be elements in J and let f : X → Y be
a morphism in C. If X is in C[ j,+∞) and cofib( f ) is in C[i, j) then
0 → X

f−→ Y is the (E j,M j)-factorization of the initial morphism
0→Y and Y is in C[i,+∞). In particular f is in Ei ∩M j.

Proof. Since X is in C≥ j, the morphism 0→ X is in E j, and so (rea-
soning up to equivalence) to show that 0→ X →Y is the (E j,M j)-
factorization of 0 → Y we are reduced to showing that f : X → Y
is in M j. Since cofib( f ) is in C[i, j), we have in particular that
cofib( f ) → 0 is in M j and so 0 → cofib( f ) is in M j by the Sator
lemma. Then we have a homotopy pullback diagram

X 0

Y cofib( f )

f

M j (4.21)

and so f is in M j by the fact that M j is closed under pullbacks.
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To show that also f ∈ Ei let 0 → X → T → Y be the ternary
factorization of f . We can consider the diagram

0

X 0

T U 0

Y cofib( f ) V 0

E j

Ei∩M j

Mi

E j Ei∩M j Mi

E j

Ei∩M j

Ei∩M j

Mi

E j

Mi

(4.22)

where all the squares are pullouts, and where we have used the
Sator lemma, the fact that the classes E are closed for pushouts
while the classes M are closed for pullbacks, and the 3-for-2 pro-
perty for both classes.

Lemma 4.2.5. Let Y an object in C and let i1 ≤ i2 ≤ ·· · ≤ ik be an
ascending chain in J. If a factorization

0
fk+1−−−→Yik

fk−→Yik−1 →···→Yi2

f2−→Yi1

f1−→Y , (4.23)

of the initial morphism 0 → Y is such that cofib( f j) is in C[i j−1,i j)

(with ik+1 =+∞ and i0 =−∞) then this factorization is the k-fold
factorization of 0→Y associated with the chain i1 ≤ ·· · ≤ ik.

Proof. By uniqueness of the k-fold factorization we only need to
prove that f j ∈Eik−1 ∩Mik , which is immediate by repeated appli-
cation of Lemma 4.2.4.

This paves the way to the definition of the tower of f : the basic
idea is to “pull back” the factorization of the initial morphism 0→
cofib( f ) using Lemma 4.2.5.
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Definition 4.2.6.
[
Tower of a morphism

]
: Let f : X → Y be a

morphism in C and let i1 ≤ i2 ≤ ·· · ≤ ik be an ascending chain in
J. We say that a factorization

X
fk+1−−−→ Zik

fk−→ Zik−1 →···→ Zi2

f2−→ Zi1

f1−→Y , (4.24)

of f is a tower of f relative to the chain {i j} = {i1 ≤ i2 ≤ ·· · ≤ ik} if
for any j = 1, . . . ,k+1 one has cofib( f j) ∈C[i j−1,i j) (with ik+1 =+∞
and i0 =−∞).

Proposition 4.2.7. Let f : X → Y be a morphism in C and let
i1 ≤ i2 ≤ ·· · ≤ ik be an ascending chain in J. Then a tower for
f relative to {i j}, denoted R{i j}( f ), exists and it is unique up to
isomorphisms.

Proof. We split the proof in two parts: existence and uniqueness of
the tower;

(1) Consider the pullout diagram

X 0

Y cofib( f )

f

M j (4.25)

By Corollary 4.2.3, the k-fold factorization

0
φk+1−−−→ A ik

φk−−→ A ik−1 →···→ A i2

φ2−→ A i1

φ1−→ cofib( f ) (4.26)

of the initial morphism 0→ cofib( f ) is such that cofib(φi j ) ∈
C[i j−1,i j). Pulling back this factorization along Y → cofib( f )
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we obtain a factorization

X 0

Zik A ik

... ...

Zi1 A i1

Y cofib( f )

ϕk+1

ϕk

ϕ2

ϕ1f1

f2

fk

fk+1

f (4.27)

of f , and the pasting of pullout diagrams

Zi j A i j 0

Zi j−1 A i j−1 cofib(φ j)

f j ϕ j (4.28)

shows that cofib( f j) = cofib(φ j) and so cofib( f j) ∈ C[i j−1,i j).
This proves the existence of the tower.

(2) To prove uniqueness, start with a tower R{i j}( f ) for f and
push it out along Y → cofib( f ) to obtain a tower for the ini-
tial morphism 0 → cofib( f ). By Lemma 4.2.5, this is the k-
fold factorization of 0 → cofib( f ) associated with the chain
{i j} and so R{i j}( f ) is precisely the tower constructed in the
first part of the proof. Note how the pullout axiom of stable
∞-categories plays a crucial role.

Remark 4.2.8. A tower for f relative to an ascending chain {i j}
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can be equivalently defined as a factorization of f such that fib( f ) ∈
C[i j−1−1,i j−1), for any j = 0, . . . ,k+1.

Remark 4.2.9.� It’s an unavoidable temptation to think of the
tower R{i j}( f ) relative to an ascending chain {i j} as the k-fold fac-
torization of f associated with the chain {i j}.

As the following counterexample shows, when f is not an ini-
tial morphism this is in general not true.(4) Let J =Z and take an
ascending chain consisting of solely the element 0. Now take a
morphism f : X →Y between two elements in C[−1,0). The object
cofib( f ) will lie in C[−1,+∞), since E−1 is closed for pushouts, but
in general it will not be an element in C[0,+∞). In other words, we
will have, in general, a nontrivial (E0,M0)-factorization of the ini-
tial morphism 0 → cofib( f ). Pulling this back along Y → cofib( f )

we obtain the tower X
f2−→ Z

f1−→Y of f , and this factorization will
be nontrivial since its pushout is nontrivial. It follows that ( f2, f1),
cannot be the (E0,M0)-factorization of f . Indeed, by the 3-for-2
property of M0, the morphism f is in M0, so its (E0,M0)-factori-
zation is trivial.

4.3 Hearts of t-structures.

I watched a snail crawl along the edge of a straight
razor. That’s my dream. That’s my nightmare.
Crawling, slithering, along the edge of a straight
razor… and surviving.

Col. Walter E. Kurtz

(4)When f : A → 0 is the terminal morphism, our notation and construction
is in line with the classical [Lur11], where the “Postnikov tower” of A is the
sequence

A →···→ R2 A → R1 A → R0 A → 0 (4.29)

of factorizations obtained from the (stable image of) the n-connected factoriza-
tion system of [Joy04].



83 4.3. Hearts of t-structures.

We now focus in the case J =Z. As indicated in remark 4.1.9
this is equivalent to a single distinguished t-structure t= t0 on the
stable ∞-category C, together with its orbit {t j = t0[ j]} j∈Z. As the
set of indices for our family of t-structures is the ordered set of
integers, we will always consider complete ascending chains of the
form

n < n+1< n+2< ·· ·n+k−1 (4.30)

in what follows. In particular Proposition 4.2.7 becomes

Proposition 4.3.1. Let f : X → Y be a morphism in C. Then for
any integer n and any positive integer k there exists a unique tower
for f associated with the ascending chain n < n+1< ·· · < n+k−1.
Denoting this tower by

X
fn+k−−−→ Zn+k−1

fn+k−1−−−−→ Zn+k−2 →···→ Zn+1
fn−→ Zn

fn−1−−−→Y , (4.31)

one has cofib( f j) ∈C[ j, j+1) for any j = n, . . . ,n+k−1, cofib( fn−1) ∈
C<n and cofib( fn+k) ∈C≥n+k.

Since C[ j, j+1) = C[0,1)[ j] for any j ∈ Z, the above Proposition
suggests to focus on the subcategory C[0,1) of C. This subcategory
has a special name and special properties (it is an abelian subcate-
gory).

Definition 4.3.2. Let C be a stable ∞-category equipped with a t-
structure t= (C≥0,C<0); the heart C♡ of t is the subcategory C[0,1)

defined following Def. 4.1.29.

Remark 4.3.3. There is a rather evocative pictorial representation
of the heart of a t-structure, manifestly inspired by [Bri07]: if we
depictC<0 andC≥0 as contiguous half-planes, like in the following
picture,
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X

Y
C≥0C<0

X [1]

Y [−1]

ZZ[−1]

shift

Figure 4.1: Heart of a t-structure

then the action of the shift functor can be represented as an hori-
zontal shift, and the closure properties of the two classes C≥0,C<0

under positive and negative shifts are a direct consequence of the
shape of these areas. With these notations, an object Z is in the
heart of t if it lies in a “boundary region”, i.e. if it lies in C≥0, but
Z[−1] lies in C<0.

Having introduced this notation, we can rephrase the existence
of the tower for f as follows: given a morphism f : X → Y in C,
for any integer n and any positive integer k there exists a unique
factorization of f

X
fn+k−−−→ Zn+k−1

fn+k−1−−−−→ Zn+k−2 →···→ Zn+1
fn−→ Zn

fn−1−−−→Y , (4.32)

such that cofib( f j) ∈C♡[ j] for any j = n, . . . ,n+k−1, cofib( fn−1) ∈
C<n and cofib( fn+k) ∈C≥n+k.

The content of this statement becomes more interesting when
C is bounded with respect to the t-structure t (see Definition
4.1.29). If C is bounded, then the (En,Mn)-factorizations of an
initial morphism 0 → Y are trivial (see Definition 4.1.29 and the
subsequent Remark) for |n|≫ 0.
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As an immediate consequence, the morphisms X
fn+k−−−→ Zn+k−1

and Zn
fn−1−−−→ Y in the tower of f associated with the chain n <

n + 1 < ·· · < n + k − 1 are isomorphisms for n ≪ 0 and k ≫ 0.
One notices, as it is obvious, that the class of isomorphisms in C is
closed under transfinite composition, this leads to the following

Proposition 4.3.4. Let C be a stable ∞-category which is boun-
ded with respect to a given t-structure t. Then for any morphism
f : X →Y in C there exists an integer n0 and a positive integer k0

such that for any integer n ≤ n0 and any positive integer k with
k ≥ n0 −n+k0 there exists a unique factorization of f

X ∼−→ Zn+k−1
fn+k−1−−−−→ Zn+k−2 →···→ Zn+1

fn−→ Zn
∼−→Y (4.33)

such that cofib( f j) ∈C♡[ j] for any j = n, . . . ,n+k−1.

Remark 4.3.5. By uniqueness in Proposition 4.3.4, one has a well
defined Z-factorization

X = lim(Z j)→···→ Z j+1
f j−→ Z j

f j−1−−−→ Z j−1 →···→ colim(Z j)=Y
(4.34)

with with j ranging over the integers, cofib( f j) ∈C♡[ j] for any j ∈
Z and with fm being an isomorphism for | j|≫ 0. We will refer to
this factorization as the Z-tower of f . Notice how the boundedness
of C has played an essential role: when C is not bounded, one still
has towers for any finite ascending chain, but in general they do
not stabilize.

Remark 4.3.6. Since we know that the tower of an initial mor-
phism is its k-fold (E j,M j)-factorization, we see that in a stable
∞-category C which is bounded with respect to a t-structure t =
(C≥0,C<0) the Z-tower of 0→Y ,

0= lim(Y j)→···→Y j+1
f j−→Y j

f j−1−−−→Y j−1 →···→ colim(Y j)=Y
(4.35)
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is such that f j ∈E j∩M j+1 for any j ∈Z. It follows that an object Y
is in C≥0 if and only if the Z-tower of 0 → Y satisfies cofib( f j) = 0
for any j < 0, while Y is in C<0 if and only if cofib( f j) = 0 for any
j ≥ 0.

4.3.1 Abelianity of the heart.
In the following section we present a complete proof, in the sta-
ble setting, of the fact that the heart of a t-structure, as defined in
[Lur11, Def. 1.2.1.11], is an abelian ∞-category.

In other words, C♡ is homotopy equivalent to its homotopy
category hC♡, which is an abelian category; this is the higher-ca-
tegorical counterpart of a classical result, first proved in [BBD82,
Thm. 1.3.6], which only relies on properties stated in terms of
normal torsion theories in a stable ∞-category. We begin with the
following

Definition 4.3.7.
[
Abelian∞-category

]
: An abelian ∞-category

is a quasicategory A such that
(1) the hom space A(X ,Y ) is a homotopically discrete infinite

loop space for any X ,Y , i.e., there exists an infinite sequence
of ∞-groupoids Z0, Z1, Z2, . . . , with Z0

∼= C(X ,Y ) and ho-
motopy equivalences Zi ∼= ΩZi+1 for any i ≥ 0, such that
πnZ0 = 0 for any n ≥ 1;

(2) A has a zero object, (homotopy) kernels, cokernels and
biproducts;

(3) for any morphism f in A, the natural morphism from the
coimage of f to the image (see Definition 4.3.15) of f is an
equivalence.

Remark 4.3.8. Axiom (i) is the homotopically-correct version
of A(X ,Y ) being an abelian group. For instance, if the abelian
group is Z, then the corresponding homotopy discrete space is
the Eilenberg-Mac Lane spectrum Z,K(Z,1),K(Z,2), . . . . The ho-
motopy category of such a A is an abelian category in the classical
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sense (note that A(X ,Y ) being homotopically discrete is neces-
sary in order that kernels and cokernels in A induce kernels and
cokernels in hA). Moreover, since the hom spaces A(X ,Y ) are
homotopically discrete, the natural morphism A→ hA is actually
an equivalence.

The rest of the section is devoted to the proof of the following
result:

Theorem 4.3.9. The heart C♡ of a t-structure t on a stable ∞-
category C is an abelian ∞-category; its homotopy category hC♡

is the abelian category arising as the heart of the t-structure h(t)
on the triangulated category hC.

Lemma 4.3.10. For any X and Y in C♡, the hom space C♡(X ,Y )
is a homotopically discrete infinite loop space.

Proof. Since C♡ is a full subcategory of C, we have C♡(X ,Y ) =
C(X ,Y ), which is an infinite loop space since C is a stable ∞-cate-
gory.

So we are left to prove that πnC(X ,Y ) = 0 for n ≥ 1. Since
πnC(X ,Y ) = πn−1ΩC(X ,Y ) = πn−1C(X ,Y [−1]), this is equivalent
to showing that C(X ,Y [−1]) is contractible. Since X and Y are
objects in C♡, we have X ∈C[0,1) and Y [−1] ∈C[−1,0). But C[−1,0)

is right object-orthogonal to C[0,1) (see Remark 4.1.34), therefore
C(X ,Y [−1]) is contractible.

The subcategory C♡ inherits the 0 object and biproducts (in
fact, all finite limits) from C, so in order to prove it is is abelian
we are left to prove that it has kernels and cokernels, and that the
canonical morphism from the coimage to the image is an equiva-
lence.

Lemma 4.3.11. Let f : X → Y be a morphism in C♡. Then fib( f )
is in C<1 and cofib( f ) is in C≥0.

Proof. Since both X → 0 and Y → 0 are in M[1], by the 3-for-2
property also f is in M[1]. Since M[1] is closed for pullbacks,



4.3. Hearts of t-structures. 88

fib( f )→ 0 is inM[1] and so fib( f ) is in C<1. The proof for cofib( f )
is completely dual.

Definition 4.3.12. Denote by

0 E // ker( f ) M // fib( f ) (4.36)

the (E,M)-factorization of the morphism 0→ fib( f ) and by

cofib( f ) E[1]
// coker( f ) M[1]

// 0 (4.37)

the (E[1],M[1])-factorization of the morphism cofib( f ) → 0. We
call Sfib( f ) = ker( f ) and R[1]cofib( f ) = coker( f ) respectively the
kernel and the cokernel of f in C♡.

Remark 4.3.13. Since cofib( f )[−1] ∼= fib f , one can equivalently
define coker( f ) by declaring the (E,M)-factorization of fib( f )→ 0

to be fib( f ) E−→ coker( f )[−1] M−→ 0. Similarly, one can define ker( f )
by declaring the (E[1],M[1])-factorization of 0 → cofib( f ) to be
0 E[1]−−−→ ker( f )[1] M[1]−−−→ cofib( f ). By normality of the factorization
system we therefore have the homotopy commutative diagram

0 ker( f ) fib( f )

0 coker( f )[−1]

0

E M

E

M

E

M

M

(4.38)

whose square sub-diagram is a homotopy pullout.

Lemma 4.3.14. Both ker( f ) and coker( f ) are in C♡.

Proof. By construction ker( f ) is in C≥0, so we only need to show
that ker( f ) is inC<1. By definition of ker( f ), we have that ker( f )→
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fib( f ) is in M. Since M[−1] ⊆M, we have that also ker( f )[−1] →
fib( f )[−1] is in M. By Lemma 4.3.11, fib( f )[−1] → 0 is in M and
so we find that also ker( f )[−1]→ 0 is inM. The proof for coker( f )
is perfectly dual.

By definition of ker( f ) and coker( f ), the defining diagram of
fib( f ) and cofib( f ) can be enlarged as

0 ker( f ) fib( f ) X 0

0 Y cofib( f ) coker( f ) 0

f

k f

c f

(4.39)
where k f and c f are morphisms in C♡.

Definition 4.3.15. Let f : X →Y be a morphism inC♡. The image
im( f ) and the coimage coim( f ) of f are defined as im( f )= ker(c f )
and coim( f )= coker(k f ).

The following lemma shows that ker( f ) does indeed have the
defining property of a kernel:

Lemma 4.3.16. The homotopy commutative diagram

ker( f )
k f

//

��

X

f
��

0 // Y

(4.40)

is a pullback diagram in C♡.

Proof. A homotopy commutative diagram

K //

��

X

f
��

0 // Y

(4.41)
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between objects in the heart is in particular a homotopy commu-
tative diagram in C so it is equivalent to the datum of a morphism
k′ : K → fib( f ) in C, with K an object in C♡. By the orthogonality
of (E,M), this is equivalent to a morphism k̃ : K → ker( f ):

0 //

E
��

ker( f )

M
��

K

k̃
<<yyyyyyyyy

k′
// fib( f )

. (4.42)

There is, obviously, a dual result showing that coker( f ) is in-
deed a cokernel.
Lemma 4.3.17. The homotopy commutative diagram

X //

f
��

0

��

Y
c f

// coker( f )

(4.43)

is a pushout diagram in C♡.
Lemma 4.3.18. For f : X →Y a morphism in C, there is a homo-
topy commutative diagram where all squares are homotopy pull-
outs:

ker( f ) fib( f ) X 0

0 coker( f )[−1] Z f ker( f )[1] 0

0 Y cofib( f ) coker( f )

E[1]

M[1]

E

M[1]

E

M

E

M[1]

f

k f

cF

(4.44)



91 4.3. Hearts of t-structures.

uniquely determining an object Z f ∈C♡.

Proof. Define Z f as the homotopy pullout

fib( f ) //

E
��

pp

X

E
��

coker( f )[−1] // Z f

(4.45)

Here the vertical arrow on the right is in E since the vertical arrow
on the left is in E by definition of coker( f ) (see Remark 4.3.13)
and E is preserved by pushouts. Next, paste on the left of this
diagram the pullout given by Remark 4.3.13 and build the rest of
the diagram by taking pullbacks or pushouts. Use again Remark
4.3.13 and the fact that M[1] is closed under pullbacks to see that
Z f →Y is in M[1]. Finally, we have

0 E−→ X E−→ Z f
M[1]−−−→Y M[1]−−−→ 0, (4.46)

and so Z f is in C♡.

Proposition 4.3.19. There is an isomorphism im( f )∼= coim( f ).

Proof. By definition, im( f ) and coim( f ) are defined by the factor-
izations

0 E // im( f ) M // fib(c f ) (4.47)

and
cofib(k f ) E[1]

// coim( f ) M[1]
// 0 (4.48)

The diagram in Lemma 4.3.18 shows that we have fib(c f ) = Z f =
cofib(k f ). Therefore, what we need to exhibit are the (E,M) fac-
torizations of 0→ Z f and the (E[1],M[1]) factorization of Z f → 0.
Since Z f is an object in C♡, these are

0 E−→ Z f
idZf−−−→ Z f (4.49)
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and
Z f

idZf−−−→ Z f
M[1]−−−→ 0, (4.50)

respectively, thus giving im( f )∼= Z f
∼= coim( f ).

4.3.2 Abelian subcategories as hearts.

Proposition 4.3.20. Let A be an abelian full subcategory of a sta-
ble ∞-category C, such that any morphism f : X → Y in C has a
unique A-weaved Z-Postnikov tower. Let CA,≥0 be the full subcat-
egory of C on those objects Y such that the A-weaved Z-Postnikov
tower

0= lim(Y j)→···→Y j+1
f j−→Y j

f j−1−−−→Y j−1 →···→ colim(Y j)=Y
(4.51)

of the initial morphism 0 → Y is such that cofib( f j) = 0 for any
j < 0, and let CA,<0 be the full subcategory of C on those objects
Y such that cofib( f j)= 0 for any j ≥ 0. Then tA = (CA,≥0,CA,<0) is a
t-structure on C, the stable ∞-category C is bounded with respect
to tA, and the heart of tA is (equivalent to) A.

The proof is split in several Lemmas. We begin introducing
the following

Notation 4.3.21. For S a subcategory of C, we write 〈S〉 for the
smallest extension closed full subcategory of C containing S.

Remark 4.3.22. Set 〈S〉0 = 0, define 〈S〉1 as the full subcategory
of C generated by S and 0, and define inductively 〈S〉n as the full
subcategory of C on those objects X which fall into a homotopy
fiber sequence

Xh //

��

X

��

0 // Xk

(4.52)
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with h,k ≥ 1, Xh in 〈S〉h, Xk in 〈S〉k and h+ k = n. One clearly
has

〈S〉0 ⊆ 〈S〉1 ⊆ 〈S〉2 ⊆ ·· · ⊆ 〈S〉. (4.53)

Moreover ∪
n〈S〉n is clearly extension closed, so that

〈S〉 =∪
n
〈S〉n. (4.54)

Lemma 4.3.23. Let S1,S2 be two subcategories of C with S1 ⊥S2.
Then S1 ⊥ 〈S2〉 and 〈S1〉 ⊥S2, and so 〈S1〉 ⊥ 〈S2〉

Proof. By Remark 4.3.22, to prove the first statement we are re-
duced to show that, if Y ∈ S1 and X ∈ 〈S2〉n then C(Y , X ) is con-
tractible. We prove this by induction on n. For n = 0,1 there is
nothing to prove by the assumption S1 ⊥S2. For n ≥ 2, consider a
fiber sequence Xh → X → Xk with 1≤ h,k and h+k = n as in Re-
mark 4.3.22. Since C(Y ,−) preserves homotopy fiber sequences,
we get a homotopy fiber sequence of ∞-groupoids

C(Y , Xh) //

��

C(Y , X )

��

∗ // C(Y , Xk)

. (4.55)

By the inductive hypothesis both C(Y , Xh) and C(Y , Xk) are con-
tractible, so also C(Y , X ) is contractible. The proof of the second
statement is perfectly specular, due to the fact that in C every
fiber sequence is also a cofiber sequence, and C(−,Y ) transforms
a cofiber sequence into a fiber sequence.

Lemma 4.3.24. Let A be an abelian full subcategory of C. Then
〈{A[s]}s≥0〉 ⊥ 〈{A[s]}s<0〉. In particular, in the hypothesis of Propo-
sition 4.3.20 we have CA,≥0 ⊥CA,<0

Proof. By Lemma 4.3.23, we only need to show that A[s1]⊥A[s2]
whenever s1 ≥ 0 > s2. Let X ∈ A[s1] and Y ∈ A[s2]. Then X =
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Z1[s1] and Y = Z2[s2] for suitable Z1, Z2 ∈A and so

C(X ,Y )=C(Z1[s1], Z2[s2])∼=C(Z1, Z2[s2− s1])
∼=Ωs1−s2C(Z1, Z2)=Ωs1−s2A(Z1, Z2),

where in the last equality we used the fact that A is full. Since
s1 − s2 > 0, the space Ωs1−s2A(Z1, Z2) is contractible by definition
of abelian ∞-category. Finally, in the hypothesis of Proposition
4.3.20 one clearly has CA,<0 ⊆ 〈{A[s]}s<0〉 and CA,≥0 ⊆ 〈{A[s]}s≥0〉.

Lemma 4.3.25. In the hypothesis of Proposition 4.3.20 every ob-
ject Y of C sits into a homotopy fiber sequence Y≥0 → Y → Y<0

with Y≥0 ∈CA,≥0 and Y<0 ∈CA,<0.

Proof. Let

0= lim(Y j)→···→Y1
f0−→Y0

f−1−−→Y−1 →···→ colim(Y j)=Y
(4.56)

be teh A-weaved Postnikov tower of 0→Y and consider the pull-
out diagram

Y0 //

f<0
��

0

��

Y // cofib( f<0)

(4.57)

together with the A-weaved Z-Postnikov towers

0= lim(Y j)→···→Y1
f0−→Y0 (4.58)

and
Y0

f−1−−→Y−1 →···→ colim(Y j)=Y . (4.59)

The first Postnikov tower shows that Y0 ∈CA,≥0 while the second
Postnikov tower shows that cofib( f<0) ∈CA,<0.

Lemma 4.3.26. In the hypothesis of Proposition 4.3.20, for any
λ ∈ R let CA,≥λ be the full subcategory of C on those objects Y
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such that the A-weaved Z-Postnikov tower

0= lim(Y j)→···→Y j+1
f j−→Y j

f j−1−−−→Y j−1 →···→ colim(Y j)=Y
(4.60)

of the initial morphism 0 → Y is such that cofib( f j) = 0 for any
j < λ, and let CA,<λ be the full subcategory of C on those ob-
jects Y such that cofib( f j) = 0 for any j ≥ λ. Then, for any n ∈ Z,
one hasCA,<λ[n]=CA,<λ+n andCA,≥λ[n]=CA,≥λ+n. In particular,
CA,<0[−1]⊆CA,<0 and CA,≥0[1]⊆CA,≥0.

Proof. Since the shift functor commutes with the formation of A-
weavedZ-Postnikov towers, an object Y lies inCA,<λ[n] if and only
if cofib( f j+n[−n]) = 0 for any j ≥ λ, i.e., if and only if cofib( f j) = 0
for any j ≥λ+n. The proof for CA,≥λ[n] is identical.

Proof of Proposition 4.3.20. Lemmas 4.3.24, 4.3.25 and 4.3.26 to-
gether show that tA = (CA,≥0,CA,<0) is a bounded t-structure on
C. To see that the heart of tA is A notice that an object Y lies in
CA,[0,1) if and only if the A-weaved Z-Postnikov tower

0= lim(Y j)→···→Y j+1
f j−→Y j

f j−1−−−→Y j−1 →···→ colim(Y j)=Y
(4.61)

of its initial morphism has cofib( f j)= 0 for every j ̸= 0, and so it is
of the form

· · ·0→ 0→···→ 0
f0−→Y

idY−−→Y
idY−−→ ·· · idY−−→Y

idY−−→ ·· · , (4.62)

with Y = cofib( f0) ∈A.

Remark 4.3.27. The same reasoning used in the proof of Proposi-
tion 4.3.20, shows that (CA,≥λ,CA,<λ) is a bounded t-structure on
C for every λ ∈ R, and that the assignment λ 7→ (CA,≥λ,CA,<λ) is
a Z-equivariant morphisms of posets R → ts(C), so it is a slicing
of C. The heart of (CA,≥λ,CA,<λ) is A[⌈λ⌉], where ⌈λ⌉ = min{n ∈
Z |n ≥λ}.
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4.4 Semiorthogonal decompositions.

La vie c’est ce qui se décompose à tout moment; c’est
une perte monotone de lumière, une dissolution
insipide dans la nuit, sans sceptres, sans auréoles, sans
nimbes.

E. Cioran, Précis de décomposition.

At the opposite end of the transitive case studied in the pre-
vious section, there is the finite case, where J is a finite totally or-
dered set. As we are going to show, this is another well investigated
case in the literature: J-familes of t-structures with a finite J cap-
ture (and slightly generalize) the notion of semiorthogonal decom-
positions for the stable ∞-category C (see [BO95, Kuz11] for the
notion of semiorthogonal decomposition in the classical triangu-
lated context).

To fix notations for this section, let J =∆[k−1] be the totally
ordered set on k elements seen as a poset, i.e., J = {i1, i2, . . . , ik}
with i1 ≤ i2 ≤ ·· · ≤ ik, and let t : ∆[k − 1] → ts(C) be a Z-equiv-
ariant ∆[k − 1]-family of t-structures on C. We also set, for any
j = 1, . . . ,k+1,

A j =C[i j−i ,i j) (4.63)

where, as usual, i0 = −∞ and ik+1 = +∞. We have that any mor-
phism f : X →Y in C has a unique factorization

X
fk+1−−−→ Zik

fk−→ Zik−1 →···→ Zi2

f2−→ Zi1

f1−→Y , (4.64)

with cofib( f j) ∈A j, and A j ⊆A⊥
h , for any 1≤ j < h ≤ k+1.

What we are left to investigate are therefore the special features
of the t-structures ti j = (C≥i j ,C<i j ) coming from the finiteness as-
sumption on J. As we noticed in Remark 4.1.12, a Z-action on a
finite poset J is necessarily trivial. By Z-equivariancy of the map
∆[k−1] → ts(C) we have therefore that all the t-structures ti j are
Z-fixed points for the natural Z-action on ts(C).
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Now, a rather pleasant fact is that fixed points of the Z-action
on ts(C) are precisely those t-structures t = (C≥0,C<0) for which
C≥0 is a stable sub-∞-category of C. We will make use of the fol-
lowing

Lemma 4.4.1. Let B be a full sub-∞-category of the stable ∞-cat-
egory C; then, B is a stable sub-∞-category of C if and only if B is
closed under shifts in both directions and under pushouts in C.

Proof. The “only if” part is trivial, so let us prove the “if” part.
First of all let us see that under these assumptions B is closed

under fibers. This is immediate: if f : X → Y is an arrow in B
(i.e. an arrow of C between objects of B, by fullness), then f [−1]
is again in B since B is closed with respect to the left shift. Since
B is closed under pushouts in C, also fib( f )= cofib( f [−1]) is in B.
It remains to show how this implies that B is actually stable, i.e.
it is closed under all finite limits and satisfies the pullout axiom.
Unwinding the assumptions onB, this boils down to showing that
in the square

B //

��

pb
X

f
��

Y g
// Z

(4.65)

the pullback B of f , g ∈ hom(B) done in C is actually an object
of B; indeed, once showed this, the square above will satisfy the
pullout axiom in C, so a fortiori it will have the universal property
of a pushout inB. To this aim, let us consider the enlarged diagram
of pullout squares in C

Z[−1] //

��

⋆

fib(g) //

��

0

��

fib( f ) //

��

B //

��

X

f
��

0 // Y g
// Z.

(4.66)
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The objects Z[−1],fib( f ) and fib(g) lie in B by the first part of the
proof, so the square (⋆) is in particular a pushout of morphism in
B; by assumption, this entails that B ∈B.

Remark 4.4.2. Obviously, a completely dual statement can be
proved in a completely dual fashion: a full sub-∞-category B of
an stable ∞-category C is a stable sub-∞-category if and only if it
is closed under shifts in both directions and under pullbacks in C.

Proposition 4.4.3. Let t = (C≥0,C<0) be a t-structure on a stable
∞-category C; then the following conditions are equivalent:

(1) t is a fixed point for the Z-action on ts(C), i.e., t[1] = t (or
equivalently in view of remark A.3.8, C≥1 =C≥0);

(2) C≥0 is a stable sub-∞-category of C.

Proof. ‘(2) implies (1)’ is obvious. Namely, if C≥0 is a stable sub-
∞-category of C, then it is closed under shifts in both directions.
Therefore C≥1 = C≥0[1] ⊆ C≥0. Since, by definition of t-struc-
ture, C≥1 ⊆ C≥0, we have C≥1 = C≥0. To prove that ‘(1) implies
(2)’, assume C≥1 = C≥0. This means that not only C≥0[1] ⊆ C≥0

as for any t-structure, but also C≥0 ⊆ C≥0[1], which implies that
C≥0[−1] ⊆ C≥0. Therefore C≥0 is closed under shifts in both di-
rections. By Lemma 4.4.1, we then have only to show that C≥0 is
closed under pushouts inC to conclude that C≥0 is a stable ∞-sub-
category of C. Consider a pushout diagram

A //

h
�� po

B

k
��

C // P

(4.67)

in C with A, B and C in C≥0, and let F = (E,M) be the normal
torsion theory associated to t. Since A and C are in C≥0 = 0/E we
have that both 0 → A and 0 → C are in E. But E has the 3-for-2
property, so also A → C is E. Since E is closed for pushouts, this
implies that also B → P is in E. But 0 → B in in E since B is in
C≥0, and therefore also 0→ P is in E, i.e., P is in C≥0.
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Remark 4.4.4. The statement of Prop. 4.4.3 can easily be dualized:
Z-fixed points in ts(C) as those t-structures (C≥0,C<0) for which
C<0 is a stable sub-∞-category ofC, as well as those such thatC<0 =
C<1.

Proposition 4.4.3 and remark 4.4.4 characterize Z-fixed points
on ts(C) as the t-structures with stable classes C≥0 and C<0. By
the correspondence between t-structures and normal factorization
systems, one should expect that these should be equally character-
ized as the normal factorization systems F= (E,M) for which the
classes E andM are “stable on both sides”, i.e., are closed both for
pullbacks and for pushouts.

Theorem 4.4.5. Let t be a t-structure on a stable ∞-category C and
let F = (E,M) be the corresponding normal factorization system;
then the following conditions are equivalent:

(1) t[1]= t;
(2) C≥0 is a stable ∞-category;
(3) C<0 is a stable ∞-category;
(4) E is closed under pullback;
(5) M is closed under pushout.

Proof. In view of the previous results, the only implication we need
to prove is that ‘(1) is equivalent to (4)’. Assume E is closed under
pullbacks. Then for any X in C≥0 we have that 0→ X is in E, and
so X [−1] → 0 is in E. By the Sator lemma this implies that 0 →
X [−1] is in E, i.e., that X [−1] is in C≥0. This shows that C≥0[−1]⊆
C≥0 and therefore that t[1]= t.

Conversely, assume t[1]= t, and consider a morphism f : X →
Y in E. For any morphism B →Y in C consider the diagram

fib( f ) //

��

A //

��

X //

f
��

0

��

0 // B // Y // cofib( f )

(4.68)
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where all the squares are pullouts in C. Since f is in E and E
is closed for pushouts, also 0 → cofib( f ) is in E. This means
that cofib( f ) is in C≥0 and so, since we are assuming that
C≥0 =C≥0[−1], also fib( f ) = cofib( f )[−1] is in C≥0, i.e., 0 → fib( f )
is in E. By the Sator lemma, fib( f )→ 0 is in E, which is closed for
pushouts, and so A → B is in E.

Remark 4.4.6. In the literature, a factorization system (E,M) for
which the class E is closed for pullbacks is sometimes called an
exact reflective factorization, see, e.g., [CHK85]. This is equivalent
to saying that the associated reflection functor is left exact (this is
called a localization in the jargon of [CHK85]). Dually, one charac-
terizes colocalizations of a categoryCwith an initial object as coexact
coreflective factorizations where the right classM of F is closed un-
der pushouts. Therefore, in the stable ∞-case, we see that a Z-fixed
point in ts(C) is a t-structure (C≥0,C<0) such that the truncation
functors τ≥0 : C→C≥0 and τ<0 : C→C<0 respectively form a colo-
calizations and a localization of C. In the terminology of [BR07]
we therefore find that in the stable ∞-case Z-fixed point in ts(C)
correspond to hereditary torsion pairs on C. Since we have seen that
for a Z-fixed point in ts(C) both C≥0 and C<0 are stable ∞-catego-
ries, this result could be deduced also from [Lur11, Prop. 1.1.4.1]:
a left (resp., right) exact functor between stable∞-categories is also
right (resp., left) exact.

We can now precisely relate semiorthogonal decompositions
in a stable ∞-category C to ∆[k−1]-families of t-structures on C.
The only thing we still need is the following definition, which is
an immediate adaptation to the stable setting of the classical defi-
nition given for triangulated categories (see, e.g., [BO95, Kuz11]
).

Definition 4.4.7. Let C be an stable ∞-category. A semiorthogonal
decomposition with k classes on C is the datum of k+1 stable ∞-
subcategories A1, A2,…, Ak+1 of C such that

(1) one has Ai ⊆A⊥
j for i < j (semiorthogonality);
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(2) for any object Y inC there exists a unique {Ai}-weaved tower,
i.e., a factorization of the initial morphism 0→Y as

0=Y0 →···→Y j+1
f j−→Y j

f j−1−−−→Y j−1 →···→Yk+1 =Y
(4.69)

with cofib( f j) ∈A j for any j = 1, . . . ,k+1.

Remark 4.4.8. Since {Ai}-weaved Postnikow towers are preserved
by pullouts, one can equivalently require that any morphism
f : X →Y in C has a unique factorization of the form

X = Z0 →···→ Z j+1
f j−→ Z j

f j−1−−−→ Z j−1 →···→ Zk+1 =Y (4.70)

with cofib( f j) ∈A j for any j = 1, . . . ,k+1.

Theorem 4.4.9. Let C be an stable ∞-category. Then the datum of
a semiorthogonal decompositions with k classes onC is equivalent
to the datum of a Z-equivariant ∆[k−1]-family of t-structures on
C

Proof. Let us start with a Z-equivariant ∆[k−1]-family of t-struc-
tures t, and write i1 < i2 < ·· · < ik for the elements of ∆[k−1] and
ti j = (C≥i j ,C<i j ) for the corresponding t-structures on C. Then,
setting A j =C[i j−1,i j) we have semiorthogonality between the A j’s
and the existence of {A j}-weaved Postnikow towers by the gen-
eral argument recalled at the beginning of this section. So we
are only left to prove that the subcategories A j are stable. This
is immediate: by Theorem 4.4.5 both the sub-∞-categories C≥i j−1

and C<i j are stable, and so also their intersection is stable (see,
[Lur11]). Vice versa, if we start with a semiorthogonal decom-
position, then repeating verbatim the argument in the proof of
Proposition 4.3.20 one defines a Z-equivariant ∆[k−1]-family of
t-structures on C.

Remark 4.4.10. By Remark 4.4.6, we recover in the stable ∞-set-
ting the well known fact (see [BR07, IV.4]) that semiorthogonal
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decompositions with a single class correspond to hereditary torsion
pairs on the category.



Chapter 5

Recollements

The present chapter develops the theory of recollements in a stable
∞-categorical setting. In the axiomatization of Beĭlinson, Bern-
stein and Deligne, recollement situations provide a generalization
of Grothendieck’s “six functors” between derived categories.

If a recollement is depicted as a diagram D0 ←→← D ←→← D1, given
t-structures t0,t1 on D0,D1 it is possible to construct a “recollée”
t-structure t0 ∪|≡ t1 (see Def. 5.2.1) on D, exploiting the adjointness
relations between these six functors.

Such a classical result, well-known in the setting of trian-
gulated categories, acquires a new taste when t-structures are
described as normal torsion theories: outlining the construc-
tion of the factorization system related to t0 ∪|≡ t1 by the “Rosetta
stone” reveals a number of interesting formal properties of the
construction, and clarifies its origin.

In the geometric case of what [BBD82] calls a stratified space,
various recollements arise, and they “interact well” with the com-
binatorics of the intersections of strata to give a well-defined, asso-
ciative ∪|≡ operation. From this we deduce a generalized associative
property for n-fold gluing t0 ∪|≡ · · · ∪|≡ tn, valid in any stable ∞-cate-
gory, provided that a sufficient number of recollement data orga-
nize into a diagram (see Def. 5.4.7) which ensures the possibility to
parenthesize the string t0∪|≡ · · ·∪|≡ tn in different ways and to compare
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these ways.

5.1 Introduction.
Recollements in triangulated categories were introduced by A.
Beĭlinson, J. Bernstein and P. Deligne in [BBD82], searching an
axiomatization of the Grothendieck’s “six functors” formalism for
derived categories of sheaves on (the strata of a) stratified topo-
logical space. [BBD82] will be our main source of inspiration,
and reference for classical results and computations; among other
recent but standard references, we mention [KS90, Ban07]. Later,
“recollement data” were noticed to appear quite naturally in the
context of intersection homology [Pfl01, GM80, GM83] and
Representation Theory [PS88, KW01]. In more recent years Be-
ligiannis and Reiten [BR07], adapting to the triangulated setting
an old idea of Jans [Jan65], linked recollement data to so-called
ttf-triples (i.e. triples (X,Y,Z) such that both (X,Y) and (Y,Z) are
t-structures): recollement data, in the form of ttf-triples, appear
quite naturally studying derived categories of representations of
algebras, see [BR07, Ch. 4].

We now attempt to translate the basic theory of recollements
in the stable setting; adopting this viewpoint clarifies the classical
theory and offers a number of interesting results.

Focusing on normal torsion theories as the higher-categorical
entities inducing t-structures in the triangulated world is, categori-
cally speaking, extremely natural. This “torsio-centric” perspective
appears to be very well suited to the description of recollements.

In the presence of a stratification U0 ⊂ U1 · · · ⊂ Un ⊂ X of a
space, with “pure strata” E i = Ui ∖Ui−1 an extended version of
the Rorschach lemma entails that an object F of the derived cate-
gory of X lies in a class of the glued t-structure if and only if l i(F)
lies in the homonym class in D(E i), where l i is a suitable choice
of a functor from D(X ) to the category of ith pure stratum (this
appears at p. 5.4.1). This associativity result, together with the
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“compatibility condition” necessary to ensure that two different
parenthesizations of t0 ∪|≡ · · · ∪|≡ tn coincide,

(t0 ∪|≡ · · · ∪|≡ tn)P = (t0 ∪|≡ · · · ∪|≡ tn)Q (5.1)

is not spelled out explicitly in [BBD82].

5.2 Classical Recollements.

Sitzt ihr nur immer! leimt zusammen,

Braut ein Ragout von andrer Schmaus,

und blas't die kümmerlichen Flammen

aus eurem Aschenhäufchen `raus!

Faust, I 538-541.

The aim of this subsection is to present the basic features of
“classical” recollements in the setting of stable ∞-categories ignor-
ing, for the moment, the translation in terms of normal torsion
theories which will follow.

Definition 5.2.1. A (donnée de) recollement consists of the fol-
lowing arrangement of stable ∞-categories and functors between
them:

D0 D D1i //

iL
oo

iRoo

q //

qL
oo

qRoo

(5.2)

satisfying the following axioms:
(1) There are adjunctions iL ⊣ i ⊣ iR and qL ⊣ q ⊣ qR ;
(2) The counit ϵ(iL⊣i) : iL i → 1 and the unit η(i⊣iR ) : 1 → ir i are

natural isomorphisms; also, the unit 1 → qqR and counit
qqL → 1 are natural isomorphisms;(1)

(1)With a little abuse of notation we will write iL i = idD0 = iR i, and similarly
for qqL = idD = qqR .
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(3) The (essential) image of i equals the essential kernel of q,
namely the full subcategory of D such that qX ∼= 0 in D1;

(4) The natural homotopy commutative diagrams

qLq idD iiR idD

0 iiL 0 qR q

ϵ(qL⊣q)
//

��

η(iL⊣i)

��

ϵ(i⊣iR )
//

��

η(q⊣qR )

��
// //

(5.3)

induced by axioms (1), (2) and (3) are pullouts(2).

Remark 5.2.2. As an immediate consequence of the axioms, a
recollement gives rise to various reflections and coreflections of
D: since by axiom (2) the functors i, qL, qR are all fully faithful,
qR q, iiL are reflections and qLq, iiR are coreflections. Moreover,
axioms (3) and (4) entail that the compositions iR qR , qi, iLqL are
all “exactly” zero, i.e. not only the kernel of q is the essential image
of i, but also the kernel of iL/R is the essential image of qL/R .

Remark 5.2.3. Axioms (2) and (4) together imply that there exists
a canonical natural transformation iR → iL, obtained as iR(η(iL⊣i))
(or equivalently, as iL(ϵ(i⊣iR )): it’s easy to see that these two arrows
coincide). Axiom (4) entails that there is a fiber sequence of natu-
ral transformations

iR qLq iR 0

0 iL iLqR q

Notation 5.2.4. We will generally use a compact form like

(i, q) : D0 ←→←D←→←D1 (5.4)

(2)Here and everywhere else the category of functors to a stable ∞-category
becomes a stable ∞-category in the obvious way (see [Lur11, Prop. 1.1.3.1]).
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to denote a recollement (5.2), especially in inline formulas. Vari-
ations on this are possible, either to avoid ambiguities or to avoid
becoming stodgy.

We will for example say that “(i, q) is a recollement on D” or
that “D is the décollement of D0,D1” to denote that there exists a
diagram like (5.2) having D as a central object. In other situations
we adopt an extremely compact notation, referring to a (donné de)
recollement with the symbol r of (the letter rae of the Georgian
alphabet, in the mxedruli script, see [Hew95]).

A geometric example. The most natural example of a recolle-
ment comes from the theory of stratified spaces [Wei94, Ban07]:

Example 5.2.5. Let X be a topological space, F ⊆ X a closed sub-
space, and U = X ∖F its open complement.

From the two inclusions j : F ,→ X , and i : U ,→ X we obtain
the adjunctions j∗ ⊣ j∗ ⊣ j!, i! ⊣ i∗ ⊣ i∗ between the categories
Coh(U),Coh(X ) and Coh(F) of coherent sheaves on the strata.
Passing to their (bounded below-)derived versions we obtain func-
tors(3)

D(F) D(X ) D(U)
j∗ // i∗ // (5.5)

giving rise to reflections and coreflections

D(F) D(X ) D(U) D(F) D(X ) D(U).⊤
� � j∗ //

j∗
oo ⊤

i∗ //

_?i!

oo ⊥
� � j∗ //

j!
oo

i∗ //⊥ _?i∗
oo

(5.6)
These functors are easily seen to satisfy axioms (1)-(4) above: see
[BBD82, 1.4.3.1-5] and [Ban07, 7.2.1] for details.

Remark 5.2.6. The above example, first discussed in [BBD82],
is in some sense paradigmatic, and it can be seen as a motiva-

(3)For a topological space A we denoteD(A) the derived∞-category of coherent
sheaves on A defined in [Lur11, §1.3.2]; we also invariably denote as j∗ ⊣ j∗ ⊣ j!,
i! ⊣ i∗ ⊣ i∗ the functors between stable ∞-categories induced by the homonym
functors between abelian categories.
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tion for the abstract definition of recollement: a generalization of
Grothendieck’s “six functors” formalism. Several sources [Han14,
BP13, AHKL11, C+14] convey the intuition that a recollement r
is some sort of “exact sequence” of triangulated categories, think-
ingD as decomposed into two parts, an “open” and a “closed” one.
This also motivates the intuition that a donnée de recollement is
not symmetric.

An algebraic example. The algebraic counterpart of the above
example involves derived categories of algebras: we borrow the
following discussion from [Han14].

Example 5.2.7. Let A be an algebra, and e ∈ A be an idempotent
element; let J = eAe be the ideal generated by e, and suppose that

• Ae⊗J eA ∼= J under the map (xe, ey) 7→ xey;
• TorJ

n (Ae, eA)∼= 0 for every n > 0.
Then there exists a recollement

D(A/J) D(A) D(eAe)
i=−⊗A/J A/J q=−⊗A Ae

iL=−⊗A A/J

iR=hom(A/J,−)

qL=−⊗J eA

qR=homJ (Ae,−)
(5.7)

between the derived categories of modules on the rings
A/J, A, eAe.

Interestingly enough, also this example is paradigmatic in
some sense; more precisely, every recollement r : D(A1) ←→←D(A) ←→←

D(A2) is equivalent, in a suitable sense, to a “standard” recolle-
ment where iL and qL act by tensoring with distinguished objects
Y ∈D(A),Y2 ∈D(A2).

Definition 5.2.8.
[
Standard recollement

]
: Let s : D(A1) ←→←

D(A) ←→← D(A2) be a recollement between algebras; it is called a
standard recollement generated by a pair (Y ,Y2) if iL ∼= −⊗A Y ,
and qL ∼=−⊗A2 Y2.

Proposition 5.2.9. Let r : D(A1) ←→← D(A) ←→← D(A2) be a recolle-
ment between algebras; then r is equivalent (in the sense of Re-
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mark 5.2.14) to a standard recollement s generated by the pair
(Y ,Y2).

The proof relies on the following

Lemma 5.2.10. Let A1, A, A2 be algebras. The derived catego-
ries on these algebras are part of a recollement : D(A1) ←→←D(A) ←→←

D(A2) if and only if there exist two objects X1, X2 ∈D(A) such that
• hom(X i, X i)∼= A i for i = 1,2;
• X2 is an exceptional and compact object, and X1 is excep-

tional and self-compact;
• X1 ∈ {X2}⊥;
• {X1}⊥∩ {X2}⊥ = (0).

See [Han14, §2] for details.

A homotopical example. Let Ho(GSp) be the global stable ho-
motopy category of [Sch]; this is defined as the localization of the
category of globally equivariant orthogonal spectra at the homo-
topical class of global equivalences ([Sch, Def. 1.2]: the homotopi-
cal category GSp admits a natural forgetful functor u : GSp→ Sp
which “forgets the equivariancy” (it is the identity on objects, and
includes the class of global equivalences in the bigger class of weak
equivalences of plain spectra), which has both a left and a right ad-
joint uL,uR , and plays the rôle of a q-functor in a recollement

Sp+ GSp Sp
i u

uL

uR

(5.8)

where the functor i : Sp+ → GSp embeds the subcategory of or-
thogonal spectra that are stably contractible in the traditional, non-
equivariant sense.

Remark 5.2.11. Since in a stable ∞-category every pullback is a
pushout and vice versa, any functor between stable ∞-categories
preserving either limits or colimits preserves in particular pullout
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diagrams. Since left adjoints and right adjoints have this property,
we find

Proposition 5.2.12.
[
Exactness of recollement functors

]
:

Each of the functors i, iL, iR , q, qL, qR in a recollement situation
preserves pullout diagrams.

This simple remark will be extremely useful in view of the
“standard procedure” for proving results in recollement theory
outlined in 5.2.25.

Definition 5.2.13.
[
The (∞-)category Recol

]
: A morphism be-

tween two recollements r and r′ consists of a triple of functors
(F0,F,F1) such that the following square commutes in every part
(choosing from time to time homonymous left or right adjoints):

D0 i //

F0
��

D
F
��

q //
oo

oo D1

F1
��

oo

oo

′D0 i′ // ′D q′ //
oo

oo
′D1oo

oo

(5.9)

This definition turns the collection of all recollement data into a
∞-category denoted Recol and called the (∞-)category of recolle-
ments.

Remark 5.2.14. The natural definition of equivalence between
two recollement data (all three functors (F0,F01,F1) are equiv-
alences) has an alternative reformulation (see [PS88, Thm. 2.5])
asking that only two out of three functors are equivalences; nev-
ertheless (loc. cit.) this must not be interpreted as a full 3-for-2
condition.

Equivalently we can define this notion (see [AHKL11, §1.7]),
asking that the essential images of the fully faithful functors
(i, qL, qR) are pairwise equivalent with those of (i′, q′

L, q′
R).

We now concentrate on other equivalent ways to specify a re-
collement on a stable ∞-category, slightly rephrasing Definition
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5.2.1: first of all, [HJ10, Prop. 4.13.1] shows that the localization
functor qR q, which is an exact localization with reflective kernel,
uniquely determines the recollement datum up to equivalence; al-
beit of great significance as a general result, we are not interested
in this perspective, and we address the interested readers to [HJ10]
for a thorough discussion.

Another equivalent description of a recollement, nearer to our
“torsio-centric” approach, is via a pair of t-structures onD [Nic08]:

Definition 5.2.15.
[
Stable ttf Triple

]
: Let D be a stable ∞-

category. A stable ttf triple (short for torsion-torsionfree triple) on D
is a triple of full subcategories (X,Y,Z) of D such that both (X,Y)
and (Y,Z) are t-structures on D.

Notice in particular that D is reflected on Y via a functor RY

and coreflected via a functor SY . The whole arrangement of cate-
gories and functors is summarized in the following diagram

X

Y D

Z

iX

||

iY //

RY
oo

SY
oo SX

..

RZ
00

iZ

aa

(5.10)

where SY ⊣ iY ⊣ RY, iZ ⊣ RZ and SX ⊣ iX.
Stable ttf triples are in bijection with equivalence classes of

recollements, as it is recalled in [Nic08, Prop. 4.2.4]; the same bi-
jection holds in the stable setting, mutatis mutandis.

We conclude this introductory section with the following
Lemma, which will be of capital importance all along §5.3: func-
tors in a recollement jointly reflect isomorphisms.

Lemma 5.2.16.
[
Joint conservativity of recollement data

]
:

Let D be a stable ∞-category, and let

(i, q) : D0 ←→←D←→←D1
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be a recollement on D. Then the following conditions are equiv-
alent for an arrow f ∈hom(D):

• f is an isomorphism in D;
• q( f ) is an isomorphism in D1 and iR( f ) is an isomorphism

in D0;
• q( f ) is an isomorphism in D1 and iL( f ) is an isomorphism

in D0.
In other words, the pairs of functors {q, iR} and {q, iL} jointly reflect
isomorphisms.

Proof. We only prove that if q( f ) and iL( f ) are isomorphisms in the
respective codomains, then f is an isomorphism in D. We need a
preparatory sub-lemma, namely that the pair {q, iL} reflects zero
objects; the only non trivial part of this statement is that if qD ∼= 0
in D1 and iLD ∼= 0 in D0, then D ∼= 0 in D, an obvious statement
in view of axiom (3) of Def. 5.2.1, since qD ∼= 0 entails D ∼= i(D′),
and now 0∼= iL(D)= iL iD′ ∼= D.

With this preliminary result, we recall that f : X →Y is an iso-
morphism if and only if fib( f ) ∼= 0, and apply the previous result,
together with the fact that recollement functors preserve pullouts.

Replacing iL with iR , the proof shows a similar statement
about the joint reflectivity of {q, iR}.

Notation 5.2.17. We will often use a rather intuitive shorthand,
writing {q, iL}( f ), or {q, iR}( f ) to both functors applied to the same
arrow. For example:

• Given (the left classes of) a pair of t-structures D0
≥0,D1

≥0 we
write “{q, iL}(D) ∈D≥0” (see Thm. 5.2.19) to denote that the
object qD ∈D1

≥0 and iL(D) ∈D0
≥0; similarly for {q, iR}(D) ∈

D<0 and other combinations.
• Given (the left classes of) a pair of normal torsion theories
E0,E1, we write “{q, iL/R}( f ) ∈E” (see Thm. 5.3.4) to denote
that the arrow f ∈hom(D) is such that qf ∈E1 and iL/R( f ) ∈
E0; similarly for {q, iL/R}(g) ∈M and other combinations.
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Remark 5.2.18. The joint reflectivity of the recollement functors
{q, iL} or {q, iR} can be seen as an analogue, in the setting of an
abstract recollement, of the fact that in the geometric case of the
recollement induced by a stratification ∅⊂U ⊂ X one has ([PS88,
2.3]) that a morphism of sheaves φ : F→F′ on X is uniquely de-
termined by its restrictions φ

∣∣
U and φ

∣∣
X∖U .

5.2.1 The classical gluing of t-structures.
The main result in the classical theory of recollements is the so-
called gluing theorem, which tells us how to obtain a t-structure
t= t0∪|≡ t1

(4) on D starting from two t-structures ti on the categories
Di of a recollement r.

Theorem 5.2.19.
[
Gluing Theorem

]
: Consider a recollement

r= (i, q) : D0 ←→←D←→←D1,

and let ti be t-structures on Di for i = 0,1; then there exists a t-
structure on D, called the gluing of the ti (along the recollement
r, but this specification is almost always omitted) and denoted
t0 ∪|≡ t1, whose classes

(
(D0 ∪|≡ D1)≥0, (D0 ∪|≡ D1)<0

)
are given by

(D0 ∪|≡ D1)≥0 =
{

X ∈D | (qX ∈D1
≥0)∧ (iL X ∈D0

≥0)
}
;

(D0 ∪|≡ D1)<0 =
{

X ∈D | (qX ∈D1
<0)∧ (iR X ∈D0

<0)
}
. (5.11)

Remark 5.2.20. Following Notation 5.2.17 we have that X ∈D≥0

iff {q, iL}(X ) ∈ D≥0 and Y ∈ D<0 iff {q, iR}(X ) ∈ D<0, which is a
rather evocative statement: the left/right class of t0 ∪|≡ t1 is deter-
mined by the left/right adjoint to i.

(4)The symbol ∪|≡ (pron. glue) reminds the alchemical token describing the
process of amalgamation between two or more elements (one of which is often
mercury): albeit amalgamation is not recognized as a proper stage of the Mag-
num Opus, several sources testify that it belongs to the alchemical tradition (see
[RS76, pp. 409-498]).
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Remark 5.2.21. The “wrong way” classes

(D0 ∪|≡ D1)⋆≥0 =
{

X ∈D | ({q, iR}X ∈D≥0

}
;

(D0 ∪|≡ D1)⋆<0 =
{

X ∈D | ({q, iL}X ∈D<0

}
. (5.12)

do not define a t-structure in general. However they do in the case
the recollement situation r is the lower part of a 2-recollement, i.e.
there exists a diagram of the form

C0 C C1
oo

i1

i2 //
oo i3

i4
//

oo
q1

q2 //
oo q3

q4
//

(5.13)

where both

r2 = C0 C C1i2 //

i3
oo

i1oo

q2 //

q3
oo

q1oo

(5.14)

and

r3 = C1 C C0q3 //

q4
o o

q2o o

i3 //

i4
oo

i2oo

(5.15)

are recollements, with r=r3. Indeed, in this situation one has

(D0 ∪|≡ D1)⋆≥0 =
{

X ∈D | ({q, iR}X ∈D≥0

}
=

{
X ∈C | ({i3, q2}X ∈C≥0

}
= (C0 ∪|≡r2 C1)≥0.

More generally, an n-recollement is defined as the datum of three
stable ∞-categories C0,C,C1 organized in a diagram

C0 C C1i2 //
oo

i1

oo i3...oo

in+2

q2 //
oo

q1

oo q3...oo
qn+2

(5.16)
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with n + 2 functors on each edge, such that every consecu-
tive three functors form recollements r2k = (i2k, q2k), r2h+1 =
(q2h+1, i2h+1), for k = 1, . . . ,n−1, h = 1, . . . ,n−2, see [HQ14, Def.
2]. Applications of this formalism to derived categories of alge-
bras, investigating the relationships between the recollements of
derived categories and the Gorenstein properties of these algebras,
can be found in [HQ14, Qin15].

Notation 5.2.22. It is worth to notice that D0 ∪|≡ D1 has no real
meaning as a category; this is only an intuitive shorthand to denote
the pair (D,t0 ∪|≡ t1); �more explicitly, it is a shorthand to denote the
following situation:

The stable ∞-category D fits into a recollement
(i, q) : D0 ←→← D ←→← D1, t-structures on D0 and D1 have
been chosen, and D is endowed with the glued t-
structure t0 ∪|≡ t1.

A proof of the gluing theorem in the classical setting of trian-
gulated categories can be found in [Ban07, Thm. 7.2.2] or in the
standard reference [BBD82]. We briefly sketch the argument given
in [Ban07] as we will need it in the torsio-centric reformulation
of the gluing theorem.

Proof of Thm. 5.2.19. We begin showing the way in which every
X ∈D fits into a fiber sequence SX → X → RX where SX ∈ (D0 ∪|≡

D1)≥0,RX ∈ (D0 ∪|≡ D1)<0. Let Fi denote the normal torsion the-
ory on Di, inducing the t-structure ti; let η1 : qX → R1qX be the
arrow in the fiber sequence

S1qX ϵ1−→ qX
η1−→ R1qX (5.17)

obtained thanks to F1; let η̂ be its mate X → qRR1qX in D under
the adjunction q ⊣ qR , and let W = fib(η̂).

Now, consider iLW in the fiber sequence

S0iLW
σ0−→ iLW

θ0−→ R0iLW (5.18)
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induced by F0 on D0, and its mate θ̂ : W → iR0iLW ; take its fiber
SX , and the object RX defined as the pushout of iR0iLW θ̂←−W →
X .

To prove that these two objects are the candidate co/truncation
we consider the diagram

SX W X

0 iR0iLW RX

0 qRR1qX

//

��

//

θ̂
��

η̂

��

��
// //

�� ��
//

(5.19)

where all the mentioned objects fit, and where every square is
a pullout. We have to prove that SX ∈ (D0 ∪|≡ D1)≥0 and RX ∈
(D0 ∪|≡ D1)<0. To do this, apply the functors q, iL, iR to (5.19), ob-
taining the following diagram of pullout squares (recall the exact-
ness properties of the recollement functors, stated in Prop. 5.2.12):

qSX qW qX

0 0 qRX

0 R1qX

∼ //

��

//

�� ��
//

��
//

iLSX iLW iL X

0 R0iLW iLRX

0 iLqRR1qX

¬

//

��

//

�� ��
// //

�� ��
//

iRSX iRW iR X

0 R0iLW iRRX

0 0

//

��

//

�� ��
// ∼ //

�� ��

where we took into account the relations qi = 0, iR qR = 0= iLqL,
we find that

• qSX ∼= qW ∼= S1qX ∈D1
≥0, since 0 → S1qX lies in M1, and

qRX ∼= R1qX ∈D1
<0;

• iLSX ∼= S0iLW ∈D0
≥0, looking square ¬;

• iRRX ∼= R0iLW ∈D0
<0.

It remains to show that the two classes D≥0,D<0 are orthogonal;
to see this, suppose that X ∈D≥0 and Y ∈D<0. We consider the
fiber sequence iiRY → Y → qR qY of axiom (4) in Def. 5.2.1, to
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obtain (applying the homological functor D(X ,−))

D(X , iiRY ) D(X ,Y ) D(X , qR qY )

D(iL X , iRY ) D(qX , qY )

0 0

// // (5.20)

and we conclude, thanks to the exactness of this sequence.

Remark 5.2.23. The definition of t0∪|≡ t1 entails that all the recolle-
ment functors (i, q) : (D0,t0) ←→← (D,t0∪|≡ t1) ←→← (D1,t1) become t-exact
in the sense of [Lur11, Def. 1.3.3.1].

Remark 5.2.24. Strictly speaking, the domain of definition of the
gluing operation ∪|≡ is the set of triples (t0,t1,r) where (t0,t1) ∈
ts(D0)× ts(D1) and r = (i, q) is a recollement D0 ←→← D ←→← D1, but
unless this (rather stodgy) distinction is strictly necessary we will
adopt an obvious abuse of notation.

Remark 5.2.25.
[
A standard technique

]
: The procedure out-

lined above is in some sense paradigmatic, and it’s worth to trace
it out as an abstract way to deduce properties about objects and
arrows fitting in a diagram like (5.19). This algorithm will be our
primary technique to prove statements in the “torsio-centric” for-
mulation of recollements:

• We start with a particular diagram, like for example (5.19)
or (5.22) below; our aim is to prove that a property (being
invertible, being the zero map, lying in a distinguished class
of arrows, etc.) is true for an arrow h in this diagram.

• We apply (possibly only some of) the recollement functors
to the diagram, and we deduce that h has the above property
from

– The recollement relations between the functors (Def.
5.2.1);

– The exactness of the recollement functors (Prop.
5.2.12);



5.3. Stable Recollements. 118

– The joint reflectivity of the pairs {q, iL} and {q, iR}
(Lemma 5.2.16);

5.3 Stable Recollements.

הַשָּׁמָיְמָה מַגִּיעַ żׁוְראֹש אַרְצָה מֻצָּב סֻלָּם וְהִנֵּה וַיַּחžֲם
:żּב וְיֹרְדִים עֹלִים אžֱהִים מַלְאֲכֵי וְהִנֵּה

[ER77], Genesis 28:12

5.3.1 The Jacob’s ladder: building co/reflections.

The above procedure to build the functors R,S depends on sev-
eral choices (we forget half of the fiber sequence S1qX → qX →
R1qX ) and it doesn’t seem independent from these choices, at
least at first sight.

The scope of this first subsection is to show that this apparent
asymmetry arises only because we are hiding half of the construc-
tion, taking into account only half of the fiber sequence (5.17).
Given an object X ∈D a dual argument yields another way to con-
struct a fiber sequence

S′X → X → R′X (5.21)

out of the recollement data, which is naturally isomorphic to the
former SX → X → RX .

We briefly sketch how this dualization process goes: starting
from the coreflection arrow ϵ1 : S1qX → qX , taking its mate
qLS1qX → X under the adjunction qL ⊣ q, and reasoning about
its cofiber we can build a diagram which is dual to the former
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one, and where every square is a pullout:

qLS1qX S′X X

0 iS0iRK K

0 R′X

//

��

//

�� ��
// //

�� ��

//

(5.22)

Proposition 5.3.1.
[
The Jacob’s ladder

]
: The two squares of the

previous constructions fit into a “ladder” induced by canonical iso-
morphisms SX ∼= S′X ,RX ∼= R′X ; the construction is functorial
in X . The “Jacob’s ladder” is the following diagram:

qLS1qX SX W X

0 iS0iRK C K

0 iR0iLW RX

0 qRR1qX

//

��

//

��

//

�� ��
// //

��

//

�� ��
// //

�� ��
//

(5.23)

Proof. It suffices to prove that both SX ,S′X lie in D≥0 and both
RX ,R′X lie in D≤0; given this, we can appeal (a suitable stable
∞-categorical version of) [BBD82, Prop. 1.1.9] which asserts the
functoriality of the truncation functors, i.e. that when the same
object X fits into two fiber sequences arising from the same normal
torsion theory, then there exist the desired isomorphisms.(5)

The procedure showing this is actually the same remarked in
5.2.25: we apply q, iL, iR to the diagram (5.22) and we exploit ex-
actness of the recollement functors to find pullout diagrams show-

(5)In a torsio-centric perspective, this follows from the uniqueness of the fac-
torization of a morphism with respect to the normal torsion theory having re-
flection R and coreflection S; see 1.3.1.
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ing that L ∈D<0 and J ∈D≥0.
Once these isomorphisms have been found, it remains only to

glue the two sub-diagrams

qLS1qX SX W X

0 iS0iRK C K

0 iR0iLW RX

0 qRR1qX

//

��

// //

// //

��

//

�� ��
// //

�� ��
//

qLS1qX S′X W X

0 iS0iRK C K

0 iR0iLW R′X

0 qRR1qX

//

�� ��

//

�� ��
//

��

//

�� ��

//

�� ��
//

to obtain the ladder. Now, this construction is obtained by taking
into account the fiber sequence S1qX → qX → R1qX as a whole,
and since this latter object is uniquely determined up to isomor-
phism, we obtain a diagram of endofunctors

qLS1q S ω 1

0 iS0iRκ γ κ

0 iR0iLω R

0 qRR1q

//

��

//

��

//

�� ��
// //

��

//

�� ��
// //

�� ��
//

(5.24)

where every square is a pullout (again giving to a category of
functors the obvious stable structure [Lur11, Prop. 1.1.3.1]), and
where we commuted in Greek alphabet the functorial depen-
dence of objects κ(X ) = K , γ(X ) = C, ω(X ) = W from the above
procedure. Notice also that this latter diagram of functors uses
homogeneously all the recollement functors, and that it is “sym-
metric” with respect to the antidiagonal (it switches left and right
adjoints, as well as reflections and coreflections).

The functors S,R are the co/truncations for the recollée t-struc-
ture, and the normality of the torsion theory is witnessed by the
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pullout subdiagram

SX W X

iS0iRK C K

0 iR0iLW RX .

⌟
//

��
//

��

//

�� ��
//

⌜

(5.25)

Notation 5.3.2. From now on, we will always refer to the diagram
above as “the Jacob ladder” of an object X ∈D, and/or to the di-
agram induced by a morphism f : X → Y between the ladder of
the domain and the codomain, i.e. to three-dimensional diagrams
like

qLS1qY SY WY Y

qLS1qX SX W X X

KY

0 iS0iRK X CX K X

RY

0 iR0iLW X RX

qRR1qY

0 qRR1qX

// // //

��

77pppppp
//

��

S f 99tttttt
//

��

99ssssss
//

�� ��

f
77oooooooooo

��

//

��

//

��

//

��

77oooooooo

��

// //

�� ��

R f 77oooooooo

//

77oooooo

(5.26)

5.3.2 The ntt of a recollement.

Throughout this subsection we outline the torsio-centric transla-
tion of the classical results recalled above. In particular we give
an explicit definition of the ∪|≡ operation when it has been “trans-
ported” to the set of normal torsion theories, independent from
its characterization in terms of the pairs aisle-coaisle of the two
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t-structures. From now on we assume given a recollement

D0 D D1.i //

iL
oo

iRoo

q //

qL
oo

qRoo

Given t-structures ti ∈ ts(Di), in view of our characterization the-
orem 3.1.1, there exist normal torsion theories Fi = (Ei,Mi) on
Di such that (Di

≥0,Di
<0) are the classes (0/Ei,Mi/0) of torsion and

torsion-free objects ofDi, for i = 0,1; an object X lies in (D0∪|≡D1)≥0

if and only if qX ∈ E1 and iL X ∈ E0
(6), and similarly an object Y

lies in D≤0 if and only if qY ∈M1 and iRY ∈M0.

Remark 5.3.3. The t-structure t = t0 ∪|≡ t1 on D must itself come
from a normal torsion theory which we denote F0 ∪|≡ F1 on D, so
that

(
(D0∪|≡D1)≥0, (D0∪|≡D1)<0

)= (
0/(E0∪|≡E1), (M0∪|≡M1)/0

)
; in other

words the following three conditions are equivalent for an object
X ∈D:

• X lies in (D0 ∪|≡ D1)≥0;
• X lies in E0 ∪|≡ E1, i.e. RX ∼= 0 in the notation of (5.25);
• {q, iL}(X ) ∈E, following Notation 5.2.17.

We now aim to a torsio-centric characterization of the classes
(E0 ∪|≡ E1,M0 ∪|≡ M1), relying on the factorization properties of
(Ei,Mi) alone: since we proved Thm. 5.2.19 above, there must
be a normal torsion theory F0 ∪|≡ F1 =

(
E0 ∪|≡ E1,M0 ∪|≡M1

)
inducing

t0 ∪|≡ t1 as
(
0/(E0 ∪|≡ E1), (M0 ∪|≡M1)/0

)
: in other words,

F0 ∪|≡ F1 is the (unique) normal torsion theory whose
torsion/torsionfree classes are

(
(D0∪|≡D1)≥0, (D0∪|≡D1)<0

)
of Thm. 5.2.19,

Clearly this is only an application of our “Rosetta stone” theorem
3.1.1, so in some sense this result is “tautological”. But there are

(6)Thanks to the Sator lemma we are allowed to use “X ∈K” as a shorthand
to denote that either the initial arrow

[ 0
↓
X

]
or the terminal arrow

[ X
↓
0

]
lie in a

3-for-2 class K⊂hom(C). From now on we will adopt this notation.
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at least two reasons to concentrate in “proving again” Thm. 5.2.19
from a torsio-centric perspective:

• The construction offered by the Rosetta stone is rather indi-
rect, and only appropriate to show formal statements about
the factorization system F(t) induced by a t-structure;

• In a stable setting, the torsio-centric point of view, using fac-
torization systems, is more primitive and more natural than
the classical one using 1-categorical arguments (i.e., t-struc-
tures t on the homotopy category of a stable D are induced
by normal torsion theories in D; in the quotient process one
loses important informations about t).

Both these reasons lead us to adopt a “constructive” point of view,
giving an explicit characterization of F0 ∪|≡ F1 which relies on prop-
erties of the factorization systems F0, F1 alone, independent from
triangulated categorical arguments.

In the following section we will discuss the structure and prop-
erties of the factorization system F0 ∪|≡ F1, concentrating on a self-
contained and categorically well motivated construction of the
classes E0∪|≡E1 andM0∪|≡M1 starting from an obvious ansatz which
follows Remark 5.3.3.

The discussion above, and in particular the fact that an initial/-
terminal arrow 0 ⇆ X lies in E0 ∪|≡ E1 if and only if {q, iL}(X ) ∈ E,
suggests that we define E0 ∪|≡ E1 =

{
f ∈ hom(D) | {q, iL}( f ) ∈E}

and
M0 ∪|≡ M1 = {

g ∈ hom(D) | {q, iR}(g) ∈M}
. Actually it turns out

that this guess is not far to be correct: the correct classes are indeed
given by the following:

Theorem 5.3.4. Let D be a stable ∞-category, in a recollement

(i, q) : D0 ←→←D←→←D1,

and let ti be a t-structure onDi. Then the recollée t-structure t0∪|≡ t1
is induced by the normal torsion theory (E0 ∪|≡ E1,M0 ∪|≡M1) with
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classes

E0 ∪|≡ E1 =
{
f ∈ hom(D) | {q, iLW}( f ) ∈E}

; (5.27)
M0 ∪|≡M1 =

{
g ∈hom(D) | {q, iRK}(g) ∈M}

. (5.28)

Proof. We only need to prove the statement for E0 ∪|≡ E1, since the
statement for M0 ∪|≡M1 is completely specular. Thanks to the dis-
cussion in section §5.2, an arrow f ∈hom(D) lies in E0 ∪|≡E1 if and
only if R f (as constructed in the Jacob ladder (5.26)) is an isomor-
phism in D, so we are left to prove that, given f ∈ hom(D):

R f isomorphism in D ⇔ {q, iLW}( f ) ∈E. (5.29)

Equivalently, we have to prove that

isomorphism R f ⇔ {R1q,R0iLW}( f ) are isomorphisms .
(5.30)

We begin by showing that if {R1q,R0iLW}( f ) are isomorphisms,
then also R f is an isomorphism. By the joint conservativity of
the recollement data (Lemma 5.2.16) we need to prove that if
{R1q,R0iLW}( f ) are isomorphisms, then both qR f and iLR f are
isomorphisms. Apply the functor q to the Jacob ladder (5.26), to
obtain

S1qY qSY qWY qY

S1qX qSX qW X qX

qKY

0 0 qCX qK X

qRY

0 0 qRX

R1qY

0 R1qX

∼ // ∼ // //

��

77ooo ∼ //

��

88qqq ∼ //

��

77ppp
//

�� ��

77oooooo

≀
��

∼ //

≀
��

//

≀
��

77ooo

≀
��

//

≀
��

77oooo

//

77ooo

(5.31)
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Hence qR f is an isomorphism, since it fits into the square

qRX qRY

R1qX R1qY .

//

≀
��

≀
��

∼ //

(5.32)

Now apply the functor iL to the Jacob ladder, obtaining

0 iLSY iLWY iLY

0 iLSX iLW X iL X

iLKY

0 S0iLK X iLCX iLK X

iLRY

0 R0iLW X iLRX

iLqRR1qY

0 iLqRR1qX

// // //

≀
��

//

@@���
//

≀
��

66mmmm
//

≀
��

55llll

¬
≀
��

44iiiiiiiiii

����

// //

��

//

����

­

����

44iiiiiiii

��

// //

��

44iiiiiiii

��
//

44iiii

(5.33)
As noticed above, R1qf is an isomorphism, so also iLqRR1qf is
an isomorphism. Then iLR f is an isomorphism by the five-lemma
applied to the morphism of fiber sequences

R0iLWY iLRY

R0iLW X iLRX

iLqRR1qY

0 iLqRR1qX
��

//

��
//

44iiiiiiii

44iiii

��

33hhhhhh

// (5.34)

Vice versa: assuming R f is an isomorphism in D, we want
to prove that {R1q,R0iLW}( f ) are isomorphisms. Diagram (5.31)
gives directly that R1qf is an isomorphism, since the square

qRX qRY

R1qX R1qY

∼ //

≀
��

≀
��

//

(5.35)
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is commutative. Then, from diagram (5.34) we see that, since both
iLqRR1qf and iLR f are isomorphisms, so is also R0iLW f .

Remark 5.3.5. From the sub-diagram

iL X iLY

iLK X iLKY

iLRX iLRY

¬

iL f
//

≀
��

≀
��

­

// //

���� ����

∼ //

(5.36)

of diagram (5.33) one deduces that if R f is an isomorphism, then
iL f ∈ E0, by the 3-for-2 closure property of E0. This mean that
{q, iLW}( f ) ∈ E implies that {q, iL}( f ) ∈ E. The converse implica-
tion has no reason to be true in general. However it is true for
terminal (or initial) morphisms. Namely, from the Rosetta stone
one has that X ∈E0∪|≡E1 if and only if X ∈ (D0∪|≡D1)≥0, and so if and
only if {q, iL}(X ) ∈ E. On the other hand, X ∈ E0 ∪|≡ E1 if and only
if {q, iLW}(X ) ∈ E. The fact that the condition {q, iL}(X ) ∈D≥0 is
equivalent to the condition {q, iLW}(X ) ∈D≥0 can actually be eas-
ily checked directly. Namely, if qX ∈D1

≥0, then qRR1qX = 0 and
so X =W X in this case. Specular considerations apply to the right
class M0 ∪|≡M1.

5.4 Properties of recollements.

“Do what thou wilt” shall be the whole of the Law.
The study of this Book is forbidden. It is wise to
destroy this copy after the first reading. Whosoever
disregards this does so at his own risk and peril.

Ankh-ef-en-Khonsu i

In this section we address associativity issues for the ∪|≡ opera-
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tion: it is a somewhat subtle topic, offering examples of several
non-trivial constructions even in the classical geometric case: it is
our opinion that in a stable setting the discussion can be clarified
by simple, well-known categorical properties.

We start proving a generalization of [Ban07, BBD82] where it
is stated that the gluing operation can be iterated in a preferential
way determined by a stratification of an ambient space X . This re-
sult hides in fact an associativity property for the gluing operation,
in a sense which our Thm. 5.4.2 below makes precise.

Suitably abstracted to a stable setting, a similar result holds
true, once we are given a Urizen compass (a certain shape of dia-
gram like in Def. 5.4.7, implying certain relations and compatibil-
ities between different recollements, which taken together ensure
associativity).

5.4.1 Geometric associativity of the gluing.
An exhaustive account for the theory of stratified spaces can be
found in [Pfl01, Ban07, Wei94]. Here, since we do not aim at
a comprehensive treatment, we restrict to a sketchy recap of the
basic definitions.

A stratified space of length n consists of a pair (X ,s) where

s : ∅=U−1 ⊂U0 ⊂ ·· · ⊂Un ⊂ X =Un+1 (5.37)

is a chain of closed subspaces of a space X , subject to various
technical assumptions which ensure that the homology theory we
want to attach to (X ,s) is “well-behaved” in some sense.

All along the following section, we will denote a pure stratum of
a stratified space (X ,s) the set-theoretical difference E i =Ui∖Ui−1.

Remark 5.4.1. The definition is intentionally kept somewhat
vague in various respects, first of all about the notion of “space”:
the definition of stratification can obviously be given in different
contexts (topological spaces, topological manifolds, pl-manifolds,
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…) according to the needs of the specific theory we want to build;
when the stratification s is clear from the context, we indulge to
harmless, obvious abuses of notation.

The associativity properties of ∪|≡ are deeply linked with the pres-
ence of a stratification on a space X , in the sense that a stratifica-
tion s is what we need to induce additional recollements “fitting
nicely” in the diagram of inclusions determined by s. These re-
collements define a unique t-structure t0 ∪|≡ · · · ∪|≡ tn, given ti on the
derived categories of the pure strata.

To motivate the shape and the strength of the abstract condi-
tions ensuring associativity of ∪|≡ , exposed in §5.4.2, and in partic-
ular the definition of a Urizen compass 5.4.7, we have to dig into
deep in the argument sketched in the geometric case in [BBD82,
2.1.2-3]: we start by recalling

Theorem 5.4.2. [Ban07, p. 158] Let (X ,s) be a stratified space,
{E0, . . . ,En} the set of its pure strata, and ti be a set of t-structures,
one on each D(E i), for i = 0, . . . ,n.

Then there exists a uniquely determined t-structure t0 ∪|≡ · · · ∪|≡ tn
onD(X ), obtained by an iterated gluing operation as the parenthe-
sization (· · · ((t0∪|≡ t1)∪|≡ t2)∪|≡ · · ·∪|≡ tn−1)∪|≡ tn. Following Notation 5.2.22
we will refer to the pair (D(X ),t0 ∪|≡ · · · ∪|≡ tn) as D(E0)∪|≡ · · · ∪|≡ D(En).

Proof. A stratification of X as in (5.37) induces a certain triangular
diagramGn of the following form, where all maps ik are inclusions
of the closed subspaces Uk of s, and all jk are inclusions of the pure
strata Ek: in the notation above we obtain

X

Un

. .
.

U1 . .
.

E0 E1 Gn En En+1.

??in
���
�

??in−1 ��

i1 ??����

i0 ??���
j0__???

jn−1

__?????????????????

jn

__?????????????????????????

(5.38)
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This diagram can clearly be defined inductively starting from n = 1
(the diagram of inclusions as in Example 5.2.5). Given this evident
recursive nature, it is sufficient to examine the case n = 2 of a stra-
tification U0 ⊂U1 ⊂ X , depicted as(7)

D(X )

D(U1)

D(E0) D(E1) D(E2)

q= j∗1

��
??

??
??

??
??

??
??

??a=i1,∗
??������

g= j∗0 ��
??

??
??f=i0,∗ ??������

(5.39)

to notice that the t-structure (t0∪|≡ t1)∪|≡ t2 obtained by iterated gluing
construction is

[(D(E0)∪|≡ D(E1))∪|≡ D(E2)]≥0 =
{

G ∈D(X )
∣∣∣∣ qG ∈D(E2)≥0,

aLG ∈ [D(E0)∪|≡ D(E1)]≥0

}

=
G ∈D(X )

∣∣∣∣∣∣
qG ∈D(E2)≥0,
g(aLG) ∈D(E1)≥0,
fL(aLG) ∈D(E0)≥0


(5.2.17)= {

G ∈D(X ) | {q, gaL, fLaL}(G) ∈D≥0
}

The inductive step simply adds another inclusion (and the obvious
maps between derived categories) to these data.

Remark 5.4.3. In the previous proof, in the case n = 2, we could
have noticed that two “hidden” recollement data, given by the in-
clusions

(E1 ,→ X ∖U0,E2 ,→ X ∖U0) and (E0 ,→ X , X ∖U0 ,→ X )

come into play: the refinement of the inclusions in the diagram
above induces an analogous refinement which passes to the de-

(7)Here and for the rest of the section, drawing large diagrams of stable ca-
tegories, we adopt the following shorthand: every edge h : E→ F is decorated
with an adjoint triple hL ⊣ h ⊣ hR : E←→←F.
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rived ∞-categories,

D(X )

D(U1) D(X ∖U0)

D(E0) D(E1) D(E2)

u
��
??

??
??

¬

a
??������

g ��
??

??
?? k

��
??

??
??f ??������ h

??������

(5.40)

of functors between derived∞-categories on the pure strata. These
data induce two additional recollements, (k,h) and (u,a◦ f ) which
we can use to define a different parenthesization t0 ∪|≡ (t1 ∪|≡ t2).

Remark 5.4.4. When all the recollements data in 5.40 are taken
into account, we obtain a graph

D(X )

D(U1) D(X ∖U0)

D(E0) D(E1) D(E2)

aL

fL

u

kg
hL

called the left-winged diagram associated with (5.40), and defined
by taking the left-most adjoint in the string (−)L ⊣ (−) ⊣ (−)R ,
when descending each left “leaf” of the tree represented in dia-
gram (5.40). In a completely similar fashion we can define the
right-winged diagram of (5.40). We refer to these diagrams as (l-
5.40) and (r-5.40) respectively.

It is now quite natural to speculate about some sort of compari-
son between the two recollements (t0∪|≡ t1)∪|≡ t2 and t0∪|≡ (t1∪|≡ t2): in fact
we can prove with little effort (once the phenomenon in study has
been properly clarified) that the two t-structures are equal, since
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the square
E1 X ∖U0

U1 X

//

�� ��
//

(5.41)

is a pullback (in a suitable category of spaces), and so there is a
“change of base” morphism u◦a ∼= h◦g which induces an invertible
2-cell g ◦aL ∼= hL ◦u filling the square ¬in diagram (5.40): this is
a particular instance of the so-called Beck-Chevalley condition for
a commutative square, which we now adapt to the ∞-categorical
setting.

Definition 5.4.5.
[
Beck-Chevalley condition

]
: Consider the

square

A B

C D

g

��

a //

aLoo

aR
oo

u

��

h //

hLoo

hR

oo

(5.42)

in a (∞,2)-category, filled by an invertible 2-cell θ : u◦a ∼= h◦g and
such that aL ⊣ a,hL ⊣ h; then the square is said to satisfy the left
Beck-Chevalley property (lbc for short) if the canonical 2-cell

θ̂ : hL ◦u
hLu∗η=⇒ hL ◦u◦a◦aL

hL∗θ∗aL=⇒ hL ◦h◦ g◦aL
ϵ∗gaL=⇒ g◦aL

(5.43)
is invertible as well. Similarly, when a ⊣ aR ,h ⊣ hR we define the
2-cell

θ̃ : g◦aR
η∗gaR=⇒ hR ◦h◦g◦aR

hR∗θ∗aR=⇒ hR ◦u◦a◦aR
hR u∗ϵ=⇒ hR ◦u

(5.44)
and we say that the square above is right Beck-Chevalley (rbc for
short) when it is invertible.

In light of this property enjoyed by diagram ¬in (5.40) it’s
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rather easy to show that the two left classes[(
D(E0)∪|≡ D(E1)

)
∪|≡ D(E2)

]
≥0 =

{
G ∈D(X ) | {ku, gaL, fLaL}(G) ∈D≥0

}[
D(E0)∪|≡

(
D(E1)∪|≡ D(E2)

)]
≥0 =

{
G ∈D(X ) | {ku,hLu, fLaL}(G) ∈D≥0

}
coincide up to a canonical isomorphism determined by the Beck-
Chevalley 2-cell in ¬of diagram (5.40).

As a result, both [(D(E0) ∪|≡ D(E1)) ∪|≡ D(E2)]≥0 and [D(E0) ∪|≡
(D(E1)∪|≡ D(E2))]≥0 define the torsion class of the same t-structure
(D012

≥0 ,D012
<0 ) on D(X ). The previous analysis gives that

Scholium 5.4.6. An object G ∈ D(X ) lies in D012
≥0 if and only if

p0G ∈ D(E0)≥0, p1G ∈ D(E1)≥0, p2G ∈ D(E2)≥0 where l i is any
choice of a functor D(X ) → D(E i) in the left-winged diagram of
(5.40).

It is now rather easy to repeat the same reasoning with arbi-
trarily long chains of strata: given a stratified space (X ,s) we can
induce the diagram

X

Un X ∖U0

Un−1 Un∖U0 X ∖U1

. .
.

. .
. . . . . . .

U0 U1∖U0 Un∖Un−1 X ∖Un

__

??
??

??
???

��
��
��
�

__

??
??

????

��
��
��

__

??
??

????

��
��
��

__

??
??

????

��
��
�??�����

__??????

??�������

??�������

__???????

__???????

(5.45)

where leaves correspond to pure strata of the stratification of X ,
and every square is a pullback of a proper map along an open em-
bedding, so that the Beck-Chevalley condition is automatically sat-
isfied (inclusions of closed subspaces are proper maps).

Obviously, diagram (5.45) induces a diagram D(5.45) between
the derived categories of the various nodes, and recollement
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data between some of these nodes; we can again define the left-
winged and right-winged version of D(5.45), which we will refer
as l-D(5.45) and r-D(5.45).

Grouping all these considerations we obtain that
(1) There exist “compatible” recollements to give associativity of

all the parenthesizations

(t0 ∪|≡ · · · ∪|≡ tn)P = (t0 ∪|≡ · · · ∪|≡ tn)Q (5.46)

for each P,Q in the set of all possible parenthesizations of
n symbols. This is precisely the sense in which, as hinted
above, geometric stratifications and recollement data “inter-
act nicely” to give canonical isomorphisms between (t0∪|≡ · · ·∪|≡
tn)P and (t0∪|≡ · · ·∪|≡ tn)Q, i.e. a canonical choice for associativity
constraints on the ∪|≡ operation.

(2) The following characterization for the class
(
D(E0) ∪|≡ · · · ∪|≡

D(En)
)
≥0 holds:

(
D(E0)∪|≡ · · · ∪|≡ D(En)

)
≥0 =

{
G | l i(G) ∈D(E i)≥0, ∀i = 0, . . . ,n

}
(5.47)

where l i is any choice of a functor D(X )→D(E i) in the left-
winged diagram l-D(5.45).
Similarly, the right class

(
D(E0)∪|≡ · · · ∪|≡ D(En)

)
<0 can be char-

acterized as the class of objects G such that r i(G) ∈D(E i)<0,
where r i is any choice of a functor D(X ) → D(E i) in the
right-winged diagram r-D(5.45).

5.4.2 Abstract associativity of the gluing.
The geometric case studied above gives us enough information to
make an ansatz for a general definition, telling us what we have to
generalize, and in which way.

In an abstract, stable setting we have the following definition,
which also generalizes, in some sense, 5.2.1.

Let n ≥ 2 be an integer, and let us denote as �i, j� the interval
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between i, j ∈ [n], i.e., set {k | i ≤ k ≤ j} ⊂ [n] = {0,1, . . . ,n} (we
implicitly assume i ≤ j and we denote �i, i� = {i} simply as i).

Definition 5.4.7.
[
Urizen compass(8)]: A Urizen compass of

length n is an arrangement of stable ∞-categories, labeled by
intervals I ⊆ [n], and functors in a diagram Gn of the form

D�0,n�
. .

. . . .

D�0,2� Gn D�n−2,n�

D�0,1� D�1,2� . .
.

D�n−1,n�

D0 D1 D2 . . . Dn

��
??

??
???�����

��
??

??
???�����

��
??

??
?

��
??

??
?

��
??

??
?

??�����

��
??

??
?

??�����

��
??

??
????�����

??�����

??�����

??�������

(5.48)

such that the following conditions hold:
• All the triples {DI ,DI∪· J ,DJ}, where I, J are contiguous in-

tervals,(9) form different recollements DI ←→←DI∪· J ←→←DJ .
• Every square

D�i, j� D�i, j+1�

D�i+1, j� D�i+1, j+1�

//

�� ��

//

(5.49)

is lbc and rbc in the sense of Definition 5.4.5.

Note that each row, starting from the base of the diagram, dis-
plays all possible intervals of length k. We can think of a Urizen

(8)In the complicated cosmogony of W. Blake, Urizen represents conventional
reason and law; it is often represented bearing the same compass of the Great Ar-
chitect of the Universe postulated by speculative Freemasonry; see for example
the painting The Ancient of Days, appearing on the frontispiece of the prophetic
book “Europe a Prophecy”.

(9)Two intervals I, J ⊆ [n] are called contiguous if they are disjoint and their
union I ∪ J is again an interval denoted I ∪· J.
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compass as a special kind of directed graph (more precisely, a spe-
cial kind of rooted oriented tree –a multitree if we stipulate that
each edge shortens a triple of adjunctions); the root of the tree is
the category D�0,...,n�; the leaves are the categories {D0, . . . ,Dn} (the
“generalized pure strata”).

Theorem 5.4.8.
[
The northern emisphere theorem(10)]: A

Urizen compass of length n induce canonical isomorphisms be-
tween the various parenthesizations of t0 ∪|≡ · · · ∪|≡ tn, giving associa-
tivity of the glue operation between t-structures.

Rephrasing the above result in a more operative perspective,
whenever we have a n-tuple {(Di,ti)}i=0,...,n of stable ∞-catego-
ries with t-structure, such that {D0, . . . ,Dn} are the leaves of a
Urizen compass of length n, then the gluing operation between
t-structures gives a unique (up to canonical isomorphism) “glued”
t-structure on the root D�0,n� of the scheme, resulting as

(
D0 ∪|≡ · · · ∪|≡ Dn)

≥0 =
{

X ∈D�0,n� | l i(X ) ∈Di
≥0, ∀i = 0, . . . ,n

}
(
D0 ∪|≡ · · · ∪|≡ Dn)

<0 =
{

X ∈D�0,n� | r i(X ) ∈Di
<0, ∀i = 0, . . . ,n

}
(5.50)

where l i is any choice of a path from the root D�0,n� to the ith leaf
in the left-winged diagram of Gn, and r i is any choice of a path
from the root D�0,n� to the ith leaf in the right-winged diagram of
Gn.

(10)In the languages spoken in the northern hemisphere of Tlön, “la célula pri-
mordial no es el verbo, sino el adjetivo monosilábico. El sustantivo se forma
por acumulación de adjetivos. No se dice luna: se dice aéreo-claro sobre oscuro-
redondo o anaranjado-tenue-del cielo o cualquier otra agregación. […] Hay ob-
jetos compuestos de dos términos, uno de carácter visual y otro auditivo: el
color del naciente y el remoto grito de un pájaro. Los hay de muchos: el sol
y el agua contra el pecho del nadador, el vago rosa trémulo que se ve con los
ojos cerrados, la sensación de quien se deja llevar por un río y también por el
sueño. Esos objetos de segundo grado pueden combinarse con otros; el proceso,
mediante ciertas abreviaturas, es prácticamente infinito. Hay poemas famosos
compuestos de una sola enorme palabra.” ([Bor44])
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5.4.3 Gluing J-families.
Our 4.1.20 above shows that the set ts(D) of t-structures on a sta-
ble ∞-category D carries a natural action of the ordered group of
integers. This entails that the most natural notion of a “family”
of t-structures is a equivariant J-family of t-structures, namely an
equivariant map J → ts(D) from another Z-poset J.

The formalism of equivariant families allows to unify several
constructions in the classical theory of t-structures: in particular

The semiorthogonal decompositions of [BO95, Kuz11]
are described as precisely those J-families t : J → ts(D)
taking values on fixed points of the Z-action; these are
equivalently characterized as

• the stable t-structures, where the torsion and tor-
sionfree classes are themselves stable ∞-catego-
ries;

• the equivariant J-families where J has the trivial
action.

And again

The datum of a single t-structure t : {∗} → ts(D) is
equivalent to the datum of a whole Z-orbit of t-struc-
tures, namely an equivariant map Z→ ts(D).

In light of these remarks, given a recollement (i, q) : D0 ←→←D←→←D1

it is natural to define the gluing of two J-families

ts(D0) J ts(D1)
t0oo

t1 // (5.51)

to be the J-family t0 ∪|≡ t1 : J → ts(D) : j 7→ t0( j)∪|≡ t1( j).
It is now quite natural to ask how does the gluing operation in-

teract with the two situations above: is the gluing of two J-families
again a J-family? As we are going to show, the answer to this ques-
tion is: yes. Indeed, it’s easy to see that the gluing operation is
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an equivariant map, by recalling that (E0 ∪|≡ E1)[1] = { f ∈ hom(D) |
f [−1] ∈E0 ∪|≡E1}, and that all of the functors q, iL, iR preserves the
pullouts (and so commute with the shift). We have

(E0 ∪|≡ E1)[1]= { f ∈hom(D) | {q, iL}( f [−1]) ∈E}

= { f ∈hom(D) | q( f [−1]) ∈E1, iL( f [−1]) ∈E0}

= { f ∈hom(D) | q( f )[−1] ∈E1, iL( f )[−1] ∈E0}

= { f ∈hom(D) | q( f ) ∈E1[1], iL( f ) ∈E0[1]}

=E0[1]∪|≡ E1[1].

Given this, it is obvious that given two semiorthogonal decom-
positions ti : J → ts(Di) on D0,D1, the J-family t0 ∪|≡ t1 is again a
semiorthogonal decomposition on D (the trivial action on J re-
mains the same; it is also possible to prove directly that if E0,E1

are left parts of two exact normal torsion theories F0,F1 on D0,D1,
then the gluing E0 ∪|≡ E1 is the left part of the exact normal torsion
theory F0 ∪|≡ F1 on D). In some sense at the other side is the gluing
of two Z-orbits t0,t1 : Z→ ts(C) on D0 and D1. Namely, the glued
t-structure t0 ∪|≡ t1 on D is the Z-orbit (t0 ∪|≡ t1)[k]= t0[k]∪|≡ t1[k].

The important point here is that this construction can be
framed in the more general context of perversity data associated to
a recollement, which we now discuss in the attempt to generalize
at least part of the classical theory of “perverse sheaves” to the
abstract, ∞-categorical and torsio-centric setting.

Definition 5.4.9.
[
Perversity datum

]
: Let p : {0,1} → Z be any

function, called a perversity datum; suppose that a recollement

(i, q) : D0 ←→←D←→←D1

is given, and that t0,t1 are t-structures on D0,D1 respectively. We
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define the (p-)perverted t-structures on D0,D1 as

pt0 = t0[p(0)]= (D0
≥p(0),D

0
<p(0))

pt1 = t1[p(1)]= (D1
≥p(1),D

1
<p(1))

Definition 5.4.10.
[
Perverse objects

]
: Let p be a perversity da-

tum, in the notation above; the (p-)glued t-structure is the t-struc-
ture p(t0 ∪|≡ t1) = pt0 ∪|≡ pt1. The heart of the p-perverted t-structure
on D is called the (∞-)category of (p-)perverse objects of D.

Notice that saying “the category of p-perverse objects of D” is
an abuse of notation: this category indeed does not depend only
on D and p, but on all of the recollement data and on the t-struc-
tures t0 and t1. Also notice how for a constant perversity datum
p(0) = p(1) = k, the p-perverted t-structure is nothing but the t-
structure t0 ∪|≡ t1 shifted by k.

We can extend the former discussion to the gluing of a whole
n-tuple of t-structures, using a Urizen compass:

Remark 5.4.11. In the case of a Urizen compass of dimension n
(diagram 5.48), whose leaves are the categories {D0, . . . ,Dn}, each
endowed with a t-structure ti; a perversity function p : {0, . . . ,n}→
Z defines a perverted t-structure

p(t0 ∪|≡ · · · ∪|≡ tn)= t0[p(0)]∪|≡ t1[p(1)]∪|≡ · · · ∪|≡ tn[p(n)] (5.52)

which is well-defined in any parenthesization thanks to the struc-
ture defining the Urizen compass. This result immediately gener-
alizes to the case of a Urizen compass of J-families of t-structures,
ti : J → ts(Di), with i = 0, . . . ,n. Indeed perversity data act on J-
equivariant families of t-structures by

pti( j)= ti( j)[p(i)]= (Di
≥ j+p(i),D

i
< j+p(i)), (5.53)

where on the right we have adopted Notation 4.1.21. This way, a
J-perversity datum p : {0, . . . ,n}→Z induces a p-perverted t-struc-
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ture

p(t0 ∪|≡ · · · ∪|≡ tn)= pt0 ∪|≡ · · · ∪|≡ ptn : J → ts(D�0,n�) (5.54)

on D�0,n�.

Remark 5.4.12.
[
Gluing of slicings.

]
: Recall that a slicing on a

stable ∞-category D consists on a R-family of t-structures t : R→
ts(D), where R is endowed with the usual total order. This means
that we are given t-structures tλ = (D≥λ,D<λ), one for each λ ∈
R, such that tλ+1 = tλ[1]. Slicings on D are part of the abstract
definition of a t-stability on a triangulated (or stable) category D,
see [Bri07, GKR04].

Grouping together all the above remarks, we obtain that the
gluing of two slicings ti : R→ ts(Di) gives a slicing onD every time
D0 ←→← D ←→← D1 is a recollement on D. Moreover, if p : {0,1} → Z is
a perversity datum, we have a corresponding notion of p-perverted
slicing on D. More generally one has a notion of p-perverted slic-
ing on D�0,n� induced by a pervesity datum p and by and by a
Urizen compass of slicings Gn.
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Chapter 6

Operations on t-structures

In this chapter we collect several examples of operations on the
set of t-structures on a fixed ∞-category C, and functions between
classes of t-structures on different categories.

From a formal point of view, this amounts to a study of closure
properties of the ∞-category whose objects are categories with t-
structure, (C,tC). These objects will be called t-structured categories
and they will be collected in the ∞-category Catst. There is an
obvious forgetful functor U : Catt →Catst, which has adjoints on
both sides; again from a formal point of view, some of the results
below amount to a(n easy) series of verification to prove that U
has some nice properties.

As it has been observed along Ch. 4 the poset ts(C) of t-struc-
tures on C has a fairly rich structure: it is a partially ordered set,
with a canonical action of the group of integers given by the shift
functor (see A.3.11); it is often the case that nice properties on C
turn ts(C) into a nicer poset: as we will see in §6.3, the class ts(Sp)
of t-structures on the ∞-category of spectra becomes a monoid un-
der the operation described therein.

Among the most natural operations on categories there is their
product: it is easy to show that given stable ∞-categories C,D the
product C×D is again stable;(1) from a torsio-centric perspective,

(1)There are at least two ways to prove this; directly, or appealing [Lur11,



6.1. Basic constructions. 142

it is then natural to give the following

Definition 6.0.1. [product t-structure
]
: Given stable ∞-cate-

gories C,D the product t-structure tC× tD on the product category
C×D is defined to be the product (defined in 1.5.7) of the fac-
torization systems F(tC)×F(tD) (the notation is the same of Thm.
3.1.1).

6.1 Basic constructions.
Definition 6.1.1.

[
induced t-structure

]
: Let B⊆C be a stable

sub-∞-category; let 0/E|B = 0/E∩B,M/0|B =M/0∩B considered
as full subcategories; then if the truncation and cotruncation func-
tors SC,RC restrict to functors B → 0/E|B,M/0|B the category B
inherits a t-structure called the restricted or induced t-structure t|B.

The proof is straightforward as restricting the co/truncation
functors is a sufficient condition to ensure the existence of t|B.
Note that in principle this is a weaker condition than having an
induced normal torsion theory on B, but that the latter stronger
condition is the most natural to expect in concrete situations, as
the following example shows.

Example 6.1.2. Let F : (C,tC) → (D,tD) be a t-exact functor (Def.
A.3.10); the fiber of F is defined by the pullback square (taken in
the (∞,2)-category of stable ∞-categories)

fib(F) C

0 D.

F⌟ (6.1)

In other words, fib(F) is the full subcategory on all those X ∈ C
such that F X ∼= 0. The fiber of F inherits the induced t-structure,
1.1.4.2].
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given that the factor (Def. 1.2.21) of the F(tC)-factorization of a
morphism in fib(F) lies again in fib(F).

Definition 6.1.3.
[
co-induced t-structure

]
: The Verdier quo-

tient C/B of C by a (non necessarily thick) sub-∞-category B is
defined to be the universal functor out of C sending objects B to
zero (or, equivalently, formally inverting those morphisms whose
cofiber is in B).

In the stable setting, the quotient C/B is again a stable ∞-cate-
gory.(2)

Under suitable assumptions, the quotient C/B acquires a t-
structure defined by [Lur11, Prop. 1.4.4.11]: in the same notation
as above, suppose B,C are presentable and i : B → C is a fully
faithful inclusion. Suppose t ∈ ts(C) is a presentable t-structure.

The quotient functor q : C→ C/B generates the left class of a
t-structure (q(C≥0), q(C≥0)⊥) on C/B by [Lur11, Prop. 1.4.4.11].

Remark 6.1.4. Here we offer a counterexample [Ant] showing
that there are cases where this procedure can’t induce a t-structure
on the quotient: suppose that there is an exact and fully faithful
inclusion B→C of categories with t-structure.

From this we deduce an exact functor between hearts B♡ →C♡

on hearts; notice that B♡ is a so-called weak Serre subcategory of
C♡ (it is closed under extensions, kernels, and cokernels). In order
for there to be a t-structure on C/B such that q : C→C/B is exact,
B♡ must be Serre, i.e. also closed under subobjects.

A concrete case where this doesn’t happen is as follows.
Suppose that R is a coherent commutative ring. This means
that every finitely generated ideal of R is finitely presented,
and it has the consequence that the category of finitely pre-
sented R-modules is abelian. Let’s call this category Coh(R)
and view it as a full subcategory of Mod(R). We can consider

(2)It is the main aim of [] to show that this quotient operation enjoys the
universal property of the cofiber lim−−→(0 ← B→C) in the (∞-)category of stable
∞-categories.
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Db
Coh(R)(Mod(R)) ⊆ Db(Mod(R)), where the category consists of

bounded complexes of R-modules with homology modules in
Coh(R). There are clearly bounded t-structures on these. How-
ever, if R is not noetherian, then the heart of the first, namely
Coh(R), will not be Serre inside the heart of the second, namely
Mod(R).

6.2 The poset of t-structures.
Studying the order-theoretic properties of the set ts(C) should be
a natural step towards the classification of t-structures on C.

It is natural, then, to ask whether ts(C) admits finite joins and
meets: a natural way to define these operations on t1 = (C(1)

≥0,C(1)
<0)

and t2 = (C(2)
≥0,C(2)

<0) intersects respectively the aisle and the coaisle,
setting

t1∩ t2 =
(
C(1)

≥0∩C(2)
≥0, perp.

)
(6.2)

t1∪ t2 =
(
perp.′,C(1)

<0 ∩C(2)
<0

)
(6.3)

where perp. is a shorthand for
(
C(1)

≥0∩C(2)
≥0

)⊥, and perp.′ is a short-
hand for ⊥(

C(1)
<0∩C(2)

<0
)
. These are called the naïve join and naïve

meet respectively.
It is often the case, however, that the naïve join and meet op-

erations in ts(C) do not coincide with the “abstract” operations
on the same set, definable via universal properties: [Bon13, §1.2]
gives an example where the intersection C(1)

≥0 ∩C(2)
≥0, seen as a sub-

category of C, can’t be coreflective.
Because of this, ts(C) seems to be rather poorly-behaved from

the order-theoretic point of view. In fact, it is also possible to show
that binary meet and join, when defined, do not distribute one
over the other.

It is however possible to give conditions on t1,t2 ensuring that
the expected operation exist and behave nicely: this is the main
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aim of [Bon13], which we now follow closely: the final aim is to
show that ts(C) is a set with consistencies (or a conset for short), i.e.
a partially ordered set where the domain of definition for joins
and meets is determined by “consistency conditions” on the ar-
guments, and where “partial distributivity laws” ([Bon13, §2.1])
hold.

Obviously, we state the consistency conditions for two t-struc-
tures on C in terms of the corresponding normal torsion theories.

Definition 6.2.1.
[
Upper and lower consistency

]
: Let F1,F2

be two normal torsion theories on the stable ∞-category C (Fi =
(Ei,Mi)), and let (Si,Ri) be the pair coreflection/reflection of Fi.
Then F1,F2 are lower consistent (resp., upper consistent) if S1(0/E2)⊆
0/E2 (resp., R2(M1/0)⊆M1/0).

“Being upper/lower consistent” are symmetric binary relations
on the set ts(C) denoted respectively ·⋎ and ·⋏. Two normal tor-
sion theories F1,F2 which are both lower and upper consistent are
simply called consistent and this relation is denoted F1⋎⋏F2.

Proposition 6.2.2. Let t1,t2 be a lower consistent pair of t-struc-
tures on C. Then the naive intersection (6.2) is the meet t1 ∧ t2;
dually, let t1,t2 be upper consistent. Then the naive union (6.3) is
the join t1∨ t2.

Remark 6.2.3. It is easy to show that if t0 ⪯ t1 then t0⋎⋏t1, and the
join/meet of the two is t1/t0.

Remark 6.2.4. [Bon13, Prop. 5, 6] prove that lower or upper con-
sistency is a sufficient condition ensuring that the intersection or
union of t-structures exists: given a n-tuple {t1, . . . ,tn} of t-struc-
tures

• if ti ·⋏t j for each i < j, then the naïve intersection t1∩·· ·∩ tn
is well-defined (it coincides with the abstract one) and asso-
ciative;

• if ti
·⋎t j for each i < j, then the naïve union t1∪·· ·∪tn is well-

defined (it coincides with the abstract one) and associative.
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Consistency conditions on t-structures also ensure that the meet
and join distribute over each other:

• if t1 ·⋎t2, t1 ·⋎t3, and t2 ·⋏t3 then t1 ·⋎(t2∩ t3);
• if t1 ·⋏t3, t2 ·⋏t3, and t1 ·⋎t2 then (t1 ∪ t2) ·⋏t3.

The structure so determined is a set with consistencies, defined
in [Bon13, §2.1].

6.3 Tensor product of t-structures.

All God’s children are not beautiful. Most
of God’s children are, in fact, barely
presentable.

F. Leibowitz

Let C,D be two presentable ∞-categories ([Lur09, Ch. 5]);
then, for each presentable ∞-category A we consider the category
Bil(C,D;A) of functors F : C×D → A such that each restriction
F(−,D) and F(C,−) is cocontinuous. These functors are called
blinear.

It turns out ([Gro10, Lur11, Lur16]) that the functor A 7→
Bil(C,D;A) functor is representable for each pair of categoriesC,D
and represented by an object C⊗D called the tensor product of the
two presentable ∞-categories C,D (the analogy with the tensor
product of vector spaces is evident).

Although we are only interested in the case where the cate-
gories involved are stable (and then their tensor product is again
stable), this conditions plays no rôle in the proof of

Lemma 6.3.1. The ∞-category C⊗D such that

Bil(C,D;A)∼=QCat(C⊗D,A) (6.4)

is equivalent to QCat(Cop,D)R , the sub-∞-category of functors
F : Cop →D which commutes with limits.
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Proof. It is a long and formal argument based on universal prop-
erties.

Proposition 6.3.2. If C,D are stable and presentable, the category
C⊗D is stable and presentable as well, and for each stable pre-
sentable A we have that C⊗D∼=QCat(Cop,D)R .

Proof. A slick proof that QCat(Cop,D)R is presentable is in
[Gro10, p. 68]; showing that this category is also stable is a
matter of unwinding definitions, or follows from our Lemma
4.4.1.

A natural question arises: does the tensor operation lifts from
Catst to Catt? In other words, given t-structures tC and tD on ca-
tegories C,D, how can we endow C⊗D with a t-structure tC⊗ tD
such that the following reasonable properties are satisfied?

• The operation (tC,tD) 7→ tC⊗ tD is “associative”, namely the
two t-structures (t0⊗t1)⊗t2 and t0⊗(t1⊗t2) correspond each
other via the equivalence C0 ⊗ (C1 ⊗C2) ∼= (C0 ⊗C1)⊗C2,
and “commutative”, namely the t-structures t0⊗t1 and t1⊗t0
correspond each other via the equivalence C0 ⊗C1

∼= C1 ⊗
C0; moreover, ⊗ : ts(C0)⊗ts(C1)→ ts(C0⊗C1) is compatible
with shifts, in the sense that

t0[n]⊗ t0[m]= (t0⊗ t1)[n+m] (6.5)

for each n,m ∈Z.
• The canonical t-structure tSp on the category Sp of spectra

is the unit for this monoidal composition, namely tSp⊗ t ∈
ts(Sp⊗C) and t⊗tSp ∈ ts(C⊗Sp) both correspond to t ∈ ts(C)
under the equivalence Sp⊗C∼=C∼=C⊗Sp;

• Tensoring with a fixed t ∈ ts(Sp) gives an endofunction t⊗tC
of ts(C), when composed with the equivalence ts(Sp⊗C)∼=
ts(C); more precisely, there is an action (?) ts(Sp)×ts(C) →
ts(C), that becomes a monoid operation when C= Sp.
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It turns out that this problem has a natural reformulation in terms
of normal torsion theories, as it is rather easy to use the presentabil-
ity of the categories involved to invoke the small object argument
and produce a factorization system on C⊗D. In particular, we
rephrase the question in the following form:

Given two normal torsion theories FC and FD on two
presentable, stable ∞-categories C,D, define a new
normal torsion theory FC⊗ FD on C⊗D, having the
“nice” properties above.

To solve this problem, consider first of all the explicit formula in
Lemma 6.3.1 which defines C⊗D: as always, solving this universal
problem gives a unique mapC×D→C⊗D, which is the unique bi-
linear functor corresponding to 1C⊗D; this will be called the canon-
ical tensor

⊗ : C×D→C⊗D (6.6)

This problem can be divided in several steps: first of all we want
to induce a factorization system on C⊗D starting from factori-
zation systems on the factors C,D. Next we want to see that this
induced factorization system still has all the good features enjoyed
by FC and FD; the canonical tensor, together with its domain and
codomain, plays an essential rôle here (notice that, again, stability
is not a necessary condition, but only the most important case of
interest for the present discussion):

• Consider the product of categories C×D and the product
t-structure FC×FD (Def. 6.0.1) on this category; by 1.3.9 the
left class E×E′ of this factorization system uniquely deter-
mines M×M′ as its right orthogonal, so we will consider
only E×E′ in the following to simplify the discussion.

• Consider the image E⊗E′ of E×E′ via the canonical tensor
⊗; this, as a class of morphisms in C⊗D has a right orthog-
onal (E⊗E′)⊥;

• The small object argument ([Joy] or [DS95]) applied to the
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class E⊗E′ entails that the pair

(L,R)= (
s(E⊗E′), (E⊗E′)⊥

)
(6.7)

where s(−) is the saturation operator defined in 1.4.1, forms
a factorization system on C⊗D.

6.4 Tilting of t-structures.

Quando si vuole uccidere un uomo
bisogna colpirlo al cuore, e un Winchester
è l’arma più adatta.

Ramón Rojo

Let us first recall (Def. 4.3.7) that an abelian ∞-category is a ∞-
category with biproducts, kernels and cokernels, and image-facto-
rization which is in addition homotopically discrete.

It is not surprising that the language of abelian ∞-categories
is rich enough to interpret the notion of normal torsion theory:(3)

to be more precise, we can define a (normal) torsion theory on
an abelian ∞-category A in a similar fashion of Def. 2.3.9, paying
attention to the fact that the stable setting endows the definition
with several useful autodualities (like 2.3.16) false in the abelian
setting.

Start with the following example: let C=D(A) be the derived
∞-category of an abelian category A; it is interesting to ask which
(factorization functors of) normal torsion theories tC on D(A) fac-
tor through A=D(A)♡ ⊂D(A); this means that

(1) we have (mild) co/completeness conditions on A (i.e. the ex-
istence in A of the co/limits involved in 2.3.17);

(3)This is the context where historically torsion theories were introduced
[Dic66]; in some sense, stable categories are ontologically more primitive since
“all” abelian categories arise as hearts of suitable t-structures.
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(2) the reflection R and coreflection S of tC factor as follows:

C♡ S|C♡
//

Ŝ $$

0/E

0/E∩C♡

::uuuuuuuuu

C♡ R|C♡
//

R̂ $$

M/0

M/0∩C♡

99ssssssssss

(6.8)
This informal definition is needed to cope with a torsio-centric
reformulation of tilting theory. Our aim here is not to delve into
the details of such an intricate and vast topic, but only to skim the
surface of it: indeed, at the level of generality we are interested
in, tilting of a t-structure t is a device to produce another t-struc-
ture out of t and a (normal) torsion theory on the heart C♡,t; the
t-structure on C are acted by (normal) torsion theories on their
hearts.

Definition 6.4.1. Let C be a stable ∞-category, F = (E,M) a nor-
mal torsion theory on C and T= (X,Y) a (normal?) torsion theory
on the heart C♡,t. We define the two classes

E 6 X= { f ∈hom(C) | f ∈E[−1], ht( f ) ∈X}

M 6 Y= {g ∈hom(C) | g ∈M[1], ht(g) ∈Y}, (4) (6.9)

where ht : C→C♡,t is the canonical functor of projection to the
heart. These two classes define a new normal torsion theory t 6 T

on C, called the tilting of t by T.

Remark 6.4.2. The idea behind the definition of tilting is to have
a way to factor morphisms “until the upper half-plane”, and below
the horizontal line Y = 1;(5) specifying a (normal) torsion theory
on C♡,t amounts to specifying a factorization on the objects of the
strip [0,1).

(4)The symbol 6 (pron. retort) reminds the alchemical token for an alembic;
here the term hints to the double meaning of the word retort.

(5)The Y axis is oriented downwards: see Figure 6.1 below.
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Proposition 6.4.3. Let T be a (normal) torsion theory on C♡,t,
and let S another (normal) torsion theory on C♡,t 6 T. Now, the
tilting operation “behaves like an action”, namely

• (t 6 T) 6 S= t 6 (T⋆S), for an operation ⋆ between (normal)
torsion theories on the heart;

• t 6 Tt = t, if Tt is the factorization system induced by t on its
heart.

Definition 6.4.4.
[
Compatible t-structures

]
: Let F,F′ be two

t-structures on the stable ∞-category C; then F′ is compatible with
F (or F-compatible) if the F′-factorization of every object X ∈ C♡,t

belongs again to C♡,t.

In view of the definition of the heart functor ht : C→C♡,t as
X 7→ R1S0X , and since an object A ∈C lies in C♡,t if and only if
htA ∼= A, we have that F′ is F-compatible if and only if its coreflec-
tion/reflection pair (S′,R′) is such that

R1S0S′ = S′; R1S0R′ = R′. (6.10)

Remark 6.4.5. Let J be a Z-poset and t : J → ts(C) a J-slicing on
C; let ȷ̄ a specified element of J and t ȷ̄ = (E ȷ̄ ,M ȷ̄ ) its image under
t; then, every t j such that t ȷ̄+1 ⪯ t j ⪯ t ȷ̄ is t ȷ̄ -compatible.

Proposition 6.4.6. Given F,F′ compatible t-structures on C, F′ in-
duces a normal torsion theory on the heart C♡,t, denoted F′|t, and
F 6 (F′|t)= F′.

Proposition 6.4.7. There is a bijective correspondence between
tiltings of F by (normal) torsion theories on C♡,t and F-compatible
normal torsion theories on C.

The situation is best depicted in the following picture giving
the factorization rule; in view of Remark 1.4.8, this also yields or-
thogonality of the two classes so determined.
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Y
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C

f

Figure 6.1: Tilting factorization of f .

Even if the result can also be obtained from a direct argument,
as a consequence of the following general fact about ternary FS:

Lemma 6.4.8.
[
Tilting of factorizations

]
: Let t : Z → ts(C)

be a Z-family of normal torsion theories on a stable ∞-category C,
having values ti = (Ei,Mi) for i ∈ Z (here, we will only consider
the values t0,t1 = t0[1]); let (L,R) be a torsion theory on the heart
C♡ = C[0,1) such that E1 ⊆ L ⊆ E0 (equivalently, M0 ⊆ R ⊆M1).
Then, the factorization (e 6 ,m 6 )

X A B Y

S

e1 e0·m1 m0

l r

e 6 m 6

(6.11)

of a morphism f : X → Y in C, obtained from the synergy of the
ternary factorization induced by t0 ⪯ t1 (see 1.5.11), plus the (L,R)-
factorization of its middle part A → B ∈E0∩M1, defines a factori-
zation system on C, called the tilting of t (confused with its 0-value
t0, in view of Remark 4.1.17) by (L,R), and denoted t 6 (L,R).

Proof. We have to show that the rule outlined above constitutes a
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factorization system; the stretagy is to summon [KT93, Thm. A]
again (see the proof of the “Rosetta stone” 3.1.1); there is, however,
also a direct proof of this fact, appealing the “#” notation of 1.3.5:
it’s easy to see that (in the notation of the statement) E1 ⊥R #M0

and L⊥R #M0. Now, this allows to conclude since given a lifting
problem

X A

Y B

Z C

u

r

m0

e1

l

v

x

y

z (6.12)

the arrows x, y, z obtained respectively as composition v◦ l, and as
solutions to suitable lifting problems, give the desired orthogonal-
ity.

6.5 Algebras for a monad

In the present section we sketch a general method to induce a t-
structure on the stable ∞-category of algebras for a monad T on
a stable C. Apart from some locally-defined new conventions, the
same notation of the rest of the text applies here.

Lemma 6.5.1. Let F = (E,M) be a factorization system on C and
T a monad on C that preserves the marking E of F, i.e. such that
TE ⊂ E; then there is a factorization system (E′,M′) = U←(F) on
CT (the em category of algebras for the monad T) defined by E′ =
U←(E),M′ =U←(M).

Proposition 6.5.2. If C is a stable ∞-category and T : C → C a
monad on C which preserves finite colimits, then the category CT

of T-algebras is again stable.
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Proposition 6.5.3.
[
t-structure on T-algebras

]
: Given a t-

structure t on C, whose normal torsion theory is F = (E,M), the
procedure above defines a t-structure on the category of T-algebras
CT , for T a E-preserving finitely cocontinuous monad on C.

Proof. To show that U←(F) is a normal torsion theory we have to
show that

(1) F′ is bireflective, i.e. both E′,M′ are 3-for-2 classes;
(2) F′ is normal i.e. one of the equivalent conditions blabla is

satisfied.
The preimage of a 3-for-2 class under any functor is again 3-for-2.
This proves the first item. Normality follows from the assump-
tions in the following form:

the arrow (K X ,k) → 0 lies in E′, for each (X , x) ∈CT ,
if we take (K X ,k) to be the fiber

K X (X , x)

0 (RX , r)

(6.13)

of (X , x)→ (RX , r) (the reflection associated to F).

Application: let C be stable and monoidal; any internal
monoid M in C induces a monad −⊗M; unders suitable assump-
tions, the category of M-objects (algebras for −⊗ M) inherits a
t-structure.



Chapter 7

Stability Conditions

7.1 Introduction

The cleanest cut is the one you withhold

?

The notion of Bridgeland stability(1) comes from theoretical
Physics, and was proposed by T. Bridgeland in order to better
understand a construction in String Theory, the so-called Π-tabil-
ity of [Dou02, Dou01]; Bridgeland showed that this notion has a
natural interpretation in the language of triangulated categories
(the idea of identifying objects of the derived category of sheaves
on a space with physical D-branes dates back to the work of Moore
and Harvey [HM98]).

The main result exposed in [Bri07, Bri09] is that the set of all
stability conditions on a given triangulated category T can be nat-
urally endowed with a topology, induced by a generalized metric.
This allows one to define interesting geometric structures out from
a triangulated category.

(1)There is an unavoidable clash of notation leading us to refer to stability
conditions with words that allude to a connection between (geometric) stabil-
ity and the abstract notion of stability for a category. We underline here that
nothing, in the following discussion, is written to purport this analogy.



7.1. Introduction 156

Up to now, a great effort has been put (sometimes, unfortu-
nately, to no avail), into explicitly describing the spaces of stabil-
ity conditions attached to derived categories of certain algebraic
varieties, and to study some of their geometric properties; at the
moment of writing, a general theory of these spaces is missing(2)

The main aim of the present note is to re-enact the classical
theory of [Bri07] in the frame of stable ∞-categories. In this re-
spect, this is one of the important chapter of the present thesis,
as it constitutes one of the main application of the language initi-
ated by the “Rosetta stone” theorem 3.1.1. Nevertheless, we only
concentrate on a single piece of the rather vast theory of stabil-
ity conditions on categories, limiting us to show that given two
“close enough” stability functions Z and W and a slicing J com-
patible with Z then there exist a slicing compatible with W , close
enough to J. A more detailed recovering of other major results
about the space of stability conditions will be hopefully discussed
in a forthcoming article [FL16]. Although our proof will closely
follow the original argument by Bridgeland, there are a few points
where the use of the language developed in the previous chapters
of this thesis allow us to give a somehow more neat treatment.

Bridgeland’s theory exploits some peculiar(3) properties of in-

(2)See [Bri09], where the author says:

there is some yet-to-be discovered construction that will allow
one to define interesting geometric structures on these spaces.
[…] the agreement between spaces of stability conditions and
moduli spaces of conformal field theories is impressive enough
to suggest that stability conditions do indeed capture some part
of the mathematics of string theory. My own feeling is that at
some point in the near future the notion of a stability condition
will be subsumed into some more satisfactory framework.

The present chapter is a –clumsy or not, the reader will decide– first step towards
this more satisfactory framework.

(3)Peculiar to the standard topological structure of the set of real numbers,
but not fully essential: see [GKR04] for an enlightening “formal theory of sta-
bility functions”, which has been a constant source of inspiration for the present
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creasing families of t-structures on a triangulated category C, in-
dexed by the set of real numbers, i.e. monotonic Z-equivariant
functions R→ ts(C); we paved the way for this definition in our
Ch. 4.

These collections are called (R-slicings in the stable setting; an
extremely remarkable result, hidden in Bridgeland’s original for-
mulation and made clear by the torsio-entric perspective, is the
folloiwng:

simple topological properties of R (completeness as
a metric space, properties of the standard euclidean
topology and of the topology of lower convergence
generated by the base {[a,b) | a,b ∈ Q}…) reflect into
categorical properties of slicings

A deeper analysis of this phenomenon occupies §7.2.

Notation 7.1.1. We follow a number of blanket assumptions all
along the chapter: C is, as always, a stable ∞-category, and t is a
t-structure on C; we often demand that C is cocomplete, and t

is left, right or two-sided complete. If J : R → ts(C) is a slicing,
we define Ht = C[t,t+1); the collection {Ht} is called the heart of
the slicing. The set of slicings J : R→ fs(C) is denoted 切R(C)(4).
The real line has to be thought as a time-axis, in such a way that a
slicing consists of “a collection of cuttings at prescribed time”; the
value of the slicing J at time λ, J(λ) = (C≥λ,C<λ), will be often
called the slice at time λ, or the λ-slice of J. One has the inclusion
C≥λ0 ⊆

∩
λ<λ0 C≥λ. A slicing will be called continuous at λ0 if∩

λ>λ0

C≥λ =C≥λ0 . (7.1)

It will be called continuous if it is continuous at λ0 for everyλ0 ∈R.

chapter.
(4)The Japanese verb 切る (“kiru”, to cut) contains the radical 切, the same of

katana.
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We also set
C≤λ0 =

∩
λ>λ0

C<λ. (7.2)

Notice that if λ0 < λ1, then C≤λ0 ∩C≥λ1 = {0} since, by definition
of C≤λ0 , we have C≤λ0 ⊆C<λ1 . Finally, for λ0 ≤λ1 we set

C[λ0,λ1] =C≥λ0 ∩C≤λ1 . (7.3)

Also, as a shorthand notation, we write Cλ =C[λ,λ] for any λ ∈R.

Definition 7.1.2. Let C0 be a full subcategory of an stable ∞-
category C, and let X be an object of C0. If we have a pullout
diagram

Xs X

0 Xq

(7.4)

in C with Xs and Xq in C0, then we say that Xs is a subobject of X
and that Xq is a quotient of X (relative to C0).

Definition 7.1.3. A full subcategory C0 of a stable ∞-category C
is called of finite length (or simply finite) if for each object A ∈C0

there is no infinite ascending chain of subobjects of A (equiva-
lently, there is no infinite descending chain of quotients of A).

7.2 Slicings

疾く斬るって...剣はそんな小さなものかね

Kamīzumi Nobutsuna

Let J : R→ fs(C) be a continuous slicing.
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Definition 7.2.1.
[
Suprema and infima

]
: For any object A of C

we set

sup(A)= inf{λ ∈R : A ∈C<λ};

inf(A)= sup{λ ∈R : A ∈C≥λ}

with the convention sup(0)=−∞ and inf(0)=+∞ (if C is left/right
complete, [Lur11, Def. 1.2.1.19], the zero object is the only object
whose sup and inf are not finite).

Remark 7.2.2. It follows directly from the definition that A ∈C≥µ
implies inf(A) ≥ µ and A ∈C<µ implies sup(A) ≤ µ. In particular,
if A ∈C[a,b) =C≥a ∩C<b then a ≤ inf(A) and sup(A)≤ b.

Definition 7.2.3. A continuous slicing J will be called regular if
for any nonzero object A in C[a,b) one has sup(A)< b.

Unless otherwise stated, all slicing considered in the following
will be regular.

Lemma 7.2.4. If inf(A) > µ then A ∈C≥µ and if sup(A) < µ then
A ∈ C<µ. In particular, it follows that for any A ̸= 0 one has
inf(A)≤ sup(A) and A ∈C[inf(A),sup(A)].

Proof. If inf(A) > µ there exists λµ > µ such that A ∈ C≥λµ
. Since

λµ > µ, one immediatley gets A ∈ C≥µ. The proof for sup(A) is
analogous. It follows from this that A ∈ ∩

µ<inf(A)C≥µ = C≥inf(A)
and A ∈ ∩

µ>sup(A)C<µ = C≤sup(A). If A ̸= 0 this gives C≥inf(A) ∩
C≤sup(A) ̸= {0} and so inf(A)≤ sup(A) and A ∈C[inf(A),sup(A)].

This proves that for a regular slicing the two inequalities a ≤
inf(A) and sup(A)< b for a nonzero object A inC[a,b) form a chain:

Corollary 7.2.5. Let J be a regular slicing and let A ∈C[a,b) be a
nonzero object. Then a ≤ inf(A)≤ sup(A)< b.

An important result links together the contractibility of map-
ping spaces C(X ,Y ) and suitable inequalities between infima and
suprema of co/domains of these maps.
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Lemma 7.2.6. If inf(X )> sup(Y ) then C(X ,Y )= {0}.

Proof. Let t ∈ R be such that sup(Y ) < t < inf(X ). Then X ∈ C≥t

and Y ∈C<t, by Lemma 7.2.4; the object/orthogonality of classes
in the slice at time t allows to conclude.

The situation is depicted as follows: there is a “natural direc-
tion” in which nonzero morphisms of (C, J) go: if inf(X ) is greater
than sup(Y ), then Y only receives zero morphisms from X .

inf(X )

sup(Y )

Figure 7.1: Lemma 7.2.6.

By opposition, the above Lemma gives the following.

Lemma 7.2.7. Let f : X → Y be a nonzero morphism in C. Then
inf(X )≤ sup(Y ).

Remark 7.2.8. Lemma 7.2.7 provides an additional proof of the
fact that for a nonzero object A in C one has inf(A) ≤ sup(A). In-
deed, if A is nonzero, then idA : A → A is a nonzero morphism.

Lemma 7.2.9. Let A be an object in C and let µ < sup(A). Then
there exists a nonzero morphism f : Aµ → A with inf(Aµ) ≥ µ.
Similarly, if µ > inf(A) then there exists a nonzero morphism
f : A → Aµ with sup(Aµ)≤µ.
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Proof. Since µ < sup(A), we have µ ∉ {λ ∈ R : A ∈C<λ} and so A ∉
C<µ =C⊥

≥µ, and so there exists Aµ ∈C≥µ and a nonzero morphism
f : Aµ → A. Since A ∈C≥µ, we have inf(A) ≥ µ by Remark 7.2.2.
The proof of the second part of the statement is analogous.

Definition 7.2.10.
[
Thin subcategory

]
: The subcategoriesC[a,b)

of a slicing show an extremely peculiar behaviour when [a,b) is a
“sufficiently small” interval: we call every such C[a,b) a thin subcat-
egory, having in mind [Bri07, Def. 7.2]; alternatively, we will call
C[a,b) the [a,b)-endocardium of the slicing J(the reason for this
quaint choice of notation is explained in §7.4).

Lemma 7.2.11. Let
A B

0 C

⌟⌜ (7.5)

be a fiber sequence in C with A,B and C in C[a,b) with b−a ≤ 1.
Then sup(A)≤ sup(B) and inf(B)≤ inf(C).

Proof. We only prove sup(A)≤ sup(B) , the other proof being spe-
cular. Assume sup(A)> sup(B). Then there exists µ with sup(A)>
µ > sup(B) and so by Lemma 7.2.9 there exists a nonzero mor-
phism f : Aµ → A, with inf(Aµ) ≥ µ > sup(B). By Lemma 7.2.6,
the composition Aµ

f−→ A → B is zero, and so (by the universal pro-
perty and the 3-for-2 property of pullbacks) the morphism f fac-
tors through C[−1]. Since the composition f : Aµ → C[−1]→ A is
nonzero, so is the morphism Aµ → C[−1], and so by Lemma 7.2.7
sup(B) < inf(Aµ) ≤ sup(C[−1]) = sup(C)−1. This gives |sup(B)−
sup(C)| > 1. On the other hand, since B,C ∈ C[a,b), by Corol-
lary 7.2.5, both sup(B) and sup(C) lie in the interval [a,b] and so
|sup(B)− sup(C)| ≤ |a−b| ≤ 1.
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Remark 7.2.12. Lemma 7.2.11 in particular implies that, if b−a ≤
1 and

A B

0 C

⌟⌜ (7.6)

is a fiber sequence with vertices in C[a,b) and with B ∈ C[ã,b̃), for
some a ≤ ã < b̃ ≤ b, then A ∈C[a,b̃) and C ∈C[ã,b).

We also record a direct proof of this fact, independent from
7.2.11. Since (C<b̃,C≥b̃) is a t-structure on C, we have a pullout
diagram

0 A≥b̃ A

0 A<b̃

0

e b̃ mb̃

mb̃

(7.7)

with A≥b̃ in C≥b̃ and A<b̃ in C<b̃. Since a ≤ b̃, we have Eb̃ ⊆ Ea

and so A → A<b̃ is in Ea. Since A ∈ C[a,b) ⊆ C≥a, the terminal
morphism A → 0 is in Ea. So, by the 3-for-2 property of Ea also
A<b̃ → 0 is in Ea, i.e., A<b̃ ∈C≥a. Therefore A<b̃ ∈C[a,b̃); we will
write A<b̃ = A[a,b̃) to emphasize this fact. Similarly we have A≥b̃ ∈
C[b̃,b) and we write A≥b̃ = A[b̃,b).
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Consider now the pasting of pullout diagrams

C[−1] 0

A[b̃,b) A B

0 A[a,b̃) K

0 C

(7.8)

Since A[b̃,b) is in C[b̃,b) and B ∈C[ã,b̃), the morphism A[b̃,b) → A →
B is the zero morphism and so A[b̃,b) → A factors through C[−1].
But C[−1] ∈C[a−1,b−1) and b−1≤ a < b̃, so that C(A[b̃,b),C[−1])=
0. This implies that A[b̃,b) → A is the zero morphism, and so
A[b̃,b) = 0 and A = A[a,b̃). The proof for C is specular.

Remark 7.2.13. If X ∈C[0,1) ∖C{0}, then there is a nonzero mor-
phism Yε → X for some ε > 0 and Ȳ ∈ C[ε,1). Indeed, it is im-
mediate to notice that if X ∈ C[0,1) ∖C0, then there exists an 0 <
ε < 1 such that X ∉ C[0,ε), so X ∉ C⊥

[ε,+∞) = C<ε, hence it receives
a nonzero morphism Yε → X from an object Yε ∈ C[ε,+∞); now
F1-factor this morphism:

Yε
e1−→ Ȳ m1−−→ X ; (7.9)

the object Ȳ now lies in C[ε,1).

7.2.1 A topology on slicings
In [Bri07] the author defines a generalized metric (and hence a
topology) on the set Stab(D) of stability conditions on the triangu-
lated category D; now, we show that this definition corresponds,
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in the torsio-centric approach, to a generalized metric (and hence
a topology) on the set of slicings.

7.2.1.1 A metric on 切R(C)

Definition 7.2.14. Let I and J two slicings on C and denote
by (CI

<t,CI
≥t) and (CJ

<t,CJ
≥t) the corresponding families of t-struc-

tures. We set

d(I, J)= inf{ε> 0 |CI
<t ⊆CJ

<t+ε and CI
≥t ⊆CJ

≥t−ε any for t ∈R}.
(7.10)

This defines a function

d : 切R(C)×切R(C)→ [0,+∞] (7.11)

Remark 7.2.15. One can equivalently define d as

d(I, J)= inf{ε> 0 |CJ
≥t ⊆CI

≥t−ε and CI
≥t ⊆CJ

≥t−ε any for t ∈R}.
(7.12)

Namely, the condition CI
<t ⊆ CJ

<t+ε is equivalent to CI,⊥
≥t ⊆ CJ,⊥

≥t+ε
and so to CJ

≥t+ε ⊆ CI
≥t. Since this has to hold for every t, this is

equivalent to CJ
≥t ⊆CI

≥t−ε.

We split the proof that the function d is a metric on 切R(C) in
lemmas 7.2.16, 7.2.18, 7.2.19 below.

Lemma 7.2.16. The function d is symmetric.

Proof. Manifest from the expression for d given in Remark 7.2.15.

Lemma 7.2.17. If d(I, J) is finite, then CI
≥t ⊆CJ

≥t−d(I,J) and CJ
≥t ⊆

CI
≥t−d(I,J), for any t ∈R.

Proof. Let t0 ∈R. By definition of d and by Remark 7.2.15, for any
ε > 0 there exists δ with d(I, J) ≤ δ < d(I, J)+ ε such that CJ

≥t ⊆
CI

≥t−δ and CI
≥t ⊆ CJ

≥t−δ for any t ∈ R. In particular this implies
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CJ
≥t0

⊆CI
≥t0−d(I,J)−ε and CI

≥t0
⊆CJ

≥t0−d(I,J)−ε. Since this holds for
any ε > 0, we get CJ

≥t0
⊆CI

≥t0−d(I,J) and CI
≥t0

⊆CJ
≥t0−d(I,J). Since

t0 was arbitrary, this concludes the proof.

Lemma 7.2.18. One has d(I, J)= 0 if and only if I = J.

Proof. Clearly, if I = J then d(I, J) = 0. Conversely, assume
d(I, J) = 0. Then, by Lemma 7.2.17, we get CJ

≥t ⊆ CI
≥t and

CI
≥t ⊆CJ

≥t, i.e., CI
≥t =CJ

≥t, for any t ∈R.

Lemma 7.2.19. The function d satisfies the triangular inequality,
i.e., for any three slicings I, J,K one has

d(I,K)≤ d(I, J)+d(J,K) (7.13)

Proof. If either d(I, J) or d(J,K) are infinite then there is noth-
ing to prove. Assume then that both d(I, J) and d(J,K) are fi-
nite. By Lemma 7.2.17, for any t ∈ R we have CI

≥t ⊆ CJ
≥t−d(I,J) ⊆

CK
≥t−d(I,J)−d(J,K) and CK

≥t ⊆CJ
≥t−d(J,K) ⊆CI

≥t−d(J,K)−d(I,J).

Definition 7.2.20. Let ε> 0 a real number and J : R→ fs(C) be a
slicing; we define

Uε(J)= {
J̃ : R→ fs(C) | ∃δ> 0 : (∀t ∈R)Et+ε ⊆ Ẽt+δ ⊆ Ẽt−δ ⊆Et−ε

}
(7.14)

where Eλ is the left class of J(λ), and similarly Ẽλ is the left class
of J̃(λ) for each λ ∈R.

Proposition 7.2.21. The set U = {Uε(J) | ε> 0, J ∈切R(C)} forms
a basis for a topology τU on 切R(C).

Proof. As always, we have to prove that
(1) The family U forms a covering of 切R(C);
(2) every nonempty intersection Uα(J1)∩Uβ(J2) containing J

contains also a basis element containing J.
The first point is obvious, as every J ∈切R(C) lies in Uε(J) for ε> 0.
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Now, if J ∈ Uα(J1)∩Uβ(J2) for J1, J2 ∈ 切R(C) and α,β > 0,
then we have inequalities

E1
t−α ⊇Et−δ1 ⊇Et+δ1 ⊇E1

t+α
E2

t−β ⊇Et−δ2 ⊇Et+δ2 ⊇E2
t+β

for suitable δ1,δ2 > 0; it is enough to choose γ > 0 such that the
inequalities

Et+δ1 ⊆Et+γ ⊆Et−δ1 and Et+δ2 ⊆Et+γ ⊆Et−δ2 (7.15)

both hold: once this choice has been made, every other J̃ ∈Uγ(J)
satisfies Et+γ ⊆ Ẽt+δ ⊆ Ẽt−δ ⊆Et−γ and hence belongs to Uα(J1)∩
Uβ(J2). Any γ<min{δ1,δ2} does the job.

Proposition 7.2.22. The topology τU on 切R(C) is induced by the
metric of Definition 7.2.14.

Proof. A slicing J̃ belongs to the radius ϵ/2 open ball centered at
J if and only if

inf{δ> 0 |CJ̃
≥t ⊆CJ

≥t−δ and CJ
≥t ⊆CJ̃

≥t−δ any for t ∈R}< ϵ/2,
(7.16)

i.e., if and only if

inf{δ> 0 | Ẽt ⊆Et−δ and Et ⊆ Ẽt−δ any for t ∈R}< ϵ/2, (7.17)

and so if and only if there exists a δ > 0 with δ < ε/2 such that
Ẽt ⊆ Et−δ and Et ⊆ Ẽt−δ for all t ∈ R. Since t is arbitrary, this is
equivalent to Ẽt−δ ⊆ Et−2δ and Et+2δ ⊆ Ẽt+δ for all t ∈ R. Since
2δ< ε we have

Et+ε ⊆Et+2δ ⊆ Ẽt+δ ⊆ Ẽt−δ ⊆Et−2δ ⊆Et−ε, (7.18)

so J̃ ∈ Uε(J). In other words, Bε/2(J) ⊆ Uε(J). Vice versa, if J̃ ∈
Uε(J) then there exists δ0 > 0 such that Et+ε ⊆ Ẽt+δ0 ⊆ Ẽt−δ0 ⊆
Et−ε. Since for every δ with 0 < δ < δ0 we have Et+δ0 ⊆ Ẽt+δ ⊆
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Ẽt−δ ⊆ Et−δ0 , we see that for every 0 < δ < δ0 we have Et+ε ⊆
Ẽt+δ ⊆ Ẽt−δ ⊆ Et−ε. This gives Ẽt ⊆ Et−ε+δ and Et ⊆ Ẽt−ε+δ and
so d(J, J̃) ≤ ε+ δ for every 0 < δ < δ0. In particular, we have
d(J, J̃)< 2ϵ, i.e., Uε(J)⊆ B2ε(J).

7.3 Stability conditions

MANCA!

Notation 7.3.1.
[
Cones and half planes

]
: We adopt the fol-

lowing shorthand to denote certain subsets of the complex plane
which we will extensively use from now on:

• Given an interval [a,b)⊆R, we denote by K[a,b) ⊆C the cone

K[a,b) = {z ∈C | z = ρeπiθ with ρ ∈R≥0 and θ ∈ [a,b)}. (7.19)

We also adopt all variants like K[a,b],K(a,b],K(a,b), all in the
obvious meaning.

• Whenever b− a = π, we call the cone Ha := K[a,a+π) a half
plane of slope a; the half plane of slope 0 will be called the
standard half plane and denoted H .

Definition 7.3.2. LetC be a stable∞-category. A stability condition
on C is a pair σ= (Z, J), where:
sc1) J : R→ ts(C) is a slicing on C;
sc2) Z : C→C is a functor(5) which factors through the Grothendieck

(5)The set C is seen as the small groupoid having the set C as set of objects and
exactly one arrow between any two objects; because of this, Z is determined by
a function C0 →C.
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group of C, i.e., for every fiber sequence

A B

0 C

⌟⌜ (7.20)

in C, one has Z(A)−Z(B)+Z(C)= 0 (this property is called
additivity for Z);

sc3) Z is compatible with the slicing, i.e. for any a < b in R one has
Z(C[a,b))⊆ K[a,b).

sc4) Z is nondegenerate on the hearts, i.e. for any t ∈ R one has
Z(X ) ̸= 0 for any nonzero object of Ht.

The functor Z is often regarded as a mere function, and called a
stability function on C.

It follows immediately from sc2 and sc3 that

Remark 7.3.3. The complex number Z(A) only depends on the
equivalence class of A. Moreover, Z(A[±1]) = −Z(A), so that
Z(A[2])= Z(A) for any object A in C.

Remark 7.3.4. One has Z(Ca)⊆ K{a}, i.e. Z(X )= ρ(X )eiπa for any
nonzero object X in Ca.

Definition 7.3.5.
[
Bridgeland subcategory

]
: Let C be a stable

∞-category and Z : C→ C a stability function on C; a Bridgeland
subcategory is a full extension closed subcategory B⊆C such that

(1) The image of the stability function Z|B : B→C is contained
in a half-plane Ha;

(2) Each morphism f : X → Y in B admits a factorization X →
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Z →Y such that there are pullout diagrams

Z′ X Z Y

0 Z 0 Z′′

(7.21)

namely, the object Z is at the same time a subobject of Y and
a quotient of X .

Definition 7.3.6.
[
Bridgeland cover

]
: A Bridgeland cover B =

{Bλ}λ∈Λ is a family of Bridgeland subcategories Bλ whose exten-
sion closure 〈∪Bλ〉 equals the whole C.

Definition 7.3.7. A stable ∞-category C is said to be locally finite
with respect to a Bridgeland cover B if the subcategories Bλ are of
finite lenght in the sense of Definition 7.1.3.

We are going to show in the following section that, given a sta-
bility condition (J, Z) on the stable ∞-category C, the collection
{C[a,b)}a≤b≤a+1 is a Bridgeland cover of C.

7.4 Hearts and endocardia

MANCA!

By Thm. 4.3.9, every categoryHλ =C[λ,λ+1) is abelian; this sub-
category is the λ-heart, i.e. the heart of the slice at time λ.

We now want to extend the validity of this result to thin (Def.
7.2.10) subcategoriesC[a,b), by showing (in Thm. 7.4.1 below) that
all these C[a,b) are abelian ∞-categories in the sense of Def. 4.3.7.

Theorem 7.4.1.
[
Abelianity of endocardia

]
: Every [a,b)-

endocardium is an abelian ∞-category; it is, in particular, a
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category with kernel and cokernel functors, respectively ker[a,b)

and coker[a,b), and this kernels and cokernels fit into pullback and
pushout diagrams

ker[a,b) X X 0

0 Y Y coker[a,b)

f f⌟ ⌜ (7.22)

for each f : X →Y . There is, moreover, a canonical isomorphism

coker[a,b)

[
ker[a,b)( f )

↓
X

]
ker[a,b)

[
Y
↓

coker[a,b)( f )

]
≃ (7.23)

whose domain and codomain are called the coimage and image of
f respectively.

Proof. We re-draw the diagram constructed in 4.3.9, and reproduce
the argument therein: refer to (7.25) below, where f : X → Z →
Y , F = fib( f ),C = cofib( f ) are the fiber and cofiber of f , and we
refer to ker[a,b)( f ) = SaF and coker[a,b)( f ) = RbC as the objects
emerging from the ternary factorizations

0 // SbF // SaF // F
C // RbC // RaC // 0

(7.24)

obtained from the normal torsion theories Fa ⪯ Fb. Now, notice
that by definition ker[a,b)( f ) ∈ Ea and coker[a,b)( f ) ∈Mb, hence
the two objects belong to the [a,b)-endocardium if and only if
ker[a,b)( f ) ∈ Mb and coker[a,b)( f ) ∈ Ea. But this easily follows
from the fact that X ,Y ∈ C[a,b) = Ea ∩Mb and from the closure
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properties of each Eλ,Mλ: we are in the following situation,

ker[a,b)( f ) F X 0

0 RbC[−1] Z SaF[1] 0

0 Y C coker[a,b)( f )

ma mb eamb

ea[1]

mb

ea[1]

ea

mb[−1] mb ea ea[1]

mb

ea

mb[−1]

eamb ea

ea

mb f

ζ

(7.25)
and hence, by the closure properties of Mb and Ea, we conclude.

To conclude the proof we must show that ker[a,b)( f ) and
coker[a,b)( f ) indeed have the desired universal properties of kernel
and cokernel, namely that in each endocardium the diagrams

ker[a,b)( f ) X 0

0 Y coker[a,b)( f )

⌟
⌜f (7.26)

are, respectively a pullback and a pushout. This, together with the
fact that in every [a,b)-endocardium there is a canonical isomor-
phism coim( f )→ im( f ), follows from a slight modification of the
argument given in Lemma 4.3.16, 4.3.18 and Prop. 4.3.19 in Ch.
4.

Again, it remains to show that in every [a,b)-endocardium
there is a canonical isomorphism coim( f ) → im( f ); again, this
follows adapting the proof of 4.3.9 in a similar way.

Proposition 7.4.2. Let J ∈切R(C) be a slicing on a stable ∞-cate-
gory C. Then any [a,b)-endocardium of J is a Bridgeland subcat-
egory.

Proof. Conditions (1) and (2) of Def. 7.3.5 are rather immediate:
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(1) It is obvious since Z(C[a,b)) is contained in an half-plane by
property (sc3) of Def. 7.3.2.

(2) It is a direct consequence of Thm. 7.4.1, since the object Z
in the pullout (ζ) does the job.

So we are left to prove that each C[a,b) is an extension closed sub-
category; in fact, more is true, since each [a,b)-endocardium is also
closed under subobjects and quotients.

To see this, consider the diagram

0 A B

0 C 0

eamb mb

ea

eamb

eamb

eamb

(7.27)

the assumption that A,C ∈ C[a,b), together with stability of
Ea,Mb under composition and pushout/pullback entails that
also B ∈ C[a,b). If now B,C ∈ C[a,b) in the same diagram,
the fact that A ∉ C[a,b) would contradict Lemma 7.2.11, since
A ∈ C[a,a+1) ∖C[a,b) = C[b,a+1) entails b ≤ sup(A) < a+ 1, but it
must be sup(A)≤ sup(B)< b.

In a similar way, if A,B ∈ C[a,b), if C ∈ C[b−1,a) = C[b−1,b) ∖
C[a,b), then inf(C) < a, whereas Lemma 7.2.11 entails that a ≤
inf(B)≤ inf(C).

Remark 7.4.3. The [a,b)-endocardia clearly cover the whole of C.
This is true both with a,b ranging among all pairs of real num-
bers with a < b, and with the constraint a < b ≤ a+ 1, or even
with a narrower constraint like a < b ≤ a+ ε for some ε > 0. In
other words [a,b)-endocardia are a Bridgeland cover in the sense
of definition 7.3.6.

Definition 7.4.4. A slicing J is called locally finite if C can be
covered by finite lenght endocardia. Equivalently, this means that
C is locally finite with respect to a suitable Bridgeland cover of
endocardia in the sense of Definition 7.3.7.
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In what follows, unless otherwise stated, we will assume that
the slicings are locally finite.

7.5 Deformation of stability conditions

MANCA!

Let σ= (Z, J) be a stability condition on C.

Notation 7.5.1. We call an object E ∈C∖{0} J-thin (or simply thin)
if it is contained in some [a,b)-endocardium C[a,b). We denote by
C≍ the full subcategory of C on J-thin objects.

Notation 7.5.2. Let ||−||σ be the norm on additive functions C→
C, defined by

||U ||σ = sup
t∈R

(
sup

E∈Ct∖{0}

{ |U(E)|
|Z(E)|

)}
(7.28)

Lemma 7.5.3. There exists a unique collection of functions

φ[a,b) : C[a,b)∖ {0}→ [a,b), (7.29)

with (a,b) ranging in the set of all pairs of real numbers with a <
b < a+1, such that

• Z(E)= ρ(E) eiπφ[a,b)(E) for every E in C[a,b)∖ {0};
• if a ≤ a′ < b′ ≤ b, then φ[a,b)

∣∣
C[a′,b′)∖{0} =φ[a′,b′);

• if t ∈ [a,b), then φ[a,b)
∣∣
Ct∖{0} ≡ t.

• φ[a+1,b+1)(E[1])=φ[a,b)(E)+1.

Proof. Since Z(C[a,b)) ⊆ K[a,b) and Z(E) ̸= 0 for E ̸= 0, for every
E in C[a,b) ∖ {0} there is a well defined argument of Z(E) with
arg(Z(E)) ∈ [a,b). Defining φ[a,b) as arg(Z(E)) satisfies all the con-
ditions in the statement of the Lemma. Uniqueness is obvious.
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Corollary 7.5.4. There exists a unique function

φ : C≍ →R (7.30)

such that φ
∣∣
C[a,b)∖{0} =φ[a,b) for every a < b < a+1.

Proof. By uniqueness of the argument of Z(E) in a given interval,
if X is an object both in C[a,b) and in C[a′,b′) (and so also an object
in C[max{a,a′},min{b,b′})) we have

φ[a,b)(X )=φ[max{a,a′},min{b,b′})(X )=φ[a′,b′)(X ). (7.31)

So the “local” functions φ[a,b) glue together into a sigle “global”
function φ.

Definition 7.5.5. The function φ whose existence and uniqueness
has been shown in the previous corollary will be called the Z-phase
of J-thin objects of C.

Notice that the Z-phase φ satisfies φ(E[1])=φ(E)+1 for every
nonzero object E of C.

We now come to the main aim of the present section, which is
to show that every additive function W in a suitably small neigh-
borhood of a fixed Z, is in fact another stability function linked
to a “slightly modified” slicing and forming a deformed stability
condition (J(W),W) (Def. 7.3.2).

Definition/Proposition 7.5.6.
[
prestability functions pre-

serve cones
]
: Let W : C → C an additive function (Def. 7.3.2)

such that ||Z−W ||σ ≤ sinε, where 0≤ ε≪π/2: these functions are
the prestability functions around Z. Then, for every a < b in R one
has

W(C[a,b)∖ {0})⊆ K[a−ε,b+ε) (7.32)

Proof. This is immediate by the inequality

|W(E)−Z(E)| ≤ sinε |Z(E)| (7.33)
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for every nonzero E with E ∈Ct with t ∈ [a,b).

Remark 7.5.7. The main result exposed in this section can be re-
sumed as “every sufficiently near prestability function around Z is
in fact a stability function and it is part of a single stability con-
dition (J(W),W) around (J, Z)” (The “fundamental deformation
theorem” 7.5.25).

As an immediate consequence we get:

Corollary 7.5.8. Let W : C→ C an additive function (Def. 7.3.2)
such that ||Z −W ||σ ≤ sinε, with 0 ≤ ε < 1/4. Then there exists a
unique collection of functions

ψ[a,b) : C[a,b)∖ {0}→R (7.34)

with (a,b) ranging in all pairs of real numbers with a < b < a+1,
such that

• W(E)= ρ(E) eiπψ[a,b)(E) per ogni E in C[a,b)∖ {0};
• se a < a′ < b′ < b, allora ψ[a,b)

∣∣
C[a′,b′)∖{0} =ψ[a′,b′);

• per ogni E in C[a,b)∖ {0} vale |ψ(E)−φ(E)| < ε.
• ψ[a+1,b+1)(E[1])=ψ[a,b)(E)+1.

Moreover, there exists a unique function

ψ : C≍ →R (7.35)

such that
ψ

∣∣
C[a,b)∖{0} =ψ[a,b) (7.36)

for every a < b < a+1.

Notation 7.5.9. All throughout what follows, C will be a stable
∞-category, J : R→ ts(C) will be a fixed slicing on C, and ε will be
a suitably small real number; the general assumption is that ε≪ 1,
but in some special cases we will be able to give sharp estimates.
We will also denote by Z,W two stability functions, and byϕ andψ

the phase functions of Z and W , respectively. We will also assume
that |φ−ψ| < ε/2.
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Definition 7.5.10.
[
ε-envelopes

]
: Let [a,b) be an interval with

a < b < a+ ε ≪ a+1, and let [α,β) be an thin interval (see Def.
7.5.1) containing [a,b). We say that [α,β) ε-envelopes [a,b) if [a−
ε,b+ε)⊆ [α,β); notice that [α,β) ε-envelopes [a,b) if, and only if,
[a,b)⊆ [α+ε,β−ε). We denote this situation by “[a,b)⊆ε [α,β)”.

Remark 7.5.11. Notice that the set ε-env(a,b) of all intervals
ε-enveloping a fixed [a,b) is a directed poset: if [α,β), [α′,β′) ∈
ε-env(a,b) then

[
α∨α′,β∧β′) ∈ ε-env(a,b) is contained in both

intervals.

Definition 7.5.12.
[
W -semistable objects in a thin interval

]
:

Under the assumptions of Notation 7.5.9 we say that a nonzero
object E ∈C is W -semistable in C[a,b) if

• E ∈C[a,b);
• For each nontrivial fiber sequence A → E → B in C[α,β),

where [α,β) ∈ env(a,b), we have

ψ(A)≤ψ(E). (7.37)

Definition 7.5.13. If an object E inC[a,b) is not W -semistable, then
there exists a nontrivial fiber sequence A → E → B in C[α,β) with
[α,β) ∈ env(a,b) and ψ(A) >ψ(E). Such a fiber sequence will be
called a destabilizing sequence for E on [α,β).

Proposition 7.5.14. Assume C[α,β) is of finite lenght. Then an
object E in C[a,b) which is not W -semistable has a W -semistable
quotient in C[α,β). Moreover we can choose the W -phase of the
semistable quotient to be minimal.

Proof. If E is not W -semistable then there is a quotient E1 of E
with ψ(E1) <ψ(E). This inequality in particular implies that the
quotient map is nontrivial. If E1 is W -semistable then we are
done. Otherwise we have a quotient E2 of E1 with ψ(E2)<ψ(E1).
Clearly E2 is also a quotient of E, so if E2 is W -semistable we are
done. Proceeding this way, we either end up with a W -semistable
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quotient or we build an infinite sequence of nontrivial quotients.
But since the endocardium we are working in is of finite lenght
there can not be infinite sequences of nontrivial quotients. To see
that the W -phase of the W -semistable quotient can be chosen to
be maximal, assume that E → Eλ and E → Eµ are two semistable
quotients of E, with ψ(Eλ) = λ < µ = ψ(Eµ). Let Fλ be the fiber
of E → Eλ. Since ψ(Fλ) ≥ ψ(E) > ψ(Eλ) we have ψ(Fλ) > ψ(Eµ).
Since Eµ is W -semistable this implies that there are no nontrivial
morphisms from Fλ to Eµ, so that the diagram

Fλ E

0 Eµ

(7.38)

commutes. But then, by the universal property of pullouts it fac-
tors as

Fλ E

0 Eµ

Eµ

(7.39)

So we see that if there were not a minimal phase W -semistable
quotient we could build an infinite sequence of nontrivial quo-
tients.
Proposition 7.5.15. If [a,b) is a sufficiently small interval, then
every object in C[a,b) has a Postnikov tower whose weaves are W -
semistable objects with decreasing W -phases.
Proof. If E is W -semistable there is nothing to prove. If E is not,
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consider the fiber sequence

Fλ E

0 Eλ

(7.40)

where λ is minimal. Then repeat the reasoning on Fλ. If Fλ is
W -semistable we are done, since ψ(Fλ) >ψ(Eλ). Indeed, if we set
A1 = Fλ and A2 = Eλ we see we have a Postnikov tower with W -
semistable weaves A1, A2,

0

A1 0

E A2 0

(7.41)

with ψ(A2) <ψ(A1). If Fλ is not W -semistable, then we can con-
sider the fiber sequence

Fλ′ Fλ

0 Eλ′

(7.42)
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where λ′ is minimal. The composite of pullout diagrams

Fλ′ Fλ E

0 Eλ′ K

0 Eλ

(7.43)

shows that λ′ >λ. Indeed, ψ(K)>λ by the minimality assumption
on λ and so λ′ > ψ(K); this gives in particular λ′ > λ. Similarly,
ψ(Fλ′) > λ′. So if Fλ′ is W -semistable we are done: write E1 = Fλ,
A1 = Fλ′ , A2 = Eλ′ and A3 = Eλ to see that we have a Postnikov
tower with W -semistable weaves A1, A2, A3

0

A1 0

E1 A2 0

E K A3 0

(7.44)

with ψ(A3) < ψ(A2) < ψ(A1). If Fλ′ is not W -semistable, we iter-
ate the process. This will eventually end due to the finite lenght
assumption on C[a,b).

Notation 7.5.16. If [α,β) ∈ env(a,b), we denote by C∠(W ,J)
[a,b)⊆ε[α,β) the

full subcategory of C[a,b) on W -semistable objects in C[a,b).

Proposition 7.5.17. If [α′,β′) is another interbal ε-enveloping
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[a,b), one has
C∠(W ,J)

[a,b)⊆ε[α,β) =C∠(W ,J)
[a,b)⊆ε[α′,β′). (7.45)

Proof. Without loss of generality we can assume that [α′,β′) ⊆
[α,β), and also that α = α′ or β = β′ (this follows directly from
Remark 7.5.11). In other words we want to prove that

C∠(W ,J)
[a,b)⊆ε[α,β) =C∠(W ,J)

[a,b)⊆ε[α,β′)

C∠(W ,J)
[a,b)⊆ε[α,β) =C∠(W ,J)

[a,b)⊆ε[α′,β).

Suppose α = α′ < β′ ≤ β: a similar argument proves the re-
sult when α ≤ α′ < β = β′; we start noticing that C∠(W ,J)

[a,b)⊆ε[α,β) ⊆
C∠(W ,J)

[a,b)⊆ε[α,β′) is immediate, and we show the other inclusion ar-
guing by contradiction. Let E ∈ C∠(W ,J)

[a,b)⊆ε[α,β′), and let’s show that
a nontrivial fiber sequence A → E → B destabilizing E on [α,β)
induces another fiber sequence destabilizing E on [α,β′). Given
such a fiber sequence A → E → B, we have ψA > ψE > ψB; in
particular ψE >ψB; then, we can build the diagram

A[α,β′) K[α,β′) E[α,β′)

0 (Sβ′B)[β′,β) B[α,β)

0 (Rβ′B)[α,β′)

(7.46)

where Sβ′B → B → Rβ′B is the fiber sequence induced by the nor-
mal torsion theory J(β′), and we use a subscript on objects to de-
note in which endocardium C[a,b) they lie.

Now we can find the desired contradiction. If we show that
ψE <ψB1, we have ψB <ψB1, hence ψB2 <ψB. But now, ψB2(<
ψB) < ψE entails ψE < ψK , and this is a thin fiber sequence in
[α,β′) destabilizng E on such an interval. So, we are left with the
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proof that ψE <ψB1: to this end, we estimate the W -phase using
the Z-phase ϕ and its proximity with the W -phase ψ. We have
ϕ(E) ∈ [α+ ε,β′ − ε) and |ϕ−ψ| < ε/2, so if ϕE < β′ − ε one has
ψE < β′−ε/2, and if ϕB1 ≥ β′ one has ψB1 ≥ β′−ε/2 >ψE. This
concludes the proof.

Definition 7.5.18.
[
W -semistable thin objects

]
: As a conse-

quence of Proposition 7.5.17, given a < b ≤ a+ε, we can define

C∠(W ,J)
[a,b) =C∠(W ,J)

[a,b)⊆ε[α,β) (7.47)

for any [α,β) ∈ envε(a,b). We call C∠(W ,J)
[a,b) the subcategory of W -

semistable objects in C[a,b).

Proposition 7.5.19. If a ≤ a′ < b′ ≤ b < a+ε then

C∠(W ,J)
[a′,b′) =C∠(W ,J)

[a,b) ∩C[a′,b′); (7.48)

as a consequence, we have the following equalities

C∠(W ,J)
[a,b)∩[a′,b′) =C∠(W ,J)

[a,b) ∩C[a′,b′) =C∠(W ,J)
[a′,b′) ∩C[a,b) (7.49)

for any (not only those contained one into the other) pair of inter-
vals [a,b), [a′,b′) (with the consistent convention that C∅ := 0).

Proof. Prop. 7.5.17 ensures that both sides consist of objects
E which are W -semistable on the same interval [α∗,β∗) in
ε-env([a,b)∩ [a′,b′)) (it suffices to choose the biggest among two,
one ε-enveloping [a,b) and the other ε-enveloping [a′,b′)).

Prop. 7.5.17 ensures that the following definition is sound:

Definition 7.5.20.
[
W -semistable objects

]
: Let W be a presta-

bility function with ||Z −W ||σ ≤ sinε. We define the subcategory
C∠(W ,J) of (J-thin and) W -semistable objects to be the full sub-
category of C having objects E ∈ C such that there is a suitably
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small interval [a,b) ⊆ [a,a + ε/2) for which E ∈ C[a,b), and it is
W -semistable. In other words,

C∠(W ,J) = ∪
a<b<a+ε/2

C∠(W ,J)
[a,b) . (7.50)

Lemma 7.5.21. One has C∠(W ,J)
[a,b) =C∠(W ,J) ∩C[a,b).

Proof. It is a direct consequence of Prop. 7.5.17:( ∪
c<d<c+ε/2

C∠(W ,J)
[c,d)

)
∩C[a,b) =

∪
c<d<c+ε/2

C∠(W ,J)
[c,d) ∩C[a,b)

= ∪
c<d<c+ε/2

[c,d)∩[a,b) ̸=∅

C∠(W ,J)
[c,d)∩[a,b)

This is, by construction, contained in C∠(W ,J)
[a,b) , and it obviously

contains it as one of the summands.

Lemma 7.5.22. Let If ||Z − W ||σ < sin(ε/2), then C∠(W ,J)
t ⊆

C[t−ε,t+ε).

Proof. Let E ̸= 0 be an object in C∠(W ,J)
t . Then E ∈C[a,b) for real

numbers a < b < a+ ε/2. Therefore, φ(E) ∈ [a,b) and then t =
ψ(E) ∈ [a−ε/2,b+ε/2). It follows that [a,b)⊆ [t−ε, t+ε) and then
E ∈C[t−ε,t+ε).

Proposition 7.5.23. Let E1 ∈C∠(W ,J)
t1

and E2 ∈C∠(W ,J)
t2

with t1 >
t2. Then C(E1,E2)= 0.

Proof. Start assuming t1 − t2 < 2ε. Then, Lemma 7.5.22 en-
tails that E1 ∈ C[t1−ε,t1+ε) and E2 ∈ C[t2−ε,t2+ε), hence both
lie in C[t1−ε,t2+ε). The interval [t1 − ε, t2 + ε) is ε-enveloped by
[t1−2ε, t2+2ε). So, E1,E2 are both W -semistable in [t1−ε, t2+ε)
with ψ(E1) > ψ(E2). Then there are no nontrivial morphisms
from E1 to E2, i.e., C(E1,E2)= 0. Now when t1− t2 ≥ 2ε, we have
[t1 − ε, t1 + ε)∩ [t2 − ε, t2 + ε) = ;, so the subcategory C[t1−ε,t1+ε)

containing E1 is left-orthogonal to the subcategory C[t2−ε,t2+ε)

containing E2.
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Now, let S ⊆C a full subcategory, seen as a set of objects, and
denote 〈S〉 (or 〈S〉C when the context does not uniquely specify
the embedding) the extension-closure of S, full in C. Define

C(W)
<t = 〈{C∠(W ,J)

ψ=s }s<t〉 C(W)
≥t = 〈{C∠(W ,J)

ψ=s }s≥t〉. (7.51)

Lemma 7.5.24. The subcategories C(W)
≥t ,C(W)

<t form an orthogonal
pair.

Proof. Generally, if S1 and S2 are two subcategories of C with S1 ⊥
S2, then 〈S1〉 ⊥ 〈S2〉. This can is easily proved by double induction
on the “lenght” of extensions: one first shows by induction on
the length of the iterated extension by objects in S2 leading to an
object Y in 〈S2〉 that S1 ⊥ Y for every S1 ∈ S1. Next, one shows
by induction on the lenght of the iterated extension by objects in
S1 leading to an object X in 〈S1〉 that X ⊥Y .

Theorem 7.5.25.
[
Fundamental deformation theorem

]
: The

pair of subcategories (C(W)
≥t ,C(W)

<t ) defined in (7.51) determines a
normal torsion theory onC, for each t ∈R. Moreover, the function
J(W) : t 7→ (C(W)

≥t ,C(W)
<t ) is monotone and Z-equivariant, and hence

defines a slicing on C, which is ε-near to the initial slicing J, in
the metric of Def. 7.2.14.

This slicing J(W) is part of the stability condition (W , J(W)) (in
particular, W is compatible with the slicing J(W) in the sense of
Def. 7.3.2.sc3), and this is called the standard deformation of σ =
(Z, J).

To simplify the exposition of a somewhat involved argument,
we split the proof into several preliminary results; the final argu-
ment will follow almost directly from all the preceding consider-
ations.

As a preparatory remark, we prove the following two results,
proving that each object in a sufficiently thin interval falls into a
W -fiber sequence:
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Lemma 7.5.26. Let X be an object in a thin endocardium; then
X falls into a fiber sequence

X (W)
≥t → X → X (W)

<t (7.52)

where X (W)
≥t ∈C(W)

≥t and X (W)
<t ∈C(W)

<t .

Proof. By Prop. 7.5.15 X has a (finite) Postnikov tower with W -
semistable weaves {A1, . . . , An} of decreasing W -phases λ1 > λ2 >
·· · >λn. If we consider this tower, i.e. the diagram

0

��
A1 //

��

0

��
X2 //

��

A2 // 0

��

...

��

...

��
Y

��

// · · · // · · · // Ak // 0

��
Xk+1

��

// · · · · · · // Ak+1 //

��

0

��

...

��

...

��

. . .

��

// 0

��
X // Z // · · · // An // 0

(7.53)

we can extract the pullout subdiagram

Y

��

// 0

��

X // Z

(7.54)
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and the two subdiagrams defining the this fiber sequence:

0

X1 0

...
. . . 0

Y · · · A k̂ 0

0

A k̂+1 0

...
. . . 0

Z · · · An 0

(7.55)

The first diagram says that Y ∈C(W)
≥t , and the second that Z ∈C(W)

<t ,
since both classes C(W)

≥t , C(W)
<t are extension closed and Y , Z result

from iterated extensions done in these classes.

Lemma 7.5.27. C<0 = 〈C[a,b) | [a,b) thin, b < 0〉 (dually, C≥0 =
〈C[a,b) | [a,b) thin, a ≥ 0〉).
Corollary 7.5.28. C≥0 ⊆C(W)

≥−ε (dually, C<0 ⊆C(W)
<ε ).

We now prove the final result as a consequence of Prop. 7.5.15
and Lemma 7.5.26: each object X ∈ C fits into a fiber sequence
X (W)

≥t → X → X (W)
<t .

Let us consider the factorization of the initial morphism 0→ X
with respect to the slicing J: we obtain the diagram

0

��

St+εX //

��

0

��

St−εX //

��

A //

��

0

��

X // Rt+εX // Rt−ε(X ) // 0

(7.56)

where X t+ε ∈ C≥t+ε, C ∈ C<t−ε and A ∈ C[t−ε,t+ε). Now we have
X t+ε ∈C(W)

≥t and X t−ε ∈C(W)
<t . Moreover, the interval [t−ε, t+ε) is
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thin, so we have a fiber sequence

A(W)
≥t

��

// 0

��

A // A(W)
<t

(7.57)

which allows a refinement of the starting factorization as

0

St+εX 0

Y A(W)
≥t 0

St−εX A A(W)
<t 0

X Rt+εX Z Rt−εX 0

(7.58)

Notably, the objects Y , Z factor the arrows St+εX → St−εX and
Rt+εX → Rt−εX which “approximate” in some sense the desired
reflections; the idea behind this proof is to show that Y plays the
rôle of the desired coreflection S(W)

t X and Z plays the rôle of the
reflection R(W)

t X at level t, cutting at time t and falling in the de-
sired classes: since both C(W)

≥t and C(W)
<t are extension closed, we

have

• Y ∈C(W)
≥t , since in the fiber sequence St+εX →Y → A(W)

≥0 the
extremal objects both lie in C(W)

≥t (by construction, and Cor.
7.5.28),

• Z ∈C(W)
<t , since in the fiber sequence A(W)

<0 → Z → Rt−εX the
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extremal objects both lie inC(W)
<t (again by construction, and

invoking the dual of Cor. 7.5.28: Rt−εX ∈C<−ε ⊆C(W)
<0 ).

This, in particular, shows that the process to build the fiber se-
quence

Y → X → Z (7.59)

is entirely canonical, and since [RT07, 3.1] holds in the stable set-
ting the objects Y , Z are the coreflection and reflection of a normal
torsion theory on C; we denote these functors (S(W),R(W)). Now,
the characterization of torsion/free classes from the pair coreflec-
tion/reflection entails that the normal torsion theory is completely
determined by the pair (S(W),R(W)) by the relations

E(W) = { f ∈hom(C) | R(W) f iso }

M(W) = {g ∈ hom(C) | S(W) giso }.

To show that this defines a slicing, we have to proveZ-equivariancy
and monotonicity. Since ψ(E[1])=ψ(E)+1, we have C∠(W ,J)

ψ=s [1]=
C∠(W ,J)

ψ=s+1 , where we exploited the fact that shifts preserve semistable
objects and the fact that ψ(E[1]) = ψ(E) + 1. Since shift com-
mutes with the 〈−〉 operation on classes, we have C(W)

<t [1] =
〈{C∠(W ,J)

ψ=s+1 }s≥t〉 = 〈{C∠(W ,J)
ψ=s }s≥t+1 = C(W)

<t+1. Similarly, C(W)
≥t [1] =

C(W)
≥t+1.

To conclude the proof we show that J(W) ∈ Bε(J): following
Def. 7.2.20 and Prop. 7.2.21, we must show that there exists δ> 0
such that

(∀t ∈R)Et+ε ⊆E(W)
t+δ ⊆E(W)

t−δ ⊆Et−ε (7.60)

This is immediate, as a consequence of Lemma 7.5.27 and Cor.
7.5.28.
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Appendix A

Stable ∞-categories

The present chapter serves as a reference for the rest of the
thesis, outlining the fundamentals of stable ∞-category the-
ory. Apart from classical literature on triangulated categories
([HJ10, Nee01]) we follow the only available source on stable ∞-
categories [Lur11], deviating a little from the presentation given
there, to add some new considerations and complete, explicit
proofs of certain useful classical constructions (like an extensive
proof, alternative to that in [Lur11] of the validity of triangulated
category axioms in the homotopy category of a stable ∞-category).

We start trying to outline a bit of history of homological alge-
bra to motivate the quest for a higher-categorical formulation of its
basic principles. For this account (which makes no claim of orig-
inality or completeness), the survey [Wei99] has been an essential
source of inspiration.
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A.1 Triangulated higher categories.

Otra escuela declara […] que nuestra vida es
apenas el recuerdo o reflejo crepuscular, y sin
duda falseado y mutilado, de un proceso
irrecuperable.

[Bor44], Tlön, Uqbar, Orbis Tertius

The notion of triangulated category is deeply linked to homo-
topy theory. The native language in which Def. A.1.1 below was
originally formulated was stable homotopy theory, where suitable
sequences of arrows

X →Y → Z →ΣX (A.1)

played an essential rôle in the definition of the stable homotopy
category of topological spectra and the endofunctor Σ acts as the
(reduced) suspension, i.e. as the homotopy pushout

X CX

CX ΣX

The invertibility of Σ is an essential feature of stable homotopy
theory, and the construction giving the universal category where
Σ becomes an equivalence is part of the so-called Spanier-White-
head stabilization sw(Spc) of the category of cw-complexes Spc. We
briefly investigate the construction of sw(C) in §A.4.

A first axiomatization for the phenomena giving rise to these
structures dates back to A. Dold and D. Puppe’s [DP61]; subse-
quently, motivated by this result, Grothendieck and Verdier rec-
ognized a similar structure on the homotopy category of Ch(A)
(chain complexes on the abelian category A), and encoded this
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procedure of modding out null-homotopic maps constructing the
derived category D(A) of Ch(A).

Verdier outlined in his [Ver67] a (ingenious but rather cum-
bersome) set of axioms, aimed at capturing the behaviour of these
peculiar classes of the distinguished triangles (A.1), acting like exact
sequences and involving an additive autoequivalence Σ : C → C,
generalizing the reduced suspension Σ.

Subsequently, D. Quillen axiomatized the notion of abstract
homotopy theory [Bau89] with his definition of a model category;
this in some sense unified the language of homotopy and homol-
ogy theory, giving a more profound intuition of the latter being
an additive manifestation of the former, and in particular convey-
ing the idea that homotopies behave the same way also outside the
category of spaces (and exist, for example, between maps of chain
complexes, or maps of simplicial sets).

Even at this point however the systematization of the theory
of triangulater categories was far from being satisfactory, since the
origin of the axioms was obscure and really far from being canoni-
cal. This “bad behaviour” shows up in several practical situations,
populating the dense literature on the subject: after having given
the definition of a triangulated category, we embark on a deep
analysis of their meaning. Convenient shorthands to denote a dis-
tinguished triangle in a triangulated category C are the following
X → Y → Z →+, X → Y → Z →, X → Y → Z → X [1] (see A.2.10)
or even X →Y → Z, when no ambiguity can arise from this com-
pactness.

Definition A.1.1.
[
Triangulated category

]
: A category C is

called suspended if it is endowed with an endofunctor Σ; an addi-
tive category with suspension (C,Σ) is said to be triangulated if the
following axioms are satisfied:
pt 1) The suspension endofunctor is an equivalence of categories;
pt 2) There exists a class of diagrams in C, called distinguished tri-

angles of the form X → Y → Z → ΣX (often denoted X →
Y → Z →+ for short) which is closed under isomorphism
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and contains every sequence of the form X
idX−−→ X → 0 →

ΣX ;
pt 3) Any arrow f : ∆[1] → C fits into at least one distinguished

triangle X
f−→Y → Z →ΣX ;

pt 4) (rotation) The diagram X u−→ Y v−→ Z w−→ ΣX is distinguished
if and only if the “rotated diagram” Y −v−−→ Z −w−−→ΣX −Σu−−−→ΣY
is distinguished;

pt 5) (completion) In any diagram of the form

X Y Z ΣX

X ′ Y ′ Z′ ΣX ′

f g Σ f (A.2)

where the rows are distinguished triangles, there exists a
morphism h : Z → Z′ making the whole diagram a mor-
phism of triangles (which, once regarded triangles as suit-
able functors J → C are simply natural transformations
between two such functors).

tr) Given three distinguished triangles

X
f−→Y →Y /X Y

g−→ Z → Z/Y X
gf−−→ Z → Z/X

(A.3)
(where the cone of each arrow is temporarily represented as
a quotient to suggest the meaning of the cone construction)
arranged in a “braid” diagram

X Z Z/Y Y /X [1]

Y Z/X Y [1]

Y /X X [1]

gf
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then there is a (non-unique) way to complete it with the ar-
rows s, t indicated.

Now, a deeper analysis of the design behind these axioms
shows several drawbacks:

• axiom pt 3) embeds a map f : X →Y in a distinguished tri-
angle X

f→ Y → Z → ΣX , with a procedure which is not
canonical, and yet all the most important examples of tri-
angulated category show this property by means of “weakly
canonical” constructions (the object Z in the axiom is deter-
mine “up to a contractible space of choices” as the homotopy
colimits or mapping cone of f , in some flavour of higher cate-
gory theory).

• On the same lines, property pt 5) asserts that each “mor-
phism of triangles”

A B C ΣA

A′ B′ C′ ΣA′

f g h

is determined by only two elements is not canonical: there
is no unique choice of a third element, the only hope being
that there is a choice which is well-suited for “some” other
purpose, since again in the most important cases like D(A)
or Ho(Sp) the completion axiom holds as a consequence of
a universal property (of the homotopy co/limits involved).

• (This is a more conceptual, but important drawback) as it is
noted in [MK07], the derived category of an abelian category
A, taken as a triangulated category alone, has no universal
property;

From a modern perspective, is is easy to see that this situation
reflects some deep features of homotopy theory: the category of
chain complexesCh(A) has a fairly natural choice of a model struc-
ture; this entails that Ch(A) is a fairly rich environment; the local-
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ization procedure outlined by Verdier does not retain these addi-
tional pieces of information encoded in the homotopy co/limits in
Ch(A), because they are hidden in a higher categorical structure
that the localization procedure is not able to preserve.

It must be said, however, that despite this highly unsatisfactory
situation, a great deal of refined mathematics stemmed out from
the theory of triangulated categories:

• one of Verdier-Grothendieck’s primary tasks (to shed a light
on the construction of derived functors) is easily achieved
(the language of model categories clarifies best the meaning
and construction of derived functors);

• In a suitable sense the derived category of sheaves on a good
space contains the information to rebuild the space from
scratch (this is a result in reconstruction theory, mainly
worked out in [BO01]);

• Several properties of an abelian category A can be desumed
from the study of a peculiar kind of subcategories of D(A)
(the adjacent classes of a “t-structure”) on D(A)) and of a
generic triangulated category D (this is by far the most im-
portant application for the purposes of the present thesis).

In light of this, one could argue that Def. A.1.1 behaves like the
definition of topological spaces to a certain extent: the definition
is not modeled to be user-friendly, but to be pervasive, and con-
crete examples of the definition often enjoy additional properties
making them more wieldy.

However, with the passing of time, understanding the deep
meaning of the axioms in Def. A.1.1 became more and more a pri-
ority. It became evident that triangulated category where the “false
and mutilated memory of an irrecoverable process” ([Bor63]), be-
having like 1-dimensional shadows of a higher dimensional no-
tion:

is similar triangulated categories arise as decategorifica-
tion of some structure taking place in the ∞-categori-
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cal world, and the axioms defining them are designed
to keep track of the 1-categorical trace of this more re-
fined notion.

Shadows of objects retain no information about their colours; in
the same spirit, triangulated categories retain little or no informa-
tion about the higher structure generating them.(1)

Because of these reasons, it would be desirable to have at our
disposal a more intrinsic notion of triangulated category, satisfy-
ing some reasonable requests of universality: whenever a higher
category C enjoys a property which we will call “stability”, then
sc1) its homotopy category Ho(C) carries a triangulated structure

in the sense of Def. A.1.1;
sc2) the axioms characterizing a triangulated structure are “easily

verified and well-motivated consequences of evident univer-
sal arguments”([Lur11, Remark 1.1.2.16]);

sc3) classical derived categories arising in Homological Algebra
can be regarded as homotopy categories of stable ∞-cate-
gories functorially associated to an abelian category A (see
[Lur11, §1.3.1]).

The most common examples show that finding a triangulated
structure on Ho(C) is often sufficient in most practical purposes
where one only needs information surviving the homotopy iden-
tification process. However, as soon as one needs to take into
account additional information about homotopy co/limits that
existed in C, its stability comes into play.

(1)Albeit seldom spelled out explicitly, we can trace in this remark a funda-
mental tenet of the theory exposed in [Lur11]:

In the same way every shadow comes from an object, produced
once the sun sheds a light on it, every “non-pathological” trian-
gulated category is the 1-dimensional shadow (i.e. the homotopy
category) of an higher-dimensional object.

No effort is made here to hide that this fruitful metaphor is borrowed from
[Car10], even if with a different meaning and in a different context.
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A.2 Building stable categories.

A stable mind is fudoshin, a mind not
disturbed or upset by verbal mistreatment

M. Hatusmi

Pathological examples aside (see [MSS07], from which the fol-
lowing distinction is taken verbatim), there are essentially two pro-
cedures to build “nice” triangulated categories:

• In Algebra they often arise as the stable category of a Frobe-
nius category ([Hel68, 4.4], [GM96, IV.3 Exercise 8]).

• In algebraic topology they usually appear as a full triangu-
lated subcategory of the homotopy category of a Quillen sta-
ble model category [Hov99, 7.1].

The (closure under equivalence of) these two classes contain re-
spectively the so-called algebraic and topological triangulated cate-
gories described in [Sch10].

Classical triangulated categories can also be seen as Spanier-
Whitehead stabilizations of the homotopy category Ho(M) of a
pointed model category M (see [Del04] thesis for an exhaustive
treatment of this construction, which we sketch in §A.4 below).

So, several different models for triangulated higher categories
arose as a reaction to different needs in abstract homological al-
gebra (where derived categories of rings play a central rôle), al-
gebraic geometry (where one is led to study derived categories of
–modules of– sheaves of rings) or in a fairly non-additive setting as
algebraic topology (where the main example of such a structure is
the homotopy category of spectra Ho(Sp)); there’s no doubt that
allowing a certain play among different models may be more suc-
cessful in describing a particular phenomenon (or a wider range
of phenomena), whereas being forced to a particular one may turn
out to be insufficient.

Now, according to the “principle of equivalence” between
models higher category theory there must be a similar notion in
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the language of ∞-categories, i.e. some property of a ∞-category
C ensuring that the “requests” sc1)—sc3) above are satisfied.

Building this theory is precisely the aim of [Lur11, Ch. 1.1].
As this is the most interesting and well-developed model at the
moment of writing, and the one we constantly had in mind, we
now give a rapid account of the main lines of stable ∞-category
theory.

We invite the reader to take [Lur11] as a permanent reference
for this section, hoping to convince those already acquainted with
the theory of triangulated categories that stable ∞-categories are
in fact a simpler and more manageable reformulation of the basic
principles they already know how to manipulate.

A.2.1 Stable ∞-categories.
Let □=∆[1]×∆[1] be the “prototype of a square”,

(0,0) (0,1)

(1,0) (1,1)

such that the category of functors □→C consists of commutative
squares in C. With this identification in mind, we can give the
following

Definition A.2.1.
[
(Co)cartesian square

]
: A diagram F : □→

C in a (finitely bicomplete) ∞-category is said to be cocartesian
(resp., cartesian) if the square

F(0,0) F(0,1)

F(1,0) F(1,1)

is a homotopy pushout (resp., a homotopy pullback).
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Alternatively, one can characterize the category □ as ∆[1] ×
∆[1] = (Λ2

2)◁ = (Λ2
0)▷ (see the diagrams below, and [Lur09] for

the notation;

(0,0) (1,0) (1,0)

(0,1) (0,1) (1,1)

Λ2
0 Λ2

2
(A.4)

each of these descriptions will turn out to be useful). In the same
way, we denote pictorially the two horn-inclusions

i⌜ : ⌜→□
(=Λ2

0 → (Λ2
0)▷

)
i⌟ : ⌟→□

(=Λ2
2 → (Λ2

2)◁
)

(see [Lur09, Notation 1.2.8.4]) and the induced maps

i∗⌜ : Map(□,C)→Map(⌜,C) (A.5)
i∗⌟ : Map(□,C)→Map(⌟,C) (A.6)

from the category of commutative squares in C, “restricting” a
given diagram to its top or bottom part, respectively. These func-
tors are part of a string of adjoints

(i⌜)! ⊣ i∗⌜ ⊣ (i⌜)∗ : Map(□,C)⇆Map(⌜,C) (A.7)

(i⌟)! ⊣ i∗⌟ ⊣ (i⌟)∗ : Map(□,C)⇆Map(⌟,C) (A.8)

where (i⌜)! and (i⌟)∗ are easily seen to be evaluations at the initial
and terminal object of ⌜ and ⌟, respectively.

Given F ∈Map(□,C) the canonical morphisms obtained from
the boxed adjunctions,

η⌜,F : F → (i⌜)∗i∗⌜F

ϵ⌟,F : (i⌟)!i∗⌟F → F
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give the canonical “comparison” arrow F(1,1) → lim−−→ i∗⌜F and
lim←−− i∗⌟F → F(0,0).

With these notations we can say that
• F ∈Map(□,C) is cartesian if η⌜,F is invertible;
• F ∈Map(□,C) is cocartesian if ϵ⌟,F is invertible.

Definition A.2.2.
[
Stable ∞-category

]
: A ∞-category C is

called stable if
(1) it has any finite (homotopy) limit and colimit;
(2) A square F : □→C is cartesian if and only if it is cocartesian.

Notation A.2.3. Squares which are both pullback and pushout
are called pulation squares or bicartesian squares (see [AHS90, Def.
11.32]) in the literature. We choose to call them pullout squares
and we refer to axiom 2 above as the pullout axiom: in such terms,
a stable ∞-category is a finitely bicomplete ∞-category satisfying
the pullout axiom.

Remark A.2.4. The pullout axiom is by far the most character-
izing, ubiquitous and particular feature of stable ∞-categories; in
some sense, the rest of the present section is devoted to a better
understanding of its consequences.

We being with the simplest remark: most of the arguments in the
following discussion are a consequence of the following

Remark A.2.5.
[
A 3-for-2 property for pullouts

]
: The pull-

out axiom implies that the class P of pullout squares in a category
C satisfies a 3-for-2 property: in fact, it is a classical, easy result
(see [AHS90, Prop. 11.10] and its dual) that pullback squares,
regarded as morphisms in C∆[1], form a r32 class and dually,
pushout squares form a l32 class (these are called pasting laws
for pullback and pushout squares) in the sense of our Definition
1.4.6.

Notation A.2.6. It is a common practice to denote diagrammati-
cally a (co)cartesian square “enhancing” the corner where the uni-
versal object sits (this well-established convention has been used
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with no further mention all along our discussion): as a “graph-
ical” representation of the auto-duality of the pullout axiom, we
choose to denote a pullout square enhancing both corners:

⌜⌟

RemarkA.2.7. Any 1-categoryC satisfying the pullout axiom with
respect to 1-dimensional pullbacks and pushouts is equivalent to
the terminal category.

Proof. First of all notice that in a stable ∞-category the functors
Σ⊣Ω form an equivalence of ∞-categories; this follows from the
fact that in the diagram

ΩX 0

0 X 0

0 ΣX

⌟⌜

⌟⌜

the object X has the universal property of both ΩΣX and ΣΩX .
Now, from the fact that ΣX is the pushout of 0 ← X → 0, we de-
duce that ΣX ∼= 0.

Among the most essential features of stability, there is the
fact that all stable categories are naturally enriched over abelian
groups (or, rather, over a “homotopy meaningful” notion of
abelian group): Remark A.2.7 above showed that the pullout
axiom is a really strong assumption on a category, so strong that
it can only live in the “weakly-universal” world of (∞,1)-catego-
ries. Now, we learn that the pullout axiom characterizes almost
completely the structure of a stable ∞-category.
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RemarkA.2.8.
[
The pullout axiom induces an enrichment.

]
:

A stable ∞-category C
• has a zero object, i.e. there exists an arrow 1 →∅ (which is

forced to be an isomorphism);
• C has biproducts, i.e. X ×Y ≃ X ⨿Y for any two X ,Y ∈C,

naturally in both X and Y .

We skip the proof of this statement; the interested reader can
take it as an exercise and test the power of the pullout axioms.

Remark A.2.9. The proof of the above statement heavily relies on
a result of Freyd’s [Fre64]; the biproduct of objects X ,Y in C can
be characterized as an object S = SX ,Y such that

• There are arrows Y ⇆ S ⇆ X ;
• The arrow Y → S →Y compose to the identity of Y , and the

arrow X → S → X compose to the identity of X ;
• There are “exact sequences” (in the sense of a pointed,

finitely bicomplete category) 0 → Y → S → X → 0 and
0→ X → S →Y → 0.

The biproduct of X ,Y is denoted X ⊕Y ∼= X ×Y ∼= X ⨿Y . A pleas-
ant consequence of Freyd’s characterization is that in any addi-
tive category the enrichment over the category of abelian groups
is canonical; in fact, exploiting the isomorphism Y×Y ∼=Y⨿Y one
is able to define the sum of f , g : X ⇒Y as

f + g : X → X × X
( f ,g)−−−→Y ×Y ∼=Y ⨿Y →Y (A.9)

In fact, this result can be retrieved in the setting of stable ∞-cate-
gories (see [Lur11, Lemma 1.1.2.9]); we do not want to reproduce
the whole argument: instead we want to investigate the construc-
tion of the loop and suspension functors in a pointed category.

The suspension ΣX of an object X in a finitely cocomplete,
pointed ∞-category C can be defined as the (homotopy) colimit
of the diagram 0 ← X → 0; dually, the looping (or loop object) ΩX
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of an object X in such a C is defined as the (homotopy) limit of
0→ X ← 0.

This notation is natural with a topological intuition in mind,
where these operations amount to reduced suspension (see (A.1))
and loop space of X (thought as the fiber of the fibration PX → X ,
where PX is the path space of X ); evaluating a square F : □→ C
at its right-bottom vertex gives an endofunctor Σ : C→C, and the
looping Ω is the right adjoint of this functor Σ. We depict the
objects ΣX ,ΩX as vertices of the diagrams

X ∗ ΩY ∗

∗ ΣX ∗ Y .

⌜ ⌟

The pullout axiom defining a stable ∞-category implies that these
two correspondences (which in general are adjoint functors be-
tween ∞-categories: see [Lur11, Remark 1.1.2.8]) are a pair of mu-
tually inverse equivalences ([Gro10, Prop. 5.8]).

Notation A.2.10. In a stable setting, we will often denote the im-
age of X under the suspension Σ as X [1], and by extension X [n]
will denote, for any n ≥ 2 the object ΣnX (obviously, X [0] := X ).
Dually, X [−n] :=ΩnX for any n ≥ 1.

This notation is in line with the long tradition to denote X [1]
the shift of an object X in a triangulated category; this notation
adds to the already existing ones like X → Y → Z →+ and will be
used together with the others with no further mention.

Remark A.2.11.
[
Stable ∞-categories are nice

]
: Due to the

non-canonical behaviour of axioms pt 1)–pt 5), during the years
there have been several attempts to produce a better-behaved ax-
iomatics, more canonical but still general enough to encompass
the interesting examples. One of these was the notion of a Nee-
man triangulated category: we address the reader to [Nee91] to get
acquainted with the definition.
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Here, we show that every (homotopy category of a) stable ∞-
category is Neeman-triangulated.

Proposition A.2.12.
[
[Nee91]

]
: Let C be a stable ∞-category, and

A → A′ → A′′, B → B′ → B′′ two fibe sequences on C.
Then the commutative square

A′⊕B A′′⊕B′

0 A[1]⊕B′′

is a fiber sequence.

Example A.2.13.
[
A complete proof of the octahedral

axiom
]
: Among all axioms stated in Def. A.1.1, the octahedral ax-

iom pt 5) is the most difficult to motivate. At first sight, it seems
like a god-given condition ensuring that some fairly unnatural
things happen. On a second thought, however, there are at least
two ways to motivate it:

• the axiom is motivated by the desire to see the freshman al-
gebraist’s theorem hold in triangulated categories: using the
same notation in pt 5), the axiom asserts that Z/X

Y /X
∼= Z/Y ;

• the axiom is motivated by the fact that, in the category of
spaces, the classical geometric definition of mapping cone
of f : X → Y , fitting in a sequence X → Y → C( f ) ensures
the presence of a canonical morphism C( f ) → C(g ◦ f ), and
the cofiber of this map is homotopy equivalent to C(g).

In a stable ∞-category C we are in the following situation:
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X Y Z 0

0 Y /X Z/X X [1] 0

0 Z/Y Y [1] (Y /X )[1]

f g

where different colours denote different fiber sequences (i.e.,
triangles in the homotopy category). Axiom pt 5) says that
we can find arrows Y /X → Z/X → Z/Y such that the triangle
Y /X → Z/X → Z/Y → (Y /X )[1] is distinguished.

Here is a sketch of a direct, elementary proof for the octahedral
axiom.

First of all one must notice that all the preceding axioms pt 1)–
pt 5) hold almost immediately thanks to the universal properties
of the homotopy co/limits involved: in particular, the completion
axiom is a consequence of the universal property of a pullback/-
pushout square, and it implies that the diagram

X Y Y /Z X [1]

Y Z Z/X Y [1]

f

g

f g f [1] (A.10)

can be completed with an arrow Y /X
ϕ−→ Z/X , fitting in the square

Y Z

Y /X Z/Xφ

(A.11)
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Now consider the ojects V ,W respectively obtained as pushouts of
Y /X ←−Y

g−→ Z and 0←−Y /X
ϕ−→ Z/X ; these data fit in a diagram

Y Z

Y /X Z/X

0 W

V

φ
(A.12)

and the 3-for-2 property for pullout squaresA.2.5 now implies that
the outer rectangle is a pushout, hence W ∼= Z/Y . It remains to
prove that V ∼= Z/X ; this follows again from the 3-for-2 property
applied to

X Y Z

0 Y /X V .

(A.13)

A.3 t-structures.

どのように急須奇妙な
同時に表すことができます
孤独の快適さ
そして、会社の喜び。

Zen haiku

The notion of t-structure appears in [BBD82] to try to axiom-
atize the following situation:

Definition A.3.1.
[
The canonical t-structure in D(R)

]
: Let

R be a ring, and D(R) the derived category of modules over R; in



A.3. t-structures. 206

D(R) we can find two full subcategories

D≥0(R)= {A∗ ∈D(R) | Hn(A∗)= 0; n ≤ 0}

D≤0(R)= {B∗ ∈D(R) | Hn(B∗)= 0; n ≥ 0}

such that
• (orthogonality): hom(A∗[1],B∗)= 0;
• (closure under shifts)D≥0(R)[1]⊆D≥0(R) andD≤0(R)[−1]⊆

D≤0(R);
• (factorization) every object X∗ ∈ D(R) fits into a distin-

guished triangle

X≥0 −→ X −→ X≤0 → X≥0[1] (A.14)

These classes naturally determine an abelian subcategory of
D(R), the heart D(R)♡ of the t-structure.

In the following section we briefly sketch some of the basic
classical definitions taking from [KS90] and the classical [BBD82];
the ∞-categorical analogue of the theory has been defined in
[Lur11, §1.2.1]. Here we merely recall a couple of definitions for
the ease of the reader: from [Lur11, Def. 1.2.1.1 and 1.2.1.4] one
obtains the following translation of the definition of t-structure.

Definition A.3.2. Let C be a stable ∞-category. A t-structure on C
consists of a pair t= (C≥0,C<0) of full sub-∞-categories satisfying
the following properties:

(i) orthogonality: C(X ,Y ) is a contractible simplicial set for
each X ∈C≥0, Y ∈C<0;

(ii) SettingC≥1 =C≥0[1] andC<−1 =C<0[−1] one hasC≥1 ⊆C≥0

and C<−1 ⊆C<0;
(iii) Any object X ∈ C fits into a (homotopy) fiber sequence

X≥0 → X → X<0, with X≥0 in C≥0 and X<0 in C<0.
The subcategories C≥0,C<0 are called respectively the coaisle and
the aisle of the t-structure (see [KV88]).

Remark A.3.3. The definition as it is stated is a slight reformula-
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tion of the classical one given in [BBD82]; it is rather curious that
the authors of the book do not give any reasonable rationale to
explain what does the “t” stand for. A natural explanation is that
it is a truncation (!) of the word “truncation” (see [Hum] and the
discussion therein).

Remark A.3.4. The assignments X 7→ X≥0 and X 7→ X<0 define
two functors τ≥0 and τ<0 which are, respectively, a right adjoint to
the inclusion functor C≥0 ,→C and a left adjoint to the inclusion
functor C<0 ,→ C. In other words, C≥0,C<0 ⊆ C are respectively
[Lur11, 1.2.1.5-8] a coreflective and a reflective subcategory of C.

This in particular implies that
• the full subcategoriesC≥n =C≥[n], are coreflective via a core-

flection τ≥n; dually C<n = C<0[n] are reflective via a reflec-
tion τ<n,

• C<n is stable under all limits which exist in C, and colimits
are computed by applying the reflector τ<n to the colimit
computed in C; dually, C≥n is stable under all colimits, and
limits are C-limits coreflected via τ≥n; from the last of these
remarks we deduce a useful corollary:

Corollary A.3.5. The functor τ<n maps a pullout in C to a
pushout in C<n while τ≥n maps a pullout in C to a pullback
in C≥n.

Notation A.3.6. �This is an important notational remark: the sub-
category that we here denote C<0 is the subcategory which would
be denoted C≤0[−1] in [Lur11].

Remark A.3.7. It’s easy to see that Definition A.3.2 is modeled on
the classical definition of a t-structure ([KS90], [BBD82]). In fact
a t-structure t on C, following [Lur11], can also be characterized
as a t-structure (in the classical sense) on the homotopy category
of C ([Lur11, Def. 1.2.1.4]), once C≥0,C<0 are identified with the
subcategories of the homotopy category ofC spanned by those ob-
jects which belong to the (classical) t-structure t on the homotopy
category.
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Remark A.3.8. The datum of a t-structure via both classes
(C≥0,C<0) is a bit redundant: in fact, each of the two classes
uniquely determines the other via the object-orthogonality rela-
tion 1.2.14.

Remark A.3.9.� The notation C≥1 for C≥0[1] is powerful but po-
tentially misleading: namely one is lead to figure C≥0 as the sem-
infinite interval [0,+∞) in the real line and C≥1 as the seminfi-
nite interval [1,+∞). This is indeed a very useful analogy (see Re-
mark 4.3.3) but one should always keep in mind that as a partic-
ular case of the inclusion condition C≥1 ⊆ C≥0 also the extreme
case C≥1 =C≥0 is possible, in blatant contradiction of the real line
semintervals mental picture.

Definition A.3.10.
[
t-exact functor

]
: Let C,D be two stable ∞-

categories, endowed with t-structures tC,tD; a functor F : C→D
is left t-exact if it is exact and F(C≥0)⊆D≥0. It is called right t-exact
if it is exact and F(C<0)⊆D<0.

Remark A.3.11. The collection ts(C) of all t-structures on C has
a natural partial order defined by t⪯ t′ iff C<0 ⊆C′

<0. The ordered
group Z acts 4.1.8 on ts(C) with the generator 4.1.9 +1 mapping a
t-structure t= (C≥0,C<0) to the t-structure t[1]= (C≥1,C<1). Since
by A.3.2bf.(ii) t⪯ t[1], one sees that ts(C) is naturally a Z-poset.

In light of this remark, it is natural to consider families of t-
structures with values in a generic Z-poset J; this is discussed in
our Ch. 4.

RemarkA.3.12.
[
t-structures are localizations

]
: An alterna-

tive description for a t-structure is given in [Lur11, Prop. 1.2.1.16]
via a t-localization L, i.e. a reflection functor L satisfying one of the
following equivalent properties:

• The class of L-local morphisms(2) is generated (as a quasisat-
urated marking) by a family of initial arrows {0→ X };

(2)An arrow f in C is called L-local if it is inverted by L; it’s easy to see that
L-local objects form a quasisaturated class in the sense of [Lur11, Def. 1.2.1.14].
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• The class of L-local morphisms is generated (as a quasisatu-
rated marking) by the class of initial arrows {0→ X | LX ≃ 0};

• The essential image LC⊂C is an extension-closed class.
The t-structure t(L) determined by the t-localization L : C→C is
given by the pair of subcategories

C≥0(L) := {A | LA ≃ 0}, C<0(L) := {B | LB ≃ B}. (A.15)

It is no surprise that the obvious example of t-localization is the
truncation τ<0 : C→C<0 associated with a t-structure (C≥0,C<0),
and that one has C≥0(τ<0)=C≥0 and C<0(τ<0)=C<0.

This connection is precisely what motivated us to exploit the
theory of factorization systems to give an alternative description of
the data contained in a t-structure: the synergy between orthog-
onality encoded in A.3.2.(i) and reflectivity of the subcategories
generated by t, suggests to take the “torsio-centric” approach.

A.4 Spanier-Whitehead stabilization.

Let A be any category, endowed with an endofunctor Σ : A →
A. The problem adressed by the Spanier-Whitehead construction
is the following: how to produce a category with endofunctor
(sw(A), Σ̂) such that

(1) there is an embedding A ,→ sw(A);
(2) Σ̂|A =Σ;
(3) Σ̂ is an equivalence of categories

and such that the pair (sw(A), Σ̂) is initial with these properties?
There are two ways to formalize the problem. We analyze them

both, borrowing equally from Tierney’s [Tie69] and [Del04]. The
treatment of sw-stabilization given here motivates very well the
meaning of [Lur11, 1.4.1, 1.4.2].
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A.4.1 Construction via monads.
Let N be the monoid of natural numbers, considered as a category:
it has a monoidal product given by the sum operation, such that
the unit object is zero. Since N is a monoid in (Set⊂)Cat, the func-
tor TN = (−)×N is a monad, and the category of TN-algebras can
be described as the category whose objects are pairs (A,Σ : A→A);
more explicitly, a TN-algebra is a pair (A,Σ) where A is a category,
and Σ : A→A is a functor such that the diagrams

A×1 A×N

A

A×η

Σ̃
∼

A×N×N A×N

A×N A

Σ̃×N

Σ̃A×µ

Σ̃

(A.16)

(where Σ̃(A,n)=Σn A and η,µ are the monoid maps of N) all com-
mute.

Notation A.4.1. In the following, TN-algebras will be called cate-
gories with endomorphism.

Let now N ,→ Z the obvious inclusion. When regarded as a
category, the group of integers is a groupoid, so SZ = (−)×Z is
again a monad on Cat.

The category of SZ-algebras consists of pairs (A,Σ) where
Σ : A→ A is an automorphism (so in particular every SZ-algebra
is a TN-algebra). Similar diagrams are requested to commute, so
that if we consider the restriction Σ(n) =Σ|A×{n} for any n ∈Z, and
we identify A× {n} ∼= A, then we have that Σ(1) = Σ, Σ(−1) = Σ−1

and so on.

Remark A.4.2. The homomorphism ι : N ,→ Z induces a mor-
phism of monads T → S, which we call again ι; this in turns in-
duces a “forgetful” functor

U : CatZ ,→CatN (A.17)
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(the forgetful action of U is clear when its action is explicited: it
simply forgets that an automorphism Σ of A has an inverse.

We want to give a left adjoint F : CatN →CatZ to the functor
U , obtaining a precise description of its action on objects of Cat.
To this end, given (A,Σ) ∈ CatN let us consider the coequalizer
diagram in Cat:

A×N×Z
Σ×Z //

(A×µ)◦(ι×Z)
// A×Z // F(A,Σ) (A.18)

Now, all monads like SZ, i.e. all monads of the form (−)×M for
M a monoid in a monoidal(ly cocomplete) category (A,×) preserve
colimits, hence there is a unique SZ-algebra structure on F(A,Σ)
such that

Σ̂ : F(A,Σ)×Z→ F(A,Σ) (A.19)

is an automorphism of F(A,Σ) and the correspondence F̃ : (A,Σ) 7→
(F(A,Σ), Σ̂) is the desired left adjoint. The category F(A,Σ) can
be considered the free category with automorphism on the category
with endomorphism (A,Σ).

This category satisfies the desired universal property: there ex-
ists a functor

α : (A,Σ)→ F̃(A,Σ) (A.20)

(the unit of the adjunction we built) such that for any SZ-algebra
morphism H : (A,Σ) → (B,Θ) where (B,Θ) is a T-algebra, there is
a unique TN-algebra morphism H̄ : F̃(A,Σ) → (B,Θ) such that the
following diagram commutes:

(A,Σ) F̃(A,Σ)

(B,Θ).

(A.21)

The category of topological spectra consists of the Spanier-White-
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head stabilization of the category of cw-complexes, as well as the
category of chain complexes of abelian groups (or modules over a
ring R); these examples are discussed in [Tie69].

A.5 Stability in different models.

Whirl in circles
Around a stable center.

M. Ueshiba

A.5.1 Stable Model categories.
Every pointed model category [Hov99, Ch. 7] M carries an adjun-
ction between endofunctor

Σ⊣Ω : M⇆M (A.22)

defined respectively as the homotopy pushout and homotopy pull-
back below:

X ∗ ΩY ∗

∗ ΣX ∗ Y .

⌟⌜

It is a matter of unraveling definition to show that these two func-
tors are mutually adjoint. A pointed model category is said to be
stable if the above adjunction is a Quillen equivalence.

A.5.1.1 k-linear dg-categories.

A k-linear dg-category is a category enriched ([Kel82, Gen15]) over
the category of chain complexes of vector spaces over the field k; a
dg-category D is called pretriangulated if the following two axioms
hold:
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• For every object X ∈D the shifted representable dg-module
D(−, X )[k] ∈ D̂ is homotopic to a representable D(−, X 〈k〉);

• For every f : D(−, X )→D(−,Y ) a morphism of representable
dg-modules in D̂, the dg-module

C
(
D(−, f )

)
: C(D(−, X ))→ C(D(−,Y )) (A.23)

is homotopic to a representable D(−, c( f )).
The homotopy category of a dg-category is defined by taking the
H0 of each hom-space D(X ,Y ) (or, more formally, the image of
D under the 2-functor H0,∗ : dg-Cat→Cat). The homotopy cate-
gory of a pretriangulated dg-category is triangulated, in the sense
of definition A.1.1. We define an enhancement for a triangulated
category D any pretriangulated dg-category D such that there is an
equivalence [D]∼=D.

Quoting [Lur11]:

The theory of differential graded categories is closely
related to the theory of stable ∞-categories. More
precisely, one can show that the data of a (pretri-
angulated) differential graded category over a field
k is equivalent to the data of a stable ∞-category C
equipped with an enrichment over the monoidal ∞-
category of k-module spectra. The theory of differen-
tial graded categories provides a convenient language
for working with stable ∞-categories of algebraic
origin (for example, those which arise from chain
complexes of coherent sheaves on algebraic varieties),
but is inadequate for treating examples which arise in
stable homotopy theory.

A.5.1.2 Stable ∞-categories.

Stable ∞-categories are extensively described in [Lur11], all along
the present chapter, and all along the present thesis; here, we out-
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line how, in the setting of ∞-categories, the lack of universality
for the construction of D(A) is completely solved: first of all, re-
call that the Dold-Kan correspondence [Kan58, GJ09, Low] estab-
lishes an equivalence of categories between the category Ch+(Ab)
(chain complexes of abelian groups, concentrated in positive de-
gree) and sAb (simplicial sets whose sets of n-simplices all are
abelian groups).

A Ã Ã∆ D∞(A)

AbCat Ch+(Ab)-Cat sAb-Cat Catst∞

enrichment homwise Dold-Kan coherent nerve

Figure A.1: Construction of the derived ∞-category of A.
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