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We study how the elements of the leptonic right-handed mixing matrix can be determined

at the LHC in the minimal Left-Right symmetric extension of the standard model. We do it by

explicitly relating them with physical quantities of the Keung-Senjanovi¢ process and the lepton

number violating decays of the right doubly charged scalar. We also point out that the left and right

doubly charged scalars can be distinguished at the LHC, without measuring the polarization of the

�nal state leptons coming from their decays. Then we study time reversal symmetry violation in

the µ→ eγ decay and the µ→ e conversion process and compute a T-odd triple vector correlation

for the µ → eγ decay and the µ → e conversion process, �nding simple results in terms of the CP

violating phases of the e�ective Hamiltonians. Finally we focus on the minimal Left-Right symmetric

extension of the Standard Model, which is a complete model of neutrino masses that can lead to

an appreciable correlation. We show that under rather general assumptions, this correlation can be

used to discriminate between Parity or Charge-conjugation as the discrete Left-Right symmetry.
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Chapter 1

Introduction

The minimal left-right model (LR) has been proposed more than four decades ago [1, 2, 3, 4, 5]

in order to explain the maximal parity violation observed in weak interactions and more recently

established as a complete model of neutrino masses and mixings [6]. It introduces three new heavy

gauge bosonsW+
R ,W

−
R , ZR and the heavy neutrino states N . In this model, the maximally observed

parity non conservation is a low energy phenomenon, which ought to disappear at energies above

the WR mass. Furthermore, the smallness of neutrino masses is related to the near maximality of

parity violation [7, 8, 9], through the seesaw mechanism [7, 8, 9, 10, 11, 12]. Historically it has been

know that there are two kinds of LR symmetry, namely generalized parity (P) or charge conjugation

(C) (for reviews see [13, 14, 15]) and to our knowledge, there have not been any proposal that try to

experimentally distinguish between these two cases. In this thesis we have something to say about

this issue, as we shall see in the next sections.

It turns out that there exists [16] an exciting decay of WR into two charged leptons and two

jets (WR → l + N → ll + jj). We refer to it as the Keung-Senjanovi¢ (KS) process. This process

has a small background and no missing energy. It gives a clean signal for the WR production at

LHC, as well as probing the Majorana nature of the heavy neutrinos. Since there is no missing

energy in the decay, the reconstruction of the WR and N invariant masses is possible. If true, the

Majorana mass of N will lead to the decay of the heavy neutrino into a charged lepton and two jets

(N → l + jj), with the same probability of decaying into a lepton or antilepton.

The production of WR is ensured at the LHC because in the quark sector the left and right
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mixing matrices are related. For C as the Left-Right symmetry, the mixing angles are exactly equal,

therefore the production rate of WR is not suppressed. For P the situation is more subtle and

needed an in-depth study. Finally in [17] a simple analytic expression valid in the entire parameter

space was derived for the right-handed quark mixing matrix. It turns out that despite parity being

maximally broken in nature, the Right and Left quark mixing matrices end up being very similar.

Moreover the hypothesis of equal mixing angles can be tested at the LHC by studying the hadronic

decays of WR [18].

In the Leptonic sector the connection between the Left and Right leptonic mixing matrices

goes away, since light and heavy neutrino masses are di�erent. For C as the Left-Right symmetry, the

Dirac masses of neutrinos are unambiguously determined in terms of the heavy and light neutrino

masses [6]. Light neutrino masses are probed by low energy experiments, whereas the ones of the

heavy neutrinos can be determined at the LHC. This is why the precise determination of the right-

handed leptonic mixing matrix, one of the main topic of this thesis, is of fundamental importance.

As we shall see all the three mixing angles and three of CP violating phases may be determined by

studying the �nal states in the KS process and decays of the doubly charged scalars. Furthermore

we point out that these two processes are not sensitive to three of the phases appearing in VR, unlike

electric dipole moments of charged leptons.

The other main topic of this thesis is time-reversal symmetry violation in the µ → eγ decay

and the µ→ e conversion process and we focus in these two particular processes due to the expected

improvements in the sensitivity �see [15] for a detailed review of LFV processes. More precisely, we

�nd analytical expression for the asymmetry in both processes and using the most general e�ective

Hamiltonians.

The MEG collaboration reports the best experimental limit for the µ→ eγ decay [19]

Br(µ→ eγ) ≡ Γ(µ→ eγ)

Γ(µ→ eνµνe)
< 5.7× 10−13 (1.1)

and the SINDRUM II collaboration gives the strongest limits for the µ → e conversion process,
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namely [20],

Br(µ+ Ti(Au))→ e+ Ti(Au)) ≡ Γ(µ→ e)

Γcapt

< 6.1(7)× 10−13, (1.2)

where Γcapt is the muon capture rate in the vicinity of a nucleus. Upgrades of ongoing experiments

have been considered with the �nal goal of achieving a sensitivity around 10−18 − 10−19 [21, 22,

23, 24]. Given the current limits and the future improvements, there exist the possibility of having

enough statistics to start probing CP violation beyond the SM in the next round of experiments.

This is suggested and studied in [25, 26].

We focus on quantities that test T violation in the absence of �nal-state interactions and

among these quantities are triple vector correlations made up of the momenta or spins of the

participating particles [27]. In [28], it is suggested that triplet vector correlations can be used to

probe CP violation in the µ→ e conversion process. Here we present the �rst analytical computation

for the correlation suggested in [28] for the µ → e conversion process and we extend their work in

two ways: �rst, we compute the correlation for the µ→ eγ decay and second we include the full set

of e�ective operators that enter the µ→ e conversion process.

This thesis is mainly based on the works presented in [29, 30]. In chapter 2 we give an

introduction to the minimal LR model including the relevant sector and interactions in the discussion

to follow. Then we also introduce the relevant theoretical tools needed when computing the T

asymmetries in the µ → eγ decay and the µ → e conversion process. The results obtained are

presented in the two main chapters 3 and 4. More precisely, In chapter 3 we present a complete

strategy to determine the three mixing angles and three phases in the mixing matrix of heavy

neutrinos. For this strategy, the KS process and the decay of the right type doubly charged scalar

play the fundamental role. Later in chapter 4 we present the result of an analytical computation

of a triple vector asymmetry in the µ → eγ decay and the µ → e conversion process, as well

as some phenomenological discussion in the context of the minimal LR model. It turns out that

these asymmetries can be used to discriminate between parity or charged conjugation as the LR

symmetries in the most interesting scenario. For the computation we make use the general e�ective
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Hamiltonians and further restricting them when discussing their implications within the LR model.

Finally in chapter 5 we present our conclusions.



Chapter 2

The minimal Left-Right symmetric model

Parity maximally broken in the SM is one of its most puzzling features and the minimal Left-

Right symmetric model [1, 2, 3, 4, 5] was proposed in order to account for this issue. In this model

parity is assumed to be spontaneously broken at high energies, therefore if the symmetry breaking

scale is su�ciently low, we might be able to observed parity restoration in high energy processes. As

a consequence of the LR symmetry, this model predicted massive neutrinos long before their masses

were established by oscillation experiments. More recently it was also established as a complete

model of neutrino masses and mixings [6], namely it does to neutrino masses what the SM does for

the quarks and charged leptons masses. Furthermore, the smallness of neutrino masses is related to

the near maximality of parity violation [7, 8, 9], through the seesaw mechanism [7, 8, 9, 10, 11, 12].

The gauge group: The minimal Left-Right symmetric model [1, 2, 3, 4, 5] is based on the

gauge group G = SU(2)L × SU(2)R ×U(1)B−L, with an additional discrete symmetry that may be

generalized parity (P) or charge conjugation (C).

The discrete Left-Right symmetry: there are two possible left-right symmetries that

may be parity or generalized charge conjugation. Under the discrete left-right symmetry the �elds

transform as follows:

P :


Pf(L,R)P−1 = γ0f(R,L)

PΦP−1 = Φ†

P∆(L,R)P−1 = −∆(R,L)

C :


Cf(L,R)C−1 = C(f̄(R,L))

T

CΦC−1 = ΦT

C∆(L,R)C−1 = −∆∗(R,L)

(2.1)

where γµ (µ = 0, 1, 2, 3.) are the gamma matrices and C is the charge conjugation operator. One
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important question one may ask is how distinguished between P or C as the LR symmetry. As we

shall see in the next sections, CP asymmetries in the low energy LFV decays such as µ → eγ and

µ→ e conversion are of special interest.

Quarks and Leptons: quarks and leptons are assigned to be doublets in the following

irreducible representations of the gauge group:

qL =

 u

d


L

: (2, 1,
1

3
), qR =

 u

d


R

: (1, 2,
1

3
), (2.2)

LL =

 ν

l


L

: (2, 1,−1), LR =

 N

l


R

: (1, 2,−1).

(2.3)

N represents the new heavy neutrino states, whose presence play a crucial role in explaining

the smallness of the neutrino masses on the basis of the see-saw mechanism.

The Higgs sector: the scalar sector consists in one bidoublet Φ, in the (2,2,0) representation

of G and two scalar triplets ∆L and ∆R [7, 8], belonging to (3,1,2) and (1,3,2) representation

respectively

Φ =

 φ0
1 φ+

1

φ−2 φ0
2

 , ∆L,R =

 δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

 .

(2.4)

. The expression for the more general scalar potential consistent with the LR symmetry may

be found elsewhere [8, 31, 32, 15, 33, 34, 35, 36] and we give its expression in appendix A for

completeness.

Symmetry breaking: At the �rst stage of symmetry breaking, the Higgs �eld ∆R takes a

v.e.v (vR) along its neutral component and breaks the Left-Right symmetry down to the standard

model gauge group. At this stage the bidoublet Φ, breaks the electroweak gauge group down to

U(1)em and from the interactions in the scalar potential, ∆L gets an induced small vev vL ∝ v2/vR

( v is the electroweak v.e.v).
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The v.e.v's of the Higgs �elds may be written as [9]

〈Φ〉 =

 v1 0

0 v2e
iα

 . (2.5)

〈∆R〉 =

 0 0

vR 0

 , 〈∆L〉 =

 0 0

vLe
iθL 0

 (2.6)

where vL � v2
1 + v2

2 � v2
R, since it can be shown from the minimization conditions of the potential

that vL ∝ v2/vR.

If the mixing with the right handed triplet scalar �eld is neglected the physical mass eigenstates

that belong to the bidoublet Φ are of the form:

h =
1

v
<e(v1φ

0
1 + v2e

ia(φ0
2)∗) (2.7)

H =
1

v
<e(−v2φ

0
1 + v1e

ia(φ0
2)∗) (2.8)

A =
1

v
=m(−v2φ

0
1 + v1e

ia(φ0
2)∗) (2.9)

H+ =
1

v
(v1φ

+
1 + v2e

iaφ+
2 ) (2.10)

Notice that the mixing among the two triplets ∆L and ∆R is suppressed by the v.e.v vL and

hence they are physical �elds to a very good aproximation.

Lepton masses: lepton masses are due to the following Yukawa interactions (once the Higgs

�elds take their v.e.v along their neutral components)

LY = L̄L(YΦΦ + ỸΦΦ̃)LR + 1
2(LTLCiσ2Y∆L

∆LLL

+LTRCiσ2Y∆R
∆RLR) + h.c., (2.11)

where Φ̃ = σ2Φ∗σ2 , σ2 is the Pauli matrix and C ≡ iγ2γ0.

Invariance of the Lagrangian under the Left-Right symmetry requires the Yukawa couplings
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to satisfy

P :


Y∆R,L

= Y∆L,R

YΦ = Y †Φ

ỸΦ = Ỹ †Φ

, C :


Y∆R,L

= Y ∗∆L,R

YΦ = Y T
Φ

ỸΦ = Ỹ T
Φ

(2.12)

Consistent with the above notation, the neutrino mass interaction terms are of the form [8, 9]

Lν =
1

2
νTLY∆L

vLCνL +
1

2
(N c

L)TCMNN
c
L + (N c

L)TCM †DνL + h.c. (2.13)

and the neutrino masses take the see-saw form [8]

MN = Y ∗∆R
vR, (2.14)

Mν = Y∆L
vLe

iθL −M †D 1
MN

M∗D, (2.15)

MD = v1YΦ + ỸΦv2e
−iα (2.16)

The charged lepton mass matrix is

Ml = YΦv2e
iα + ỸΦv1 (2.17)

α is called the �spontaneous� CP phase. All the physical e�ects due to θL, can be neglected, since

this phase is always accompanied by the small vL.

As usual, the mass matrices can be diagonalized by the bi-unitary transformations

Ml = UlLmlU
†
lR, MD = UDLmDU

†
DR,

Mν = U∗νmνU
†
ν , MN = U∗NmNU

†
N , (2.18)

where ml, mν and mN are diagonal matrices with real, positive eigenvalues.

Charged gauge interactions with leptons: from the covariant derivative and in the mass

eigenstate basis the �avor changing charged current Lagrangian is

Lcc =
g√
2

(ν̄LV
†
L
/WLlL + N̄RV

†
R
/WRlR) + h.c., (2.19)
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VL and VR are the left and right leptonic mixing matrices respectively

VL = U †lLUν , (2.20)

VR = U †lRUN . (2.21)

We may use the freedom of rephasing the charged lepton �elds to remove three unphysical

phases from VL, which ends up having 3 mixing angles and 3 phases, namely one Dirac and two

Majorana phases. On the other hand since the freedom of rephasing the charged lepton is already

used for VL, its right-handed analogue �the leptonic mixing matrix VR� is a general 3 × 3 unitary

matrix and may be therefore parametrized by 3 mixing angles and 6 phases. As it is well known, the

mixing angles of VL mixing matrix are probed by low energy experiments. Instead we focus in the

precise determination of the mixing angles and phases of its right-handed analogue VR at hadron

colliders. This matrix has in general 3 di�erent angles and 6 phases �as discussed above� and we

write it in the form VR = KeV̂RKN , where Ke = diag(eiφe , eiφµ , eiφτ ), KN = diag(1, eiφ2 , eiφ3) and

V̂R =


c13c12 c13s12 s13

−s12c23e
iδ − c12s13s23 c12c23e

iδ − s12s13s23 c13s23

s12s23e
iδ − c12s13c23 −c12s23e

iδ − s12s13c23 c13c23

 ,

(2.22)

sαβ(cαβ) is the short-hand notation for sin θαβ(cos θαβ) with α, β = 1, 2, 3.

Doubly charged scalar interactions with leptons: the next relevant interactions for our

discussion are the ones between the charged leptons and the doubly charged scalars

L∆ = 1
2 l
T
RCY

′
∆R
δ++
R lR + 1

2 l
T
LCY

′
∆L
δ++
L lL + h.c., (2.23)

Y ′∆R
= g

mWR
V ∗RmNV

†
R. (2.24)

If C is the left-right symmetry, is easy to see from Eqs. (2.1) and (2.11) that [13, 14, 15]

Y ′∆L
= (Y ′∆R

)∗. (2.25)



10

For parity (P) the situation is di�erent since for a non-zero spontaneous phase the charged

lepton masses are not hermitian. Then after the symmetry breaking, one would expect that the

left and right Yukawa interactions with the doubly-charged scalar are not the same. It turns out

that for right-handed neutrinos masses accessible at the LHC, the charged lepton mass matrices end

up being almost hermitian [37]. Let us notice that it implies that Yukawa couplings of the doubly

charge scalars must satisfy1

Y
′

∆L
= SlY

′
∆R
Sl + i tanβ sinα(R∗Y ′∆R

Sl + SlY
′

∆R
R†) +O

[
(tanβ sinα)2

]
(2.26)

with

(R)ij =
(M ′D)ij

(ml)i + (ml)j
− 1

2
tanβe−iα(Sl)ij . (2.27)

Where Sl is a 3 × 3 matrix with ± signs in the diagonal entries and zero otherwise, M ′D =

U †lLMDUlR and β ≡ v2/v1. This is obtained in analogy to the approach used for the quark mixing

matrix in [17, 38], where it is also shown that tan 2β sinα . 2mb/mt. Hence one can safely assume

that Y
′

∆L
w Y

′
∆R

as a leading order approximation in the most interesting scenario.

Notice that (2.24) depends on the Majorana phases and therefore the decay rates of δ++
R into

two leptons in the �nal state depend in a CP-even way on the Dirac and Majorana phases. As we

shall see in the next sections, this fact can be used to determine some of the phases in VR at the

LHC.

2.1 Lower bounds on the LR scale and particle masses

Theoretical bounds on the Left-Right scale were considered in the past and historically the

small KL − KS mass di�erence gives a lower bound on the Left-Right-scale of around 3 TeV in

the minimal model [39]2 . More recently in [41], an updated study and a complete gauge invariant

computation of the KL,KS and Bd, Bs meson parameters, gives mWR
> 3.1(2.9) TeV for P(C). In

[42] it is claimed that for parity as the Left-Right symmetry, the θQCD parameter, together with

1 See section 3.1.2 for a detailed derivation of this relation
2 For recent updates see references [32, 40]
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K-meson mass di�erence ∆mK , push the mass ofWR up to 20 TeV [41, 42]; however this depends on

the UV completion of the theory. Direct LHC searches, on the other hand, gives in some channels a

lower bound of around 3 TeV [43, 44]. For the ZR gauge boson there exist the theoretical bound from

the relation mZR ' 1.7mZR . In appendix B we show an analysis in which the expected sensitivity

to the ZR boson mass is obtained. We �nd that the mass reach of the LHC for 300fb−1 (1000fb−1)

of integrated luminosity is around 5.5 TeV (7.2 TeV) approximately � see Fig. B.2.

The more recent and stringent bounds on the heavy scalar particles that belong to the bidou-

blet comes form the K meson system and give the lower bound for the H,H+, A heavy scalars

masses of around 15− 20 TeV [40, 41].

Direct LHC bounds on the doubly charged scalars are around 400 GeV and 500 GeV to δ++
L

and δ++
R respectively [45]. More recently in [34] theoretical bounds were obtained. It was concluded

from the sum rules for the mass di�erences among the ∆L components, together with the oblique

parameters, that in order to observed the ∆L at the LHC the WR is then far out of its reach.

Conversely were the WR mass 3 TeV, the δ0
L mass would have to be greater than 6 TeV. Since the

α3 coupling present in the potential give the mass to heavy scalars H,H+, A, it is clear that in order

to have a low scale WR mass of few TeV the α3 coupling should not be small. For instance for WR

mass of 6 TeV α3 ' 4.8 �e.g. see Eq. 12 in [34]. In this case and as shown in [34], the enhanced α3

coupling would contribute to the Higgs mass through the δ++
R loop. Therefore a lower correlated

mass bound with WR emerges, which disfavor both accessible at the LHC but still some borderline

space remain �see Fig. 7 in [34]. Lower bounds on the Higgs particle <e(δ0
R) responsible for the

generation of the LR scale and the Majorana heavy neutrino masses have not been obtained so far.

2.2 The Dirac mass matrix from the heavy and light neutrino Majorana

masses in the minimal left-right model

In this section we describe the parametrization for the Dirac mass term presented in [46],

which essentially states that in the general case of type I plus type II see-saw mechanism, the Dirac

mass cannot be determined in terms of the heavy and light neutrino masses. Later we describe
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following [6] how within the LR model this is not an issue.

Consider the Majorana mass for neutrinos,

Mν = Y∆L
vLe

iθL −M †D
1

MN
M∗D. (2.28)

Assume now that the elements of Mν and Y∆L
vLe

iθL are all known. Remember that the elements

of Mν can be probed in neutrino oscillation experiments whereas Y∆L
vLe

iθL can be probed in the

decays of the scalars belonging to the left triplet ∆L into SM gauge bosons W and Z � see [47, 48]

for detailed studies on this subject. In this case there exist an unitary matrix U such that

UT
(
Mν − Y∆L

vLe
iθL
)
U = D = −UTM †D

1

MN
M∗DU, (2.29)

where D is a diagonal matrix. Multiplying both sides by
√
D−1 one gets

1 = −D− 1
2UTM †D

1

MN
M∗DUD

− 1
2 = O†O∗, (2.30)

from which it follows that MD is given by

MD = i
√
M∗NO

√
D∗UT (2.31)

and we see that even if we completely know the light and heavy neutrino masses, the Dirac mass

is determined up to an arbitrary complex orthogonal matrix. It is worth to emphasize that the

elements of an arbitrary, complex, orthogonal matrix are not bounded �in contrast to the case of

real orthogonal matrices� and could be as large as one wants, hence rendering the Dirac mass matrix

elements arbitrary.

It turns out that within the LR model MD is completely determined in terms of the heavy

and light neutrino masses and in this respect C as the LR symmetry plays the fundamental role [6].

In what follows we present and derive the main result presented in [6] and to this end consider Eq.

2.16 with MD = MT
D, namely

Mν = Y∆L
vLe

iθL −M∗D
1

MN
M∗D, (2.32)
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from which one can �nd the expression of MD that is given by [6]

M∗D = −iMN

√
M−1
N (Mν − Y∆L

vLeiθL) =

−iMN

√
M−1
N Mν − vL

vR
eiθL . (2.33)

Finally comparing Eq. 2.31 with 2.33 one �nds that the matrix O is �xed and given by

O∗ =
√
MN

√
M−1
N (Mν − Y∆L

vLeiθL)U
√
D−1 =

√
mN

√
m−1
N V T

R V
∗
Lmν

√
m−1
ν +O( vLvR ), (2.34)

which shows that the matrix O is completely �xed in terms of the light and heavy neutrino masses

and mixings. This is our main motivation for studying the right handed leptonic mixings and phases

at the LHC, since as can be seen from the above equation, the determination of VR is paramount

importance in order to determine the Dirac masses of neutrinos and test the Higgs mechanism for

neutrino masses. Notice that the matrix elements of O are bounded and naturally of order one �as

already emphasized in [6].

2.3 Lepton Flavor violation. Experimental Limits

The SM predicts massless neutrinos and it implies that the ��avor� number associated to

every neutrino is conserved separately at the tree level 3 . This is so because due to its masslessness,

one can freely rotate the neutrinos in the mass eigenstate basis of charged leptons in such a way

as to make the mixing matrix between charged leptons and neutrinos proportional to the identity.

However in the neutrino sector non zero mass di�erences and its associated Lepton Flavor Violation

(LFV) have been observed in the form of neutrino oscillations by the Super-Kamiokande [52], SNO

[53], KamLAND [54] and other more recent experiments experiments, so it is clear the the SM

must be modi�ed in order to account for massive neutrinos. Therefore one would think that LFV

processes are not forbidden and could be observed at sizable rates, this is no so for charged leptons

and the reason is that the neutrino mass scale is much smaller than electroweak scale. Recent
3 Violated at the quantum level by anomalies [49, 50] that lead to Lepton and Baryon number violation in the

SM at negligible rates [51].
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bounds coming from cosmological considerations give a bound on the sum of neutrino masses of∑
mν ≤ 0.23 eV [55] and there are also bounds to their mass di�erences coming from oscillation

experiments. In table 2.1 we show the best �t values for the oscillation parameters shown in [56],

where it may be seen that the neutrino mass di�erences ranges from 10−5 eV2 to 10−3 eV2. Notice

that the mixing angles are large, so what is really producing the suppression of the �avor-violating

e�ects for charged leptons is the disparity between the neutrino mass scale and the electroweak

scale.

Best �t value 3σ range
sin2 θ12 0.302 0.267→ 0.344

θ◦12 33.36 31.09→ 35.89

sin2 θ23 0.413 0.342→ 0.667

θ◦23 40.0/50.4 35.8→ 54.8

sin2 θ13 0.0227 0.0156→ 0.0299

θ◦13 8.66 7.19→ 9.96

δ(◦) 300 0→ 360
∆m2

21

10−5eV 2 7.5 7.00→ 8.09
∆m2

31

10−3eV 2 (NH) 2.473 2.276→ 2.695
∆m2

32

10−3eV 2 (IH) -2.427 −2.469→ -2.242

Table 2.1: Best �t values for the neutrino oscillation parameters for normal (NH) and inverted
(IH) neutrino mass spectrum.

In the SM the µ→ eγ decay rate is more than 50 order of magnitude smaller that the standard

muon decay rate into one electron and two neutrinos. The point is that this situation is completely

di�erent if new physics beyond the SM is introduced. For instance in the minimal LR model there

are new contributions to the µ(τ) → eγ decay and µ → e conversion at sizable rates. In Table 2.2

we show the experimental bounds for the main muon LFV decays considered in the experiments

as well as current experiments that are expected to give new improved limits in the near future.

Our main focus in this thesis is devoted to the µ → eγ decay and µ → e conversion process. The

µ→ eee decay is planned to be studied in the near future.

Finally limits on the LFV processes of tau leptons are much weaker and around 10−8 [57, 58,

59, 60, 61]. The expected improvement in these limits are most likely to be around 10−9 [62, 63].
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Decay Channel Experiment Branching ratio limit Upgraded sensitivity

(next data acquisition)
µ→ eγ MEG 5.7× 10−13 [19] 5× 10−14 [64]
µ+ Ti(Au)→ e+ Ti(Au) SINDRUM II 6.1(7)× 10−13[20] 10−14[65, 66]
µ→ eee SINDRUM 1× 10−12[67] 10−16[68]

Table 2.2: Experimental limits on the muon LFV decays

2.4 The µ → eγ decay and µ → e conversion process. Theory and e�ective

Hamiltonians

In the following sections we give some theoretical tools we used when computing the µ→ eγ

decay and the µ→ e conversion process.

2.4.1 µ→ eγ decay. E�ective Hamiltonian

The µ → eγ decay is predicted to be negligible small in the SM with massive neutrinos,

therefore if this process is seen it implies that new physics is behind it. The e�ective Hamiltonian

for this process is of the form

Heff =
4eGFmµ√

2
ē(pe)σµνF

µν(ALPL +ARPR)µ(pµ) + h.c., (2.35)

where e is the electromagnetic coupling constant, Fµν is the electromagnetic �eld strength for the

photon �eld, GF is the Fermi constant, P(R,L) ≡ 1
2(1 ± γ5) , mµ is the muon mass and e(pe) and

µ(pµ) are the spinors for the electron and muon respectively. For this process we use the gamma

matrices in the Weyl basis and the coe�cients AL and AR are calculated within a given physical

model.

2.4.2 µ→ e conversion. Theory and E�ective Hamiltonian

Theoretical studies of this process were performed in the past [69, 70, 71, 72]. In [72] the

outgoing electron coming from the conversion process, belongs to one of the states in the continuum

energy spectrum for the Coulomb potential and as a matter of fact the outgoing electron must be

treated as a plane wave. One way to argue this is by noticing that an electron in the continuum
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energy spectrum, is described by a Dirac spinor in the angular momentum basis. Experimentally,

the detected electron has a de�nite 4-momentum implying that is must be treated as a plane wave.

In this work we present a method for computing a triple vector correlation that tests T-

violation in the µ→ e conversion process for various nuclei. We make use of the formalism developed

in [73].

We use the following representation for the γ matrices

γ0 = β =

 1 0

0 −1

 , γi =

 0 σi

−σi 0

 , (2.36)

and

σµν =
i

2
[γµ, γν ], γ5 = −iγ1γ2γ3γ0, (2.37)

where the σi are the Pauli matrices where i = 1, 2, 3 and the index µ takes the values µ = 0, 1, 2, 3.

The Dirac's equation for the central �eld problem in polar coordinates is given by (the energy

is given in units of the electron mass)

Eψ = Hψ = [−iγ5Σr(
∂

∂r
+

1

r
− β

r
K) + V + β]ψ, (2.38)

where

Σr =
1

r

∑
i

Σi, Σi =
i

2
[γj , γk] ({i,j,k} cyclic). (2.39)

K = β(Σ · L+ 1). (2.40)

V is the Coulomb potential and L is the orbital angular momentum.

We write the wave function as [74]

ψµκ =

 gκ(r)χµκ

ifκ(r)χµ−κ

 , (2.41)

such that Kψµκ = −κψµκ and J3ψ
µ
κ = µψµκ , where J3 is the third component of the total angular

momentum ~J . The radial functions gκ and fκ obey the di�erential equations
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dgκ(r)

dr
= −κ+ 1

r
gκ(r) + (E − V + 1)fκ(r), (2.42)

dfκ(r)

dr
=
κ− 1

r
fκ(r)− (E − V − 1)gκ(r). (2.43)

In the high energy limit -all the masses are set to zero- and from eqs.(2.42) and (2.43), fκ(r)

and gκ(r) satisfy

f−κ = −gκ, g−κ = fκ. (2.44)

From here on we make use of this result for the spinor ψµ(e)
κ,E describing the electrons coming

from the conversion process. The initial muon instead is described by ψµκ with the quantum numbers,

µ = ±1
2 and κ = −1 and we choose the normalization∫

d3xψ
(µ)†
1s (~x)ψ

(µ)
1s (~x) = 1. (2.45)

For the electrons in the continuum-energy states we use the same normalization considered

in [72], namely ∫
d3xψ

µ(e)†
κ,E (~x)ψ

µ
′
(e)

κ
′
,E
′ (~x) = 2πδµµ′ δκ′κδ(E − E

′
). (2.46)

In the conversion process the e�ective Hamiltonian is given by [72]

Heff =
4GF√

2
(mµA

∗
Rµ̄σ

µνPLeFµν +mµA
∗
Lµ̄σ

µνPReFµν + h.c.)

+
GF√

2

∑
q=u,d,s

[(gLS(q)ēPRµ+ gRS(q)ēPLµ)q̄q + (gLP (q)ēPRµ+ gRP (q)ēPLµ)q̄γ5q

(gLV (q)ēγ
µPLµ+ gRV (q)ēγ

µPRµ)q̄γµq + (gLA(q)ēγ
µPLµ+ gRA(q)ēγ

µPRµ)q̄γµγ5q+

1

2
(gLT (q)ēσ

µνPRµ+ gRT (q)ēσ
µνPLµ)q̄σµνq + h.c.]. (2.47)

The nuclear form factors were calculated in [75]. The wave function for the muon and the electrons

in the presence of a central �eld were obtained in [71, 72]. In particular in [72] updated data for

the proton and neutron densities were used.
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In the limit of r → ∞ it can be shown that the general solution for a Dirac particle in a

Coulomb �eld at �rst order in Heff is of the form [73]

ψas = −i
√

π

|~p|
eipr

r

∑
κµ

eiδκ〈ψ(e)µ
κ |Heff |ψ(µ)

1s 〉

 √
E + 1χµκ(p̂)

−
√
E − 1χµ−κ(p̂)

+O(H2
eff ), (2.48)

where p̂ is in the direction of the outgoing electron. The phases eiδκ are the usual ones appearing

in scattering problems in the presence of a Coulomb �eld and are given by

δκ = y ln 2pr − arg Γ(γ + iy) + ηκ −
1

2
πγ, (2.49)

y = αZE/p, γ =
√
κ2 − α2Z2, e2iηκ = −κ− iy/E

γ + iy
(2.50)

where Z is the atomic number, α = e2/4π and p is the modulus of the 3-momentum ~p. We consider

states with κ = ±1, hence the only term relevant for our discussion is ηκ �the remaining ones are

just an overall phase in the solution ψas.

Finally the total conversion rate per unit �ux is

ωconv = R2

∫
dΩψ†asψas =

1

2

∑
κ,µ

|〈ψµκ |Heff |ψi〉|2. (2.51)

In the next section we discuss the total conversion rate in some detail.

2.4.3 Total conversion rate

In this section we brie�y comment about the amplitude of the µ→ e conversion process and

the Born's approximation we used.

In computing the µ→ e conversion process, one usually assumes the so called Born's approx-

imation for the outgoing electrons. This approximation has two meanings: one is computing the

conversion rate to a given order in some small coupling; and the other is the assumption that elec-

trons coming from the conversion process are plane waves. The point is that we can do better and

have a complete control of both approximations at the same time. More precisely for the relativistic

one-electron atom and in the limit of big r (r >> r0, where V (r ≥ r0) = 0), the solution of the
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Dirac's equation at �rst order in the perturbation Heff is of the form [73]

ψas = −i
√

π

|~p|
eipr

r

∑
κµ

eiδκ〈ψµκ |Heff |ψi〉

 √
E + 1χµκ(p̂)

−
√
E − 1χµ−κ(p̂)

+O(H2
eff ), (2.52)

where ψi is any stationary state of the Coulomb potential, ψµκ is one of the continuum energy

solutions and Heff is the e�ective Hamiltonian for the µ → e conversion process. Furthermore it

can be shown that ψas is an eigenfunction of ~α · ~p + β with eigenvalue E so that ψas describes,

indeed a plane wave [73]. In the high energy limit �neglecting the electron mass� the solution ψas

simpli�es to

ψas = −i√πe
ipr

r

∑
κµ

eiδκ〈ψµκ |Heff |ψi〉

 χµκ(p̂)

−χµ−κ(p̂)

 . (2.53)

Finally if we are interested in computing the total conversion amplitude per unit �ux (for a detector

placed at �xed radius r = R) the total conversion rate is given by

ωconv = R2

∫
dΩψ†asψas = 2π

(
1

2

∑
κ,µ

|〈ψµκ |Heff |ψi〉|2
)

(2.54)

and we may absorb the
√

2π factor into the normalization of the wave function ψµκ in order to agree

with the conventions adopted in [72].

2.4.4 Triple vector correlation in the conversion process

In this section we give details of the calculation for the triplet correlation asymmetry in the

µ→ e conversion process within the formalism developed in [73]. We make use of the formalism to

compute the triple vector correlations shown in chapter 4.

Since we are interested in describing particles with a given polarization, we are going to make

use of the spin projection operators for Dirac spinors. Instead of using the covariant spin projection

operator we make use of the following projection operator

P
(±)
n̂0

=
1

2
(1±O · n̂0), (2.55)
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where

O ≡ β~σ + (1− β)(~σ · p̂)p̂ (2.56)

and n̂0 is the direction of the spin polarization vector in the rest frame of the particle, p̂ is the

direction of its momentum and the ± represent positive and negative polarization respectively. It

can be shown that the description of the spin with this operator is equivalent to the usual one given

by the manifestly covariant spin operator 4 . Notice that the non-relativistic limit of can be taken

in a transparent way by replacing β → 1.

For our present problem we assumed the muon to be non-relativistic and in the frame shown

in Fig.2.1 its polarization vector is of the form

nµ = (0, n̂0), (2.57)

where

n̂0 = (sin Φ cos Ψ, sin Φ sin Ψ, cos Φ). (2.58)

By multiplying the wave function of the muon in the conversion process by P (+)
n̂0

one obtains the

wave function of a non-relativistic muon with the given polarization. For the electron instead a

full relativistic treatment is required since its energy is Ee = mµ − εb, where mµ is the muon mass

and εb is the binding energy of the muon in the 1s state of the muonic atom. In this case the spin

projection operator coming from the conversion process is given by

P (+)
e =

1

2
(1 +Oe · n̂e0) (2.59)

and

Oe · n̂e0 = β~σ · n̂e0 + (1− β)(~σ · p̂e)(p̂e · n̂e0), (2.60)

n̂e0 = (0, 1, 0), p̂e = (sin θs, cos θs, 0). (2.61)

4 see [74] chapter III.
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Figure 2.1: Reference frame and the setup for the µ→ eγ decay and the µ→ e conversion process.
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Finally the wave function describing the polarized outgoing electron �coming from the conversion of

a polarized muon� is obtained by applying P (+)
e to the solution (2.48) and then (again for a detector

placed at a �xed radius R):

ωconv(cos Φ > 0)− ωconv(cos Φ < 0) = R2

∫
dΩ · sgn(ŝµ · (p̂e × ŝe)) · ψ†asP (+)

e ψas. (2.62)

Which is the expression we use when computing the asymmetry in the conversion process.



Chapter 3

Right-handed lepton mixings at the LHC

In this section we focus on the determination of the elements of the leptonic mixing matrix VR

and propose an strategy to determine its elements at the LHC. In particular the proposed strategy

make use of the KS process and the decays of the doubly-charged scalar δ++
R belonging to the

SU(2)R triplet, that as we shall see allow the complete determination of the mixing angles and

three CP phases. We also point out that these two processes are not sensitive to three of the phases

appearing in VR, unlike electric dipole moments of charged leptons.

3.1 Determination of the right-handed leptonic mixing matrix

In this section we show how the three angles θ12,θ23,θ13 and the Dirac phase δ, appearing in

VR are all expressed in term of physical observables at the LHC. Furthermore, we �nd analytic ex-

pressions relating the elements of V̂R with some physical branching ratios of the KS process. For the

Majorana phases we point out that they can be obtained through the decays of the doubly charged

scalar. Moreover these measurements could serve as a cross-checking for the model. Previous LHC

Studies have been done for this process assuming one and two heavy neutrino exchange [76], instead

here we do it in the generic case without further assumptions. As we will see our approach has

the advantage that the hadronic correction cancel redering the determination of the mixing cleaner

too. The determination of the Dirac and some of Majorana phases is in principle possible. Finally

another obvious advantage is that this approach allow the immediate implementation and testing

in Monte Carlo generators such as MadGraph [77] and Pythia [78].
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Figure 3.1: Keung-Senjanovi¢ process in both opposite-sign leptons (Left) and the lepton-number-
violating same-sign leptons in the �nal state (Right).

3.1.1 Keung-Senjanovi¢ process

We begin our analysis by considering the KS process. It has a clean LNV channel that consists

in two same-sign leptons and two jets in the �nal state with almost no background. This process

has no missing energy in the �nal state and it is ampli�ed by the WR resonance. Measuring the

energy and momenta of the �nal particles it allows the full reconstruction of the masses of the WR

and the heavy neutrino N . Studies of this process were performed in the past [79, 80, 81, 82, 83],

with the conclusion that WR can be discovered at the LHC with a mass up to ' 6 TeV, masses for

the right-handed neutrinos of the order mN ' 100GeV- 1TeV for 300 fb−1 of integrated luminosity.

In [84, 85] completed studies of the WR production and decays at the LHC were done. They gave

special emphasis to the chiral couplings of the WR with initial and �nal state quarks as well as the

�nal state leptons. They showed that it is possible to determine (by studying angular correlations

and asymmetries between the participating particles) the chiral properties of WR and the fermions.

The KS process o�ers also the possibility of observing both the restoration of the Left-Right

symmetry and the Majorana nature of neutrinos at colliders (see FIG. 3.1). The latter implies the

equality between the decay rates in the same-sign and the opposite-sign leptons in the �nal state

[16].

Once WR is produced on-shell, it decays into a lepton and the heavy neutrino N . For WR

boson mass bigger than the masses of the heavy neutrinos Nα (namely, mN < mWR
) where α =
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1, 2, 3, the decay rate of WR → lilkjj is (no summation over repeated indices)

Γ(W+
R → l+i l

+
k jj) =

∑
qq′ Γ(W+

R → l+i l
+
k qq

′
) =∑

qq′ Γ(W+
R → l+i Nα)Br(Nα → l+k qq

′
), (3.1)

where i, k = e, µ, τ and "Br" denotes the branching ratio into a given channel. A comment here

is in order, we assume that the electron produced together with WR may be distinguished from

the electron coming from the decay of the heavy neutrino N . For instance, in [79, 85] it is shown

that this distinction may be done using the appropriate kinematical variable. More precisely in

[79] they assumed that the electron with the lowest value of the quantity mrec
N −minv(ejj) comes

from the decay of the heavy neutrino, where mrec
N and minv(ejj) are the reconstructed mass of the

heavy neutrino and the invariant mass of the ejj system respectively. This distinction turns out to

be crucial for it allows to measure the polarization e�ects of the leptonic decays of the WR boson.

Notice that when the heavy neutrino N decays through mD or into left-handed charged leptons [6]

and/or in the form of displaced vertex at the LHC [81] the distinction becomes more apparent. In

the case when the two leptons are indistinguishable, there is another diagram that contributes in

the amplitude giving a net factor of two in the probability �since the phase space is reduced by a

factor of two as well. Conversely for two di�erent leptons there is a factor of two in the probability

since both contributions sum up incoherently. The bottom line is that amount to adding a term in

Eq. 3.1 with i↔ k. On the other hand, since we shall consider ratios of cross sections, our results

are una�ected.

In the case of on-shell WR and N eq. (3.1) will not be modi�ed by hadronic corrections

between initial and �nal quarks and the argument goes as follows: since this diagram can be

interpreted as a process occurring in space-time [86] , it is clear that there will be no interference

between the tree level process and the loop-corrections joining the initial and �nal quark states since

in the loop corrections WR and N are o�-shell particles. In the case of an o�-shell, KS-process loop

corrections between initial and �nal quarks may play an important role but this is not the case we

are considering, adding the fact that this process by itself is not so interesting since there is no an
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enhancement in the amplitude due to internal on-shell particles.

Notice that if the heavy neutrino masses are not degenerate, in general the KS process is

sensitive only to the Dirac type phase δ. In this case both lepton number conserving and lepton

number violating channels give the same results. The partonic processes are illustrated in FIG. 3.1.

For degenerate heavy neutrino masses, namely mass di�erences less or equal than their total

width i.e. ∆mN ≤ Γ(N), one may easily see from the same-sign leptons in the �nal state, that there

is a CP-even dependence on the phases in KN . Notice that this channel breaks the total lepton

number, then is clear that we should have some dependence on the Majorana phases. In the case

of at least two degenerate heavy neutrino masses, it is in principle possible to construct CP-odd,

triple-vector-product asymmetries with three momenta or any mixture of momenta and spin for the

participating particles. For instance in [87] CP odd asymmetries at the LHC are constructed and

it is found that there could be signi�cant sensitivity to CP-odd couplings.

From Eq. (2.19) we �nd that the decay rate of W+
R → l+i Nα is (in the rest frame of the WR

boson)

Γ(W+
R → l+i Nα) =

g2

8π
|(V †R)αi|2

|~pα2 |2
m2
WR

[
|~pα2 |
3

+ Eα2 ], (3.2)

~pα2 is the momentum of the right-handed neutrino Nα. Eα2 is the energy of Nα and ~pα2 is such that

|~pα2 |+
√
|~pα2 |2 +m2

Nα
= mWR

. (3.3)

The 3-body decay rate of N into one lepton and two jets is given by

Γ(Nα → l+k jj) = NC
g4

512π3 |(V †R)αk|2F ( mN
mWR

)mWR

(∑
qq′ |(V

Q
R )†qq′ |2

)
, (3.4)

with,

F (x) = −1
2x(1 + x2

3 ) + x−3
[
(1− x2) ln(1− x2) + x2

]
, x < 1, (3.5)

where V Q
R is the right-handed quark mixing matrix, NC is the number of colors and the sum over

q, q′ includes the kinematically allowed heavy neutrino decays. When x� 1, F (x) = x5/12+O(x7)

and this corresponds to the decay rate in the limit mN � mWR
.
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For heavy neutrinos masses above the pion threshold, the dominant decay rate are the hadronic

ones and the branching ratio into one charged lepton and two jets is given by

Br(Nα → l+k jj) =
Γ(Nα → l+k jj)

Γ(
∑

kNα → l+k jj)
' |(V †R)αk|2 (3.6)

and, according to eq. (3.1), the following ratio takes the simple form

Γ(W+
R → Nαli → l+i l

+
k jj)

Γ(W+
R → Nα′ lr → l+r l

+
s jj)

=
σ(pp→W+

R → Nαli → l+i l
+
k jj)

σ(pp→W+
R → Nα′ lr → l+r l

+
s jj)

=
|(V †R)αi|2|(V †R)αk|2cα

|(V †R)α′r|2|(V †R)α′s|2cα′
, (3.7)

where

cα ≡ |~pα2 |2[
|~pα2 |
3

+ Eα2 ], (3.8)

all the hadronic and quark mixing part cancels and we end up having a quantity that depends only

on the physical masses and the elements of VR. When α = α′ the expression further simpli�es and

depends only on the elements of VR.

In what follows we consider the case when one, two or three heavy neutrinos are accessible at

the LHC.

One heavy neutrino case: it may happen that even if the WR is found at the LHC, just

one of the heavy neutrino mass can be reconstructed. In this case we see from Eq. (3.7) (taking

r = s = µ) that there are only two independent quantities including tau leptons in the �nal state,

where "independent quantities" refers to the ones that can be measured in the experiment.

If only electrons and muons are considered is easy to see that there is only one independent

quantity within this analysis.

Two heavy neutrinos case: one expect for two heavy neutrino at the LHC, that in order to

probe all the elements of the mixing matrix VR the decays of the heavy neutrinos N into electrons,

muons and tau leptons must be identi�ed. In fact, in this case analytical solutions for the three

mixing angles and the Dirac phase δ can be found in terms of physical quantities at the LHC, this
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can be seen by considering α = α′ in Eq. (3.7), namely

Γ(W+
R→Nαe

+→e+µ+jj)

Γ(W+
R→Nαµ+→µ+µ+jj)

=
|(V †R)αe|2

|(V †R)αµ|2
≡ Rα, (3.9)

where

α = 1, 2.

There are 4 unknown parameters in V̂R (θ12, θ13, θ23 and δ). By using the above ratios it is

possible to probe 2 of them. There is just another independent quantity considering electron and

muons in the �nal state

Γ(W+
R→N1e+→e+e+jj)

Γ(W+
R→N2e+→e+e+jj)

≡ R4 =
|(V †R)1e|4c(1)

|(V †R)2e|4c(2)
. (3.10)

So we conclude that in order to probe the three mixings angles and the Dirac phase with 2 heavy

neutrinos on-shell, tau leptons must be included into the analysis and to this end consider the

following relation

Γ(W+
R → N1e

+ → e+e+jj)

Γ(W+
R → N1e+ → e+τ+jj)

=
|(V †R)1e|2

|(V †R)1τ |2
≡ Rτ (3.11)

and the mixings angles are given by

s2
12 =

1√
c(2)

c(1)R4 + 1
, s2

13 =

− RτR1√
c(2)

c(1)
R4

+R1 +Rτ

RτR1 +R1 +Rτ
, s2

23 =

(
1
Rτ

+ 1
R2

+ 1
)√

c(2)

c(1)R4√
c(2)

c(1)R4 + 1
− 1

R2
. (3.12)

Perhaps the more important advantage of the above expressions is that they allow a simple inter-

pretation of the three leptonic mixing angles in terms of the �nal states in the KS process. For

instance, from (3.12) we may see that θ12 is maximal when R4 � 1 and minimal when R4 >> 1.

For θ13 we notice that its value is maximal whenever R1 � 1 or Rτ � 1. Instead it is minimal

when the relation R1 +Rτ = R1Rτ/
√

c(2)

c(1)R4 is satis�ed. Finally θ23 takes its maximal value when

R4 >> 1 and Rτ >> 1 and its minimal value when R4 � 1 and R2 >> 1. For instance in table

3.1, we show the conditions that the �nal states should satisfy in order to have maximal or minimal

mixing angles. More precisely, the θ12 mixing angle would be nearly maximal whenever the rate of



29
Mixing Maximal Zero

angle mixing mixing

θ12 σ(pp;N1e
±; e±e±jj)� σ(pp;N1e

±; e±e±jj)�
σ(pp;N2e

±; e±e±jj) σ(pp;N2e
±; e±e±jj)

σ(pp;N1e
±; e±e±jj)� σ(pp;N1e

±; e±e±jj)�
σ(pp;N2e

±; e±e±jj) σ(pp;N2e
±; e±e±jj)

θ23 and and
σ(pp;N1e

±; e±e±jj)� σ(pp;N2µ
±;µ±µ±jj)�

σ(pp;N2e
±; e±τ±jj) σ(pp;N2e

±; e±µ±jj)

σ(pp;N1µ
±;µ±µ±jj)� σ(pp;N1e

±; e±µ±jj)

θ13 or
√

c(2)

c(1)R4 = R1Rτ
R1+Rτ

σ(pp;N1e
±; e±e±jj)� σ(pp;N1e

±; e±τ±jj)

Table 3.1: Conditions that the maximal/minimal mixing angles should satisfy in terms of the �nal
states for the KS process for two heavy neutrinos at the LHC.

N1 with two electrons is suppressed with respect to the rate of N2 with two electrons, and it would

be nearly zero in the opposite case. For the mixing angle θ23 we may see that it would be nearly

maximal whenever the rate of N1 with two electrons is enhanced with respect to the rate of N2 with

two electrons and in addition the rate of N1 with two electrons, is enhanced with respect to the rate

of N2 with one electron and and one tau lepton. Instead it would be nearly zero, if the rate of N1

with two electrons is suppressed with respect to the rate of N2 with two electrons, and in addition

the rate of N2 with two muons, is reduced with respect to the rate of N2 with one electron and one

muon. Finally the mixing angle θ13 would be maximal if the rate of N1 with one electron and one

muon is suppressed with respect to the mixing of N1 with two muons, and in addition the rate of

N1 with two electrons is suppressed with respect to the rate of N1 with one electron and one tau

lepton in the �nal state.

For the sake of simplicity we show the expression for the Dirac phase δ in terms of R1 and

the mixing angles and it is given by

cos δ =
c2

13c
2
12 −R1(c2

23s
2
12 + c2

12s
2
13s

2
23)

2c12c23s12s13s23R1
. (3.13)
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CP-violating phase Maximal Dirac CPV Conditions

σ(pp;N1e
±; e±e±jj) ' σ(pp;N2e

±; e±e±jj)
(�rst case) δ and

σ(pp;N1e±;µ±e±jj)
σ(pp;N1µ±;µ±µ±jj) '

σ(pp;N2e±;e±µ±jj)
σ(pp;N2µ±;µ±µ±jj)

(second case) δ σ(pp;N1e
±; e±τ±jj)� σ(pp;N1e

±; e±e±jj) ' σ(pp;N2e
±; e±e±jj)

Table 3.2: Conditions that lead to the maximal CP violation from the phase δ for the two heavy
neutrinos at the LHC.

In the appendix C we show the complete expression for cos δ in terms of the physical quantities at

the LHC. We found two rather simple limiting cases that would imply the maximal value for the

phase δ. Expressed in terms of the �nal states the �rst case is when the rate involving N1 with

two electrons in the �nal state is equal to the rate of the process involving N2 with two electrons

in the �nal state, together with σ(pp;N1e±;µ±e±jj)
σ(pp;N1µ±;µ±µ±jj) '

σ(pp;N2e±;e±µ±jj)
σ(pp;N2µ±;µ±µ±jj) . The second limiting case is

when the rate for N1 with one electrons and one tau in the �nal state is much bigger than the rate

involving N1 with two electrons in the �nal state, that is equal to the rate of the process involving

N2 with two electrons in the �nal state. For the sake of clarity in table 3.2 we show the these two

conditions explicitly.

In order to see how the above results are a�ected once hadronization e�ects are taken into

account, we extent the Feynrules implementation of the mLRSM in [88] to include leptonic mixing

in the type II see-saw dominance for C as the LR symmetry, where it can be shown that VR = KeV
∗
L .

The events at the parton level are simulated with Madgraph 5 [77] and hadronization e�ects with

Pythia 6 [78]. We use the same cuts applied in [79, 80, 81], namely both jets must have transverse

energy grater than 100 GeV and the invariant mass of the two �nal leptons grater than 200 GeV.

We take θ12 = 35o, θ23 = 45o, θ13 = 7o and δ = 0 in this illustrative example.

Furthermore, there is a proportionality between the two neutrino mass matrices

MN

〈∆R〉
=

M∗ν
〈∆L〉∗

, (3.14)
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Figure 3.2: Plots for the quantities R1,R2,Rτ and R4 in the type II see-saw dominance (VL ∝ V ∗
R) as a

function of the lightest neutrino mass eigenstate for 2 heavy neutrinos at the LHC in the NH case. Red dots
with errors bars are the results obtained by taking into account the hadronization e�ects using Pythia 6.
We assume the values of the gauge boson mWR

= 3 TeV and the heavy neutrino mass mN2 = 1 TeV
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which implies [89, 90]
m2
N2
−m2

N1

m2
N3
−m2

N1

=
m2
ν2
−m2

ν1

m2
ν3
−m2

ν1

' ±0.03, (3.15)

where the ± corresponds to normal/inverted (NH/IH) neutrino mass hierarchy respectively.

Notice that once the Left-Right symmetry is discovered, this possibility can be verify or falsify by

the experiments. We show in Fig. 3.2 in the case of normal hierarchy neutrino mass spectrum

and for heavy neutrino masses accessible at the LHC, the results obtained from the simulation,

where it can be readily seen that our suggested strategy for measuring the right handed mixing

angles is feasible at hadron colliders such as the LHC and future ones. Notice that for the IH case,

neutrino mass spectra accessible at the LHC would imply that only one or three neutrino masses

can be reconstructed. The largest uncertainties in the production cross sections arises from the

uncertainties in the parton distribution functions PDF's of the proton and we assume them to be

26% for mWR
= 3 TeV as reported in [43] for 7 TeV of the center of mass energy. Although in

this work we consider 13 TeV of center of mass energy, one does not expect this result to change

considerably. The assumed theoretical uncertainties of the PDF's imply that the mixing angles

{θ12, θ23, θ13} may determined with 10%, 20% and 66% accuracy respectively for the values of the

mixing angles shown and summing the uncertainties in quadrature. Of course this uncertainties

may be diminished in the future and become less important at higher energies as the perturbative

QCD computations become more reliable. All this assuming 100% identi�cation of the tau leptons

in the �nal state. This issue and the expected sensitivity to the leptonic mixing angles, CP phases

is left for future work.

Reconstruction at the detector level becomes more delicate since for low values of the ratio

r = mN/mWR
. 0.1, the decay products of the heavy neutrinos are di�cult to separate in the

detector, so one would be tempted to conclude that no �avor tagging may be done in this case.

This issue was already studied in detail in [79], where it is claimed that for low values of r, one should

search for �nal states with one high pT isolated lepton and one high pT jet with large electromagnetic

component and matching the high-pT track in the inner detector for electrons and in the magnetic
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Figure 3.3: Number of events (scaled to one) as a function of the ratio EH/EE between the Hadronic energy
EH and the electromagnetic energy EE for the two hardest jets in energy (E(j1) > E(j2)) coming from the process
p + p → W±R → N1e

± → e±e± + jj together with the main SM backgrounds. We assume mWR = 3 TeV and
mN1 = 100 GeV, mN2 = 2 TeV and mN3 = 2 TeV. The generic label V stands for the gauge bosons W or Z.

spectrometer for muons. For instance they found out that for r = 0.1 the e�ciency is lowered to

around 46% [79].

Notice that in the particular example we are considering r could be as low as r ' 0.03, so that

one would expect the e�ciency to be lower in this case. In order to assess the e�ciency we use the

Delphes [91] for detector simulation (with the default updated Delphes card for the ATLAS detector)

and Madanalysis 5 for event counting and cuts [92]. As in [79] we select the events with one isolated

electron (or muon) with ∆R > 0.5 and one isolated jet requiring their transverse energies bigger than

1 TeV, with ∆R =
√

∆η2 + ∆φ2 where η and φ are the pseudo-rapidity and the azimuthal angle

respectively. We �nd that the e�ciency gets as low as 35% for one high-pT electron and one high-pT

jet in the �nal state and as low as 28% for one high pT muon and high-pT jet in the �nal state.

Therefore this rises the required luminosity from 64 fb−1 to 446 fb−1 for the two heavy neutrino

case at LHC in the range of masses considered. In estimating the required luminosity we assume

the identi�cation e�ciency for tau leptons around 50 % in accordance with the e�ciencies presented

in [93] for the Z ′ → τ+τ− BSM process. For the sake of completeness, in FIG. 3.3 we show the

number of events (scaled to one) as a function of the ratio of the energy EH deposited in the hadronic
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calorimeter and the energy EE deposited in the electromagnetic calorimeter for the two hardest jets

in energy (i.e.E(j1) > E(j2)) coming from the process p + p → W±R → N1e
± → e±e± + jj. As

can be seen from the �gure the energy deposited in the hadronic calorimeter is much smaller for

the signal than for the SM background processes, so in principle one can use this quantity as a

discriminating variable between the signal and the backgrounds � as already done in [79].

From table D.1 in appendix A, we see that the smallest cross sections are the ones of the

processes involving two muons in the �nal state with N1 as intermediate state. We determine the

required value for the luminosity by requiring at least 10 events, since a ratio of the signal over the

background equal to �ve is reach much faster due to the LNV character of the �nal states.

Three heavy neutrinos case: once again in this case it is possible to �nd analytic expres-

sions for the parameters in VR in terms of the physical quantities de�ned in Eq. (3.7). The novelty

is that no tau leptons need to be identi�ed in the �nal state, hence rendering this scenario ideal for

the LHC; to this end consider Eqns. (3.9), (3.10) and

Γ(W+
R → N3e

+ → e+µ+jj)

Γ(W+
R → N3µ+ → µ+µ+jj)

=
|(V †R)3e|2

|(V †R)3µ|2
≡ R3. (3.16)

A straightforward computation gives

s2
12 =

1

1 +
√

c(2)

c(1)R4

, s2
23 =

R− 1

R3 − 1
, s2

13 =
R− 1

R− 1
R3

, (3.17)

where

R ≡ 1√
c(2)

c(1)R4 + 1


√

c(2)

c(1)R4

R1
+

1

R2
.

 (3.18)

One striking feature of the above expressions is that both θ13 and θ23 are near zero whenever

R is close to one, and this in turn implies that R1 is must be close to R2. Furthermore θ23

is nearly maximal when R3 ≈ R and this relation precisely corresponds to the maximal value

θ13 when R3 ≈ R but its values are close to one. In table 3.3 we show these same conditions

in terms of the �nal states. In this case θ23 and θ13 would be close to their minimal value for
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Mixing Maximal Zero

angle mixing mixing

θ12 σ(pp;N1e
±; e±e±jj)� σ(pp;N1e

±; e±e±jj)�
σ(pp;N2e

±; e±e±jj) σ(pp;N2e
±; e±e±jj)

θ23 R3 ' R σ(pp;N1e±;µ±e±jj)
σ(pp;N1µ±;µ±µ±jj) '

σ(pp;N2e±;e±µ±jj)
σ(pp;N2µ±;µ±µ±jj)

θ13 σ(pp;N3e
±; e±µ±jj) ' σ(pp;N3µ

±;µ±µ±jj) σ(pp;N1e±;µ±e±jj)
σ(pp;N1µ±;µ±µ±jj) '

σ(pp;N2e±;e±µ±jj)
σ(pp;N2µ±;µ±µ±jj)

Table 3.3: Conditions that the maximal/minimal mixing angles should satisfy in terms of the �nal
states for the KS process for three heavy neutrinos at the LHC.

σ(pp;N1e±;µ±e±jj)
σ(pp;N1µ±;µ±µ±jj) '

σ(pp;N2e±;e±µ±jj)
σ(pp;N2µ±;µ±µ±jj) as can be readily seen by simple inspection of Eq. 3.17.

Finally θ13 would be maximal for σ(pp;N3e
±; e±µ±jj) ' σ(pp;N3µ

±;µ±µ±jj).

In appendix C we show the expression for Eq. 3.13 in the three NH case as well as the conditions

that lead to maximal CP violation due to the phase δ. In this case it is also possible to �nd simple

conditions that lead to the maximal value of | cos δ| as explicitly shown in table 3.4. Notice that all

the cases that lead to maximal CP violation from the δ phase have the common condition c(2)

c(1)R4 → 1

for both two and three heavy neutrinos cases.

As it is clear from the above expressions, the elements of V̂R have in this parametrization

simple relations in terms of physical observables at the LHC. The precise form of the Dirac phase δ

is shown in (3.13). Notice that for non-degenerate heavy neutrino masses and within this approach

one cannot distinguish δ from −δ. In this respect we notice the CP-odd, triple-vector-product

asymmetries in µ → eγ decay and µ → e conversion in Nuclei presented in the next sections may

resolve this ambiguity and could even discriminate in the most interesting portion of the parameter's

space, between C or P as the Left-Right symmetry.
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CP-violating phase Maximal Dirac CPV Conditions

σ(pp;N1e
±; e±e±jj) ' σ(pp;N2e

±; e±e±jj)
(�rst case) δ and

σ(pp;N1e±;µ±e±jj)
σ(pp;N1µ±;µ±µ±jj) '

σ(pp;N2e±;e±µ±jj)
σ(pp;N2µ±;µ±µ±jj)

σ(pp;N1e
±; e±e±jj) ' σ(pp;N2e

±; e±e±jj)
(second case) δ and

σ(pp;N3e
±; e±µ±jj) ' σ(pp;N3µ

±;µ±µ±jj)

σ(pp;N1e
±; e±e±jj) ' σ(pp;N2e

±; e±e±jj)
(third case) δ and

σ(pp;N2e
±; e±µ±jj)� σ(pp;N2µ

±;µ±µ±jj)

Table 3.4: Conditions that lead to the maximal CP violation from the phase δ for the three heavy
neutrinos at the LHC.
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Figure 3.4: Plots for the quantities R1,R2,R3 and R4 in the type II see-saw dominance (VL ∝ V ∗
R) as a

function of the lightest neutrino mass eigenstate for 3 heavy neutrinos at the LHC in the NH case. Red dots
with errors bars are the results obtained by taking into account the hadronization e�ects using Pythia 6.
We assume the values of the gauge boson mWR

= 3 TeV and the heavy neutrino mass mN2 = 0.17 TeV
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Figure 3.5: Plots for the quantities R1,R2,R3 and R4 in the type II see-saw dominance (VL ∝ V ∗
R) as a

function of the lightest neutrino mass eigenstate for 3 heavy neutrinos at the LHC in the IH case. Red dots
with errors bars are the results obtained by taking into account the hadronization e�ects using Pythia 6.
We assume the values of the gauge boson mWR

= 3 TeV and the heavy neutrino mass mN2
= 0.95 TeV
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In Figs. 3.4 and 3.5 we show the theoretical values for the quantities de�ned above as well as

the result obtained using Madgraph 5 and Pythia 6 indicated by the red dots with their respective

error bars. We do it for both normal and inverted neutrino mass hierarchies using Eq. (3.15) for

the heavy neutrino masses not listed in the plots. It is clear from the �gures that the hadronic

corrections to these quantities are under control and assumed to be 26% as in [43], from which we

�nd that the mixing angles {θ12, θ23, θ13} may be determined with 10%, 18% and 25% accuracy

respectively for the particular values of the mixing angles assumed in this example. We see that

despite the value for the mixing angle θ13 we used is rather small, it may be determined at the LHC

given the present theoretical uncertainties of the PDF's. Future improvements of the perturbative

QCD calculations and higher energies may improve the sensitivity.

In this case and from tables D.2 and D.3 in appendix D, we �nd that for the range of heavy

neutrino masses considered i.e. heavy neutrino masses near or bellow the TeV range, the required

luminosity necessary for the determination of the three mixing angles is 417 fb−1 and 385 fb−1

for the NH and IH cases respectively. The required luminosities rise to 1190 fb−1 and 1100 fb−1

respectively, when detector simulation is included and with the selection criteria explained in the

last section. Notice that in this case the required luminosity is bigger than the one for the 2 heavy

neutrinos case and this is due to the fact that the mixing of N3 with the electrons is essentially θ13.

Once again and in analogy with the two heavy neutrinos case, we �nd this value for the luminosity

by requiring at least 10 events in the �nal state, since the ratio of the signal over the background

equal to �ve is reach much faster due to the LNV character of the �nal states.

3.1.2 Yukawa couplings of the triplet scalars in the LR model

In this section we elaborate in some detail the relation 2.26 previously shown. Notice that

the left and right Yukawa couplings of the charged leptons with the doubly charged scalars �in the

mass eigenstates basis� are related by

Y ′∆L
= U∗Y ′∆R

U †, (3.19)
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where the precise expression for Y ′∆R
is given in Eq. 2.24 and the matrix U that relates them is

given by

U ≡ U †lLUlR. (3.20)

The matrix U is de�ned in complete analogy with the matrices Uu and Ud de�ned in [17, 38, 15],

so one can trivially infer what its form must be. Notice that the present case is simpler than the

situation in the quark sector studied in [17, 38, 15] since only one matrix U relates the Left and

Right Yukawa couplings and its precise form is given by

U =
1

ml

√
m2
l − it2βsαml

[
M ′D − tβmle−iα

]
, (3.21)

so as far as the elements ofM ′D . ml, the factor proportional to t2βsα can be treated perturbatively.

Following the perturbative computation for the square root of a matrix presented in [15], one �nds

to the �rst order in tβsα that the elements of U are of the form

Uij = (Sl)ij − it2βsαRij , (3.22)

with

(R)ij =
(M ′D)ij

(ml)i + (ml)j
− 1

2
tanβe−iα(Sl)ij . (3.23)

From which Eq. 2.26 readily follows whose precise form is given by

Y
′

∆L
= SlY

′
∆R
Sl + i tanβ sinα(R∗Y ′∆R

Sl + SlY
′

∆R
R†) +O

[
(tanβ sinα)2

]
. (3.24)

Notice that this relation does not hold for the Yukawa couplings between the chargeless and singly

charged scalars with leptons. The reason is that for the singly charged scalars only δ+
L is a physical

particle, since its right handed partner δ+
R is approximately the would be Nambu-Goldstone boson

that becomes the longitudinal component of the gauge bosonW+
R . Instead for the zero-charge scalars

δ0
L and δ0

R, there is no relation between the left and right Yukawa couplings with the neutrinos, since

the strength of the left and right interactions is proportional to the heavy and light neutrinos masses

respectively. These mass matrices are not at all related in the most general case, being the type II

see-saw dominance the only exception.
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Figure 3.6: Pair production of the doubly charged scalars with Z/γ∗ as intermediate states.

3.1.3 Decays of the doubly-charged scalar δ++
R

In the minimal Left-Right model the other central role at the LHC is played by the doubly

charged scalars [94, 95, 96, 97, 47, 98, 48]. If light enough they have interesting signatures at colliders

through their decays into same-sign leptons in the �nal state. In particular they can be produced

with Z/γ∗ as intermediate states, see FIG. 3.6. Pair production has the distinctive signature that

consists in same-sign dilepton pairs in the �nal state. Doubly charged scalars belonging to the

SU(2)L triplet, should be discovered at the LHC in the lepton-lepton channel. For 300fb−1 of

integrated luminosity the mass reach is around 1 TeV. In the W-W channel is around 700 GeV [98].

In [99] a the lower bound for δ++
R of a few hundred GeV (for vR ≈ 10TeV) emerges from the scalar

masses assuming v � vR.

The expression for the decay rate of δ++
R into a lepton pair is

Γ(δ++
R → l+i l

+
k ) = 1

16π(1+δik) |(Y ′∆R
)ik|2mδ++

R
. (3.25)

(no summation convention over repeated indices)

It can also decay into W+
RW

+
R -pair but this decay is kinetically suppressed if mδ++

R
� mWR

.

In this case δ++
R decays mostly into leptons and the branching ratios are
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Γ(δ++
R → l+i l

+
k )

Γ(δ++
R → all)

≡ Br(δ++
R → l+i l

+
k ) =

2

(1 + δik)

|(V ∗RmNV
†
R)ik|2∑

k′m
2
Nk′

. (3.26)

Notice that they are independent of the δ++
R mass and depend in general on the Majorana

phases in KN .

Using the parametrization of Eq. (2.22) and Eq. (3.26), we compute the branching ratios

Br(δ++
R → e+e+), Br(δ++

R → µ+e+) and Br(δ++
R → µ+µ+). In appendix E, we give the explicit

formulas for these branching ratios. In FIG. 3.7 we show how the branching ratios depend on

the Majorana phases assuming type II dominance and C as the LR symmetry. We do it for the

representative values δ = π/2, mNlightest = 0.5TeV and mNheaviest = 1 TeV, in both normal and

inverted neutrino mass hierarchies.

As we can see from FIG. 3.7, the decay rates of δ++
R into electrons and muons are considerably

a�ected by the Majorana phases φ2 and φ3. Notice that when the branching ratio into two electrons

and two muons tends to be large, that of one electron and one muon tends to be smaller.

Notice from Eq. (3.26) that there are �ve independent branching ratios into leptons. Taking

into account the KS process, we can see that there are more observables than parameters to be �xed

by the experiment (three mixing angles, the Dirac phase δ and the Majorana phases φ2 and φ3). For

example, by measuring all the elements of V̂R through the KS process (as we have explicitly shown)

and taking let's say the decays δ++
R → e+e+ and δ++

R → µ+µ+, the remaining branching ratios

are immediately �xed. This in turn �xes a large number of low-energy experiments, such as the

radiative corrections to muon decay and the lepton-�avor-violating decay rates of µ→ eγ, µ→ eee

and µ → e conversion in nuclei. This is a clear example of the complementary role played by high

and low energy experiment in the determination of the left-right symmetric theory [89, 90, 100].

So far we have considered only the decays of δ++
R and not δ++

L . The question is whether one can

distinguish them without measuring the polarization of the �nal leptons. We notice that it can

be done at the LHC for vL < 10−4 GeV, i.e in the leptonic decay region for the doubly charged

scalar δ++
L (see for instance [47, 48] for detailed studies on this issue). This is due to the relations
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Figure 3.7: Plots for the branching ratios of δ++
R into leptons in the (φ2, φ3) plane. We assume δ = π/2 and

the masses for the heaviest and lightest right-handed neutrinos, mheaviest = 1TeV and mlightest = 0.5TeV in
type II dominance. (Left) Br(δ++

R → e+e+). (Center) Br(δ++
R → e+µ+). (Right) Br(δ++

R → µ+µ+). (top)
Normal hierarchy for neutrino masses. (Bottom) Inverted hierarchy for neutrino masses.
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Figure 3.8: Production cross sections for a pair of doubly charged scalars at LHC with 13 TeV
center of mass energy as a function of their masses M∆. Red line corresponds to δ++

R and blue lines
to δ++

L production cross sections. Gray bands show the theoretical uncertainties.

(2.25) and (2.26) and the fact that the production cross section is a factor 2.5 bigger for δ++
L � see

Fig. 3.8, than the one for δ++
R [101, 102, 45], where we used the MSTW 2009 [103] PDF sets to

compute the cross sections. Of course it is crucial that the backgrounds are negligible after selection

criteria are applied [104, 45]. In [101], the next-to-leading order QCD corrections of the production

cross-sections at the LHC are calculated and the total theoretical uncertainties are estimated to be

10− 15%.

At this point the reader may well ask about the physical consequences of the phases appearing

inKe. In this respect we notice that lepton dipole moments and CP-odd asymmetries in LFV decays

are in general sensitive to them. Therefore we can relate, in principle, all the parameters appearing

in VR with the experiment.



Chapter 4

Time-reversal symmetry violation in several Lepton-Flavor-Violating processes

Lepton Number Violating (LNV) and Lepton Flavor violating (LFV) processes are forbidden

in the Standard Model (SM) and are thus a good probe of new physics. In principle new physics

brings also new sources of CP violation and therefore time reversal (T) symmetry violation in any

local, Lorentz invariant quantum �eld theory.

Motivated by this we explicitly compute T-odd triple vector correlations for the LFV µ→ eγ

decay and µ→ e conversion process, since much of the present and future experimental e�orts are

devoted to these two processes.

In the next sections we present the results of the computation of a triple vector correlation

in the µ → eγ decay and µ → e conversion process. We perform the computation using the most

general e�ective Hamiltonians describing both processes. As we shall see and in the context of the

minimal left-right model these triplet vector correlations may be used to distinguish between parity

or charged conjugation as the discrete left-right symmetry.

4.1 Computation of a triple vector correlation in the µ→ eγ decay

T -odd asymmetries in the µ → eγ were considered in the past. In [25, 26], it was shown

that by studying the polarization of electron and the photon coming from the muon decay it is

possible to extract the CP-violating phases from the experiment. The conclusion was that in order

to extract the CP-violating phases both electron and photon polarizations must be measured. In this

thesis instead, we present an alternative way of extracting the CP-violating phases of the e�ective
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Hamiltonian in the µ → eγ decay. This is complementary to the work presented in [25, 26]. The

novelty is that no measurements of the �nal photon polarizations are needed. We consider the

T-violating triple vector product

ŝµ+ · (p̂e+ × ŝe+) = cos Φ sin θs, (4.1)

where θs is the angle between the polarization's direction (ŝe+) of the positron and its momentum's

direction p̂e+ , Φ is the angle formed between ŝµ+ and the direction de�ned by ~pe+ × ~se+ and Ψ is

the azimuthal angle. In Fig.2.1 the reference frame and setup are shown. Notice that this quantity

changes sign under parity and naive time-reversal transformation T̂ de�ned by t→ −t. For processes

whose interactions are characterized by a small coupling, it can be shown at �rst order that the

connected part of the S-matrix is hermitian [27] and therefore the violation of the T̂ symmetry

amounts the violation of the time-reversal symmetry.

We de�ne the triple vector correlation as

〈ŝµ+ · (p̂e+ × ŝe+)〉Φ ≡
N(cos Φ > 0)−N(cos Φ < 0)

Ntotal
= (4.2)∫ π

0 dΦdΓ/dΦ · sgn(ŝµ+ · (p̂e × ŝe+))

Γtotal
,

where Γtotal and Ntotal are the total decay rate and the total number of events for the initially

polarized muon respectively, N(cos Φ > 0) and N(cos Φ < 0) are the number of events satisfying

cos Φ > 0 and cos Φ < 0 respectively.

The 4-momenta of the participating particles in the rest frame of the muon are given by

pµ
µ+ = (mµ, 0, 0, 0), (4.3)

pµ
e+

= (Ee, |~pe+ | sin θs, |~pe+ | cos θs, 0), (4.4)

pµγ = (Eγ ,−|~pe+ | sin θs,−|~pe+ | cos θs, 0) (4.5)

where the mass of the positron has been neglected. The energy Ee+ of the positron and the energy

Eγ of the photon are given by

Ee+ ∼= Eγ = |~pe+ | =
mµ

2
. (4.6)
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From the e�ective Hamiltonian in eqn. (2.35) and eqns. (F.1), (F.4) and (F.5) in appendix

F, a straightforward computation gives the following value for the correlation

〈ŝµ+ · (p̂e+ × ŝe+)〉Φ = sin θs
=m(ALA

∗
R)

|AL|2 + |AR|2
. (4.7)

The main advantage of this quantity is that no measurements of the photon polarizations are needed.

In summary we �nd that given a source of polarized anti-muons, by measuring the 3-momentum

~pe+ of the outgoing positron and its polarization ~se+ , the asymmetry shown in eqn. (4.7) is sensitive

to the CP-violating phases of the e�ective Hamiltonian shown in (2.35). In [105, 106, 107, 108, 109]

it is shown that measurements of the polarization of electrons coming from the muon decay are

feasible. We assume a 100 % polarized muon �ux so that our results must be trivially rescaled by

the actual polarization of the initial muons.

4.2 Computation of a triple vector correlation in the µ → e conversion

process

Following the same lines of the last section, we de�ne an asymmetry given by comparing the

number of events with ~sµ · (~pe × ~se) > 0 with the ones satisfying ~sµ · (~pe × ~se) < 0 in the µ → e

conversion process and it is of the form

〈ŝµ · (p̂e × ŝe)〉Φ ≡
N(cos Φ > 0)−N(cos Φ < 0)

Ntotal

=
ωconv(cos Φ > 0)− ωconv(cos Φ < 0)

ωconv
, (4.8)

where ωconv is the total conversion rate and as previously, Φ is the angle between the plane formed

by the vectors p̂e and ŝe and the polarization of the muon ŝµ. We used the same coordinate system

shown in Fig.2.1 but clearly there is no photon coming from the muon decay.
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A direct computation gives 1

ωconv(cos Φ > 0)− ωconv(cos Φ < 0) = R2

∫
dΩ · sgn(ŝµ · (p̂e × ŝe)) · ψ†asP (+)

e ψas

=
1

2
G2
F sin θs<e[ei(δ−1−δ+1)(CR − CL)((C∗R + C∗L))] = G2

F sin θs=m(CLC
∗
R) +O(αZ)

+O(
me

Ee
), (4.9)

where

CR ≡ DAR + S(p)(g̃
(p)
LS + g̃

(p)
LV ) + S(n)(g̃

(n)
LS + g̃

(n)
LV ), (4.10)

CL ≡ DAL + S(p)(g̃
(p)
RS + g̃

(p)
RV ) + S(n)(g̃

(n)
RS + g̃

(n)
RV ) (4.11)

and

g̃
(p)
LS,RS ≡

∑
q

G(q,p)gLS,RS(q), g̃
(n)
LS,RS ≡

∑
q

G(q,n)gLS,RS(q), (4.12)

g̃
(p)
LV,RV ≡ 2gLV,RV (u) + gLV,RV (d), g̃

(n)
LV,RV ≡ gLV,RV (u) + 2gLV,RV (d). (4.13)

D, S(n,p) are nuclear constants already calculated and tabulated in [72] for various elements.

G(q,p) and G(q,n) are obtained from the scalar matrix element [75, 72]

〈N |q̄q|N〉 = ZG(q,p)ρ(p) + (A− Z)G(q,n)ρ(n) (4.14)

Z and A are the atomic and mass number respectively, ρ(n) and ρ(p) are the neutron and proton

densities inside the nucleus. Notice that in the high energy limit the Coulomb phases satisfy

δ−1 − δ+1 =
π

2
+O(

αZ

Ee
). (4.15)

The Coulomb phases δ±1 are de�ned in Eq. (2.49) and dΩ is given by dΩ = dΨdΦ sin Φ.

Finally the asymetry shown in Eq. (4.8) takes the form

〈ŝµ · (p̂e × ŝe)〉Φ =
1

2
sin θs

=m(CLC
∗
R)

|CL|2 + |CR|2
+O(αZ) +O(

me

Ee
). (4.16)

where me is the electron mass.
1 For more details see section 2.4.3 and 2.4.4.
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The expression obtained is valid for non-relativistic muons and we droped terms of the order

αZ and me/Ee. In practice equation (4.16) must be multiplied by the polarization of the initial

muons, which is of the order of 15% in the conversion process [110].

In deriving the expression for the asymmetry in the conversion process we make use of the

expression for the total conversion rate, which is

ωconv = R2

∫
dΩψ†asψas = 2π

(
1

2

∑
κ,µ

|〈ψµκ |Heff |ψi〉|2
)

= 2G2
F (|CL|2 + |CR|2) (4.17)

and it is complete agreement with the expression for the total conversion rate reported in [72].

4.3 Triplet vector correlations in the minimal Left-Right theory

As a concrete example of a theory beyond the SM that gives order one values for the T-odd

triple vector correlation [28] we consider the minimal LR symmetric model. In what follows we

analyze separately the contributions to the asymmetries (4.7) and (4.16) in the case of P and C

as the LR symmetries. In [28] it is found that this contribution can be of order one, since there

are new contributions coming from interactions of charged leptons with the singly-charged and

doubly-charged scalar �elds.

4.3.1 µ→ eγ decay

In this section and for the µ → eγ decay, we study the contributions to the triple vector

correlation for both Parity and Charge Conjugation as the LR symmetry.

Parity as the LR symmetry: in [111] the authors presented a complete study of the

contributions to several LFV processes in the context of the minimal LR extension of the SM and

it is found that the branching ratio for this process is of the form

Br(µ→ eγ) = 384π2e2(|AL|2 + |AR|2) (4.18)
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where

AR =
1

16π2

∑
n

(V †R)en(VR)nµ[
m2
W

m2
WR

S3(Xn)− Xn

3

m2
W

m2
δ++
R

], (4.19)

AL =
1

16π2

∑
n

(V †R)en(VR)nµXn[−1

3

m2
W

m2
δ++
L

− 1

24

m2
W

m2
H+

1

] +O(tan 2β sinα), (4.20)

Xn = (
mN

mWR

)2, S3(x) = −x
8

1 + 2x

(1− x)2
+

3x2

4(1− x)2
[

x

(1− x)2
(1− x+ log x) + 1]. (4.21)

mNn are the heavy neutrino masses where n = 1, 2, 3. mW is the W boson mass, mWR
is the WR

boson mass, mH+
1
is the mass of the heavy scalar H+

1 and mδ++
(L,R)

are the masses for the left and

right doubly charged scalars respectively and we use mν to denote the light neutrino masses.

Notice that the loop function S3 is always small as far as mN is not much bigger than mWR
,

so that the term with the loop function can neglected for a wide range of the heavy neutrino masses

(see �gure 4.1) and therefore the correlation de�ned in (4.7) is suppressed. Finally we neglect the

contribution of the charged Higgs H+
1 since its mass cannot be lower than (15-20) TeV [40, 41]. This

poses no problem for the theory, since its mass emerges at the large scale of symmetry breaking

[5, 112]. The gauge boson and doubly-charged scalar masses can be obtained at the LHC through

the so called KS process and the decays of the doubly charged scalars in addition with all the mixing

angles and the Dirac phase in VR. This is an example of the complementary role played by the high

and low energy experiments in the establishment of the LR theory [89, 100, 113, 114, 115, 116, 117].

For the sake of illustration, imagine that type II see-saw is the dominant source of neutrino

masses i.e. MN
〈∆R〉 = Mν

〈∆L〉 and VL = VR. In this case it is possible to show that the heavy neutrino

masses satisfy the relation [89]

m2
N2
−m2

N1

m2
N3
−m2

N1

=
m2
ν2
−m2

ν1

m2
ν3
−m2

ν1

' ±0.03, (4.22)

where the ± corresponds to normal (NH) and inverted (IH) neutrino mass hierarchy respectively. In

what follows we denotemN0 the lightest right-handed neutrino mass,mNH the heaviest right-handed

neutrino mass and δ is the Dirac phase present in V̂R. In Fig. 4.2 and for the two representative

values of mNH = 0.5 TeV and mNH = 1 TeV we show the allowed region obtained from the MEG
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Figure 4.1: Plot of the loop function S3(x).

Figure 4.2: Plot obtained by considering the MEG bound shown in Eq. (1.1). (Right) Normal
hierarchy case (NH). (Left) Inverse hierarchy case (IH). The colored region is the allowed one.
(Top) Mass of the heaviest right-handed neutrino mNH = 0.5 TeV. (Bottom) Mass of the heaviest
right-handed neutrino mNH = 1 TeV.
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bound in the {mN0 , δDirac} plane, for both normal and inverted neutrino mass spectrum. The region

for mNH = {0.5 − 1} gives rise to the exciting LNV signals at the LHC trough the KS process.

Consistent with the perturbativity bounds obtained in [34], we assume mWR
= 6 TeV and common

masses for the doubly charged scalars mδ++
L

= mδ++
R

= mδ = 1 TeV. The reader may ask about

the very di�erent behavior obtained for the two values of the heaviest neutrino mass chosen, and

the point is that this can be readily understood by noticing that the amplitude is approximately

proportional to |∆m2
13| = |m2

NH
− m2

N0
|, so that a bound is obtained for |∆m2

13| rather on the

lightest neutrino mass itself.

In �gure 4.3 (top) we plot the absolute value for the triple vector correlation given in (4.7)

in the (mN0 , δ)-plane, where one may see that the values of the correlation (4.7) goes from 10−6 to

10−5 in the allowed region.

One would be tempted to conclude that the triple vector correlation may be bigger for general

values of neutrino masses and mixings. However from eqns. (2.26), the contribution to the triple

vector correlation shown in (4.7) is bounded to be less 10−2 since tan 2β sinα < 10−2 from the quark

masses [40, 38, 17]. The point is that for charged leptons masses (Ml) bigger or equal than the

Dirac mass of neutrinos (MD), the mass matrix of the charged leptons is nearly hermitian leading

therefore to nearly equal leptonic left and right mixing matrices. This is in complete analogy to

the situation in the quark sector studied in [32, 40]. Of course it is possible to assume that the

elements of the Dirac mass matrix MD > Ml, but we will not pursue this possibility since in this

case the original see-saw mechanism would lose its meaning and one would have to invoke accidental

cancellations in order to explain the smallness neutrino masses.

Charge conjugation as the LR symmetry: from eqn. (2.25) we have that

AR =
1

16π2

∑
n

(V †R)en(VR)nµ[
m2
W

m2
WR

S3(Xn)− Xn

3

m2
W

m2
δ++
R

], (4.23)

AL =
1

16π2

∑
n

(V T
R )en(V ∗R)nµXn[−1

3

m2
W

m2
δ++
L

− 1

24

m2
W

m2
H+

1

]. (4.24)

Notice that some of the external phases appearing in VR do not cancel in (4.7) and the triple

vector correlation is proportional to e2(φµ−φe), so that the triple vector correlation is not suppressed
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Figure 4.3: (Top) Contour plots illustrating the absolute value of the asymmetry de�ned in (4.7)
as a function of the lightest neutrino mass mN0 and the Dirac phase δ for P as the LR symmetry.
(Bottom) Contour plots illustrating the value of the asymmetry de�ned in (4.7) as a function of
the lightest neutrino mass mN0 and the Dirac phase δ (assuming φµ − φe = 0) for C as the LR
symmetry. (Left) Normal hierarchy for neutrino masses. (Right) Inverse hierarchy for neutrino
masses. We take the gauge boson mass mWR

= 6TeV, the heaviest right-handed neutrino mass
mNH = 1TeV and common masses for the doubly charged scalars of mδ = 1 TeV. The mixing angles
are θ12 ' 33.6o, θ23 ' 41.9o, θ13 ' 8.7o.
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by the small θ13 mixing-angle. In Fig.4.3 (bottom) we show the absolute value of the triple vector

correlation in the (mN0 , δ)-plane. We take (φµ−φe) = 0 in both normal and inverted neutrino mass

hierarchies. For (φµ − φe) = π/4 it will reach in maximum value of around 0.5 in almost all the

parameter space

Finally from Fig.4.3 (bottom) we conclude that C as the LR symmetry gives larger contribu-

tions to the triple vector correlation and this because in the parity case, the triple vector correlation

is suppressed due to the near equality between the Yukawa couplings.

The bottom line is that in the most interesting region of the parameter space, a value for the

triple vector correlation bigger than 10−2 can only be the consequence of C as the LR symmetry.

One may ask whether this value for the asymmetry of could be measured in forthcoming

experiments. Suppose that µ → eγ is found to be of the order of 10−14. In the best scenario due

to the future experimental improvements on the sensitivity, it would become possible to observed

at most 104 events and out of these events one has to select the ones that have θs 6= 0 or θs 6= π.

Moreover suppose that only the events satisfying π/6 < θs < π/3 may be identify in the experiment

due to its intrinsic sensitivity. This would imply that we end up having 104
∫ π/3
π/6 sin θsdθs ∼ 103

events in the most optimistic situation. Hence this naive argument allow us to conclude that in

most optimistic scenario, an asymmetry of the order 10−3 or bigger would probably be seen in the

next round of µ→ eγ decay experiments.

4.3.2 µ→ e conversion process

In this section we consider the triple vector correlation for the µ → e conversion process in

the context of the minimal LR symmetric extension of the SM where the relevant branching ratio

is given by [111]

ωconv(µ→ e) =
2G2

FV
(p)2

Γcapt

(
α2

16π2
)
(
|F (γ)
L |2 + |F (γ)

R |2
)
. (4.25)

The values of the capture rate Γcapt are tabulated in [118] for several elements. In [111] it was shown

that the contribution of the doubly-charged scalar may dominate due to a logarithmic enhancement
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Figure 4.4: Plot obtained by considering the SINDRUM II bound for Titanium shown in Eq. (1.2).
(Right) Normal hierarchy case (NH). (Left) Inverse hierarchy case (IH). The colored region is the
allowed one. We take the mass of the heaviest right-handed neutrino mNH = 1 TeV.

and in this case the functions F (γ)
L and F (γ)

R may be written as

F
(γ)
(L,R) ' 128π2A(L,R) log(m2

µ/m
2
δ++
(L,R)

). (4.26)

For completeness we show in Fig. 4.4 the allowed region obtained by considering the SINDRUM

bound for Titanium shown in Eq. (1.2) assuming the same values for the heavy neutrino masses of

the last section. As we can see from the �gure for mWR
= 6 TeV the SINDRUM II collaboration

gives no bound in the region considered for both NH and IH cases. From Eq. (4.26) and assuming

that the dominant terms are the logarithmic enhance ones, the amplitude for the conversion process

and the µ → eγ decay are proportional. Therefore a similar qualitative behavior is obtained. We

can see that the bound obtained is similar to the one of the µ→ eγ experiment and this is due to the

fact that the logarithmic enhancement in Eq. (4.26) compensate the α suppression in the conversion

rate [111]. For Gold the bound one would obtain is similar since the ratio between the conversion

rates for the two elements is around 0.83. On the other hand, for the gold atom relativistic e�ects

of the muon becomes relevant, so that the result shown in Eq. (4.16) cannot be trusted in this case.

Finally the asymmetry de�ned in Eq. (4.16) takes the form

〈~sµ · (~pe × ~se)〉Φ =
sin θs

2

=m(F
(γ)
L F

∗(γ)
R )

|F (γ)
L |2 + |F (γ)

R |2
=

sin θs
2

=m(ALA
∗
R)

|AL|2 + |AR|2
, (4.27)

where it can be seen that this asymmetry has the same �avor structure of the coe�cients AL and
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AR de�ned previously for the µ→ eγ decay, therefore the same conclusion obtained in the µ→ eγ

case holds for the µ→ e conversion process as well.

Regarding the expected sensitivity for the conversion process the arguments we used in the

µ → eγ decay apply, but with the di�erence that the �nal sensitivity is rescaled by a factor of

the order of 10−1 due to the depolarization �around 15%� of the muons in the conversion process

[110].



Chapter 5

Conclusions

In the context of the minimal Left-Right symmetric theory, we studied the determination

of the leptonic right-handed mixing matrix VR at the LHC. We considered the Keung-Senjanovi¢

process and the decay of the doubly charged scalar δ++
R .

For non-degenerate heavy neutrino masses, the KS process is sensitive to 3 mixing angles and

the Dirac-type phase. We proposed a simple approach in order to determine the three mixing angles

and the Dirac phase present in VR and �nd explicit and simple conditions for their determination.

We noticed that for a complete determination of the right-handed leptonic mixing matrix, at least 2

heavy neutrinos must be produced on-shell. In this case the inclusion of tau-leptons in the analysis is

mandatory. For three heavy neutrinos on-shell the three mixing angles and the Dirac phase may be

determined by measuring electrons and muons in the �nal state, rendering the three heavy neutrino

case ideal for the LHC. We found exact analytical solutions for the mixing angles and the Dirac

phase δ in terms of measurable quantities at the LHC in both two and three heavy neutrino cases.

We also show that the hadronization e�ects for the �nal jets are under control, thus rendering the

proposed strategy feasible at the LHC. Finally we �nd that for two heavy neutrino at the LHC

with masses near or below the TeV, an integrated luminosity of 63 fb−1 is required in order to

measure the three mixing angles that parametrize the right handed leptonic mixing matrix. The

required luminosity rises to 446 fb−1 once detector simulation is included (assuming 50 % of tau

identi�cation). In the case of three heavy neutrinos at the LHC and for the range of heavy neutrino

masses considered (near or below the TeV) a luminosity of 417 fb−1 and 385 fb−1 is required for
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both normal and inverted neutrino mass hierarchy respectively. Finally, these luminosities rise from

417 fb−1 to 1190 fb−1, and from 385 fb−1 1100 fb−1 once detector simulation is included. Our main

focus was the LHC but the strategy is applicable in any hadron collider and we hope that it could

be useful in the foreseen future and the next generation of hadron colliders.

For degenerate heavy neutrinos masses, the lepton-number-violating, same-sign lepton channel

(FIG. 2.1. Bottom) is in general sensitive to two of the Majorana phases of VR, because in this case

there are interference terms between the degenerate right-handed neutrino mass eigenstates.

We point out that the decays of the doubly charged scalar δ++
R into leptons are signi�cantly

a�ected by the same two Majorana phases. In FIG. 4.1 we show its branching ratios into e+e+,e+µ+

and µ+µ+. We did it for C as the Left-Right symmetry assuming type II see-saw dominance. We

considered some representative values of the Dirac phase δ and the right-handed neutrino masses,

in both normal and inverted neutrino mass hierarchies.

As a consequence of the near equality of the Yukawa couplings of the doubly charged scalars in

both parity or charged conjugation as the Left-Right symmetry, the LHC experiment may distinguish

δ++
L from δ++

R without measuring the polarization of the �nal-state leptons coming from their decays.

Then we focus in the time-reversal symmetry violation in the µ → eγ decay and the µ → e

conversion and managed to derive analytical expressions for a T-odd triple vector correlation. We

found simple results in terms of the CP-violating phases of the e�ective Hamiltonians and the

expression obtained in the µ → e conversion omits relativistic corrections for the muons, but is

otherwise complete. For the µ → eγ decay we conclude that in order to extract the CP violating

phases of the theory from the experiment, no measurements of the photon polarizations are needed.

Then as an example of a theory that leads order one values for the triple vector correlation

we consider the TeV scale, minimal Left-Right symmetric extension of the SM. Remarkably, due to

the relation between left and right Yukawa couplings in (2.23) �see also eqs. (2.25) and (2.26)� this

triple vector correlation can be used to discriminate between charge-conjugation or parity as the

Left-Right symmetry. More precisely, if the Dirac masses of heavy neutrinos smaller or of the order

of the masses of the charge leptons, a value for the triple vector correlation bigger than 10−2 can
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only be the consequence of charge-conjugation as the Left-Right symmetry.



Appendix A

Scalar potential of the minimal LR model

In this appendix we give the expressions for the scalar potentials for P and C as the LR

symmetry and are given by [8, 31, 32, 15, 33, 34, 35, 36]

VP = −µ2
1Tr(Φ

†Φ)− µ2
2[Tr(Φ̃Φ†) + Tr(Φ̃†Φ)]− µ2

3[Tr(∆L∆†L) + Tr(∆R∆†R)] + λ1[Tr(Φ†Φ)]2

λ2[Tr2(Φ̃Φ†) + Tr2(Φ̃†Φ)] + λ3[Tr(Φ̃Φ†)Tr(Φ̃†Φ)] + λ4Tr(Φ†Φ)[Tr(Φ̃Φ†) + Tr(Φ̃†Φ)]

ρ1{Tr2(∆L∆†L) + Tr2(∆R∆†R)}+ ρ2[Tr(∆L∆L)Tr(∆†L∆†L) + Tr(∆R∆R)Tr(∆†R∆†R)]

ρ3[Tr(∆L∆†L)Tr(∆R∆†R)] + ρ4[Tr(∆L∆L)Tr(∆†R∆†R) + Tr(∆†L∆†L)Tr(∆R∆R)]

α1Tr(Φ†Φ)[Tr(∆L∆†L) + Tr(∆R∆†R)] + {α2e
ic[[Tr(Φ̃Φ†)Tr(∆L∆†L) + Tr(Φ̃†Φ)Tr(∆R∆†R)] + h.c}

α3[Tr(ΦΦ†∆L∆†L) + Tr(Φ†Φ∆R∆†R)]

+ β1[Tr(Φ∆RΦ†∆†L) + Tr(Φ†∆LΦ∆†R)] + β2[Tr(Φ̃∆RΦ†∆†L) + Tr(Φ̃†∆LΦ∆†R)]

+ β3[Tr(Φ∆RΦ̃†∆†L) + Tr(Φ†∆LΦ̃∆†R)] (A.1)
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VC = −µ2
1Tr(Φ

†Φ)− µ2
2[Tr(Φ̃†Φ) + h.c.]− µ2

3[Tr(∆L∆†L) + Tr(∆R∆†R)] + λ1[Tr(Φ†Φ)]2

λ2[eid2Tr2(Φ̃Φ†) + h.c.] + λ3[Tr(Φ̃Φ†)Tr(Φ̃†Φ)] + λ4Tr(Φ†Φ)[eid4Tr(Φ̃Φ†) + h.c.]

ρ1{Tr2(∆L∆†L) + Tr2(∆R∆†R)}+ ρ2[Tr(∆L∆L)Tr(∆†L∆†L) + Tr(∆R∆R)Tr(∆†R∆†R)]

ρ3[Tr(∆L∆†L)Tr(∆R∆†R)] + ρ4[eir4Tr(∆†L∆†L)Tr(∆R∆R) + h.c.]

α1Tr(Φ†Φ)[Tr(∆L∆†L) + Tr(∆R∆†R)] + α2{(eicTr(Φ̃Φ†) + h.c.)(Tr(∆L∆†L) + Tr(∆R∆†R)] + h.c)}

α3[Tr(ΦΦ†∆L∆†L) + Tr(Φ†Φ∆R∆†R)] + β1[eib1Tr(Φ∆RΦ†∆†L) + h.c.]

+ β2[eib2Tr(Φ̃∆RΦ†∆†L) + h.c.] + β3[eib3Tr(Φ∆RΦ̃†∆†L) + h.c.] (A.2)



Appendix B

Mass reach for ZR at the LHC with 13 TeV of center of mass energy

An interesting question would be what is the mass reach for ZR at the LHC?. Following the

procedure of [119] a simple lepton isolation procedure was used in order to select the events. This

procedure consist on using the sum of the pT of all particles in a cone ∆R =
√

∆η + ∆Φ = 0.3

around the lepton, divided by the lepton pT , i.e,

R ≡
∑

∆R<0.3 p
particles
T

pleptonT

(B.1)

Using Madgraph 5 [77] for the parton level generation of events and h Pythia 6 [78] for hadronization

of the �nal states, we perform the simulation for both the signal and the backgrounds for this process.

Therefore for each lepton we are going to use pT > 20 GeV and ∆R < 0.05 in order to be sure that

the two leptons come from the ZR decay �see Fig. B.1 for a comparison of ∆R < 0.05 for the signal

with the main backgrounds. Since we are interested in the high mass region for ZR we also consider

the invariant mass of the two leptons coming from the ZR decay bigger than 1TeV (mll > 1TeV).

The backgrounds are found to be negligible in the high mass region for the two leptons (i.e the 5 σ

deviation from the background is reach much faster than let say 10 events), therefore we consider

the integrated luminosity Lint necessary to produce 10 events as a function of the ZR mass As can

be seen from Fig. B.2 the mass reach of the LHC for 300fb−1 (1000fb−1) of integrated luminosity

is around 5.5 TeV (7.2 TeV) approximately.
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Figure B.1: Probability density as a function of the isolation cut R.
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Appendix C

Expressions for the Dirac phase δ in the right-handed leptonic mixing matrix

In this appendix we present the complete expressions for cos δ, which is one of the parameters

that measures CP violation in the right-handed leptonic mixing matrix VR. We do it in both two

and three heavy neutrinos accessible at the LHC. Furthermore we give the conditions that lead to

the maximal allowed value for the phase δ, all in terms of measurable quantities at the LHC.

• Two heavy neutrinos case: In this case we �nd that the expression 3.13 is given in terms of

the physical quantities {R1, R2, Rτ , R4} by the following expression:

cos δ = [R1((−2Rτ +
√

c(2)

c(1)R4 − 1))Rτ −R2(
√

c(2)

c(1)R4 − 1))(
√

c(2)

c(1)R4 −Rτ ))(Rτ + 1)))) +

Rτ (
√

c(2)

c(1)R4(Rτ +R2(2Rτ −
√

c(2)

c(1)R4 + 1))))−Rτ ))]/

[2R2

√
1− 1√

c(2)

c(1)
R4+1

(
√

c(2)

c(1)R4 + 1))3/2Rτ (Rτ +R1(Rτ + 1))))

√√√√√− (R2

√
c(2)

c(1)
R4−(R2+1))Rτ ))(R2

√
c(2)

c(1)
R4(Rτ+1))−Rτ ))

R2
2(

√
c(2)

c(1)
R4+1))2R2

τ

√√√√Rτ+R1(1− Rτ√
c(2)

c(1)
R4

))

Rτ+R1(Rτ+1)) ] (C.1)

We �nd two rather simple limiting cases for which cos δ vanishes, one is taking c(2)

c(1)R4 → 1

and R1 = R2 and the other is taking c(2)

c(1)R4 → 1 and Rτ = 0 and it this implies that the

phase δ = 2n+1
2

π
2 , with n ∈ Z.

• Three heavy neutrinos case: For three HN at the LHC the expression for cos δ of Eq. 3.13
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is given by:

cos δ = [(R2
2R3(

√
c(2)

c(1)R4 − 1)(
√

c(2)

c(1)R4 + 1)2 +R2(R2
3 − 2

√
c(2)

c(1)R4R3 + 1)(
√

c(2)

c(1)R4 + 1) +

R3(
√

c(2)

c(1)R4 − 1))R2
1 −R2

√
c(2)

c(1)R4(R2( c
(2)

c(1)R4 +
√

c(2)

c(1)R4)R2
3 − 2(R2(

√
c(2)

c(1)R4 + 1) +

(
√

c(2)

c(1)R4 − 1)R3 +R2( c
(2)

c(1)R4 +
√

c(2)

c(1)R4))R1 +R2
2R3(

√
c(2)

c(1)R4 − 1) c
(2)

c(1)R4]/

[2R1R2(R3 − 1)

√√√√√√√√√√ (1−

√
c(2)

c(1)
R4

R1
+ 1
R2√

c(2)

c(1)
R4+1

−1

R3−1
)(

√
c(2)

c(1)
R4

R1
+ 1
R2√

c(2)

c(1)
R4+1

−1)

R3−1 (
√

c(2)

c(1)R4 + 1)3/2

(R1(R2(
√

c(2)

c(1)R4 + 1)−R3)−R2R3

√
c(2)

c(1)R4)

√√√√√−R3(R1(R2(

√
c(2)

c(1)
R4+1)−1)−R2

√
c(2)

c(1)
R4)

R2R3

√
c(2)

c(1)
R4−R1(R2(

√
c(2)

c(1)
R4+1)−R3)√√√√√

√
c(2)

c(1)
R4√

c(2)

c(1)
R4+1

] (C.2)

As in the previous case and by direct inspection of Eq. C.2, we �nd simple conditions that

lead the maximal value for the phase δ. For instance in this case we �nd three limiting

cases for which cos δ → 0. The �rst limiting case is obtained c(2)

c(1)R4 → 1 and R3 = 1. The

second limiting case is obtained by taking c(2)

c(1)R4 → 1 and R1 = R2 as in the 2 HN case.

Finally the third case is for c(2)

c(1)R4 → 1 and R2 → 0.



Cross section σ[fb]
mN2 = 1 TeV

Processes mN1 = 100GeV mN1 = 500GeV mN1 = 750GeV mN1 = 950GeV

pp→W+
R → N1e

+ → e+e+jj 1.78 1.57 1.44 1.39
pp→W+

R → N1e
+ → e+µ+jj 0.61 0.54 0.50 0.48

pp→W+
R → N1e

+ → e+τ+jj 0.3 0.27 0.25 0.24
pp→W+

R → N1e
+ → µ+µ+jj 0.21 0.19 0.17 0.16

pp→W+
R → N2e

+ → e+e+jj 0.33 0.33 0.32 0.32
pp→W+

R → N2e
+ → e+µ+jj 0.28 0.28 0.28 0.28

pp→W+
R → N2e

+ → µ+µ+jj 0.25 0.24 0.25 0.25

Table D.1: Cross sections for the di�erent processes considered for two heavy neutrinos at the LHC
in the normal hierarchy (NH) neutrino mass spectrum and for di�erent values of the lightest heavy
neutrino mass.

Appendix D

Cross sections values

In this appendix we present the results for the cross sections obtained from Madgraph 5 [77]

and Pythia 6 [78], for di�erent values of the heavy neutrino masses that we used for generation of

the relevant processes at the partonic level and the subsequent hadronization e�ects.
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Cross section σ[fb]
mN2 = 0.17 TeV

Processes mN1
= 80GeV mN1

= 100GeV mN1
= 130GeV mN1

= 160GeV

pp→W+
R → N1e

+ → e+e+jj 1.61 1.65 1.63 1.68
pp→W+

R → N1e
+ → e+µ+jj 0.55 0.57 0.56 0.58

pp→W+
R → N1e

+ → µ+µ+jj 0.19 0.19 0.19 0.20
pp→W+

R → N2e
+ → e+e+jj 0.42 0.42 0.43 0.43

pp→W+
R → N2e

+ → e+µ+jj 0.36 0.36 0.38 0.37
pp→W+

R → N2e
+ → µ+µ+jj 0.31 0.32 0.33 0.32

pp→W+
R → N3e

+ → e+µ+jj 0.048 0.024 0.026 0.027
pp→W+

R → N3e
+ → µ+µ+jj 1.6 0.80 0.85 89

Table D.2: Cross sections for the di�erent processes considered for three heavy neutrinos at the
LHC in the normal hierarchy (NH) neutrino mass spectrum and for di�erent values of the lightest
heavy neutrino mass.

Cross section σ[fb]
mN2 = 0.95 TeV

Processes mN3
= 80GeV mN3

= 100GeV mN3
= 300GeV mN3

= 500GeV

pp→W+
R → N1e

+ → e+e+jj 1.35 1.34 1.32 1.36
pp→W+

R → N1e
+ → e+µ+jj 0.46 0.46 0.45 0.47

pp→W+
R → N1e

+ → µ+µ+jj 0.16 0.16 0.16 0.16
pp→W+

R → N2e
+ → e+e+jj 0.34 0.35 0.34 0.34

pp→W+
R → N2e

+ → e+µ+jj 0.29 0.30 0.29 0.29
pp→W+

R → N2e
+ → µ+µ+jj 0.25 0.26 0.25 0.26

pp→W+
R → N3e

+ → e+µ+jj 0.027 0.028 0.026 0.026
pp→W+

R → N3e
+ → µ+µ+jj 0.92 0.91 0.85 0.86

Table D.3: Cross sections for the di�erent processes considered for three heavy neutrinos at the
LHC in the inverted hierarchy (IH) neutrino mass spectrum and for di�erent values of the lightest
heavy neutrino mass.



Appendix E

Branching ratio formulas for δ++
R → l+l+

In this appendix we show the explicit formulas for the branching ratios Br(δ++
R → e+e+),

Br(δ++
R → µ+e+) and Br(δ++

R → µ+µ+),

Br(δ++
R → e+e+) =

1∑
km

2
Nk

|c2
13c

2
12mN1 + e−2iφ2c2

13s
2
12mN2 + e−2i(φ3−δ)s2

13m
2
N3
|2,

(E.1)

Br(δ++
R → e+µ+) =

2∑
km

2
Nk

|(−s12c23 − c12s23s13e
−iδ)c12c13mN1+

(c12c23 − s12s23s13e
−iδ)s12c13e

−2iφ2mN2 + s23c13s13e
−i(2φ3−δ)mN3 |2, (E.2)

Br(δ++
R → µ+µ+) =

1∑
km

2
Nk

|(−s12c23 − c12s23s13e
−iδ)2mN1+

(c12c23 − s12s23s13e
−iδ)2e−2iφ2mN2 + s2

23c
2
13e
−2iφ3mN3 |2.

(E.3)

Notice that this branching ratios are independent of the doubly-charged scalar masses and

depend only on the masses of the heavy neutrinos



Appendix F

Kinematics of the µ→ eγ process and the triple vector correlation

In this appendix we give some tools that could be useful when computing the triple vector

correlation shown in Eq. (4.7) for the µ→ eγ decay.

For the anti-muon we use the spinor v(pµ+) given by

v(pµ+) =

 √
p · σ ξ

−√p · σ̄ ξ

 , (F.1)

where ξ†ξ = 1 and pµ+ is given in Eq. (4.3). As shown in Fig. 2.1 the polarization vector of the

muon is given by:

~s = |~s|(sin Φ cos Ψ, sin Φ sin Ψ, cos Φ) (F.2)

and it is straightforward to show that in this case

ξn =

 e−i
Ψ
2 cos Φ

2

ei
Ψ
2 sin Φ

2

 . (F.3)

One may �nd the same result by requiring ξ to be an eigenvector of ~σ · n̂, where n̂ is a unitary vector

in the direction of ~s.

For the electron and for the reference frame shown in Fig.2.1 we use

ve+(pe+) =

√
|~pe+ |

2



−2ei
θs
2 sin θs

2

2ie−i
θs
2 sin θs

2

2iei
θs
2 cos θs2

−2e−i
θs
2 cos θs2


. (F.4)
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The photon has two possible polarizations along the direction of motion and in the particular

frame we are considering in Fig.2.1 its polarization vector is given by,

εµ±(pγ) =
1√
2



0

±i cos θs

∓i sin θs

1


(F.5)

where we can explicitly see that when θs = 0, the photon can only have a polarization ±1 along

the y-axis and pγ and pe+ are the 4-momentum of the outgoing photon and electron respectively �

see Eq. (4.4) and (4.5). Once the expressions for the spinors of the participating fermions and the

polarization vector of the photon are known, it is easy straightforward to compute the triple vector

asymmetry given in (4.7).

We found that the total decay rate is given by

Γtotal =
2

π
G2
Fm

5
µe

2(|AL|2 + |AR|2). (F.6)

It would be interesting to compare the above equation with the result one gets when summing

the decay rates for cos Φ > 0 to that of cos Φ < 0, namely

Γ(cos Φ > 0) + Γ(cos Φ < 0) =
2

π
G2
Fm

5
µe

2(cos2 θs
2
|AL|2 + sin2 θs

2
|AR|2). (F.7)

On the other hand, by subtracting the total decay rates for cos Φ > 0 to that of cos Φ < 0 one gets:

Γ(cos Φ > 0)− Γ(cos Φ < 0) =
2

π
G2
Fm

5
µe

2 sin θs=m(ALA
∗
R) (F.8)

from which the asymmetry shown in (4.7) can be readily computed. It should be noted that the

asymmetry is obtained for linearly polarized photons, i.e. photons with linear polarization in the

p̂e × p̂e direction. This is the crucial point since it means that one can put the experimental setup

such that p̂e and ŝe both lie in a given plane. Then one can trigger the event by requiring that

together with a signal one must see a photon in the p̂e × p̂e direction after the linear polarizing

device.
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