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Abstract

In this Ph.D. thesis we review the Anderson localization problem and its rele-
vance in the current panorama of Physics; we discuss the single- and many-body
problem and the features of the localization transition.

We discuss in detail the forward approximation of the locator expansion,
showing how it is a powerful tool for inspecting both the single- and the many-
body localization transition. We analyze its predictions in the Bethe lattice, in the
hypercubic lattice, and in a many-body Heisenberg model. The approximation
provides an upper bound for the transition point; this result becomes increasingly
accurate as the dimensionality of the system increases. We also find that the
forward approximation result can be closely approximated by a single term as
long as cancellations in the full series expansion are not relevant (this happens
in the single particle Anderson systems but not in the many-body case).

Moreover, we study a system interacting with a mesoscopic bath which shows
peculiar localization properties; this is done both analytically through the forward
approximation and numerically through exact diagonalization techniques. We
find that, as the coupling with the bath increases, the system goes through a
crossover between two mechanisms for localization, i.e. from Anderson to Zeno
localization. The stability of the localized state is a non-monotonic function of
the coupling with the bath, as the increasing hybridization of the bath states
allows different particle hopping processes.
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Preface

Motivations

Quantum dynamics in the presence of disorder is a fascinating and chal-
lenging problem in statistical mechanics and exhibits a number of surprising
features. Arguably, the most striking one is the absence of diffusion and
transport, a phenomenon called Localization by P. W. Anderson, who pre-
dicted it in 1958 [1]. Recently, the topic has gained a lot of attention again
due to the work done by Basko, Aleiner and Altshuler [2], which showed the
stability of localization in presence of interactions; this phenomenon, named
Many Body Localization, is characterized by a lot of interesting properties
both for fundamental quantum physics (breakdown of thermalization, lack
of ergodicity, existence of local integrals of motion) and for the practical ap-
plications (protection against decoherence and symmetry breaking). Indeed,
localization is observed in cold atoms experiments and could be an important
ingredient for building a quantum computer.

One can therefore appreciate how compelling a deeper investigation of this
topic is. An attempt of a better understanding of localization in quantum
systems is presented in this Ph.D. thesis, whose main aim is both to improve
the (mostly numeric) toolset available to physicists for inspecting systems
showing localization properties and using these tools to obtain a picture of
what happens in non-isolated localized systems.

Thesis outline

This thesis is organized in five chapters. After an introductory first chapter,
in which we review the single particle and many-body localization problem
and its relevance in the current panorama of Physics, in the second chapter
we go into detail in showing how the so-called locator expansion emerges
from the analysis of the single particle problem.

In the third chapter, we discuss in detail the forward approximation of
the locator expansion, showing how it is a powerful tool in analysing the
localization transition. Additionally, in the fourth chapter we study a sys-
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tem interacting with a mesoscopic bath, which shows peculiar localization
properties; this is done both analytically through the forward approximation
and numerically through exact diagonalization techniques.

In the fifth chapter we discuss the many-body interacting disordered sys-
tems, proceeding to the analysis of the ergodicity properties and the detection
of the transition. Furthermore, we discuss the use of the forward approxima-
tion in a many-body system, proposing it as a powerful tool for the inspection
of this class of systems.

The original part of this thesis is contained in Chapters 3 [3], 4 [4] and 5 [3,
5].
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Chapter 1

Localization in single particle
and many body systems

1.1 From impurities to disorder

The modern theories of solid state physics are based on Bloch’s theory of
electron states in perfect regular lattices, supplemented by the description
of electron and phonon interactions and accounting for imperfections in the
lattice when describing the kintetics. The Boltzmann equation and the re-
sults of Debye, Born and Brillouin on phonons give a fairly clear idea of what
happens in a metal with low concentration of impurities; highly disordered
materials, however, are much less understood, but they are nonetheless very
interesting both from a purely theoretical point of view and eventually for
applications [6-9].

The idea of the absence of diffusion in disordered quantum materials was
first formulated by Anderson in his paper published in 1958 [1], which con-
tained many of the fundamental intuitions which have been subsequently
developed. This theory was first introduced in order to explain some exper-
imental data of electron conductivity in metals containing impurities [10].
Electrons in a metal behave diffusively, as in a random walk between col-
lision with impurities, such that their probability of being at position r at
time t, having started from the origin at the initial time, is

exp [ — 2=
P(T707t> = Mu D= Mu (11)
(2w Dt)2 2m

where [ is the electron mean free path, and the Drude conductivity arises

3
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Figure 1.1: A schematic depiction of the Anderson model Hamiltonian (1.3).

from diffusion through the Einstein relation
6216 fl

2rh’

being proportional to the mean free path. Anderson found that this reasoning
breaks down abruptly if the density of impurities is increased above a critical
amount, so that the mean free path is of the order of the electron wavelength;
then the diffusive scattering stops, the electrons become trapped (localized)
and the conductivity becomes zero.

The result by Anderson is understandably fundamental in a complete
description of transport in solid state systems. Nonetheless, localization is
rich in significance even on a deeper level, including connections with random
matrix theory, ergodicity and thermalization.

As we will see in more detail in Chapter 2, the class of models which
show the Anderson localization transition are tight binding models where
the (noninteracting) particles are able to move, e.g. hop to their neighboring
sites, and in which a disordered on-site potential, with values extracted from
a probability distribution of a given width, is present. The paradigmatic
example is given by the Anderson model

H= Z eicle; — tz cjcj + h.c. (1.3)
g (i4)

o= e’DN(E;) = (1.2)

where ¢! and ¢ are fermionic creation and annihiliation operators and ¢; are
independent and identically distributed random variables extracted from,
e.g., a box distribution:

p(e) = {W—l e € [-W/2,W/2] 14)

0 else.

The localization transition happens between the phase where the hopping is
strong enough to sustain conduction and a diffusive behavior and the one
where the on-site disorder is strong enough to suppress diffusion, meaning
that a particle ‘becomes stuck’ in the vicinity of a given site and its wavefunc-
tion has an exponentially decaying envelope. This seemingly simple model
has a very rich phenomenology, which will be outilned in part in this chapter.
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Figure 1.2: A localized state of the Anderson Hamiltonian (1.3) in a two dimen-
sional square lattice.

1.2 Phenomenology of single particle local-
ized and delocalized states

Before going on to understand how localization emerges from the physics of
disordered systems, let us describe the properties of single particle localized
states and how they are different from extended states [11,12].

The wavefunction of a particle is a plane wave of definite wavenumber in
a perfect periodic system; introducing even a small amount of disorder the
picture changes to a superposition of Bloch waves, formed by scattering of
the plane waves from the impurities, with degeneracy broken by the disorder.
The amplitude will fluctuate through the system and typically will be of order
Vg ~ V_%, where V' is the size of the system.

The localized wavefunctions have a peak around a center ro and an ex-
ponentially decreasing envelope

1) ~ Aexp (—%) (L5)

with a characteristic localization length &; the amplitude will additionally be
modulated by a sinusoidal factor, so that the orthogonality between states is
preserved. The oscillating part of the wavefuction amplitudes has a Porter
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Thomas distribution,

e—:v/2

\V2Tx '

The localization centers ry are uniformly distributed if the system is macro-
scopically homogeneous.

One can discriminate between a localized and an extended wavefunction
by means of the moments of the amplitudes distribution:

DPq = Z |wi’2q (1.7)

7

Posc(x) -

(1.6)

where we have assumed that |[1)|| = 1. The lowest useful moment is the sec-
ond one, also called participation ratio; its inverse I, = p, ', unimaginatively
called inverse participation ratio, is a quantity which is usually employed to
recognize localization. In the ergodic, delocalized phase the typical value of
the wavefunction coefficients will be inversely proportional to the square root
of the volume:

(i) ~ NG (1.8)

this reflects the fact that the wavefunction is extended over all the domain. In
a localized state, instead, there will be a O (1) number of coefficients which
will be of order one, namely the coefficients corresponding to the sites near
the localization center, while all the others will be nearly zero. This features
are captured by the inverse participation, so that

v ~1
1
i=1
for an extended state and
I~ O(1) (1.10)
for a localized state. Note that this picture will have to be modified in the

many-body context, but will still be a useful way to inspect the transition.

1.2.1 Connection with random matrix theory

Orthogonal matrices composed of normal distributed random numbers, i.e.
random matrices belonging to the GOE ensemble, with distribution

Peon(H) oc e 2] (1.11)
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capture the properties of Hamiltonians with extended states (and time-
reversal symmetry) [13]. Their spectrum is a set of highly correlated val-
ues {E;}; which exhibits level repulsion, the distribution of level spacing
s; = |Eiy1 — E;| being

s 52

where 0 = (s) (averaging over the ensemble). Hamiltonians associated with
localized states instead have exponentially suppressed off-diagonal terms,
since typically two energy adjacent states are spatially far away. This means
that the spectrum is effectively a set of uncorrelated random numbers, and
therefore the level spacings have a Poisson distribution:

1 S

Pp(s) = 5 exp (—5) . (1.13)

This distribution is observed also in integrable systems [14].

Indeed, for the purpose of discriminating whether a system is in a lo-
calized or extended state, a frequently used parameter is one related to the
eigenvalues statistic [15-21]: we build, from subsequent energy level spacings
s;, the parameter

= min(si+1, i) (1.14)

max(8;11, S;)

and its average over a certain spectrum window r = (r). The value of the
r parameter is rgog = 0.5307(1) for the spectrum of a GOE matrix and of
a system in the delocalized phase [22] and rp = 2log2 — 1 ~ 0.3863 for a
Poisson spectrum, as in a localized system. This is a good way to tell the
two phases apart provided that we consider the thermodynamic limit; for
finite systems we should rather look at the finite size scaling of r because it
will have intermediate values between rgog and rp in the proximity of the
transition.

1.2.2 Connection with ergodicity and quantum chaos

As mentioned in Sec. 1.2.1, there are deep connections between the concept
of integrability and Poisson level statistics and chaos and random matrix
theory [23]. Indeed, let us consider a quantum billiard [24-27], i.e. a system
described by the Schrodinger equation

{(v2 + 22 B )ihn(x) = 0 (1.15)

Vn(X)|xean = 0
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Figure 1.3: Level statistics in two quantum billiards. (a) circular billiard, with a
Poisson statistic; (b) cardioid billiard, with a Wigner-Dyson statistic.

where 0 € R? is an arbitrarily shaped surface that we address as the bil-
liard; the shape of the billiard is solely responsible for the integrability of the
system. Let us take as examples the circular and the cardioid billiards. The
circular billiard is integrable and can indeed be solved analytically resulting
in Bessel functions as its eigenfunctions and zeros of Bessel functions as its
spectrum [28]; the cardioid billiard, instead, is not analytically solvable. We
can look at the statistic of the level spacings s; = |E;11 — F;|; it turns out
that they follow a Poission statistic for the circular billiard and a Wigner
Dyson statistic for the cardioid one.

Indeed, in the works of Berry and Tabor [14] and Bohigas, Giannoni
and Schmit [29], two congectures regarding the correspondence between level
statistics and integrability are formulated: that generic integrable systems
(except in special cases, which are actually counterexamples of this) have
Poissonian level spacings and that non-integrable and ergodic or quantum
chaotic systems have Wigner Dyson level spacings, establishing a connection
with random matrix theory.

1.3 Violation of the Eigenstate Thermaliza-
tion Hypothesis

The idea of quantum chaos [30] is relevant to our characterization of the
localization transition due to the breaking of ergodicity that happens in the
localized phase. An important aspect of this is the fact that when there
is localization the Eigenstate Thermalization Hypothesis [31-33] (ETH), ac-
cording to which each eigenstate is representative of the microcanonical en-
semble, does not hold; actually, localization is an important counterexample
in the scope of validity of this hypothesis.
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More precisely, the Eigenstate Thermalization Hypothesis is a statement
on the equilibration of local observables. Let us consider an isolated system
in a nonstationary state; in such a system, an observable is said to thermalize
if it relaxes to the microcanonical value and remains close to it under time
evolution. Indeed, consider a time-independent Hamiltonian H with eigen-
vectors |m) and eigenvalues E,, and an initial state! |17); the time-evolved
state is

(1) =Y Cre®'m),  Cp = (mly). (1.16)

Let us now focus on an observable O and its time evolution, which, in the
basis of the eigenstates of H (so that O,,, = (m|O|n)), can be written as

WOIOl(t) =) C;CpeFn=tlto,

m,n

= 1Ol Opn+ Y CrCoe PO,

m,n#m

~

O(?)

(1.17)

Under the previously stated conditions of relaxation to the microcanonical
value and small temporal fluctuations, we have that the system thermalizes
and the long time average of O is in agreement with its expectation value
over a single eigenstate (this is von Neumann’s quantum ergodic theorem):

lim (¥ ()[O1¢(8)) = (¥, typicarl Olton,sypica)- (1.18)

t—o00

An intuition on how this requirements can be satisfied by a delocalized
Hamiltonian can be gained by comparing with what is predicted for a random
matrix. In this case, the eigenvectors are random orthogonal unit vectors,
and therefore

() 9 rv = 2 0mns (1.19)

where N is the size of the Hilbert space, the mean is intended over the
random vectors and the eigenvectors are in the basis of the eigenvectors of
O, Oli) = O;|i), so that ™ = (ilm). It follows that for the operator O we
have:

OmmRV:Nil OiEO
< / Zz: (1.20)

(Omn)rv =0 for m #n,

IFor the purpose of this reasoning we consider only pure states; however, everything
can be generalized to mixed states.
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with a variance oc N1, Indeed, this can be rewritten as

Opn = O6mn + VN-102R,,,,, (1.21)

where R,,, is a random variable (real in the case of a GOE random matrix).
This implies that in Eq. (1.17) the second sum is zero and the first sum is
independent of the initial state; therefore

Ot) =Y |Cul* Opm = 0> |Ci|* = O, (1.22)

that is, the time evolved value becomes equal to the microcanonical result.

This random matrix description is however insufficient to describe ob-
servables even in chaotic or delocalized Hamiltonians. Indeed, at least two
features are present in real systems which are absent in a random matrix: the
dependence of the thermal expectation values of observables on the energy
density (i.e., the temperature) of the system and the fact that relaxation
times depend on the specific observable. This means that additional in-
formation is embedded in the diagonal and off-diagonal matrix elements of
observables in ‘real systems’. Srednicki provided a generalization of the result
in Eq. (1.21), known as the Eigenstate Thermalization Hypothesis [31,34,35];
this can be formulated as an ansatz on the matrix elements of O:

S(E) _

Opan = O(E)Sun + -2 fo(E,w0) Ry, (1.23)

where E = (E,, + E,)/2, w = E, — E,, and S(E) is the entropy at energy
E. O(E) and fo(E,w) are smooth functions of E and w, O(FE) is equal
to the microcanonical expectation value Oyp at energy E and R,,, is a
random variable with zero mean and unit variance. Moreover, by taking the
Hermitian conjugate of Eq. (1.23), we obtain that the relations

R:;m = Rmn

Fol B, —) = folE.w) 20
must be satisfied.

The difference between the random matrix result of Eq. (1.21) and the
one in Eq. (1.23) lies on the fact that the diagonal matrix elements are no
longer the same in all eigenstates but, rather, they are smooth functions of the
energy of the eigenstates; moreover, the off-diagonal matrix elements have an
envelope fo which depends on the mean energy and the energy difference of
the involved eigenstates. It is worthwile to note that the ansatz (1.23) reduces
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to Eq. (1.21) in a very small energy window where fo can be considered
constant; the scale of this window is given by the Thouless energy

hD
= 77
where D is the diffusion coefficient and L is the linear size of the system.

Going back to the localized states of a disordered Hamiltonian, the failure
of the Eigenstate Thermalization Hypothesis can be intuitively understood
noting that equilibration should depend on the time scales of the system
dynamics. We can identify two time scales in a system with not so many
degrees of freedom: one is diffusion, which governs long time relaxation, and
the other is the mean level spacing, which is related to the fast decay dynam-
ics. In order to be able to apply the Eigenstate Thermalization Hypothesis,
diffusive relaxation must indeed be much slower than the fast decays, that is

Er (1.25)

s K

1.26

Tdiffusion ( )
which is the condition that is violated in the localized phase, where there is
high probability of small energy gaps [36-38].

1.4 From one particle to many body

Anderson’s results have influenced our fundamental understanding of disor-
dered systems and a whole class of metals and insulators. A crucial question,
however, is whether the picture we have so far about localization survives
once interaction between the particles is added, which could make this mech-
anism robust. This problem has remained unsolved for fifty years; the first
treatments focused on coupling the localized Anderson model to a phonon
bath, which results in the restoring of the conductivity at low finite temper-
ature, in an enhanced way with respect to the contribution of only a thermal
activation of the mobility edge (this is called variable range hopping [39]).
It was not until the work of Basko, Aleiner and Altshuler [2] in 2005 that
the original question was answered comprehensively, showing that, as the
interactions act in a nonperturbative way, a localized state can still exist and
there is a transition, named Many Body Localization transition, governing
the dynamical properties of the system. This development has sparked a re-
newed interest in the topic of Anderson localization and has become the most
robust mechanism for ergodicity breaking in interacting systems [40-44].
The idea of localization in interacting systems is twofold. One can char-
acterize the localization properties based on the dynamics of the system and
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on the response to a small perturbation; in this way of thinking, a state is
localized as soon as a perturbation is no longer able to travel to macroscopic
distances. However, one can also picture the phenomenon as a localization
happening in the Fock space, meaning that a many-body localized state is
similar to a Slater determinant of single particle states. This suggests a close
analogy between the properties of single particle and many-body localized
states. This is actually true only up to a point; some properties, for example
the entanglement spreading, show a different behavior in the noninteracting
and in the interacting case.

The interest in this class of models which has unfolded in the recent years
has been both theoretical and experimental, including a regard to technolog-
ical applications due to the unique features of the localized phase. Nonethe-
less, this topic has proven to be a difficult one to attack both analytically
and numerically. The main result of this thesis is showing that the forward
approximation is a method which can be used proficiently in the analysis of
both single particle and many-body systems, for both analytic and numerical
calculations; this result will be presented in detail in Chapter 5, toghether
with a discussion on the ergodicity properties of many-body localized and
delocalized states. Let us now proceed instead to review some fundamental
phenomenology of the many-body localization transition.

1.5 The many body model and definition of
localization

As a reference, let us introduce the tight binding Hamiltonian

H = Z ecle; — tz cle; — A Z cjcic;cj + h.c.
i (3) (i)

= HO +T+Hint7

(1.27)

i.e. with respect to Anderson’s Hamiltonian (1.3) we are turning on a nearest-
neighbour interaction term Hiy. c¢ and ¢! are fermionic annihiliation and
creation operators. This is equivalent to consider an XXZ spin-1/2 chain,
since a Jordan Wigner transformation maps the two Hamiltonians one into
the other. The full many-body Fock space has size 2*, where L is the size
of the system (i.e. the number of spins). We note that the symmetry of this
Hamiltonian partitions the full space into sectors of fixed number of particles
N, or fixed total magnetization in spin language; it is common to restrict
ourselves to the biggest of this sectors, i.e. the half filling sector, which has

dimension (]6) = (Lfb).
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This class of Hamiltonian is realizable experimentally [45-48]. Indeed,
one is able to create an optical lattice which reproduces the desired lattice;
then, there are two main ways to introduce on-site disorder, that is a speckle
potential, where a laser light is scattered over all the lattice resulting in a
random but correlated contribution to the on-site potential, and a quasidis-
ordered potential. In the latter case, one uses interfering lasers to generate
a standing wave whose period is incommensurable with that of the optical
lattice; this is actually the implementation of the Aubry—André model, i.e.
where the on-site quasidisorder is given by

€; = cos(2mp i + ), (1.28)

where we denoted with ¢ the golden ratio, and 0 is an arbitrary phase. Note
that neither case implements true randomness in the on-site potential.

We can define localization in a many-body system in multiple ways. One
is, analogously to Anderson’s statement, the absence of dynamics in the
many-body localized system. More precisely, Basko, Aleiner and Altshuler
define localization based on the properties of the correlators of local observ-
ables. Indeed, it is a consequence of single-particle localized wavefunctions
(i.e. with an exponentially decaying envelope) that, taking the matrix el-
ements of a local operator A(r) (e.g. the mass density or current density
operator)

Agp(r) :/dr’¢a(r')*A(r)¢b(r'), (1.29)

then its correlator satisfies
LA (r) = / dr’ A (') Apa (1" + 1) o {

< e IMl/g localized

f ( Lw‘(rl b)> extended,

(1.30)

where L, is a length scale controlled by w(a,b) = E, — Ej, the difference
in energy between the levels a and b. This statement implies that in the
localized region there is no diffusion, by means of the Kubo formula; in
other words, an excitation caused by a local external perturbation can not
propagate. This line of reasoning can be extended to the many-body case,
by considering a local additive one-particle observable

A(r) = Aw(r)cie, (1.31)

whose matrix elements between many-body eigenstates |V) are Agp(r) =
(U | A(r)| ¥ ); then localization is defined by:

|r]
< e & localized
‘C’k‘k” (T) = / dT/Akk/<7"/)Ak/k(T/ + T) X =00 oeatze (132)
f <ﬂ> extended.

Lo
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As in the single particle case, this definition implies that the Kubo linear
response function gives a zero conductivity or diffusion coefficient.

States which are completely characterized by a set of occupation numbers
have correlators of proper local observables that follow the localization defi-
nition in (1.32). Indeed, another way to picture it is localization in the Fock
space of configurations: a localized state is similar to a Slater determinant
of a few (but still exponentially many), near elements of the configurations
basis. We can use a properly normalized participation ratio in order to spot
this property; denoting with \Ifz(»k) the many-body wavefunction amplitude
over the configurations basis, the normalized participation ratio is defined
as:

NPR, = <;4> : (1.33)
NS o)

where A oc 2F is the size of the Fock space, with A" — oo in the thermo-
dynamic limit, and the average is intended over disorder realizations. In the
ergodic regime the wavefunction is spread across all the volume N of the
configurations space, therefore the sum in the denominator is of the form
S IWH ~ N - N2 and thus NPRy o O(1). Instead, in the localized
regime, only few of the coefficients are of O(1) and will contribute to the
sum; however, they are still exponentially many in the system size L, be-
having as 2°F with a < 1. Therefore, the sum in the denominator becomes
S Wt ~ 290 - O(1), and thus NPR, oc 27049 — 0 as L — oo,

1.5.1 The many body localization transition

The idea expressed so far is that the question of many-body localization is
related to the thermalization of an Hamiltonian such as (1.27) for an arbitrary
initial condition. In order to inspect a system for its localization properties,
one can make use of an extension of Anderson’s reasoning to the many-body
problem.

The first step towards a microscopic analytic understanding of many-
body localization is approximating an interacting, zero-dimensional, infinite
system with a single particle problem on a Bethe lattice [49]. Extending this
result, Basko, Aleiner and Altshuler investigated the microscopic mechanism
for localization in interacting systems, definitively obtaining that localization
is stable with respect to interactions and there is a localization/delocalization
transition up to a finite temperature. Indeed, they started from a system
whose Hamiltonian, written in the basis of the exact single particle wave-



1.5. The many body model and definition of localization 15

functions, is

H = Z CaChica + Z VamaCLCLcyq (1.34)
o apyé

with the interaction term Vog,s = 3 [ V(r,1')pas(r)ps, (r') dr dr’, where
Pas(r) = ¢F(r)ps(r), restricted both in space and to states closer in energy
than the single-particle level spacing. The basis of single particle states is
composed of the eigenvectors ¢,(r) given by

U] 60 = Gl (1.35)

2m

where (, are the corresponding eigenvalues; U(r) is the on-site disorder po-
tential. By discretizing the Hamiltonian (1.34) and rewriting it in the basis
of states localized in one site (or localization cell), we obtain a form, slightly
more general than (1.27) (because of the more general form of the interaction

‘/1112l3l4):

H = Z CzClTCl — tz ClTCm — Z Viitaisis CL%CLCM + h.c. (1.36)
l (Im)

(l1lal3ly)

Taking a finite size system, one can then consider an excitation on top of an
eigenstate and study the perturbative expansion of the imaginary part of the
self energy, using the Keldysh formalism. This pertubative series, once the
thermodynamic limit is carefully taken, is then found to converge, implying,
as in Anderson’s calculation, a many-body localized phase.

Besides the detection of a many-body localized phase using this suitable
version of the locator expansion, an additional claim of their work is the
persistence of localization up to a finite, extensive energies in systems where
not all many-body states are localized. One therefore obtains the behavior
of the conductivity pictured in Fig. 1.4, where the critical temperature is a
function of said extensive energy. The conductivity vanishes in the localized
phase, meaning that a memory of the local initial conditions is preserved
for arbitrarily long times. Note that the reverse is not true, i.e. there exist
models with zero conductivity in which thermal states appear (e.g. Floquet
systems).

As a final note, it is worth pointing out that many-body localized states
can exists, besides in models with true randomness, also in systems with
quasiperiodic disorder such as the Aubry—André model; this is of great im-
portance for experimental works.
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<« Insulators
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Figure 1.4: Qualitative plot of the conductivity o(7T') as a function of tempera-
ture in a system showing a many-body localization transition. Figure taken from
Ref. [2].

1.5.2 Phenomenology of many body localized and de-
localized state

It is interesting to compare the properties of a many-body localized state to
a delocalized state and spot the differences with respect to the single particle
case. In Table 1.1 (taken from Ref. [42]) we list the most relevant ones;
besides the already discussed phenomenology of transport (causing, e.g., zero
conductivity in a localized phase, both for single particle and for many-body)
and the violation of the Eigenstate Thermalization Hypothesis (ETH), one
can see the consequences of localization also in the spectral properties, with
the distribution of the level gaps going from a Wigner Dyson distribution to a
Poisson distribution in the localized phase. This is in analogy with the single
particle case, and the r parameter defined in Eq. (1.14) can also be used
in the many-body context to discriminate between localized and delocalized
states.

Localized states are peculiar also with regards to entanglement. First,
let us note that the entanglement entropy must be well-behaved in a ther-
malizing state, i.e. it is extensive in the volume of the Hilbert space for
an eigenstate, at finite temperature. This is not the case for the localized
phase, where one can approximate the state with the product state of the
contributions of the single lattice sites (for the single particle case), or with
a Slater determinant of localized single particle states (for the many-body
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. Single particle Many Body
Delocal
elocalized Localized Localized
Memory of initial in global yes, in local yes, in local
conditions observables observables observables
ETH holds does not hold does not hold
DC conductivity can be nonzero Z€ro Zero
Local spectrum continuous discrete discrete
Eigenstate
volume-law area-law area-law
entanglement
di f . . .
eSnI?craTglgIlEe(r)lt power-law no spreading logarithmic
Dephasi d dephasing but
ephasing an ves o ephasing bu

dissipation

no dissipation

Table 1.1: Comparison of some of the properties of delocalized, single particle
localized and many-body localized states. Table taken from Ref. [42].
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case). Therefore, the entanglement entropy will be subextensive, following
an area law [50]. Moreover, in the delocalized phase, one expects that inter-
actions generate entanglement; indeed, it is understood that, as an initial,
unentangled state thermalizes, entanglement grows due to the range of inter-
actions with a speed which can be up to ballistic, or sub-ballistic (i.e. power
law in time) in presence of weaker propagation. Since the single particle state
does not involve interactions of any kind, if we start from a non entangled
state, the initial state will not thermalize and there will be no creation of
entanglement. The picture changes in the many-body case: here, the inter-
actions due to the nature of the system will create entanglement even if there
is no thermalization; however, the interaction will act only directly and on a
range which is exponentially suppressed within the localization length, and
its growth will be slower than any kind of subdiffusion, meaning that the
entanglement spreads logarithmically in time [19]. The latter case is related
to the dephasing of an initial state; indeed one can understand that in the
many-body case, contrary to the single particle one, there must be some de-
phasing, which is however unaccompanied by the dissipation which is a clear
consequence of a thermal state.

Finally, additional support to the idea that a localized state preserves a
memory of the initial state is given by the fact that in the localized phase
there exist a full set of integrals of motion (which can be explicitly con-
structed) which are local and encode this information. One can still con-
struct such kind of operators in the delocalized phase; however, it turns out
that they are not local, thus diluting, or hiding, this memory [51-53].



Chapter 2

Localization in the Anderson
model

2.1 Introduction

As the problem of diffusion in strongly disordered materials was tackled and
solved by Anderson, the investigation of this class of models has flourished, re-
sulting in the understanding of many peculiarities about the localized states.
Sixty years after, this topic is still on the cutting edge of research. This
chapter is a recollection of results that have been obtained for the (noninter-
acting) disordered tight binding model commonly referred to as the Anderson
model, starting from the main result by Anderson [1], who showed that for
sufficiently strong disorder a transition to localized and nondiffusive states
occur. A full analytical solution has been obtained in the Bethe lattice [54],
where one can make use of helpful simplifications. The setup that will be
presented in this chapter will be useful once we discuss the forward approx-
imation in Chapter 3.

2.2 The localization transition

In his original paper [1] Anderson introduced a tight binding model of a
particle subject to nearest neighbour hopping and on-site interaction; the
disorder enters through the latter and its strength is taken randomly from a
uniform distribution of width W. This is the simplest model which exhibits
a localization phenomenology. In this section we will review the main results
of Ref. [1].

19
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More precisely, let us consider a system whose Hamiltonian is

H:ZQCICZ—VZCICJ—F}LC EHO+T (21)
i (i)
where ¢/ and ¢ are fermionic creation and annihiliation operators. In the first

term we introduce the diagonal random on-site energies ¢;, independently
extracted from the distribution

W=t ee ¥ %]
= 2.2
p(e) { 0 otherwise, (22)

while the second term is the nearest neighbour hopping with strength V.
Our aim is to understand under which conditions a perturbation in a small
region of the lattice does not propagate and wash out over the whole system
as time evolves.

Anderson’s idea was to build a perturbative expansion in the hopping
starting from a localized state; the signal of localization is the convergence
of such expansion. Instead, if one tries to start from the freely hopping
system without disorder, one cannot extract the qualitative features of the
localized state and the transition is not visible. We call this series the locator
ezpansion, since it involves the inverse of the on-site energies (E — ¢;)~! for
each site.

2.2.1 The perturbative expansion

Let us start by considering the resolvent operator for the Hamiltonian H at
energy F, defined as the Fourier transform

GE)=(E—-H) ' =F [—f(t)e ] (2.3)

and, analogously, the one for just the on-site disorder term, G° = (E — Hy) L.
In the lattice, its matrix elements are

Giy(B) = (il (B~ H) " |j), (2.4)

where the vectors |a) make up a basis of states associated to a single lattice
site. We can build a perturbative expansion using Dyson’s equation

G =G"+GTG, (2.5)
in terms of the matrix elements we obtain:
O;i 1
i (F) = —2— ;. 2.
Gy(B) = g2 +V 3 g (2:6)
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wavefunction

on-site potential
°

Figure 2.1: A realization of a one dimensional Anderson model. Bottom: value of
the disorder on each site; top: a (localized) wavefunction at low energy.
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We can iterate Dyson’s equation and obtain a perturbative expansion in the
hopping V; let us rewrite

O;i 1
(E) =—" .
Gy (E) E_€i+vzk:E_ein]
2.7)
i VvV 1 (
= Gi:+V Ghi;
E—Gi—i_E—EZ‘ JJ+ ZE_@ kj>
k#j
then, iterating, we obtain:
0ij V 1 1
Gii(E) =—= VQE G
i(F) E—6i+<E—€i+ ,E—eiE—ek> 7
k#j
1 1
V2 G 2.8
MDD ey 2
k#j,1#]
0;i
== Gy
where
\%4 1 1
= & 2.9
i E—q+ zk:E—eiE—ek+ (2.9)

Let us now consider the resolvent which connects to the same lattice site,

Giii

1 %4

2.10)
| v (
“FT_. + o zk:o'kiGii-
Introducing the self-energy
Si(E) =V o
‘ (2.11)
1 1 1 :
=V? |%& o
ZE—€k+ Z,E—EkE—El—i_ ’
k#i k,l#i

we can rewrite the expansion for G;; in a compact way:

1
E_ e (1 + Vzk:UkZG”>
-1
1 1% (2.12)

€;
-1

Giu(E) =

=[E — ¢ — 5(E)]
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This is the locator expansion for the Green’s function and the starting point
to determine whether there is localization, in Anderson’s work [1] as well
as in the one presented in Chapter 3. Indeed, the Fourier transform of the
resolvent

Ga(t) = (i|G(t)]i) = —0(t) (il e™"']s) (2.13)

corresponds to the probability that a particle is in the site ¢ at time ¢; there-
fore, if the initial state is fully localized in i, i.e.

P; = 0ij, (2.14)
by looking at

1

Giu(t) = F ' Gyu(E) = F!

= ezt(ei-i-Ei)—Aite(t)’

where E; = R(X;) and A; = —J(%;), we are able to spot whether at long
times there will be a nonzero amplitude in site . A nonzero imaginary part
in the self energy means that there is an exponential decay in time and the
probability of the perturbation returning to the site ¢ is vanishing; inversely,
if the imaginary part is zero, there is localization. Therefore we should look
at the imaginary contribution or, more precisely, at its mean (which however
may very well be ill defined in the localized region) or, rather, at its most
probable value, in order to check whether it vanishes, since we are dealing
with random variables. It turns out that the probability distribution for A;
is well behaved, with a finite mean, at any finite perturbative order; one has
indeed to take into account the whole series in order to obtain a vanishing
most probable value (and an ill defined mean value).

There is still a problem with the perturbation series of the self energy
written as in (2.11). This series can be seen as the sum over all the paths of
all lengths that come back to the initial point only once. If in these paths
happen to bounce back repeatedly between few sites, due to having energies
close to E/, then the result is a product of many small denominators which
can cause a divergence which is unrelated to the localization properties of the
state, and is instead related to the clonesess and crossings of energy levels.
In order to understand the reason why this can happen, let us take a trivial
example: let us consider a system with two sites, which has Hamiltonian

_fer t _ e 0 t
(3 (s ) 216
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Figure 2.2: Resonating loops in a given path contributing to the locator expansion.
These kind of loops are the ones whose contribution can be resummed by reordering
the terms of the series, as in Eq. (2.24).

with its spectrum given by
1
ey = éj:§\/A6—|—4t2 (2.17)

and its eigenfunctions by

by = (E + LVATTIP, 1) | (2.18)

2t

where

€1+ eg
9 )

€= Ae =e; — es. (2.19)
It can be noted that the square root in the eigenfunctions amplitudes can
be expanded perturbatively in the hopping t up to the radius of convergence
t < %, which is proportional to the spacing of the random on-site energies.
For n random variables the typical minimum spacing decreases with the
power law n~2; therefore, increasing the size of the system the radius of
convergence vanishes.

We can remove the uninteresting divergences caused by energy levels that
are close to each other in the thermodynamic limit by restricting the series
only to non-repeating, renormalized paths. We can rearrange the terms in
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Eq. (2.10) so that the series is defined over a set of indices with no repeti-
tions while at the same time we sum over the loops corresponding to index
repetitions for each of the indices step by step. Thus in Eq. (2.10) we can
rewrite

k (2.20)

where

Vn—l
G, (E)=)Y_ Y CETARRTE. (2.21)

n  {l;}epaths,, (I1,ln)

contains all the contributions from the (repeating) paths between the inter-
mediate sites between [, and [,, (see Fig. 2.2), as

v (1)
G (B) = — > G, 2.22

where in Gl(fifl) only paths which do not visit site {; appear. Respectively,
Gl(,;ifl) is given by

l l b
Gl(ilénl)(E) = 7551 Z Gl(”;él ; (2'23)
E — €y — l/ l”;ﬁl’

and an analogous form holds for the self energy, which now has to be com-
puted self-consistently:

- Y T
; T 2.24
e, =S (B —a, - 577) (2.24)

no gy, ln#]

There is a case (the Bethe lattice) in which these equations can be solved
exactly; in the other cases, we can obtain at least an estimation of the transi-
tion point by neglecting the self energies in the denominators, which has the
effect of making the terms of the series larger and provide an overestimation
of the critical value of W/V of the convergence of this expansion.

In Chapter 3 we will resume this discussion by presenting the forward
approximation, i.e. we will neglect the self energy and we will take into
account only the contributions coming from the paths of minimum length.
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2.2.2 Upper bound to the critical disorder for localiza-
tion

Let us now attempt to identify the transition by inspecting the convergence
of the locator expansion. Let us start from the expansion of the self energy
over the non-repeating paths, Eq. (2.24):

SE) =) > TV (2.25)
n  iEpaths

where T}, are the individual terms at order n; they will be a sum of elements

of the form

v L, a—F-e- n#), (2.26)
i1 Gl
where the indices [; are non-repeating because ot the rearranging of the ex-
pansion. The transition can be determined by studying their probability
distribution in order to determine under which condition the series for the
self energy is convergent.

We make the approximation of neglecting the self energies Egi”') in the
denominators, which means that (2.26) is a product of independent random
variables. This, as explained before, results in an overestimation of the terms
of the series and therefore in an upper bound of the transition value.

Moreover, the number of non-repeating paths returning to the starting
point after n steps is O (K™), where K is the connectivity of the lattice;
we assume that each of such paths gives a contribution which is statistically
independent from the others. This is clearly not the case, since the paths
can have sites in common; however, using this approximation we can obtain
a result which is again an upper bound to the transition, making the two
approximations compatible.

Let’s proceed by calculating the probability distribution of 7;,. The ran-
dom variables ¢; in the denominators of (2.26) will have, under our approxi-
mations, the same distribution as the on-site energies:

-1
K= ) @27
Let us now define a set of auxiliary variables:
yi = —log 26
w
Y=y (2.28)
y

Wy = € ]
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then

T = (%)nwn. (2.29)

Using the standard method of the Laplace transform we can calculate the
distributions of y; and Y":

P = | [~ e

% (%) de] (2.30)

I
5
\\
SIS

and

.cl{ ! ] (2.31)

yn—te Y
Prob(Y, dV) = — < dy =

(n — 1)!

I (2.32)
_ R dw,, = Prob(w,,, dw,),
n— 1) w?
we obtain
n—1

P, — (log wy,) (2.33)

" (n—Dw?’

Recall that the term of order n is the sum over the K™ non-repeating paths

Y T = (%)n()n (2.34)

i€paths
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in which we assume that its terms are statistically independent. Note that
the probability distribution of wy has a long tail, in that its first and second
moment are not finite. The sum of such long tailed distributed random
variables is dominated by the maximum term and we can limit ourselves to
consider only the probability distribution of this maximum instead of the full
distribution. Therefore, we can write

Prob(|0,| < O) a~Prob (max {w( ... w "} < 0)

_ (1 - /Ooo P (w,) dwn) K" (2.35)

and, differentiating in order to obtain the probability density, we get for the
tail of large O:

Po, (0,) = K™ P, (O) (1 - /O " P () dwn) o (2.36)
~ K"P,, (0).

The last step consist of making sure that the full series

> = Zn: (%)n O, (2.37)

converges; this can be done by showing that it is bounded by a convergent
geometric series with high probability, that is, term by term the condition

(%) On < " (2.38)

has to be verified for an x < 1 and from a n onwards. Indeed, let us compute
the probability that the terms of the geometric series will be greater than O,
asimptotically, that is:

W
p = Prob (EINx<1 Vn > i |0y < (2\;6) ); (2.39)

then

= lim lim_ H / Pon ) dO,,, (2.40)



2.2. The localization transition 29

which can be worked out as

/ ) (0.)d0, =1 / T P, (0,)d0,
0 (av2)"

—1- K" /  Pu(04)dO, (2.41)
(2v2)
oVeKloge\" =
N(T O (7).

having used Stirling’s approximation

/oo (logz)»* . (Zlog a)n 0 (n_

(n—1)!a?

ol

) . (2.42)

Therefore we obtain

> 2VekK log Wz '\ "
p=lim lim [1 = (ﬂ) 0 (n_l/Q)] (2.43)

rz—1 N—oo Wax

n=N
and this probability goes to 1 if the geometric series is convergent, that is

2‘;;}( log % <1, (2.44)
which means that the series is almost surely convergent and therefore the
state is localized; in the opposite regime analogously the series will diverge
almost surely.

We stress again that an important factor in the reasoning is that in the
term of order n in the pertubation theory of the self energy, of the K™ terms
that contribute to it, it is the largest weight that dominates; this means that
the main contribution to the decay of the localized state comes from a single
path. Indeed, if we were to assume that the paths with typical weights are
the relevant ones to the purpose of the convergence of the series, we would
obtain that

T, ~ (ﬂ) (2.45)

€

with € a typical value of the denominator (we assume £ = 0 or the center of
the band); a typical value for it is
w
z w
/ €| P(e) de = - (2.46)
w 4

2
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Figure 2.3: Example of resonance caused by self-crossing paths which enhance
constructive interference and therefore localization in low dimensions.

and that leads to the convergence condition

4KV

<1 2.47
- (247

which is a larger condition than (2.44), which means that the localized states
are actually much less stable than what would result by considering only typ-
ical paths, and it is the particularly favorable paths that are key to destroying
localization.

2.2.3 The role of dimensionality and temperature

Up to now, we have disregarded any discussion on the lattice on which the
Anderson model is set up. However, it turns out that dimensionality plays a
strong role in the localization properties.

Scaling theory arguments [55] show that in one and two dimensions the
conductivity vanishes for arbitrarily small disorder; this means that, as soon
as we turn on an infinitesimal disorder, the system becomes localized. This
is independent of the convergence of the locator expansion, which has a finite
radius of convergence even in one and two dimensions. The localization, in
this cases, is due to new effects which are specific to the low dimensionality,
namely the presence of ehnanced resonances.

An intuitive argument to understand this involves the semiclassical return
probability of a particle in a lattice [12]. Let us consider the amplitude of a
quantum particle which starts in the origin and which returns to it; this is
given by a sum over Feynman paths,

ag—o = Z a; ezsi, (248)

i
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DOS

energy

Figure 2.4: Typical mobility edge in the density of states.

where s; is the action of the ¢-th path and a; are amplitude coefficients. Then
the return probability is given by the modulus square of ag_,¢:

PO = |(l0_>0|1 = Z |a,~|2 + Zaia; el(si_sj). (249)
i i#]

The second term in Eq. (2.49) is the result of quantum interference. Trans-
mission over the lattice is reduced and the return probability is enhanced
with respect to the classical one if there are a large number of contributions
from paths that don’t cancel each other out, as it happens if there is a time
reversal symmetry so that certain loops in the paths can be followed in both
directions. The probability of finding a self-crossing path is higher in low
dimensionality systems; it turns out that this effect is prevalent in one and
two dimensions and it does succeed in inhibiting delocalization.

Outside the radius of convergence of the locator expansion there is weak
localization in the sense that the localization length is significantly larger
than the lattice spacing, but still much smaller than the system size, therefore
disallowing equilibration.

Another fine point that has to be addressed is the dependence on temper-
ature; we can however reformulate the question in simpler terms if instead
of temperature we discuss energy windows in the spectrum band. Not all of
the spectrum localizes at once for the same critical parameters of disorder
and hopping strength; instead, it is the bottom and top regions of the spec-
trum that localizes more easily, i. e. at lower values of the disorder strength.
These localized regions are referred to as Lifshits tails; note that the density
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of states is usually much lower at the edges of the band in Anderson-like sys-
tems. The middle of the band is the part in which extended states are most
robust, and the value of the energy which separates localized and extended
states is called the mobility edge [56].

2.3 On the Bethe lattice

An important exact result on localization has been obtained in 1973 by Abou-
Chacra, Anderson and Thouless in Ref. [54] (of which we will give an overview
in this section) when they solved the self energy equation self-consistently on
a Bethe lattice. This kind of analysis, in addition of its relevance on its own
in the framework of single particle localization, is the foundation of many-
body localization as formulated by Basko, Aleiner and Altshuler (as it will
be explained in Sec. 5.1).

In Anderson’s estimation two key approximations are made, which weaken
his reasoning. The first is neglecting the energy shifts caused by the self
energies in the renormalized locator expansion; the second is treating the
K* terms, each coming from a non-repeating path, as independent random
variables. Working in the Bethe lattice helps to address both these weak
points while at the same time allowing to recover Anderson’s values for the
transition point, allowing a better understanding and control of the approx-
imations. The feature that allows this is the peculiar structure of the Bethe
lattice, which is the same at every point in the lattice, making it possible
to exaclty apply self-consistent techniques, and, additionally, has no loops,
allowing us to truncate the series to the second order.

The Bethe lattice is defined as an infinite graph without loops in which
each node has connectivity z; it is the infinite limit of a Cayley tree, in which
each node has K = z —1 children, or equivalently of a regular random graph.
Its main property for our purposes is the fact that it has no loops: this means
that the series expansion for the self energy can be greatly simplified. Indeed,
there is only one path connecting the origin and any given site, and in order
to come back to the origin we must retrace our steps; namely, the paths in
the self energy expansion are of the form

O—iy— - =iy =iy =iy — =i — O (2.50)

where the paths involved are exclusively non-repeating: the bouncing paths
as, for example, i; — 7;11 — i; — 7;41 are not considered since they are
absorbed into the resummed self energy. Because the only possible paths are
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Figure 2.5: The Bethe lattice (with coordination z = 3).
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of form (2.50), the series is reduced to just the second order term, namely

¥i(E) = Z |Vij|2
¢ o _ @)
J

i B e
i |Vjel” (2.51)
57E) = E: ) (#id)

.y

all higher order terms being zero. The self energy > on both the right and
the left hand side of Eq. (2.51) have the same probability density function
(PDF), regardless of the excluded sites. Imposing this condition we obtain
a self-consistent equation for the PDF; forgetting about the exclusion of
some sites, let us consider the random variable S;(E), whose self-consistent
equation is then:

V|2
:;E_Elj i|SJ(E) (2.52)
Let us separate real and imaginary part:
E =R+, Si(E) = E; —1A,;. (2.53)
Then the expression for the self energy is

-y Vsl (2.54)
7 E — Ej — Ej + ZAJ'
and therefore
Vil (R —¢; — Ej) -
E;, = = X
Z R—¢— ) (n+4;)? le ’
. (2.55)
|‘/l]| 77 + A;)
A, = = Y,
Z R—¢— +(n+ 4 ) = ’

where K is the connectivity. Exactly solving these equations is quite involved;
therefore, one can resort to approximations.
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2.3.1 Recovering the upper bound

An upper bound for the transition point can be obtained by neglecting the
real part of the self energy F; in the denominators and looking for the value of
the parameters at which the self-consistent equation no longer has a solution.
This is the same approximation used by Anderson in his original reasoning
which was explained in Sec. 2.2.2; here we show that we can recover the
same result. Under this assumption the equation for the imaginary part A;
becomes independent of the real part:

A; = Ej: %. (2.56)

Let us write once again the self-consistent equation for the distribution
f; doing a Laplace transform we obtain

cine) = | [ aonir - et (257 ]K (257)

12

Note that in the localized regime L[f](0) = 1 and we expect L[f](s) to
become smaller for s > 0; moreover f should have fat tails, that is f(x) ~ 2~
with v < 2 which translates in £[f](s) ~ s® with 0 < 3 < 5. Therefore, we
make the ansatz

L[f](s)=1—As" + ... (2.58)

for the solution. Inserting it into Eq. (2.57) we obtain

V2848 K

L[f](s) = {1—A/p(R—x) T dz + ...
. (2.59)

—1- AsBKVw/p(T;x)dx + O(s)
T
and, comparing it with the ansatz (2.58), we obtain
28 p(R—z) -
KV /—x% de =1, (2.60)

which is an implicit equation for V' = V(). This equation has a solution
up to a critical value of V(). The failure of the solution signals that above
the critical value of 8 the reasoning that we followed is no longer valid, i.e.
the assumptions from which we started no longer hold; this means that the
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regime is not of localized states. Let us then find the maximum of V(f);
differentiating we obtain

log Vi, = [ p(R—z)|z| " logz dzx
‘ [p(R—x)|z| 7> da

(2.61)

Taking the box distribution (2.2) and the center of the band (so that R = 0),
from Eq. (2.60) we obtain

KV 2P / " L dz =1
‘ —W/2 z2PW

(2.62)
1—28. \ W B
and from Eq. (2.61)
w2 —28,
e U — 44/,/2% 2| % log z da
Og ¢ W/2 1 72ﬁc d
w 1
1 =log — —
ogVe =log o = o7
and therefore the critical value of V. is given by the condition
2KeV, w
‘1 =1 2.64
W Og 2‘/; ? ( )

which is the same expression found by Anderson using a very different cal-
culation (Eq. (2.44)) and the same result as the one given by looking at the
probability of resonances at a far away distance in the forward approximation
(see Eq. 3.38 in Chapter 3). The approximations used in Sec. 2.2.2 can then
be understood in view of the reasoning followed here, that is they actually
correspond to considering a lattice in which loops are rare. Note also that
the forward approximation which will be discussed in Chapter 3 is equivalent
to take into account only the imaginary part of the self-energy, as has been
done here.

2.4 The current impact of fifty years old re-
sults

In this chapter we have discussed the fundamental features of both single
particle localization, including the locator expansion. A legitimate question
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g

Figure 2.6: Qualitative plot of V' (53) in Eq. (2.60), showing a maximum for 5 = f3.
and no solution for g > S..

that could be asked is the relevance of this kind of reasoning more than fifty
years after the original publication of Anderson’s results.

Here we are interested in the details of the original Anderson’s reasoning
because its method of analysis has a deeper potential and can actually be
very useful when inspecting both single particle and many-body localized
systems. Indeed, this work of thesis focuses on the locator expansion and
its approximations as a tool to perform a controlled analysis of localization
properties. We will explore this topic in detail in the following Chapter 3.






Chapter 3

Locator expansion and forward
approximation

3.1 Introduction

In Chapter 2 Anderson’s reasoning for the presence of localization was ex-
plained in detail, particularly regarding the way to extract information from
the locator expansion in the hopping strength of the Green’s function. How-
ever, for a generic system, it turns out that using the full, exact series is a
daunting task even in simple setups; being able to truncate the infinite series
to the second order term in the Bethe lattice indeed plays a big role in the
ability to exaclty solve the question of localization, resulting in the only exact
solution known for Anderson localization.

A rather crude, but ultimately effective, approximation of the locator
expansion is the forward approzrimation, which is obtained by neglecting to
renormalize the on-site energies with the self energy; this results in an over-
estimation of the delocalizing mechanisms. We already used this approxima-
tion in Sec. 2.2.2 to calculate the upper bound to the localization transition.
Indeed, the idea behind it is simple and dates back to Anderson’s original
article, but nonetheless is a technique which can be used to its full potential
in Anderson-like disordered models and proficiently extended to interacting
many-body problems.

In this and in the next chapter the main original work of this Ph.D. thesis
is presented: it consists in a detailed analysis of the forward approximation
in single particle and many-body systems (in Sec. 5.3). This will show that
the forward approximation is a powerful tool in exploring the properties of
both types of systems, e.g. allowing to determine transition values, localiza-
tion lengths and their scaling, and properties of the wavefunction coefficients

39
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distribution [3]. Two kind of improvements are proposed, namely the further
approximation of considering only the dominating term of the full expression
(which works extremely well in the single particle models due to the ab-
sence of correlations in the disorder) and a way to reintroduce a self-energy
correction in a perturbative way.

3.2 The forward approximation

In Chapter 2 the expression for the Anderson’s locator expansion has been
stated for the Hamiltonian

N
H= Z eicle; — tz (c;-rcj + h.c.) : (3.1)
i=1 (i)

where ¢; are independent random variables uniformly distributed in [—%, %},
one for each of the N sites in the lattice. The edges (i, j) define the lattice
topology, and the distance between two arbitrary sites of the lattice is the
number of edges in a shortest path connecting them, and we refer to it as
lattice distance’ in the following. Indeed, the resolvent operator between

two sites a and b at energy E has been derived in Sec. 2.2.1 as

Gia(E) = (o~ —la)

S e DR |

pEpaths(a b) €p

(3.2)

where the sum is over all the paths p in the lattice connecting 7 to 7, and ¢
labels the sites visited by the path p (site a excluded). We also considered the
renormalized perturbation theory in which the closed paths are resummed in
order to treat the local, uninteresting divergences (which occur also in the
localized phase and do not imply delocalization), and the locators take on a
dependence on the specific path via a self-energy. The full series is recast into
a sum, finite in a finite-size lattice, over the non-repeating paths nrpaths(a, b)
connecting the sites a and b:

1 t
CulB) = 5= €a — Su(E) 2 H — e —SP(E) (3:3)

pEnrpaths(a,b) i€p

which we obtained through a proper resummation of (3.2) in order to ex-
clude those paths which contain repeated visits to the same sites. The latter
expression diverges if hybridizations are not just local rearrangements and
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occur at all length scales, which signals delocalization; instead, it converges
if there are at most local hybridizations and resonances do not proliferate at
asymptotically large distances in space, implying localization. Y,(F) is the
local self-energy at the site a, defined through the identity

1
E — €, — So(E)

GuolE) = (3.4)

it is equal to the sum of the amplitudes of all the closed paths in which site
a appears only as starting and ending point, i.e., to lowest order in t¢:

So(E) =" Et +O0(t%), (3.5)

_E.
j€Oa J

where OJa is the set of nearest neighboring sites of a. The path-dependent
term Egp )(E) is a modified self-energy, which re-sums the loops around site
1, with the requirement that it never crosses the site ¢ again along the path,
nor any of the sites (a,1,--- ,7—1) already visited by the non-repeating path
.

The forward approximation of Eq. (3.3), as introduced in Anderson’s
original paper [1], consists in neglecting the self energy corrections 3 in the
denominators, i. e. in not renormalizing the on-site energies (while still
considering self avoiding paths). The resulting effect is to weaken the role
of resonances and overestimate the effect of small denominators; the latter
would be mostly cancelled out by the correction in the self energy. Indeed,
suppose there is a self avoiding loop ¢« — l; — Iy — -+ — 7 and that site [,
is resonant with energy FE, so that EYEZQ > 1 for E — ¢, — 0. The locator
corresponding to its previous site [ is then

STHE) =t t4 ..., (3.6)

— 6l2

that is, it contains a big factor and brings a big correction. Therefore the
weight of the given self avoiding loop contains the term

1 1
t t 3.7
E— 2 + ... E—EZZ—...7 ( )

€ — E—EZQ

that is, the divergence in the second locator is compensated by the divergence
of the self energy in the first locator. This mechanism is clearly not present if
we neglect the self energy corrections; this may cause the eventual divergence
in the full series even though the system is localized.
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In the following we will frequently calculate the wavefunction amplitude
in the forward approximation. The expression for the eigenfunction can
be obtained by considering, for any exact eigenvalue F, of the full system
Hamiltonian, the spectral decomposition

Jim (B = Ey) Gy (E) = 9, (7)¢ali). (3.8)
—Eq
Note that G;; has a pole at every eigenvalue, since E, — ¢; — X;(E,) = 0 by
definition, and for £ = F,, it is cancelled in Eq. (3.8) by the factor (F — E,,)
in front. Then we obtain:

wh)=vw Y [ , (3.9)

pEnrpaths(a,b) i€p 04 i i (Ea)

Let us now assume that, at sufficiently low hopping ¢ so that generic eigen-
states are localized around a single site (without hybridization of near sites),
1, is the state localized around site a. To zeroth order perturbation theory,
then, E, = ¢, and ¥,(a) = 1. Thus, we can write the forward approximation
for the wavefunction as an infinite sum over the self avoiding paths of any
length by neglecting the self energies as:

INOEEEDY Hea_el (3.10)

pEnrpaths(a,b) €p

The lowest order forward approximation is obtained restricting to the set
spaths(a, b) of self avoiding paths of shortest length from a to b:

v~ > 11

pEspaths(a,b) 1€p

(3.11)

a_ez

Note that there is no difference between these two sets of paths on the Bethe
lattice. In other lattices, for example the d—dimensional hypercube, this
translates in setting an orientation in the dimensional axes and taking only
paths that never travel in the opposite direction.

As a last remark, note that the loops contributing to the self energy
corrections, which are neglected in (3.10) and (3.11), become less relevant
when the dimensionality (or connectivity) of the lattice is increased. Thus,
the forward approximation is expected to give better and better results the
higher the dimension is.

3.2.1 Localization criterion

The way to detect a localized state, as explained in Chapter 2, is to look at
the convergence of the locator expansion. The forward approximation, even
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though it can result in an overestimation of the delocalizing features in the
state, can be used to this effect if the wavefunction amplitudes are bounded
by a geometric distribution; when using this technique near the transition
point, however, this can result in its overestimation. Note that this is the
same reasoning used in Sec. 2.2.2.

In more precise terms, let us denote with L the length scale setting the
size of the lattice (thus for a cubic lattice in dimension d the diameter is
L = NV4 and for a Bethe lattice or regular random graph it is

(N=1)(K—1)
W} _logN

logK  logK’

L =log [ (3.12)
where K + 1 is the connectivity of the lattice). For a single particle problem,
one defines an eigenstate 1, of a system of size L to be localized if, with
probability 1 over the disorder realizations, the probability of finding a par-
ticle at a distance O(L) from the localization center of the state goes to zero
in the limit of large L. More precisely, we ask that there exists a £ such that,
for any site b at distance r = O(L) from the localization center a, it holds
that

P (log [¢a(b)]* < —r/€) = 1 for r — oo. (3.13)
Namely, the requirement is that we can enclose the random numbers [, (b)|?
in an “exponential envelope” for b sufficiently far from the localization center
of the state. It can be shown that this condition on the eigenstates implies
the vanishing of the DC conductivity by means of the Kubo formula.

The localization length of 1, is the minimum value of £ for which ((3.13))
is true. In general, it depends on the state that is being considered, although
it is supposed to depend smoothly on the energy F, in the thermodynamic
limit. A mobility edge exists whenever there is band of energies for which
such minimum is not finite.

The critical value of the disorder W, is determined by considering (3.13)
with & = oo; indeed, it is the smallest value of disorder W for which:

P <1og max [V, (a + 1) < 0> — 1, (3.14)
« r—r00

where max,, |¢,(a + )| denotes the maximal among the amplitudes on sites

at distance r from the localization center a. The above limit is approached

for any W > W., whereas for W < W, one finds

P <10g max [thala +7)° < 0) — 0. (3.15)

r—00
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Probability of resonances

As we just saw, the localization/delocalization transition can be detected
analyzing the statistics of the wavefunction amplitudes as a function of dis-
tance, which can be obtained in the lowest order forward approximation. In
this case, it is worth noting that, within this approximation, an amplitude of
O(1) at a site b at distance r from a corresponds to the site being resonant
with the localization center a. Indeed, the a — b problem can be considered
as a two-level system with reduced Hamiltonian

h = <}? Z) , (3.16)

where A = ¢, — €, and

h, =t

/
=t > 11 SIS (3.17)

pEpaths(a,b) ZGp pEnrpaths(a,b) i€p €q — € —

where the products are taken over all sites in the path, excluding a and b.
The sites are resonant when the energy difference ¢, — €, is small, i.e., more
precisely, |A| < h,.. Considering h,. to lowest order in ¢, one finds that this is
equivalent to [i(r)| > 1, with the wavefunction ¢ (r) computed in the lowest
order forward approximation. Thus, with (3.14) we are probing the statistics
of resonances, and requiring that the probability to find resonant sites at
a large distance from the localization center decays to zero in the localized
phase.

3.2.2 Numerical calculation with the transfer matrix
method

The lowest order of the forward approximation (3.11) can be easily computed
by rewriting it as a series of transfer matrix multiplications through which
we encode only propagations of paths along a “forward” direction.

To be more precise, let us take a d—dimensional hypercube of side L,
composed of N = L? sites. We construct its sub-lattice which has the sites

a and b at the opposite corners; assume that their Manhattan distance' is

'In the case of the hybercube the lattice distance coincides with the Manhattan dis-
tance, which is defined as

d
= Z|1171 *y1|
i=1
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dy(a,b) = n. Additionally, let us consider ¢ = 1. Denoting with ¢; the on-site
potential on site i, the wavefunction amplitude is given by Eq. (3.11) in terms
of sum of individual path weights as:

o)=Y w,  w=]] ! (3.18)

. €a — €
p€Espaths(a,b) 1€Ep

For this system we construct the transfer matrix. First, we build a forward
adjacency matrix Ay, which can be seen as the adjacency matrix of the
directed graph where all the links follow the positive orientation defined by
the ones coming out of the initial site a. It can be easily constructed by
means of the forward adjacency matrix in one dimension,

Tr={l+11l} — 1)l,m:1..L7 (3.19)
so that:
A= 1Ty ®1® - Q1+ +1R--- 17T |. (3.20)
a4

Then, the forward transfer matrix is
T =WA;, (3.21)

where W is the diagonal matrix of the on-site locators,

1
o 1) a2
€a = €k /) k=1.N

Then, starting from the vector [¢7) = |a) — (1 0 ... 0)T, that is a state
localized in the first site, we iteratively multiply it to the transfer matrix
T, feeding back the result of the multiplication. Note that after a single
iteration we obtain

1) = Tlor) = ——— 1) + —— |y + ... (3.23)

a Ell €a — Elg

where [q,...,1l, are the forward neighbors of site a. After n iterations, equal
to the lattice distance between a and b, we take value of the vector

Yp = H TYr (3.24)
n*=1



46 Chapter 3. Locator expansion and forward approximation

at the component corresponding to site b, (b[t)r), which is equal to (3.11),
all other elements in the vector being equal to zero. Note that repeating
this operation for all sublattices we can build the wavefunction on the whole
lattice?.

3.2.3 Results on the Bethe lattice

The simplest setting for the application of the forward approximation is a
Bethe lattice: in this case, given two sites a and b, there is only one non-
repeating path connecting them, along which all the energies are independent
and identically distributed random variables. In Chapter 2 some analytic
exact results have been shown [54,57]; here, we are interested in presenting
the results obtained in the forward approximation for the transition point, the
localization length and its critical exponent [49]. In the following calculations
we will heavily reference Sec. 2.2.2; although those results, obtained in the
forward approximation, refer to a general lattice, the spirit of the reasoning
is the same.

Let a be the root of the tree, and K the branching number (the con-
nectivity being K + 1). Within the forward approximation we get that the
wavefunction at one particular point at distance L from the root is given by

L

v =]] - (3.25)

=y Ca T €

This random variable has a power-law tail distribution for any distribu-
tion of ¢ having a support S such that ¢, € S, as one can see from the
divergence of the first moment of the absolute value of . It is convenient
to consider the distribution of the logarithm of vy, whose moments are all
finite. Recall that we choose ¢; uniformly distributed in [—W/2,W/2], and
in this calculation for simplicity we set ¢, = 0. Then, starting from the
logarithm of the wavefunction amplitude,

€
vy =log > = =2 log |t—| (3.26)

let us calculate its average value. Using the notation of Sec. 2.2.2 we find

2Note that it is not necessary to explicitly select the sub-lattice and compute the
transfer matrix each time for the specific case of the hypercube. Each step of the transfer
matrix multiplication only explores the forward nearest neighbors of the sites explored at
the previous step; therefore, by recovering the information from the vectors at each step
we obtain the full wavefunction on the lattice.
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that
2t

(3.27)
2t

where y; = — log % and Y = ), y;. Recall that in Sec. 2.2.2 we found that

YL—l e—Y
Py(Y) = WG(Y), (3.28)
and therefore
(Y) = ﬁ /: Yie vo(y) = (L%'l)‘ =L; (3.29)

we obtain then, finally:

2t
(xr)y =2(Y) + 2Llog W
= 2Llog(2¢et/W).

(3.30)

The ratio (zr)/L is the typical decay of wavefunction amplitudes from the
center of localization,

Eyp = 2log(2et /W), (3.31)

Note that this is different than the localization length £ as defined in (3.13).
Indeed, the latter is a uniform bound over the ~ K points at distance L
from the localization center, determined by the decay rate of the maximal
amplitude over sites in each shell at distance L. The typical decay &y
is a point-to-set correlation function decay, which is familiar in the study of
disordered systems on the Bethe lattice; on a regular lattice instead of a point-
to-set we have a point-to-point correlation function, but with exponentially
many shortest paths leading to the final point.

Note that, the typical value of the maximal amplitude z7 among KT
samplings is instead the largest solution of

xy . KEP(z}) ~ 1, (3.32)

where P(x) is the distribution of 7, and the K* paths are treated as inde-
pendent. We are interested, asymptotically in L, in the big values of =, i.e.
in the right tail of the distribution P(x). Rescaling x to

Iy, W
— 1 .
TTop T % (3:33)
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then, for large z, we obtain:
P(z) ~exp(—L(z—1—1ogz)). (3.34)

The probability distribution of z can be found inverting its Laplace transform
(note that z is a sum of independent and identically distributed variables).
The maximum z* over K samplings of z is the solution of

0=—2"4+1+logz* +log K = log(z*eKe ™), (3.35)

and zj ~ —2Llog 5 + 2Lz*. There is localization if the condition 7} /L < 0
is satisfied; the critical condition can then be written as

log(Kez*e™™) = 0 (3.36)
4%

*—log—= = 0 3.37

2" —log o , (3.37)

and eliminating z* we recover the familiar equation [54]

We
W. = 2teK log TS (3.38)
which is also the same result as Eq. (2.44) of Sec. 2.2.2, which referred to the
lowest order forward approximation.
Moreover, we can obtain a result involving the “true” localization length.
Indeed, since z* is given in terms of W, from Eq. (3.37) as

We

2* =log BT (3.39)

we can write the localization length as

1 x7 w
=L 9] .
§ 7 8 7y

(3.40)

This gives a mean-field exponent for the divergence of the localization length
at the transition:

2W,

“ﬂw-m{

(3.41)
Note that &,, < &; this is irrespective of the value of the disorder.The differ-
ence between &, and ¢ is due to the exponential sampling of the probability
distribution, and it extends both to the finite-dimensional cube and to the
many-body case.
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3.3 The forward approximation on the d-di-
mensional hypercube

Let us now go on to study the Anderson model in a hypercubic lattice in
d dimensions, with d varying from 3 to 7; recall that for d > 3 the non-
convergence of the locator expansion implies delocalization. By looking at the
wavefunction amplitudes distribution we can obtain results for the transition
point in the forward approximation. Moreover, we can estimate the (mean
field) critical exponent of the localization length.

An interesting point comes out by comparing the forward approxima-
tion of the wavefunction to the partition function of directed polymers [58].
Indeed, let us consider a directed polymer in a random potential, i.e. a poly-
mer whose components are each placed in a site which has random energy
h;; then, its partition function is

7 = Z efﬁzier hi
r
SIS

r el

(3.42)

where 3 is the inverse of the temperature, T' = (k3)~!; the sum is running
over all the possible configurations I' of the directed polymer. In two dimen-
sions, a correspondence between the forward approximation (3.11) and this
free energy distribution can be made by mapping h; to log(e, — €;), where
¢ are the indices of sites belonging to a given path; each path is therefore
mapped to a configuration of the polymer. However, note that, for Anderson-
like models, there are no restrictions on the argument of the exponential to
be real, since ¢, — ¢; can have any sign.

This mapping can not be made explicit for higher dimensions; however,
we will see that we can compare many results coming from the analysis of
the wavefunction distribution (in particular its higher moments) to the ones
corresponding to this kind of directed polymer systems (see Sec. 3.3.4).

3.3.1 The model

Consider the case of a d-dimensional hypercubic lattice of side L, and let a
be the site at one corner of the cube, which we take as the origin. In this
lattice the number of sites at lattice distance r from the origin increases as
(;ﬂ), and thus grows at most polynomially in » and slower than ~ ¢, each
site being reached by a number of path of minimum length equal to r and
scaling exponentially with 7, that is 7![(r/d)!]7¢ ~ d". The wavefunction
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Figure 3.1: Cubic lattice in d = 3 of side L = 3 used in the forward approximation
setup. Starting from a corner of the cube (site a), one of the non-repeating paths
connecting it to the opposite corner (site b) is highlighted in red, along with the
visited configurations; it has length » = d(L—1) = 6. The transfer matrix simulta-
neously explores all the exponential number of paths connecting the starting and
ending point, while the optimal directed path detailed in Sec. 3.4 is the result of
a graph search among them.

amplitude at a given site b in the forward approximation is therefore a sum
over exponentially many correlated terms, i.e.

W= 3 Tt (5) wo. (3.43)

pEspaths(a,b) i=1

where

TAOEEEDY He,ie{ (3.44)

pEspaths(a,b) i=1

and the random variables €, are uniformly distributed in [—-1/2,1/2]. Fig. 3.1
shows a schematic representation of this setup in d = 3, highlighting a sample
shortest path between the sites a and b on opposite corners of the cube.
With respect to the Bethe lattice results of Sec. 3.2.3, in this case it is
harder to determine the probability distribution of the wavefunction ampli-
tudes at a given site, due to the correlation between the different paths.
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Such correlations can however be easily taken into account as we numeri-
cally compute the sum (3.44) using the transfer matrix technique explained
in Sec. 3.2.2, which takes polynomial time in 7.

A similar treatment was done by Medina and Kardar [59] for the NSS
model [60-62], a type of directed polymer with partition function (3.42)
with random sign weights and binary disorder, i.e. h; o loge; where ¢; =
+W with probability p or 1 — p. Note that the present calculation does
not reduce to the one for the NSS case, since a major difference between
the two models is in the statistics of energy denominators (i.e. the binary
disorder). This does not allow for resonances due to a single site; rather, the
resonances arise from contributions of different paths. This led to a body
of work, following Ref. [59], on the presence of a “sign transition”, where
effects from different paths accumulate in order to break the sign symmetry.
In the forward approximation for the Anderson model, instead, the energy
denominators can be arbitrarily small with finite probability, generating path
weights that are fat-tailed distributed; the fat tail of this distribution is
crucial for the considerations that we are able to make. For instance, a
consequence of this is that the main contribution to the transfer matrix
result comes from only one of the exponentially many paths in (3.43). The
existence of a dominating path resembles the phenomenon of condensation
occurring in directed polymer problems [63-65].

The analogies with the polymer problem, the algorithm to determine the
best path and its structure will be discussed in Sec. 3.4.2. As it will be
shown, the results obtained with the transfer matrix technique are faithfully
reproduced by analyzing the statistics of the optimal path alone. Since the
algorithm for the best path is computationally more efficient, this method
allows to access to much bigger system sizes with respect to the transfer
matrix technique. Some of the results presented in this section (i.e. for the
higher dimensions) are obtained with this procedure.

The numerical computation is performed as in Sec. 3.2.2, fixing €, = 0
and computing the rescaled amplitude (3.44) for all the points b on a shell
at the same lattice distance equal to r = 7,4, — 9, § ~ O(1), from the
origin of a hypercube of side L. We then determine the maximal among the
wavefunction amplitudes on those sites; we call this value ¢)!.. We repeat the
procedure for hypercubes of different sizes and for many disorder realizations,
taking O(10°) realization for most system sizes, decreasing up to O(10?%)
realizations only for the biggest system sizes that we consider. For example,
in d = 3 we take system sizes r = 10 through 292, with 1.5 - 10° disorder
realizations each up to r = 202 and 2.5 - 103 realizations up to r = 292. The
hypercube shell, and therefore ¢, is fixed so as to have about 20 points per
each size of the hypercube.
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3.3.2 Fluctuations of the wavefunction amplitudes

We start the analysis by looking at the distribution of the variable

7, = loglvif”
2r

(3.45)
for different values of r; indeed, the probability of resonances for arbitrary
values of ¢ and W is easily recovered from the cumulative distribution func-
tion of Z, as

P (log |4, >0) =P (ZT > log (g)) =1-P (Z,, < log <¥)> . (3.46)

The probability density of Z, for different values of r has a peak whose po-
sition moves as r increases, while the width of the distribution shrinks, as
shown in Fig. 3.2 for d = 3. This is in agreement with the conditions (3.14)
and (3.15), from which it follows that the density of Z, becomes asymptot-
ically peaked at log(W,./t) for r — oo, with a width going to zero with r.
Thus, the critical value of disorder can be estimated inspecting the scaling
with 7 of the density of Z,.
Plotting, as in Fig. 3.3, the r-dependence of the variance o7, of (3.45) in
a log-log scale, one can spot a clearly linear behavior. This indicates that the
fluctuations of Z, decay to zero as a power law in r, with a coefficient that
depends on the dimensionality. The higher cumulants of the distribution
exhibit a similar linear behavior in log-log scale. Moreover, we find that for
fixed d, the probability densities of the variable
Z, = 2= (%) (3.47)

0z

T

collapse to a limiting curve for increasing . Such plots of the density of Z, are
given in Fig. 3.4 for d = 3. In Fig. 3.5, instead, the density of Z, is plotted for
fixed r = 52 and different dimension d: the curves corresponding to different
dimensions are not significantly different, except for a weak d-dependence of
the tails.

These numerical observations indicate that for large r the scaling form

rZ, ~ rlog <¥> + @y (3.48)

r—00

holds for Z,, where u is a random variable of O(1) with a distribution which
depends weakly on the dimensionality. According to (3.48), for large r the
fluctuations 0% decay to zero with the power r2*(@=1_ From the linear fit of
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Figure 3.2: Probability density of Z, for different r in d = 3. For » — oo the curves
become peaked around the critical value W./t. Inset: cumulative distribution
function. Each curve is obtained with 1.5 - 10° disorder realizations. Very similar
results are obtained for higher dimensionality.
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Figure 3.3: Variance a%r of Z,, as a function of r. The plot is in log-log scale. The
points corresponding to larger r are fitted linearly, and the values of the exponents
wrA(d) reported in Table 3.1 are extracted from the coefficient of the linear term
in the fit. The number of realizations is 1.5 - 10° for  smaller than 202, 53, 52, 40
for d = 3, 4, 5, and 6, respectively, and 2 - 10 for larger values of 7.
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Figure 3.4: Probability density P(Z) of the variable Z, = (Z, — (Z,)) oz, for
different r and d = 3. Each curve is obtained with 1.5 - 10° realizations. The
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sionalities. Each curve is obtained with 1.5 - 10° realizations.
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Figure 3.6: Skewness Sk of the distribution of Z, for d = 3, as a function of r.
The red dashed line is a fit of the form « + gr7, with «, 5,y free parameters. The
coeflicient « is the estimate of the asymptotic value of the skewness, and it equals
Sk = 0.34 + 0.02. Inset. Kurtosis Kur of the distribution of Z, for d = 3, as a
function of r. The fitting procedure is analogous to the one for the skewness, and
results in an asymptotic value Kur = 3.24 4+ 0.04.

log (0%, ) we extract the numerical estimate of the exponent in (3.48), which
we denote with wpa(d). The results are reported in Table 3.1.

To characterize the limiting distribution in Fig. 3.4, we compute the skew-
ness Sk = k3/ 53/ ? and the kurtosis Kur = r4/k2 of the density of Z, (we
denote with x; the i-th cumulant of the distribution). From (3.48) it fol-
lows that these parameters approach the ones corresponding to the variable
w in the limit of large r. We restrict to d = 3, value for which the largest
statistics is available. Plots of the r-dependence of Sk and Kur are given in
Fig. 3.6; the asymptotic values are estimated to be Sk = 0.34 & 0.02 and
Kur = 3.24 £ 0.04 (see the caption of Fig. 3.6 for details).
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Table 3.1: Values of the exponent wra(d) governing the decay of the fluctuations
of Z, with r (see Eq. (3.48)).

d wFA(d)

3| 0.278 £ 0.005
41 0.23+£0.01
5 | 0.191 £ 0.007
6 | 0.168 = 0.006
71 0.194+0.03

3.3.3 Estimate of the transition point

The transition value W, for the d-dimensional system can be obtained ex-
trapolating the asymptotic limit of the typical value of Z,, or equivalently
(since the distribution of the variable Z, is not fat-tailed) of the averages of
Z,.. We make use of the values of wr4(d) in Table 3.1 to perform the finite
size scaling. Let us define:

(Z.) = lim (Z,) = log (Vtv) | (3.49)

r—00

Plotting the scaling with r of r(Z,) (see Fig. 3.7), one sees that the mean
grows linearly in r as expected; fitting it with the form

(rZy) = e1 + log(We) 1 + co 1, (3.50)

using the numerical values w(d) = wpa(d) reported in Table 3.1, one is able
to read out the value of W, for t = 1 from the coefficient of the linear term.
The resulting estimates of the critical disorder in dimensions 3 through 7,
which we denote with W14 are displayed in Table 3.2. For the smallest
dimensions, up to d = 5, a comparison is made with the critical values W™
in Ref.s [66,67], which have been determined by means of a combination
of exact diagonalization and transfer matrix techniques and are the best
numerical values available so far for hypercubic lattices; dimension d = 6 can
be compared with the only one available result of Ref. [68], W = 74.54+0.7,
which, due to the choice of boundary conditions, is an underestimation of the
transition point and is obtained from the analysis of spectral statistics. The
values corresponding to higher dimensionalities have no source of comparison
in the literature.

The data in Table 3.2 clearly show that the forward approximation gives
an upper bound to the critical disorder, since the cancellation effects pro-
vided by the (modified) self-energy corrections are neglected, and the effects
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Figure 3.7: Scaling of the mean value of rZ, with the distance r, for d = 3. The
fit is linear with a correction o r*F43). The results of the fit are, with reference
to Eq. (3.50): ¢; = —18.2 £ 0.3, W, = 27.03 £ 0.02, co = 29.6 = 0.8. The same
behavior holds for higher dimensionality and results in the estimates of the critical
disorder values in Table 3.2.
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of resonances are thus enhanced. However, increasing the dimensionality the
discrepancy between the numerical estimates of W, decreases; the enhanced
precision of the forward approximation result is due to the fact that the loops
giving rise to the self-energy corrections become less relevant in higher dimen-
sional lattices, and thus the forward approximation becomes asymptotically
exact in this limit.

Table 3.2: Comparison of the critical value for localization in the Anderson model
in d dimensions predicted by the forward approximation with the numerical results
of Ref. [66]. The relative error decreases faster than d°.

d wka Wi Error
3| 27.03+0.03 | 16.536 + 0.007 | 39%
41 41.4+£0.1 34.624+0.03 | 16%
5| 57.8+0.2 57.30 £0.05 | 0.9%
6| 77.0£0.3 - -
7| 93.8%£0.3 - -

3.3.4 Divergent length scales and critical exponents

For fixed non-critical values of the parameters ¢ and W and for finite r, the
probability of resonances (3.46) is determined by the tails of the distribution
of Z.. We are interested in looking at its behavior with r, which allows to
identify a length scale which diverges at the transition point, as the asymp-
totic limit for the probability switches from 0 to 1.

Indeed, for an increasing r, the asymptotic limit is approached in a dif-
ferent way at the two sides of the transition: for W > W, the probability of
resonances goes to zero exponentially with r. Below the transition, the prob-
ability converges to one much faster, with corrections that are only double
exponential in 7. We perform a linear fit of the quantities

log [P (log ¢, > > 0)] (3.51)
and
log |log [1 — P (log |1, |* > 0)]| (3.52)

as functions of r for W > W, and W < W,, respectively. Examples of the
fits of the probability of resonances are shown in Fig. 3.8.
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P(Z, > Log Wit)

Figure 3.8: Probability of resonances P (Zr > log %) as a function of the distance
r from the origin, for d = 3. Asymptotically in r, the probability reaches 0
exponentially fast in the localized phase, and 1 double exponentially fast in the
delocalized phase. The squares are the results of the transfer matrix calculation,
the points of the dominating path (see Sec. 3.4.2) while the continuous lines are
the exponential or double exponential fit. Very similar results are obtained for
higher dimensionality.
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Figure 3.9: Power law divergence of [(W). The values of (W) for fixed W are
determined from fits such as the ones in Fig. 3.8. The power law fit produces a
critical exponent ~ 1 and a critical value W, compatible with the ones listed in
Table 3.2. The results shown here are for d = 3; very similar results are obtained for
higher dimensionality. Note how in the delocalized phase the distance to observe a
resonance is typically larger (for the same |W — W,.|) than the localization length
in the localized phase.

The fitting procedure allows to extract a W-dependent length scale [(W),
which diverges at the critical disorder W™, In particular, we expect this
length scale to diverge in the same way as the localization length/correlation
length does in the localized /delocalized phase, respectively. The length scale
[(W) is plotted in Fig. 3.9 for d = 3, and it is found to diverge with a
power-law exponent ~ 1 for all the dimensionalities.

Indeed, in the appendix of Ref. [3], this numerical result for the different
decays of the probability of resonances at the two sides of the transition is
confirmed by computing an approximate expression for the density of the
variable Z,. The approximation consists in considering the different paths
contributions as independent variables. Moreover, an expression for (1)
valid within this approximation is given, and it is shown that it diverges as
~ W — W7t for W — W., consistently with the numerical results.
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Connections with the problem of directed polymers in random
medium

In the single particle case, the energy denominators associated to different
sites along the paths are independent variables. Thus, the expression for the
wavefunction amplitude in the forward approximation, Eq. (3.11), resembles
the expression for the partition function of a directed polymer in a random
potential, with the thermal weights for the polymer configurations given by
the amplitudes of the different paths. This analogy is not straightforward,
due to the occurrence of negative contributions in (3.11). Nevertheless, it
has been fruitfully exploited both for the single particle problem [58,69-71],
and for problems of interacting spins on the Bethe lattice [72-75].

Motivated by this analogy the authors of Ref. [58] have proposed a scaling
form analogous to (3.48) for the logarithm log g of the conductance of an
Anderson model. There, the conductance in d = 2 is obtained from the
Green functions, which are computed numerically in the strong disordered
regime. It is shown that the fluctuations of logg scale with an exponent
w(d = 2) = 1/3, and that the distribution of the variable u is compatible
with a Tracy-Widom distribution. The authors argue that the same results
are obtained if the Green functions are computed within a modified forward
approximation, the modification consisting in taking energy denominators
that are not arbitrarily small but are bounded from below, with a cutoff which
mimics the effect of the self energy corrections. Note that if this constraint
is relaxed and the energy denominators are allowed to be arbitrarily small,
log g is found to be proportional to the quantity rZ, that we are considering.

The results of Ref. [58] are consistent with the conjecture [59, 76] that
in the strongly localized phase, where the expansion in non-repeating paths
is best controlled, the Anderson model in dimension d belongs to the same
universality class of the directed polymer in dimension 1 + D, with D =
d — 1. In particular, the conjecture implies that in the limit of large r the
distribution of log g has the scaling form (3.48), with w(d) coinciding with the
droplet exponent [77] in 1+ (d — 1) dimensions (which is exactly known [78§]
to be equal to 1/3 for D = 1), and u having the same distribution of the
fluctuations of the free energy in the disordered phase of the polymer, which
are distributed according to the Tracy-Widom distribution [79-82] in D = 1.

The values of the scaling exponents extracted from our data (see Ta-
ble 3.1) do not compare well with the droplet exponents w(D = d — 1) of
the directed polymer, which we read from Ref. [83] and references therein.
Curiously, they compare within errors with w(D + 1). We do not have an
explanation for this curious behavior, and we leave its analysis for future
work.
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Broadly speaking, the discrepancies with respect to the directed polymer
results might be generated by the fat-tail of the distribution of the paths’
amplitudes in (3.43), produced by the arbitrarily small energy denominators.
It might be that the finite size effect are more pronounced in the case of
unbounded denominators. On the other hand, it is quite natural to expect
that the models of non-repeating paths with bounded amplitude considered
in Ref. [58] exhibit a stronger dependence on the dimensionality, due to the
fact that the domination by one single path is less pronounced in that case.
Additional comments on this point are in Sec. 3.4.2.

Summarizing these result on the strong similarities with the problem
of directed polymers in a random medium, from this statistical analysis it
emerges that the scaling exponents describing the fluctuations of the wave-
functions are non-mean field, but also not equal to those of the directed
polymer. Moreover, the limiting distribution of the appropriately rescaled
wavefunctions seems to depend more weakly on dimensionality with respect
to the directed polymer case.

3.4 Further approximation: the optimal di-
rected path

Up to now we have discussed the full expression for the forward approxima-
tion, Eq. (3.11); this sum has been numerically computed through transfer
matrix multiplications. However, it is possible to consider an additional ap-
proximation, which performs very well for the single particle model with
uncorrelated energies. It consists of taking only one of the exponentially
many paths between the origin and the site where we are computing the
wavefunction amplitude, i.e. the dominant one; since a lot of less important
information is disregarded, this method is much faster and efficient in terms
of required memory space, allowing to inspect much bigger system sizes.
Some of the data already presented in this chapter, in particular those rel-
ative to higher dimensions and/or system sizes, has been computed making
use of this approximation.

3.4.1 Numerical method for computing the dominat-
ing path

We start by noting that, if the terms are independent from one another, the
sum in Eq. (3.11) is dominated by the maximum term, being a sum of terms
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which, in the localized phase, have a power law distribution®. Therefore we
could approximate it by taking only the path to which the greatest weight
corresponds. We can select this path by viewing the lattice as a directed
graph; indeed, we use the Dijkstra algorithm to find the best path in the
weighted directed graph generated by weighting the edges of the lattice with

Xp = 10gey| — min (loge]), (3.53)

where p is the site which the edge connects to, i.e. the next site to be
visited; we subtract the minimum in order to use the Dijkstra algorithm (a
greedy algorithm which requires positive weights), which, denoting with e
and v = N the number of edges and vertices respectively, has computational
complexity? O(e + vlogwv). Then the absolute value of the path weight is:

lw,| = e, where 1, = Z Te, (3.54)

which, for the optimal path, corresponds to the maximum weight.

This result is to be compared with the full sum given by Eq. (3.11) with
the transfer matrix result. As it will be shown in Sec. 3.4.2, this will turn out
to be a very good approximation, which enables to numerically access much
bigger system sizes; indeed, computing the wavefunction with this method
has lower time complexity (recall that matrix multiplication has complex-
ity O(v37¢) if dense, O(v + e) if sparse, and the number of multiplications
to perform is equal to the path length r). In terms of required memory,
the complexity is O(e?) for the Dijkstra algorithm® and O(v?) or O(v + e)
respectively for the dense and sparse transfer matrix multiplication.

Second best directed path

Note that we can also calculate the successive best paths in a similar way.
The algorithm used for finding the second best path is based on finding the
best path from the initial to the final site which is different from the shortest
path at least by one site; this is obtained by considering the sub-graph in
which each of the sites belonging to the shortest path is removed, one at a
time; it was devised originally by Yen in Ref. [84]. In more detail, one does
the following:

3In Sec. 1.2 we saw that, in the localized phase, the wavefunction amplitudes have a

. . . _ c71/2
Porter Thomas distribution, P(x) = Ner=t

4For the d—dimensional hypercube, the time complexity for the dominating path using
Dijkstra’s algorithm is equal to O(d N + N log N)

SFor the d—dimensional hypercube, the memory space complexity translates in O(dN)
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e calculate the shortest path between two sites, a and b, and its weight
as in Sec. 3.4;

e for each node [ in the shortest path, excluding the initial and final
nodes a and b:

— consider the graph which is generated by deleting the node [ from
the original graph;

— in this subgraph, calculate the shortest path between a and b and
its weight and store it;

e find the path with minimum weight between the ones which have been
computed in the previous step.

Excluding both the best and second best paths we can calculate the third
best path and so on. The computational complexity of computing all the
subsequent paths in this way is O(Kv(e + vlogv)), where K is the order of
the successive best path to compute.

3.4.2 The structure of the dominating path
Connection with the directed polymer

A relevant difference between the expression in Eq. (3.11) and the partition
function of directed polymers is that while the weight associated to the poly-
mer has an upper bound [64], the single factors in (3.11) are unbounded,
with diverging average. As a consequence, the strongly localized phase in
the Anderson model (where the forward approximation is better controlled)
always corresponds to a “frozen” phase of the directed polymer, in which
most of the weight in the total sum (3.11) is given by one single path.

Comparison with the forward approximation

Let us now proceed to compare the statistics of the wavefunction amplitudes
in the forward approximation with that of the optimal path, i.e. the path
with maximal amplitude; we will see that the full sum is strongly dominated
by the extremal path amplitude.

Let us first consider the Anderson model on the hypercube. The am-
plitude w; of the optimal path p* is computed by means of the Dijkstra
algorithm [85]; to apply the algorithm, as explained in Sec. 3.4.1, we assign
an orientation to each edge (i, j) of the d-dimensional cube (since the paths in
path®(a, b) are non-repeating, the orientation of the paths from the starting
site a to the final one b induces a natural orientation of the edges) together
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Figure 3.10: Average ratio of the dominating path weight w’ and the sum in
Eq. (3.43) computed using a transfer matrix technique, for the same disorder
realization. The plot corresponds to d = 3, and each point is averaged over 3 - 104
disorder realizations. Similar results are obtained for higher dimensionality, for
those r accessible with the transfer matrix technique. The standard deviation
error bars are within the point size.

with the cost (3.53), i.e. x, = log|e,| — ming log|ex|. The edge cost is chosen
in such a way that it is positive, as required by the algorithm. The total
cost of a path p is the sum of the costs of the edges belonging to it, and
the path p* with maximal amplitude is the one minimizing the total cost
function. In order to make a comparison with the transfer matrix results,
one can compute the ratio between w; and the full sum (3.43) computed via
the transfer matrix technique, for the same given disorder realization. The
distribution of the ratios turns out to be very narrowly peaked around one.
Fig. 3.10 displays its average as a function of the length of the paths r for
d = 3, which is extremely close to one, uniformly in the path length.

As a further check of the agreement between the values computed with
the two methods, in Fig. 3.8 we plot, together with the result from the full
sum (3.43), the r-dependence of the probability (3.14) determined with the
substitution |¢,| — w’. The data are plotted as points, which are almost
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indistinguishable from the transfer matrix results (squares). This indicates
that the statistics of distant resonances is fully captured by the optimal
path. Therefore, we have shown that in the single particle case the corre-
lation between different paths does not play a relevant role, since the sum
is dominated by the extremum, as it would happen for independent random
variables with fat-tailed distribution. Based on this observation, the numer-
ical analysis outlined in the previous sections can be (and indeed has been)
carried out for much bigger system sizes with respect to the ones accessible
with the transfer matrix technique.

In order to check with the results in the literature [58], one can also
take a modified forward approximation in which the small denominators are
bounded, which is sufficient to break the picture presented here. Indeed, we
take the energy denominators uniformly distributed in [—1, =W JU[W 1 1]
in d = 3 for two values of the cutoff, W = 25 and W = 35. In this case,
the ratio between the maximal path and the transfer matrix result departs
from one for increasing r, suggesting that more than one path dominates the
transfer matrix result. It is natural to expect that in this case the number of
dominating paths depends on the geometry of the system, thus introducing
a stronger dependence on the dimensionality. For the following analysis we
go back to the case of unbounded denominators.

Structure of the dominating path

One could ask what is the quality of the dominating path, i.e. whether it has
the dominating weight due to the fact that includes a single, very favourable
site, or instead all the sites belonging to it contribute to make it the path
with the biggest weight.

To characterize the optimal path one can compute the inverse participa-
tion ratio (IPR) of the edge weights contributing to w;; for this calculation,
let us consider ¢; € [—1,1] (i.e. W = 2) and define

(S loga)?
= 5 gl 359

where ¢ labels the sites belonging to the optimal path p*. The disorder-
averaged IPR scales linearly with the length of the path r, indicating that
an extensive (in r) number of edges contributes to the total path weight, and
cooperate to produce the atypically big path weights dominating (3.43) (see
Fig. 3.11).

Let us also look more closely at the distribution of the variables that
make up the dominating path. Indeed, Fig. 3.12 shows the distribution of
the absolute value of the energies along the optimal path for W =2, d = 3,
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Figure 3.11: Inverse participation ratio (3.55) of the energies corresponding to the
sites belonging to the dominating path. The linear behavior with the path length,
i.e. the number of these sites, implies that all the sites contribute to the atypically
big weight of the dominating path. The dashed line is a linear fit of the form
IPR = ar + b corresponding to d = 3; its parameters are a = 0.6516 4 0.0002 and

b= 0.20 £ 0.02.
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r = 210 and ¢, = 0, showing a power law. The fitting function, shown in
a dashed line, has the form p,.(¢) = ¢, + b.|€|*. The power-law behavior is
consistent with the considerations in Ref. [75]. There, the authors” arguments
for the distribution of the energies along the paths included in the forward
approximation sum starts from the fact that, on typical paths, the energies
in the denominators are uniformly distributed; the optimal path will be an
extreme event, and performing a constrained maximization calculation one
can recover a power law behavior. Adapting their reasoning to the finite
dimensional case, one can argue that asymptotically in r (and under the
hypothesis of independent paths) the biased energy distribution along the
optimal path has the form

1-—2zx
ple) = PR (3.56)

with z solving the d-dependent equation

d 2x
] _ —0. .
Og(1—2x) —or " (3:57)

Fitting the r-dependence of the coefficients ¢,, b,, a, one finds that the asymp-
totic limits are in agreement with (3.56), once one performs a careful extrap-
olation to r — oo (see the inset of Fig. 3.12).

3.5 Corrections to the forward approxima-
tion

So far we have established that the forward approximation is very good in
higher dimensions, giving reasonably precise results already in d = 5 for the
localization/delocalization transition values. One can think to improve on
this result by partially restoring the self energy contribution in the denomi-
nators of Eq. (3.11).

Indeed, one could reintroduce the self energy in a perturbative way by
accounting for just the smallest self avoiding loops around a give site [: as-
suming that [y,...,[, are its nearest neighbors, such loops are of the kind
Il — l; — [, and there are n of them. Thus, we consider:

SI(E) =) L (3.58)



3.5. Corrections to the forward approximation 71

3.5

3.0

25

2.0

15

P(l€)

1.0

0.5

0.0

©
o

0.2 0.4 0.6 0.8 1.0
1
€]

Figure 3.12: Probability distribution of the energy denominators along the optimal
path, for d = 3 and r = 210. The dashed red line is the fitting function of the
form ¢, + by|e|®, with fitting parameters ¢, = —0.95 £ 0.04, b, = 1.04 £ 0.03 and
ar = 0.472 £ 0.005. Very similar results are obtained for higher dimensionality.
Inset. Plot of the exponents a, of the distribution of the energy denominators
along the optimal path as a function of r. Due to the absence of a theoretical
reasoning for the finite size scaling, there are two fit forms: one with logarithmic
and one with 1/4/r corrections. The green curve is a fitting function of the form
a+c/ log(r), with fit parameters a = —0.73+0.05 and ¢ = —1.4+0.3; the red curve
is a fitting function of the form a + ¢/\/r, with fit parameters a = —0.57 4 0.02
and ¢ = —1.4 + 0.3. The asymptotic value a obtained with the logarithmic fitting
function is compatible with the solution of the Eq. (3.57) for d = 3.
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This is different than the second order term of the self energy (Eq. (2.24)),
which would be

; —~ 1
SP(E) =) e (3.59)
i i

where [;+, in a given path, is the previously visited site; that is, Efli* is a
path-dependent value. In the estimation (3.58), instead, we do not exclude
the previously visited site; this is wrong, but allows to compute the on-site
energy corrections without adding dependence to the specific path. One can
argue that in high dimensionality, where the number n of nearest neighbors
is high, this estimation is increasingly good.

In order to implement this correction in our numerical scheme of transfer
matrix multiplication, we first compute the shifted on-site energies. Using
the notation of Sec. 3.2.2, we build a transfer matrix which allows travel in all
directions, not only the forward one; indeed, we consider the one dimensional
full adjacency matrix

To={+L1} =1, 0 +{LT+1} = 1), (3.60)

and then construct the d—dimensional full adjacency matrix as before:

A=T®1® - @l+  +10- 01T, |. (3.61)

The transfer matrix is then
To = WA, (3.62)

where W is the diagonal matrix of the inverse energy differences, as in
Eq. 3.22. The first order of the self energy correction of the site |[) will
thus be given by:
1 1 1
Yi(ea) = Tall) - Lyx1 = + 4t

€qa — €4 €q — €y €qa — €1,

(3.63)

The ‘corrected locators’ are then (e, — ¢, — ¥(e,)) ", which are elements of
the ‘corrected weights’” matrix

1
W' = dia { } , 3.64
& €a — €k — Lr(€q) k1. N ( )

with which we now build the forward transfer matrix 7' = M Ay and proceed
as in Sec. 3.2.2 for the calculation of the forward approximation sum (3.11).
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Numerical estimations of the transition values in a d = 3 cube using this
modified forward approximation show results that approach the true transi-
tion value after one iteration step of this resummation procedure. Indeed,
the transition point goes from W14 = 27.03 4+ 0.03 in the (uncorrected) for-
ward approximation (see Table 3.2) to W/ = 24.04+0.5 (to be compared with
the most precise numerical result available W™ = 16.536 £ 0.007). How-
ever, applying this self energy resummation repeatedly, one converges to the
self energy correction of a Bethe lattice superimposed on the cube; control-
ling this convergence is still an open problem and a natural follow-up to the
work presented in this thesis. Moreover, one can indeed take into account
the path-dependent self energies; this requires to enlarge the transfer matrix,
doubling its size to store the information about the visited sites.

3.6 Final remarks on the forward approxima-
tion

In this chapter we have discussed advantages and the limitations of the for-
ward approximation, showing that it is a powerful tool in exploring the prop-
erties of disordered systems. The additional approximation of considering
only the dominating path opens numerical opportunities for an extended
study of single particle systems, while the possibility of restoring the self
energies as a perturbation is a worthwile follow-up question.

As a final comment, it is worth highlighting the nature of the forward ap-
proximation as a mean-field approximation. The mean field attribute should
be intended in the sense that, as the dimensionality (or local coordination) of
the system increases, the approximation becomes increasingly exact. Using
the forward approximation in order to find the value of the critical disorder
W, for the localization transition in the Anderson model, we noticed that
it grows indefinitely with d with an error with respect to the exact value
rapidly approaching zero, meaning that the hopping ¢ is becoming an almost
negligible perturbation at the transition. This feature is quite peculiar, since
in ordinary, second order phase transitions the critical exponents above the
upper critical dimension are correctly reproduced by a mean field approxima-
tion, while the location of the transition (e.g. a critical temperature) is never
exactly given by the mean field value. The locator expansion and the for-
ward approximation can be therefore considered better suited candidates for
a mean field model, e.g. with respect to the 2 + € expansion of the nonlinear
supersymmetric sigma model [86].






Chapter 4

Using the forward
approximation: A localized
system coupled to a small bath

In this chapter it will be shown how the forward approximation can be use-
fully employed to study nontrivial systems, for which an exact solution is not
available. Nontrivial localization properties emerge if one considers a single
particle system interacting with a mesoscopic quantum bath [4]. These re-
sults are both interesting on their own, and an additional example of the
fruitfulness of the forward approximation.

4.1 Introduction

In chapter 3 we have built a picture of the forward approximation and its
features. Let us now make use of it as a tool to inspect a specific system
showing peculiar localization properties. Indeed, we consider a system com-
posed by a particle in a disordered system coupled to a localized bath and
analyze its localization properties using the forward approximation [4]. Ex-
ploring the properties of this kind of systems is interesting in its own because
in experiments we rarely have absence of interactions with the environment,
and the effect of the bath may influence the localization properties of the
system. In addition to that, this will prove as a productive playground to
work in the forward approximation.

This investigation is justified by the fact that much work on quantum
localization considers only the idealized (and experimentally unrealizable)
limit of a completely closed quantum system, perfectly isolated from any en-
vironment; works that have studied what happens when a localized system

16}
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is coupled to a thermodynamically large bath exist [87-90] and show that
when a localized system is weakly coupled to a large bath the exact eigen-
states of the combined system and bath immediately become thermal (while
signatures of localization remain in local operators). More complex phe-
nomenology can however appear if a localized system is exposed to a small
bath, containing very few degrees of freedom, and if there are no restrictions
on the coupling to be weak.

The result obtained by analyzing this system is that localization is sta-
ble in presence of a coupling to a bath, on the condition that the bath is
mesoscopic; the transition boundary is modified in a nontrivial way due to
the interplay between the opposite mechanisms of ‘borrowing’ energy from
the bath, which favors delocalization, and of the quantum Zeno effect, which
for strong couplings forbids the evolution of the state. Overall, localization
is present for any value of the coupling to the bath for sufficiently strong
disorder, and there is a crossover between the two localization mechanism of
Anderson and Zeno localization.

In this chapter we will follow a qualitative discussion of the model which
will give the correct intuition on its localization properties. This qualitative
intuition can be confirmed by accurate analytic calculations in the forward
approximation, of which we will discuss the setup of the procedure and the
results, and by numerical exact diagonalization.

4.2 The model

We consider a system composed of a single particle in a random on-site
potential coupled to a delocalized bath. Let us start by considering the
particle, whose Hamiltonian is

HO = —t Z C;-er -+ Z GiCjCi, (41)
(i) g

where ¢; is a random on-site energy taken from a uniform distribution in the
interval [—W, W]. The lattice dimensionality is d, arbitrary and, for finite
size systems, we take L% lattice sites.

Then, we consider a bath. There are two key conditions that we require
of the bath, that is it has to be of finite size (a small bath, with a discrete
spectrum) and it has to be protected against localization. Indeed, previous
works on this kind of systems which considered a delocalized thermodynam-
ically large bath found that the delocalized bath forces the total system to
be in a delocalized state too (the reason for this will be explained in the
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following, since it will become clear once the mechanism for which the par-
ticle can borrow energy from the bath is understood); on the other hand,
if we consider a small bath that is not protected against localization, then
the additional degrees of freedom would localize as soon as it is coupled to
a localized system [87-90]. Note that such kind of delocalized bath is not
unphysical; examples include the longest wavelength Goldstone modes asso-
ciated with the spontaneous breaking of a continuous symmetry [91] and the
extended states in systems where there is a topological obstruction to the
construction of localized Wannier orbitals [92].

We model the bath as a quantum dot or a zero-dimensional system. This
is done in order to couple the particle uniformly to the bath, avoiding to add
any spatial disorder. We take the Hamiltonian of the bath to be

Hypath = w Z Ma’,ﬁ”a/> (5/|7 (4-2)
O!/,ﬁl

where we take M to be a N x N GOE random matrix, distributed according
to

P(M) o exp (—%tr [MQ]) : (4.3)
with
(Mas) =0, (M2g)= 2 fora#f, (M2)=1 (14)

in order to obtain a bath protected against localization. This is thus a system
which can be in any of NV possible states with energy in a bandwidth 2w+v/2N.
Note that the density of states is given by the well-known semicircle law

p(E) = —— (4.5)

and therefore the level spacing, in the middle of the spectrum, is

1 W

0 0 " AN (4.6)
Finally, we choose a coupling that does not change the localization prop-
erties of the bath but is still able to transfer energy to the particle in the
d-dimensional lattice. The simplest one which has this effect is a coupling of
strength A which can scatter the bath from any eigenstate to any eigenstate
with a random amplitude M (i/)g:

Q,

Heoupe =AY Mcle; @ |a)(8]. (4.7)
1,0,



78 Chapter 4. A localized system coupled to a small bath

€3

»
>

1 2 3 Z

Figure 4.1: Figure illustrating the basic setup. There is a tower of states for every
site ¢, which differ only in the state of the bath. The states in the tower have
energies spanning a bandwidth wv/N and level spacing w / V/N. The red line is the
one the hopping follows in the weak coupling regime (i.e. there is no change in the
state of the bath); the blue line represents an on-shell hopping, which can happen
if the states in the bath get hybridized as the coupling grows.

We choose the amplitudes to form L¢ random matrices, one for each lattice
site.
The Hamiltonian of the full system is then:

H = H(] &® ]lN><N + ]lLdXLd & Hbath + Hcouple~ (48>

4.3 Analysis of the system

Let us start by understanding what happens in the system with the hopping
t and the interaction with the bath A switched off. For each position of the
particle, there is a ‘tower’ of N bath states, with bandwidth wv/ /N and level
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spacing w/ V/N. For each different site, this tower is shifted in energy by
the on-site disorder corresponding to that site, which is of order W. In the
following we will consider overlapping towers, that is w/ VN < W < wVN,
and, in particular, that the overlapping happens away from the Lifshits tails.
This setup is represented schematically in Fig. 4.1.

In the case t = A = 0 the eigenstates of the total system are clearly
the product states of particle and bath where the states of the particle are
exactly localized in site i:

[¥) = i) @ |a). (4.9)

Keeping the coupling A = 0 and turning on the hopping, the particle will
clearly be in the strong Anderson localization regime for W < ¢ (mean-
ing that the localization length will be less than or of the order of the lattice
spacing) and in a weak localization (for d = 1, 2) or delocalization (for d > 3)
regime for W > t. Note that the dependence on dimensionality in the pres-
ence of the bath can be understood once one views even the “strong hopping”
problem as a (multi band) problem of a fermion moving in a random poten-
tial; this problem always exhibits localization in one and two dimensions.
The presence of localization can be seen by applying the locator expansion,
which will converge in the former case and diverge in the latter.

Let us now turn on the coupling with the bath. The system will go
through three regimes, which differ according to the hybridization of the bath
states with the tower corresponding to neighboring sites. Indeed, at weak A
the bath states do not hybridize and remain the same as the eigenstates of
M. The hoppings of the particle can happen with an energy cost equal to
the disorder strength, properly rescaled by the presence of the coupling to
the bath. In Fig. 4.1 this is showed by the trajectory in red. At intermediate
A the states of the bath start to hybridize over an energy window of width A,
which, eventually, for strong A involves all the states of the bath. This results
in the possibility of on-shell hopping trajectories, as pictured with a blue line
in Fig. 4.1. This, at least in the case of intermediate A, makes it so that the
hopping requires less energy for the particle, since the particle is effectively
borrowing energy from the bath. Note that this clarifies why a coupling
with an infinite bath results always in a delocalized particle, as mentioned in
Sec. 4.2: in that case, hybridization always occurs, for infinitesimal .

Let us now discuss in more details these three cases by looking at the
convergence of the locator expansion.
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4.3.1 Weak A\: Anderson localized regime

In this regime the effect of the coupling to the bath is limited to a rescaling of
the hopping and disorder strength. Indeed, supposing that the particle is at
position i, the effective Hamiltonian for the bath is wM + AM®. The bath
eigenstates will start to mix with each other when A\ becomes comparable
to the level spacing associated with the bare bath Hamiltonian, that is!
~ w/v/N. This absence of hybridization means that there are no mechanisms
which enhances the hopping of the particle for A < w/ V/N. We can easily
check this by considering the O(t) correction to the localized eigenstate:

O) ~ i) @ o) + Y Apagli+ 1) @[8) + ... (4.10)
B

If A < ¢, for a hopping leaving the bath untouched, perturbation theory
gives
t t
Aijtg=—""—"~ —, (4.11)
€i+1 — € w
while for a hopping that changes the state of the bath to f # a the same
ratio is at most
t A

max A; 13 = max
B LA €i+1 — € B € — €41 + Ea - Eg

t A tA
20 At 4.12
6 —cnd Wo < Ajq, ( )

~Y

So in this regime, the bath is typically not excited by the traveling particle,
meaning that the bath state does not change. The contribution given by the
presence of the bath is, instead, a rescaled disorder and hopping. Indeed,
since the coupling between the particle and the bath is different for each
site (by means of the matrices M), there is an additional source of static
disorder; therefore the particle is hopping in an effective on-site potential,

which has strength Weg &~ VW2 + X2 =~ W (1 + %) At the same time, the
bath opens up additional hopping channels, increasing the effective hopping

toteﬁ%t<1+§>.

Tndeed, a more precise criterion is:

AS—0
VNlog N

This comes from interpreting the effective Hamiltonian as a fully connected graph [49,93].
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The criterion for the breakdown of the locator expansion for A = 0, that
is W < t, is then modified in Weg < ter. We note that, since 6 < W, the
opening of new channels is the dominant effect. The net result, therefore,
is making localization less stable, changing the critical hopping to? t, =

%4 (1 — % + %) For t < t., we have strong localization, and for ¢t > ¢,

we have either weak localization (in one or two dimensions) or delocalization
(in three dimensions).

It should also be noted that in the weakly coupled strong localization
regime the exact eigenstates are effectively product states of particle and
bath states, and the entropy of entanglement of the system with the bath is
near zero.

4.3.2 Intermediate )\

As mentioned before, the key property of this regime is that the eigenstates of
MO start to hybridize within an energy window A. For simplicity, let us first
consider the system with the hopping turned off, A = 0. Then, the window
of hybridization that opens as A > \/LN can be determined by calculating the

decay rate of an eigenstate of wM©® due to the perturbation AM® using
Fermi’s golden rule. Indeed,

V2N
A~ 2720 = 2r A ——; (4.13)
W
moreover, this indicates that the broadened spectral line is a Lorentzian
with width A, meaning that the eigenstates |a ;) of wM + AM® should be
wavepackets of eigenstates |o)) of wM, with overlap

OA/m
(@) lao) | = \/ : (4.14)
(E%') o an))Q + A2

The weak and strong A limits are matched by the Fermi golden rule inter-
polation: as A — w, the hybridization window widens so that it covers all
the bath states, that is A — 2wv2N = ; on the other hand, as A — 9, we

2In high dimensions the result for ¢, is modified as an extra factor is needed [51],
obtaining

Lo WX
“ dlogd 262 2W2
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fall in the limit of no hybridization, that is A — 27d. Moreover, the window
becomes comparable to the disorder strength W for the value

Ww
Ao = H%/W' (4.15)

As we turn on a small ¢, it should be noted that now the hopping is
perturbative in ¢ but non-perturbative in A; the eigenstates will be of the
form:

) = )

t<ai+1|ai> .
1)l
+ Zai+1 €i+l _I_ E'OéiJrl _ EZ‘ _ Eai |Z + >|OZ +1>

+ o (4.16)

On-shell hopping is now possible, i.e. the hopping involves staying on an
energy shell up to a precision § ~ \/w—ﬁ (see the blue line path in Fig. 4.1),
due to the non-zero overlap between the two states |a;,1) and |a;) at the
same energy; since there is a difference of on-site energy |e; — €49 ~ W
in the lattice, this means that the process must involve transitions between
bath states with ‘Eai — B, +1‘ ~ W. Indeed, inserting F,, — E,, ~ W into
Eq. (4.14) we are able to compute the correction to the wavefunction due to
this “direct hopping” process, which is equal, at the leading order in ¢, to

t VA
~ (5m> : (4.17)

For A > )., these processes become “easy”, in the sense that the hybridization
window A becomes larger than the typical gap W, and Eq. (4.17) can be
approximated with £ (recall that A ~ ’\72) Instead, for A < A., Eq. (4.17)
can be approximated with Vtv_/\55 indeed, in this case, a direct on-shell hopping
is forbidden since the overlap between the states is small, but a two-step
transition in which the particle hops without changing the bath state and
going off-shell by an energy W, followed by a relaxation of the bath will be

the main mechanism for the hopping.

4.3.3 Strong \: Zeno localization

Finally, let us consider the limit of strong A. In this regime, as mentioned,
the particle becomes localized again due to the strong coupling to the bath,
a phenomenology that we dubbed “Zeno localization”. Indeed, it resembles
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the quantum Zeno effect of the non-evolution, or evolution in a subspace
only, of the dynamics of a small system coupled to a mesoscopic quantum
system (such as a measurement apparatus) [94-96.

In order to explain this effect, let us again start from the system with
the hopping t turned off, and recall that we are in the fully hybridized region
(so that the eigenenergies of the bath E,, acquire a lattice position index ).
In the limit of very strong A, that is A > w, the Hamiltonian of the bath
is dominated by the coupling to the particle, i.e. M®; moreover, note that
the hybridization is different for each site . Therefore the overlap between
two states (involving a change in the state of the bath & — /8 and of the site
i — ) is:

(1= 045)ws
VN

where the ¢; ; is a Kronecker delta function and x;; is a Gaussian random
variable (z;;) = 0 and (z7;) = 1.

Turning on the hopping ¢, when the particle hops to another site the
state of the bath will change, and it will be chosen among the bath states
with accessible energy, i.e., in this regime, all of them. Indeed, we can map
the problem to a Bethe lattice problem with connectivity k = N, effective

hopping

<Oéi’ﬁj> = 5(1,651',3‘ -+ (418)

_ L (4.19)
T = N .

and effective disorder
W =\N. (4.20)

The effective disorder W is determined from the bandwidth of the local bath
Hamiltonians wM + AM® | that is \/QNw2 (1+ 3—2) ~ MW/N for A > w. The

localization criterion is well known in the Bethe lattice (see Sec. 2.3), that
is, we have localized states if

t < A
~ log N’

(4.21)

while in the opposite case the locator expansion does not converge and there
is either weak localization or delocalization, depending on the system dimen-
sionality.

Another way to see this behavior is as a consequence of the orthogonality
catastrophe, i.e. the contribution of the bath to the full wavefunction is
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very different depending on the site on which the particle is, which in turn
strongly suppresses the overlap between states corresponding to the particle
being in adjacent sites, and therefore the matrix element corresponding to
the effective hopping between sites. Indeed, in the limit A — oo the states are
exact eigenstates of the system-bath coupling, the hopping being completely
ineffective; they are the product states |¥) = |i)|«;). Note that the entropy of
entanglement of particle and bath, in an eigenstate, is zero, and the particle
is localized on a single site.

4.4 Numerical and analytic results

So far we have presented a qualitative argument, which is enough to have
a detailed intuition about the behavior of the system. Still, the analysis
sketched in Sec. 4.3 has been performed in the forward approximation in a
more quantitatively accurate way in the appendix of Ref. [4]. In this chapter
we will not go into the details of this analytic calculation, opting instead to
sum up their result: the convergence region of the forward approximation,
schematically shown in Fig. 4.2, corresponds to

W(L— A\2/262 + \2/2W2)  if A <6

tS QWA if §/V2m <A<\ (4.22)
A/ log N if A > A

The important feature of this analysis is that the behavior in A is non-
monotonic. Comparing with the intuition gained in Sec. 4.3, at the smallest
A < w/v/ N, the coupling to the bath destabilizes localization by opening up

new hopping channels. For w/v27N < XA < A\, = ,/QW\/—I;LN, the coupling to

the bath assists the particle in hopping, by allowing it to ‘borrow’ the energy
required to get on shell. For A > A\, = ,/#‘;LN, the coupling to the bath

enhances the stability of localization, because of a ‘quantum Zeno effect.” It
is worth highlighting the agreement between the qualitative argument and
the results (4.22).

The more precise analytical calculation of the stability of the locator ex-
pansion starts by considering the wavefunction amplitude A; g for the particle
to be in the site j of the lattice and with the bath being in the state |5). For
a state localized in the vicinity of a site 7, the amplitude to find a particle at
a site 7 at distance n from i is exponentially small in the distance, implying
that, for some z < 1,

P (mgx |A; 5] < z") —1 (4.23)
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weakly localized or delocalized

vVIWw A
23/4 N1/4

Figure 4.2: Schematic phase diagram which indicates the boundary of stability of
the locator expansion. On the small ¢ side of the phase boundary, the system is
strongly localized. Within the strong localization regime there is a crossover from
Anderson localization at small A to quantum Zeno localization at large A. The

locator expansion is maximally unstable around \. = 2‘”\/—‘;‘/—]\] The large t side of

the phase boundary is the regime of crossover to weak localization (in one or two
dimensions) or transition to a delocalized phase (in three dimensions).
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as n — oo, where P is the probability measure over the realizations of the
disorder. The minimum 2z for which this condition is still true gives the
localization length as z = e~%¢ where a is the lattice constant.

The result of the calculation is shown in Fig. 4.3. There, in the bot-
tom panel, the localization length extracted in the forward approximation is
plotted as a function of the coupling A\, having kept the other parameters,
namely W/t, fixed, for a one dimensional system; this corresponds to taking
an horizontal slice in the phase diagram 4.2. The increase in the localiza-
tion length signals the crossover to weak localization (it would diverge in the
case of a dimensionality equal or higher than 3, indicating true delocaliza-
tion). This information can be used to construct the phase diagram in the
top panel, which ideally corresponds to the schematic plot of Fig. 4.2; in the
very weak A regime the Fermi golden rule (4.13), which is used in the forward
approximation calculation, is no longer valid. This results in the absence of
the weak A plateau, which can instead be recovered by directly performing a
perturbation theory in A, as in Sec. 4.3.1.

4.4.1 Overview of the numerical method

In order to support this analytic result in the forward approximation, we
can estimate the localization properties of this system in a way unrelated
to this approximation. The most careful numerical check that can be done
makes use of exact diagonalization of the total Hamiltonian, which implies
that no approximations are made. However, in general, when using exact
diagonalization, one should be careful in taking into account the finite size
effects and if possible extrapolate in the infinite size limit the quantity that
one is computing; this is because the system sizes usually accessible through
exact diagonalization are very small.

One is able to easily build Hj, the “system” part of the Hamiltonian,
in the position basis composed of the eigenstates of the number operator
n = clc for a particle in any one of the lattice sites®. The on-site energies are
diagonal in this basis, while the hopping term of the Hamiltonian is nonzero
where it corresponds to connected lattice sites, i.e. is proportional to the
adjacency matrix of the lattice. The bath Hamiltonian Hy,;), and the coupling
Houple are given as (properly arranged) random matrices; therefore the full

3For the one-dimensional system the adjacency matrix is simply:

1 j=i+1
0 else.

{A}ij7 Aij = {
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Figure 4.3: Results of analytic calculations in the forward approximation for fixed
W =3, N =300, w = 4. With these parameters A\, = 0.5. Top. t — X phase
diagram; the dark region is the weakly localized /delocalized region, the light region
is localized. Note that very small A are excluded: the calculation assumes that
states in the bath are hybridized according to Eq. (4.14), and is thus not applicable
at A\ < 6/v/27m. Bottom. Localization length as a function of A, along a horizontal
slice through the top diagram that always stays on the ‘strongly localized’ side of
the phase boundary. The maximum in the localization length is close to A ~ 0.3
and it indicates that the system is least localized at this intermediate value of A;
this is reasonably similar to A, = 0.5 obtained by the simple argument detailed in
Sec. 4.3.



88 Chapter 4. A localized system coupled to a small bath

Hamiltonian (4.8) can be easily constructed through Kronecker products.
Note that the Hamiltonian matrix is fairly sparse. We are interested in the
states in the middle of the band; in the presence of mobility edges, these are
the last states to localize and are therefore the ones that characterize the
system at infinite temperature.

The best algorithmic way to compute the eigenstates of this given matrix
which we are interest in is to make use of the Lanczos iterative method (for
Hermitian matrices); with this technique, the eigenvalues and eigenvectors
are approximated iteratively by constructing a sequence of powers of the
matrix, i.e. taking a starting random vector b and building the sequence

[b, Hb, H?), ..., H"b], (4.24)

and then forming a orthogonal basis from them, known as Krylov basis.
The eigenvector corresponding to the largest eigenvalue will be approximated
by H™b and, after orthogonalization, a subset of the vectors in the Krylov
subspace will approximate the eigenvectors corresponding to the successive
largest eigenvalues, with a very fast convergence for the more extreme eigen-
values.

The states at the center of the spectrum are the numerically harder to
compute; one can however apply spectral transformations to the Hamiltonian
in order to make the desired window of energies the dominant eigenvalues of
the transformed Hamiltonian. Indeed, let us consider an eigenvalue Ay of the
matrix H; then one can consider the matrix

1

4.25
7ol (4.25)

which has (A\; — «@)~! as the dominant eigenvalue. However, inverting the
matrix is costly and not convenient; we can instead proceed iteratively by
selecting an initial guess vector z( (of unit norm), solving the linear system

(H — al)y, = z,, (4.26)

and normalizing x, 1 = Hz—"” for the next iteration. z,, will converge to the
n
dominant eigenvector, while

1
— + a, where ¢, =yl 1, (4.27)

Coo

will converge to its eigenvalue.
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4.4.2 Exact diagonalization check of the forward ap-
proximation result

We now proceed to check the forward approximation analytic result with
the numerical, exact one obtained through the diagonalization of the system
Hamiltonian. Indeed, we can compute quantities which are proportional to
the localization length; thus, we can discriminate between a strongly localized
phase and a weakly localized or delocalized phase. Note that, since in this
work only one dimensional systems are numerically accessible, the aim is
to spot the crossover to weak localization, which is an arbitrary task in the
absence of information about the convergence of the locator expansion. Thus,
instead of trying to numerically reproduce the phase diagram in Fig. 4.2 or in
the top panel of Fig. 4.3, we will be satisfied by detecting in the localization
length a behavior which matches the analytic result of the bottom panel of
Fig. 4.3 (and, specifically, the position of its peak).

One way to numerically estimate the localization properties of the system
of Eq. (4.8) is by looking at the probability distribution of the position of
the particle in the eigenstate |¥) of the coupled particle and bath:

pi = Z | (i, i W) | (4.28)

CY,L':l

One can then define the inverse participation ratios of order q of p as:

I, = (Zp?>_ : (4.29)

For example the localization length can be estimated from the first non trivial
I, ie.

I ~ &9 (4.30)

Additional information is contained in the entropy of the entanglement of
the system with the bath, which can be extracted from the reduced density
matrix p = Trpaen| V) (Y|, where |¥) is an exact eigenstate of the full system.
The entanglement entropy is

S = —Tr(plogp). (4.31)

For the present problem the entanglement entropy and the inverse participa-
tion ratios are correlated, since the less the particle is localized, the more it
is entangled with the bath.
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Figure 4.4: Numerical results relative to a one dimensional system coupled to a
small bath. The plots are for parameters t = 1, w = 4, N = 300, and varying
W, spanning the phase diagram in Fig. 4.2. The entanglement entropy and the
participation ratios have a pronounced maximum close to the (same) hybridization
threshold \., with a sharper peak when going through the weak localization regime.
Inset. Example of the finite size scaling of S” for a given value of A = 0.8 and
W = 6. To extrapolate the infinite size S* Eq. (4.33) is used, with L ranging
from 10 through 70.
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0.0

Figure 4.5: Value of A, for t = 1 and the different disorders W. The numerical data
are plotted in blue, with the corresponding errors coming from the resolution in A
at which the plots in Fig. 4.4 are computed. The analytic estimate of Eq. (4.15)
is plotted in dashed green . The exact diagonalization data agree well with the
analytic prediction.

The results of calculating I, and S from the exact wavefunction obtained
by diagonalizing the Hamiltonian (4.8) are non-monotonic as the coupling
with the bath A\ increases, keeping the disorder and hopping strengths W
and t constant. This implies that the localization length follows the same
behavior. Let us take for example a one-dimensional system, which is well
accessible by numerical methods; the results in Fig. 4.4 are obtained per-
forming exact diagonalization for about 50 states in the center of the band
for the parameters t = 1, w = 4, N = 300, and varying W. The values of W
are chosen so that the phase diagram of Fig. 4.2 is spanned, slicing through
the ‘weak localization’ region for W' < @ ~ 12, whereas for W > 12 we
stay always in the strong localization regime. The figure shows that, as a
function of A, the entanglement entropy and the participation ratios have
a pronounced maximum close to the (same) hybridization threshold A., the
peak being sharper if we go through the weak localization regime. In par-
ticular for the entanglement entropy, at weak A, the particle becomes more
entangled with the bath as A is increased, but for larger A\ the entanglement
entropy becomes a decreasing function of the coupling, and in the extreme
A — oo limit one recovers an unentangled product state.

The values that are computed through exact diagonalization in systems
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of finite size (with L ranging from 10 to 70, with 50 disorder realizations
each) are extrapolated to infinite size by using a fit of the form

I,(L) = 1,(c0) +ar/L (4.32)
for the inverse participation ratio and
S(L) = S(0) 4+ as/L (4.33)

for the entanglement entropy. They turn out to fit very well the numerical
data (see the inset of Fig. 4.4 for an example of the finite-size extrapolation).

The value of A, i.e. the value of the bath coupling which maximizes both
the participation ratio and the entanglement entropy, can be extracted from
the numerical result and compared with our analytic estimate of Eq. (4.15),
obtaining a good agreement (see Fig. 4.5, in which the value A, is plotted as
a function of the disorder strength W).

Strong localization is least stable when A ~ \., and becomes more stable
both for weak A (the Anderson localization limit), and for strong A\ (the

quantum Zeno limit). The minimum value of ¢ that can cause the breakdown

of the locator expansion is t.(\.) = 4/ 2‘\"/%. Thus, for any ¢, the localization

length should peak at this value of A. We can conclude that this is observed
both in the numerics (Fig. 4.4) and in the forward approximation analytic
calculations (Fig. 4.3).

4.5 Conclusions on small bath

In this chapter we examined the behavior of a single particle localized system
coupled to a finite sized bath that is protected against localization. It is a
relevant result, especially for experimental works, that the localization of the
particle is stable in presence of this kind of coupling; moreover, the stability
is modified in a non-monotonic way, highlighting the effects of Anderson
localization and of the quantum Zeno effect.



Chapter 5

Adding interactions: Many
Body Localization

5.1 Introduction

In 2006 the topic of localization in disordered systems was revived by the
influx of the new ideas by Basko, Aleiner and Altshuler [2], who introduced
a new treatment of interactions and showed that a ‘many-body localized’
phase is possible. This has solved a crucial question that resisted an an-
swer for almost fifty years, that is the stability of localization in presence of
interactions, and has since sparked a renewed interest in the topic, making
many-body localization the paradigmatic mechanism for ergodicity breaking
in interacting systems.

In this chapter a contribution to this topic will be provided by showing
that applying the forward approximation framework presented in Chapter 3
to the interacting many-body case is possible and results in a powerful tool.
Moreover, we will inspect the ergodicity properties using a properly defined
inverse participation ratio and extract a phase diagram for the many-body
localization transition.

5.2 Many body localization and ergodicity

In Sec. 1.5 we discussed some known properties of the many-body localized
and delocalized states. Indeed, a delocalized state can be thought as a state
that extends over the whole many-body configurations space, while a local-
ized state is very similar to a Slater determinant of single particle states.
Note that the many-body configurations space in the infinite size limit is hi-
erarchical and highly branching and is thus similar to a Bethe lattice, which

93
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can be used as its approximation [49]. A property of the Bethe lattice is
that two given sites are connected only by one path and, as a consequence,
resonant sites may be much sparser than ordinary lattices of given dimension
d, raising questions about ergodicity in many-body systems. It is a known
result that at criticality in the wavefunctions of the single particle Ander-
son model on a finite dimensional lattice there are indeed such non-ergodic
states [40,97-99]. Moreover, it has been shown [100] that in the Bethe lat-
tice, even away from criticality, the extended states are indeed multifractal;
thus they are ergodic on a subset of the full lattice which has a (spectrum
of) fractal dimension.

A way to inspect the ergodicity of the wavefunctions is by means of the
participation ratio (1.33), or, equivalently, through the moments of the distri-
bution of the wavefunction amplitudes (more specifically, the first non-trivial
one, i.e. the second moment). Intuitively, the participation ratio measures
the participation of each basis element to the wavefunction support. Follow-
ing the reasoning of Sec. 1.5 one can understand how the participation ratio
can be used to determine whether a state is many-body localized. Addition-
ally, information on the (multi-) fractal behavior is also encoded in its scaling
with system size.

In this section some results coming from the exact diagonalization of
many-body models with two kinds of disorders are reported; from the anal-
ysis of the wavefunction participation ratio and the eigenvalue statistics we
can construct a phase diagram and identify the many-body localization tran-
sition.

5.2.1 Participation ratio and ergodicity

Let us specifically consider the Hamiltonian (1.27) of fermionic particles in
a one dimensional lattice of N sites, i.e.

N-1 N N-1
H=—t Z(CZCi+1 + clrlci) + Z hicgcz- — A c;rciﬂciciﬂ, (5.1)
i—0 =0 i=0

where the cj ,c; satisfy {cz,cj} = 0;;, with periodic boundary conditions.
The on-site disorder h; can be either truly random and uniformly distributed
in [-W,W] (interacting Anderson model) or a quasidisorder, i.e. h; =
W cos(2m¢p~Yi + §), where ¢ = (1 + +/5)/2 and § is a phase chosen ran-
domly in [0, 27) (interacting Aubry—André model). Let us also consider the
usual configurations basis {|7)} in the half filling sector, so that the Fock

space has dimension N = ( N]\/[2)' Finally, let us denote the normalized many-
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body eigenfunction coefficients in the configurations basis with ¥,, = (7i|E),
and define © = N2,
Let us consider the moments of the wavefunction distribution

Iy = <Z (7| E) ") = NT79(a); (5.2)

note that Iy is clearly related to the inverse participation ratio following
the definition (1.33). With a reasoning analogous to the one used for the
normalized participation ratio, one can see that, for infinite temperature,
ergodicity of the wavefunction means that I, oc N7 which implies that
the mean (x7) is well behaved and therefore the distribution P(x) has a
well behaved thermodynamic limit. A subleading scaling with the size of
the configurations basis instead signals the breaking of ergodicity, including
localization (which can be detected upon suitably normalizing).

We can define the fractal dimension by means of the moments I,. Taking
into account that the embedding space has volume N/, the fractal dimension
is the exponent 7 of

I,=N"T9, (5.3)

In principle, one can have a continuum of fractal dimensions, which results
in a multifractal.

5.2.2 Participation ratio for localized and delocalized
wavefunctions

In order to gain insight about the transition between ergodic and non-ergodic
states in the interacting many-body system, let us now proceed to extract the
wavefunction participation ratio of eigenstates in the middle of the spectrum
and analyze their behavior with respect to the system size.

Let us consider the model (5.1) with the random Anderson and the
Aubry-André quasidisordered on-site potentials. One can obtain eigenfunc-
tions corresponding to the center of the energy spectrum by exactly diag-
onalizing the model Hamiltonian; in the following, 50 states in the center
of the spectrum are considered and are averaged over. The parameters for
both models are set to t = 1/2 and A ranging from 1 to 4, with the disorder
strengths W for the random and quasirandom potentials both ranging from
1 to 6. Note that for this choice of parameters the fermionic system with
random potential can be mapped to an XXZ spin chain, whose transition
point W, for A = 1 is estimated in the literature as in between 3 and 4
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Figure 5.1: Scaling of the wavefunction normalized participation ratio NPRy with
the system size for the interacting model (5.1) with the random Anderson (top
panel) and the Aubry—André quasidisordered (bottom panel) on-site potentials,
with parameters t = 1/2, A = 1 and varying disorder strength. NPRy is of O(1)
in the ergodic phase and decays exponentially to zero in the localized phase. Each
value is computed as an average over 50 states in the middle of the energy spectrum
and at least 10* disorder realizations (except for N = 18, for which at least 100
disorder realizations are considered). The continuous lines are the exponential fits
of Eq. (5.4).
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(W, = 3.72(6) in Ref. [21]); for the quasirandom potential the transition
point for the noninteracting system is instead exactly known to be W, = 2.

The normalized participation ratio NPRy = (2%)~! (recall its definition
in Eq. (1.33)) is shown in Fig. 5.1 as a function of the system size for both
models; for weak disorder NPR; is of O(1), as expected for extended states.
Both in the disordered and in the quasidisordered model the participation ra-
tio decays exponentially to zero (in the localized phase) or to a finite asyptotic
value (in the delocalized phase), corresponding to the infinite size NPRs.

The ergodicity detected through the scaling of the participation ratio can
be used to construct a phase diagram and to find the transition between
the localized, nonergodic phase and the ergodic one. In Fig. 5.2 a phase
diagram for varying interaction and disorder strength is shown for the random
disorder model. A finite size scaling has been performed in order to obtain
the reported values: an exponential form

NPRy(N) = ce™™ + NPRy(00) (5.4)

is a good fit (see the continuous lines in Fig. 5.1), which allows to extrapo-
late the infinite size value of the participation ratio NPRy(oc0). This result
can be compared with the one of Ref. [101], in which a phase diagram is
constructed for a system of N = 12 spins using a quantity related to the
spin autocorrelator. The effect of the interaction is non-monotonic. At low
interactions, delocalization is favored, that is, the interaction between the
particles induces inelastic hopping; this can be seen also as the consequence
of an effective reduction of the disorder caused by the increasing correla-
tions in the denominators of the locators. For big values of the interaction
localization is again favored because of a ‘glue effect’ and the dynamics is
dominated at most by collective motions. Indeed, the localization in the area
at low disorder and high interaction is due to the configurational disorder of
the initial state; this is a genuine many-body effect which exists in this class
of systems in addition to Anderson localization [102].

Since the participation ratio goes to zero continuously, the Anderson lo-
calization transition point can be more easily identified through the eigen-
value statistics; the r parameter introduced in Eq. (1.14) is especially use-
ful in allowing to discriminate between the Poissonian (r ~ 0.39) and the
Wigner Dyson (r ~ 0.53) statistics of the gaps in the localized and delocal-
ized regimes respectively. In Fig. 5.2 the transition values obtained from the
finite size scaling of the r parameter are superimposed to the color code of
the participation ratio. Indeed, the value of the r parameter approaches the
Poissonian or the Wigner Dyson value as the system size increases; thus, the
crossover of r as a function of the disorder becomes increasingly sharp and
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Figure 5.2: Contour plot of the participation ratio NPRe; this is used to construct
a phase diagram highlighting the ergodic and localized phases for the interacting
model (5.1) with the random Anderson on-site potentials, with ¢ = 1/2 and varying
interaction and disorder strengths. The values used in the diagram come from the
infinite system size scaling of participation ratios like the ones plotted in Fig. 5.1.
Lighter colours correspond to higher values of the NPRs. The red points are the
Anderson transition points obtained through a finite size scaling analysis of the r
parameter.
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Figure 5.3: r parameter for the interacting Anderson model as a function of disor-
der for fixed interaction A = 1 and for different finite system sizes. As the system
size increases, r approaches the Poisson or the Wigner Dyson value on the two
sides of the transition; the point where the curves cross corresponds to the transi-
tion value W.. Each data point has been computed as the average over 50 states
in the middle of the spectrum and over at least 10* disorder realizations, except
for L = 16 for which at least 103 realizations have been used.
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the crossing of the curves corresponding to different finite system sizes signals
the transition. An example of this finite size scaling is given in Fig. 5.3 for
A=1.

5.3 The forward approximation in Many Bo-
dy systems

In Chapter 3 we have focused on the single particle Anderson model, for
which a clear formulation of the perturbative series for the wavefunction is
the locator expansion. An extension of the forward approximation analysis
to many-body systems is indeed possible, bearing the same advantages as in
the single partcle case.

The starting point is the analysis done by Basko, Aleiner and Altshuler [2],
who took into account perturbatively the interactions at finite temperature
and particle density for the imaginary part of the propagator of an excitation
on top of an eigenstate. This perturbative series almost surely converges for
weak interactions; along the lines of the reasoning for the single particle, this
implies the localization of the excitation and the absence of transport, as
mentioned in Sec. 5.1.

The many-body localization problem however can be also interpreted al-
ternatively as a single particle tight binding problem in the space of many-
body configurations [49], with the interactions playing the role of an effective
hopping. Indeed, in this case localization is intended as happening on the
occupation number basis vectors of the configurations space. When perform-
ing this mapping, we must take into account a few non-trivial differences
with respect to the single particle case. First, the on-site energies in the re-
sulting effective lattice are no longer independent and identically distributed
random variables, but their values are strongly correlated and result from
both how the on-site disorders interplay with a given basis vector and from
the particle interactions on that same state. Secondly, the effective lattice is
generated by the non-diagonal part of the Hamiltonian, i.e. the spin flipping
(or hopping, in case of particles) part. Therefore the connectivity of a con-
figuration in the many-body problem depends on the system size, as it scales
as a power of it, and thus it diverges in the thermodynamic limit, making it
impossible to define a limiting graph. Moreover, different sites have different
connectivity. Finally, taking two many-body configurations in a reasonably
isotropic region, as their distance grows when the system size is increased,
the number of paths connecting them grows factorially, and many cancella-
tions occur among them; since the distance between two such configurations
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is of the order of the system size, the number of paths grows factorially in
the system size; in contrast, for the single particle problem, one would have
only an exponential growth.

Summarizing, the mapping of an N interacting spin problem to a single
particle problem results into a complicated correlated disorder problem on a
section of an N-dimensional hypercube. Taking advantage of the study con-
ducted so far of the forward approximation in hypercubes for single particle
systems, let us now approach an interacting XXZ spin problem, as many
analogous results can be obtained also in this kind of systems.

5.3.1 The Heisenberg model with random fields

Let us consider an XXZ spin-1/2 chain in random magnetic field,

L

L L
H(t) == hisi =AY sjsi —t > (sish + sls?y), (5.5)
=1 i=1

i=1

where periodic boundary conditions are assumed (s = s¢,,), and the ran-
dom fields h; are uniformly distributed in [—h,h]. This spin Hamiltoni-
an (5.5) has been studied in a large number of works [15,18,19,50, 100, 103—
106}, in which numerical evidence of the existence of a localization/delocal-
ization transition is provided, mainly based on exact diagonalization results.
The critical disorder is estimated [21] to be h. ~ 3.72(6) for states in the
middle of the energy band and parameters t =1 and A = 1.

As mentioned in Sec. 5.3, the many-body problem can be seen as a single
particle hopping problem in the configuration space, which is composed of
the 2L product states in the basis of s7, which span the full Hilbert space and
diagonalize H(0). We denote these basis states with |n), and refer to them as
the “configurations basis”. The mapping to an hopping problem is obtained
by interpreting each state |n) as a vertex m of a graph, with associated
random energy E, defined by H(0)|n) = E,|n). The third term in (5.5)
provides the hopping between different sites, thus defining the topology of
the graph, as shown in Fig. 5.4 for a small system of six spins. Note that
due to spin conservation, the full configurations space, and consequently the
graph, is partitioned into disjoint sectors corresponding to different total
spin; we restrict to the sector of total spin equal to zero, corresponding to a

connected graph with ( ].52) vertices.
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Figure 5.4: Lattice interpretation of the many-body Hamiltonian (5.5) for L = 6
spins. Each site represents a spin configuration and is associated to a product
state in the basis of s7; only sites corresponding to states with zero total spin
are represented. Starting from the Neel state | |1 ...), one of the (L/2)! paths
connecting it to the fully flippled Neel state | 1] ...) is highlighted in red, along
with the visited configurations. The path has length L/2 = 3.
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Figure 5.5: Probability density of the random variable Z,.(h) defined in Eq. (5.7),
for a spin chain of length L = 20 and different values of disorder h. Each curve is
obtained with 3 - 10% realizations.

5.3.2 The forward approximation in the Heisenberg
model

The effective hopping problem can be analyzed using the procedure set up for
the single particle case, this time on the lattice generated by the many-body
Hamiltonian such as the one in Fig. 5.4: the amplitude ¥, of an eigenstate
of the effective single particle problem is given in the lowest order forward
approximation by

vm= Y [l oq (56)

pEspaths(ni,ne) NEP

where it is assumed that the eigenstate satisfies ¥, (n) — d,,, for t — 0. A
sample path between two states in the “bulk” of the lattice is highlighted in
red in the figure.

The results of Eq. (5.6) are the coefficients of the eigenstates of (5.5) in
the configurations basis at the lowest order in the coupling ¢. The exponen-
tial decay of the coefficients implies localization in the configurations space;
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this means that the many-body eigenstates are a superposition of few config-
uration states which are all at a short distance from the initial configuration.
The two main consequences of this structure of the wavefunction is that they
have significantly less entanglement than ergodic states [50, 100, 107] and
that, using Kubo’s formula for linear response [51], one can prove that they
cannot support transport on macroscopic distances.

Similarly to the Anderson case, we fix an initial configuration of spins,
taking care to select it in the bulk of the effective lattice, and we look at
the amplitude in perturbation theory corresponding to the configuration in
which all the spins have been flipped, which is the most distant configuration.
In particular, we fix the localization center to be the site correspondent to
the Neel state [n1) = | 1| ...), and consider the wavefunction amplitude on
the site corresponding to the fully flipped Neel state |ny) = | {1 ...). These
two sites, ny and ng, are connected by 2(L/2)! paths on the graph, of length

r = L/2 each.
By means of the transfer matrix we compute the rescaled amplitude
log |, |?
Z.(h) = ————— 5.7
OEETL (57)

for different disorder strength h, with W, given by (5.6). We consider spin
chains of size 6 + 20 with hopping and interaction constants respectively
t=1and A =1, and h = 1+ 6. As it was mentioned in Sec. 5.3, recall
that, even though the general framework is the same as in the Anderson
problem, the transfer matrix calculation is by no means identical; indeed, in
the many-body case the energies associated to the different graph vertices are
a linear combination of the independent random variables, and are therefore
correlated. Moreover, the number of paths connecting two sites proliferates
with the size of the chain L, with a scaling that is faster than exponential.
These paths present correlations that are much stronger with respect to the
Anderson problem; the consequences of this will be discussed in more detail
in Sec. 3.4.2.

As for the Anderson model, the probability density of Z,.(h) can be plot-
ted, revealing a peaked distribution; in Fig. 5.5 various curves for a spin
chain of length L = 20 and different values of h are shown. Additionally,
Fig. 5.6 shows the behavior of the probability of resonances as function of
the distance between the Neel states. As expected, the r-dependence of the
probability of resonances changes with the disorder: the probability decays
to zero at large h, and increases towards one for the smaller h. To detect
the transition point, we again make use of the position of the extrapolated
peak of the probability distribution function of Z, or, equivalently, the ex-
trapolated value (Z.(h)). Since in the many-body case it is not possible
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P(Z,(h) > Log 1/t)

Figure 5.6: Probability of resonances P(Z.(h) > —logt) as a function of the
distance r between the two Neel states n; and no, for ¢ = 1. Asymptotically
the probability reaches zero exponentially in the localized phase and one in the
delocalized phase. Here we show the result of the forward approximation for values
of the disorder strength h which span the delocalized, localized and critical regimes.
We average over 104, 5-10% and 3 - 103 realizations for » < 8, r = 9 and r = 10,
respectively. Linear and exponential fits in the delocalized and localized regions
respectively are plotted as continuous lines.
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Figure 5.7: Extrapolated value of the mean (Z,). The crossing of the x-axis signals
the many-body localization/delocalization transition (see Eq. (5.8)), obtaining a
transition value h. = 4.0+ 0.3. The errors are obtained from the fitting procedure
(see Inset). Inset. Finite size scaling of r (Z,) with the distance r between the
Neel states nq and ng. A linear form with an r~! correction, i.e. Eq. (5.9), is a
very good fit. Here we show a fit of r (Z,.(h)) with h = 1 with parameters (with
reference to Eq. (5.9)) ¢; = =7.2+ 0.4, (Z(2)) =1.23+0.02 and c2 = 8.8 £0.7.
The finite-r values for the mean are obtained over at least 10* realizations for r < 7
and at least 2 - 10° realizations for r > 7.
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to extract the dependence on the disorder strength h from the extrapolated
(Zo(h)), the criterion for the transition reads

(Zoo(he)) = —logt. (5.8)

From the numerical data obtained in this model, let us then look at the
distributions P(Z,(h)). In Fig. 5.7 the values of (Z,,(h)), extrapolated from
the finite size values using the fitting function

r{(Z.(h)) = c1 + (Zoo(h)) 7 + cor™?, (5.9)

are plotted as a function of the disorder strength h. Since ¢ = 1, the critical
point A, is estimated from the condition (Z(h.)) = 0. The resulting value
is h, = 4.0 £ 0.3, which is, as expected, larger than the result obtained from
exact diagonalization.

The probability of resonances in Fig. 5.6 is expected to converge to zero
or one at least exponentially in r (for large r); however, the exponential
behavior is not clearly detectable in the delocalized phase, due to the few
accessible system sizes. For h < h. one can define and extract a length scale
[(h) by taking the inverse of the derivative of the curves in Fig. 5.6, while
in the localized phase we can more reasonably fit with an exponential form.
The length scale [(h) extracted with this procedure is plotted in Fig. 5.8,
together with a power law fit diverging as ~ |h — h.|™! at the transition.
Note the asymmetry of the curve with respect to h., which indicates that at
fixed |h — h.| the typical distance to find a resonance in the delocalized phase
is larger than the localization length at the corresponding value of disorder
in the localized phase. A possible consequence of this phenomenon, which
occurs also in the Anderson model (see Fig. 3.9), could be a large “critical
region” in the dynamics in the delocalized phase.

As we discuss in Sec. 3.4.2, in the many-body case the sum (5.6) is no
longer dominated by a single path; therefore, the algorithm for the best path
is not applicable in this context, and the limited system sizes accessible with
the transfer matrix do not allow to investigate whether a scaling form exists
for the distribution P(Z,.(h)) also for (5.7) in the limit of large r, as it was
found in the Anderson model. For the available system sizes, the distributions
of the rescaled variables

5.10
— (5.10)
do not seem to collapse into a unique curve, and the scaling of the variances
aér(h) with r appears to be compatible with a power-law, but with an expo-
nent dependent on the disorder strength h. Having access to bigger system
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Figure 5.8: Divergence of the length scales [(h) extracted from the fits of the
probability of resonances as a function of r. The dotted curve is a power law fit,

resulting in a critical exponent ~ 1. The vertical dashed line indicates the critical
value h. found in Fig. 5.7.
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sizes would be necessary to give a conclusive statement on the asymptotic
behavior; unfortunately this proves to be a challenging numerical problem
due to the algorithmic complexity in space and time of the transfer matrix
method.

5.3.3 Absence of a dominating path in many body sys-
tems

In Sec. 3.4 we compared the forward approximation of the wavefuction to
the result obtained by considering only the optimal path, showing that the
forward approximation sum is indeed dominated by only one term. In the
many-body case, however, most of the paths have comparable amplitude
and the much stronger correlations between them give rise to non-negligible
interference effects, resulting in many cancellations.

Indeed, when performing the same analysis of Sec. 3.4 for the Heisenberg
chain, one finds that the statistics of the sum (5.6) is not well reproduced by
the optimal path alone: the distribution of the ratios between the full sum
and the optimal path is very wide and peaked at values that are far from
one. In this case, despite also in many-body systems the amplitude of the
single paths are fat-tailed distributed, there is not a single one dominating.
Indeed, one can look at the composition of the sum (5.6) by looking at the
average IPR* of the paths amplitudes (which we denote with w,)

IPR* = M (5.11)

over all the paths connecting the two Neel states, which we take as starting
and ending point as in Sec. 5.3.2. One finds that it scales linearly with the
total number of paths N* = 2(L/2)! (see Fig. 5.9), indicating that there are
factorially many (in the length of the chain L) paths having amplitudes that
are comparable in absolute value. This is a signature of the strong correla-
tions between the paths, which is not surprising in view of the many-body
nature of the model. Following Ref. [51], one can argue that the strongest cor-
relations are among those paths associated to processes in which the same
spin flips occur, but in different order: the different orderings of the flips
produce different energy denominators in (5.6), and thus different path am-
plitudes; however, the resulting terms are trivially correlated, and one can
expect that for those realizations of the random fields producing one partic-
ularly large path weight, the other ones (related to it by permutation of the
order of the number of spin flips) will also have a large amplitude in abso-
lute value. However, in the sum (5.6) the paths contribute with well defined
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Figure 5.9: Average IPR* of the paths, as in Eq. (5.11), as a function of the

number of paths N* = 2(L/2)! for random spin chains of different lengths L. The
IPR* is linear in the total number of paths.

relative signs, leading to cancellations between these factorially many terms,
which are fully taken into account only with the transfer matrix method.

5.4 Pushing the limits on many body local-
ization

The many-body localization transition is at the cutting edge of research in
disordered and localized systems. The investigation of this class of systems is
however hard, both with numerical and with analytical calculations. Between
these two options, indeed, a common choice is to advance our knowledge in
this matter using numerical evidence; in this case one is able to study only
systems of small size by exactly diagonalizing the Hamiltonian matrix or
using methods of equivalent complexity. By scaling the information obtained
from the exact diagonalization of finite size systems to the thermodynamic
limit we can gain insight about the localization transition (see for example
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Ref. [21] or the results of Sec. 5.2).

In this chapter it has been shown that an alternative way is given by
methods based on the forward approximation of the correlated-disorder lo-
cator expansion for the many-body wavefunctions. The proof-of-principle
numerical computations presented in Sec. 5.3 hold under comparison with
the current state-of-the-art results obtained using exact diagonalization, sug-
gesting the usefulness of this technique.






Conclusion

This Ph.D. thesis mainly focused on the analysis of the forward approxima-
tion of the locator expansion of the resolvent of disordered Hamiltonians.
Disorder in quantum systems being an analytically and numerically difficult
problem, the understanding we have so far allows to simplify in a controlled
way the calculations of many quantities which involve the wavefunction over-
laps. This includes an improved insight into the mechanisms that give rise to
resonances in many-body delocalized systems and the differences that occur
between the single particle and the many-body systems.

Moreover, the emphasis that has been put on the forward approxima-
tion method should not overshadow the result obtained when analyzing a
non-isolated system; the coupling of an Anderson system with a mesoscopic
bath has a strong relevance in experimental works. Varying the coupling
strength has the result, besides of modifying non-monotonically the stability
of the localized phase, of changing the mechanism behind localization from
an Anderson-like localization to a ‘Zeno localization’.

The hope is that this thesis has been successful in communicating the
value, the potential for new findings and the fundamental importance of the
topic of localization in disordered systems. There is still much to do in order
to understand this lively topic; one may expect that a few potential directions
have been suggested from the results obtained in this thesis.
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