
SISSA � International School for Advanced Studies

Ph.D. course in Statistical Physics

Ideal quantum glass transitions: many-body localization
without quenched disorder?

Thesis submitted for the degree of Doctor Philosophiae

27 November 2015

Advisors:

Markus Müller

Alessandro Silva

Candidate:

Mauro Schiulaz

Academic Year 2014/2015



Abstract

In this work the role of disorder, interaction and temperature in the physics of quantum non-

ergodic systems is discussed. I �rst review what is meant by thermalization in closed quantum

systems, and how ergodicity is violated in the presence of strong disorder, due to the phenomenon

of Anderson localization. I explain why localization can be stable against the addition of weak

dephasing interactions, and how this leads to the very rich phenomenology associated with many-

body localization. I also brie�y compare localized systems with their closest classical analogue,

which are glasses, and discuss their similarities and di�erences, the most striking being that in

quantum systems genuine non ergodicity can be proven in some cases, while in classical systems

it is a matter of debate whether thermalization eventually takes place at very long times.

Up to now, many-body localization has been studies in the region of strong disorder and

weak interaction. I show that strongly interacting systems display phenomena very similar to

localization, even in the absence of disorder. In such systems, dynamics starting from a random

inhomogeneous initial condition are non-perturbatively slow, and relaxation takes place only in

exponentially long times. While in the thermodynamic limit ergodicity is ultimately restored

due to rare events, from the practical point of view such systems look as localized on their initial

condition, and this behavior can be studied experimentally. Since their behavior shares similarities

with both many-body localized and classical glassy systems, these models are termed �quantum

glasses�.

Apart from the interplay between disorder and interaction, another important issue concerns

the role of temperature for the physics of localization. In non-interacting systems, an energy

threshold separating delocalized and localized states exist, termed �mobility edge�. It is commonly

believed that a mobility edge should exist in interacting systems, too. I argue that this scenario

is inconsistent because inclusions of the ergodic phase in the supposedly localized phase can serve

as mobile baths that induce global delocalization. I conclude that true non-ergodicity can be

present only if the whole spectrum is localized. Therefore, the putative transition as a function

of temperature is reduced to a sharp crossover. I numerically show that the previously reported

mobility edges can not be distinguished from �nite size e�ects. Finally, the relevance of my results

for realistic experimental situations is discussed.
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Chapter 1

Introduction

The ergodic hypothesis is the pillar upon which statistical physics is built: it states that a generic

many-body system, starting from any initial condition, explores the whole phase space compatible

with the constraint of energy conservation, and eventually of the other conservation laws of the

system. [1] If we wait for a long enough time, all information about the initial condition is erased

(apart from the total energy), and the expectation values of observables relax to equilibrium values.

As a consequence, temporal averages of macroscopic observables can be replaced by averages over a

suitable statistical ensemble, and therefore can be computed without having to solve the equations

of motion. This picture is not signi�cantly modi�ed by the presence of a few global conservation

laws, apart from energy, like total momentum or number of particles: one simply has to choose

the proper ensemble, in order to take into account these extra constraints. Ergodicity holds in the

large majority of known physical systems, and statistical mechanics is nowadays believed to be

one of the fundamental tools at our disposal to study physical phenomena.

In spite of this generality, there are some cases in which ergodicity is known to break down.

The �rst one are exactly solvable systems: in this case, the ergodic hypothesis fails due to the

presence of an extensive set of integrals of motion, that severely constrain the dynamics. At

present, many exactly solvable systems are known, especially in one dimensional systems, [2, 3]

and they constitute a very active topic of research. They are highly �ne-tuned, though: a generic

weak local perturbation breaks their integrability, and reinstates thermal behavior in the long time

limit. Additionally, it is believed that these systems relax to a non thermal stationary state, which

is described by the so called �Generalized Gibbs Ensemble� (GGE), and can still be treated with

the (properly adjusted) tools of statistical mechanics [4, 5, 6], even though some recent results

have raised doubts about this fact. [7, 8]

There are other kinds of systems in which relaxation to equilibrium is absent, and memory of

the initial condition is retained for very long (possibly in�nite) times. This is the case of classical

structural glasses. These are models where no disorder is present, but whose dynamics become

extremely slow as temperature is decreased (for a review, see [9, 10] and references therein). These

6



CHAPTER 1. INTRODUCTION 7

systems do not have an in�nite set of conserved quantities, and are not integrable. Their key prop-

erties are frustration and strongly constrained dynamics. Frustration means that their Hamiltonian

include terms which can not be minimized simultaneously. This induces very complicated energy

landscapes, with many di�erent minima separated by high energy barriers. To explore the full set

of available con�gurations, the system needs to overcome those barriers through thermal jumps.

Consequently, as temperature is decreased, relaxation times become very large, and relaxation is

not seen, neither numerically nor experimentally. Still, it is not known whether relaxation times

can become truly in�nite at temperature T 6= 0, or if they are simply too large to be measured:

therefore, it is still a matter of debate whether their non-ergodicity is genuine, or if it is simply a

consequence of our incapacity to run long enough simulations and experiments.

Genuine breakdown of the ergodic hypothesis can however be proven rigorously in quantum

mechanical systems. After the seminal work by Anderson [11], it is known that in the presence of

strong disorder non-interacting quantum particles get localized in a �nite volume due to quantum

interference among di�erent paths, as long as the dephasing e�ects of interactions and the presence

of phonons are neglected. This phenomenon, termed �Anderson localization�, leads to the complete

absence of di�usion and dc transport, and has been observed experimentally (see [12] for a complete

review). In d ≥ 3, if the disorder strength is smaller than a critical value, the spectrum splits in

two parts: at the band edges, localization survives due to the small density of states available for

scattering, and localization persists. In the middle of the band, instead, the single particle hopping

overcomes the disorder, and conducting delocalized eigenstates appear. The energy threshold

separating these two kinds of states is called �mobility edge�. [13] On the other hand, in d = 1, 2,

the whole spectrum is localized for any non-vanishing disorder strength, due to the interference

among all paths which allow a particle to return to its initial position. [14] Obviously, ergodicity is

strictly de�ned only for many-body systems, but even in the non-interacting case it is expected that,

starting from a generic initial many particle con�guration, local observables will evolve towards

thermal values. This does not happen if localized states are present in the spectrum: particles

which are prepared in a state with �nite overlap with a localized eigenstate do not di�use through

the system, but remain bounded to a �nite region of space, even if their energy is high enough to

(classically) allow them to overcome all the potential barriers.

This picture holds for non-vibrating lattices only: in real solids, it is known that transport is

restored by the presence of phonons. Due to inelastic electron-phonon scattering processes, at �nite

temperature electrons are able to hop from one localized state to another, and weak conduction is

always possible [15]. For a long time it has been a matter of debate whether transport could be

restored by electron-electron interaction too: the reason is that the electron-electron coupling is

much larger than the electron-phonon one, and therefore this e�ect is expected to be dominant. In

the case of electronic systems, this indeed happens, since Coulomb interaction allows hopping of

energy at large distance, and hybridizes far-away single particle states, whose energy is very close

to one another. [16, 17] However, localization is indeed robust in lattice models with weak local
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interactions, which can be realized e.g. using neutral cold atomic gases in optical lattices [18, 19]:

this can be argued from the fact that particles live in a rugged and quantized energy landscape,

which strongly suppresses inelastic scattering [20, 21, 22, 23, 24]. In this kind of systems, di�usion

and transport are absent even in presence of interactions, not necessarily weak. This phenomenon

has been termed �Many-body localization� (MBL), and has been subject to a large number of studies

in the past years.

At the moment, a general de�nition for the MBL phase of quantum matter is lacking. There

are many peculiar features with are associated with it, even though they do not necessarily imply

one another, and therefore do not always appear together [25, 26]. Still, its most fundamental

property seems to be the presence of an extensive set of quasi-local integrals of motions (LIOM),

which makes MBL systems pictorially similar to integrable ones [27, 28, 29]. There are however

two important di�erences between the two classes of systems: the �rst one is that MBL is much

more robust, in the sense that it is retained if weak enough local perturbations are added the the

Hamiltonian. The second one is that the integrals of motion of MBL Hamiltonians are quasi-local,

in the sense that their support is non-exponentially small only on a �nite region of space, whereas

for integrable models they are de�ned over the whole volume, due to translation invariance. The

existence of LIOMs allows one to argue for many other peculiar features of MBL, like the absence of

transport at arbitrarily long distances, or the absence of thermalization starting from generic initial

conditions [30]. Therefore, the MBL is not a thermodynamic transition, but rather a dynamical

one, between a regime in which ergodicity is present and one in which it is absent.

1.1 Main issues addressed in this thesis

1.1.1 Many-body localization in the absence of quenched disorder

In most examples of MBL previously studied, quenched disorder is of paramount importance, since

it assures that local rearrangements of particles require a signi�cant cost in energy, which suppresses

hybridizations in perturbation theory. However, it is known from the physics of classical glasses

that disorder is not essential to obtain non ergodicity: their putative absence of ergodicity is not

due to the presence of a disorder potential. Indeed, their Hamiltonians are translation invariant.

The question naturally arises, whether thermalization may be absent in quantum non-integrable

systems without disorder, too.

Some pioneering work on this topic was already present in the literature, before the start

of this thesis work. It was known that putatively non-ergodic classical model can keep their

glassiness, once dressed with weak enough quantum �uctuations [31, 32, 33, 34]. Their absence of

relaxation is still due to classical mechanisms, though: therefore, they are qualitatively di�erent

from MBL models, since the latter are made non ergodic by quantum e�ects only. Localization

due to genuine quantum interference e�ects was postulated in the context of di�usion of impurities
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in He lattices [35], and in magnetic systems with couplings not restricted to nearest neighbors only

[36]. However, in these works only qualitative arguments in favor of the presence of localization are

given. In particular, they do not analyze the possible mechanisms that can restore delocalization,

and therefore they fail to provide a plausible phase diagram for the models they are studying.

In this work, I present some models where phenomena very similar to MBL are present, and

study them in detail. Those are systems in which interactions are very strong with respect to their

hopping amplitudes, but no disorder is present in the Hamiltonian. At the perturbative level in

the hopping, one indeed �nds that ergodicity should be strictly absent. [37] However, the picture

changes dramatically once non-perturbative e�ects are taken into account. The reason is that, for

very large systems, rare regions which are internally ergodic appear as large deviations of the energy

density. These regions can act as mobile baths for the rest of the system, and therefore reinstate

thermalization. [39, 40] This e�ect is relevant only in the thermodynamic limit, though: for system

sizes accessible to experiments and numerical investigations, the predictions of perturbation theory

are correct, and these systems look for all practical purposes MBL. [38] As a consequence, it is still

interesting and relevant for experiments to study how apparent non-ergodicity manifests in such

models, in �nite systems.

At the perturbative level, these systems localize on their own con�gurational disorder: once

prepared in a random inhomogeneous initial con�guration, interactions among the di�erent con-

stituents forbid most local relaxation processes, and therefore memory of the initial density pro�le

is retained for long times. In the presence of periodic boundary conditions (PBC), translation

invariance will obviously be restored by time evolution, but the time scales required for homoge-

nization increase exponentially with system size. Due to the non-perturbative e�ects mentioned

above, this divergence is not expected to persist in the thermodynamic limit, but the relaxation

times may be extremely long, despite being eventually �nite.

Perturbation theory predicts a quite peculiar phase diagram for such models, in the sense

that the role of temperature is reversed as compared to models where disorder dominates. In

standard MBL, temperature has an analogous role as in single particle localization, in the sense

that it increases the phase space available for scattering, and therefore the tendency towards

delocalization. Indeed, perturbative arguments suggest that a many-body mobility edge exist,

separating ergodic states at high energy density from localized states at the bottom of the spectrum

[22, 23], even though in this case too non-perturbative e�ects may reduce the putative transition to

a crossover [41], as I shall discuss in this thesis. In interaction-driven localization, the situation is

very di�erent: the higher the temperature, the stronger the con�gurational disorder, and therefore

the tendency towards localization. Vice-versa, at low temperature spatial correlations imply that

the number of local resonances proliferate, and therefore the lower part of the spectrum is expected

to delocalize at any �nite hopping strength. This is the reason why this phenomenon, despite

appearing in very simple models (e.g., one dimensional Bose-Hubbard models at strong interaction

[42, 43, 39, 40]) was not previously noticed: low energy excitations above the ground state can
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never get localized in absence of disorder. Once again, it is important to be aware that no sharp

transition is expected in the thermodynamic limit.

1.1.2 Absence of many-body mobility edges in the thermodynamic limit

The concept of mobility edges appeared for the �rst time in the context of single-particle localiza-

tion, where its existence is well established. On the other hand, the nature of the putative �nite

temperature transition in interacting systems is much less clear. As stated above, such a transi-

tion is predicted by perturbative arguments in the interaction strength [22, 23], according to which

there should be a sharp energy threshold separating ergodic conducting states from non-ergodic

insulating ones. These studies focus on the behavior of typical regions, though, and fail to take into

account the behavior of rare, anomalous ergodic regions: indeed, once such regions are included

in the description of the MBL phase, one �nds that they rule out the existence of mobility edges,

exactly as happens in translation invariant systems [41]. Despite this close analogy, there is a

fundamental di�erence between disorder- and interaction-driven MBL: in the presence of disorder,

for small hopping amplitude the whole spectrum is non-ergodic. In this regime, no rare ergodic

regions can be formed, and MBL is expected to be present, even in the thermodynamic limit. On

the contrary, perturbation theory predicts that translation invariant systems are ergodic at low

temperature for any �nite hopping amplitude, therefore they do not possess a genuine non-ergodic

phase in the thermodynamic limit. According to this argument, no transition is expected as a

function of temperature, but rather a crossover from plain ergodic states at high T to a sort of

Gri�ths phase behavior at low temperature: the former is characterized by transport due to rare

regions, which act as carriers of particles and energy. In a sense, this can be seen as an extension

of the famous Mott argument to the many-body case: while in non interacting case Mott proved

that localized and delocalized states can not exist at the same energy density, in the presence of

interactions coexistence of ergodic and non-ergodic states is not possible even at very di�erent en-

ergies. Moreover, this argument rules out the possibility of MBL in the continuum: in the absence

of a lattice, the energy density is unbounded, and perturbatively one always expects a mobility

edge to be present for any disorder strength. The rare-region argument can then be applied to

rule out the presence of a truly non-ergodic phase.

This argument may look inconsistent with the fact that mobility edges have been reported

numerically [44, 45, 46, 47]. However, as in the disorder free case, it applies only to very large

system sizes, and therefore it is not contradicted by these studies. I have checked this via a careful

numerical analysis Additionally, numerical investigations in large systems have failed to detect the

presence of mobility edges [48, 49], even though others do report their existence.
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1.2 Structure of this thesis

The remainder of this thesis is organized as follows: in Chapter 2, a pedagogical overview of the

physics of localization is provided, aimed to provide the reader with all the instruments necessary

to understand the following Chapters. First, to set up the conceptual framework, I discuss what

thermalization means in closed quantum systems. Next, I review how ergodicity breaks down in

the presence of strong disorder, and why localization is robust against weak local interactions.

These arguments are presented because the perturbative description used to describe translation

invariant systems is based on the same procedure. I shall discuss the main analogies and di�erence

between localization in the single-particle and many-body cases, too, and introduce the various

properties which de�ne the MBL phase, at current knowledge. Finally, the pioneering work about

localization in absence of disorder by Kagan et al. [35, 36] is presented, and a comparison with

the physics of classical glasses is made.

In Chapter 3, the physics of translation invariant MBL is discussed. After introducing the

general properties that such �ideal quantum glasses� are expected to show, I shall analyze a concrete

and experimentally reproducible model where such features appear. I shall show why perturbation

theory in the hopping predicts this non-ergodic phase to exist, and what peculiar properties it is

expected to have, at least as long as �nite sizes are involved.

In Chap. 4 the behavior of MBL systems in the thermodynamic limit is discussed, both with

and without disorder. I provide a careful mathematical argument, that shows the instability

of localization against the presence of bubbles of energy density very di�erent from the typical

one. For systems with disorder in the Hamiltonian, this implies that only an in�nite temperature

transition is possible, between a fully localized and a fully ergodic spectrum. For translation

invariant systems, transport is present at all �nite hopping strengths, even though with non-

perturbatively small conductivity (a phenomenon referred as �asymptotic localization� in [43]).

Still, for experimentally and numerically realizable systems, mobility edges and localization are

present for all practical purposes, due to the rarity of bubbles.

In Chap. 5 the main results of this thesis are summarized, and future perspectives are discussed.



Chapter 2

Breakdown of ergodicity in disordered

systems

In this Chapter, an introduction on various mechanisms that can lead to a breakdown of the ergodic

hypothesis is provided. Its aim is to provide the reader with the conceptual framework, which is

necessary to understand my work. It is not aimed to show the technical details of the works

that will be discussed: it will rather present the conceptual tools, which are used in the following

Chapters. This Chapter is organized as follows: in Sec. 2.1, thermalization in closed quantum

systems is discussed. I shall review in which sense a closed system can be expected to thermalize,

and what the presence of thermalization implies for the structure of many-body eigenstates. In Sec.

2.2, the seminal work by Anderson [11] is presented, which explains how transport and di�usion

can be absent in non-interacting quantum systems. Once the physics of single particle localization

is clear, one should add interactions to the system, and discuss the physics of MBL: this is done

in Sec. 2.3. Finally, in Sec. 2.4 I brie�y introduce the physics of classical glasses, and compare it

with the one of quantum MBL systems, which can be seen as quantum glassy systems.

2.1 Thermalization in closed quantum systems

I consider a closed quantum many-body system, described by a Hamiltonian H. For simplicity,

I assume that, at time τ = 0, the system is prepared in a pure state |ψ0〉. This assumption may

be relaxed, allowing for the initial condition to be a statistical ensemble ρ, without qualitatively

changing the description. I work in the Schrödinger picture, in which states evolve and operators

are �xed in time. [50] Since the system is not in contact with any thermal bath, the time evolution

is given by the Schrödinger equation

i
d

dτ
|ψ (τ)〉 = H |ψ (τ)〉 , (2.1.1)

12
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where ~ = 1 is set. The formal solution of the equation is given by

|ψ (τ)〉 = e−iHτ |ψ0〉 . (2.1.2)

The expectation value of any observable O at time τ is then

O (τ) = 〈ψ (τ)|O |ψ (τ)〉 . (2.1.3)

I am interested in discussing in which sense a closed quantum system can undergo thermaliza-

tion processes (for a more complete discussion, see the review [26] and references therein). Strictly

speaking, real thermalization is not possible in the absence of a thermal bath: while a system

in thermal equilibrium is characterized by a small set of macroscopic parameters (like tempera-

ture, volume and density), unitary evolution preserves the memory of all microscopic details of

the initial condition at all times, due to reversibility. This apparent contradiction can be solved

realizing that, while information cannot be erased in Schrödinger evolution, after a certain time it

becomes impossible to experimentally recover it: this is due to the fact that entanglement between

all system components is built, and information is hidden in non-local correlations. In order to

recover this information, one would need to measure operators which simultaneously act over the

whole system, but such a measure is obviously not feasible. This process is called �decoherence�

of the individual degrees of freedom. From the experimental point of view, only operators which

act on a �nite number of degrees of freedom, either in real or momentum space, can be measured.

If the total number of degrees of freedom is much larger than the one over which measurements

are performed, the outcomes are expected to be indistinguishable from thermal averages: in this

sense, the system acts as its own bath, and thermalizes any small enough subsystem.

To discuss thermalization somewhat more precisely, I consider for simplicity a system, in which

energy is the only conserved quantity. This assumption can be relaxed, allowing the conservation

of a few other quantities, such as e.g. particle number or total momentum, with no further

complication. The full system is arbitrarily partitioned in two spatial regions, a �small� subsystem

A and a large subsystem B, as shown in Fig. 2.1.1. I will sometimes refer to B as the �environment�.

The full Hilbert space H can then be written as a direct product between the two subspaces HA,B,

describing subsystems A,B, respectively:

H = HA ⊗HB. (2.1.4)

I work in the thermodynamic limit, sending the volume VB to in�nity, but keeping VA �xed. Chosen

the initial state |ψ0〉, I de�ne the inverse (quasi-)temperature β as the solution of the following

equation:

〈ψ0|H |ψ0〉 =
1

Z (β)
Tr
[
He−βH

]
, (2.1.5)
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Figure 2.1.1: Partition of a closed quantum system into a �small� subsystem A and a �large
environment� B. For generic models, mean values of observables acting on A are described by a
thermal distribution in the long time limit, due to decoherence induced by the interaction with
degrees of freedom belonging to B. This is not the case in many-body localized systems.

where

Z (β) ≡ Tr
[
e−βH

]
(2.1.6)

is the partition function. The meaning of Eq. (2.1.5) is the following: if the system were put in

contact with a thermal bath, the inverse temperature of that bath should be set to β, in order for

the average energy to be 〈ψ0|H |ψ0〉. It can be checked that in general Eq. (2.1.5) admits a unique

solution.

I am interested in measuring only observables which are de�ned on A. Therefore, it is not

necessary to know the time evolution of the full system A + B: indeed, one can trace out all

degrees of freedom living in B, and study the �reduced density matrix�

ρA (τ) ≡ TrB [|ψ (τ)〉 〈ψ (τ)|] , (2.1.7)

where TrB means that we take a trace over HB only. If the system equilibrates, then in the long

time limit expectation values of any local observable should be predicted by the Gibbs ensemble:

ρG (β) ≡ 1

Z (β)
e−βH , (2.1.8)

where Z (β) is de�ned by Eq. (2.1.6). When looking at A only, one just needs to trace out the

subspace HB once again:

ρ
(A)
G (β) ≡ TrB [ρG (β)] . (2.1.9)

I am now ready to give a de�nition for thermalization. Sub-system A is said to thermalize if

lim
T→∞

lim
VB→∞

1

T

T̂

0

dτρA (τ) = ρ
(A)
G (β) , (2.1.10)
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i.e. if the long time average of the reduced density matrix reproduces the Gibbs ensemble, at the

appropriate temperature. [51, 52, 53, 54] It is important that both the long time and large system

limit are taken: for �nite times, energy can di�use only to �nite distances, degrees of freedom in

A are not able to interact with all degrees of freedom in B, and therefore there can be no full

equilibration. Conversely, for �nite sizes one always sees quantum revivals, since the dynamics are

quasi-periodic.

The common expectation is that, taken a generic Hamiltonian H, the system thermalizes

starting from any initial state |ψ0〉. This is a very strong statement, which is in general impossible

to prove. It seems quite reasonable, though: if H is able to connect all degrees of freedom, one

expects all memory of the initial condition to disappear due to dephasing processes, in which

di�erent components of the system exchange energy among them. Here, by �dephasing�, I mean

the decrease of the amplitude of the o�-diagonal matrix elements of ρA (τ) in the basis of the

many-body eigenstates, due to interaction with degrees of freedom living in B. A Hamiltonian

which behaves in this way is called �ergodic�. The large majority of physical Hamiltonians are

indeed believed to be ergodic.

2.1.1 The eigenstate thermalization hypothesis

If I assume that indeed the system thermalizes starting from any initial state, this must hold also if

it is prepared in an exact many-body eigenstate |n〉 of the Hamiltonian. In this case, time evolution

is trivial: |ψ (τ)〉 = e−iEnτ |ψ0〉, where En is the corresponding eigen-energy. Obviously, mean

values of observables do not evolve: O (τ) = O (0) for any Hermitian operator O. Thermalization

of all states thus implies that all eigenstates are thermal, in the sense that expectation values

of observables on them are indistinguishable from thermal values. This statement is known as

�eigenstate thermalization hypothesis� (ETH) [51, 52, 53, 54], and corresponds to an extreme limit of

the microcanonical ensemble, in which one single eigenstate is fully representative of the properties

of the system at its energy. Since the eigenstates of the Hamiltonian are the fundamental tool to

describe dynamics, it is worth to discuss some of the implications of this hypothesis.

I assume for simplicity that no exact degeneracies are present in the spectrum, and label the

energies En in increasing order. A �rst consequence of ETH is that, given any local operator O, its

diagonal matrix elements on the basis of energy eigenstates Onn ≡ 〈n|O |n〉 are a smooth function

of n: to be more precise, it can be checked that the di�erence|On+1n+1 −Onn|is exponentially small

in system size, whenever ETH holds. [55] To justify this statement, let us take an initial state

|ψ0〉, with mean energy E ≡ 〈ψ0|H |ψ0〉. The time evolved expectation value O (τ) is

O (τ) =
∑
n,m

e−i(En−Em)τ 〈ψ0|m〉 〈n|ψ0〉Omn. (2.1.11)



CHAPTER 2. BREAKDOWN OF ERGODICITY IN DISORDERED SYSTEMS 16

Let us now take the time average:

〈O〉 (T ) ≡ 1

T

T̂

0

dτO (τ) =
∑
n,m

e−i(En−Em)T

−i (En − Em)T
〈ψ0|m〉 〈n|ψ0〉Omn. (2.1.12)

Now the limit T → ∞ can be taken: all terms with m 6= n in the right-hand side of Eq. (2.1.12)

vanish, and only the diagonal terms remain:

〈O〉 (∞) =
∑
n

|〈n|ψ0〉|2Onn. (2.1.13)

The statistical ensemble de�ned by the weights |〈n|ψ0〉|2 is sometimes called the �diagonal ensem-

ble�. Since thermalization is assumed to occur, the diagonal ensemble has to be equivalent to a

thermal ensemble; additionally, since I am working in the thermodynamic limit, thermal averages

have in turn to be equivalent to microcanonical ones [1],

Ō (E) ≡ 1

N∆

∑
n:|En−E|<∆

Onn. (2.1.14)

In the above, ∆ is the width of a narrow energy window centered at E, while N∆ is the number

of states within such window. Thermalization implies that

〈O〉 (∞) = Ō (E) . (2.1.15)

The left hand side of this equation formally depends on the initial state |ψ0〉, whereas the right

hand side does not: this means that the left hand side must be independent of the initial state

too. Since the coe�cients |〈n|ψ0〉|2 are given, this can happen only if the matrix elements Onn

are roughly constant within the window |En − E| < ∆. In some sense, it can be said that �all

eigenstates close enough in energy look the same� when only local quantities only are considered.

For �nite sizes, however, rare anomalous eigenstates are present, which do not obey this rule and

therefore ETH, and that prevent thermalization of initial states which have a non-negligible overlap

with them [56].

Another important prediction of ETH is the behavior of the entanglement entropy SAB between

regions A and B:

SAB ≡ −Tr [ρA ln ρA] . (2.1.16)

As is well known, the entanglement entropy is non-negative, and it vanishes if and only if |ΨAB〉 =

|φA〉 ⊗ |χB〉, i.e., if the state of a global system is the product of a state of HA and one of HB.

Consequently, it is taken as a quantitative measure of the entanglement between regions A and B:

the larger SAB, the more correlated the two regions. For eigenstates corresponding to temperature
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T 6= 0, ETH predicts that the entanglement entropy must coincide with the thermodynamic

entropy: therefore, it must obey a �volume law� scaling, i.e. SA ∝ VA.

Finally, using ETH it is possible to analyze the statistical properties of eigenvalues and eigen-

vectors. This is due to the fact that, at high energies, the thermodynamic properties of a system

are independent on the microscopic details of the model, like the geometry of the lattice or the

precise form of the interaction. Only the symmetries of the problem are important to compute such

quantities. Consequently, if eigenstates are thermal, their statistics can only depend on symmetries

as well. It is then convenient to take the simplest possible models with the relevant symmetries,

use them to make analytical predictions, and extend those via ETH to more realistic and compli-

cated systems. It turns out that the easiest models to treat are Gaussian random matrices. In

particular, the Gaussian Orthogonal Ensemble (GOE) describes particles with even spin and no

magnetic �eld; the Gaussian Unitary Ensemble (GUE) describes particles in a magnetic �eld and

the Gaussian Symplectic Ensemble (GSE) corresponds to particles with odd spin and spin-orbit

interaction. [57]

While ETH and thermalization apply to a large number of quantum systems, there are models

which do not thermalize under unitary evolution. One such exception are exactly integrable mod-

els: these models have the peculiarity of admitting an extensive set of local integrals of motion,

where local means that they act on a �nite number of degrees of freedom only. Therefore, it is

commonly believed that they relax to a non-thermal steady state described by the �Generalized

Gibbs Ensemble� (GGE), which is constructed by imposing the conservation of all integrals of

motion [4, 5, 6], even though some recent results have risen doubts about this hypothesis [7, 8].

These models are very �ne-tuned, however, and are in general unstable against weak perturbations,

which restore ergodicity.

A more robust exception are many-body localized systems: these systems fail to thermalize in

any sense, and ETH does not apply to them. In the following I will now introduce localization at

the single particle level, which is useful to introduce the tools for the study of MBL. The remainder

of this thesis is dedicated to the discussion of this class of systems, and their remarkable properties.

2.2 Single-particle localization

It is known from Einstein's seminal paper [58] that the motion of classical particles in a random

environment is governed by a di�usion equation:

∂ρ

∂τ
(~r, τ) = D∇2ρ (~r, τ) , (2.2.1)

where ρ is the density of particles, and D is the di�usion constant. This equation holds for any

kind of random walk without heavy-tailed distributions of step lengths, provided that there is no

memory in the dynamics, i.e., that the process is Markovian. Among its many applications, the



CHAPTER 2. BREAKDOWN OF ERGODICITY IN DISORDERED SYSTEMS 18

di�usion equation has been used to study semiclassically the transport properties of metals, in the

presence of impurities. The result is the Einstein-Sutherland relation for the conductivity σ [59]:

σ = e2Dν, (2.2.2)

where ν is the density of states per unit energy and unit volume. From this semiclassical theory,

one expects that, as the concentration of impurities increases, the di�usion constant and hence

the conductivity decrease, without ever vanishing completely. This picture is correct for a small

concentration of impurities (and hence at low disorder strength) in spatial dimension d > 2, but

it has been proven wrong by Anderson in the presence of strong disorder [11]: in that regime,

the system is dominated by quantum e�ects, which destroy di�usion completely, and render the

conductivity exactly zero. This phenomenon is known as Anderson localization.

The essential properties of single-particle localization can be illustrated by the tight-binding

model of a spinless fermionic particle living on a d-dimensional regular lattice, with a random

on-site potential. This is the well-known Anderson model [11], and its Hamiltonian reads

H = −t
∑
〈i,j〉

(
c†icj + c†jci

)
+W

∑
i

εini. (2.2.3)

In the above, the sum appearing in the �rst term runs over all pairs of nearest neighbors, the

operator c†i creates a fermion on site i, ni ≡ c†ici and εi ∈
[
−1

2
, 1

2

]
are independent random

variables with uniform distribution. The parameter W tunes the disorder strength.

To qualitatively understand the physics of the model, it is useful to consider the dynamics of

a single particle, initially located at site 0. Let us �rst look at the trivial case t = 0: in this

case, the initial state is an eigenstate of the total Hamiltonian, so no evolution takes place. In

particular, the particle is unable to di�use. Now a small but �nite t � W is turned on: in this

regime, perturbation theory in t can be applied to compute the eigenvalues and eigenvectors of the

total Hamiltonian, starting from the �atomic limit�, i.e. from the basis of the eigenstates of site

occupation numbers. The coe�cient of the admixture between state c†0 |0〉, |0〉 being the vacuum

state, and state c†i |0〉, i being a nearest neighboring site, is given by

t

ε0 − εi
. (2.2.4)

This object is called a �locator�. To compute the admixture coe�cient with a generic site j, one

has to sum over all possible paths which start from 0 and end to j, multiplying at each step k with

the appropriate locator t/ε0−εk. This kind of procedure is called � locator expansion�, and is shown

pictorially on the left of Fig. 2.2.1. Since, typically, energy di�erences among neighboring sites

|εi − εj| are of order O (W ), they are large with respect to the hopping amplitude t, and one naively

expects perturbation theory to be typically well behaved. One then �nds typical eigenstates to be
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Figure 2.2.1: Left: Pictorial representation of the locator expansion, in absence of local resonances:
a particle, originally located on site 0, acquires an amplitude of magnitude ∼ O (t/W) on nearest
neighboring sites (blue arrows). Its amplitude on next-to-nearest neighboring sites is of order ∼
O
(
(t/W)2) (orange arrows), and so on. The amplitude of the wavefunction decreases exponentially

in the distance from the localization center 0, and the particle is localized. Right: e�ect of a local
resonance. If two neighboring sites i, j have a small energy di�erence |εi − εj| � t, two hybridized
states form, in which the particle is equally shared among the two sites. One has then to restart
the locator expansion from such states.

centered at a certain site i, and to decay exponentially with distance from it:

ψi (r) ∝ e−
|r−ri|
ξ , (2.2.5)

where ξ ∼ 1/ln(Wt ) is called � localization length�. The picture that emerges from this naive argument

is that the system remains insulating and non-di�usive even at �nite t, in spite of the fact that

the Hamiltonian (2.2.3) in principle allows a particle to hop through the whole system: particles

are not able to di�use, but are con�ned in a spatial region of radius of the order of the localization

length.

This picture, despite being qualitatively correct, is oversimpli�ed, since it neglects resonances,

i.e. pairs of sites i, j with unperturbed energies very close to one another:

|εi − εj|res � t

(
t

W

)n−1

, (2.2.6)

n being the number of sites the particles needs to hop through to move from site i to j. When

such a pair of sites is met, one has to resort to degenerate perturbation theory, which predicts that

two hybridized states form:

|ψ±〉 ≈
c†i ± c

†
j√

2
|0〉+O

(
t

W

)
. (2.2.7)
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In this kind of eigenstates, a particle can no longer be seen as localized on either site i or j, being

instead equally shared among the two sites. This is depicted on the left of Fig. 2.2.1. These

resonances do not qualitatively change the picture given above, as long as they are rare enough

and well separated from one another. However, resonances become more common as the hopping t

is increased: as their density increases, particles become able to explore larger parts of the system

hopping between di�erent resonances, and the localization length increases accordingly. Then, in

three or more dimensions, at a certain critical value tc resonances percolate through the whole

system, the localization length diverges, and di�usion of particles at arbitrarily long distances

becomes possible: the system undergoes a phase transition from a non-ergodic insulator to an

ergodic metal. This picture is not correct in d = 1, 2, however: as I discuss in Subsec. 2.2.2, in low

dimension there is no transition, and particles are localized at any �nite disorder strength, despite

the percolation of resonances. [60] In the continuum the localization length gets arbitrarily large,

however, as energy is increased: in particular one �nds a power law divergence for ξ (E) as E tends

to in�nity for d = 1, while for d = 2 the divergence is exponential. [14]

In this description, only resonances among nearest-neighboring particles are considered: one

may worry that localization could be destroyed by the presence of resonances between sites at

large distance r � 1. In �nite dimension, this is not the case, however: the reason is that the

e�ective hopping between sites is exponentially small in the number n of times one needs to apply

the hopping term, in order to connect the two sites, as shown in Eq. (2.2.6). So the probability of

�nding a resonance decreases exponentially in the distance: on the other hand, the number of sites

at distance n scales as nd−1, where d is the spatial dimension. Therefore, the typical number of

resonances one �nds at distance n rapidly tends to zero, and direct hybridizations among distant

sites can safely be neglected.

Since the Anderson Hamiltonian (2.2.3) is quadratic, it can be rewritten in terms of its single-

particle eigenstates through a basis rotation:

H =
V∑
α=1

Eαnα, (2.2.8)

where nα is the occupation number of eigenstate |α〉, and Eα is the energy of that state. The

many-particle eigenstates are then obviously products of single-particle ones, and can be labeled

through the occupation numbers nα, which form an extensive set of integrals of motion. In this

sense, the Anderson model is �integrable�, even though this integrability is a trivial consequence

of the fact that the model is non-interacting. These conserved quantities are quasi-local, in the

sense that their commutator with local observables acting on sites far away from the localization

center Rα decays exponentially in the distance. The importance of this fact becomes clear as

interactions are introduced: for weak interaction, one can do perturbation theory starting from

the Hamiltonian above, and prove that for local interactions the full Hamiltonian can be written
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in terms of some dressed occupation numbers ñα, which are still conserved by the dynamics [29].

From this characterization, one can explain most of the peculiar features of many-body localized

systems, like the absence of transport, di�usion and thermalization, an area-law entanglement

entropy for highly excited states, or the logarithmically slow growth of entanglement starting from

initial classical states.

2.2.1 Phase diagram of the Anderson model

Up to now, the Anderson model has been discussed treating all eigenstates as equivalent. I now

wish to explain the e�ect of energy on the localization properties of the system. In the presence

of a lattice, for d > 2 there is a transition point tc at which eigenstates close to the middle of the

energy band delocalize. Since the entropy is maximal in the middle of the band, this corresponds

to the transition point for typical eigenstates. This does not imply that all eigenstates delocalize

at that value, though. Indeed, at the band edge the density of states is much smaller, and therefore

localization is more robust, since the typical energy di�erences among consecutive states gets larger.

One therefore expects that, for t > tc, localized and ergodic states may coexist in the spectrum.

At the same time, as argued by Mott [13], coexistence of localized and delocalized states at

the same energy is not possible in the thermodynamic limit. The reason is that such a coexis-

tence cannot be robust against perturbations: as soon as some weak perturbation is added to the

Hamiltonian, the localized state gets coupled to the continuum of delocalized modes, which acts

as a bath and thermalizes it. To be concrete, let us consider the Hamiltonian (2.2.3), and let us

suppose that there is a localized eigenstate |ψloc〉 at the same energy as a set of delocalized states

|φn〉. Let us now modify the Hamiltonian by slightly changing the hopping amplitude: t→ t+ δt,

with δt/t � 1, and work perturbatively in δt. The strategy is to estimate the matrix elements

between |ψloc〉 and the states |φn〉 at �rst order in perturbation theory, and show that they can

get arbitrarily large when system size is increased. This implies that, for large enough systems,

|ψloc〉 hybridizes with at least some delocalized states, for any arbitrarily small δt, and therefore

becomes delocalized too.

Since states with the same unperturbed energy density are considered, one needs to resort to

degenerate perturbation theory. The �rst step is to estimate the matrix element of the hopping

δt×Hhop ≡ δt
∑
〈i,j〉

(
c†icj + c†jci

)
(2.2.9)

between |ψloc〉 and |φn〉. |ψloc〉 have amplitude of O (1) over a �nite spatial region, and is expo-

nentially small on the rest of the system; on the other hand, φn is expected to have amplitude of
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O
(

1√
V

)
everywhere in the system, V being the volume. One thus expects the scaling

〈φn|Hhop |ψloc〉 ≈ O

(
1√
V

)
. (2.2.10)

Let us now check the energy di�erence between the two states: since the |φn〉 are ergodic, one

expects that for many of them

Eloc − En ≈ O

(
1

V

)
, (2.2.11)

since 1/V is the typical level spacing of the delocalized modes. This means that the coe�cient of

admixture at �rst order in δt scales as

δt
〈φn|Hhop |ψloc〉
Eloc − En

≈ δt×O
(√

V
)
. (2.2.12)

So, for V � 1
δt2
, the localized state is not robust against the perturbation, but hybridizes with the

ergodic states and becomes ergodic too.

On the basis of this argument, Mott concluded that, for t > tc, there must be an energy

threshold Ec separating low-energy localized states and high-energy delocalized ones. Such a

threshold is called a �mobility edge�. Since the model under discussion is de�ned on a lattice, i.e.

a single �nite energy band is considered, an analogous mobility edge Ec′ appears in the high end

part of the spectrum, too. Coming from large t, one expects the mobility edges to start from the

band edges at t → ∞, and to move towards the band center as long as t is decreased. Then,

at t = tc, they merge together, and the whole spectrum becomes localized. The resulting phase

diagram is shown in Fig. 2.2.2, as a function of hopping and energy density. In the continuum,

since the band-width is in�nite, there is no localization of the full spectrum at any �nite t, but

rather a divergence of Ec (t) for t→ 0.

When a mobility edge is present, the conduction properties of the system depend on the position

of the Fermi energy EF . For Ec′ > EF > Ec, the system behaves as a metal, the conductivity

σ is �nite at all temperatures and can be estimated from the Einstein-Sutherland relation. For

EF < Ec states at the Fermi level are localized, and the situation is very di�erent: at T = 0,

the system is an insulator, with σ = 0. If the system is prepared in a thermal state with �nite

T , however, the conductivity is always �nite, due to thermal activation above the mobility edge.

This can be done by weakly coupling the system to a thermal bath, letting it equilibrate, and

then removing the coupling. Therefore, in the insulating phase the conductivity should scale as

an Arrhenius law,

σ (T ) ∝ e−β(Ec−EF ). (2.2.13)

For a non-vibrating lattice, thermal activation is the only process which leads to conduction for

EF < Ec, but this is never observed in reality. Indeed, in realistic systems conduction happens also
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Figure 2.2.2: Phase diagram of the Anderson model on a lattice, as a function of energy E and
hopping t, at �xed disorder strength W , in spatial dimension d ≥ 3. For t < tc, all states are
localized. At tc, two mobility edges appear, separating delocalized states in the middle of the band
from localized states at the band edges.

due to phonon assisted hopping between localized states, which dominate by far the conductivity.

[15]

2.2.2 Scaling theory of localization: absence of a transition in d = 1, 2

Up to now, I have discussed the Anderson model in three dimension, and argued for the presence

of a delocalization transition in energy density, for t > tc, using perturbation theory. The situation

is dramatically di�erent in low dimensional systems, though: in that case, no transition is present,

and any �nite disorder localizes the whole spectrum. This result is obtained in [60] using scaling

arguments. One starts from the Einstein-Sutherland relation (2.2.2) for the electric conductivity

σ, and then computes the electric conductance G of a sample of linear size L as

G = σLd−2 =
e2

h
g (L) , (2.2.14)

where

g (L) ≡
hD(L)/L2

1/νLd
(2.2.15)

is the dimensionless Thouless conductance. It is the ratio of two quantities: the Thouless energy

ET (L) ≡ hD(L)/L2 and the mean level spacing δ (L) ≡ 1/νLd, which is the inverse of the density of

states multiplied by the volume of the sample. At the classical level, D (L) = D is a constant, and
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the dependence of Thouless conductance on system size is trivial. This is not necessarily true in

the presence of quantum interference, however.

This quantity has a simple physical interpretation: let us partition our sample in boxes of linear

size L. For each of these boxes, δ (L) is the mean level spacing for the internal states of the box,

whereas ET (L) is the inverse escape time of a particle from the box, once this is coupled to an

external environment. One now couples together several of such boxes: then ET (L) can serve as

an estimate for the typical coupling between levels in neighboring boxes. Therefore, g (L) is an

estimate of the strength of hybridizations among states of di�erent boxes: for g � 1, states of

di�erent subsystems get strongly hybridized, and the particles delocalize. On the other hand, for

g � 1, the various subsystems behave almost independently, and particles remain localized in a

�nite volume.

A scaling theory for the Thouless conductance is constructed checking how quantum corrections

modify its dependence on the length scale L. For this purpose, one studies the β-function

β (g) ≡ d ln g

d lnL
. (2.2.16)

The advantage of this quantity is that it is universal, in the sense that it does not depend on the

particular model one is looking at, but only on the dimensionality of space and on the symmetries

of the system. Let us �rst look at the limit g � 1: in that regime, macroscopic theory of transport

is expected to work, the system behaves like a classical metal, and Eq. (2.2.15) gives the correct

scaling g (L) ∝ Ld−2. This implies that

lim
g→∞

β (g) = d− 2. (2.2.17)

One then considers the opposite limit g � 1. In this case, hybridizations among di�erent regions

of the sample are suppressed, and the system is completely localized: one thus expects the scaling

g (L) ∝ e−
L
ξ , ξ being the localization length. The β-function consequently behaves as

β (g) ≈ ln

(
g

ga (d)

)
< 0, g → 0 (2.2.18)

where ga is a constant of O (1).

β (g) smoothly interpolates between these two limits, as shown in Fig. 2.2.3. Since smaller g

necessarily implies a stronger tendency towards localization, β (g) has to be monotonous, at least

in absence of spin-orbit interaction. If such a monotonicity holds, these asymptotic behaviors are

enough to infer the behavior of the Anderson model as a function of dimensionality d. For β (g) > 0,

the conductance grows with system size: this means that hybridizations become stronger as system

size is increased, and therefore the sample is a metal. Conversely, for β (g) < 0 hybridizations

among di�erent parts of the system get weaker as the distance is increased: this implies that no

transport at macroscopic distances is possible, and the system is an insulator. For d = 3, the limit
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Figure 2.2.3: Qualitative plot of the function β (g) for single particle localization, in absence of
spin-orbit interaction, for di�erent spatial dimensions. For d = 1, 2, the β-function is negative for
any �nite g, and the conductance �ows with system size towards g = 0. For d = 3, a critical
value gc is present: below that value, the conductance still �ows towards 0, and we are still in the
insulating phase. For g > gc, the conductance �ows towards the value d− 2 = 1 predicted by the
classic theory of metals: the system is in a metallic delocalized phase.

of the β function is positive for g → ∞, while it is negative for g → 0. In between, there must

be an unstable critical point gc where the β-function vanishes: this is the transition point. For

d = 1, the β-function can never be positive: this means that the system is always localized, at any

disorder strength and temperature. For d = 2, no transition is present in the absence of spin-orbit

interactions; for GSE systems, however, it can be shown that β (g) is no longer monotonous, but

rather vanishes at a certain value gc, becomes positive, and then tends asymptotically to zero.

It can be shown that the restoration of the delocalization transition is due to the breakdown of

time-reversal symmetry. [15]
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2.3 Many-body localization

Up to now, localization has been discussed in terms of single-particle eigenstates, and it is found

that transport can break down in the presence of strong disorder. However, in general adding

interactions to a model is expected to restore transport, and make the system ergodic: even if

the single-particle spectrum is fully localized, one may a priori expect that interactions allow for

inelastic hopping among localized states, analogously to the e�ect of interactions with phonons in

the single-particle case. Energy and particles would then be able to spread through the system,

and transport and equilibration would ultimately be restored. However, this argument has been

shown to be �awed, since it neglects the fact that localized states close in space typically have

large energy mismatches. If interactions are weak and short-range enough, they are not able to

compensate typical energy di�erences: particles can not �nd in their surroundings states from

which to absorb the amount of energy they need to hop to a di�erent localized states. Therefore,

some properties of the localized phase, like the absence of transport and di�usion, may expected

to persist in the presence of interactions.

This conjecture was already present in the original Anderson work [11], and it was seriously

addressed by himself and collaborators twenty years later [20]. The problem was stated in terms

of perturbation theory in the interaction: one starts with a fully localized Anderson model, creates

an excitation above the Fermi energy, and perturbatively computes its lifetime. Such a lifetime

was argued to be exponentially long for low temperatures, implying that the conductivity is ex-

ponentially small. This was taken as a hint that features of localization may be stable against

interactions.

The topic of many-body localization became a very active subject of research recently, after

two papers by Basko, Aleiner and Altshuler (BAA) [23] and by Gornyi, Mirlin and Polyakov [22].

These papers are technical, and a full review of their calculations is beyond the purpose of this

thesis. Therefore, only a brief sketch of their fundamental idea is provided here. The notation used

is the one in the BAA paper. One starts by observing that the main energy scale of the problem is

the typical energy spacing between single particle states, the distance of whose localization centers

is of the order of the localization length ξ:

δξ ≡
1

νξd
, (2.3.1)

where ν is the single-particle density of states, and d is the spatial dimension. This quantity is the

typical energy di�erence among states which are connected by short-range interactions. Then, a

weak short-range interaction is added: the Hamiltonian, expressed in the basis of single-particle

eigenstates like in Eq. (2.2.8), now reads

H =
∑
α=1

Eαc
†
αcα +

1

2

∑
αβγδ

Mαβγδc
†
αc
†
βcγcδ. (2.3.2)
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The matrix elements Mαβγδ are assumed to be negligible for states which are far apart either in

space or energy., if the latter exceed δξ. Provided that the relations

|−→rα −−→rβ | . ξ, |−→rα −−→rγ | . ξ, |−→rβ −−→rγ | . ξ, etc. (2.3.3)

and

|Eα − Eδ| . δξ, |Eβ − Eγ| . δξ or |Eα − Eγ| . δξ, |Eβ − Eδ| . δξ (2.3.4)

are ful�lled, one imposes Mαβγδ ∼ λδξ, with |λ| � 1 being the coupling strength; otherwise, the

matrix elements are neglected. Diagonal matrix elements of the formMαβαβ renormalize the energy

of the unperturbed states, but do not induce any transition, so are not considered either. Since

high energy density is assumed, the sign of λ is not important.

One assumes the system to be prepared in a many-body eigenstate |Ψk〉, then perturbs it

by adding one particle in the single particle state α, and constructs perturbation theory in the

interaction starting from the resulting state c†α |Ψk〉. Let us now apply the interaction to this state:

at �rst order in λ, the Hamiltonian couples the initial state to states with three particle excitations:

a hole in state β and two particles in states γ and δ:

c†α |Ψk〉 → c†γc
†
δcβ |Ψk〉 . (2.3.5)

At second order in λ, two kind of processes are possible: either an extra particle-hole pair is excited,

or a particle and a hole recombine in another particle-hole pair. Since the number of available

processes of the �rst kind is much larger than the number of possible processes of the second kind,

recombination processes are neglected, and only processes which lead to decay in a larger number

of excitations are considered:

c†α |Ψk〉 → c†γc
†
δcβ |Ψk〉 → c†1c

†
2c
†
3c4c5 |Ψk〉 → . . . (2.3.6)

One now has to check convergence properties of the resulting perturbative series: if the amplitude

of the series coe�cients decays fast enough with perturbative order n, only a �nite number of

excitations is created, and the energy of the starting excitation remains con�ned in a �nite volume.

The system is said to be many-body localized (MBL). Conversely, if the decay is too slow, the

initial excitation irreversibly decays in a large number of di�erent excitations. In the latter case,

energy spreads through the system, and all information about the nature of the initial excitation

is lost due to decoherence: the system is ergodic. Working in the continuum, it is possible to use

Keldysh formalism to �nd the following estimation of the transition point:

λT

δξ
ln

1

λ
∼ 1. (2.3.7)
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The temperature dependence comes from the fact that, the larger the temperature, the larger

the phase space available for scattering gets, and therefore the stronger the tendency towards

delocalization.

As I will mention in Subsec. 2.3.3, and explain in detail in Chap. 4, the transition in tem-

perature predicted by Eq. (2.3.7) is reduced to a crossover in the thermodynamic limit, due to

the e�ect of rare ergodic regions. As explained in Ref. [29], this was not seen in the BAA paper

because this e�ect is due to processes in which particle-hole excitations scatter without exciting

extra particle-hole pairs, which are neglected in their analysis. If correctly taken into account,

such processes would give rise to a diverging sub-sequence in the perturbation expansion, which

spoils the stability of the localized phase. No real MBL is therefore possible in systems where a

transition in temperature is predicted perturbatively: genuine non-ergodicity can only be present

in lattice systems where the whole spectrum is localized. Such systems are the topic of the next

two Subsections.

2.3.1 Proof for MBL in one dimensional systems

The perturbative arguments I introduced above hint that strong disorder can induce a complete

breaking of ergodicity in interacting quantum systems. They involve many approximations which

are hard to control, however, and therefore it is not easy to fully determine how robust their

conclusions are. More recently, a rigorous proof for the existence of an MBL phase was given by

Imbrie [24] for one dimensional lattice systems, with no continuous symmetry, to avoid dealing with

massless Goldstone modes. The main idea of the proof consists in taking a disordered Ising spin

chain in a weak random transverse �eld of typical amplitude γ. Then one constructs perturbatively

in γ a quasi-local unitary operator that diagonalizes the Hamiltonian. In this approach, it is

possible to prove rigorously that perturbation theory converges for small enough γ, under the

reasonable assumption of �limited level attraction�, i.e., that the probability of �nding two energy

levels closer than a number δ vanishes at least as a power law for δ → 0. Apart from the fact that it

shows unambiguously the robustness of localization in presence of interactions, the importance of

this proof lies in two main points: the �rst is that it succeeds in showing that rare metallic regions

where the disorder is anomalously weak do not spoil the global non ergodicity of the system,

as long as they are su�ciently far apart from each other. This was not clear from the original

calculation by Basko et al. [23], where such regions are neglected, and remains an open issue for

d > 1. The second is that, as a result of Imbrie's rotations, it naturally emerges that an extensive

set of quasi-local spin operators τ z exist, which commutes with the Hamiltonian. Here, quasi-local

means that their commutators with local operators are �nite within a �nite region of space, and

exponentially small in the distance outside of it. The implications of this fact for the dynamics

of the systems are discussed in Subsection 2.3.2. However, this proof has a signi�cant drawback

too, namely, it cannot be straightforwardly generalized to dimensions higher than one. At the
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moment it is not clear whether the di�culty is just technical, or if it implies that MBL in higher

dimensional systems is qualitatively di�erent from its one-dimensional counterpart.

To provide a sketch of the proof, let us consider a one-dimensional spin-1
2
Hamiltonian with

nearest neighbor XY Z couplings. This is not the model for which the proof was originally formu-

lated, but for the following arguments the di�erence is not important. The Hamiltonian can be

written as

H = H0 + JV. (2.3.8)

In the above,

H0 = W

L∑
i=1

hiS
z
i (2.3.9)

represents a random magnetic �eld in the z-direction, hi ∈
[
−1

2
, 1

2

]
being independent random

variables with uniform distribution. On the other hand,

V =
L∑
i=1

[
γxS

x
i S

x
i+1 + γyS

y
i S

y
i+1 + γzS

z
i S

z
i+1

]
≡

L∑
i=1

Vi,i+1. (2.3.10)

is the interaction term, with γxyz ∼ O (1). The interaction is taken much smaller than the disorder

strength, J � W . Boundary conditions are assumed to be open. For clarity of notation, in this

Subsection I call Szi the spin operator at site i, whereas σzi = ±1 are its eigenvalues. It is possible

to map the Hamiltonian into a system of spinless fermions using a Jordan-Wigner transformation,

therefore providing an analogy to the BAA model discussed so far. Of course, for J = 0, the

Hamiltonian is trivially localized, since each site is unable to exchange energy with the rest of the

system.

The strategy of Imbrie's proof consists in applying a sequence of unitary transformations to

the Hamiltonian. Such transformation are devised in order to progressively set to zero the non-

diagonal elements of the Hamiltonian, thus diagonalizing it. As a starting point, let us set J = 0

and consider a classical spin con�guration
∣∣∣{σzi }Ni=1

〉
. Then, let us call ∆Ei,i+1 the change in the

energy of the system, if spins Si and Si+1 are �ipped:

∆Ei,i+1 ({σ}) = 2
(
σzi h

z
i + σzi+1h

z
i+1

)
. (2.3.11)

Now a �nite interaction J 6= 0 is turned on. A pair i, i+ 1 is called resonant if ∆Ei,i+1 ≤ ε, where

W � ε� J is a small (arbitrary) energy scale, intermediate betweenW and J . Next, the resonant

subspace S = {i : i is involved in at least one resonance} is de�ned. S can be decomposed in

blocks of connected resonant spins: since J is assumed to be very small, most of the blocks are

composed by two spins only, but in principle blocks of any size LB can be present, with probability

of order (J/W)LB . The key point is that blocks of size LB are exponentially rare in LB, and most

of the spins are isolated, i.e. they belong to no block. The interaction part of the Hamiltonian can
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now be split in three parts:

V =
∑

i,i+1∈S

Vi,i+1 +
∑

i∈S,i+1/∈S

Vi,i+1 +
∑

i/∈S,i+1∈S

Vi,i+1 +
∑

i,i+1/∈S

Vi,i+1 ≡ VR + VR−E + VE, (2.3.12)

where R stands for �resonant� and E for �environment�. VR includes all couplings among resonant

spins; VE collects all couplings among isolated spins, which do not belong to any resonant blocks;

�nally, VR−E represents the coupling between a resonating spin and a neighboring isolated one.

As a �rst step, the interactions in the typical non-resonant regions are added to H0:

H0 → H1 = H0 + JVE. (2.3.13)

Since VE connects only spin con�gurations whose energy di�erences are of order W � J , eigen-

states and eigen-energies of H1 can safely be constructed using non-degenerate perturbation theory

in J . Let A be the unitary operator which diagonalizes H1: without constructing A explicitly

(which can however be done, see Ref. [24]), it is possible to qualitatively argue what its action on

local spin variables is [28]. Due to the absence of resonances in region E, the mean values of spin

operators has to be close to the non-interacting one:

|〈Szi 〉| = 1−O
(
J

W

)
. i /∈ S (2.3.14)

In a sense, it is still possible to think to region E in terms of spins sitting at each site, but these

�logical� spins τi are physical spins that are dressed with contributions coming from the surrounding

sites. Since in E the problem is fully perturbative, the commutator of τi with physical spins has

to decay exponentially in the distance:

[
ταi , S

β
j

]
∼ O

((
J

W

)|i−j|)
, (2.3.15)

where α, β = x, y, z label the three spin components. Additionally, since A diagonalizes H1, once

we rewrite H1 in this new basis, no terms that induce spin �ips can be present. The only possible

couplings that appear are among the T zi operators only:

H1 =
∑
i

τ zi +
∑
i,j

Ji,jτ
z
i τ

z
j +

∞∑
n=1

∑
i,j,{k}

K
(n)
i,{k},kτ

z
i τ

z
k1
. . . τ zknτ

z
j . (2.3.16)

Due the perturbative nature of the construction, all couplings must be exponentially decaying

in the distances. I shall call this the �Huse-Imbrie Hamiltonian�, and an analysis of its physical

properties will be given in Subsec. 2.3.2.

Now let us apply the transformation A to the full Hamiltonian. Since A acts only on spins
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living in region E, it has no e�ects on terms living in the resonating subspace R, which has to be

diagonalized separately using degenerate perturbation theory. Since resonances are rare, most of

the resonating blocks are formed by a small number n ∼ O (1) of spins, and are not able to induce

spin �ips in the surrounding regions, since their internal level spacing is still of O (J): therefore,

they can be included in the Huse-Imbrie description, since they have �nite support on a small

region only. However, large clusters of LB � 1 spins are occasionally present, even though with

exponentially small density: inside these clusters, the system looks for all practical points of view

ergodic, and can be described by using ETH. One may therefore wonder whether such a large

region can act as a bath for the rest of the system, leading to delocalization as the coupling terms

VR−E with the localized region are considered. This is however not the case: the presence of a

large metallic region indeed thermalizes the spins surrounding it up to a certain length Ls, but

does not a�ect far away regions, since the coupling between the metallic cluster and the far away

logical spins is exponentially small in the distance.

To get convinced about this fact, let us look how VR−E is modi�ed under the action of A: in

general, due to the exponential tails of the logical spins, a metallic region B gets coupled with all

spins in E, but the coupling typically scales as (J/W)l, l being the distance between the spin and

the boundary of B. These terms can in principle induce spin �ips, but they are able to produce

signi�cant hybridizations only if their amplitude is bigger than the level spacing in a region of

length LB + l, which scales as 2−LB−l. So let us de�ne a bu�er length Ls by

2−LB−Ls =

(
J

W

)Ls
. (2.3.17)

The above reasoning implies that logical spins centered further than Ls from the edge of the ergodic

region are not hybridized by the direct coupling to B. Now the chain can be separated in region

B, which includes B and all surrounding spins up to distance Ls, and E, which is formed by all

the rest of the chain. The rotated Hamiltonian can then be written as

H ′ = HB +HB−E +HE, (2.3.18)

where the terms HB−E acting on both B and E are either commuting with HE (terms diagonal in

the logical spins) or have norm at most (J/W)Ls (terms originating from applying the rotation to

VR−E). Using Eq. (2.3.17), this allows to conclude that the eigenstates of H ′ are close to products

of states in B and con�gurations of logical spins in E. In other words, the delocalizing e�ect of B

is con�ned to a region of length Ls, whereas MBL is robust outside.

As stated above, this proof does not extend to higher dimensions. The reason is that Eq.

(2.3.17) needs to be modi�ed to

2−(LB+Ls)
d

=

(
J

W

)Ls
, (2.3.19)
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which in general has no solution for dimension d > 1. The e�ect of ergodic spots in higher

dimensional systems thus remains an interesting open question.

2.3.2 (Quasi-)Local Integrals of Motion in the MBL phase

In the MBL phase, eigenstates do not obey ETH. As is well known, ergodicity does not really

hold for non interacting systems, which always possess an extensive set of conserved quantities, i.e.

the occupation numbers of the single particle levels, and therefore are in some sense integrable.

Average values of local observables in the Anderson model are not correctly described by ETH;

since in the MBL phase observable quantities remain close to the non-interacting ones, they violate

ETH too [30]. Then, as either the interaction or hopping amplitude are increased, a dynamical

phase transition takes place, and thermal behavior is restored. This transition is di�erent from

thermodynamic zero temperature quantum phase transitions, which are due to a change of the

nature of the ground state as some parameter in the Hamiltonian varies [61]. The MBL transition

is due to a change of the nature of the whole spectrum instead, with eigenstates passing from

violating ETH to obeying it, and it does not manifest in any thermodynamic quantity, nor is it

detectable via standard statistical mechanics techniques.

Currently, a general de�nition characterizing all possible MBL phases is still lacking (see [26]

for a more complete discussion on how many-body localization may be de�ned rigorously, and

[25] for a more intuitive and phenomenological description). While at the single particle level the

most natural de�nition of localization is given in terms of the spatial structure of wave-functions,

it is not possible to generalize this de�nition to the many-body case. From the BAA argument

given above, it follows that the �rst possible de�nition of MBL is that of localization in Fock

space: once written in the basis of the eigenstates of the non-interacting Hamiltonian, an MBL

state has a �nite amplitude over a small fraction of the Hilbert space only, while an ergodic one

spans all possible single-particle con�gurations (due to ETH). This de�nition is quite slippery,

however, since the number of con�gurations with non-vanishing overlap with the MBL state still

grows exponentially with the volume, even though much slower than the dimension of the full

Hilbert space. A more useful de�nition is the absence of any long range transport, which sharply

distinguishes MBL systems both from ergodic and integrable ones, since they both always allow

for transport, either ballistic, di�usive or subdi�usive. However, from the practical point of view,

checking for transport is di�cult both from the numerical and analytical point of view, so some

other de�ning property is needed, which allows for easier numerical veri�cation.

A fundamental aspect of MBL, from which many of its other phenomenological properties can

be derived, is its hidden integrability: as already stated, many-body localized systems display an

extensive and complete set of quasi-local integrals of motions (LIOM), where quasi-local means

that their commutators with local operators de�ned outside a �nite spatial region is exponentially

small in the distance from such region, as shown in Eq. (2.3.15). [27, 28, 24, 29] As a prototypical
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example, it is useful to consider again the spin model (2.3.8). In the non-interacting limit J = 0 the

conserved charges are just the z-components of the spins, whose eigenvalues are {−1, 1}. Now let us

set J 6= 0: as already explained, one can use perturbation theory to construct some �dressed� spins

τ zi , and rewrite the Hamiltonian in the Huse-Imbrie form (2.3.16). No such construction is possible

in the thermal phase: even though one can still construct some conserved operators, they will

necessarily be highly non-local and have no physical relevance. The description in terms of LIOMs

is very useful to understand many of the physical properties of the MBL phase: therefore, in the

remainder of this Subsection, they will be used to explain the most remarkable phenomenological

properties of MBL systems.

2.3.2.1 Absence of thermalization and transport

A many-body eigenstate is a simultaneous eigenstate of all LIOMs, and it cannot be thermal:

indeed, a microcanonical ensemble is constructed by averaging over all eigenstates in a small

energy window, which corresponds in general to very di�erent quasi-particle occupations. As a

consequence, the mean value of a generic local operator O on an eigenstate is di�erent from its

thermal average, and thus ETH is violated. Additionally, the presence of LIOMs ensures that the

d.c. conductivity vanishes in the thermodynamic limit, which follows from the Kubo formula for

the conductivity σ associated with the local current density Jr. Following [29], let Jr (ω) be the

current at frequency ω and position r arising in linear response to a homogeneous �eld E. The

spatially averaged current density is then

J (ω) =
1

V

∑
r

Jr (ω) ≡ σ (ω)E (ω) . (2.3.20)

At �nite temperature, the dissipative part of the conductivity is given by

Re [σ (ω)] = − 1

V

∑
r

Im [Π (ω, r)]

ω
, (2.3.21)

where Π (ω, r) is the Fourier transform of the retarded correlation function of the current operator,

with Lehmann representation

Π (ω, r) =
1

Z (β)

∑
m,m′

∑
r′

e−βEm′
(
1− e−β(Em−Em′ )

) 〈m′| Jr′+r |m〉 〈m| Jr′ |m′〉
ω + Em′ − Em + iη

. (2.3.22)

In the above, Z (β) is the partition function, and the limit η → 0 needs to be taken after the

thermodynamic limit. Since

lim
ω→0

1− e−βω

ω
= β, (2.3.23)
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in the d.c. limit one �nds

Re [σ (ω → 0)] =
πβ

V

∑
m,m′

∑
r,r′

e−βEm′

Z (β)
〈m′| Jr′+r |m〉 〈m| Jr′ |m′〉 δη (Em′ − Em) , (2.3.24)

where δη (x) ≡ π−1η/x2+η2 is a regularized δ function.

For simplicity, let us take the approximation of strictly local LIOMs, i.e., let us assume that each

of them commutes exactly with all operators acting outside a region of linear size `. Let us then

take two many-body eigenstates m,m′ that di�er by one logical spin τk only, i.e. τk |m〉 = −τk |m′〉.
For a strictly local current operator, and r � `, it follows immediately that at least one of the two

matrix elements |〈m′| Jr′ |m〉| = 1
2

|〈m′| [Jr′+r, τk] |m〉|

|〈m′| Jr′+r |m〉| = 1
2
|〈m′| [Jr′+r, τk] |m〉|

, (2.3.25)

since at least one of the two commutators vanishes. Thus, in Eq. (2.3.24) the sum over r can

be restricted to r . `. Additionally, for any �xed m the sum over m′ is restricted to a �nite set,

since m and m′ can not di�er by more than ∼ ec`
d
integrals of motion, where c is an unimportant

constant of O (1). Thus, once one recalls that 〈m| J |m〉 = 0 for time reversal invariance, in the

thermodynamic limit, once η is sent to zero, the real part of the d.c. conductivity vanishes with

probability 1.

This derivation is oversimpli�ed, since the commutators of the logical spins have an exponen-

tially small but �nite tail outside of region `d. Since the sum now includes pairs of states whose

energy di�erence Em′ − Em is exponentially small too, one may wonder whether the competition

between small matrix elements and energy denominators could restore a �nite conductivity. How-

ever, if this were the case, perturbation theory in the interaction would not have converged, the

construction of LIOMs would not have been possible, and the system would not be in an MBL

phase. Therefore, it is reasonable to expect that the absence of transport survives, if quasi-locality

of LIOMs is correctly taken into account.

2.3.2.2 Statistical properties of the energy levels

Another indicator, often used in numerical simulations to distinguish MBL from thermal phases,

regards the spectral statistics of the Hamiltonian. In particular, many authors study the distribu-

tion of gaps between consecutive energy eigenvalues. Let

∆n ≡ En − En−1 (2.3.26)

be the energy gap between energy levels n and n + 1. One then de�nes the rescaled energy

separations

sn ≡
∆n

〈∆〉
, (2.3.27)
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〈∆〉 being the average of ∆n over the whole spectrum. It is known from random matrix theory

that, for Gaussian ensembles, the probability distribution P (s) is the Wigner-Dyson distribution

[57]. The most important feature of this distribution is that the probability of �nding very small

separations s� 1 vanishes in a power-law fashion:

P (s) ∝ sβ, s� 1 (2.3.28)

where β = 1 for the GOE, β = 2 for the GUE and β = 4 for the GSE. This phenomenon, called

�level repulsion�, is straightforward to understand. Let us consider a system described by a N ×N
Hermitian random matrix with real independent entries, drawn from a Gaussian distribution with

variance σ2 (therefore belonging to the GOE ensemble). Let us suppose that two of its diagonal

entries H11 and H22 are very close to each other, i.e. that |H22 −H11| � σ. States 1, 2 are

almost decoupled from the rest of the system, and their dynamics are described by the e�ective

Hamiltonian

H =

(
H11 H12

H∗12 H22

)
. (2.3.29)

The di�erence between the two eigenvalues of H is

E2 − E1 =

√
(H22 −H11)2 + |H12|2. (2.3.30)

If H12 is real (and thus H belongs to the GOE), in order for this di�erence to be small, one has

to impose that two independent random variables, H22 −H11 and H12, are simultaneously small:

this yields P (s) ∝ s, and thus β = 1. If H12 is complex instead, Re (H12) and Im (H12) are

independent: one then has to impose that three independent random variables are small, and �nds

P (s) ∝ s2, which means β = 2. One �nds β = 4 for the GSE with analogous arguments.

Since, by ETH, ergodic Hamiltonians are statistically equivalent to Gaussian random matrices,

one expects the energy levels of ergodic systems to follow a Wigner-Dyson distribution. This

conjecture has been numerically veri�ed in many cases [68, 69, 70]. For integrable systems the

situation is very di�erent: it was conjectured that in this case s follows a Poissonian distribution,

P (s) = e−s. (2.3.31)

A Poissonian distribution of s can be easily derived if the energies En are independent identically

distributed (i.i.d.) random variables [57]. Heuristically, the meaning of this conjecture is that, in

integrable systems, energy levels are independent from each other: this is due to the fact that,

typically, eigenstates very close in energy are labeled by extensively di�erent values of the integrals

of motion, and do not repel each other. Since MBL systems share with integrable ones the analogy

of having an extensive set of integrals of motion, one can expect their energy levels to be described

by the same statistical distribution. This expectation is con�rmed in many numerical works (see
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for example Refs. [45, 46, 30, 69, 68]). Therefore, one expects that at the MBL transition a change

in the form of the distribution, from Poisson to Wigner-Dyson, takes place: numerically this e�ect

can be quanti�ed by the ratio of consecutive level spacings

rj ≡
min (∆n,∆n+1)

max (∆n,∆n+1)
. (2.3.32)

Averaging over the spectrum, one �nds for the three Gaussian invariant ensembles

rGOE ≈ 0.53, rGUE ≈ 0.60, rGSE ≈ 0.67, (2.3.33)

while for the Poisson distribution it can be shown that

rPoisson = 2 ln 2− 1 ≈ 0.39. (2.3.34)

Typically, using exact diagonalization one observes a crossover from the Poisson to the Wigner-

Dyson value, as quantum �uctuations are increased. That crossover becomes sharper as system

size is increased, hinting at a sharp transition in the thermodynamic limit. This quantity can not

be used to distinguish MBL from single-particle localization, though, since in both cases s follows

a Poissonian distribution. Additionally, since the gap ratio is a non-local quantity, it su�ers from

�nite-size e�ects.

2.3.2.3 Entanglement properties

Other two interesting features of MBL systems regard their entanglement properties. The �rst

one is the fact that MBL eigenstates obey an �area law� entanglement entropy: if the system is

prepared in a highly excited eigenstate, and partitioned in two regions A and B as in Fig. 2.1.1, the

entanglement entropy SA will scale as SA ∝ ∂A, ∂A being the area of the d−1 dimensional surface

that separates the two regions. [62] This contrasts with thermal systems, where, as explained in

Subsec. 2.1.1, a volume law is expected at �nite temperature. Again, this is easily understood in

terms of LIOMs: up to exponentially small corrections, the entanglement entropy is proportional

to the number of τ zi which have support on both regions A and B. This number is obviously

proportional to ∂A. The scaling of entanglement entropy for eigenstates is currently one of the

most commonly used numerical diagnostics to distinguish between an MBL and a thermal phase

(see e.g. [44, 45, 46, 62]). However, like the r parameter, it can not distinguish an MBL system

from a non-interacting localized one, since in both case an area-law scaling is present.

The second feature is the growth of entanglement as a function of time, when the system is

prepared in an initial condition with no entanglement, i.e., a product state. A prototypical example

is an eigenstate of the physical spins {Szi }. Then, the system is partitioned as in Fig. 2.1.1, and SA
is computed as a function of time. If the system is thermal, entanglement grows linearly, SA ∝ t
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[63, 64]. This comes as the various degrees of freedom of the system get entangled by interaction:

the interaction of two spins a, b in general makes them entangled with each other. The subsequent

interaction of spin b with another spin c makes c entangled not only with b, but in general with

a too. As a consequence, the spread of entanglement is ballistic, with velocity close to the Lieb-

Robinson bound [65]. In contrast, in non-interacting localized systems entanglement saturates at

a �nite value. In this case, entanglement grows while the wavefunctions of the particles sitting

next to the boundary between A and B spread up to distances of the order of the localization

length. However it cannot spread further, since the particles do not interact among each other.

An alternative way to see this is by noticing that, for non-interacting systems, the Huse-Imbrie

Hamiltonian (2.3.16) has only the �rst term.

From this point of view, MBL systems are intermediate between thermal and single-particle

localized ones. It was observed numerically [66, 67] that the entanglement growth is unbounded,

but logarithmically slow, SA ∝ ln t. Also this behavior has been interpreted in terms of LIOMs

[27, 28, 64]: in MBL models, entanglement do spread, since there are higher order terms in the

Huse-Imbrie Hamiltonian. However, the interaction between localized quasi-particles decays with

distance r as exp (−r/ζ), with some length scale ζ of the order of the localization length. Therefore,

at time t, only quasi-particles at distance r ∼ ζ ln t get entangled, as observed in the numerics.

This dynamical behavior distinguishes MBL systems not only from thermal, but also from single-

particle localized ones. Its obvious drawback is that the entanglement entropy cannot be measured

in experiments at the moment, even though recently a protocol has been proposed to extract it

experimentally. [64]

2.3.3 Phase diagram of MBL systems

Many-body localization is a very di�cult problem, both from the analytical and numerical points of

view. The main issue is that MBL is a property of the entire spectrum, not just of the low-energy

region. Therefore, most of the techniques commonly used in other areas of condensed matter

physics, which are devised to study the ground state and low energy excitations, are not useful in

this context. From the analytical side, the only available technique in general is perturbation theory

in some small parameter, typically hopping or interaction strength. Despite being conceptually

simple and useful in a large variety of situations, it has the obvious downsides of being restricted to

the regime of weak quantum �uctuations only, and does not allow for the exploration of the whole

parameter range. Additionally, it is insensitive to non-perturbative e�ects, which can be important

in the thermodynamic limit, as discussed in Chap. 4. From the numerical point of view, one has

to resort to exact diagonalization, which has the obvious disadvantage of being restricted to very

small systems due to the exponential growth of the Hilbert space with system size (even though an

extension of DMRG techniques has been proposed for one dimensional systems, which may help to

overcome this limitation [71, 72]). Therefore, it is very di�cult to extrapolate the observed results
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to the thermodynamic limit, due to �nite size e�ects. For these regions, it is not surprising that

the phase diagram of MBL systems, and the nature of the transition, are still poorly understood.

An important prediction of the BAA analysis is that, in the continuum, a �many-body mobility

edge� should exist at any �nite hopping, i.e. an energy threshold which separates localized states

at low energy density from ergodic ones at high energy density [23, 73]. This is the many-body

analogue of the concept of a single-particle mobility edge discussed in Subsec. 2.2.1. This prediction

can be understood considering that, the higher the energy density, the more channels are available

for scattering, and therefore the easier it is for a quasi-particle excitation to di�use its energy

through the system. In a lattice model, the situation is di�erent, though, since at very small

interaction J � 1 the whole spectrum is localized. Then, for J larger than a certain Jc a mobility

edge is expected from perturbation theory to open at zero energy, and the situation would be

analogous to the one depicted in Fig. 2.2.2 for the single particle problem.

The BAA analysis is �awed, though, since it neglects the possibility that �nite, but large regions

of energy density above the putative mobility edge act as a bath for their surrounding localized

environment, therefore reinstating transport and thermalization. [29, 41] The mechanism through

which ergodicity is restored in terms of this phenomenon will be explained in detail in Chapter 4.

Let us now discuss how this e�ect modi�es the phase diagram. For lattice models, the phase

diagram which emerges from my work is shown in Fig. 2.3.1, as a function of energy E and

quantum �uctuations t: for very small t, the whole spectrum is localized, and the system is

genuinely MBL. This is the regime in which Ref. [24] proved rigorously the existence of MBL for

one dimensional systems. Then, at t = tc, an in�nite temperature transition takes place, and the

spectrum becomes delocalized. For t > tc, no real transition is present as a function of temperature,

but there is rather a crossover: for high temperature, the system is ergodic and metallic. For low

temperature, the system is in a Gri�ths phase, i.e. in a phase in which most of the system is

frozen, but transport and equilibration are present due to rare mobile regions that move through

the system via resonant hopping. The properties of this �bad-metal� regime, like the dependence

of conductivity on temperature, or whether transport is di�usive or sub-di�usive, are still largely

unknown, and will be subject of future work.

Another interesting consequence of this consideration is that no real MBL is possible in the

continuum, since the spectrum can never be fully localized, if the energy density is not bounded.

However, the reader shall be cautioned that delocalization by rare regions may take very long

times, if starting from a �localized� initial condition. For a realistic experimental setting, this

e�ect might eventually be subdominant as compared to decoherence due to residual coupling to

a bath: therefore, for the experimental accessible times the system will for all practical purposes

look localized.
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Figure 2.3.1: Phase diagram of an MBL lattice model, as a function of energy E and quantum
�uctuations t, for �xed disorder and interaction strengths. For t < tc the whole spectrum is
localized, and the system is fully localized: for t > tc a crossover line in energy (green dashed line)
divides a metallic region from a �bad-metal� regime, in which thermalization and transport are
due to the e�ect of rare regions. On both sides of the transition line (red), there is no transition
as a function of energy.
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2.3.4 Localization in absence of disorder? A percolation analysis

Up to now, I have described localization as a consequence of the interplay of disorder, hopping

and interaction in a quantum Hamiltonian. In particular, I have discussed how disorder tends

to localize particles, whereas kinetic energy and interaction tend to favor delocalization, through

elastic or inelastic scattering processes. One would be therefore naively lead to think that, in a

non-disordered Hamiltonian, localization cannot take place. This conclusion was challenged in the

early 80s in the context of di�usion of He3 atoms in a He4 crystal. It was found that the di�usion

coe�cient D of the impurities becomes exponentially small as the concentration ρ is increased

[35]. This phenomenon looks very similar to localization, but cannot be interpreted in terms of

the mechanisms described so far, since no disorder is present in the system. The key observation,

made by Kagan and Maksimov, to understand this phenomenon is that, in the considered system,

the interaction strength U among impurities is much larger than the hopping amplitude t. As a

consequence, when impurities are injected in random positions on the lattice, the typical energy

mismatch one of them needs to overcome in order to hop to a neighboring lattice site is of order

U . One can then proceed as in the analysis of the Anderson model and conclude that, for U � t,

neglecting phonon assisted hopping, di�usion is not possible. In a sense, interaction takes the

role of the disorder, and the system localizes on its initial random con�guration. It is important

to notice that the presence of a rigid lattice is essential for this phenomenon: in the presence

of phonons, particles can delocalize by phonon-assisted hopping, and therefore the system will

eventually relax starting from any initial condition. On a lattice, only discrete displacements are

possible instead, and their typical energy cost is �nite, so the motion of particles can get blocked

if the available kinetic energy is small enough.

The argument sketched in this Subsection has the limitation of relying entirely on perturbative

arguments in the hopping, and therefore of being insensitive to non-perturbative e�ects that restore

ergodicity in the thermodynamic limit, analogous to the ones discussed in the previous Subsection

to rule out mobility edges. Moreover, there was no analysis of the structure and e�ect of resonances:

in the absence of quenched disorder, there are many exactly degenerate con�gurations for t = 0, if

the interactions are short range. For this reason, I will �rst present the main ideas of the analysis,

and then discuss qualitatively how they need to be modi�ed once caveats due to resonances and

ergodic regions are taken into account. The role of resonances will then be treated much more

carefully in Chap. 3, while delocalization through rare regions is explained in Chap. 4.

2.3.4.1 Localization of strongly interacting impurities in a crystal

The Hamiltonian for the impurities can be written as

H = t
∑
〈i,j〉

c†icj +
U

2

∑
i,j

1

|~ri − ~rj|α
ninj, (2.3.35)
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with α > d to ensure the interaction energy per particle εint to be �nite, d being the spatial

dimension. In this case, εint ∼ O (Uρ), where ρ ≡ N/V is the density. For ρ � t/U the impurities

are very far apart from each other, their typical interaction energy is much smaller than the hopping

strength t and they behave like free particles on a lattice, so no localization is present. For larger

density, starting from a random initial con�guration, one can identify clusters, which correspond

to sets of particles that cannot rearrange internally via resonant transitions, due to interactions

among them. The only possible dynamics of a cluster is a rigid displacement of the cluster itself,

which requires the simultaneous hopping of all the K particles of the cluster, which appear in

perturbation theory as a process of order tK . Thus, the e�ective hopping amplitude of the cluster

scales as

tcluster ≈ t

(
t

U

)K−1

, (2.3.36)

i.e. it is exponentially small in the number of constituents. However, the system still acts as an

ergodic metal, due to the fact that there is always a �nite fraction of space where the density of

particles is too low for a rigid cluster to form: these particles are able to di�use through all areas

where no cluster is present, and allow conduction to persist.

As the concentration of particles increases, clusters become larger, and the ergodic low density

regions become rarer. To understand the behavior of the system, let us estimate the fraction of

space occupied by clusters. A particle belongs to a cluster when the energy ∆ε one needs to

displace it by one lattice site is much larger than t. This happens if each particle forming the

cluster has at least another particle at distance lower than a certain length R00, which is estimated

as

R00 ∼
(
U

t

) 1
α+1

. (2.3.37)

If a particle is present on a certain site, then all sites within R00 from it are �frozen�, in the sense

that other particles can neither leave it nor enter from outside. Additionally, as stated above,

particles inside a frozen region can not rearrange their relative positions, but only rigidly translate

all together. The fraction of frozen sites is given by

ρf ∼ ρR3
00 ∼ ρ

(
U

t

) d
α+1

. (2.3.38)

As ρf reaches a certain critical concentration ρ∞ (which can be estimated in terms of site-

percolation theory, see Ref. [74] for a review, and Ref. [75] for the up to date numerical value of

the percolation threshold), an in�nite frozen region forms: this identi�es a cluster which is unable

to move, since it is formed by K →∞ particles. Since it is neither able to rigidly translate nor to

rearrange its internal particle con�guration, the presence of the cluster could ensure that ergodicity

is broken. This would be so if all particles of the system belonged to the cluster, but, obviously,

low density regions where particles are mobile still persist. One must therefore check the e�ect
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of the interaction with mobile particles on the cluster: in Ref. [35] it was argued that scattering

between a mobile particle and the cluster is elastic with probability & 1−O (t/U), since the kinetic

energy (of O (t)) the particle can transfer is unable to create excitations within the cluster itself

(which have a typical energy cost of O (U)). As a result, the system would macroscopically appear

as formed by a large immobile structure, coexisting with rare liquid regions.

2.3.4.2 Flaws of the Kagan-Maksimov analysis

As mentioned above, the analysis of Ref. [35] has two weak points. The �rst one is that, even

in a large supposedly rigid cluster, there are always particles which feel only a weak molecular

�eld generated by the other ones, and are consequently able to rearrange in a resonant way. This

happens also in the presence of quenched disorder, however there is an important di�erence: once

some particles have moved, also the e�ective �elds felt by their neighbors change. It may then

happen that a particle, which was blocked by a strong �eld, can get unlocked by this motion,

and start moving too. So, in translation invariant systems, resonant spots are not �xed to some

de�nite spatial region, but are in principle able to move [37, 39]. The question naturally arises,

whether this mobile resonant spots can travel through the whole system and delocalize it. I found

the answer to be negative for one dimensional systems of a particular kind, whereas in higher

dimensions the situation is much less clear.

The second issue is that, inside a large enough low density �pond�, the system behaves as an

ergodic bath, with total energy of the order of the number of particles forming it, and a level

spacing which is exponentially small in the volume of the pond. This is the same situation I

mentioned in Subsection 2.3.3 above, and that will be discussed in detail in Chapter 4. Under

these conditions, it is unavoidable that the bath induces transitions in the particles that surround

it: due to such transitions, the pond can resonantly move through the system, changing the

con�guration of the areas of the percolating cluster it has crossed. Similarly as in disordered

MBL systems with mobility edges, delocalization and transport are expected to be reinstated by

these rare excitations. However, since thermalization due to rare excitations is expected to be an

extremely slow process, one expects the system to appear non-ergodic for very long time scales,

even though after a long (but �nite) time, thermal behavior will be present. Waiting times may

become so long that they are out of reach for experiments, however. This is also what happens

in a class of classical non disordered systems, with very slow relaxation dynamics: namely the so

called �structural glasses�. I will brie�y discuss them in the following Section.
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2.4 Absence of ergodicity in classical systems: the case of

structural glasses

Long before the problem of MBL arose, it was known that very long lived metastable phases of

matter exist. Such phases are called �glasses�. They are intermediate between crystalline solids

and liquids, in the sense that they display mechanical rigidity like a solid, but their structure at

the molecular level is completely disordered. The standard protocol to experimentally produce a

glass consists in rapidly cooling a liquid to its glass temperature Tg, usually much smaller than

the transition temperature Tc to the solid phase [76]. If the quench is fast enough, the system is

unable to reach its equilibrium phase (which would be a regular crystal), but remains trapped in

some disordered metastable state for very long times. Physical properties are then found to evolve

slowly with time, a phenomenon known as �aging� [77].

Since the transition to the glass phase is not a thermodynamic transition, Tg is empirically

de�ned as the temperature at which the �uid becomes too viscous to �ow in any experimentally

accessible timescale, and therefore is a protocol-dependent quantity which does not play any fun-

damental role in the theoretical description of the phenomenon. For this reason, it is commonly

expected that relaxation times at Tg are still �nite, but just too large to measure. At this point, the

question naturally arises, whether a non zero temperature Tideal < Tg exists, at which relaxation

times are truly divergent. If this is the case, then classical matter displays a genuine non-ergodic

phase at �nite temperature, in which metastable con�gurations survive for arbitrary long times;

otherwise, ergodicity is always eventually restored by time evolution. The whole physics of glasses

then stems from the fact that we are not able to run long enough experiments. This question is

somewhat academic, since no equilibration can be observed below Tg, and therefore neither the

value Tideal nor the features of a hypothetical �ideal glass� could be measured, but is still very

interesting from a conceptual point of view.

An independent quantity which hints that some genuine transition may exist, even though it is

extrapolated empirically from experimental data, is the Kauzmann temperature TK [78]. Let Sexc
be the part of the entropy of the liquid phase, which is in excess with respect to the entropy of

the corresponding crystal. This quantity can be measured down to Tg: extrapolating the resulting

curve below the glass temperature, one �nds that the excess entropy should vanish linearly at

a temperature TK 6= 0, as shown in Fig. 2.4.1 (see Ref. [79] for a compilation of experimental

data, and Ref. [80] for a discussion). The popular physical interpretation of this behavior is

the following [81]: close to Tg, the system explores an energy landscape which is full of minima,

separated by barriers which grow as temperature decreases. At the glass temperature, the system

remains trapped in one of these minima, and is not able to escape in measurable timescales. From

this picture, the entropy can be divided into two contributions: a term which describes the fast

relaxation within one valley, and a second one counting the number of metastable con�gurations,

Sc ≡ lnNmetastable, usually called �con�gurational entropy�. Assuming that the contributions to the
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Figure 2.4.1: Excess entropy ∆S of various supercooled liquids with respect to the corresponding
regular crystal, as a function of temperature T . The entropy is measured in terms of the melting
entropy ∆Sm, while Tm is the melting temperature. Extrapolating from the experimental data
(continuous lines) one �nds that ∆S should vanish at some �nite temperature. However, at Tg
relaxation time scales become too large to be measured experimentally, and no further decrease is
seen beyond that point (dashed lines). Figure taken from Ref. [80].

entropy coming from vibrations around the minima are similar for the glass and the crystal, one

�nds Sexc ≈ Sc. The vanishing of Sc at TK would then imply that a real thermodynamic transition

takes place, characterized by a discontinuity in the speci�c heat. This argument, despite giving

a simple physical picture, is however based on the mere extrapolation of experimental data, and

should therefore be taken with a grain of salt. Additionally, there is no reason to believe that the

Kauzmann temperature, at which a thermodynamic transition might take place, should coincide

with the dynamical transition point Tideal, if it exists at all.

Currently, there are various theoretical approaches which have been proposed to study the

physics of glasses. Here I will present only the one which display some direct analogy with the

quantum systems I am interested in. This approach consists in studying models whose thermody-

namic properties are trivial, but whose dynamics are subject to a series of constraints which slow

down relaxation towards equilibrium. Put shortly, these �Kinetically Constrained Models� (KCM)

are characterized by some kind of facilitation process: they describe a system where the majority

of degrees of freedom are frozen in time, but some rare relaxation events happen. Once a region

in space gets unjammed, it will unlock the dynamics of the surrounding area, therefore triggering
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dynamical avalanches that propagate through the system [82]. These models, despite being very

simple, display a phenomenology which is consistent with the experimental observations made on

glasses. Additionally, since they entirely focus on the dynamical processes which lead to relaxation,

they allow for direct comparison with quantum MBL systems. Indeed, it has been proposed that

dressing them with quantum �uctuations can lead to translation invariant MBL, see [83, 84]. For

these reasons, some of these models will be presented in the following Subsection, and analogies

and di�erences with MBL models will be discussed. For a more complete review, I refer the reader

to Ref. [85].

2.4.1 Relaxation by di�using defects: Kinetically Constrained Models

(KCM)

The simplest example of a KCM is the Kob-Andersen model [86]. This model aims at describing

a hard sphere system, in the limit of large density. It is a classical lattice gas, with the hard core

constraint that no two particles can sit on the same site. Since there is no interaction apart from

the hard core constraint, nor any on site potential, the Hamiltonian of the model is trivial. Calling

ni = 0, 1 the occupation number at site i,

H [{ni}] = 0. (2.4.1)

What makes this model non-trivial is the kinetic constraint that is imposed on the dynamics: a

particle can jump to a neighboring site only if both sites occupied before and after the move have

less than m neighbors, m being an adjustable parameter. This mimics the steric e�ect of the

neighboring particles, that form a cage when their local density is high enough. Kob and Andersen

studied the model on a cubic lattice in d = 3, with m = 4, and found glassy dynamics and aging at

high density. The model was later studied for di�erent values of m, spatial dimension and lattice

geometry [87]. The behavior of this model is very intuitive: at low density, particles are typically

far away from each other, particles are able to move freely, and the dynamics are fully ergodic. On

the other hand, when the �lling fraction is close to 1, most of the system gets stuck, since typically

particles are not able to move. To describe the evolution of the system, one has to study the

dynamics of defects, i.e. extended regions where the density is small. In this model large enough

defects are able to move through di�usion and ultimately make the system ergodic, but since they

are exponentially rare for typical con�gurations, any small fraction of the system will look ergodic

for exponentially long times (until a defect moves through it).

The main weakness of the Kob-Andersen model is that there is no notion of temperature in

it, so it does not allow to describe the experimentally observed dependence of temperature on

the slowing-down of the dynamics. To restore the notion of energy, one can modify the Hamilto-

nian (2.4.1) by introducing a chemical potential. Equivalently, one can consider a system of non
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interacting classical Ising variables in a magnetic �eld h: the Hamiltonian then becomes

H [{σi}] = h
∑
i

σi. σi = ±1 (2.4.2)

The dynamical constraint is introduced as in the Kob-Andersen model: a spin σi can �ip via the

usual Metropolis rule, but only if at least k of its nearest neighbors have positive value. This is the

well-known Fredrickson-Andersen model [88]. In this model, temperature has two roles, since it

determines both the density of mobile defects and their mobility. Overall, defects di�use through

the system, can annihilate when they meet, and can be created from existing defects. At all times,

however, the large majority of the system looks completely frozen: thermalization is ultimately

present, but it is locally reached by relatively fast rearrangement processes (induced by a defect

passing by), followed and preceded by very long waiting times, in which the system is static.

A qualitative description of KCMs can be constructed considering the mobility of sparse defects

with density ρd, which di�use anomalously with an exponent z and a temperature dependent

di�usion coe�cient D [89]. A relaxation time can then be de�ned as the time at which a �nite

fraction of the system (typically 1/2) has been visited by at least one defect. The number of sites

visited by a speci�c defect at time τ is by de�nition (Dτ)
df
z , where df is the fractal dimension of

the walk. For a random walk in d = 3 one has df = z = 2: this follows from the fact that, after n

steps, the walker is at distance O (
√
n) from the origin. Consequently, the number of sites visited

in a sphere of radius R scales as R2. Therefore, the visited number of sites is simply Dτ . The

relaxation time τrel can then be estimated as the solution of the equation

ρdDτrel ≈
1

2
. (2.4.3)

For the Fredrickson-Andersen model, in the case k = 1 one �nds τrel ∝ e
2h
T , which means that

the dynamics follows an Arrhenius law, while for k > 1 the behavior is super-Arrhenius. But τrel
diverges only at strictly zero temperature: at any �nite temperature, there is always a �nite density

of macro-defects, which ensure that the system will eventually get thermal in the long time limit.

This feature is common to the largest majority of KCMs, even though for some very particular

rules a �nite temperature transition can be established [90]. Indeed, it is hard to imagine how a full

arrest of the dynamics can happen at non-zero temperature: if an in�nite long-lived non ergodic

classical glass exists, it must be due to extra e�ects which are not simply obtained by imposing

dynamical constraints only.

As it should be evident for the reader at this point, KCMs resemble MBL models from many

points of view, since both of them challenge the ergodic paradigm, even in the absence of inte-

grability. However, there are many important di�erences, too. Probably the most fundamental

one is that, for disordered MBL systems, it is possible to prove under quite general assumptions a

genuine breakdown of ergodicity, in the sense that equilibration does not set in at arbitrary long
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times. This contrasts with glasses, where complete absence of relaxation can be proven in some

particular cases [90], but not in general. The analogy becomes much closer if one considers MBL

in models without disorder, like the one considered by Kagan and Maksimov, discussed in Subsec.

2.3.4, or the ones that will be presented in Chapter 3. These two kinds of models not only show

very similar qualitative behavior (frozen dynamics for very long times, eventually followed by very

slow thermalization), but have also in common the fact that relaxation is in both cases due to the

e�ect of very rare mobile regions. There is however an important di�erence, that does not allow

to see translation invariant MBL just as the �quantum version of a KCM�: this is the inverted

role of temperature. In most classical KCMs, mobility is due to very rare highly excited regions,

which move in a cold frozen background; on the other hand, as it will be discussed in Chapter 3, in

quantum glasses the immobile regions are at high temperature, whereas the mobile ones are close

to the local ground state. How these two opposite situations can be related, and if it is possible

to smoothly interpolate between them, remains an open question worth to investigate.

As a last remark, it must be pointed out that, even though KCMs look rather arti�cial and

oversimpli�ed, it is possible to build models in which facilitation emerges naturally from the uncon-

strained many-body dynamics [91]. As an example, let us consider the following two dimensional

plaquette model:

H = −J
L−1∑
i=1

L−1∑
j=1

σijσi+1jσij+1σi+1j+1, (2.4.4)

where as usual the σ are Ising variables. The system evolves through the Metropolis rule. The

dynamics of this model can be mapped to a KCM by considering the plaquette variables pij ≡
σijσi+1jσij+1σi+1j+1. With this substitution, the Hamiltonian becomes exactly the one of the

Fredrickson-Andersen model in Eq. (2.4.2). More interestingly, at low temperature facilitation

emerges, too: each time a spin is �ipped, it changes the sign of four plaquette variables. It is easy

to see that excited plaquettes with p = 1 act as a source of mobility, since the energy barriers one

must overcome to �ip a spin get reduced by their presence. In this particular model, defects can

be identi�ed with excited plaquettes.



Chapter 3

Many-body localization without quenched

disorder?

As it was shown in the preceding Chapter, both in the single-particle localized case, as well as

in many-body systems studied so far (e.g. disordered, weakly interacting fermions and bosons,

random quantum magnets,...), non-ergodicity is due to the presence of quenched disorder, which

stabilizes the localized phase. The disorder ensures that local rearrangements are typically asso-

ciated with important energy mismatches, which appear as large denominators in perturbation

theory. In turn, those suppress the higher order decay processes, which would be necessary to

establish transport and delocalization in an isolated systems, that is not in contact with a thermal

bath. The existence of a di�erent mechanism towards localization was also suggested, though,

namely that localization may be induced by strong interactions alone, even with a translation

invariant Hamiltonian [35]. Several recent works have reconsidered this idea, focusing on the ques-

tion whether MBL is possible in systems without disorder. This idea has been tested in various

physical systems, like one-dimensional Bose-Hubbard models [42, 43, 39, 40], mixtures of heavy

and light interacting particles [37, 38, 92], quantum spin chains [83, 93, 84] and three-dimensional

topological models. [94] Another notion of localization, characterized by an incomplete volume

law entanglement, was conjectured too. [95]

The fundamental idea behind these studies is that quenched disorder is not necessary to local-

ize a strongly interacting system. Instead, self-generated disorder (as a consequence of random,

spatially heterogeneous initial conditions) can in principle be su�cient to induce broken ergodicity

and absence of di�usion in a quantum many-body system, even if its Hamiltonian is perfectly

disorder-free and translation invariant. If these models were fully captured by perturbation theory

in the hopping amplitude, their dynamics would genuinely be non-ergodic. As already anticipated

in Chapter 2, and more precisely discussed in Chapter 4, for large systems non-perturbative trans-

port in the hopping and thermalization are ultimately restored by the e�ect of rare mobile regions.

The situation should be compared with classical glassy systems at �nite T , (such as, e.g., poly-

48
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disperse Lennard-Jones mixtures, or hard sphere liquids), and in particular with their description

in terms of KCMs. Despite the fundamental importance of this issue, it will be shown in Chapter

4 that, deep enough in the localized phase, these e�ects can be neglected for systems and time

scales of experimental relevance: therefore, in the present Chapter, they shall not be taken them

into account, and my analysis will be based on perturbation theory only.

The kind of models, which I call �quantum glasses�, have non-ergodic dynamics for very long

times, while being perfectly isolated from external sources of noise, such as thermal baths. Like

the usual Anderson insulators, these �glasses� are not robust to thermal noise: the coupling to

an external bath introduces dephasing and restores transport in general. Robustness of glassiness

and non-ergodicity against thermal noise requires the existence of barriers, which become arbitrar-

ily large when the distance between the considered con�gurations increases, or very complicated

pathways between di�erent parts of con�guration space (such as those required for the relaxation

of defects in certain topological quantum systems for T → 0 [96]). The former happens in sys-

tems which undergo spontaneous symmetry breaking, as well as in many disordered systems with

frustrated interactions, such as spin glasses. It also happens in mean �eld models without disor-

der. [97] Many such models can be dressed with weak quantum �uctuations, therefore naturally

inheriting the glassiness due to classical frustrations, as long as quantum e�ects are small enough

not to overcome the glassy order. [31, 32, 33, 34] While these models exhibit interesting e�ects

arising due to quantum �uctuations (reentrant transition lines, discontinuous glass transitions at

low T , etc), the role of quantum e�ects is secondary to the extent that the glassiness of these

systems relies fundamentally on the built-in frustration in their classical con�guration space. Here

we study a very di�erent type of quantum glass, where classical frustration plays no role: quantum

interference is the only driving force that leads to non-ergodic dynamics.

The remainder of this Chapter is organized as follows: in Sec. 3.1, I discuss the essential

ingredients of the quantum glasses I am discussing. In Sec. 3.2, a concrete one dimensional

Hamiltonian is presented, and I argue by means of perturbation theory that, within a certain

parameter range, equilibration starting from a random classical initial condition is exponentially

slow in the system size. In Sec. 3.3, I compute some observables which signal the presence of

a localized phase, and compare the analytical predictions with numerical simulations, performed

using exact diagonalization techniques for small system sizes. Finally, in Sec. 3.5, some potential

experimental implementations of the quantum glasses described here are discussed.

3.1 Spontaneously broken ergodicity

Let us �rst discuss the ingredients necessary to obtain a quantum glass as envisioned above. In Sec.

3.2, an explicit example of one dimensional Hamiltonian possessing all these features is presented.
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I consider Hamiltonians which are the sum of two parts,

H = H0 + tHhop. (3.1.1)

In the above formula, H0 describes the �non-hopping part� of the many-body system: the dynamics

under H0 is trivially non-ergodic and localized, and by itself do not allow for any d.c. transport.

In this sense, H0 is the analogue of the disorder potential in a standard single particle Anderson

model. In the context of non-disordered, translation invariant Hamiltonians, it is important to note

that the absence of hopping leads to an extensive degeneracy in the spectrum, which allows one to

choose the highly degenerate eigenbasis of H0 in the form of localized many-body wavefunctions,

which break translation invariance. For the purpose of this discussion, this will be the natural

basis from which eigenstates of the full Hamiltonian (3.1.1) are constructed, rather than using a

basis which respects translation invariance.

Consider now adding a perturbative �hopping part� tHhop to the Hamiltonian. It is chosen

such that it could formally restore ergodicity, in the sense that any state in Hilbert space can

be reached from any eigenstate of H0 by the successive action of appropriate terms appearing

in Hhop (in analogy to the intersite hopping in the Anderson problem, which in principle could

bring a particle anywhere in the lattice). I wish to argue that, for t su�ciently small, the system

nevertheless remains non-ergodic and localized for large times, while at higher t an ergodic quantum

liquid is expected.

By �non-ergodic� it is meant here that generic, macroscopically inhomogeneous initial condi-

tions will not become homogeneous in an experimentally accessible time: indeed, the required

time scale grows exponentially with system size, and saturates to some (very large) value in the

thermodynamic limit. This will be shown by perturbatively constructing the eigenstates: with

this operation one �nds that, at the perturbative level, eigenstates remain close to the spatially

inhomogeneous eigenstates of the system at τ = 0. The reader is once again cautioned that the

real eigenstates can not be constructed with perturbation theory in large systems: the correct

procedure to construct the eigenstates in the thermodynamic limit is presented in Chapter 4, and

closely resembles the Imbrie construction. As already stated, to be able to experimentally distin-

guish between the two constructions one needs to wait for times, which are probably out of reach:

for all practical purposes, the physics of quantum glasses can be described by using the simpler

approach taken in this Chapter.
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Figure 3.2.1: Left: A simple 1d model exhibiting self-induced many-body localization: two atomic
species on commensurate lattices with di�erent hopping amplitudes. Heavy particles (green) im-
pede the hopping of light particles (yellow). Those act as e�ective springs between the heavy
particles, and localize them by creating a complex energy landscape for them. Right: The non
ergodic Hamiltonian H0. The barriers divide the chain into independent intervals, where the fast
particles occupy the free particle states.

3.2 An example of quantum glass in 1d

3.2.1 Inhibited hopping model

To exemplify and analyze the general phenomenon of non-disordered, self-localizing quantum

glasses, let us consider a simple 1d model containing two kinds of fermions: a �fast� species a

and a �slow� species c. The presence of a slow particle is assumed to hinder the propagation of the

fast particles, cf. Fig. 3.2.1. Physically, this may arise due to a strongly enhanced tunneling barrier

for a fast particle in the presence of a c particle, which I therefore call a �barrier� henceforth. The

considered Hamiltonian takes the form (3.1.1), with

H0 = −J
∑
j

(
a†j+1aj + a†jaj+1

)
(1− nj) ,

tHhop = −t
∑
j

(
ei
φ/Lc†j+1cj + e−i

φ/Lc†jcj+1

)
, (3.2.1)

where nj = c†jcj. The barriers move with very small kinetic energy t � J , as compared to the

hopping strength J of the fast particles. Note that, in the hopping part Hhop, a weak hopping of

a in the presence of a barrier could also be added, without altering the qualitative conclusions.

Note that the barriers could be could equally well be taken to be hard-core bosons. This choice

does not a�ect the spectrum or localization properties, but only the non-local (in space and time)

correlation functions.

The index j = 1, ..., L labels both the lattice sites, which host the fast particles, and the links

between them where barriers reside, cf. Fig. 3.2.1. Furthermore, periodic boundary conditions
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are used to make the system translation invariant, but a magnetic �ux φ for the slow particles is

inserted, so as to break inversion symmetry. This removes the related spectral degeneracy, which

simpli�es the analysis. The number of particles Na,c and their respective densities ρa,c = Na,c/L are

�xed. This model is somewhat reminiscent of Falicov-Kimball models, where localized particles

create a potential for inert fast particles (for a review, see Ref. [98] and references therein).

However, here I am not interested in the thermodynamic properties, such as the ground state, but

rather in dynamical questions: giving the heavy particles a �nite mass, I rather investigate the

coherent dynamics of the whole system and its ergodicity and transport properties.

The physical essence of the model is retained upon �integrating out� the light a particles and

substituting them by repulsive strings, which yields the e�ective Hamiltonian

He� = He�
0 + tHhop ≡ U

L∑
j=1

L−1∑
l=1

v (l)njnj+l

l−1∏
k=1

(1− nj+j)− t
L∑
j=1

(
ei
φ/Lc†j+1cj + e−i

φ/Lc†jcj+1

)
,

(3.2.2)

where v (l) = l−β. An exponent β = 2 mimics Eq. (3.2.1) best at low energies. Indeed, a

single fast particle trapped is taken between each pair of successive barriers and it is assumed to

remain in its ground state. The e�ective repulsion then decays as a power law with exponent

β = 2. The interaction constant U is proportional to the hopping constant J of the fast particles.

The advantage of this model is that, since it contains only one kind of particle, its Hilbert space

dimension scales much less fast with system size L, with respect to the model (3.2.1). Therefore,

it is much more suitable for numerical studies: for this reason, from now on I will often refer to

this simpler e�ective model.

3.2.2 Properties of the non-hopping Hamiltonian H0

For t = 0, the barriers can not move. Hence, the fast particles remain con�ned between them

and do not interact with other particles outside their own interval. Thus, there is trivially no long

range transport of energy of particles, and the system is non-ergodic. Each interval between two

consecutive barriers hosts a discrete set of energy levels for the fast particles. In the simple model

above, for intervals of length l, these are just standing waves with wavevectors km = mπ/l+1, for

m = 1, ..., l, wavefunctions ψ(m,l)
j =

√
2
l+1

sin (kmj) and energy El,m = −2J cos (km), but these

speci�c forms are inessential for the subsequent considerations, except for the fact that the level

spacings within a certain interval are of order O (J) and depend on l. In fact accidental degeneracies

of di�erent level spacings are explicitly neglected, as they are non-generic and can be removed by

simple modi�cations of the Hamiltonian for the fast particles. Under these circumstances, a barrier

can only move with a concomitant energy change in the spectrum of the fast particles, unless the

barrier motion does not alter the distribution of interval lengths. If one neglects that latter

exception, one realizes that fast particles placed in a random arrangement of barriers create an
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inhomogeneous energy landscape for the barriers, which plays the role of disorder in standard non-

interacting and interacting localization problems. At �rst sight it thus appears almost obvious

that when barriers acquire a small but �nite hopping t, the latter can not compete with the

much larger roughness in the energy landscape, and thus the motion of the barriers becomes

strongly localized. However, this view, even though basically correct, is oversimpli�ed and misses

an important potential caveat: the non-hopping Hamiltonian H0 has an extensively degenerate

spectrum. This is so because any permutation of the intervals (as de�ned by consecutive barriers)

does not cost any energy at t = 0 if the internal state of fast particles is permuted together with

the intervals. Thus, one has to be careful in dealing with these resonances before one can assert

self-induced localization.

Additionally, I will only be able to argue for localization of the most abundant, typical ini-

tial conditions, while it will be shown that initial conditions with extensive correlations are not

localized. This implies that in this model perturbation theory predicts localized states at high

temperature to coexist with low temperature delocalized states for any �nite value of t. It will

be shown in Chapter 4 that this coexistence is not possible in the thermodynamic limit, though,

as already hinted when discussing the phase diagram of disorder-driven MBL: for this reason, in

the thermodynamic limit quantum glasses always eventually thermalize. At the perturbative level,

however, the non trivial aspect of this analysis consists thus in showing that the extensive degen-

eracy of H0 is lifted by the introduction of the hopping in such a way that strong resonances and

system-spanning hybridizations are avoided for typical, random initial conditions.

An interesting property of H0 is its local �integrability�, i.e., the existence of an extensive set

of mutually commuting, local conserved quantities. In the above model, apart from the trivially

conserved barrier positions, c†ici, the conserved quantities associated with the levels of fast particles

take the form

Si,l;m = c†icic
†
i+lci+l

[
l−1∏
j=1

(
1− c†i+jci+j

)]
γ†i,l;mγi,l;m, (3.2.3)

where γ are the annihilation operators for fast particle states con�ned by two barriers located at

the links i and i+ l,

γi,l;m =
l∑

j=1

ψ
(l;m)
j ai+j. (3.2.4)

With these integrals of motion, H0 can be compactly written as

H0 =
L∑
i=1

L∑
l=1

l∑
m=1

El;mSi,l;m. (3.2.5)

In this sense, the operators S are the equivalent of the physical spins (or occupation numbers of

single particle eigenstates) in the disorder driven MBL models, see Subsection 2.3.2 above. One

may wonder whether, starting from them, it is possible to analogously construct some dressed
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logical spins T , as soon as a �nite t is turned on. The answer is negative: in this context, it is

not possible to �nd an extensive set of quasi-local conserved operators, because delocalized states

are always present in the spectrum. At the moment, it is not known how to extend the LIOM

construction to cases where perturbation theory predicts the existence of a mobility edge (see also

the discussion in [29]). This possibly re�ects the fact that mobility edges are not stable in the

thermodynamic limit, and therefore such an extension is probably not possible.

3.2.3 Perturbative construction of the eigenstates of He�

0 and He�

In a generic high energy eigenstate of He�
0 (with energy density of order O (U) above the ground

state), the intervals between nearest neighbor barriers have lengths l, which are exponentially

distributed according to the probability distribution

P (l) = (1− ρ)l−1 ρ, (3.2.6)

with mean length l̄ = 1/ρ. In the above, ρ is the mean density of barriers. Let us now discuss

how such eigenstates deform when a �nite but small hopping for barriers is turned on. The same

description can be applied to the full Hamiltonian H too, with only some unimportant small

changes, which have no impact on the physics discussed here.

3.2.3.1 Broken translational invariance

The aim of this Subsection is to show that the approximated eigenstates, which can be constructed

using perturbation theory, remain �localized� close to the eigenfuctions of H0. The starting point

is the eigenbasis of H0 discussed above, which explicitly breaks translation invariance. The strat-

egy is to show that the higher we push the perturbation theory in t, the smaller the fraction

of states which remain degenerate at the given order of perturbation theory. Nevertheless, the

degeneracy associated with translation always survives. For typical, that is, random eigenstates,

that degeneracy will only be lifted at a perturbative order proportional to the system size L. All

other degeneracies are lifted fairly rapidly, and persist typically at most to an order which grows

logarithmically with L, due to rare subsequences of barrier intervals.

The extensive degeneracy between eigenenergies is lifted at various levels. In general, one

needs to use degenerate perturbation theory. Let us consider the eigenstate
∣∣∣χ(0)

m

〉
of H0. At

the k-th order in perturbation theory, one considers all the states
∣∣∣χ(k−1)

n

〉
, constructed at the

previous stage, which have matrix elements with
∣∣∣χ(k−1)

m

〉
at this order. If the relevant matrix

element is much smaller than the energy di�erence between the two states (as obtained at (k − 1)-

th order), one considers the state o�-resonance with
∣∣∣χ(k−1)

m

〉
and treat it using non-degenerate

perturbation theory. If, in contrast, the matrix element is dominant, it is necessary to write
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Figure 3.2.2: Examples of the most common type of resonances. The con�gurations C1 and C ′1
(top) hybridize at �rst order of degenerate perturbation theory in t, while C2 and C ′2 (bottom)
hybridize at second order. Moving the middle particle(s) to the right costs no energy.

an e�ective Hamiltonian in the resonant subspace, with matrix elements of order O
(
tk
)
as non-

diagonal elements, and the energies evaluated up to O
(
tk−1

)
as the diagonal entries.

The core of the argument consists in showing that by applying perturbation theory to a ran-

dom eigenstate of H0, its random barrier con�guration ensures the lifting of degeneracies at low

perturbative orders. The degeneracy, which is present in He�
0 due to invariance of the energy under

permutation of interval lengths, is lifted due to perturbative shifts in the eigenenergies, which are

sensitive to the actual sequence of intervals. The goal is to show that, when at higher order the

initially degenerate con�gurations are connected by non-zero matrix element between each other,

they are no longer in resonance, since their degeneracy has already been lifted by an amount which

parametrically exceeds the typical matrix element. As we will show, for small t resonances become

rapidly rarer as perturbative order is increased. Thus, perturbation theory will converge, and the

perturbative eigenstate |χm〉 remains close to
∣∣∣χ(0)

m

〉
. By the latter, I mean that expectation values

of local observables (such as the position of barriers) remain close to their values on the unper-

turbed states - except rare spatial regions where signi�cant hybridizations take place. Note that

this notion of closeness does not imply that
〈
χm

∣∣∣χ(0)
m

〉
is �nite; indeed, such an overlap trivially

decays exponentially with system size, for any �nite t. The important point is rather that
∣∣∣χ(0)

m

〉
hybridizes with far less states in Hilbert space than a wavefunction, whose pure state realizes a

local Gibbs ensemble, would do.

3.2.3.2 Lifting of degeneracies

The extensive degeneracy between eigenenergies is lifted at various levels. At �rst order in pertur-

bation theory the only degenerate eigenstates of H0 that can be connected by tHhop are con�gura-

tions where one barrier moves such that the two adjacent intervals exchange lengths from (l, l + 1)

to (l + 1, l).The simplest kind of such resonances are shown in Fig. 3.2.2: the con�gurations C1, C
′
1

are classically degenerate. The o�-diagonal element t 〈C ′1|Hhop |C1〉 is non-zero and induces a level

splitting of O (t). One then has to restart perturbation theory from the following hybridized states:

|C,±〉 =
|C〉 ±

∣∣C ′〉
√

2
. (3.2.7)
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Figure 3.2.3: The energy of eigenstates are shifted by contributions of order O (t2/J) by the virtual
hop of barriers. These virtual processes lift the largest part of the degeneracies in the many-body
spectrum.

Figure 3.2.4: Pairs of con�gurations where the exchange of an interval of length m and n do not
change the set of pairs of adjacent intervals in the sequence. Eigenstates which di�er only by such
local rearrangements remain degenerate at order t2 in perturbation theory.

Apart from these local �rst order splittings, the most generic lifting of degeneracies takes

place at second order in t. This happens in two ways: �rst, analogously to what happens at

�rst order, some local resonant contributions of the form C2 = (l, p, l + 1) , C ′2 (l + 1, p, l), with

p /∈ {l − 1, l, l + 1}, get hybridized. Such con�gurations are shown in Fig. 3.2.2, and give rise to

hybridized states of the same form of Eq. (3.2.7). The second, and more generic, type of lifting

is due to barriers moving virtually back and forth, as shown in Fig. 3.2.3. These processes lead

to energy shifts of O (t2/J) per moving barrier and remove a large part of the exact degeneracies

present at t = 0.

Nevertheless, certain con�gurations remain degenerate at higher orders of perturbation theory.

These correspond to sequences of intervals, which can be permuted in such a way that each interval

has neighbors of the same lengths as before the permutation. This ensures that the second order

shifts of the energy are exactly the same in the two sequences. The most abundant type of

con�gurations which are not split at second order corresponds to sequences of the form

|m,n,m,m〉 ; |m,m, n,m〉 , (3.2.8)

as shown in Fig. 3.2.4. Here m, n are interval lengths such that |m− n| > 2, otherwise the

two con�gurations would hybridize at second order, which would already lift their degeneracy.

The occupation of fast particle levels within corresponding intervals of the same lengths is again

assumed to be equal.

In order to ensure the convergence of the perturbative expansion, the probability per unit

length, that degeneracies survive, needs to be small enough and to decrease su�ciently fast with
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increasing order at which perturbation is lifted. Otherwise neighboring degenerate regions would

hybridize and form a delocalized band of excitations. Let us therefore estimate the probability

Pmnmm of degenerate con�gurations as in (3.2.8) to appear in a given location in the sequence

of intervals in a random eigenstate of H0. Those con�gurations can be checked to be the most

abundant type of degeneracies. The average distance between such degenerate regions will be

ddeg ≈ P−1
mnmm. The degeneracy of these con�gurations is in general lifted at order O (t4). On

the other hand, we expect a matrix element between two degenerate regions to appear typically

at order tddeg−3, since a matrix element is created by the forward motion of the ddeg − 3 barriers

located between the resonant regions. Therefore, if t is su�ciently small, such two regions will

almost always be o�-resonance, if ddeg > 7. I will show that this condition is indeed well satis�ed in

general for this model. For other complex models an analogous calculation may be more involved,

and the existence of a quantum glass phase may be less evident than in the present toy model.

The probability Pmnmm of either of the con�gurations (3.2.8) to appear in a given location of

the sequence of intervals is easily calculated to be

Pmnmm = 2
∞∑
S=1

P (S)3
∑

S′,|S′−S|>2

P (S ′) =
2

3
ρ2
c +O

(
ρ3
c

)
, (3.2.9)

where I explicitly use the independence of successive interval lengths. The asymptotics Pmnmm ∼ ρ2
c

for small barrier density ρ2
c arise because the �rst and the last interval lengths are not free, but

must be equal to one of the two lengths in the middle. For ρc = 1/2, which is nearly optimal for

such degeneracies to occur, I still �nd a very small probability Pmnmm ' 0.034, which implies a

large typical separation between resonant regions by ddeg ≈ 30� 7.

Con�gurations which remain degenerate at yet higher order are even rarer. The most abundant

pairs whose degeneracy is not lifted at order O (t2n) correspond to sequences of intervals which

can be permuted in such a way that all sets of n + 1 consecutive intervals are present in both

con�gurations (possibly up to spatial inversion of the sequence). As an example, the most probable

con�gurations that are not split at order t4 are of the form:

|l,m, n,m,m, l〉 ; |l,m,m, n,m, l〉 , (3.2.10)

with the restrictions |m− n| , |m− l| > 4. At small ρc, the density of these con�gurations is

of order ρn+1. Since the inverse of this small quantity controls the power of t at which matrix

elements couple neighboring degeneracies, hybridizations between such regions are exceedingly

rare and remain strongly localized.

From the above arguments it becomes clear that the degeneracy of He�
0 is lifted at higher

orders in perturbation theory in the barrier hopping t, and that the quantum �uctuations induce

an e�ective disorder, which takes the same role as quenched disorder in other many-body systems

considered previously. Having reached this stage, one can repeat the same type of arguments as
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in those systems [23] to conclude that for su�ciently small t perturbation theory should converge

and the perturbed eigenstates remain close to the inhomogeneous initial states. [24]

3.3 Dynamical properties of quantum glasses

3.3.1 Miniband structure of the spectrum

Up to now, arguments about the properties of ideal quantum glasses in the thermodynamic limit

have been presented, as long as non-perturbative e�ects are neglected. However, one should be

careful when reasoning about �nite size systems, where translational invariance is eventually re-

stored, as mentioned above. Indeed, the degeneracy between a sequence of intervals and its rigid

translations by a certain number of lattice sites is never lifted to any order in perturbation theory.

However, when t is small, the matrix element connecting two such con�gurations is of order tρL,

since all barriers need to be moved. This matrix element gives rise to an exponentially small

splitting between the L hybridizing, rigidly rotated con�gurations. Consequently, the characteris-

tic time needed to observe the e�ect of this hybridization is inversely proportional to this matrix

element, and thus diverges exponentially with the system size L. Nevertheless translational in-

variance is restored in such �nite size systems when averages are taken over times exceeding the

hybridization time.

As stated above, for any �nite L, the eigenstates can be chosen to be eigenvectors of the

discrete translation operator T . For in�nitesimal hopping t, the eigenstates organize in momentum

minibands. These are essentially formed by hybridizations of a classical eigenstate of He�
0 |C〉 with

all its translations around the ring, T j |C〉, for j = 0, 1, 2, ..., L − 1. Typical states correspond

to con�gurations |C〉 in which sites are occupied randomly by barriers, with probability ρ. The

eigenstates of such minibands take the form

|C,Pn〉 ≈
1√
L

L−1∑
j=0

eijPnT j |C〉 , (3.3.1)

where Pn is the total momentum. The hopping Hamiltonian connects typical con�gurations |C〉
and its translations only at very high order in perturbation theory. This leads to an exponentially

narrow dispersion of the band

εn = −2te� cosPn, Pn = (2πn+ φ) /L, (3.3.2)

where te� is the e�ective hopping of the center of mass of this state. The magnetic �ux φ was

introduced in the Hamiltonian (3.2.1). For small hopping t it is exponentially small in system size.

This is estimated in more detail in Eq. (3.3.51) below. This behavior has important consequences

for the dynamics: after preparing the system in an inhomogeneous initial con�guration, the time
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scale to relax to a homogeneous state (if averaged over time) is proportional to t−1
e� , which diverges

in the thermodynamic limit.

The description of Eq. (3.3.1) is oversimpli�ed, however, since it neglects the presence of

resonances, like the one discussed in Subsec. 3.2.3.2. Let us take as an example the con�gurations

|C1〉 , |C ′1〉 shown in Fig. 3.2.2: when such a resonant pair is met, one has to construct a miniband

by translating the hybridized states (3.2.7), which brings to the form

|C,P,±〉 ≈ 1√
L

L−1∑
j=0

eijPT j
|C〉 ±

∣∣C ′〉
√

2
. (3.3.3)

Such states can be seen as the admixture of two of the minibands described by Eq. (3.3.1). This

can be easily generalized to the case in which n resonances are present (labeled i = 1, 2, ..., n).

Each of them hybridizes a �nite number ri of locally di�ering, degenerate con�gurations. The

eigenstates then take the form

|C,P, αi〉 ≈
1√
L

L−1∑
k=0

eiPkT k
n∏
i=1

(
ri∑

mi=1

ψαimiR
(mi)
i

)
|C〉 (3.3.4)

where the {αi} label the possible states of the i'th resonance. Those are described by amplitudes

ψαimi multiplying local operators R(mi)
i that rearrange the classical con�guration at the resonant

spot.

The restriction to exactly degenerate con�gurations applies for very small t only. At larger

hopping, states with �nite energy di�erences of O (t) hybridize as well. Nevertheless, the crucial

point of the analysis of Subsec. 3.2.3.2 is that at perturbative level in t no system spanning

hybridizations are expected. This is expected despite the fact [92] that in the thermodynamic limit

the exponentially many minibands (3.3.1) overlap in energy, because the matrix elements between

most minibands are even much smaller than the level spacings resulting from band overlaps.

3.3.2 Diverging susceptibility to in�nitesimal disorder

In order to verify the phenomenon of self-induced MBL, it is useful to exploit a speci�c property

of non-disordered systems: namely, that dynamical localization of typical quantum states and the

spontaneous breaking of translation invariance are essentially equivalent, as we argued above. From

a numerical point of view this is very convenient, since the sought phenomenon can be phrased in

the familiar language of spontaneous symmetry breaking. In this way, we avoid the identi�cation

of many-body localization by other observable, which are harder to analyze. Those include the

observation of freezing via Edwards-Anderson like order parameters [30], or the analysis of many-

body level statistics. [21, 69] The latter is, however, based on the conjecture that a delocalization

transition in a many-body system is concomitant with a change from Poisson to Wigner-Dyson
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statistics, as explained in Subsection 2.3.2. Even if this conjecture is true and also applies to the

non-disordered systems considered here, one nevertheless would expect the corresponding observ-

ables to su�er from stronger �nite-size e�ects than in systems with quenched disorder. Therefore,

it is very useful to have an alternative route to detecting many-body localization.

In order to probe for spontaneous translational symmetry breaking, one proceeds in the usual

way. One introduces a small symmetry breaking term HSB in the Hamiltonian,

He� → He� +HSB, (3.3.5)

and asks whether the induced symmetry breaking persists as the strength of the perturbation W

tends to zero, after the thermodynamic limit has been taken. To break the translational symmetry

externally, a weak disorder potential

HSB =
∑
i

εic
†
ici (3.3.6)

is applied, where εi are independent, identically distributed random variables, taken from a centered

box distribution of unit width. In order to probe dynamical translational symmetry breaking, I

de�ne for any quantum state Ψ the observable

∆ρ2
Ψ ≡

1

L

L∑
j=1

[〈Ψ| (nj+1 − nj) |Ψ〉]2 , (3.3.7)

which is a measure of the spatial inhomogeneity of the density of barriers. This observable vanishes

for any translation invariant state, and can be measured in cold-atom experiments using microscopy

techniques. [18, 19, 99] Translational invariance is present in the long time average over the

dynamics, even without considering rare regions e�ects, if the inhomogeneity of typical many-body

eigenstates vanishes in the limitW → 0 . This is expected to happen if the barriers are su�ciently

mobile, i.e., for t > tc, where tc is the critical hopping strength. In contrast, translational symmetry

is spontaneously broken at the perturbative level in the dynamics starting from a random typical

classical con�guration C, if in�nitesimal disorder induces a �nite inhomogeneity of eigenstates in

the thermodynamic limit, i.e., if

lim
W→0

lim
L→∞

∆ρ2 (ε) 6= 0, (3.3.8)

where

∆ρ2 (ε) = 〈∆ρ2
Ψ〉Ψ,ε, (3.3.9)

is averaged over both eigenstates with energy densities in a narrow range around ε (as denoted

by the square brackets) and over the disorder (as denoted by the overline). The critical values tc,

where the quantum glass breaks down and ergodicity and transport are restored, are expected to

depend on ε, since the occupation probability of fast particle levels will a�ect the motion of the
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slow barriers.

The e�ect of a weak disorder potential can be analyzed using perturbation theory in W . In

contrast to the analysis of the previous Section, here I start with the translational invariant eigen-

basis, which simultaneously diagonalizes the momentum. To �rst order, the n-th eigenstate |Φn〉is
perturbed by the following hybridizations:

|Φn〉 →
∣∣ΦW

n

〉
= |Φn〉+

∑
m 6=n

〈Φm|HSB |Φn〉
Em − En

|Φm〉+O
(
W 2
)
, (3.3.10)

where En is the energy of state |Φn〉 at zeroth order in W . Recalling that ∆ρ2
Φn

= 0, we �nd the

quadratic response

∆ρ2
ΦWn

=
4W 2

L

L∑
i=1

[
Re
∑
m 6=n

〈Φm|HSB |Φn〉
Em − En

〈Φm| (ni+1 − ni) |Φn〉

]2

+O
(
W 4
)
. (3.3.11)

The response is dominated by the states of the miniband |Φn〉 belongs to, as explained in Subsec.
3.3.1. To estimate this quantity, one �rst notices that the matrix elements appearing in Eq. (3.3.11)

are gently behaved as a function of system size. One easily �nds that 〈Φm| (ni+1 − ni) |Φn〉 =

O (1)does not scale with L, while 〈Φm|HSB |Φn〉 ∼ 1/
√
L, since it is a sum of L uncorrelated random

variables. In contrast, the energy denominators Em−En are very small, since they are of the order

of the (exponentially small in L) e�ective hopping te�. Accordingly, we expect that the eigenstate

susceptibility to disorder grows exponentially in system size, as

d
√

∆ρ2

dW
∼ t−1

e� ∼
(

c

(t/U)α

)L
. (3.3.12)

In the above expression, c is a constant, which depends on the details of the initial con�guration,

and is estimated for a typical initial condition in Subsec. 3.3.5 below. The exponent α . ρc takes

care of the occasional local resonances, which allow for faster tunneling processes, and is estimated

in Subsec. 3.3.4.

The exponentially large response to in�nitesimal disorder is a genuine many-body phenomenon.

This contrasts with free particles, which also localize at in�nitesimal disorder, at least for d ≤ 2,

but with a susceptibility d
√

∆ρ2/dW that grows only as a power-law in system size.

I have con�rmed the above expectations numerically by computing the inhomogeneity
√

∆ρ2

in the presence of a very small disorder W . I exactly diagonalized systems of sizes L = 4, 6, 8 with

a �xed density of fast particles and barriers, ρa = ρc = 1/2. The results are averaged over 100

realizations of the disorder and over a small energy window centered at energy density E/L = J/4.√
∆ρ2 is averaged over 10 eigenstates for L = 4, 6 and over 20 eigenstates for L = 8. The results

are shown in Fig. 3.3.1 for t = t0 = 0.01U .

It can be seen from the plot that the average susceptibility to disorder increases exponentially
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Figure 3.3.1: Left: Disorder averaged spatial inhomogeneity
√

∆ρ2 (ε = J/4) induced by a very
weak disorder potential of strength W � t in a strongly localized system with hopping t = 0.01J .
The initial response is linear in W , with a susceptibility d

√
∆ρ2/dW that diverges exponentially

in system size. This demonstrates that in the thermodynamic limit the many-body eigenstates
spontaneously break translational symmetry at the perturbative level, and thus violate the eigen-
state thermalization hypothesis. Right: the �t of the disorder averaged susceptibility yields the
exponential behavior d

√
∆ρ2/dW ∝ aL with a = 6.2 at t = 0.01U.

with the system size. Fitting the average susceptibility to the expected behavior (3.3.12) yields the

value c/(t0/U)α ' 6.2. From this we can obtain a rough estimate for the critical value of the barrier

hopping, by assuming that Eq. (3.3.12) holds approximately up to the delocalization transition.

Since the susceptibility to disorder must stop growing exponentially with L in the ergodic phase,

we may estimate the critical hopping from the requirement c/(tc/U)α ≈ 1, which yields tc ≈ 0.4U .

This is consistent with the expectation that the delocalization or quantum glass transition takes

place when the barrier hopping strength t becomes comparable to the hopping for fast particles J .

This is in good agreement also with the estimation of the critical hopping from real time dynamics,

done in Subsec. 3.3.3 below, and with results from other authors. [92]

3.3.3 Temporal decay of spatial inhomogeneity

Let us now take the e�ective model (3.2.2), prepare the system in a classical initial con�guration

C, and consider its time evolution. This allows to check for the most fundamental signature of

ideal quantum glassiness, which is, the divergence of relaxation times with system size. Con-

siderations are �rst restricted to the case in which |C〉 has no resonant spots, which allows for

exact calculations. As an observable to characterize localization properties of translation invari-

ant systems, I use again the average spatial inhomogeneity de�ned in Eq. (3.3.7), computed on

|Ψ〉 ≡ |ψ (τ)〉 ≡ e−iHτ |C〉, the state time evolved from the classical initial con�guration |C〉. Be-
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low, also its time average,
〈
∆ρ2

ψ

〉
(T ) ≡ T−1

´ T
0
dτ∆ρ2

ψ (τ), which will be insensitive to quantum

revivals in �nite systems, will be considered. In the absence of resonances, the only eigenstates

which have signi�cant overlap with C are the states in the miniband described by Eq. (3.3.1),

with energies given by Eq. (3.3.2). Expanding in those eigenstates, labeled by n, m, one obtains

∆ρ2
ψ (τ) =

1

L

L∑
j=1

[∑
n,m

ei(εn−εm)τ 〈C|n〉 〈m|C〉 〈n| (nj+1 − nj) |m〉

]2

=
1

L

L∑
j=1

∑
n,m

∑
n′,m′

ei[(εn+εn′ )−(εm+εm′ )]τ 〈C|n〉 〈m|C〉 〈n| (nj+1 − nj) |m〉

× 〈C|n′〉 〈m′|C〉 〈n′| (nj+1 − nj) |m′〉 , (3.3.13)

where the overlaps with the initial con�guration are given by

〈C|n〉 =
1√
L

∀n.

Since the operators ni are diagonal in the basis of classical con�gurations, the matrix elements of

the site occupations are

〈n|nj |m〉 =
1

L

L−1∑
k,k′=0

ei
2π
L

(m+φ)ke−i
2π
L

(n+φ)k′ 〈C|T−k′njT k |C〉 =
1

L

L−1∑
k=0

ei
2π
L

(m−n)k 〈C|nj+k |C〉 ,

(3.3.14)

where T is the translation operator. Then the expression for the inhomogeneity becomes

∆ρ2
ψ (τ) =

1

L5

L∑
j=1

L−1∑
m,n=0

L−1∑
m′,n′=0

ei[(εn+εn′ )−(εm+εm′ )]τ (3.3.15)

×
L−1∑
k=0

L−1∑
k′=0

ei
2π
L

(m−n)kei
2π
L

(m′−n′)k′ 〈C| (nj+k+1 − nj+k) |C〉 〈C| (nj+k′+1 − nj+k′) |C〉 .

One can now de�ne the auto-correlation function of the initial density,

G (k − k′) ≡ 1

L

L∑
j=1

〈C|nj+k |C〉 〈C|nj+k′ |C〉 , (3.3.16)

and rewrite Eq. (3.3.15) as

∆ρ2
ψ (τ) =

1

L4

L−1∑
m,n=0

L−1∑
m′,n′=0

ei[(εn+εn′ )−(εm+εm′ )]τ
L−1∑
k=0

L−1∑
k′=0

ei
2π
L

(m−n)kei
2π
L

(m′−n′)k′

× [2G (k − k′)−G (k − k′ − 1)−G (k − k′ + 1)] . (3.3.17)
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In the thermodynamic limit, one can take a continuum limit and measure time naturally in

units of the inverse of the inverse of the center of mass hopping λ−1
e� . I assume an essentially

random initial con�gurations of the barriers of density ρ, and compute the function G (k − k′).
Such a function is made by two terms: for k = k′, the sum over the sites of the chain is equal to

the number of particles, which means that

G (0) = ρ. (3.3.18)

On the other hand, for k 6= k′, G (k − k′) is the sum of L independent random variables with the

following distribution:

〈C|nj+k |C〉 〈C|nj+k′ |C〉 =

1 w. p. ρ2

0 w. p. (1− ρ2)
. (3.3.19)

For large L the central limit theorem can be applied, and this leads to the result

G (k − k′) = ρ2 +
W (k − k′)√

L
, k 6= k′ (3.3.20)

where W (k − k′) is a Gaussian random variable with mean value µ = 0 and variance σ2 =

ρ2 (1− ρ2). In the thermodynamic limit, the random term becomes negligible, and one �nds

G (k − k′) = ρ (1− ρ) δk−k′ ,0 + ρ2. (3.3.21)

The summation over the indexes k, k′ in Eq. (3.3.17) can now be performed:

1

L

L−1∑
k=0

L−1∑
k′=0

ei
2π
L

(m−n)kei
2π
L

(m′−n′)k′ [2G (k − k′)−G (k − k′ − 1)−G (k − k′ + 1)] =

1− cos
[

2π
L

(m′ − n′)
]

L
2ρ (1− ρ)

L−1∑
k=0

ei
2π
L

(m+m′−n−n′)k = (3.3.22)

2ρ (1− ρ)

{
1− cos

[
2π

L
(m− n)

]}
δm′,m−n−n′ .

Next one sums over the index m′, and �nds

∆ρ2
ψ (τ) =

2ρ (1− ρ)

L3

L−1∑
m,n=0

{
1− cos

[
2π

L
(m− n)

]} L−1∑
n′=0

ei[(εn+εn′ )−(εm+εm−n−n′)]τ . (3.3.23)

The continuum limit can now be performed, replacing the discrete indexes n, n′,m with continuous
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variables q1, q2, q3:

∆ρ2
ψ (τ)

∆ρ2
ψ (0)

=

2πˆ

0

dq1dq2dq3

(2π)3 [1− cos (q1 − q2)] exp {2iτ [cos q1 − cos q2 + cos q3 − cos (q2 − q1 − q3)]} ,

(3.3.24)

which, performing the change of variablesq+ = q1+q2
2

q− = q2−q1
2

, (3.3.25)

becomes

∆ρ2
ψ (τ)

∆ρ2
ψ (0)

=

πˆ

−π

dq−
2π

2πˆ

0

dq+dq3

(2π)2 [1− cos (2q−)] (3.3.26)

× exp {2iτ [2 sin q+ sin q− + cos q3 − cos (2q−) cos q3 − sin (2q−) sin q3]} .

The integration over q+ can now be performed:

2πˆ

0

dq+

2π
exp (4iτ sin q+ sin q−) = J0 (4τ |sin q−|) , (3.3.27)

where J0 is the Bessel function of the �rst kind. Next I integrate over q3:

2πˆ

0

dq3

2π
exp {2iτ [cos q3 − cos (2q−) cos q3 − sin (2q−) sin q3]} = J0 (4τ |sin q−|) . (3.3.28)

Renaming q− ≡ q to simplify the notation, inserting again the e�ective hopping explicitly, and

applying some trigonometric relations, one �nally �nds the expression

∆ρ2
ψ (τ)

∆ρ2
ψ (0)

=

πˆ

−π

dq

2π
J2

0 (4τλe� |sin q|) sin2 q. (3.3.29)

For times τ � λ−1
e� , one �nds essentially no relaxation:

∆ρ2
ψ (τ)

∆ρ2
ψ (0)

= 1− 6 (τλe�)2 +O
(
(τλe�)4) , (3.3.30)

re�ecting the absence of local resonances. For large times, if no time average is taken, the inho-

mogeneity oscillates, with an envelope decaying as ∆ρ2
ψ (τ) ∝ τ−1.
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Figure 3.3.2: Relaxation of inhomogeneity in the density, in the absence of resonances. Time is
rescaled by the exponentially large sample dependent t−1

e� . The solid line is the analytical result
(3.3.29) for the thermodynamic limit. Inset : the same numerical data without rescaled time shows
that the density inhomogeneity persists for times which diverge with the system size.

Now let us move back to �nite systems, and compute the time averaged inhomogeneity in

the limit of long times: in this regime, the only terms which are non-vanishing are those with

εn + εn′ = εm + εm′ . Since with �nite hopping and magnetic �ux the spectrum of H is non-

degenerate, the asymptotic limit for the time averaged inhomogeneity reads

〈
∆ρ2

ψ

〉
(∞) =

1

L5

L∑
j=1

L−1∑
k=0

L−1∑
k′=0

〈C|nj+k |C〉 〈C|nj+k′ |C〉
L−1∑

n6=m=0

(
ei

2π
L

(m−n)(k+k′) + ei
2π
L

(m−n)(k−k′)
)

=
1

L3

L∑
j=1

L−1∑
k=0

[
(〈C| (nj+k+1 − nj+k) |C〉)2 − 〈C| (nj+k+1 − nj+k) |C〉 〈C| (nj−k+1 − nj−k) |C〉

]
=

∆ρ2
ψ (0)

L
. (3.3.31)

In Fig. 3.3.2, the above calculations are compared with numerical data from exact diagonal-

ization of �nite systems, initialized in a con�guration C of N = ρL particles, with ρ = 1/3. The

numerics are restricted to con�gurations that do not exhibit resonances at any order in perturba-

tion theory. A very small hopping t = 10−3U is used. For each data set, time is rescaled with

the appropriate center-of-mass hopping, te� (C). The long time average
〈
∆ρ2

ψ

〉
(∞) has been sub-

tracted, so that all curves tend asymptotically to zero. Despite the small sizes, the agreement with

Eq. (3.3.29) for the thermodynamic limit is very good.
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3.3.4 E�ect of local resonances

Let us now discuss the role of local resonances in the con�gurations C. It is still expected that, at

small enough t, the e�ective hopping of the center of mass of a generic con�guration C scales as

te� ∝ tαN . Resonances simply reduce the exponent α with respect to the naive expectation α = 1.

To understand the origin of this e�ect, let us consider the simple case of three particles on a ring.

We call the three inter-particle distances l1, l2, l3. In general, the e�ective hopping in the system

is proportional to t3/U2, since to translate the entire system all particles must be moved by one

site. Now let us analyze the resonant case l2 = l1 + 1. As illustrated in Fig. 3.2.2, there are two

degenerate con�gurations, which form the hybridized states

|ψ±〉 ≈
|l1, l1 + 1, l3〉 ± |l1 + 1, l1, l3〉√

2
(3.3.32)

with an energy splitting of order O (t). It is straightforward to see that a matrix element between

|ψ±〉 and the translated wavefuctions T |ψ±〉 appears already at second order in t, not only at third

order. This implies that the e�ective hopping of this con�guration is only of order t2/U.

An alternative way of understanding this result is as follows. If two resonant intervals are

present, the ensuing degeneracy of the spectrum is split at �rst order in perturbation theory if the

intervals are direct neighbors. If they are not adjacent to each other and if they are surrounded by

intervals of di�erent lengths, the splitting is generically of second order ∼ t/U. In the calculation

of the e�ective hopping, such lifted resonances appear as small denominators, which increase the

transition amplitude by one or two factors of U/t, respectively. This argument is easily generalized

to con�gurations with multiple, spatially distant resonances.

Apart from increasing the e�ective hopping of the system, resonances result also in fast, partial

relaxation processes through admixture. This diminishes the inhomogeneity plateau in 〈∆ρ2〉 by
an amount proportional to the density ∼ ρ of resonating con�gurations. This e�ect is seen in

Fig. 3.3.3, where the evolution of the inhomogeneity is plotted for con�gurations which include a

resonance at �rst order in t.

Let us now determine the exponent α at leading order in the density ρ� 1, within perturbation

theory. The simplest type of resonance is a pair of two consecutive intervals with lengths (l, l + 1)

or (l + 1, l), as shown in Fig. 3.2.2. The probability of �nding an interval of length l in a random

con�guration of density ρ is given by Eq. (3.2.6). There are

N1res = 2Nρ2

∞∑
l=1

(1− ρ)2l−1 +O
(
ρ2
)

= ρN +O
(
ρ2
)

(3.3.33)

such resonances in a typical con�guration C, where corrections due to overlapping pairs are ne-

glected. The factor of 2 accounts for both possibilities (l, l + 1) and (l + 1, l). As discussed above,

local con�gurations like this hybridize at �rst order in perturbation theory. Accordingly they
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Figure 3.3.3: Time evolution of the inhomogeneity for con�gurations containing �rst order res-
onances. The samples of length L = 9, 15 have only one particle involved in the resonance; for
L = 12 two particles are involved. The presence of local resonances leads to partial relaxation
processes at short time scales τ ≈ O (t−1). Moreover, by comparing the plot with the inset of
Fig. 3.3.2, one sees that the global relaxation times ∼ t−1

e� are reduced by a factor t/U for particle
involved in resonances. As resonances are rare, this e�ect does not alter the fact that t−1

e� diverges
exponentially in the thermodynamic limit.

reduce the power of t in the e�ective tunneling by one each, which yields

(∆α)1 res = −ρ+O
(
ρ2
)
. (3.3.34)

The dominant reduction of α is, however, due to sequences of interval lengths of the form

(l, p1, p2, ..., pm, l + 1) , (3.3.35)

where the pi=1,...,m /∈ {l − 1, l, l + 1} are non resonant with l or l+ 1. If m > 1, such con�gurations

do not lead to strong hybridizations though, and thus they do not signi�cantly contribute to the

fast relaxation of the density inhomogeneity, ∆ρ2, which occurs before the long time plateau. Nev-

ertheless, they increase the e�ective hopping by introducing a small denominator in perturbation

theory. Such a denominator is generically of order t2, due to self-energies that arise at second

order in perturbation theory, as discussed in Subsec. 3.2.3.2. If two separated pairs (l, l + 1) and

(l′, l′ + 1) are interlaced, only one of them can be used to create a small denominator, however.

The maximal number of resonances encountered in perturbation theory will usually be obtained

by retaining the shorter of the two pairs.

Let us now estimate the total number of resonant pairs of the form (3.3.35), which are not

interlaced by shorter resonances. To leading order the probability of �nding such a sequence

formed by m + 2 intervals can be estimated as ρ, multiplied by the probability that there are
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no resonant sequences of shorter length which interlace it. To compute this probability, we �rst

impose the requirement that the interval of length l + 1 is not in resonance with the m intervals

that follow it, which yields a factor (1− ρ/2)m. Next, we impose the requirement that the interval

pm is not in resonance with either l+1 nor with any of the subsequent m−1 intervals, which yields

another factor (1− ρ/2)m. The preceding interval pm−1 can be in resonance with the interval pm
(since that resonance would be nested inside the considered one), but not with l+1 or the following

m − 2 intervals. This yields a factor (1− ρ/2)m−1. This procedure is iterated up to interval p1,

and then the resulting probability is squared, since the same conditions applies to the left of the

sequence, too. This leads to

N2 res ≈= Nρ
(

1− ρ

2

)2m
m∏
j=1

(
1− ρ

2

)2j

Nρ
(

1− ρ

2

)m2+3m

' Nρe−
ρ
2(m2+3m). (3.3.36)

The corresponding reduction in the exponent α can be estimated by summing the above over

m and approximating the sum as an integral:

(∆α)2 res ' −2ρ

∞̂

1

dme−
ρ
2(m2+3m) = −

√
2πρ+O (ρ) , (3.3.37)

where the factor 2 is due to the fact that each resonance typically increases the e�ective hopping

by a factor O (t−2). This yields the dominant reduction of the tunneling exponent, α = 1−
√

2πρ.

Note that the e�ective hopping could be computed by moving all particles either to the left or

to the right. One might thus worry that the above result depends on this choice. However, one

can check that in either construction the maximal number of small denominators encountered in

calculating the perturbative matrix element is the same.

3.3.5 Estimation of the e�ective hopping

The inset of Fig. 3.3.2 illustrates the long-time plateau of inhomogeneity, whose length diverges

exponentially in the thermodynamic limit. The latter is due to the exponential smallness of te�,

ln te� ∝ −L.
Let us estimate this e�ective hopping. I �rst consider a con�guration C which exhibits no

resonances at any order of perturbation theory. This means that the displacement of any subset

of n < N particles by one site (all in the same direction) does not lead to a con�guration whose

classical energy is degenerate with that of C. This restriction is equivalent to requiring that no two

intervals between successive particles di�er by one lattice spacing only. Such a request is realistic

only for small number of particles N � ρ−1: for larger systems, one has to take care of the

e�ect of resonances, as explained in the previous Subsection. Neglecting for the moment resonant

con�gurations, the e�ective hopping te� is computed using degenerate perturbation theory in t.
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One needs to sum over all possible orders in which N particles can be moved forward by one site

each and divide the hopping matrix elements by the corresponding intermediate energies. This

leads to the expression

te� ≡ t
∑

P∈S(N)

N−1∏
i=1

t∑i
j=1 ∆V exact

P (j).P

. (3.3.38)

P runs over all permutations of N elements, and ∆V exact
P (j).P is the energy shift associated with the

displacement of particle P (j). It has an explicit dependence on the permutation P , as the energy

shift depends on whether or not particles P (j)±1 have already moved when particle P (j) moves:

∆V exact
P (j),P

U
=



v
(
lP (j) + a

)
− v

(
lP (j)

)
+ v

(
lP (j)+1 − a

)
− v

(
lP (j)+1

)
if neither P (j)± 1 have moved before step j;

v
(
lP (j) + a

)
− v

(
lP (j)

)
+ v

(
lP (j)+1

)
− v

(
lP (j)+1 + a

)
if only P (j) + 1 has moved before step j;

v
(
lP (j)

)
− v

(
lP (j) − a

)
+ v

(
lP (j)+1 − a

)
− v

(
lP (j)+1

)
if only P (j)− 1 has moved before step j;

v
(
lP (j)

)
− v

(
lP (j) − a

)
+ v

(
lP (j)+1

)
− v

(
lP (j)+1 + a

)
if both P (j)± 1 have moved before step j.

(3.3.39)

Here lj ≡ |rj − rj−1| is the distance between particles j and j − 1, while a is the lattice spacing.

The interaction v (l) is the one appearing in the e�ective Hamiltonian (3.2.2).

Let us �rst discuss the sum over permutations qualitatively. Even though there are N ! terms,

most of them have denominators that grow factorially as well. Given that the ∆V have essentially

random signs, typical denominator products scale as
√
N ! and have random signs, too. This com-

pensates the factorial number of (randomly signed) terms and leaves us with a merely exponentially

growth with N .

Finding an analytic estimate for the e�ective hopping is a very di�cult task, since one has

to take into account non-trivial interference e�ects among di�erent ways in which particles can

be moved. However, in the low density limit ρ � 1, at least the scaling of the e�ective hopping

with ρ can be obtained, in the absence of resonances. I shall later explain in Sub-Subsec. 3.3.5.2

what the e�ect of resonant pairs of intervals is. To �nd this scaling, one �rst needs to rewrite Eq.

(3.3.38) by applying the middle value theorem to the energy denominators ∆V exact
P (j),P . This yields

the expression
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∆V exact
P (j),P

U
=



a
[
v′
(
lP (j) + aϑ+

P (j)

)
− v′

(
lP (j)+1 − aϑ−P (j)+1

)]
if neither P (j)± 1 have moved before step j;

a
[
−v′

(
lP (j) + aϑ+

P (j)

)
− v′

(
lP (j)+1 − aϑ−P (j)+1

)]
if only P (j) + 1 has moved before step j;

a
[
v′
(
lP (j) + aϑ+

P (j)

)
+ v′

(
lP (j)+1 − aϑ−P (j)+1

)]
if only P (j)− 1 has moved before step j;

a
[
−v′

(
lP (j) + aϑ+

P (j)

)
+ v′

(
lP (j)+1 − aϑ−P (j)+1

)]
if both P (j)± 1 have moved before step j.

. (3.3.40)

In the above, 0 ≤ ϑ±j ≤ 1 are numbers which depend on the lengths lj and the form of the interac-

tion v (l). One can now consider these ϑ±j as free variables, and expand the energy denominators

in them. This is equivalent to an expansion in powers of a. From the expression above, it is easy

to see that each energy denominator can be written as a sum of terms of the form

U∆Ei,j ≡ Ua
[
v′
(
li + aϑ+

i

)
− v′

(
lj − aϑ−j

)]
. (3.3.41)

The ∆Eij are the fundamental objects that are studied in this Subsection. Expanding the inverse

of these denominators, one �nds

1

∆Ei,j
≡ 1

a
(
v′
(
li + aϑ+

i

)
− v′

(
lj − aϑ−j

)) =
1

a (v′ (li)− v′ (lj))
+

1

2

ϑ+
i v
′′ (li) + ϑ−j v

′′ (lj)

(v′ (li)− v′ (lj))2 +O
(
aϑ2
)
.

(3.3.42)

It is easy to check that the zeroth order terms in the ϑs ∆E
(1)
i,j ≡ a (v′ (li)− v′ (lj)) do not depend

on the permutation P explicitly. This is because, when two consecutive particles are moved, the

contribution to the energy denominator due to the interval separating them gets canceled in the

sum. As an example, let us suppose that particles j and j+1 are moved: the corresponding energy

denominator ∆E
(1)
j−1j+1 can be written as

∆E
(1)
j−1,j+1 = a [v′ (lj−1)− v′ (lj+1)] = ∆E

(1)
j−1j + ∆E

(1)
jj+1, (3.3.43)

which is exactly the sum of the energy di�erences arising from the motion of particles j and j+ 1.

This property holds only for ϑ+
j = ϑ−j = 0: when ϑ±j 6= 0, a dependence on the order in which

particles are moved (i.e. from the permutation P ) is restored.

At this point, one may think that, retaining the zeroth order terms in the ϑs only, it should be

possible to compute an analytic estimate for the e�ective hopping, in the limit of low density. This

is not the case, however, since this procedure neglects the important constraint
∑

i ∆E
(1)
i,i+1 = 0,

which induces a cancellation in the expansion. To see this, let us compute the e�ective hopping at
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zeroth order, and observe that for N numbers A1, A2, ..., AN , it holds that

∑
P∈S(N)

N∏
i=1

1∑i
j=1AP (j)

=
N∏
i=1

1

Ai
, (3.3.44)

which can be easily proven by induction. This result can now be applied to Eq. (3.3.38). Since

∆V exact
P (j),P (a) = a∆E

(1)
P (j),P (j)+1 +O

(
a2
)
, (3.3.45)

taking Ai = a∆E
(1)
i,i+1 one �nds

te� ' t(1) ≡ tN

(
N∏
i=1

1

a∆E
(1)
i,i+1

)
a

N∑
j=1

∆E
(1)
j,j+1. (3.3.46)

Neglecting for a moment the sum appearing in the numerator, the product term scales exponentially

with N , as expected. One can estimate how this expression scales with ρ by recalling that the

typical interparticle distance scales as ltyp ∼ ρ−1, as follows from the distribution (3.2.6). One then

�nds that, typically, ∆V (1) ∼ v′ (ltyp) ∼ ρβ+1: the logarithmic average of te� should then scale as

ln

(
t(1)

t

)
typ

∼ (N − 1) [ln t− (β + 1) ln ρ− ln a+ c̃β] , (3.3.47)

where allN interparticle lengths l1, . . . , lN that enter in the expression (3.3.46) are averaged over the

distribution (3.2.6). c̃β is a constant of O (1), which depends on the exponent β of the interaction.

However, the prefactor of N in the exponent is not estimated correctly by this calculation, since

the sum
∑N

j=1 ∆E
(1)
j,j+1 vanishes exactly, as stated above. This implies that terms of higher order

in a (or equivalently in the ϑs) must be retained to obtain a �nite result.

To �nd the correct scaling of the e�ective hopping with the density, one needs to �nd at which

order in the ϑ±j the �rst non vanishing-contribution appears. It turns out that te� vanishes exactly

if there are two intervals i, j whose associated ϑ± are set to zero:

ϑ±i = ϑ±j = 0⇒ te� = 0. i 6= j (3.3.48)

Before proving this statement, it is important to point out that this property unambiguously �xes

the scaling of the e�ective hopping with the density. Indeed, it implies that the lowest order

contribution to the expansion is a polynomial of order N − 1 in the ϑs, and consequently of order

O (a0) in the lattice spacing (as follows from Eq. (3.3.42)):

te� =
N∑
n=1

∏
i 6=n

∑
σi=±

ciϑ
σi
i +O

(
aϑN

)
. (3.3.49)
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One must impose in the sum above the extra constraint that at least one σi in each product of ϑs

must be +, and at least one must be −, but this has no consequence on the scaling form we are

interested in. What really matters is that each ϑσii comes together with a factor ci, which can be

read from Eq. (3.3.42) to be

ci =
v′′ (li)(

v′ (li)− v′
(
lk(i)

))2 ∼ O
(
ρ−β
)
, (3.3.50)

k (i) 6= i being an interval, which it is not possible to identify through this approach. This is

not important, however, since all interval lengths typically scale with density in the same way.

Therefore, the logarithmic average of the full expression (which involves products of N − 1 such

factors) must scale as

ln

(
te�
t

)
typ

∼ (N − 1) [ln t− β ln ρ+ cβ] . (3.3.51)

Two important facts need to be noticed, when this scaling form is compared with the naive one

(3.3.47). The �rst one is that the correct form is smaller by a factor ρN−1 with respect to the naive

one: this very strong suppression is a manifestation of the interference among di�erent paths, and

implies that the collective motion of the particles is much slower than predicted from Eq. (3.3.46),

and similar estimates in Ref. [35]. The second one is that there is no explicit dependence from the

lattice spacing a.

Now I just need to prove that te� indeed vanishes when I pick two intervals i, j and set ϑ±i,j = 0.

Intervals i and j partition the system into two disjoint sets, A = {i+ 1, i+ 2, . . . , j} and B =

{j + 1, j + 2, . . . , N, 1, . . . , i}. If ϑ±i,j = 0 energy denominators arising from moving subsets A′ ⊂ A

and B′ ⊂ B are exactly equal to the sum of the energy di�erences due to moving only one subset,

∆EA′,B′ = ∆EA′ + ∆EB′ . (3.3.52)

This property is trivial if subsets A′, B′ are not in contact with each other, i.e. if there is no particle

k ∈ A′ such that either particle k + 1 or k − 1 belongs to B′. If the two intervals are in contact

instead, either i ∈ B′ and i + 1 ∈ A′, or j ∈ A′ and j + 1 ∈ B′. In both cases, the decomposition

follows immediately from Eq. (3.3.43). Eq. (3.3.52) implies that denominators due to the motion

of particles in subset A′ and B′ factorize when summed over all possible ways in which particles

are moved, i.e. that

∑
P ′∈S(NA′+NB′ )

NA′+NB′∏
i=1

1∑i
j=1 ∆V exact

P (j),P

=
1

∆EA′

1

∆EB′
, (3.3.53)

where the index i runs labels all particles belonging to A′ and B′. This factorization follows from

the fact that, due to Eq. (3.3.52), particles in A′ can be seen as non interacting with particles
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in B′. Consequently, one is computing via locator expansion the amplitude for moving two sets

of particles which do not interact with each other: this is just the product of the amplitudes for

moving the two sets separately.

With this factorization property at disposal, it is possible to prove that te� vanishes for ϑ±i =

ϑ±j = 0. Let us call SA the sum over all permutations of the NA particles in subsystem A, multiplied

by their respective amplitudes:

SA ≡
∑

P ′∈S(NA)

NA∏
i=1

t∑i
j=1 ∆V exact

P (j),P

, (3.3.54)

and let us de�ne analogously the sum SB for subsystem B. The last denominator of all terms

appearing in SA is 1/∆Eij, while the last denominator of all terms in SB is 1/∆Eji = −1/∆Eij. If the

products in Eq. (3.3.38) ran on all N particles, one would �nd te� = SASB. Since only N − 1

particles are moved, however, the sum splits into two terms: in the �rst one, all particles in A are

moved, and one in B is not, and vice versa for the second one. This gives the result

te� = SASB∆Eji + ∆EijSASB = 0, (3.3.55)

which concludes the proof.

The exponential suppression of the e�ective hopping due to interference has been derived under

the assumption that each particle interacts only with its two neighboring ones, as described by the

e�ective Hamiltonian (3.2.2). One may wonder whether it is possible to extend this result to one

dimensional Hamiltonians with usual power law interactions, in which the presence of a particle

does not screen all the successive ones. Such an extension, if possible, is not straightforward: one

may try to attach a ��ag� ϑk at each interval k, which multiplies all O (a) corrections to interaction

terms crossing that interval, and set ϑi = ϑj = 0 for two intervals i 6= j, as done above. Then,

a factorization relation analogous to Eq. (3.3.53) would follow, and one may conclude that te�
vanishes in this case, too. The problem is that, without screening, expanding in these ϑ's does not

allow to infer the scaling with ρ, since now the coe�cient ci would have a non-trivial structure.

Therefore, this remains an interesting open problem.

3.3.5.1 Estimation of the transition point

The predicted scaling of te� with ρ has been veri�ed numerically, by studying the scaling of the

exact expression (3.3.38) with the density for small N . In Fig. 3.3.4 the ratio texacte� /t(1)e� is plotted,

logarithmically averaged over non-resonant con�gurations, with an exponential distribution of

intervals of mean ρ−1. The numerical data are indeed consistent with Eq. 3.3.51, with c̃2 ≈ 4.

The above estimates are qualitatively good only for very small t. One may nevertheless use

them to estimate the hopping tc at which typical random states delocalize, by requiring that the
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N=2

N=3

N=5

N=4

Figure 3.3.4: Right: Logarithmically averaged ratio between the exact hopping texacte� and the naive
estimate t(1)

e� , as a function of density ρ, for di�erent numbers of particles. The ratio was found to
scale as ραN . Left: A plot of the �tted αN against N con�rms that αN = N − 1 (solid line).

coe�cient of N on the right-hand side of Eq. (3.3.51) vanishes. More precisely, one expects

tc
U

. ρ−1 exp

[〈
ln

(
∆E(1)

U

)〉]
, (3.3.56)

to be an upper bound, since locally resonating structures proliferate with increasing t and change

the scaling of the e�ective hopping with density. For the power-law interactions v (l) = l−β

considered here, one �nds tc ∼ Uρβ to be of order of the typical inter-particle interaction. Due to

the many-body interference e�ect discussed above, this is larger by a factor ρ−1 ∼ ltyp than the

naive expectation that tc should be of the order of typical inter-particle forces between particles,

as would be predicted by using t(1) for this estimate.

To estimate the value of tc at the moderate density ρ = 1/3 and β = 2, we have �tted the size

dependence of the numerically evaluated te� as te� ∝ (t/tc)
N where N = ρL. This yields

tc (ρ = 1/3) ≈ 0.2U. (3.3.57)

This is consistent with numerical results found by other authors. [92]

3.3.5.2 E�ect of anomalously short intervals and local resonances

The calculation I have just performed relies on two assumptions, namely that all interparticle

intervals li are of the typical order O (ρ−1), and that there are no resonant pairs. Obviously, in

a random initial condition, neither of these approximations strictly holds, so it is necessary to

investigate at least qualitatively what happens when these e�ects are correctly taken into account.

Let us �rst see how the presence of anomalously short intervals modi�es this picture: if, for example,



CHAPTER 3. MANY-BODY LOCALIZATION WITHOUT QUENCHED DISORDER? 76

lj ≈ O (1), then the corresponding factor v′′(lj)/(v′(lj))
2 will be O (1) too, instead of O

(
ρ−β
)
as the

typical one. Since the probability of �nding such a short interval is O (ρ), one expects the scaling

of the e�ective hopping to become

te� ∼ ρ−β(N−1)(1−O(ρ)). (3.3.58)

At low density, this e�ect is subdominant with respect to the modi�cations due to resonances.

Indeed, when a resonant pair (l, l + 1) is present, there is one less denominator contributing to te�,

which manifests itself in a missing factor of O
(
ρ−β
)
, just like it happens with anomalously short

intervals. However, as computed in Subsec. 3.3.4, the density of such resonant pairs scales as
√
ρ,

which dominates over the O (ρ) density of short intervals, for ρ � 1. One can again apply the

arguments of Subsec. 3.3.4 to get convinced that the correct scaling is

te� ∼ ρ−β(N−1)α
2 , (3.3.59)

where the exponent α is the same as in Eq. (3.3.37).

3.4 Melting at low temperature

My perturbative analysis of quantum glasses is adapted to essentially random initial con�gurations,

in which the particle positions are uncorrelated. This is certainly a reasonable assumption for

high energy densities in the initial state. However, if the system is prepared in an equilibrium

con�guration at very low temperature (e.g., by weakly coupling the system to a bath for some

time, and then switching the coupling o�), one expects the positions of particles to become rather

homogeneous and correlated, in order to minimize energy. In particular, the inter-particle intervals

become far from exponentially distributed, as assumed in Eq. (3.2.6). Under such circumstances,

the probability of �nding con�gurations that resonate at low order in perturbation theory (like the

ones of Fig. 3.2.2) increases signi�cantly, since thermal disorder gets weaker. One thus expects

that already lower values of t will su�ce to induce delocalization and restore ergodicity in the

dynamics starting from such initial conditions.

Stated di�erently, one expects that at �xed hopping t, a decrease of the temperature in the

initial state renders the dynamics eventually ergodic, even at the perturbative level. As a conse-

quence, the role of temperature is opposite to that in disorder-dominated localization, where high

temperature enhances the phase space for scattering, and therefore leads to delocalization. This

is one of the most striking di�erences between disorder- and interaction-induced MBL.

The most important consequence of this fact is that, at the perturbative level, in translation

invariant models, low energy states are delocalized at all values of t, since there is a large density of

exact resonances (i.e. hybridizations of states with exactly zero energy di�erence). This contrasts
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with disorder induced MBL on a lattice, where localization of the whole spectrum is possible at

small enough hopping amplitude. As already discussed in Chapter 2, this implies that genuine

translation invariant MBL is not possible in the thermodynamic limit. Quantum glasses should be

rather thought of as Gri�ths systems, in which rare ergodic regions reinstate very weak transport,

either by acting as carriers of energy and particles, or as mobile baths that thermalize the rest of

the system, and allow for relaxation properties and thus transport. To be more precise, a modi�ed

version of the Bose-Hubbard model, in which particles are not conserved, has been rigorously

proven to be �asymptotically localized� at high temperature, i.e. that its conductivity is non-

perturbatively small in the hopping [43]. An analogous behavior is expected to hold for other

quantum glasses, too.

A tentative phase diagram for quantum glasses (and, more generally, for quantum disordered

systems) is shown in Fig. 3.4.1, as a function of disorder strength W , interaction U and quasi-

temperature T . In the U/W plane, a real transition line is present, corresponding to the in�nite

temperature transition. On the other hand, no genuine transition is possible as a function of

temperature, so the phase boundaries (dotted lines) must be interpreted as sharp crossovers.

3.5 Experimental realizations of quantum glasses

All the phenomenology described in this Chapter can be observed experimentally, with the ex-

ception of the diverging susceptibility to in�nitesimal disorder, which is nevertheless useful from

the theoretical and numerical point of view. The simplest experimental realization are strongly

interacting cold atomic gases in quasi one dimensional optical lattices [100, 101]. While the calcu-

lations of this Chapter assumed periodic boundary conditions, the essence of interaction-induced

localization will also be present in dense but randomly distributed cold atoms in a con�ning trap,

which prevents the escape of particles at the boundaries. In this situation, the center of mass of

an atomic cloud is predicted to respond to a tilt of the trap exponentially weakly in the number

of particles, as the response is governed by the exponentially small te� discussed in Subsec. 3.3.5.

3.5.0.3 Experimental realization of the two-component quantum glass

The two-particle model (3.2.1) could be realized using highly anisotropic spin ladders. A possible

implementation is shown in Fig. 3.5.1, where two unit cells are shown pictorially. The black dots

represent 1/2 spins, while the bonds represent the di�erent kinds of interactions among the spins.

In particular, the red lines represent an antiferromagnetic Heisenberg interaction, with coupling

K > 0; the blue lines represent an antiferromagnetic Ising interaction, with coupling constant

h < K; the black lines represent a Heisenberg interaction with coupling λ < K, and similarly

for the green lines, with coupling t � λ2h2/K3. In the last two cases, the interaction can be both

ferromagnetic or antiferromagnetic, without qualitatively modifying the physical properties I am
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Figure 3.4.1: Left: Phase diagram at �xed strength of quantum �uctuations (hopping t) and energy
density or (quasi-)temperature T ≥ 0, for one dimensional models in which commuting interaction
(U) and disorder (W ) terms de�ne a classical potential. Both ingredients lead to a rough energy
landscape which suppresses quantum tunneling and transport. Right: The role of temperature
di�ers crucially in the limits of disorder- and interaction-induced localization: from the point of
view of perturbation theory, for weak interactions the lower part of the spectrum is localized,
whereas highly excited states are ergodic. The reverse happens when the interactions dominate.
In the thermodynamic limit, the transition gets smoothed in a crossover, and no localized phase
is present: one �nds rather a �bad-metal� (disorder-dominated) or �glass� (interaction dominated)
behavior. The dashed lines correspond to a cut at constant quantum �uctuations, disorder, and
energy density. They suggest a reentrant localization in the many-body spectrum as interaction is
increased, as seen numerically in Ref. [46] and experimentally in Ref. [99].
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Figure 3.5.1: The spin ladder Hamiltonian (3.5.1). The pairs of τ spins are coupled by a strong
antiferromagnetic interaction (red link) and are assumed to be in their local ground state. If
the two corresponding S spins are aligned, the τ spins form a barrier which decouples the two
neighboring s spins. Conversely, if they are anti-aligned, the τs mediate an interaction among the
s spins. This model mimics Eq. (3.2.1), with the S spins taking the role of barriers, and the s
ones acting as fast particles.

interested in. The explicit form of the Hamiltonian is the following:

H =
∑
i

[
K (~τ1,i · ~τ2,i) + h

(
Sz1,iτ

z
1,i + Sz2,iτ

z
2,i

)
+ λ (~si · ~τ1,i + ~si · ~τ2,i + ~si+1 · ~τ1,i + ~si+1 · ~τ2,i) ,

− t
(
~S1,i · ~S1,i+1 + ~S2,i · ~S2,i+1

)]
, (3.5.1)

where S, s, τ are all spin 1/2 operators.

The idea behind this Hamiltonian is the following: since the coupling between the τ spins is

stronger than any other one, each pair of τ 's can be roughly thought of as decoupled from the rest

of the system. In this case, its ground state is a singlet. Now let us turn on the couplings h and

λ: if S1,iand S2,i are parallel to each other, the singlet is unperturbed, and the interaction between

s spins vanishes, as can be checked using perturbation theory in t. Conversely, if S1,i and S2,i are

anti-parallel, the ground state of spins τ1,i and τ2,i becomes polarized and acquires a component

on the triplet state: in this situation, the s spins interact with an e�ective coupling Je� = 4t2h2/3K3.

Therefore a pair of aligned spins S1,iand S2,i is equivalent to the presence of a barrier on site i,

while the spins s take the role of fast particles. Obviously, the coupling t allows for barriers to

hop.

One can then work at second order in perturbation theory to construct the following e�ective
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Hamiltonian:

He� = −Je�
∑
i

(
s+
i s
−
i+1 + s−i s

+
i+1 + 2szi s

z
i+1

)(1− Sz1,iSz2,i
2

)
+ t
∑
i

(
~S1,i · ~S1,i+1 + ~S2,i · ~S2,i+1

)
+ µe�

∑
i

(
Sz1,iS

z
2,i

)
, (3.5.2)

which is very similar to Eq. (3.2.1). The main important di�erence is that the number of barriers

is not conserved. However, the coupling µe� ≡ h2/2K acts like a chemical potential for the barriers,

which ensures that their number is conserved on average upon time evolution. One could try to

probe the localization properties of this model via hole burning techniques, namely by removing

a narrow spectral line in the absorption spectrum of the sample, using a laser. In the presence of

localization, the resulting dip in the spectrum is expected to persist for very long times. [102]



Chapter 4

Absence of many-body mobility edges

The famous Mott argument, presented in Subsec. 2.2.1, states the impossibility of localized and

delocalized eigenstates coexisting at the same energy in non-interacting systems [13]. As a con-

sequence, if both localized and delocalized states are present in the spectrum, they necessarily

must be separated by a sharp mobility edge. For a long time, the extension of this argument to

many-body systems has been an important open issue. Analytical results obtained by means of

perturbation theory [22, 23] suggested that the situation should be qualitatively analogous to the

non-interacting one: ergodic states at high energy density and localized states at low energy. They

should be separated by a many-body mobility edge (note that, for translation invariant quantum

glasses, the role of temperature is inverted, as discussed in Sec. 3.4). From the numerical point of

view, the situation is however not clear: various authors have reported the existence of mobility

edges [44, 45, 46, 47], while others have failed to observe them, either being able to detect an

in�nite temperature transition only [48, 49], or, in contrast, �nding coexistence of ergodic and

non-ergodic states at all energy densities. [62]

In this Chapter, a many-body extension of the Mott argument is given. It states that, in

the thermodynamic limit, in systems with local Hamiltonians coexistence of ergodic and non-

ergodic eigenstates is not possible. The core of the argument consists in showing that ergodicity

and transport do not require the whole system being excited with an energy density ε above the

(putative) mobility a εc. In contrast, it is enough that a few large, yet �nite regions are excited

above εc. Such regions, which I call �bubbles�, will then be able to move resonantly through the

system, and act as mobile baths that thermalize the rest of the system [41]. The reason why this

e�ect is not seen in current simulations is that its observation would require system sizes larger

than the ones within reach of exact diagonalization. The presence of mobility edges reported so

far has hence to be interpreted as a �nite size e�ect.

The remainder of this Chapter is organized as follows. In Sec. 4.1, a simple two-particle model

of assisted hopping is presented, which illustrates several important features that this problem has

in common with the rare events that induce delocalization in many-body systems and wash out

81



CHAPTER 4. ABSENCE OF MANY-BODY MOBILITY EDGES 82

�nite mobility edges whenever there is a ergodic state at some �nite temperature. In Sec. 4.2, the

main argument is presented, with an analysis that shows its robustness against many e�ects that

might hinder the restoration of ergodicity. In Sec. 4.3, a numerical analysis of �nite size e�ects in

small one dimensional disordered systems is provided, showing that the available system sizes are

too small to truly host ergodic bubbles. Finally, in Sec. 4.4, the consequences of these arguments

for disorder-free quantum glasses are discussed, and I argue that in any realistic experiment glasses

will appear as truly MBL, due to the very low probability of a bubble to be present in the initial

condition.

4.1 Assisted hopping model

Consider particles on a hypercubic lattice of linear size L, hopping with amplitude t1 and subject

to a disorder potential εx, i.i.d. uniformly in [−W,W ]. A particle on site x interacts with others

by inducing assisted hopping of strength t2 along the diagonals of plaquettes containing x (e.g. via

lattice distortion)

H = −t1
∑
〈x,y〉

(c†xcy + h.c.) +
∑
x

εxnx − t2
∑
x

∑
s,s′=±

∑
1≤α<β≤d

nx(c
†
x+s~eα

cx+s′~eβ + h.c.), (4.1.1)

where ~e1,..,d are lattice unit vectors. Parameters t1 � W are considered, for which the single particle

problem is localized in the whole spectrum. For t2 � W , the two-particle problem has several

interesting features. In dimensions d > 2, the assisted hopping term induces a delocalization

of close pairs which will move together di�usively as a composite light particle and overcome

Anderson localization. This e�ect is closely related to the interaction-induced increase of the

localization length in su�ciently weakly localized systems [103, 104]. A single particle analogue

of the phenomenon is the solvable case of two coupled Bethe lattices [105]. The delocalization in

(4.1.1) seems natural, since all con�gurations of two particles at distance one are strongly resonant

with each other. They thus form a percolating, delocalized resonant subgraph in con�guration

space, which supports delocalized wavefunctions with inverse participation ratios that vanish as

the inverse volume. This type of e�ect is con�rmed numerically in Refs. [106, 107]. In a system of

only two particles the eigenstates come in two kinds: the overwhelming number of states is strongly

concentrated on a con�guration with two distant, immobile particles. Only a vanishing fraction of

order [log(L)]d /L of all two-particle states are delocalized as dynamically bound, mobile pairs. In

this example localized and delocalized states coexist at the same energy. This is possible because

the matrix elements that couple the two kinds of states through a random perturbation of the

Hamiltonian are typically exponentially small in the system size and thus negligible as compared

to the relevant level spacings.

Let us now discuss how a �nite density of particles modi�es the situation. In the thermodynamic
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limit, there is a �nite density of close pairs in typical con�gurations. These pairs di�use through

the sample. Initially well isolated and localized particles scatter inelastically o� these pairs and

thus move as well, leading to complete delocalization. Even in exponentially rare con�gurations

where initially all particles are far from each other, particles eventually tunnel together and decay

into the continuum of di�usive pair states. Thus no localized eigenstate is expected to survive at

�nite density.

4.1.1 Numerical analysis of an assisted hopping Hamiltonian

In this Subsection I start by studying numerically an assisted hopping model very similar to Eq.

(4.1.1), in order to show that delocalization on a resonant subgraph remains robust to adding

additional terms that connect that subgraph to localized states. Coexistence of localized and

delocalized states is thus found in this context, corresponding to a failure of Mott's argument,

which is, however, a particularity of the zero density limit of the considered model, and is not

expected to survive at �nite density.

In order to reach in the numerics the largest possible system sizes, I consider a Hamiltonian

in d = 2 with spin-orbit coupling, which gives rise to weak anti-localization and thus allows for

a genuine delocalized phase. To the best of my knowledge, this is the smallest system where

delocalization can be expected, and is thus best suited for a numerical study. Here, �smallest�

means that the dimension of the Hilbert space grows at the slowest possible rate with growing

linear size L.

Let H be the Hamiltonian of two indistinguishable hard-core bosons (with positions q1,2) having

a single spin 1/2 degree of freedom, s, attached to them. The results would not be qualitatively

altered if the particles were taken as fermions. Periodic boundary conditions are imposed. The

full Hamiltonian is

H = H0 + h1H1 + h2H2, (4.1.2)

where H0 is the uniformly distributed on-site potential

H0 =
∑
q

εqa
+
q aq, −W ≤ εq ≤ W. (4.1.3)

H1 is the single-particle hopping Hamiltonian

H1 =
∑
q∼q′

(a+
q aq′ + aqa

+
q′), (4.1.4)

(q ∼ q′ denoting nearest neighbors) and H2 is the assisted hopping, including a spin-orbit interac-

tion. H2 is described by its matrix elements. Let

S = {q1 = (x1, y1), q2 = (x2, y2) : q1 6= q2,max [|x1 − x2|, |y1 − y2|] ≤ 1} (4.1.5)
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Figure 4.1.1: Hopping processes present in the Hamiltonian (4.1.2). On the left panel, the standard
single-particle hopping is depicted. On the right panel, the assisted hopping processes for the
left particle, allowed by the presence of the right particle, are shown. Such assisted processes are
responsible for delocalization of pairs of particles, whereas isolated particles are Anderson localized.

be the set of pairs of spatially neighboring points. One then de�nes 〈q′1, q′2, s′|H2|q1, q2, s〉 to be

IS(q′1, q
′
2)IS(q1, q2) 〈q′1, q′2, s′|HSO|q1, q2, s〉, (4.1.6)

where the characteristic functions IS ensure that the initial and �nal pair con�guration belong to

S. Further, HSO ≡ H1
SO +H2

SO with

H1
SO ≡ −i

[
σ(x)Ty1 − σ(y)Tx1

]
− i
[

(σ(x) − σ(y))

2
Tx1Ty1 −

(σ(x) + σ(y))

2
Tx1T

†
y1

]
+ h.c. (4.1.7)

Here σ(x,y) are Pauli matrices acting on the spin degrees of freedom, while the translation operators

are de�ned by Tx1
∣∣(x1, y1), (x2, y2), s

〉
=
∣∣(x1+1, y1), (x2, y2), s

〉
and similarly for Ty1 . H

2
SO is de�ned

analogously for particle 2.

The Hamiltonian H1
SO is a lattice version of the Rashba Hamiltonian σ(x)py1 − σ(y)px1 [108],

and is shown pictorially in Fig. 4.1.1. It should be noticed that restricting the de�nition of H1
SO to

the �rst term −i{σ(x)Ty1 − σ(y)Tx1} would lead to a degeneracy due to the lattice structure. This

would prevent H from being a generic GSE Hamiltonian for any value of h2.

The aim of the simulations is to show that delocalized and localized states coexist in this model.

First I look at the model for h1 = 0, where this statement is trivial, since the delocalized subspace

HS , spanned by all the classical states in S (see Eq. (4.1.5)), each coming with spin up/down, is

decoupled from all the localized con�gurations. Then, a �nite h2 is turned on, and it is shown that

delocalization is not destroyed by coupling to the localized subspace. In all simulations, L = 9

and W = 1 are taken. The analysis is divided into two parts. First h1 = 0 and h2 > 0 are taken.

This choice corresponds to considering assisted hopping only. Since the majority of states (all

con�gurations outside S) are now trivially localized, the results are restricted to the subspace HS
. The aim is to �nd a value of h2 such that H0 + h2H2 can be considered a �typical� GSE matrix

with truly delocalized eigenstates. For this, the parameter r de�ned in Subsec. 2.3.2, is evaluated
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Figure 4.1.2: Statistics for the logIPR's of all eigenstates of H for h2 = 0.7 and di�erent values
of h1. From left to right: at h1 = 0.01 the large majority of the spectrum is localized, but some
delocalized states are still present, despite the non-zero coupling to the localized subspace. For
h1 = 0.07 the two peaks are still visible, but they are much wider. Finally, for h1 = 0.15 the
spectrum is almost entirely delocalized. Averages are taken over 500 realizations of the disorder.

numerically, and averaged over the whole spectrum. For h2 = 0.7, one �nds r = 0.64± 0.05, which

is intermediate between rGUE ' 0.60 and rGSE ' 0.67. This discrepancy presumably arises due to

the contributions from the more localized edges of the spectrum.

To characterize (de)localization one uses the logarithm of the inverse participation ratio,

logIPR(ψ) ≡ − log10

(∑
η

|〈ψ|η〉|4
)
, (4.1.8)

where the sum over η runs over the classical particle con�gurations. Note that dim(HS) = 648,

and thus logIPR(ψ) ∼ 2.5 for a fully delocalized state ψ, while logIPR(ψ)� 1 for a localized state.

From the point of view of the parameter r, h2 = 0.7 is rather optimal: the spectrum is mostly

delocalized, but the Hamiltonian is still genuinely GSE. Indeed, when h2 becomes signi�cantly

larger than 0.7, the localized tails of the spectrum are further suppressed, but the value of r starts

bending down as an e�ect of approaching the integrable limit h2 →∞.

Let us now �x h2 = 0.7, but vary h1 > 0, and determine numerically the statistics for the

logIPR's of the eigenstates ψ of H. The results are shown in Fig. 4.1.2. One can clearly see that,

even for non vanishing h2, delocalized states are still present, as shown by the left and middle

panel. In particular, for h1 = 0.07 (middle) one can see delocalized states (inside the subspace HS)
coexisting with a majority of localized states. Obviously a relatively large h1 leads to delocalization

of almost all states, with logIPR's that start approaching the value log10[dim(H) = 6480] ∼ 3.5

of fully delocalized wavefunctions, cf. the right panel. A comparison of histograms at the same

values of h1, but with h2 = 0 (not shown) revealed that the histograms are signi�cantly shifted to

larger logIPR in the presence of the delocalized channel of mobile pairs.
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4.2 Delocalization by rare ergodic regions in many-body sys-

tems

The argument of Basko et al. [23] for a localization transition as a function of temperature, i.e., a

many-body mobility edge, builds on the idea that conduction can set in only if the energy density

exceeds a critical level essentially everywhere in the sample. This neglects the possibility that rare

local �uctuations away from the average energy density could lead to a breakdown of perturbation

theory and induce delocalization. Indeed, I argue that delocalization occurs as soon as �nite, but

mobile excitations exist, even if they are very rare. These constitute the analogues of the di�usive

pairs above. Examples of such excitations are large, albeit �nite regions which are hotter than

their environment and thus internally ergodic. It is important to stress that the bubble excitations

considered here are thermal, and not tied to local, anomalous realizations of the disorder. Here

the strategy of Ref. [24] to show the existence of an MBL phase, as shown in Subsec. 2.3.1,

would fail. Indeed, it requires that the location of all possible resonant spots can be determined

independently of the state of the system. Hereby I assume that interactions are local, so that the

internal ergodicity is only a function of the energy contained in that region.

Let us assume that at some temperature there are conduction and ergodicity. I believe that,

in the thermodynamic limit, the presence of �nite conduction implies ergodicity, too. This follows

by disregarding the exotic scenario of non-ergodic, but delocalized many-body systems, where

transport is con�ned to a fractal support in real space. Indeed, in large enough systems, delocalized

modes supported on a �nite fraction of space will serve as a bath, which is expected to thermalize

any �nite set of degrees of freedom in �nite times. In typical states and in any given place such

ergodic regions occur with �nite probability as spontaneous �uctuations of energy density, without

being tied to a particular disorder realization. Thus, there exists a (possibly very low) �nite density

of ergodic spots. Below it will be argued that these excitations are mobile and delocalize the whole

system, akin to the di�using pairs above. From this reasoning it follows that �nite conduction at

some temperature implies �nite conduction at any temperature in thermodynamic systems with

local interactions. As a consequence, systems in the continuum should exhibit �nite transport at

any T > 0, as they always possess ergodic states at high enough energy (see also the discussion in

Ref. [109]).

To argue for the mobility of the hot bubble excitations one proceeds in two steps: �rst it is

shown that there exists a resonant, delocalized subset of bubble con�gurations. In a second step

I argue that delocalization remains robust when processes are taken into account that lead away

from the resonant subgraph. Since the argument is quite lengthy, I shall �rst describe heuristically

its main points. A detailed and formal presentation will be provided later on.

I consider a quantum lattice system with local interactions and a bounded energy density,

possessing a putative many-body mobility edge at energy density εc, such that states below (above)

εc are localized (ergodic). For simplicity, the model is assumed to be one-dimensional. Now consider
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a rare hot bubble of a super-critical energy density at some ε2 > εc, surrounded by "cold" regions

of energy density ε1 < εc. If this energy �uctuation is large enough (much larger than a correlation

length ξ (ε2)) and decoupled from its surrounding, it is internally ergodic by assumption.

I argue that this state can hybridize with a translate of the bubble by some length `0 >

max [ξ (ε1) , ξ (ε2)] when the coupling between the hot region and its surrounding is switched on.

It su�ces to show that extending (or shortening) the hot region by a length `0 (by heating up or

cooling down the relevant region) can occur as a resonant transition. For the latter it su�ces to

show that changing the energy in the boundary region by a �nite amount is a resonant process.

Let H1 = gOh ⊗ Oc be the interaction term coupling a hot (h) and a cold (c) region of size `0

across their common boundary. Let Ψ,Ψ′ be eigenstates in the hot region and η, η′ eigenstates in

the cold region. For any hot eigenstate Ψ in a su�ciently large bubble one can �nd (many) Ψ′

such that
|〈Ψη|H1 |Ψ′η′〉|

|Eη + EΨ − Eη′ − EΨ′|
� 1, (4.2.1)

because on the one hand, by ETH |〈Ψ|Oh |Ψ′〉| ∼ d
− 1

2
h , where dh is the dimension of an appropriate

micro-canonical ensemble for the hot bubble at the energy density set by Ψ, while the matrix

element |〈η|Oc |η′〉| ∼ O (1) is �nite and independent of dh. On the other hand, one can pick Ψ′

such that |E(η)− E(η′) + E(Ψ)− E(Ψ′)| ≤ Y/dh, where Y is the energy width of the ensemble.

The ratio in Eq. (4.2.1) thus scales as ∼ d
1/2
h and grows exponentially with the length of the bubble.

It may thus become much larger than unity, indicating a resonant process. This is not surprising:

it merely expresses that a su�ciently large ergodic bubble acts as a bath for small systems coupled

to it. It follows that con�gurations with hot bubbles in di�erent positions hybridize with each

other.

This way, bubbles are capable of transporting energy or any other conserved quantity at any

distance in the system. Additionally, bubbles modify the environment they pass through, since in

general η′ 6= η in Eq. (4.2.1) above: it follows that, given enough time, any part of the system can

explore all its possible con�gurations, and therefore gets thermalized. Ergodicity is thus restored

everywhere in the system.

4.2.1 Formal presentation of the argument for delocalization

Now let us be more precise. I consider a quantum lattice model with local interactions, having a

putative many-body mobility edge. For concreteness, the model is assumed to be one-dimensional,

and the states below energy density εc are assumed to be (putatively) localized, whereas those

above εc are ergodic. The energy density of the bottom of the spectrum is chosen as a reference

and set to zero. A maximal energy density εm > εc is also imposed, re�ecting the fact that the

Hilbert space is locally �nite.

For this argument it is important to have states at disposal that are clearly ergodic or localized in
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a given �nite volume and therefore I introduce, somewhat arbitrarily, a window of energy densities

εc1 < εc < εc2 that are too close to critical to be clearly enough of localized or delocalized nature,

respectively. Let `(ε) be the localization length, diverging as ε ↗ εc. Lengths are expressed in

units of the lattice spacing a, and energy densities ε as energy per site. I will now coarse-grain the

model and group `0 adjacent sites into �units�. The length `0 is chosen such that it is both larger

than the localization length `(εc1), and large enough so that the interaction energy between two

neighboring units is small compared to `0εc1, the maximal energy in a localized unit. The second

constraint ensures that the interaction of a low energy unit (ε < εc1) with its surroundings does

not trivially su�ce to render the unit ergodic, and, similarly, that the interaction of a high-energy

unit with its surroundings does not trivially su�ce to localize that unit. This will be satis�ed by

the choice of a large enough `0, since the interactions are local.

The coarse-graining into units provides a useful starting point, from which to proceed with

perturbation theory. Within each unit, the eigenstates are classi�ed in three kinds, cold (below

εc1), hot (above εc2) or intermediate (between εc1 and εc2). If one considers the Hamiltonian without

the interaction between units, then obviously the eigenstates are products of unit eigenstates. Let

us focus on eigenstates at very low energy density ε� εc1. Then, typically, non-cold units appear

only with a density ν that tends to 0 as ε/εc1 → 0. Chains of labeled units such as ccciccchhhiiccc

now serve as �mesostates�, with c/i/h standing for cold/intermediate/hot. The model can now be

rewritten as

H = H0 +H1, (4.2.2)

where

H0 ≡
∑
x

H0 (x) , H1 ≡
∑
x

H1(x, x+ 1). (4.2.3)

In the above, x label the units, H0(x) acts on the Hilbert space H(x) at unit x only, and H1

describes the coupling between neighboring units. Mesostates are eigenstates of the term H0.

One now considers switching on the coupling terms and evaluate their e�ect on the unperturbed

eigenstates of H0. This procedure is similar to the one followed in Subsec. 2.3.1. First I add the

interaction terms between cold units (see below for what is meant precisely). Since it was assumed

that `(εc1) < `0, this will not have much e�ect on the localized eigenstates, which thus remain

close to products. Note that by doing this, from the point of view of a typical state at energy

density ε, one has already added most of the interaction terms. What remains is a small fraction

∼ 2ν (which is controlled by the overall energy density) of all interaction terms. The interaction

terms between hot units are now added. By assumption, su�ciently long stretches of such units

. . . hhhh . . . (which I call �bubbles�) are ergodic and I will assume that the resulting hot eigenstates

in those bubbles satisfy ETH. The situation at this moment is hence that the Hilbert space has

been partitioned into a big direct sum, and the Hamiltonian H0 is block diagonal, with the blocks

labeled by mesostates. Let P r
x be the projector that restricts the value of H0(x) so that unit x is
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of type r = h, i, c. With this notation the interaction terms that have already been added are

P r′x
x P

r′x+1

x+1 H1(x, x+ 1)P rx
x P

rx+1

x+1 , (4.2.4)

for (rx, rx+1) = (r′x, r
′
x+1) = (c, c), and for (rx, rx+1) = (r′x, r

′
x+1) = (h, h). Some terms are ob-

viously very small (because the interaction is local in energy) and seem irrelevant, namely those

corresponding to, (rx, rx+1) = (c, c), (r′x, r
′
x+1) = (h, h) and with primes and no primes reversed.

The main terms that I will be focusing from now on are those that allow bubbles to spread and

move. Those are terms with

rx = r′x = h, and arbitrary rx+1, r
′
x+1, (4.2.5)

and with x and x+ 1 reversed. They will be the focus of the following Subsection.

4.2.1.1 Resonant delocalization of bubbles

Let us now consider states of the following form (bubble in a cold environment):

cccccccc hh . . . hh︸ ︷︷ ︸
n units

cccccccc, (4.2.6)

where n is su�ciently large so that the eigenstates in the bubble satisfy ETH. I now argue that

this state hybridizes with translates of the bubble when some of the missing coupling terms are

added. In particular, one wants to admix the mesostates (with x, y labeling units)

. . . ccch
x
hhhc

y
cc . . .↔ . . . cccc

x
hhhh

y
cc . . . (4.2.7)

in which the bubble has been translated by one unit. More precisely, I mean that most microstates

(i.e., eigenstates of the Hamiltonian considered up to now) corresponding to the left mesostate can

hybridize with a lot of microstates corresponding to the right mesostate. This in turn strongly

suggests that one should expect all eigenstates to delocalize completely over these two mesostates.

To obtain this, I have included the relevant coupling terms, of the form of Eq. (4.2.4), corresponding

to two bonds (x, x+1) and (y−1, y). This hybridization process can be broken down into elementary

steps, that is, transitions at �rst order of perturbation theory. First, by energy exchange with the

hot region, the cold (c) unit at y is heated until it becomes intermediate (i) and �nally hot

(h). Second, the h unit at x is cooled down until it becomes c, via intermediate stages of i.

Microscopically, let us consider a state Φ corresponding to the mesostate ccchhhhccc and such

that H0(y) is not far below εc1. I will argue that Φ hybridizes with a lot of states Φ′ corresponding

to the mesostate ccchhhhicc where r′(y) = i. If instead H0(y) is far below εc1, then it hybridizes

with a lot of states Ψ′ which still corresponds to r′(y) = c (ccchhhhccc), but now with H0(y) a
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bit closer to εc1. (A direct step to an intermediate state might instead require adding too much

energy in one transition. Therefore the process are split into several small heating steps to make

sure the argument remains valid also if the interactions are assumed to be strictly local in energy.)

Finally, I need to increase the energy stepwise from i to h at unit y. The argument for all these

transitions is essentially the same and for the sake of simplicity, I stick to r(y) = r′(y) = c. The

next subsection shows the �exibility of the argument.

Obviously, it su�ces to take eigenstates in Φ,Φ′ in the region [x, y] because of the essential

product structure (exact at the left edge, approximate at the right edge around y, because the

coupling between cold regions has already been included). They are of the form

Φ = Ψ⊗ η, Φ′ = Ψ′ ⊗ η′, (4.2.8)

where η, η′ are the unperturbed eigenstates at unit y, while Ψ,Ψ′ are hot bubble states in the

region [x, y − 1] consisting of n = y − x units. Consider Ψ′ such that its energy (evaluated with

H0) is within a range W ∼ εm of the energy of Ψ. The space spanned by such states has dimension

dh ≈ exp[s`0n] which grows exponentially in n, s being the corresponding entropy density. Write

H1(y − 1, y) = gOh ⊗ Oc, the �rst factor acting on y − 1, the second on y. From ETH it then

follows that

|〈Ψ|Oh |Ψ′〉| ∼ 1/
√
dh. (4.2.9)

In other words, the (non-eigenstate) vector Oh |Ψ〉 is essentially a random amplitude superposition

of eigenstates Ψ′. If one now takes ∆E ≡ Eη − Eη′ su�ciently small, i.e. not exceeding Y , then

〈η|Oc |η′〉 ∼ 1. In fact, assuring the non-vanishing of 〈η|Oc |η′〉 is the main reason to choose Y

su�ciently small. One can then �nd many Ψ′ (in fact, ∼
√
dh of them) such that

|〈Ψη|H1 |Ψ′η′〉|
|∆E + EΨ − EΨ′ |

� 1, (4.2.10)

because the energy spacings are of order Y/dh and 〈Ψη|H1 |Ψ′η′〉 ∼ g/
√
dh. Hence the ratio in Eq.

(4.2.1) is huge since dh grows exponentially in n.

The outcome of the above calculation should not come as a surprise: it merely expresses that

an ergodic bubble can act as a bath for a small system (here unit y) that is coupled to it. Upon

repeating the same calculation a few times, one easily convinces oneself that states with the bubble

in di�erent positions hybridize with each other.

4.2.1.2 Spatial range of direct hybridizations

In the above derivation, I focused on hybridizations that result in the translation of a bubble by

one unit. One might worry that this is too negligible a translation if the bubble is very large,

n � 1. However, here I show that direct hybridizations can take place at distances which are a
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�nite fraction of the bubble length.

As already pointed out, in the above derivation, I was careful to pick states η, η′ whose energy

di�erence was small enough so that 〈η|Oc |η′〉 ∼ 1. This is, however, not crucial, and if r′(y) = i, h

it can not be assured anyhow. The matrix element 〈η|Oc |η′〉 will typically decay exponentially

in the energy di�erence Eη − Eη′ . Hence, it can be as small as e−`0εm , but obviously this number

decreases with `0, not with n, so this is not relevant for our argument. To determine at what

distance direct hybridizations are possible, I proceed as follows. Instead of making the transition

η → η′ at unit y, I now make a transition η → η′ in a stretch of ` units starting at y. By the

structure of localized states, it is known that

∣∣〈η∣∣Oc

∣∣η′〉∣∣ ∼ (g/εm)``0 . (4.2.11)

The transition is possible as long as this small number is larger than
√

1/dh, so that one �nds

` ∼ s

2 log(εm/g)
n. (4.2.12)

This shows us that the bubble hybridizes with translates by a �nite fraction of its size. However,

this fraction becomes parametrically small as the coupling becomes weak, g/εm → 0.

4.2.2 Discussion of potential caveats

One may now ask whether some processes that have not been taken into account in the previous

analysis could impede the hybridization of bubbles. The �rst objection that can be raised is that

hot bubbles should not survive dynamically, but should rather spread, dilute their energy and

eventually localize, so that they could not evolve back to their original hot con�guration. Though

such a spreading is indeed entropically favored in real time dynamics, that argument is fallacious.

At a fundamental level, Hamiltonian dynamics is micro-reversible. If a given transition is possible,

then its reverse is as well. By invariance of the Gibbs ensemble, one can de�nitely rule out that

initially present bubbles typically completely disappear with time for most initial con�gurations.

Looking at it from a di�erent perspective, there are eigenstates that have a signi�cant overlap

with bubble con�gurations and they assure that there is a �nite, albeit small, probability per unit

volume to observe bubbles at all times.

Though I show that entropic e�ects alone do not su�ce to make bubbles disappear, it still

remains to check that their mobility is not suppressed when all the diluted states of a bubble

are taken into account, as a result of quantum mechanical e�ects. This is done in the following

Subsections, which show that the delocalization of bubbles is robust against the coupling to states in

which their energy is dissolved in their surrounding. This way a resonant subgraph is constructed,

and it is assumed that this essentially implies delocalization. While I believe that in the present

context this conclusion is correct, the reader needs to be cautioned nevertheless that this condition
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is not always su�cient, like in single-particle localization in weak disorder in low dimension, or in

hopping problems without potential disorder on structurally disordered lattices close to classical

percolation. However, in these cases localization is restored by speci�c mechanisms, which are not

present in our many-body case: the proliferating amplitude of return to the origin in d ≤ 2 [14],

and the generation of random self-energies from the structural disorder along barely percolating

paths [110, 111]. Non-ergodic behavior is also known to occur in many-body systems due to

orthogonality catastrophes, like in spin-boson systems at T = 0 and related spin problems at �nite

T [112], but such scenarios seem not to apply in our case. Finally, rare regions with anomalously

strong disorder, which render transport in d = 1 subdi�usive [113], do not prevent delocalization

by bubbles either, as I shall explain below.

4.2.2.1 Robustness of hybridizations

I have not yet added all coupling terms from H1. In particular, I have neglected transitions of the

form
ccchhhhccc ↔ cccchhhhcc

l l
. . .↔ . . . cciiiiiiiicc ccciiiiiiic . . .↔ . . . ,

, (4.2.13)

where the states on the lower line represent a multitude of mesostates. Let us assume that they

themselves do not communicate with each other. This simplifying assumption favors maximally

the possibility that the coupling to such states could localize the bubble and thus invalidate the

preliminary conclusion above. I now consider the two subspaces, each of dimension dh, that

correspond to the mesostates on the upper line, the eigenstates of which are hybridized by the

perturbation H1. Let us refer to them as left and right subspaces. I then couple each of them

to a space of dimension d′h � dh and ask whether the perturbation H1 is still able to induce

hybridization between left and right subspaces. Concretely, the subspace Cdh is now embedded in

the space Cdh⊕Cd′h of dimension Dh ≡ d′h +dh, and Oh becomes Oh⊕0. I focus on the transitions

between the ergodic states Ψ,Ψ′, and just consider the operator Oh which acts on the hot bubble.

Let us assume that after diagonalizing within the larger spaces of dimension Dh, the eigenstates

Ψ̃, Ψ̃′ are completely ergodic and well captured by random matrix theory. In practice, this de�nes

the relevant space to which the bubble subspace should be extended, and its dimension Dh. One

now has to discuss how the ratio ∣∣∣〈Ψ̃
∣∣∣Oh

∣∣∣Ψ̃′〉∣∣∣∣∣∆E + EΨ̃ − EΨ̃′

∣∣ (4.2.14)

di�ers from the original ratio
|〈Ψ|Oh |Ψ′〉|

|∆E + EΨ − EΨ′|
∼
√
dh
W

(4.2.15)
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with given |∆E| ≤ Y . One �nds a suppression of the numerator because now

∣∣∣〈Ψ̃
∣∣∣Oh

∣∣∣Ψ̃′〉∣∣∣ ∼ √dh
Dh

. (4.2.16)

Indeed, the simplest way to derive this is by remarking that∑
Ψ̃,Ψ̃′

∣∣∣〈Ψ̃
∣∣∣Oh

∣∣∣Ψ̃′〉∣∣∣ 2 = Tr(O†hOh) ∼ dh, (4.2.17)

as Oh acts only in the original subspace (with dimension dh) and it is zero on the attached space

with dimension d′h. On the other hand, the energy spacing |∆E + EΨ − EΨ′| can now be made as

small as Ỹ /Dh, where Ỹ is the width in energy of all states that signi�cantly couple to the original

bubble states. It follows that the ratio of Eq. (4.2.1) is reduced by a factor Y/Ỹ . If this e�ect

rendered the ratio of Eq. (4.2.1) smaller than 1, the eigenstates would likely not hybridize across

the subspaces, i.e. one would �nd localization induced by coupling to further degrees of freedom.

However, the maximal conceivable value of Ỹ is of order εm`h, with `h the length of the region to

which the energy spreads. Energy conservation and localization below εc lead to the upper bound

`h(εc − ε) ≤ n(εm − ε) (recall that ε < εc is the typical energy density in our system). This yields

Ỹ /Y . n, which is insu�cient for localization, since the ratio in Eq. (4.2.1) is exponentially large

in n. Thus, the hybridization of bubble states survives, despite their spreading to entropically

more favorable states. This contrasts with particle problems where the coupling to extra degrees

of freedom was found to induce localization under certain circumstances [114, 115]. In those cases,

there is no exponentially large factor that o�sets the e�ect of an increased bandwidth Ỹ , which

renders coupling-induced localization possible.

4.2.2.2 Dynamic retardation

Even though the inclusion of the states on the lower line of Eq. (4.2.13) cannot prevent hybridiza-

tion, it does of course increase the timescale necessary for transitions between the two bubble

positions. The transition rates can be estimated from a simple Fermi Golden Rule calculation as

τ−1
bef ∼

|〈Ψη|H1 |Ψ′η′〉| 2

|∆E + EΨ − EΨ′|
, τ−1

aft ∼

∣∣∣〈Ψ̃η
∣∣∣H1

∣∣∣Ψ̃′η′〉∣∣∣ 2∣∣∆E + E
Ψ̃′ − EΨ̃

∣∣ , (4.2.18)

before and after including the extra states, respectively. The �rst rate is of order g2/Y , while

the second is of order (dh/Dh)g
2/Ỹ . Hence, by adding the new states, one has increased the

timescale by order Dh/dh (keeping only terms exponential in n). This is very intuitive: transitions

are now only possible from a fraction dh/Dh of all states, and accordingly it takes longer until

a transition will be attempted. Alternatively, one can view this as follows: for a large bubble

close to criticality (with structure cciiiiiiiiicc) the �active� con�gurations of the type cccchhhhcccc
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manifest themselves as large deviations, which occur with exponential rarity. Yet, as shown above,

they do lead to hybridization of eigenstates, and hence to delocalization.

4.2.2.3 Harmlessness of rare, strongly disordered regions

So far I have tacitly assumed that the existence of a global thermal phase at some energy density

implies that any large enough �nite region has ergodic states at that energy density. However,

due to rare �uctuations of the disorder, it can happen that rare, large regions still have all their

states localized as long as they are disconnected from the rest of the system. One may think that

especially in d = 1 such regions could block global transport and thus localize the system at low

temperature. Even though this e�ect further increases the time scale necessary for thermalization,

it can be argued that it does not prevent it.

As a preliminary, I consider a fully localized system of length L0 in contact with an ergodic

system of length L1. By an analogous argument as used above for resonant delocalization, one sees

that for L0/L1 smaller than some number (depending on the localization length and the entropy

density of the ergodic system, see e.g. Eq. (4.2.12)), the coupled system will be ergodic: all

formerly localized states can hybridize with each other.

Now to the main argument. Let us consider ergodic bubbles of some large size ` and let δ ≡ δ(`)

be the typical distance between rare regions of exceptional disorder that could block such bubbles,

by not allowing an adjacent bubble to heat up this region to ergodic states (of type h), and thus

hampering the translation of the bubble. By the above preliminary remark, such blocking regions

have a length ∼ ` and since they are rare regions (large deviations), the typical distance between

them is δ(`) ∼ ec` for some c > 0. Now consider a bubble between two blocking regions. Its

presence renders the whole region between them ergodic. Hence, the blocking regions are in fact

next to an ergodic bath of length δ(`), which is exponentially large in `. Accordingly, its level

spacing is double-exponentially small. Thus, tunneling under the barrier of thickness ∼ `, which

is only exponentially small in `, will easily hybridize the ergodic regions on either side and ensure

transport.

4.2.2.4 Bubbles and weak localization in low dimensions

As explained in Subsec. 2.2.2, in dimension d ≤ 2, non-interacting particles are weakly localized by

any non-vanishing disorder strength. Since bubbles resemble a particle-like excitation, one should

discuss whether they undergo a similar weak localization in low dimensions.

Indeed, at zero temperature, the answer is expected to be positive. However, since I consider

a �nite energy density, it would be incorrect to picture the bubble as moving in a low-dimensional

�xed disorder potential. As the bubble moves, it can excite or relax degrees of freedom. Thus

the Hilbert space locally resembles a tree, rather than a low-dimensional lattice (the number

of relevant con�gurations that can be reached as the bubble moves grows exponentially, rather
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than polynomially with the traveled distance), and thus weak localization e�ects should become

irrelevant.

More concretely, let ` be the localization length of the bubble motion at zero temperature, i.e.

in the ground state (�xed environment). Obviously, ` increases with the bubble size since larger

bubbles have more internal states (cfr. the increase of single particle localization length with the

number of channels in d = 1 [14]); for large bubbles ` will be due to weak-localization e�ects. Now

consider �nite energy density, and d = 1 for simplicity. Let s > 0 be the entropy density in the

cold background. Then the condition s` � 1 is su�cient to ensure that inelastic scatterings of

the bubble occur before the weak localization manifests itself, rendering them irrelevant for large

enough bubbles. Note, however, that this condition places an additional lower bound on the size

of mobile bubbles in low dimensions.

4.3 Lack of ergodicity in small weakly disordered 1d inter-

acting systems

The theoretical arguments explained in this Chapter contradict recent numerical data in favor of

mobility edges [44, 45, 46, 47]. The inconsistency is, however, only apparent. Indeed, one �nds

that numerically accessible system sizes are not su�ciently large to host bubbles that are ergodic

enough to be mobile. Therefore, delocalization by bubbles could not have been seen in numerics

up to now. In other words, the numerical results do not contradict delocalization by rare bubbles,

but rather con�rm that available sizes are not large enough. To show this fact, the disordered

Ising chain with next-to-nearest neighbor interaction considered in Ref. [44] is studied,

H = −
L∑
i=1

[
(J + δJi)σ

z
i σ

z
i+1 + J2σ

z
i σ

z
i+2 + hzσ

z
i + hxσ

x
i

]
, (4.3.1)

where δJi ∈
[
− δJ

2
, δJ

2

]
are independent random variables, and periodic boundary conditions are

taken. Parameters J = 1, J2 = 0.3 and hx = 0.6 are chosen as in Ref. [44], but a �nite hz = 0.1

is added to remove the Ising symmetry and the associated degeneracies. The phase diagram in

Ref. [44] predicts a mobility edge in the thermodynamic limit at disorder strength δJ = 3. To

test the ideas of this Chapter, I prepare the system at δJ = 3 in a product state of the form

|ψ(0)〉L = |φc〉Lc ⊗ |χh〉L−Lc , where |φc〉 is the ground state of an interval of Lc sites, while |χh〉
is an eigenstate of the complement close to the middle of the spectrum, which represents a hot

bubble. I choose L − Lc as large as possible but such that the resulting global energy density is

below the putative mobility edge. I then compute the time-evolving energy density on link (i, i+1),

εi (t) ≡ − (J + δJi) 〈ψ (t)|σzi σzi+1 |ψ (t)〉 . (4.3.2)
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Figure 4.3.1: Left: Disorder averaged energy per link εi at t = 0 (red) and averaged over time
(green) for L = 12. Initially a cold region of length Lc = L/2 is prepared. The disorder strength
is δJ = 3J . Right: Same protocol, but for δJ = J and very short cold intervals (Lc = 2), at
various L. The memory e�ects diminish with increasing L, but the hot region fails to thermalize
the system well, even at the largest sizes. Results were averaged over 5000 disorder realizations.

The theory of mobile bubbles would predict that the εi(t) pro�le becomes approximately �at as

t → ∞. Via exact diagonalization, its time average has been evaluated, but almost no energy

spreading from the initial state is observed cf. Fig. 4.3.1 (left). One may wonder that this

observation implies that hot bubbles are unable to spread, and thus that it falsi�es the argument

for delocalization, but this conclusion is wrong. Even for tiny cold regions (Lc = 2) and bubbles

of almost the system size, still only a very small fraction of the bubble energy spreads to the cold

region at L = 12 (not shown). However, since the global energy density is by far supercritical, in

the thermodynamic limit the energy pro�le has to obviously thermalize and become �at. Therefore,

this data shows unambiguously that at the available system sizes the hot region is still unable to

act as a bath.

To document this further, I calculated the inverse participation ratio (IPR) of an eigenstate

|α〉 of the full system, acted upon by a local unitary operator such as σz1, in a basis of eigenstates

|β〉:
IPRα ≡

∑
β

|〈β|σz1 |α〉|
4 . (4.3.3)

At strong disorder, eigenstates are nearly eigenstates of σzi as well, and thus IPRα ≈ O(1), whereas

deep in the delocalized phase, one expects eigenstate thermalization and behavior akin to random

matrix theory, |〈β|σz1 |α〉| ∝ exp[−sL/2], leading to a typical value IPRα ∼ exp[−sL], with a

narrow distribution. The results shown in Fig. 4.3.2 con�rm the absence of a truly ergodic phase

at L = 12 and δJ = 3, in accordance with results of [44]. In fact, the distribution of IPR's at

these parameters looks more characteristic of localization. Nevertheless a slight, but clear tendency
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towards enhanced delocalization with increasing size is seen. This hints that in the thermodynamic

limit the system will become ergodic, in agreement with the �nite size extrapolations in [44].

To chart the lack of ergodicity at small sizes, I also look at δJ = 1, where Ref. [44] suggests

that most eigenstates are delocalized, even at L = 12. Nevertheless, here, too, strong deviations

from fully ergodic behavior are found, using the same two protocols as above. Even in the extreme

case of Lc = 2 in Fig. 4.3.1 (right), despite some energy transfer, the hot and cold regions are still

clearly distinguishable. This behavior can not obviously take place in the thermodynamic limit:

this shows that the reachable system sizes are too far from the thermodynamic limit to allow for

a trustworthy extrapolation. To quantify this e�ect, I consider the time average of the energy

imbalance between hot and cold regions, ∆ε ≡ (L − 3)−1
∑

i/∈{c,c±1}(εi − εc), where c denotes

the single link fully in the cold region. The imbalance decays exponentially with system size,

∆ε ∼ exp (−L/ξ) where ξ increases with disorder strength, as shown in Fig. 4.3.3. For δJ/J in

the range [1, 1.5] I estimate ξ ≈ O(10), which sets a characteristic scale required to observe genuine

ergodic behavior. This suggests strongly that at reachable sizes the hot bubble is far from being

ergodic. Also Fig. 4.3.2 illustrates that δJ = 1, L = 12 is far from the thermodynamic limit:

the distribution of ln (IPRα) is much wider (as compared to the mean) than in a clearly ergodic

sample.

As a conclusion, the numerical analysis provided in this Section clearly shows that the available

system sizes are too small for ETH to be safely applied. Therefore, they are outside the range of

applicability of the bubble argument, which crucially relies on ETH, and no numerical data present

in the literature at the moment can be used to disprove it.

4.4 Bubbles in quantum glasses

The bubble argument of Sec. 4.2 can be straightforwardly extended to the case of quantum

glasses, by simply reversing the role of cold and hot regions, since in absence of quenched disorder

localization is favored at high temperature. Indeed, this is the context in which the �rst version

of the argument was formulated [39, 40]. In the thermodynamic limit, one can thus conclude that

no real localization can be present in absence of disorder, since for any �nite hopping t the lowest

part of the spectrum is ergodic, and can thus be used to form a bubble. From the conceptual point

of view, this strongly contrasts with disorder induced MBL, where a fully localized phase is truly

present in the thermodynamic limit, at least in lattice models.

However, this di�erence gets blurred for systems which are relevant for the experimental point

of view, because the bubble argument assumes both the system size and the time for which it is

observed to be in�nite. Of course, neither of these assumptions hold in realistic setups. From the

numerical point of view, the limitations of the exact diagonalization methods have been pointed

out in Sec. 4.3. For what regards experiments, it is very di�cult to estimate how long it would

take for an inhomogeneous initial condition to relax due to bubbles, since one has to take care
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Figure 4.3.2: Distribution of ln(IPR) associated with matrix elements of σz1 evaluated on eigenstates
randomly picked from the middle of the spectrum, for δJ/J = 0.1, 1, 3, 5. In the ergodic phase,
the typical IPR is exponentially small in the size L. In the localized phase, the distribution is
size independent. At δJ = J and the considered L, the distribution is very wide as compared
to the typical IPR: the plots at δJ = J and δJ = 0.1J are plotted with the same range on the
horizontal axis, to better underline the di�erence. δJ = 3J is nearly critical: the 'localized' peak
at IPR = O(1) slowly decreases with increasing L.
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δJ/J=1

 

δJ/J=1.1

 

δJ/J=1.2

δJ/J=1.3

 

δJ/J=1.4

 

δJ/J=1.5

 

Figure 4.3.3: Energy imbalance ∆ε as a function of system size, for disorder strengths J ≤ δJ ≤
1.5J . The imbalance decays exponentially in system size, but is still non-negligible for the reachable
values of L.

of all caveats explained in Sec. 4.2 to obtain a realistic estimation. However, it is rather easy to

estimate the density of bubbles present in a random initial condition, and this calculation is shown

here for the e�ective Hamiltonian (3.2.2).

Let us consider an initial random state which includes an ergodic bubble where the local energy

density is below the critical threshold for bulk localization (see Fig. 3.4.1). The global density of

particles ρ is assumed to be small, and t su�ciently smaller than the delocalization threshold tc (ρ),

as estimated in Eq. (3.3.56) for states with roughly homogeneous density distributions. Recalling

that the critical hopping scales as tc ∝ ρβ, the density ρB in the ergodic bubble should be smaller

than
ρB
ρ

.

(
t

tc

) 1
β

. (4.4.1)

Denoting by LB the number of sites in the bubble, the dimension of the Hilbert space HB of

internal states with ρBLB particles is

dim (HB) =

(
LB

ρBLB

)
≈ exp [ρB (1− ln ρB)LB] ≡ κLB , ρB � 1. (4.4.2)

Since ρB < ρ is assumed to be very small, κ is very close to 1, such that the phase space of such

bubbles grows slowly with their size. Consequently, very large regions are necessary to obtain
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small enough level spacings that might potentially induce delocalization of the bubble.

The minimal size LB is estimated from the hybridization between an initial bubble state ψi
and a �nal state ψf in which the bubble has moved by one site. Delocalization may potentially

occur if the admixture of ψf to ψi is large in second order in perturbation theory, i.e., if

∑
ψB

〈ψf |O |ψB〉 〈ψB|O |ψi〉
(Ei − EB) (Ei − Ef )

& 1, (4.4.3)

where |ψB〉 runs over the intermediate states, and t × O is the part of the hopping Hamiltonian

that couples the bubble to the surrounding degrees of freedom. This is follows immediately from

Eq. (4.2.1). Applying the estimates of Sec. (4.2), matrix elements with a generic local operator

scale as

〈φ|O |χ〉 ∼ 1√
dim (HB)

∼ κ−
LB
2 , (4.4.4)

where φ, χ label generic internal eigenstates, while the optimal energy di�erence scale as

min
χ
|Eχ − Eφ| ∼

U

dim (HB)
∼ Uκ−LB . (4.4.5)

Inserting these estimates into Eq. (4.4.3), a condition on LB is obtained:

LB &
ln (U/t)

lnκ
=

1

ρB

ln (U/t)

ln (1/ρB) + 1
. (4.4.6)

Note that the required length diverges logarithmically in the limit t → 0, implying that these

bubbles are non-perturbative in nature. To make a concrete example, for ρ = 0.1 and t = 0.01 one

�nds ρB . 0.01 and LB & 60: of course, such a bubble length is by far impossible to reproduce in

current numerics.

The density nB of such large bubbles is given by the probability of �nding only ρBLB particles

in a region of length LB, while the global density is ρ. For small ρ and t this is given by

nB ≈

(
LB

ρBLB

)
ρρBLB (1− ρ)LB(1−ρB) ≈ exp

[
−LB

(
ρ− ρB − ρB ln

ρ

ρB

)]
. (4.4.7)

In the regime t� tc (and thus ρB � ρ) this can be approximated as nB ≈ exp (−ρLB). Using

the bound on ρB from Eq. (3.3.56) we �nd an upper bound on the density of ergodic bubbles,

nB . exp (−ρLB) . exp

−2

(
tc
t

) 1
β ln (U/t)

ln
[

1
ρ

(
tc
t

) 1
β

]
+ 1

 . (4.4.8)

This is exponentially small and non-perturbative in the limit t → 0. For the value considered
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above, one �nds nB . ×10−3. This shows that, deep in the localized phase, such e�ects can

be safely neglected for realistic system sizes, and the perturbative properties of quantum glasses

shown in Chap. 3 can be seen in experiments.

If one needs to further increase the minimal size of bubbles, which is able to restore transport,

one may resort to long range interactions. The argument of Sec. 4.2 assumed the interactions to

have strictly �nite range, but this assumption can be relaxed, taking e.g. a power law interaction

v (r) ∝ r−β (without the screening e�ect present in the e�ective model (3.2.2)). For β > 2d, d

being the spatial dimension, a local energy density can be de�ned, and therefore one is still identify

�nite regions of space as hot and cold, and then proceed in the same way as with local interactions.

This follows from the fact that the internal energy of a bubble grows with its volume LdB, while

the interaction energy with the surrounding regions scales like its surface Ld−1
B . One can then

conclude that, despite the presence of long range interactions, the energy density of a very large

bubble can not be brought above the putative mobility edge by interactions with its environment,

and that it can move through the system and act as a mobile bath. But the minimal required LB
will be much larger than the value estimated in Eq. (4.4.6). Still, in the presence of long range

interactions quantum glasses will look localized up to much larger system sizes, even though in the

thermodynamic limit they will allow for transport.

Finally, even though the situation looks rather unphysical, one may speculate about what

happens with a really in�nite range interaction, β < 2d. In this case, each component of the

system interacts with all the others, the interaction energy is super-extensive, and it is not possible

to de�ne a local energy density. In this particular setup, the coarse-graining procedure of Sec. 4.2

becomes meaningless, and the concept of a �cold bubble� itself can not be de�ned. So, in this

context, it is possible that a quantum glass would behave like a real MBL system, as postulated

in a recent work [116]. A model of this kind would not have a well de�ned thermodynamic limit,

however, so the analysis of its properties looks like a quite academic problem, without much interest

for realistic situations.



Chapter 5

Discussion and conclusion

The main focus of this thesis consists in discussing the role played by disorder and temperature

in the physics of localization. Disordered closed quantum systems are a very di�cult subject to

study, since one is restricted to rely on perturbative calculations in the thermodynamic limit and

numerical simulations of very small systems. Combined with the fact that such systems often

behave in a very counter-intuitive way, it is not surprising that our understanding of this subject

is limited, and that it represents a very active matter of debate. In my work, I have analyzed some

features of MBL systems, which were previously overlooked in the literature, and shown that they

lead to highly non-trivial physical consequences.

While real MBL can happen only in the presence of disorder, I have shown that phenomena

strikingly similar to it can take place even in translation invariant models, in the presence of strong

interactions. I have found that these �quantum glasses�, once prepared in an inhomogeneous initial

condition, retain their inhomogeneity for exponentially long times. While local resonances induce

fast relaxation processes, just like it happens in the presence of disorder, global homogenization

requires much longer time scales to take place. This phenomenon, which can be observed in

realistic experimental situations, was not previously noticed because it is a feature of the high

temperature part of the spectrum only, while the lowest energy excitations above the ground state

are always delocalized and ergodic. The presence of a delocalized part of the spectrum for any value

of the parameters of the model is the reason for which, in the thermodynamic limit, ergodicity

and transport are restored for quantum glasses, due to the very rare events that are not captured

by perturbation theory. For realistic systems that can be realized in experiments, however, the

probability of such events is so low that, for all practical purposes, the system will look localized,

until its non-ergodicity is removed by the residual coupling to the environment.

In the presence of disorder, MBL is possible in lattice models, as long as the whole spectrum

is localized. If perturbation theory predicts a putative mobility edge to be present instead, it

can be shown that localization is unstable against large the inclusion of large but �nite regions,

where the energy density is higher than the critical value. Such regions, which I call �bubbles�,
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which are always present in the thermodynamic limit, can be argued to be able to move through the

system and to restore transport and thermalization, under the only assumption that they internally

satisfy ETH. Therefore, any system with a putative mobility edge behaves qualitatively like a

quantum glass in the thermodynamic limit, in the sense that non-perturbatively slow transport

and ergodicity are present. Interestingly, this implies that in the continuum no MBL is possible,

and a �quantum glassy� behavior is expected even at very strong disorder. Finally, through a

careful numerical study, I have found that systems studied numerically so far are too small to host

bubbles which can be described in terms of ETH: therefore, the argument for delocalization by

bubbles does not contrast with the numerical data present in the literature.

This work raises many interesting open questions, which still need to be addressed. Among

the various ones, an important problem regards the role of dimensionality for quantum glasses:

up to now, most of the proposed realizations are strictly one dimensional. In higher dimensions,

the analysis is made much more di�cult by the fact that it is much more di�cult to analytically

control the probability of resonances. While I believe that there is no fundamental impossibility of

having a quantum glass in higher dimension, it would be important to �nd a simple model in d > 1

where quantum glassiness can be shown. This is especially relevant for experimental realizations.

Another important challenge regards the transport due to bubbles in the thermodynamic limit.

While I have shown that they induce a �nite conductivity in the system, up to now it has not

been possible to estimate its value. Being able to compute the dependence of conductivity from

temperature would allow to study the crossover from the Gri�ths phase at low T to the metal at

high T , which would be the �rst step to characterize the full phase diagram of MBL models.
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