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The present thesis is devoted to the study of physical phenomena emerging from

strong correlations in strongly interacting quantum many-body systems with several

components. Hubbard models are widely used as minimal models which take into

account the interactions between particles and they have been studied in relation to

phenomena such as Mott localization, unconventional superconductivity, quantum

magnetism and many others. All of these striking phenomena share their origin from

the strong correlations among fermions induced by their mutual interactions.

Furthermore, condensed matter models are usually realized only in an approximate

fashion in actual solid-state systems, making the situation all the more puzzling and

hard to be treated analytically or numerically.

Therefore, a great effort has been performed to simulate Hubbard models in a system

of atoms cooled down to ultra low temperatures and trapped in optical lattices. The

most peculiar feature of cold atoms experiments consists in the possibility of tuning

relevant physical parameters of the systems, as the density or the interactions among

atoms, using laser and/or magnetic fields. This paved the way to the observation

of fundamental quantum states of matter as the weakly interacting Bose-Einstein

condensate, the superfluid to Mott insulator transition, the superfluid BEC-BCS

crossover, the Mott transition in systems of composite fermions and so on. Hence, it is

considered of great interest establishing connections between the quantum simulations

cold atomic toolbox and systems realized in solid-state physics.

This idea perfectly fits within the central aim of the thesis. Indeed, simulations of

SU(N)-symmetric Hubbard models achieved experimentally with a cold atomic gas

of ytterbium atoms (173Yb) represents the main inspiration of the entire work. The

higher spin degeneracy is brought by the nature of the atomic collisions that will be

discussed extensively in the progress of this introductory part. Another experimental

success that embodies an additional source of inspiration consists in the realization of

artificial gauge fields exploiting light-matter interactions in cold atomic systems.

In this work, the interest of studying such symmetric models has not to be found in the

possibility of carrying out a large-N expansion, leading to a semiclassical description

of the model. Conversely, N ≥ 2 is rather considered to be a finite integer number,

in order to establish a correspondence with solid-state physics, where the interplay

among the internal degrees of freedom of electrons (spin, orbital) are believed to play

a crucial role in many physical phenomena of interest.

In the progress of this introduction, a prelude about multi-orbital systems is given in
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order to provide such a correspondence. Afterwards, the last achievements within cold

atomic experiments in optical lattices are reviewed. In particular, it will be shown

how the realization of the above mentioned SU(N)-symmetric Hubbard models is

experimentally achieved using alkaline-earth or alkaline-earth like atoms. Furthermore,

the actual experimental scheme for the realization of artificial gauge fields is also

explained in detail. Finally, a brief plan of the second part, containing the main results

of this work is presented.
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CHAPTER 1

PRELUDE: MULTIORBITAL PHYSICS

IN SOLID STATE

In the last few years, the field of strongly correlated electron systems and exotic

superconductors has shifted the focus on multicomponent systems, in which more than

one orbital contributes to the low-energy electronic structure and/or more bands cross

the Fermi energy or lie very close to it [27]. This may lead to a variety of phenomena

which can not be described merely as a superposition of individual components, but

show distinctive phenomena which have just been started to be characterized and

understood. Among these systems can be actually counted a variety of transition-

metal oxides, like, e.g. rhutenates, iridates, vanadates and nickelates with the notable

exemption of the copper-based high-temperature superconductors, where a single

band crosses the Fermi level. A special role in this context is played by iron-based

superconductors and related compounds, where a distinctive multiband structure is

believed to be crucial for the superconducting pairing [19]. Finally, a multiorbital

electronic structure is crucial to give rise to strongly correlated electron-phonon driven

superconductivity in alkali-metal doped fullerides [14].

The motivation of the present thesis is the beginning of a cross-fertilization between

this evolving field and the world on ”quantum simulations” with cold atoms in optical

lattices. As explained in detail in the next section, also the field of cold-atoms is now
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developing in the direction of multicomponent systems, which are here exemplified by

Ytterbium (173Yb) atoms, which have two electrons in their outer shell and feature

a large nuclear spin as well as the possibility to populate also an excited electronic

configuration besides the ground state.

When a solid-state system has a multiorbital character, the interactions become

immediately richer. Even in the simplest tight-binding approximation where we

also assume that the Coulomb interaction is screened and it becomes effectively

local, it happens that the more familiar Hubbard repulsion which controls the charge

fluctuations on each atom is supplemented by a Hund’s exchange interaction, whose

main effect is essentially to make energetically favorable that two electrons on the

same atom occupy different orbitals with the same spin. This leads to another energy

scale, typically significantly smaller than the Hubbard repulsion, which however can

strongly influence the physics. Another crucial parameter is a local hybridization

between orbitals (essentially a local ”hopping”) which also introduces a new energy

scale by splitting the degenerate levels.

A second direct consequence of the multiorbital nature of the electronic structure is

the possibility that some parameters differentiate the various orbitals. For example

one can have an orbital-dependent hopping or Coulomb interaction (if the rotational

invariant is broken), or a crystal-field splitting, which favors an uneven occupation of

the orbitals. All these effect promote different observables in the different orbitals,

a different which can be strongly enhanced by an increase of the overall Coulomb

interaction. A notable example is the so-called orbital-selective Mott transition, in

which by increasing the Coulomb interaction, one or more of the orbitals become Mott

localized for a weaker coupling than the others, leading to a window of parameter in

which part of the system is localized, while another part is still metallic.

The identification of the conditions for orbital-selective Mott transitions in diferent

simple models [23, 22, 41] has triggered also studies of actual materials which identified

an orbital-selective degree of correlation as a key organizing principle to understand

the properties of iron-based superconductors [21]. The latter compounds have been

indeed the ground where most of the current understanding of the peculiar properties

of multiorbital systems has been forged, including the role of the Hund’d coupling

[34] and the realization of a potentially new kind of correlated material which goes

under the name of a Hund’s metal and features anomalous responses [68, 33].

In this work we explore how some of this physics can be realized with multicomponent
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cold-atom system. As mentioned before, ultracold gases of 173Yb are the ideal

playground to establish this connection. Indeed these systems allow to realize an

immense number of opportunities including an orbital degree of freedom, an internal

spin degree of freedom which can take up to six values (which may also been seen as a

discrete synthetic dimension), and which can feature artificial gauge fields mimicking

spin-orbit coupling as well as a tunable exchange term.

This thesis focuses mainly on some specific quantum systems which can be realized

with 173Yb atoms and in particular on the possibility of ”flavor selective” physics

that generalizes somehow the orbital-selective physics discussed in solid state. The

minimal system has been addressed is indeed a three-component gas where only three

spin flavors are selected. It is discussed the possibility of selective localization of

the different flavors when artificial gauge fields are included. For this reason the

simple case of real fields is considered, which mimic an hybridization in solid state,

rather than the complex fields describing an artificial spin-orbit coupling. In this

regard a particular attention has been paid to the possible instabilities towards orbital-

selective phase transition and charge instabilities. The competition with magnetism

and the possibility of finite-temperature divergence of the response functions is also

addressed.

This work indeed only starts to scratch the surface of an incredibly rich world of

quantum simulations, leaving an incredible number of interesting physical situations

for future works.
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CHAPTER 2

QUANTUM SIMULATIONS WITH

ULTRACOLD 173YB ATOMS

Quantum gases of atoms cooled down to ultracold temperatures provide a powerful

tool to manage quantum information and build quantum simulators of ideal condensed-

matter models which are only approximately realized in actual solid state systems.

The power of ultracold atom systems relies mainly in the ability to control and tune the

most relevant physical parameters, from the strength and the nature of the interactions

to the geometry and the statistics of the constituents. Therefore, the cold atoms

setup seems to embody the original idea of Feynman [25] for constructing physical

quantum emulators of systems or situations whose properties are hardly accessible to

numerical simulations. In many-body systems with strong inter-particle interactions

such a situation is rather the rule than the exception and one of the main directions

in the field of cold atoms is indeed the quantum simulations of strongly correlated

many-body systems[8].

In particular, optical lattices allow for the quantum simulations of popular lattice

models, such as the Hubbard model (see below) and many others [24][32][31]. The

realization of an optical lattice exploits the fact that atoms subject to a laser field

experience an effective potential whose absolute value is proportional to the intensity

of the laser beam. This is due to the interaction of the induced dipole moment
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of the atoms with laser light. If the frequency of the laser is below the atomic

resonance frequency, the atoms are attracted toward regions of high intensity1. Hence,

a periodic potential can be synthesized using standing waves with the appropriate

geometry tuned with an appropriate frequency. The case of a three dimensional optical

lattice is depicted in Fig.(2.1), where the periodic potential is given by V (x, y, z) =

V0 [cos2(k x) + cos2(k y) + cos2(k z)], where k = 2π
λ

, with λ being the wavelength of the

laser. However, two and one-dimensional lattices as well as more involved geometries

can be easily realized .

Figure 2.1: Schematic representation of an optical lattice in three dimension [24]. The
lattice is created by three mutually perpendicular laser standing waves. Interference
terms between two perpendicular beams can be avoided by choosing suitable polariza-
tions and frequency offsets for the standing waves. The atoms experience a periodic
attractive potential whose minima correspond to the intensity peaks of the standing
waves. The lattice spacing is given by λ/2, where λ is the wavelength of the laser.

Furthermore, atom-light interaction can be exploited to simulate the effect of a gauge

field (the most notable example being the electromagnetic field) onto an electron.

Since the atoms are neutral, one has to resort to Artificial Gauge Fields (AGF)

[20][29][64][17][50] which have been engineered in order to mimic static electric and

1A derivation of the effective potential experienced by an atom subject to a laser field is provided
in Appendix(C.1)
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Figure 2.2: (On the left) Molecular potentials as functions of the atomic separation
for two ground state 6Li atoms with electrons in singlet and triplet states [18]. (On
the right) Sketch of potential energy curves for two different scattering channels. Eres
refers to the bound state energy in the closed channel closed to Eth that indicates the
threshold energy of the open channel [59].

magnetic fields, as well as Spin-Orbit Coupling (SOC)[63][37], whose intensities can

be tuned with lasers in a controlled manner.

As mentioned above, one of the fundamental features of cold atoms experiments

consists in the possibility to tune the interactions between atoms. For dilute gases

the interactions between atoms occur via two-body scattering processes governed by

interatomic potentials, while three-body scattering is usually neglected because of

the low density. Even when the interactions between atoms are strong, they occur

only when two atoms are very close to each other, i.e. the range of the interactions

is much lower than typical interatomic distances. Therefore, a great simplification

in treating cold atomic systems is given by replacing the full inter-atomic potential

with an effective one which depends only on the scattering length a, which can be

computed using scattering theory [61][59] starting from the full interatomic potential.

The effective potential can then be written as U(r) = (4π~2a/m) δ(r), where m is the

mass of the atoms. Atomic collisions may occur within different channels that are

determined by the internal degrees of freedom of the atoms, as for instance the spin.

Different channels correspond to different interatomic potential curves. To understand

this, consider the specific case of alkali atoms that have one electron outside a closed

shell. When the two valence electrons relative to the two colliding atoms are in a

singlet state they can occupy the same orbital leading to covalent bonding. Conversely,

when the electronic spin configuration is symmetric, the spatial wave-function must be
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anti-symmetric with respect particle exchange, and therefore the reduction in energy

due to two electrons sharing the same orbital is absent. This is illustrated on the

left side of Fig.(2.2) that shows the interaction potentials for two 6Li atoms in their

ground state when the two valence electrons are in the singlet and triplet spin states.

Both the potentials are repulsive for short distances and at greater separations they

are attractive. Nevertheless the minimum relative to the singlet state is much lower

than the triplet state. Each potential tends toward a constant when evaluated at large

distances that is often called threshold energy.

In real systems different channels are coupled with each other. This coupling is usually

weak, nevertheless becomes relevant if a bound state of one channel is very close to

the threshold energy of the other as depicted on the right side of Fig.(2.2). When

such a situation occurs, the scattering length relative to the open channel, i.e. the

channel with lower threshold energy, is dramatically affected and in particular has the

following behavior

a ∼ C

E − Eres
, (2.1)

where C is a constant, E is the energy of the particles in the open channel and Eres is

the bound state energy relative to the closed channel, i.e. the channel with higher

threshold energy2. Therefore the scattering length diverges at the resonance and

changes its sign when E crosses Eres.

This can be achieved by tuning the relative distance between the threshold energies

of the two channels, which in certain cases can accomplished using a magnetic field.

Such a phenomenon is called Feshbach resonance [18][59][39][54][36] and it is of course

of great interest, because it allows to tune the effective interactions among atoms

using an external parameter that can be easily controlled.

The use of Feshbach resonances combined with optical lattices allows to simulate

tight-binding models with tunable interactions between atoms which hop on the same

2It is worth to notice, that at low energies, i.e. when E is close to the threshold energy of the
open channel, there cannot be direct transitions from the open channel to the closed one. In fact, in
a scattering process at low energies, two particles that interact in the open channel must be at rest
at infinite distance. This cannot occur if there is a direct transition to the closed channel, because
the particles would be trapped in a finite region forever. Nevertheless second order virtual processes
are allowed, and two particles colliding in the open channel can scatter in an intermediate state in
the closed channel and after decay back to the open channel.
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lattice site, realizing the celebrated Hubbard model [40][66]

H = −t
∑
〈RR′〉,σ

c†RσcR′σ + U
∑
R

n̂R↑n̂R↓ − µ
∑
Rσ

n̂Rσ, (2.2)

where cRσ is the destruction operator of a fermion with spin σ on the site (minimum

of the optical latttice) R, n̂Rσ ≡ c†RσcRσ is the number operator, t is the tunneling

amplitude between two neighboring minima and U is the tunable Hubbard on-site

repulsion which depends on the scattering amplitude. The model (2.2) assumes that

the fermions have spin 1/2 and they exist in a single band. This simple version of the

model is very popular in solid state both because it is arguably the simplest model

which shows the physics of strong correlations and the Mott-Hubbard transition, which

we describe in some details in the next chapter, and because the two-dimensional

version of this model is believed to be the basis of the theoretical understanding

of high-temperature superconductivity in copper oxides. This work, motivated and

inspired by multiorbital materials, focuses on multicomponent Hubbard models and

their realization with ultracold atoms.

In the progress of this chapter it will be given a brief overview of the main theoret-

ical and experimental facts concerning the simulation of multi-orbital and SU(N)-

symmetric Hubbard Models which can also feature artificial gauge fields. In particular

it will be discusses the case of atoms with two electrons in the outer shell, sharing

the external electronic configuration with alkaline-earth atoms. The most popular

example in the field is the quantum degenerate gas of Ytterbium (173Yb) atoms, which

has a nuclear spin I = 5/2 which is essentially decoupled from the electronic degrees

of freedom. As a consequence the scattering length does not depend on the nuclear

spin indices, so that the interaction have a full SU(N) symmetry, where N = 2I + 1

is the number of possible ”flavors” for the fermions, and reaches the value of 6 for

Ytterbium [31]. The experimental evidences relative to the exchange interactions

between two different atomic species and the possibility of tuning such an interaction

through Feshbach resonance will be also summarized [15][62][54][36]. Finally the

actual experimental scheme adopted for simulating AGF will be presented [17][50]

and the many body hamiltonian will be derived from the atomic one.
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2.1 Simulation of two-band and SU(N)-symmetric

Hubbard models with Ytterbium atoms

Atoms with two electrons in their outer shell, thereby sharing the configuration

of alkaline earths have two main features that make them suitable for many-body

simulations:

The first one is the presence of a long lived metastable state 3P0 coupled to the ground

state 1S0 via a forbidden dipole transition. The second is based on the almost perfect

decoupling of the nuclear spin I from the electronic angular momentum J in these two

states, because they both have J = 0. This implies that scattering lengths involving

any of these states are independent of the nuclear spin, aside from the restrictions

imposed by fermionic antisymmetry. Therefore, the interaction of the system are

SU(N)-symmetric with N = 2 I + 1, where I is the nuclear spin.

The second crucial property stems from the long lifetime of the metastable state 3P0,

which gives to the possibility to prepare an interacting system with two different

species (corresponding to the two different electronic configurations) of atoms in an

optical lattice, which is the quantum simulator of a model with two orbitals per site

and two bands.

The two orbital are labeled as α = e, g, where |e〉 = |3P0〉 (|g〉 = |1S0〉) corresponding

to one atom in the excited (ground) state. Hence, the collisions among atoms can

occur within four different channels that are labeled respectively ee, gg, eg+, eg−.

This last correspond to collisions between two atoms that are in triplet orbital states

(|ee〉, |gg〉, |eg+〉) or in the two particle anti-symmetric orbital state |eg−〉. These are

the only possible configurations, since the interactions are local and therefore the

spatial wave function is always symmetric (s-wave). These considerations together

with the facts that different channels are weakly coupled and the scattering length

does not depend on the spin indices lead to the following hamiltonian for the two
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species of alkaline-earth atoms trapped in an optical potential:

Ĥ =
∑
αm

∫
dx Ψ†αm(x)

(
− ~2

2m
∇2 + Vα(x)

)
Ψαm(x)

+ ~ω0

∫
dx (ρe(x)− ρg(x)) +

geg+ + geg−

2

∫
dx ρe(x)ρg(x)

+
∑
α

∑
m<m′

gαα

∫
dx ραm(x)ραm′(x)

+
geg− − geg+

2

∑
mm′

∫
dx Ψ†gm(x)Ψgm′(x)Ψ†em′(x)Ψem(x), (2.3)

where Ψ†αm(x) is the Fermi field that creates one atom in x with orbital and spin

quantum numbers α and m satisfying the anticommutation relations:

{
Ψ†αm(x),Ψβm′(y)

}
= δ(x− y) δmm′ δαβ ,{

Ψαm(x),Ψβm′(y)
}

=
{

Ψ†αm(x),Ψ†βm′(y)
}

= 0 . (2.4)

ρα(x) =
∑

m ραm(x), with ραm(x) ≡ Ψ†αm(x)Ψαm(x) being the density operator

relative to the fermionic species labeled by the m and α indices, Vα(x) is the optical

periodic potential felt by atoms in the α-th orbital, ~ω0 is the energy difference

between the ground and excited states of the atom. The spin quantum number

m = −I, .., I denotes one of the 2 I + 1 Zeeman level of the nucleus. The values gαα,

geg± are the strength of the interactions relative to the four different collision channels

that are related to the scattering lengths through the relation gX = (4π~2/m) aX ,

where X = ee, gg, eg+, eg−. For a more detailed derivation of the interacting terms

appearing in the hamiltonian in eq.(2.3) see Appendix(A).

The Fermi field Ψ†αm(x) can be represented in both Bloch and Wannier basis:

Ψαm(x) ≡
∑
k

∑
λ

∑
m

ψkλα(x) ckαλm (Bloch)

Ψαm(x) ≡
∑
R

∑
λ

∑
m

wRλα(x) cRαλm (Wannier), (2.5)

where c†Rαλm is the creation operator of a fermion on the lattice site R, with α,

m and λ being the orbital, spin and lattice band indices respectively. This op-

erator is related to c†kαm via Fourier transformation on the lattice, i.e. c†kαλm =
1
N

∑
R e

iR·kckαλm. {ψkλα(x)} and {wRλ(x)} are respectively the set of the Bloch

and Wannier functions, that are related to each other through the following relation
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wRλα(x) = 1
N

∑
k e
−ik·R ψkλα(x). In many cold atoms experiments, it is assumed that

only the lowest lattice band is populated, hence the subscript λ will be dropped from

now on. Representing the Fermi fields in the Wannier basis, the second quantization

expression of the alkaline-earth atoms hamiltonian in eq.(2.3) reads:

Ĥ =
∑
RR′

∑
αm

tαRR′ c
†
RαmcR′αm +

∑
α

Uαα
2
nRα(nRα − 1) + V

∑
R

nRenRg

+ Vex
∑
R

c†R gmc
†
R em′cR gm′cR em (2.6)

where tαRR′ =
∫
dxw∗Rα(x)

[
−~2∇2

2m
+ Vα(x)

]
wR′α(x) is the hopping integral, Uαα =

gαα
∫
dxw4

Rα(x) represent the onsite interactions relative to two electrons in the

same orbital. Vex = (Ueg+ − Ueg−)/2 and V = (Ueg+ + Ueg−)/2 correspond to the

exchange and direct orbital interactions strengths that are given by the relations

Ueg± = geg±
∫
dxw2

e(x)w2
g(x). c†Rαm is the creation operator relative to a fermion

on a lattice site R with orbital and spin quantum numbers α and m respectively,

nRα =
∑

m nRαm, where nRαm ≡ c†RαmcRαm.

The hamiltonian in eq.(2.6) is symmetric under SU(N) unitary transformation of the

fields, that act on the spin indices, that is a direct consequence of the fact that the

scattering lengths relative to the four different channels do not depend on the spin

indices. Formally, the hamiltonian commutes with the Lie algebra generators Smm′ ,

that are defined by the commutation relations [Smn , S
p
q ] = δmqS

p
n − δpnSmq , and that

can be represented using the second quantization operators as Smm′ =
∑

Rα c
†
Rαm′cRαm.

The alkaline earth atoms hamiltonian has an additional symmetry that derives from

the elasticity of the electronic collisions. To understand this one can define the SU(2)

pseudo-spin algebra as T µ = 1
2

∑
Rm

∑
αβ c

†
Rαm (σµ)αβ cRβm, where σµ=x,y,z are the

Pauli matrices and verify that [H,T z] = 0.

2.2 Experimental evidences

An important consequence of the SU(N) symmetry is the conservation of Smm =∑
Rm nRm, i.e. the density relative to the the m-th spin index. Therefore atoms

with large nuclear momentum as 173Yb (I = 5/2) or 87Sr (I = 9/2) can be used to

reproduce the dynamics of atoms with lower total momentum, choosing an initial

state with 〈Smm〉 = 0 for some spin indices m. This paves the way for the possibility
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of simulating SU(N) symmetric models with N ≤ 2 I + 1 using the same atoms [55]

[70].

Another distinctive feature of the hamiltonian in eq.(2.6) is the presence of the exchange

interaction proportional to Vex. This term is also present in multiorbital models in

solid state, where the exchange interactions are responsible of the first two Hund’s

rules. As we discussed in the first paragraph of this chapter, the Hund’s coupling has

been recently identified as the source of a variety of remarkable phenomea, ranging

from an Orbital Selective Mott Transition [41][67][23][22], where a Mott transition

occurs for electrons in certain orbitals and coherent excitations survive only for other

orbitals to anomalous metallic states. Furthermore, when this coupling is taken to

be negative, as it is effectively realized in superconducting alkali-doped fullerides, it

gives rise to unconventional superconductivity as shown for the case of the multi-band

Hubbard model [13][14].

Hence, a great effort has been performed experimentally and theoretically, in order to

confirm the SU(N)-symmetry of alkaline earth atoms collisions, to detect the exchange

interaction and to engineer a Feshbach resonance in the eg− channel allowing for the

possibility of tuning the interaction strength Vex [15][62][69][54][36].

In this introductory section it will be given a brief review of the main goals achieved

in the experiments reported in Refs.[15][54] taken as illustrative cases.

In particular in the experiment reported in Ref.[15] the exchange interaction has been

probed through a direct observation of inter-orbital spin oscillations. More in detail,

the experiment has been performed on quantum degenerate Fermi gases of 173Yb in

a balanced mixture of two different states out of the I = 5/2 nuclear spin manifold

|m〉 = |+5/2〉 ≡ |↑〉 and |m〉 = |−5/2〉 ≡ |↓〉 trapped in a deep 3D optical lattice. The

longlived |e〉 state was populated by exciting the 1S0 →3 P0 clock transition. Given

the large lattice depth, tunneling of atoms between different lattice sites is negligible.

This amounts to set tα = 0 for every α in the hamiltonian in eq.(2.6), that within this

limit becomes a summation of local atomic hamiltonians. Assuming homogeneity in

the center of the trap and the experimental condition reported, the subspace of interest

is that one with n = 1 for each spin and orbital state. Therefore, the hamiltonian

within this subspace can be expressed as a 2× 2 matrix whose eigenvectors are the

singlet and triplet states:

∣∣eg±〉 =
1√
2

(|g ↑ e ↓〉 ∓ |g ↓ e ↑〉) , (2.7)
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with eigenvalues V ± Vex. Therefore if an initial state is prepared in the state

|ψ(t = 0)〉 = |g ↑ e ↓〉, at time t the probability of finding a ground state atom in the

|g ↑〉 state would is given by

P (|g ↑〉)(t) =
1

2

[
1 + cos

(
2Vex
~

t

)]
. (2.8)

Such an initial state could be obtained exploiting the action of a magnetic field that

couples the states |eg±〉. This is possible because of the orbital dependence of the

Landé factor, amounting in a different splitting between ↑ and ↓ in different orbitals

[9] as shown schematically in Fig.(2.3). Hence, in presence of a magnetic field B, the

Figure 2.3: Schematic representation of the different splitting between ↑ and ↓ states
in different orbital due to a non zero differential Landé factor δ = δe − δg.

|eg±〉 states are coupled and the hamiltonian in the {|eg+〉 , |eg−〉} basis reads:

H =

(
V + Vex ∆µB

∆µB V − Vex

)
. (2.9)

∆µB = δµN∆mB is called differential Zeeman shift , where µN is the nuclear

magneton, B is the magnetic field intensity, δ = δe − δg is the differential Landé

factor and ∆m is the difference between the two quantum numbers m↑, m↓. The

eigenvalues of the matrix are V ±
√
V 2
ex + ∆2 and the eigenvectors labeled as

∣∣egL〉,∣∣egH〉 are given by superpositions of the |eg±〉 states. These states correspond to

|g ↑ e ↓〉, |g ↓ e ↑〉 when ∆µB � V . Therefore, the initial state |ψ0〉 = |g ↑ e ↓〉 can

be obtained, letting the system relax in its ground state using an intense magnetic

field. Hence, after quenching the magnetic field to zero, if Vex 6= 0 the system evolves
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displaying the spin oscillations in Fig.(2.4).

Figure 2.4: (On the top) Data relative to the spectral function of the atomic gas
obtained via laser spectroscopy, showing the population of the state

∣∣egL〉. (On the
bottom) Spin oscillations of the |g〉 atoms as a function of time after quenching the
magnetic field to zero.

Ref.[54] shows the experimental evidences of a Feshbach resonance occurring in the

scattering of two 173Yb atoms in different nuclear and electronic states. First of all,

it is worth to notice that 173Yb as well as the alkaline earth atoms cannot display a

magnetic Feshbach resonance, in its ground state since J = 0 and there is no splitting

of the Zeeman levels. Nevertheless, a resonance may occur within the eg− channel,

exploiting the above mentioned property of alkaline atoms of having a non zero
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differential Landé factor. The scheme for obtaining such a orbital Feshbach resonance

was provided in Ref.[69]. Consider two 173Yb atoms in two different electronic (orbital)

states |e〉 and |g〉 ,and different nuclear spin states |↑〉 and |↓〉. When the atoms

are separated, interactions between them are negligible and the relevant two-body

eigenstates are |o〉 = |g ↑ e ↓〉 and |c〉 = |g ↓ e ↑〉 which are named open and closed

collisional channels, respectively as shown in Fig.(2.5). The energy separation between

the two channels is given by the differential Zeeman shift ∆µB. As the interatomic

distance decreases, the appropriate basis for the description of the scattering is given

by the orbital symmetric and antisymmetric states |eg±〉, which are associated with

two distinct molecular potentials, giving rise to two very different scattering lengths,

aeg+ and aeg− , respectively. The relative distance between the threshold energy relative

to these two different channel can be controlled using the magnetic field, allowing for

the Feshbach resonance mechanism described in the previous sections.

Experimentally a cloud of 173Yb atoms was confined in a cigar-shape optical trap. The

atomic gas was intially prepared in a balanced spin mixture of ground states atoms in

nuclear spin states m↑, m↓, whose difference is ∆m = m↑−m↓. The population of the

excited metastable state was achieved through the clock transition 1S0 → 3P0. The

excitation was performed at high magnetic field intensity, in the way to clearly resolve

the Zeeman structure and excite only one spin state. In this way it was possible to

selectively access the open or the closed channel. Just before the trap was released,

the magnetic field was suddenly change to the desired value for probing the resonance.

Fig.(2.5) shows the evolution of the atomic cloud and the aspect ratio of the Fermi

gas after the trap was released as a function of the time of flight. The aspect ratio

is defined as the ratio Ry/Rx of the expanded atomic cloud size along y to the size

along x. In the case of a non-interacting Fermi gas, the expansion is ballistic and the

cloud tends to assume a spherical shape as a function of time. Therefore, the aspect

ratio of non-interacting Fermi gas would tend asymptotically to the unity. Instead,

atoms interacting in the eg− channel displayed an inversion of the aspect ratio, that

is an hallmark of hydrodynamic expansion of a Fermi gas, which occurs in regime

of strong interactions. Fig.(2.6) shows the experimental data reporting the aspect

ratio measured at a large value of the time of flight (τ = 28 ms) as a function of the

rescaled magnetic field. The different marks refer to different combination of nuclear

spin states, showing that the Feshbach resonance does not depend on the particular

spin combination, another confirm of the SU(N) symmetric feature relative to the

interactions among alkaline earth atoms.
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Figure 2.5: (On the left) Schematic representation of different molecular potentials
relative to the open and closed channel, and the splitting between the threshold
energies as a function of the differential Zeeman shift ∆µB. (On the right) Shape of
the atomic cloud from for several values of the time of flight τ .

Figure 2.6: Aspect ratio of the atomic cloud prepared in the open channel at τ = 28
ms as a function of the rescaled magnetic field B̃ ≡ B∆m/5, for different combination
of nuclear spin states. The resonance occurs almost at the same values of B̃ for all
the combinations, confirming the SU(N) symmetry of the atomic collisions.
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2.3 An experimental scheme for simulating AGF

in cold atoms systems.

Exploiting light-matter interaction within the cold atoms context allows also for the

possibility of simulating artificial gauge fields (AGF). In this introduction will be

described a particular scheme, already realized in cold atoms experiment, for simulating

a three component fermionic gas pierced by a uniform magnetic field.

The realization of a synthetic uniform magnetic field can be obtained exploiting the

combination of a static uniform ”real” magnetic field along the z-axis B = B0ez

together with an electromagnetic field composed of two laser beams E(t) = Eω+(t) +

Eω−(t). A practical scheme often used in experiments on AGF is that one of two

lasers, Raman beams, counter propagating along the x-axis of equal intensities and

crossed linear polarization, i.e. Eω− = E eikRx ey, Eω+ = E e−ikRx ez. This setup leads

to an effective Zeeman magnetic field:

Ω = δ ez + ΩR [sin(2kRx)ex − cos(2kRx)ey] , (2.10)

that couples with the total angular momentum F̂ = Ĵ + Î, with Ĵ and Î the total elec-

tronic and nuclear angular momentum respectively. Hence, the atom-light hamiltonian

reads:

Hal = Ω · F̂ = δ F̂z +
(
F̂+ e

i2kRx + F̂− e
−i2kRx

)
ΩR/2, (2.11)

where F̂± are the angular momentum ladder operators acting as

F̂+ |f,m〉 = N(f,m) |f,m+ 1〉 , where N(f,m) =
√
f(f + 1)−m(m+ 1), |f,m〉 are

the simultaneous eigenkets of F̂2 and F̂z, with eigenvalues ~2f(f + 1) and ~m respec-

tively. Therefore, the Raman beams couple the different hyperfine levels providing a

nearest neighbor hopping with open boundary condition (OBC) along the synthetic

direction given by the spin degree of freedom. The derivation of the effective Zeeman

field and all the details present in eqs.(2.10,2.11) that have been omitted are presented

in Appendix(C). Note that there is no need for the two Raman beams to be counter

propagating for obtaining the result in eq.(2.10). In the case of two Raman beams

forming an angle θ with the x-axis as depicted in Fig.(2.7), the wave vector would

change into kR = 2π cos(θ)
λR

, where λR is the wavelength of the Raman beams.

As can be grasped from the Appendix(C), the derivation of the effective Zeeman field

is thought for alkali atoms as for example 87Rb, nevertheless the f = 1 three level
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Figure 2.7: On the left, schematic representation of the experimental setup for
simulating AGF in a one dimensional optical lattice as proposed in ref.[17]. On the
right, physical level diagram for three-level total angular momentum f = 1, where
~2f(f + 1) are the eigenvalues of F̂2.

systems in Fig.(2.7) can be realized also by coupling three spin states of fermionic
173Yb [50]. In addition, periodic boundary condition (PBC) in the synthetic direction

can be created by coupling the m = ±f states [17].

In an optical lattice, the atoms feel a periodic potential V (r + R) = V (r), the

many-body hamiltonian can be written as:

Ĥ =
∑
mm′

∫
dx Ψ̂†m(x)

[
−~2∇2

2m
δmm′ + V (r)δmm′ +Mmm′(x)

]
Ψ̂m′(x), (2.12)

Mmm′ =
[
N(f,m) δm,m′−1e

i2kR·x + h.c.
]

ΩR/2 where kR = (kR, 0, 0), and Ψ̂(x) is the

Fermi field. The second quantization expression of the kinetic term together with the

periodic potential, expressed using the Wannier basis reads
∑

RR′
∑

m tRR′ c
†
RmcR′m,

with tRR′ =
∫
dxw∗R(x)

[
−~2∇2

2m
+ V (x)

]
wR′(x), is the hopping integral, and it is real

in the case of inversion symmetry of the band.

It is useful to use the Bloch representation for the term of the hamiltonian proportional
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to ΩR:

ΩR

2

∑
k1k2

∑
m1m2

[∫
dxψ∗k1

(x)Mm1m2(x)ψk2(x)

]
c†k1m1

ck2m2
+ h.c.

=
ΩR

2

∑
k1k2

∑
m

N(f,m)

(∫
dxψ∗k1

(x) exp(iϕ · x)ψk2(x)

)
c†k1m

ck2m−1 + h.c.

=
ΩR

2

∑
k

∑
m

N(f,m)c†kmck+ϕm−1 + h.c., (2.13)

where ϕ = 2kR. This form of the hamiltonian can be justified by manipulating the

integral in the positions:∫
dx eiϕ·xψ∗k1

(x)ψk2(x) =
∑
R

exp [iR · (ϕ− k1 + k2)]

∫
v

dxei(ϕ−k1+k2)·xu∗k1
(r)uk2(x)

= δ(ϕ− k1 + k2), (2.14)

where v refers to the Wigner Seitz cell of the lattice, uk(x) is the component of the

Bloch function that is periodic in the lattice, i.e. ψk(x) = eik·xuk(x). The term in

eq.(2.13) can be expressed in the real space basis as following:∑
R

Ω(f,m) exp(iϕ ·R) c†RmcRm−1 + h.c., (2.15)

where Ω(f,m) = ΩRN(f,m)/2. In the cases where only nearest neighbor hopping

between lattice sites is considered, the final form of the many-body hamiltonian on

the lattice reads:

Ĥ = −t
∑
〈RR′〉

∑
m

c†Rmc
†
R′m +

∑
R

Ω(f,m) exp(iϕ ·R) c†RmcRm−1 + h.c., (2.16)

The hamiltonian in eq.(2.16) besides the usual hopping term in real space, it contains

also an hopping along the axis of the internal degrees of freedom, that is called

synthetic dimension. Furthermore, a fermion that hops in the synthetic dimension

acquires a phase, that depends on the lattice site.

In conclusion, exploiting light-matter interaction paves the way to the simulation of

AGF on lattice models. In particular, using the scheme with two Raman beams shown

in Fig.(2.7), it is possible to simulate a static magnetic field that couples the hyperfine

levels of the atom, with a finite magnetic flux given by ϕ.

24



2.4 Final remarks and brief plan of the thesis

The aim of this introduction was to resume briefly the wide range of possible configu-

rations that can be achieved exploiting alkaline-earth and alkaline-earth like atoms

and their interactions with light. Furthermore, a particular attention was paid to the

parameters that can be controlled in the lab, mentioning some of the most recent goals

achieved experimentally. In particular, it was shown that a wide class of Hubbard

models can be simulated by the current state of the art of the cold-atomic experimental

toolbox.

In the progress of the thesis, the most generic case, that was introduced for completeness

will be not addressed. More specifically, the electronic (orbital) degree of freedom will

be neglected. Nevertheless, the enlarged spin degeneration brought to the tunable

number of fermionic species, together with the possibility of synthesizing gauge fields

will be taken into account.

In the next chapter, it will be introduced in a more formal way the Hubbard model in

its simplest configuration of two fermionic species in a single band, for introducing the

issue related to the Mott transition: a metal to insulator transition brought by the

strong interactions among fermions. For this purpose the concepts of Fermi Liquid

and Mott Insulator will be given in order to achieve a full comprehension of the

paramagnetic competing phases of the Hubbard-model. A systematic method for

studying such a model is represented by the Dynamical Mean Field Theory (DMFT)

that also will be introduced in the next chapter, and its application to the single-band

Hubbard model will be reviewed.

In Chapt.(4), a generalization of the Mott transition in systems with an N -fold spin

degeneration will be given. In the first part, it will be addressed the case of half-filling,

that displays a Mott transition only when N = 2M . This is related to a fully symmetric

spin-1/2 system with M degenerate orbitals. The case of odd values of N away from

particle-hole symmetry also will be considered. In particular, the SU(3)-symmetric

Hubbard model will be studied as a representative of this situation.

The main topic of Chapt.(5) focuses on the study of the multi-component Hubbard

model in presence of artificial gauge fields. After an introductory discussion about

a wide class of models that can be studied using DMFT, the specific case of ϕ = 0

is addressed. In particular, it is considered the case of an artificial gauge field

that acts as an hopping within the spin degree of freedom. This introduces the
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concept of a synthetic dimension relative to the internal degrees of freedom of atoms.

Furthermore, an analogy with multi-orbital systems that display different onsite

energies for different orbitals is discussed. More specifically, a three component

fermionic system is considered, in the case of a nearest neighbors hopping along the

synthetic dimension with both open and periodic boundary conditions.

The last chapter of the thesis is devoted to the quantum magnetism arising from Hub-

bard models. In the first part, the two component Hubbard model is treated solving the

DMFT equations generalized in oder to take into account long range antiferromagnetic

solutions. The system is studied away from the half-filled configuration and at finite

temperature. The second part focuses on the generalization of antiferromagnetism in

the case of a three component systems in a tripartite lattice. After a brief introduction

about the motivations for studying such a configuration, a mean-field analysis of the

SU(3)-symmetric Hubbard model in the triangular lattice is provided. The possibility

of treating such a system using DMFT is also discussed.

In the conclusions chapter the main results relative to the thesis will be briefly

summarized and highlighted.
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CHAPTER 3

THE HUBBARD MODEL AND

DYNAMICAL MEAN FIELD THEORY

3.1 Introduction

One of the earliest triumphs of the band theory of solids has been to put on firm

theoretical ground the distinction between metals and insulators. When electrons

experience a periodic potential (due to the ions in a solid), their single-particle

eigenvalues turn from the parabolic distortion of free electrons in vacuum into a series

of energy bands εkα separated by energy gaps. If the mutual interaction between

the particles is neglected, the many-body state can be simply built by progressively

populating the energy levels, each with two electrons with opposite spin. If the number

of electrons is such that a band is completely filled and the next one is empty, a gap

for single-particle excitations opens and the system is an insulator, while in the case

of a partially filled band, electrons can be excited with arbitrarily low energy and the

system is a metal.

As a consequence, in a metal the single-particle density of states

g(ε) =
1

N

∑
kα

δ(ε− εkα) (3.1)
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at the Fermi energy is finite, while in an insulator the Fermi energy lies in the middle

of the gap so that the density of states at that energy vanishes. One of the implications

is that a necessary, but not sufficient, condition to have an insulator is that the number

of electrons per atom is even.

All these simple results are however based on a single-particle picture, which is

challenged when the interactions between the electrons are not negligible or they can

not be described in terms of an effective single-particle potential. As matter of fact,

already in the early decades of quantum mechanics, a series of experimental evidences

has shown a clear and qualitative breakdown of this prediction. Indeed a number of

oxides with a partially filled band have been experimentally found insulating. Consider

for simplicity on the case where the valence band is half-filled, with one electron

per orbital, in most cases, at low temperature, the insulating behavior is indeed

accompanied by magnetic ordering with an antiferromagnetic pattern of the spins,

whose direction alternates in every spatial direction.

This kind of ordering, which obviously spontaneously breaks the spin rotational

symmetry, leads indeed to a doubling of the unit cell and doubles the number of

bands in the reduces Brillouin zone. Therefore one of the two sub-bands becomes

completely filled, while the other remains empty, leading to an effective band insulator.

A similar picture can be also obtained within a static mean-field treatment of the

interactions.

Yet, the magnetic symmetry breaking is not the end of the story in strongly correlated

materials such as, V2O3 [46]. Indeed when the temperature is increased, the antiferro-

magnetic insulator turns into another insulating state which restores the magnetic

symmetry and does not show signs of any alternative ordering. This insulating state

defies any description in terms of a band picture, which means that the single-particle

approximation breaks down calling for a fully non-perturbative treatment of the

Coulomb interaction. Mott was indeed the first to blame electron-electron interactions

for the breakdown of the band description and for the existence of interaction-driven

insulators, which are therefore called ”Mott insulators”, while the transition between

a metal and a Mott insulator as a function of any control parameter is called a ”Mott

transition”.

The simplest theoretical framework to study and understand Mott insulators and

Mott transition is the same Hubbard model we described in the previous chapter and

that can be realized with ultracold atoms in optical lattices. Of course this model is
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only a rough approximation of an actual material, but it is widely believed to contain

the important physics to describe a Mott transition and the wealth of phenomena

which stem from Mott physics.

The Hamiltonian is shown again here to make the manuscript more readable

H = −t
∑
〈RR′〉,σ

c†RσcR′σ + U
∑
R

n̂R↑n̂R↓ − µ
∑
Rσ

n̂Rσ, (3.2)

where cRσ is the destruction operator of a fermion with spin σ on the site R, n̂Rσ ≡
c†RσcRσ is the number operator, t is the hopping amplitude, U the Hubbard on site

repulsion and µ is the chemical potential. The parameters t and U can be expressed

in terms of the electronic orbitals as following:

t =

∫
dxwR(x)

[
−~2∇2

2m
+ V (x)

]
wR′(x)

U =

∫
dx dyU(x− y)w2

R(x)w2
R(y), (3.3)

where V (x + R) = V (x) is the periodic potential that define the lattice, R, R′ are

two nearest neighbor sites of the lattice, U(x− y) is the interaction term, and wR(x)

are the Wannier orbitals [3]. As mentioned above, the derivation of the model implies

a number of approximations, from the neglect of multiorbital effects and related

interactions to the absence of the lattice degrees of freedom and their coupling with

the fermions and disorder effects.

In the case of a half-filled lattice (one fermion per lattice site), the model indeed

describes rather naturally a metal in the non-interacting limit, where band theory

holds, while in the opposite limit of vanishing hopping t (atomic limit) the energy

is obviously minimized by placing one fermion per site. These fermions are indeed

completely localized and describe the prototype of a Mott insulating state.

Despite the huge simplifications and the formal simplicity, the Hubbard model proved

extremely resistent to theoretical investigations and exact solutions are known only in

one dimension thanks to the Bethe ansatz [45], and in the limit of infinite dimension

thanks to the Dynamical Mean-Field Theory [28], as it will be discussed in some more

detials at the end of this chapter.

The reason why the Hubbard model is so hard to solve lies in the direct competition

between two terms which tend to have opposite effects, and they are diagonal in two

29



conflicting representations. The hopping term, which gives rise to a kinetic energy for

the lattice fermions, promotes delocalized metallic states and it can be diagonalizaed

in momentum space, while the local interacting term tends to “freeze” the motion of

the electrons and it is diagonal in real space. As it will be discussed in the following,

this leads to a metallic solution in weak-coupling and to an insulating solution for

strong coupling (and a half-filled shell). It is natural to expect a metal-insulator

transition separting the two limiting cases, but it is not equally simple to obtain a

reliable theoretical description of it. In the following the present discussion is expanded,

highlighting some of the main properties of metallic and insulating solutions.

When the local interaction strength is nonzero and U � t the system is expected to

stay in a metallic phase and its low energy properties are well captured by the Fermi

Liquid (FL) theory [60][7], that applies to systems whose spectrum of elementary

excitations is similar to that one of a free Fermi gas. More precisely, within FL theory

it is assumed a one to one correspondence between the states of a free Fermi gas

and those of the interacting system. In other words, by switching on the interaction

adiabatically, an eigenstate of the interacting system is obtained starting from an

eigenstate of the non interacting system. This assumption does not hold in general,

and in particular fails when bound states appear when the interaction is turned

on. For example, a superconductor is not related in a direct way to the free Fermi

gas, but rather to a coherent superposition of a large number of states of the non

interacting system [7]. Nevertheless, FL theory succeeds to explain strong correlated

metals, where the interactions ar responsible for mass enhancement as in the case

of V2O3[38]. One of the basics of FL theory is the concept of quasi-particle. The

equilibrium distribution of the non-interacting system is given by the Fermi-Dirac

distribution function, therefore the number of particles of the ground-state are fixed

by the chemical potential, in a grand-canonical picture. An elementary excitation of

the system consists of adding one particle (hole) with momentum p outside (inside) of

the Fermi surface. If interactions are adiabatically turned on, it is possible to obtain

an elementary excitation of the interacting system of momentum p, since momentum

is conserved during collisions. Once the interaction is completely turned on, the

added particle moves in an effective medium that is given by the surrounding particle

distortion brought about the interactions. The particle is said to be dressed with a

self-energy cloud, and the dressed particle is called quasiparticle. On the other hand,

since quasi-particles undergo real collisions which leads to damping, any definition of

elementary excitation is somewhat imprecise. Fortunately, close enough to the Fermi
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Surface (FS), the life time of the quasi-particles becomes sufficiently long, and in pure

system and at T = 0 it goes as the inverse square of the energy separation from the

FS [60]. Therefore, FL theory states that close enough to the FS, it is possible to

define coherent elementary excitations in a similar way that naturally happens in the

non-interacting case.

A microscopic justification of FL can be obtained starting from the Hubbard model

and studying the Green’s function that is defined as:

G(τ − τ ′,R−R′) ≡ −Tτ
〈
cRσ(τ)c†R′σ(τ ′)

〉
, (3.4)

where translational and spin symmetry is assumed, and cRσ(τ) = eτHcRσe
−τH is the

imaginary time evolution of the destruction operator.

In the non-interacting case, the model in eq.(2.2) reduces to a tight binding hamiltonian,

that can be diagonalized by a Fourier transformation of the fields. Hence, at U = 0, the

particles excitations are well described in momentum space by the energy dispersion

εk and by the Fermi-Dirac distribution function. In this case the Fourier transform of

the Green’s function is defined by

G(iωn,k) =
1

iωn − ξk
, (3.5)

where ξk = εk − µ, iωn = π
β
(2n + 1) are the fermionic Matsubara frequencies with

β = 1/T . In general, the Green’s function in eq.(3.5), can be evaluated for a generic

complex frequency, i.e. G(z,k) = (z − ξk)−1, it has a pole in z̄ = ξk and:

ImG(ω ± i0+) = ∓πδ(ω − ξk). (3.6)

From equations (3.6,3.1), it is clear how the DOS is related to the imaginary part of

the non-interacting Green’s function.

In the interacting case reads, the interacting Green’s function can be obtained using

the Dyson equation:

G(z,k) =
1

z − ξk − Σ(z,k)
, (3.7)

where Σ(z,k) is the self energy of the interacting quasi-particles [11][52]. At weak

coupling, perturbation theory assures that Appendix():

ImΣ(ω + i0+,k) ∝ ω2 when ω ∼ 0. (3.8)
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Therefore, in the weak coupling regime and for low energies, the green’s function can

be approximated as following:

G(ω + i0+,k) ∼ 1

ω − ξk − ReΣ(ω + i0+,k)
. (3.9)

The denominator of eq.(3.9) has a simple pole in z = ξ̃k, i.e. the self-energy is an

analytic function in the complex plane, the residue of G(z,k) can be calculated:

Zk ≡ lim
z→ξ̃k

(z − ξ̃k)G(z,k) =

(
1− ∂ReΣ

∂z

∣∣∣∣
z=ξ̃k

)−1

. (3.10)

To be consistent with the previous approximation on the imaginary part of the self

energy in eq.(3.8), the pole of the Green’s function must be close to the FS, i.e.

ξ̃k ∼ 0.

Therefore close the the Fermi-surface, the Green’s function can be approximated by

the first term of its power expansion around the simple pole in z = ξ̃k, namely

G(z,k) ∼ Zk

z − ξ̃k
, when z ∼ 0. (3.11)

This result obtained using many-body physics considerations, confirms what FL theory

states, that for weak coupling, the system is expected to have coherent excitations

close enough to the Fermi-surface. In general, as long as the condition in eq.(3.9) is

fulfilled close to the FS, the Green’s function can always be written as

G(z,k) =
Zk

z − ξ̃k
+Ginc(z,k) (3.12)

where the second term on the RHS, is a reminder that takes into account the incoherent

single-particle excitations, away from the Fermi surface. When this description is

valid, the system is said to be in a FL state, where coherent excitations are defined

close to the Fermi Surface.

If Σ(z,k) does not depend on k, Zk ≡ Z gives the ratio between the free-electrons

and the interacting electron masses, i.e.:

Z = m/m∗. (3.13)

This result leads to the more physical interpretation of the FL, where the motion of a
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quasi-particle with an energy very close to the FS can be approximated as the motion

of a free electron but with an effective mass given by eq.(3.13).

Another feature of the FL state is that the Luttinger theorem holds [48]. In the case

of a k-independent self-energy the theorem reads [28]:

n =
∑
α

∫ D

−D
dε g(ε) θ(−ε+ µ− ReΣ(i0+)). (3.14)

In other words the density of the interacting system is the same of a non-interacting

system whose chemical potential is µ̃ = µ− ReΣ(i0+).

Another important properties is that the imaginary part the of Green’s function

calculated at µ̃ is independent on the interactions and matches its non-interacting

value, called the pinning value:

− 1

π
ImG(i0+) = g(µ̃). (3.15)

This last property of the FL is easy to show, once it is assumed that ImΣ(ω+i0+) ∝ ω2,

in fact, in the case of a k-independent self-energy :

ImG(i0+) = lim
η→0+

∫ D

−D
dε g(ε)

1

−ε+ µ− Σ(i0+) + iη

= −
∫ D

−D
dε g(ε)

π δ(−ε+µ−Σ(i0+))︷ ︸︸ ︷[
lim
η→0+

η

(−ε+ µ− Σ(i0+))2 + η2

]
= −π g(µ̃) . (3.16)

On the other hand, when U/t� 1, the system is better described in real space, rather

than in momentum space. At t = 0, the single band Hubbard model of N degenerate

species of fermions α = 1, ..., N becomes a sum of disconnected single site models:

H = U
∑
R

∑
α<β

nRαnRα′ − µ
∑
Rα

nRα =
∑
R

hR, (3.17)

where hR =
∑

α<β n̂Rαn̂Rα′ − µnRα.

Since the full hamiltonian can be written as the sum of many local hamiltonians, the
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Figure 3.1: The average density calculated in the atomic limit as a function of the
chemical potential at β = 10, for different spin degeneracies N = 2, 3, 4.

partition function of the system is given by the product of the local partition functions.

Therefore, it is enough to analyze the local partition function at a generic site. The

local hamiltonian can be written in terms of the total density n =
∑

α nα :

h =
U

2
n̂2 −

(
µ+

U

2

)
n̂. (3.18)

Consequently the partition function reads:

Z =
∑
n

p(n)e−βh(n), (3.19)

where n are the eigenvalues of n̂, p(n) =

(
N

n

)
takes into account of the degeneracy

of the sector at fixed density. The total density average value is given by the following

relation:

〈n〉 = − 1

βZ
∂Z
∂µ

. (3.20)

In Fig.(3.1) it is shown the behavior of 〈n〉 as a function of µ, for different values

of β. It is clear that the system is in a insulating state at integer filling, since its

compressibility vanishes in proximity of the density plateaus. In fact, the density

remains fixed until the chemical potential fills the energy gap of the spectral function.

In order to grasp the deep difference between this insulating state and the FL-state

mentioned above, it is worth to study the Green’s function in the limit of strong
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interactions. The Fourier transform of the Green’s function, at T = 0, can be expressed

via Lehmann representation:

Gα(iωn) =
1

K
∑
|0〉

∑
n


p︷ ︸︸ ︷∣∣〈n| c†α |0〉∣∣2

iωn + E0 − En
+

h︷ ︸︸ ︷
|〈n| cα |0〉|2

iωn + En − E0

 , (3.21)

where {|0〉} is the many-body ground state manifold and K its cardinality, E0 − En
is the energy difference between the ground state and the n-th excited state. The

subscripts p and h label respectively the particle and hole contributions to the single

particle propagator, connecting the ground state, that belong to the subspace with a

total number of fermions M to the subspaces with total number of fermions M±1.

Therefore, in the case of N = 2, with µ = U
2

, that correspond to 〈n〉 = 1 the green’s

function reads

Gα(iωn) =
1

2

(
1

iωn + U
2

+
1

iωn − U
2

)
=

1

iωn − U2

4
1
iωn

. (3.22)

It is worth to notice that the self-energy of the system Σ(iωn) ∝ 1/iωn it is non-analytic

at the origin of the complex plane and diverges. Furthermore the spectral function

that is given by the formula:

A(ω) = − 1

π
ImG(ω + i0+), (3.23)

has the form of two delta functions centered respectively in ±U/2, with no spectral

weight at the Fermi energy. When U � t, but U is not infinite, the hopping term

broadens the two Dirac deltas yielding the so called Hubbard bands, that correspond

to incoherent high energy excitations and the system is said to be in a Mott Insulator

(MI) state.

In summary, in this introduction the main differences between the FL and MI states

were pointed out. More specifically, it has been stated that the MI state cannot be

obtained using perturbation theory since its self-energy it is not an analytic function

at half filling.

In the next section will be presented the Dynamical Mean-Field Theory (DMFT), a

powerful non-perturbative method that therefore provides a tool to study the evolution

between the two limiting cases as a function of the ration U/t.
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3.2 Dynamical Mean-Field Theory

DMFT is emerging in the few last decades as one of the reference method to treat

strongly correlated systems. The main idea behind this method is to extend the mean-

field concept, in which every position in the lattice is equivalent for the description

of the physics, to a quantum domain. From a more formal point of view, DMFT is

based on the construction of a local effective theory starting from a lattice model. The

equivalence between the lattice model and the effective local theory is then enforce

requiring that a dynamical observable, the single-particle Green’s function computed

in the local theory coincides with the local component of the lattice Green’s function

in the DMFT approximation. This is clearly a generalization of the static mean-field,

where a static observable (e.g., the magnetization in a Ising model) is replaced by a

dynamical (frequency dependent observable).

More specifically, in the case of the Hubbard model the effective theory is defined by

the effective action (which it is written in imaginary time, but the same equations can

be derived for real-time observables):

Seff =
∑
σ

∫∫
dτ dτ ′ ψ̄σ(τ)G−1(τ − τ ′)ψσ(τ) + U

∫
dτ n↑(τ)n↓(τ), (3.24)

where ψ̄σ, ψσ are grassman variables, τ is the imaginary time. G−1 is the so-called

dynamical Weiss field which includes the effect of the rest of the lattice on the site that

has been selected to build the local theory. The crucial approximation with respect

to an exact treatment is that all the higher-order propagators have been neglected

and the rest of the lattice acts like an effective bath which has to be determined self

consistently as will be discussed later.

It is worth to notice that despite the approach neglects by construction any spatial

fluctuation, nevertheless, since G−1 depends on time, the quantum dynamical fluctu-

ations are fully taken into account without further approximations. Within DMFT

the self-energy of the effective local theory, which is constructed as a site-independent

quantity, plays the role of the lattice self-energy, namely:

Σ(k, iωn) ≡ Σ(iωn), (3.25)

where ωn = (2n+ 1)π/β are the fermionic Matsubara frequencies.

Therefore, the main assumption made in DMFT consists in assuming a local form
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of the self-energy that is a function of the frequencies only. Although this is a very

strong assumption, nevertheless it is exact (in any space dimensions) both in the

non-interacting and in the opposite atomic limit, and it allows for a faithful and rich

description for both the Fermi liquid and Mott insulator phases with no bias in favor

of one or the other. Furthermore, it gives the possibility of establish whether the

system is in a Fermi liquid or in a Mott insulating state by studying the analytical

properties of the self-energy and two study many relevant dynamical observables, as

opposed to many other theoretical approaches.

3.2.1 Effective action and DMFT equations

In this section will be reviewed the basic derivation of DMFT using the cavity method.

The partition function of the Hubbard model can be expressed in the path integral

formulation as following:

Z =

∫ ∏
Rσ

Dψ̄RσD ψRσ exp
(
−S

[
ψ̄, ψ

])
, (3.26)

where the Hubbard model action reads:

S
[
ψ̄, ψ

]
=

∫
dτ
∑
RR′σ

ψ̄Rσ(τ) [(∂τ − µ) δRR′ − tRR′ ]ψR′σ(τ)

+ U

∫
dτ
∑
R

nR↑(τ)nR↓(τ), (3.27)

where ψ̄Rσ, ψRσ are grassmannian variables, tRR′ is hopping matrix, that is non zero

only if R and R′ are nearest neighbors. The effective action in eq.(3.24) is defined as

1

Zeff
exp

(
−Seff [ψ̄σ, ψσ]

)
≡ 1

Z

∫ ∏
R6=0, σ

Dψ̄RσDψRσ exp
(
−S[ψ̄, ψ]

)
, (3.28)

where all the fermions are integrated out except for ψσ ≡ ψR=0σ. It is worth to

notice that the knowledge of Seff allows for the calculations of all the local correlation

functions relative to the original Hubbard model. This observation is valid for any

number of dimensions. In order to proceed with the evaluation of the formal expression

of Seff , it is useful to split the full lattice action into three part: S = S0 + S(0) + ∆S,
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where S(0) is the lattice action in presence of the ”cavity” in R = 0, and

S0 =

∫
dτ
∑
σ

ψ̄σ(τ)(∂τ − µ)ψσ(τ) + U n↑(τ)n↓(τ),

∆S = −
∫
dτ
∑
Rσ

t0R
[
ψ̄Rσ(τ)ψσ(τ) + ψ̄σ(τ)ψRσ(τ)

]
. (3.29)

Here, ηR ≡ t0R ψσ can be consider as the source coupled to the field ψ̄Rσ, and it can

be defined the following functional:

W [ψ̄, ψ, η̄, η] ≡ ln

[〈
exp

(∫
dτ
∑
Rσ

η̄Rσ(τ)ψRσ(τ) + ψ̄Rσ(τ) ηRσ(τ)

)〉
S(0)

]
,

(3.30)

where the average value over the cavity action S0 of a generic operator O is defined

as 〈O〉S(0) ≡ 1
Z(0)

∫ ∏
R6=0, σ Dψ̄RσDψRσ

[
exp

(
−S(0)

)
O
]
.

The functional in eq.(3.30) is the generating functional of the connected Green’s

function of system in presence of the cavity, that can be computed via its functional

derivatives as:

G(0)(α1, ..., αn|α′1, ..., α′n) ≡
δ2nW

[
η̄, η
]

δη̄(α1)...δη̄(αn) δη(α′1)...δη(α′n)

∣∣∣∣∣
η̄=0,η=0

, (3.31)

where αi ≡ (τi,Ri) is a composite index including imaginary time and position [52].

Therefore the effective action in eq.(3.28) can be expressed in the following way:

Seff = S0 +W + const. (3.32)

Hence, Seff may be expanded in powers of the sources ηRσ using the relation in

eq.(3.30)

Seff = S0 +
∑
n

∑
α1...α′n

η̄(α1)...η̄(αn) η(α′1)...η(α′n)G(0)(α1, ..., αn|α′1, ..., α′n), (3.33)

where the notation of
∑

α1
→
∫
dτ1

∑
R1

was adopted for the summation over the

compact indices and the irrelevant constant factor was dropped. Now it can be

exploited the limit of large coordination number. In fact, in this limit dimension

the hopping terms must be rescaled to tRR′ → d−‖R−R
′‖/2 t∗RR′ , where d is the

dimensionality of the system and ‖.‖ is the Manhattan norm between two lattice sites.

The n-th order of the expansion scales as dn−2 [28], so that only n = 2 survives in the
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limit d→∞. Within this great simplification the effective action in infinite dimension

reads as in eq.(3.24), where the Weiss field G−1 is given by the Fourier transform of

G−1(iωn) = iωn + µ−
∑
RR′

t0R t0R′ G
(0)
RR′(iωn). (3.34)

This last expression is very important because it relates the Weiss field to the Green’s

function of the Hubbard model with one site removed. In order to obtain a closed

set of equations one still needs to relate the Weiss field to the original lattice Green’s

function. In this case the limit of infinite dimension is very useful again, nevertheless

this relation remains still complicated for a generic lattice. In the particular case

of the Bethe lattice that corresponds to a Cayley tree with an infinite coordination

number, the relation is easily obtained. In fact in this case, the summation in eq.(3.34)

is restricted to R = R′, since neighbors of 0 are totally disconnected once the cavity

has been introduced. Furthermore, one can exploit translational invariance symmetry

that imposes G
(0)
RR = GRR = G00 ≡ G, where G(iωn) corresponds to the Green’s

function of the effective local hamiltonian, nameley: G(iωn) =
∫ β

0
dτ eiωnτG(τ), with

G(τ − τ ′) = −
〈
ψ(τ) ψ̄(τ ′)

〉
Seff

. The summation in eq.(3.34) becomes

G(iωn)
∑
R

t20R = t2G(iωn)

1︷ ︸︸ ︷(
d−1

∑
n.n.

)
= t2G(iωn), (3.35)

where n.n. indicates the summation over the sites R that are nearest neighbors of

the cavity, t is the rescaled hopping. Therefore, the DMFT equations in the case of

infinite dimension and for a Bethe lattice read

G−1(iωn) = iωn + µ− t2G(iωn)

G(τ − τ ′) = −
〈
ψσ(τ)ψ̄σ(τ ′)

〉
Seff

. (3.36)

It is worth to notice that since G is the local Green’s function of the Hubbard model

it can be calculated using the local effective action defined in eq.(3.28).

For a generic lattice with an energy dispersion εk, whose non-interacting density of

states is g(ε), the DMFT equations can be expressed in the following way:

G(iωn) =
∑
k

1

iωn + µ− εk − Σ(iωn)
=

∫
dε

g(ε)

iωn + µ− ε− Σ(iωn)

Σ(iωn) = G−1(iωn)− G−1(iωn), (3.37)
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where Σ(iωn) is the self-energy of the effective action. This equations couples the local

Green’s function of the lattice model obtained through a summation over k to the

Weiss field of the effective action. These equations are exact in the limit of infinite

dimension. In the case of finite dimensionality, the DMFT can be solved in the same

way, nevertheless their solutions constitute an approximation of the real model. In

general, when d is finite the self-energy depends on k, while in d = ∞ it does not.

Therefore, the main approximation brought by a DMFT scheme is to assume that

Σ(iωn,k) ∼ Σ(iωn), that is good for high dimensionality and it becomes less reliable at

low dimensions. Nevertheless, it is worth to notice that when such an assumption has

been done, one has full access to all non-local quantities that can be calculated through

the self-energy. The most straightforward example of that is represented by the Green’s

function evaluated in k space, i.e. G(iωn,k) = (iωn + µ− εk − Σ(iωn))−1.

3.2.2 Solving the effective local theory

Once the DMFT equations have been set up, one still needs a method to solve the

interacting effective action in eq.(3.24), in order to compute the Green’s function (or

equivalently the self-energy) starting from a generic form of the Weiss field. Then

one has to obtain a Weiss field such that the corresponding Green’s function of the

effective local theory satisfies the self-consistency condition 3.37. This is customarily

realized by iterative solution of the effective theory: starting from a guess for the

Weiss field, the new Green’s function is computed from the AIM and then used to

produce a new Weiss field. The process is repeated until the old and the new Weiss

fields coincide within a given accuracy.

For this reason, and also to obtain a better physical insight, it is very useful to represent

the effective action in eq.(3.24) in a Hamiltonian form. The Anderson Impurity Model

(AIM) introduces by P.W. Anderson [2] to study localized magnetic states in metal,

constitutes a natural choice for this purpose. In particular, this model describes a

bath of non-interacting fermions coupled via hybridization terms to a local interacting

impurity. The hamiltonian of the AIM reads:

HAIM =
∑
`σ

ε`σ d
†
`σd`σ +

∑
`σ

V`σd
†
`σcσ + h.c. + Un↑n↓ − µ

∑
σ

nσ , (3.38)

where c†σ is the creation operator of a fermion on the impurity, nσ ≡ c†σcσ, d†`σ is the

creation operator of a fermion of the the non-interacting bath. The parameters ε`σ, V`σ
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represent the energy levels of the bath and the hybridization amplitudes respectively

and they are often called Anderson parameters. One can easily show by integrating

out the bath degrees of freedom that this model indeed represents the effective action

in eq.(3.24), and that in this representation the Weiss field assumes the following form:

G−1
σ (iωn) = iωn + µ−

∑
`

|V`σ|2

iωn − ε`σ
, (3.39)

that corresponds to the inverse of the Green’s function of the AIM at U = 0 (which

has nothing to do with the non-interacting local component of the lattice Green’s

funtion). Hence the Anderson parameters determines the effective local theory.

Several methods have been proposed and used to study the AIM in the context

of DMFT, which go under the collective name of ”impurity solvers”. Among the

most powerful numerical methods, are mentioned the Continuous-Time Quantum

Monte Carlo, the Numerical Renormalization Group and the Exact Diagonalization.

Approximate analyical tools like different kinds of perturbation theory, slave-bosons

and similar methods have been employed to reach a better analytical insight.

Here it will be presented in some detail the exact diagonalization algorithm that has

been implemented by the author of this thesis. In order to use any exact diagonalization

method the size of the Hilbert space must be finite and sufficiently small to be handled.

For this purpose it is necessary to truncate the infinite series in eq.(3.39) to a finite

number Ns, that physically translates into an AIM with a finite number of discrete

energy levels in the bath. The cycle is initialized with a first choice of the Anderson

parameters. After, the system is diagonalized and the spectral properties, i.e. the

Green’s function and the self-energy are calculated using the Lanczos technique. The

self-consistence equation is used to compute the new Weiss field G−1
new. At this point

it is necessary to infer from G−1
new the new set of Anderson parameters through the

minimization of the following function:

χ ({V`σ}, {ε`,σ}) ≡

(∑
iωn

f(iωn)|Gnew(iωn)− GNs(iωn; {V`σ}, {ε`σ})|p
)1/p

, (3.40)

where

G−1
Ns

(iωn; {V`σ}, {ε`σ}) ≡ iωn + µ−
Ns∑
`

|V`|
iωn − ε`

. (3.41)

and f(iωn) is a positive weight. The function χ represents a norm between two
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functions of the Matsubara frequencies and it is not univocally defined, therefore

the expression in eq.(3.40) constitutes just a possible choice. Once the new set of

Anderson parameters is obtained a new iteration of the DMFT cycle starts and the

loop closes when the convergence of the Weiss field is achieved.

3.3 Mott Transition at half filling.

The spectral weight at the fermi energy A(ω = 0) establishes whether the system is an

insulator or not. Nevertheless, this quantity can assume only two values: A(0) = g(0),

where g(ε) is the DOS, in the FL, as stated in eq.(3.16), and A(0) = 0 in the

insulator.

Therefore, it does not give any quantitative information about the correlations of

the metal close to the MIT. Hence, other important quantities to study are the

quasi-particle residue, the self-energy of the system as well as the whole spectral

function A(ω), that contains also the high energy incoherent contributions introduced

in eq.(3.12).

The DMFT equations in eq.(3.37) admit both metallic and insulating solutions. The

latter exist when U > Uc1, while the metallic solution exists when U < Uc2. Numerical

and analytical evidences [28] show that Uc1 < Uc2, hence when Uc1 < U < Uc2

the metallic and insulating solutions coexist, and a first order phase transition is

expected at U = Uc, when the free energies relative to the two different solutions cross.

Nevertheless, it is easy to show analytically that, at T = 0, Uc = Uc2, and in this

specific case the MIT is a second order phase transition [51].

In Fig.(3.2) the spectral density A(ω) is shown for several values of U . This result has

obtained using IPT method for solving the AIM [28][71]. For small U , the spectral

function is similar to the non-interacting density of states, while for larger values of U ,

a narrow quasiparticle peak is formed at the Fermi level of width ZD and weight Z.

At U/D = 3, the spectral weight at high energy (Hubbard Bands) is well separated

from the quasi-particle peak that shrinks at fixed height. At U/D = 4 there is no

spectral weight at the FS and the system is a MI.

Fig.(3.3) shows the quasi-particle weight as a function of the interaction strength

and the imaginary part of the Green’s function evaluated on the imaginary axis for

different values of U , obtained using ED calculations with Ns = 6. The imaginary part
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Figure 3.2: Sectral density at T = 0, for several values of U , obtained by the iterated
perturbation theory approximation. The first four curves (from top to bottom,
U/D = 1, 2, 2.5, 3) correspond to an increasingly correlated metal, while the bottom
one (U/D = 4) is an insulator.

of the Green’s function tends to the pinning value as long as the system is in a FL

state, i.e. ImG(i0+) = −2/D in the case of a semicircular DOS g(ε) = 2
Dπ

√
D2 − ε2.

On the other hand, when the system is in an insulating state ImG(iωn) ∝ ωn as in

the atomic limit. It is worth to notice also, the differences between the correlated

metal close to the MIT and the weak correlated metal. At weak coupling the Green’s

function is monotonic, it reaches the pinning value at ωn = 0+ and it has a power

law behavior at high frequencies. In the coexistence region, the Green’s function

shares the same asymptotic behavior for low and high frequencies as in the weak

coupling case, nevertheless a local maximum at ωn = ωmax and a local minimum

at ωn = ωmin appear, with ωmax ≤ ωmin and ωmax(U → Uc2) = 0+. In this case,

when ωmax < ωn < ωmin, the Green’s function decreases as in the insulating cases.

Therefore, also when evaluated on the imaginary axis, the Green’s function of the

correlated metal it is very similar to the Green’s function of the Mott insulator, in a

non-trivial range of intermediate frequencies.
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Figure 3.3: The quasiparticle weight as a function of the interaction strength U . The thick red line
is relative to the DMFT solutions obtained starting from a FL initial state and by increasing the
value of U . Instead, the blue dots are relative to the DMFT solutions obtained from a MI initial
state and by decreasing the value of U .
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Figure 3.4: On the left side, the imaginary part of the Green’s function evaluated on
the imaginary axis for several values of the interaction strength. On the right side, the
imaginary part of the self energy evaluated on the imaginary axis for several values of
the interaction strength.
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CHAPTER 4

SU(N)-SYMMETRIC HUBBARD

MODELS.

4.1 Introduction

This chapter is dedicated to the study of the Mott transition in SU(N)-symmetric

Hubbard Models, that can be simulated using 173Yb atoms in optical lattices. In

particular, the Hubbard hamiltonian for a multi-component fermionic systems reads:

H = −t
∑
RR′m

c†RmcR′m + U
∑
R

∑
m<m′

nRmnRm′ − µ
∑
Rm

nRm′ , (4.1)

where cRm is the destruction operator of the m-th fermionic component on the lattice

site R, and the m runs over the integer values 1, 2, .., N .

First, it is considered the case of a half-filled configuration, which indeed can give

a Mott transition only at N = 2M , where the SU(N) model corresponds to a fully

symmetric spin-1/2 system with M degenerate orbitals. For odd N a half-filled

system has a non integer number of fermions per site and therefore cannot undergo

full Mott localization. It is easy to realize that for symmetric bands the half-filling

condition is obtained by imposing particle-hole symmetry, that in a bipartite lattice

rads cRm → (−1)Rc†Rm. The latter condition implying a specific value of the chemical
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potential, that only under this condition can be written analytically as:

µ =
U (N − 1)

2
. (4.2)

For this reason the chemical potential is often calculated respect to its particle-hole

symmetric value, i.e. µ′ = µ+ U (N−1)
2

.

SU(2M) models have been already studied in refs.[26][53]. More specifically, it has

been demonstrated analytically, that Uc1 ∝
√

2M , and Uc2 ∝ 2M [26], that corresponds

to a broadening of the coexistence region. Fig.(4.1) shows the quasi-particle weight

calculated for the SU(4)-Hubbard model for different values of the interaction strength,

using the ED method with NS = 6. The value of Uc2 ∼ 5D is in a very good agreement

with both references [26][53]. Fig.(4.2) shows the imaginary part of the self-energy

and the imaginary part of the Green’s function calculated both on the Matsubara

frequencies for several values of U . It is evident that in the insulating phase the

self-energy diverges as 1/iωn, and the Green’s function goes linearly to zero when

ωn → 0+, similarly to the already discussed SU(2)-symmetric case. Conversely, in the

metallic phase the ImΣ(iωn) goes to zero linearly and ImG(iωn) tends to its pinning

value when ωn → 0+. Therefore, in the case of the SU(2M)-Hubbard models the

quasi-particle weight Z goes smoothly to zero at the critical point.

Now it will be discussed a more generic case, where the Mott transition does not occur

in a particle-hole symmetric situation. This is the case of any integer filling different

from N/2.

The difference between these two cases is due by the fact that in general, the real part

of the self-energy does not diverge at ω = 0 close to the transition, when the system

is doped and it tends linearly to its static value. This can be shown using the self

consistence relation, that for a semicircular DOS of half bandwidth D reads:

G−1(ω + i0+) = ω + µ− D2

4
G(ω + i0+). (4.3)

In a Mott insulating state the spectral function has a gap, therefore ImG(ω+ i0+) = 0

when ω ∼ 0. Using the Dyson’s equation G−1 − Σ = G−1, the real part of the self

energy of a Mott insulator at low frequencies can be expressed as following:

ReΣ(ω + i0+) = ω + µ− D2

4
ReG(ω + i0+)− ReG−1(ω + i0+) (4.4)
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Figure 4.1: The quasiparticle weight as a function of the interaction strength U . The thick red
line is relative to the DMFT solutions obtained starting from a FL initial state and by increasing
the value of U . Instead, the blue dashed line is relative to the DMFT solutions obtained from a MI
initial state and by decreasing the value of U .
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Figure 4.2: On the left side, the imaginary part of the Green’s function evaluated on
the imaginary axis for several values of the interaction strength. On the right side, the
imaginary part of the self energy evaluated on the imaginary axis for several values of
the interaction strength.
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The real part of the Green’s function can be obtained using the Kramers-Kronig

relations, and expanding it at the first order in ω:

ReG(ω + i0+) =
1

π
P
∫ ∞
−∞

dν
ImG(ν + i0+)

ν − ω

' −P
∫ ∞
−∞

dν
A(ν)

ν
− ω

∫ ∞
−∞

dν
A′(ν)

ν

≡ ρ1 + ρ2 ω . (4.5)

When A(ω) is an even function, as in the case of the SU(2M)-Hubbard models at

half-filling, ρ1 = 0 and ReΣ(ω + i0+) ∼ 1/ω when ω ∼ 0. Instead, in a more generic

case ρ1 6= 0 and the self-energy can be expanded in Taylor series :

Re Σ(ω + i0+) = Σ(i0+) + (1− 1/α)ω +O(ω2), (4.6)

where 1/α = ρ2/ρ
2
1 − ρ1D

2/4 .

Nevertheless, this result does not imply that the self-energy does not have poles

for ω 6= 0, how can be seen easily from the atomic limit. In fact, at T = 0, when

U < µ < 2U , the self-energy reads:

Σ(ω + i0+) ∝ 1

ω + µ− U
2

− iπδ
(
ω + µ− U

2

)
, (4.7)

therefore it has a pole at ω̄ = U
2
− µ, and 1− 1/α ∝

(
µ− U

2

)−2
.

Also at finite U in the insulating phase, the self-energy has in general a pole at ω 6= 0,

however its location is not fixed as in the atomic limit.

It is worth to note that, despite the quasi-particle weight and α are calculated in the

same way, i.e. both can be written as
(

1− ∂ReΣ
∂ω

∣∣∣
ω=0

)−1

, these two quantities have

two different meanings. In fact, Z measures the quasi-particle fraction and it vanishes

within the insulating phase, for its definition. Conversely, α 6= 0 in the insulator

and this implies that the real part of self-energy tends linearly to zero when ω ∼ 0.

Therefore, α can be interpreted as a measure of the damping of the self-energy at low

energies, since the latter increases its slope when α decreases and eventually diverges

when α = 0.

The same considerations hold, in the case of even N , where the insulator density is

a integer number different from N/2. In fact, for a generic N there are N − 1 non
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Figure 4.3: On the right side, HF-QMC estimates of particle density n(µ) at T = D/40 for various
on-site interactions U . Plateaus at integer filling indicate localized Mott phases. On the left side,
pair occupancy at T = D/40 vs chemical potential.

trivial insulating states with density n = 1, 2, .., N − 1.

In the next section the case of SU(3)-Hubbard model will be addressed. A brief review

of the literature [30] will be given, and the first original numerical results of this thesis

will be shown.

4.2 Mott Transition of the SU(3) model.

An early study of the SU(3)-Hubbard model has been carried out by Gorelik and

Blümer [30], where the authors solve the DMFT equations using Hirsch-Fye QMC

algorithm as impurity solver at finite temperature. Their main results are reported in

Fig.(4.3). The left side shows the filling n =
∑

α 〈nα〉 as a function of the chemical

potential µ for a range of on-site interactions U . Initially, for U = 0, n varies smoothly

and rapidly with µ from an empty band (n = 0) at µ/D ≤ −1 to a full band (n = 3)

at µ/D ≥ 1. With increasing U , the slope generally decreases, but the curves remain

smooth until, for U/D ≥ 3, plateaus develop at integer fillings n = 1, n = 2, which

signal the onset of localized Mott phase and correspond to gaps in the spectral function.

No Mott phase is found at half filling, as expected.

The right side of Fig.(4.3), shows another fundamental property of Mott phases, that

is the suppression of double occupancies, that in the case of the SU(N)-Hubbard

model is straightforwardly generalized as D =
∑

α<α′ 〈nα nα′〉. The latter depends

strongly on µ and U : the dependence on µ is mostly monotonic, except for the vicinity

of plateaus n = 1 for U/D ≥ 3. The impact of U is best understood at fixed density
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n, see inset of Fig.(4.3): starting from the noninteracting limit U = 0, where D = 2
3
n,

D is suppressed with increasing U at all n. This suppression is strongly enhanced at

n = 1 for U/D ≥ 3.

If the work of Gorelik shows the evidences of the MIT away from half-filling in the

SU(3)-Hubbard model, it lacks of a systematic study of the coexistence of the metallic

and insulating phases. Furthermore, they do not show any phase diagram in the plane

(U, µ) at T = 0, that would be unaccessible by exploiting the QMC technique, while it

is suitable for the ED method. In the next section, this study is carried out and the

T = 0 phase diagram of the DMFT paramagnetic solutions is shown.

4.2.1 Phase diagram in the (U ,µ) plane.

Fig.(4.4) summarizes the phase diagram in the (U, µ) plane of the SU(3)-Hubbard

model at T = 0 obtained using the ED method with Ns = 6. The case of particle

doping, i.e. µ > 0, has been addressed. Nevertheless, the phase diagram for the case

of holes doping, i.e. µ < 0, can be easily obtained from the one under consideration,

if one performs a particle-hole transformation, i.e. µ→ −µ and n→ 3− n .

The phase diagram can be divided into three main regions: in the first one only

metallic solutions exist, in the second the insulator is the only solution and in the

third metallic and insulating phases coexist. Therefore, also in this case it is possible

to identify two critical values of the interaction: Uc1 ∼ 2.6D, Uc2 ∼ 3.5D.

Uc1 is defined as the greatest value of U such that only metallic solutions are found

for all the values of the chemical potential before saturation, i.e. n = 3. In particular,

for U < Uc1, the density is a smooth function of µ and no plateaus at integer filling

are observed.

Uc2 is defined as the lowest value of U such that no metallic solutions are found at

integer filling. Hence, when U > Uc2, the density profiles n(µ) develop plateaus at

n = 2. Furthermore, metallic solutions at n 6= 2 coexists with insulating solutions for

a finite range of chemical potential values. More specifically, when U > Uc2, as shown

in Fig.(4.4), there are four critical values of the chemical potential µ±c1(U) and µ±c2(U),

that are ordered as following: µ−c1 < µ−c2 < µ+
c2 < µ+

c1.

µ±c1 is defined as the greatest (lowest) value of the chemical potential such that

insulating solutions are found. Conversely, µ+
c2 and µ−c2 are defined as the boundaries
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Figure 4.4: Phase diagram in the plane (U, µ) of the SU(3)-Hubbard model.

of the chemical potential interval where no metallic solutions are found. Hence, when

µ < µ−c1 ∨ µ > µ+
c1 the system is metallic and its density is respectively lower or

greater than two. When µ−c2 < µ < µ+
c2, the insulator is the only solution, while in the

cases µ−c1 < µ < µ−c2 and µ+
c2 < µ < µ+

c1, an insulating solution at n = 2 coexists with

a metallic one respectively with n < 2 and n > 2.

When Uc1 < U < Uc2 metallic solutions are found for all the values of the chemical

potential and insulating solutions exist in a finite portion of the phase diagram. In

particular, there are two critical values of the chemical potential µc1 and µc2 such that

insulating solutions are found in the interval µc1 < µ < µc2.

In the next sections, the numerical solutions relative to the three different regions of

the phase diagram are discussed in detail.

U < Uc1 .

The left side of Fig.(4.5) shows the density as a function of the chemical potential for

U/D = 2.25 < Uc1/D. The density varies smoothly from n(µ = 0) = 3
2

until it reaches

the saturation value for large values of µ. In DMFT, this quantity is evaluated directly

from the AIM by averaging the number operator of the impurity over the ground state

obtained in the last iteration. Furthermore, since the system is metallic, the Luttinger
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theorem in eq.(3.14) must hold. Indeed, the panel on the right of Fig.(4.5) displays the

density evaluated using eq.(3.14) as a function of the density obtained directly from

the AIM, showing that the DMFT results are consistent with FL theory. The deviation

between the two values is due to small numerical inaccuracies, in particular to the

finite cut-off at low-energy introduced by the fictitious finite temperature β = 300,

that is necessary for the ED method as explained in the previous chapter. Fig.(4.6)

shows the ratio between the effective and bare masses, as a function of the density. It

is evident that the effective mass has a peak when n ∼ 2, signaling that the system is

much more correlated close to integer filling than the half-filled case, where no MIT

takes place.

The left side of Fig.(4.7) shows the spectral function for three values of the chemical

potential with U = 2.25D. In the first case µ = 0, the spectral density is that of a

metal at half-filling, indeed it is symmetric under sign exchange of the frequencies

A(ω) = A(−ω). It is worth to notice, that the spectral weight gathers around the

Fermi energy, and a small portion of it distributes at higher energy. The second panel

it is relative to the case of a correlated doped metal, in fact the spectral function has

a coherent peak at the Fermi energy, and a considerable portion of spectral weight

distributes at higher energy constituting the Hubbard bands, that in this case can be

distinguished very well. This last are not symmetric respect to the origin, since the

system is away from half-filling, and since n ∼ 2.1 > 2, the lower Hubbard band has a

greater spectral weight than he upper band. The last panel shows the spectral density

of a band insulator at n = 3, in fact its width equals 2D and no spectral weight can

be seen at the Fermi energy.

When U < Uc1 the system is metallic, therefore FL theory implies that the spectral

function evaluated at the Fermi energy reaches its pinning value, i.e. ImG(i0+) =

−πg(µ̃). Therefore, in the case of a semicircular density of states, as long as the

system is in a FL state, A(ω = 0) is expected to decrease upon doping. The right

side of Fig.(4.7) shows the imaginary part of the Green’s function evaluated on the

imaginary axis for several values of µ. In order to show the consistence of the DMFT

solutions, the limiting values −πg(µ̃) are drawn as thin horizontal lines and compared

to the Green’s function.

In conclusion in the metallic region, i.e. when U < Uc1, the system increases its

correlations upon doping from half-filling until around integer filling, where the

correlations have a maximum, and tends to a band insulator upon doping further.
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Figure 4.5: On the left side, the density as a function of the chemical potential for
U = 2.25D. In the center, a comparison between the density obtained from the last
DMFT iteration from the AIM with the value predicted by the Luttinger theorem.
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density evaluated at U = 2.25D.
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Figure 4.7: On the left side, the spectral function evaluated in the case of U = 2.25D
with Ns = 6 for three different values of the chemical potential µ = 0.0, 1.6D, 3.4D
(from the top to the bottom). On the right side, the imaginary part of the Green’s
function evaluated on the imaginary axis, for several values of µ. The thin lines refer
to the limiting value ImG(i0+) = −πg(µ̃) predicted by FL theory.

U > Uc2 .

The upper panel of Fig.(4.8) shows the density as a function of the chemical potential

for U = 3.65D > Uc2. Metallic solutions are obtained for µ < µ−c2 ∨ µ > µ+
c2, and the

density relative to this kind of solutions tends to integer filling at the critical points,

i.e. nmetal(µ
±
c2) = 2 ± 0+. On the other hand, insulating solutions are found in the

interval µ−c1 < µ < µ+
c1, whose density is fixed at nins = 2. Therefore, in the intervals

µ−c1 < µ < µ−c2 and µ+
c2 < µ < µ+

c1, the two solutions coexist.

The lower panel of Fig.(4.8) displays the quasi-particle weight Z and the quantity α

defined in eq.(4.6) as a function of µ. The quasi-particle weight decreases upon doping,

until it jumps from a finite value to zero at the critical points µ±c2. The quantity α

vanishes at µ̄ ∼ 2.32D, that differs significantly from the value predicted in the atomic

limit, that would be 1.825D.

The left side of Fig.(4.9) shows the spectral function for three values of the chemical

potential with U = 3.65D. In the first case µ = 0, the spectral density is that one

of a metal at half-filling, indeed it is an even function A(ω) = A(−ω). The second

panel is relative to the case of a doped correlated metal in the coexistence region,

with µ−c1 < µ = 1.5D < µ−c2. In this situation, the quasi-particle residue is very small

(Z ∼ 0.04) and despite the spiky structure of the spectral function, the Hubbard bands
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Figure 4.8: Upper panel, density as a function of the chemical potential relative to
both insulating and metallic phases for U = 3.65D. Lower panel, the quasi-particle
weight Z and the quantity α defined in eq.(4.6) as a function of µ. The green shaded
areas illustrate the coexistence region.

are quite visible and well separated from the coherent peak at low energy. The last

panel refers to the case of a Mott insulator, in fact the coherent peak has disappeared

and the spectrum has a gap ∆ ∼ U .

The right side of Fig.(4.9) illustrates the self-energy as a function of the real frequencies

for three values of the chemical potential. It is evident that the self-energy has a

pole in zero for µ = µ̄ ∼ 2.32D and that the pole is shifted to positive or negative

values respectively for values of the chemical potential that are lower or greater than

µ̄.

Uc1 < U < Uc2 .

When the interaction strength lies on the range Uc1 < U < Uc2, both metallic and

insulating solutions are allowed. Since metallic solutions are always allowed within

this region, the quasi-particle residue as a function of µ has always a minimum and it
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Figure 4.9: On the left side, the spectral function for three value of the chemical
potential µ = 0, 1.5D, 2.0D (from the top to the bottom). On the right side, the
self-energy for three different values of the chemical potential centered in µ = µ̄.
The thick lines refer to the imaginary part of the self-energy, while the dashed lines
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does not vanish. On the other hand, it has been shown that the Z has a finite jump

as a function of µ when U > Uc2. Therefore, the quasi-particle weight is expected to

vanish smoothly as a function of the chemical potential only at U = Uc2.

Fig.(4.10) shows the behavior of the effective mass as a function of the chemical

potential for different values of the interaction strength. It is clear that the mass

diverges in the limit U → Uc2. This limit could be consider as a more quantitative

definition of Uc2.

4.3 Conclusions

This chapter was dedicated to the metal to insulator transition displayed by the

SU(N)-symmetric Hubbard models.

In the previous chapter, it was argued that a MI state cannot be obtained in a

perturbative manner starting from a FL. In fact, perturbation theory assures that at

low energy the self-energy is an analytic function around the FS, while in the case of

a MI there is always a point where the self-energy has a pole at low energy. Therefore,

the need of a non perturbative method as DMFT in order to study the MIT was

pointed out.
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Figure 4.10: Effective mass as a function of the density for several vales of the
interaction strength U .

In the first part of this chapter, the case of half-filled configurations has been addressed.

It was pointed out that in this configuration the MIT can occur only at N = 2M ,

where the SU(N) model corresponds to a fully symmetric spin-1/2 system with M

degenerate orbitals. Some of the well known results of refs. [28][26][53] were obtained

again, in order to benchmark the code SU N.py, written by the author. An excellent

quantitative agreement with all the main previous results has been found.

The last section focused on the MIT in the case of the SU(3)-Hubbard model. The

presence of an odd number of internal degrees of freedom implies that the system

cannot be found in a MI state at half-filling. Therefore, the MIT is expected to occur

away from particle-hole symmetry and the chemical potential becomes an essential

parameter. After a brief review of the previous results of Gorelik and Blümer [30], the

phase diagram in the plane (U, µ) was presented and discussed. A careful analysis of

the insulating and metallic solutions has been carried out, with a particular attention

posed on the dynamical quantities as the spectral function, the self-energy and so on.

The coexistence region between the metallic and insulating solutions has been shown

in the phase diagram, and the two spinodal values of the interaction strength has been

determined, i.e. Uc1 ∼ 2.6D and Uc2 ∼ 3.5D.

In particular, the quasi-particle weight in the metallic and coexistence regions has a
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minimum as a function of the density at n ∼ 2 and goes to zero only for U = Uc2 at

n = 2. Instead, for U > Uc2 , Z is a discontinuous function of µ and jumps to zero at

the critical values µ±c2.

It was also pointed out, that the lack of particle-hole symmetry implies a shift of

the self-energy pole in the insulating phase. The insulating solutions have been

characterized studying the quantity α(U, µ), that measures such a shift and signals

the divergence of Σ(ω + i 0+) at the Fermi level when it vanishes.
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CHAPTER 5

HUBBARD MODELS WITH

ARTIFICIAL GAUGE FIELDS.

5.1 Introduction

In the first chapter of this thesis, it was shown how to simulate SU(N)-symmetric

Hubbard models, exploiting the nature of the 173Yb electronic ground state. Combining

this with the possibility of simulating AGF gives the unique opportunity of simulating

lattice model in presence of AGF where the onsite interactions between fermions

become relevant.

In particular, the generic hamiltonian relative to the multi-component Hubbard model

in presence of AGF reads:

H =
∑

RR′,m

tRR′ c
†
RmcR′m′ +

∑
R,mm′

(MR)mm′ c
†
RmcRm′ +

U

2

∑
R

nR(nR − 1), (5.1)

where nR =
∑

m nRm, MR is the AGF matrix. A more convenient spinorial notation

will be used from now on, therefore the multi flavor fermionic spinors are defined:

60



ψ†R ≡
(
c†R1, c

†
R2, . . . , c

†
RN

)
, ψR ≡


cR1

cR2

...

cRN

 . (5.2)

Hence, the many body hamiltonian can be written in terms of the spinors as follow-

ing:

H =
∑
RR′

tRR′ ψ
†
R1ψR′ +

∑
R

ψ†RMRψR +
U

2

∑
R

ψ†R1ψR

[
ψ†R1ψR − 1

]
, (5.3)

where 1 is the N ×N identity matrix.

The AGF matrix depends on the lattice site, therefore the system is not homogenous.

Nevertheless, as can be grasped from eq.(2.16), the spatial dependence of MR enters

as a phase, and two matrices calculated in two different lattice sites are related to

each other by a unitary transformation. Namely, if R1 = R + R2

MR1 = ΦRMR2Φ
†
R, (5.4)

where ΦR = exp (−iGR ·ϕ) is the unitary transformation, and (G)mm′ = δmm′m is

the generator of the transformation. This condition implies that the eigenvalues of

MR do not depend on R. Therefore, it is possible to rotate the reference frame using

the unitary transformation ΦR:

H =
∑
RR′

tRR′ φ
†
R

[
Φ†RΦR′

]
φR′ +

∑
R

φ†RMφR +
U

2

∑
R

φ†R1φR

[
φ†R1φR − 1

]
, (5.5)

where, M ≡MR=0, φR = Φ†RψR. Now, it is possible to perform the unitary transfor-

mation, that diagonalizes M:

H =
∑
RR′

tRR′ φ̃
†
R ρRR′ φ̃R′ +

∑
R

φ̃†R λ φ̃R +
U

2

∑
R

φ̃†R1φ̃R

[
φ̃†R1φ̃R − 1

]
,

(5.6)

where λ = UMU † = diag(λ1, λ2, ..., λN ), φ̃R = U φR, and ρRR′ = U ΦR′−R U † depends

only on the difference of R−R′. Therefore, the hamiltonian in eq.(5.6) is the one of an

homogenous system. Nevertheless, the fields have been rotated via unitary operators

that depends on R. Since these operators have a simple form and are known explicitly,
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it is possible to evaluate generic observables of the original system calculating them

as an expectation value over the fields φ̃R and subsequently get back to the original

reference frame via unitary transformations. This scheme gives the advantage of using

methods that are suitable for homogenous systems. Therefore, the DMFT can be

safely used in its simplest single site formulation, with no need of invoking its real

space extension. Nevertheless, cluster extensions of the DMFT [49][42] can be used

for improving the description of the system in k-space especially if unconventional

superconducting states are sought.

Therefore, the cavity method can be applied to the hamiltonian in eq.(5.6), and

relative to the effective AIM reads:

Heff =
∑
`

χ†` Θ` χ` +
∑
`

φ† Ξ` χ` + h.c.

+ φ† λφ+
U

2
φ†1φ

(
φ†1φ− 1

)
, (5.7)

where χ` = (d`1, d`2, ...d`N) is the `-th spinor of the effective bath, φ = (c1, c2, ..., cN)

is the spinor relative to the interacting impurity, (Ξ`)mm′ is the hybridization matrix

that couples the `-th spinor of the bath with the impurity and (Θ`)mm′ represents the

energy levels of the effective noninteracting bath. It is worth to notice that in general

both Θ` and Ξ` are not diagonal matrices in the spin indices since the kinetic term

itself in the hamiltonian in eq.(5.6) it is not.

In the specific case of ϕ = 0, many simplification arise from the fact that the matrix

ρR−R′ |ϕ=0 = 1. This implies that the matrices Θ` = ε`mδmm′ and Ξ` = V`mδmm′ are

also diagonal in the spin indices, and the effective theory is simplified. Hence, the

effective hamiltonian reads:

Heff =
∑
`m

ε`md
†
`md`m +

∑
`m

V`md
†
`mcm + h.c.

+ U
∑
m<m′

n̂mn̂m′ +
∑
m

(λm − µ)n̂m, (5.8)

where n̂m = c†mcm is the number operator of the impurity, µ is the chemical potential,

that has been added in order to study the system in the gran-canonical ensemble.

Given the effective AIM in eq.(5.8), the DMFT equations in the case of a semicircular
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DOS g(ε) = 2
πD

√
D2 − ε2 read:

Gm(τ) = −Tτ
〈
cm(τ)c†m(0)

〉
Heff

G−1
m (iωn) = iωn + µm −

D2

4
Gm(iωn), (5.9)

where µm = µ − λm, Gm(iωn) = T
∑

iωn
e−iωnτGm(τ) and G−1

m is the Weiss field

relative to the fermionic bath that couples with the m-th fermionic component of

the interacting impurity. The Weiss field as a function of the Anderson’s parameters

reads:

G−1
m (iωn) = iωn + µm −

∑
`

|V`m|2

iωn − ε`m
. (5.10)

The DMFT equations are solved using the ED method discussed in Chapt.(3), therefore

the infinite series that runs over ` is truncated at the Ns-th index. In this simple

case, the DMFT cycle is very similar to the one in the symmetric case, with the only

difference that three different Green’s functions must be evaluated and three different

fits of the Weiss Field have to be carried out. The simplicity of this case lies on the

fact that the hybridization function is diagonal in the spin indices.

5.2 The case at ϕ = 0

As anticipated in the introduction, the point of view adopted in this work is slightly

different with respect to many studies of cold-atom systems in the presence of Raman

processes mimicking a gauge field. The main focus of this thesis is in fact to study

models which generalize multi-component models of condensed matter systems.

For this reason the case of ϕ = 0 is addressed, where all the matrix elements of the

matrix M are real. Even with this restriction, different analogies may be used to

interpret the results that will be presented later.

If the N spin components are interpreted as local orbitals of a synthetic atom, the

diagonal matrix elements act as different energy levels for the various orbitals, while

the off-diagonal terms are local hybridizations between them. This analogy can be

used to establish a connection with solid state systems with orbital-selective properties.

Of course the analogy would be stronger for an even N in the case the levels remain

degenerate in pairs, mimicking spinful orbitals in a solid. Nonetheless, it will be shown

that interesting ”flavour-selective” physics can take place also in the absence of a
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residual degeneracy.

A second analogy consists in viewing the internal spin degree of freedom as a sort of

synthetic dimension with a discrete nature. In this language, the diagonal elements of

M play the role of different local energies for the sites in the extra dimension, while the

off-diagonal elements are the equivalent of hoppings in the synthetic dimension.

Finally, treating the N components as a physical SU(N) spin the matrix M can be

viewed as a generalized magnetic field. This latter language highlights an important

property. Since the interaction is SU(N) symmetric, it is always possible to diagonalize

the matrixM while keeping the interaction invariant. This amounts to use the direction

of the magnetic field as the quantization axis.

This simple observation suggests that the physics of the problem will be determined

by the eigenvalues of M which will appear as diagonal energies for the different spin

components in the new basis that diagonalizes the ”magnetic field”. In the simplest

and somewhat peculiar, N = 2 case, only the symmetric disposition ±λ is allowed.

This is due to the fact that the generators of the SU(2) algebra can be represented

by the Pauli matrices {σα}, that can be mapped to each other using the unitary

transformations exp
(−iσ·θ

2

)
. More physically, the generators of the algebra correspond

to the angular momentum operators, and since the system is isotropic, its response to

an external magnetic field does not depend on its orientation.

Instead, in the case of N > 2, multiple dispositions of the eigenvalues are allowed, since

the SU(N) algebra generators are N2 − 1 > 3, i.e. the cardinality of the generators

is greater than the spatial dimensionality. This implies that, along a given axis,

there can be different kind of magnetic fields, because of the increased number of

spin permutations. In general, the system will have different responses to different

matrices M that are not connected through unitary transformations. In this work, it

is considered the SU(3) case and in particular the two matrices

M1 = −

 0 τ 0

τ 0 τ

0 τ 0

 M2 = −

 0 τ τ

τ 0 τ

τ τ 0

 , (5.11)

whose eigenvalues are λ1 = τ{−
√

2, 0,
√

2}, λ2 = τ{−2, 1, 1}. From the point of

view of actual cold-atom systems, these choices would require some fine tuning of

the Raman processes. The first case would require only Raman processes connecting

”successive” spin projections differing of one spin quantum, which have to be tuned to
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be identical. The second case would require also a next-neighbor process. Here it has

been choosen to take all these matrix elements to simplify the theoretical description.

However, the most important results obtained do not depend on this symmetric choice.

21 3
τ τ

ττ

√
2 τ

√
2 τ

m= 1

m= 2

m= 3

(a)

21 3
τ τ

ττ

τ

τ

3 τ

m= 1

m= 2, 3

(b)

Figure 5.1: Schematic representation of two synthetic hopping processes along the
synthetic dimension and their associated energy levels in the SU(3) case. In particular,
(a) represents graphically the AGF matrix M1 that corresponds to a nearest-neighbor
hopping with OBC, whose eigenvalues are non degenerate and equally spaced from
each other with an energy difference of

√
2τ . Instead, (b) represents the AGF matrix

M2, that corresponds to a nearest-neighbor hopping with PBC. In this case, the
eigenvalues are doubly degenerate and their energy difference is 3τ .

Using the ”synthetic dimension” language, the two matrices correspond respectively

to a three-site hopping with open boundary conditions (OBC) and periodic boundary

conditions (PBC), respectively. The two situations are quite different because in the

PBC case a residual SU(2) symmetry survives in a two-component manifold, while

the OBC completely break the SU(3) symmetry.

In the progress of this chapter, the differences between these two cases, that are

depicted schematically in Fig.(5.1), will be extensively discussed, and the distinct
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physical situations emerging from these differences will be highlighted.

Before entering the discussion of the original results of the present chapter for the

SU(3) case, some important aspect of the SU(2) case are reviewed, which will prove

useful to analyze the higher-N results.

DMFT studies of the single-band Hubbard model show a dramatic enhancement

of the magnetization as a function of the intensity of an external magnetic field

[6][5][58][35][43], in the intermediate coupling regimes. This behavior deviates sig-

nificantly from the smooth trend predicted in the MF approximation. This is due

to the tendency of the system to create a long range antiferromagnetic order via

the super-exchange interaction induced by the Hubbard U . This can be understood

following the original idea of Landau [44], who suggested that an antiferromagnet

can be described as a stack of ferromagnetically ordered layers whose magnetization

alternates from layer to layer. If the interlayer coupling is weak enough, it can be

argued that a magnetic field of relatively small intensity would be sufficient to modify

the mutual orientation of the moments in each layer. This leads to deviations from the

linear dependence of the total moment on the field, i.e., to an anomalous increase of

the susceptibility, and finally, at high fields, to a saturation of the magnetization.

Furthermore, for intermediate couplings, the quasi-particle effective mass is enhanced

as a function of the external magnetic field and increases critically just before the

system polarizes completely becoming a band insulator, where the band of the majority

spin is totally filled [6][5]. This is an additional feature of the correlated system that

cannot be grasped using the MF approximation, where the masses do not renormalize.

Because of its anomalous response to an external magnetic field, such a system is

said to be metamagnetic and it is often characterized by concave magnetization, i.e.
∂2m
∂h2

> 0, just before its completely polarization.

In the next sections, the solutions of the DMFT equations in eq.(5.9), obtained using

the ED method, will be shown and discussed. It is worth to notice, that in the present

work antiferromagnetic long range order is neglected.

5.2.1 Synthetic hopping with OBC

This section focuses on the case of a synthetic hopping with OBC, i.e. the AGF matrix

is given by M1 that corresponds to the case depicted in Fig.(5.1). In this situation, the

magnetic field splits the Zeeman levels in a symmetric fashion around zero. Therefore,
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in the rotated basis which diagonalizes M1, the m-th flavor feels an effective chemical

potential µm = µ− λm with {λm} = τ
{
−
√

2, 0,
√

2
}

.

The numerical results are presented first in the rotated basis. The occupation number

relative to the rotated m-th fermion component is labeled as nm ≡
〈
c†mcm

〉
, while in

general a tilde and greek indices are used for denoting quantities relative to the original

fermions. This last are shown in order to provide a more direct benchmark to cold

atoms experiments, where measurements are performed in the original basis.

As can be grasped from the previous chapter, the chemical potential represents an

essential parameter in order to study the three components system. In the next

sections it will be addressed the µ > 0 case, which correspond to density values in the

range 3/2− 3, where a Mott transition occurs at n = 2. However this case contains

also the information relative to negative values of µ, because of the symmetrical

dispositions of the eigenvalues {λm}. Indeed, after a particle hole transformation,

i.e. cRm → (−1)R c†Rm and the exchange of the flavor indices 1 ↔ 3 the rotated

hamiltonian is mapped onto itself with µ→ −µ .

In the weak coupling regime, the system can be studied using the mean field (MF)

approximation, that constitutes a benchmark for the DMFT calculations when the

values of the interaction strength U is small enough.

For stronger couplings, the mean field approximation becomes inadequate, since the

correlations among fermions increase and start to play a central role. Furthermore, for

U/D > 1/g(µ), the Stoner’s criterion of ferromagnetism1 applies, and very different

results are expected in the case where a method or the other is used.

In the atomic limit, i.e. t = 0, the system is an insulator at integer filling. In

particular, when n = 2, the ground state of the system is given by the product state

|ψ〉 = |1〉1 ⊗ |1〉2 ⊗ |0〉3, where |1〉m = c†m |0〉m, where m refers to the m-th fermionic

component. Therefore, the system is expected to be completely polarized in the limit

of large U/t.

Weak Coupling

At weak coupling, the MF approximation is expected to give a reliable description of

the evolution of the system as a function of the parameters τ , U and µ. In general,

1The Stoner’s criterion applies in general for any values of N [16].
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one can proceed with the Hartree approximation, that consists in writing the number

operator of the m-th fermionic component as n̂m = nm + δn̂m, where δn̂m ≡ n̂m − nm,

substituting this expression into the hamiltonian in eq.(5.6) and keeping only the

linear terms in δn̂m. This approximation is consistent as long as the correlations

among the different fermionic components are weak enough, that is certainly true at

weak coupling. The effective hamiltonian obtained within this approximation reads:

Heff =
∑
km

(εk − µ̃m) n̂km, (5.12)

where µ̃m = µ − λm − U
∑

m′ 6=m nm′ it is an effective chemical potential felt by the

m-th fermionic flavor. This leads to a self consistent set of coupled equations for the

occupation numbers of the different fermionic species, that in the case of a semicircular

DOS reads:

nm =
2

Dπ

∫ µ̃m

−D
dε

√
1−

( ε
D

)2

=
1

2
+

1

π

 µ̃m
D

√
1−

(
µ̃m
D

)2

+ sin−1

(
µ̃m
D

) . (5.13)

The set of equations in eq.(5.13) is solved numerically and its results are compared

with DMFT calculations.

Fig.(5.2) shows the total density as a function of µ for several values of τ . The density

profile is smooth until the field reaches the critical value τc, such that for τ > τc

plateaus develop at n = 2. It is worth to notice that the density profile changes its

shape smoothly as a function of τ . This corresponds to a smooth opening of a gap

of the spectral function at the Fermi level. The upper panel of Fig.(5.3) shows the

occupation numbers of the three fermionic components as a function of the chemical

potential for several values of τ . It is evident that in the regions where the total

density is a flat function of µ, the configuration of the occupation numbers is given

by n1 = n2 = 1, n3 = 0 and the system is a band insulator where the bands relative

to the flavors ”1” and ”2” are totally occupied, while the 3rd flavor’s band is empty.

The lower panel of Fig.(5.3) shows the occupation numbers as functions of the total

density. It is clear that the trend of nm(n) does not change very much as a function

of τ and that it is almost linear except for nm 6= 1, 0 where plateaus develop. DMFT

results are compared with the MF data and a good agreement is obtained between

these two different methods in this regime.
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Figure 5.2: Total density as a function of the chemical potential for several values of
τ and U = 1D. The color bar indicates the intensity of the external field τ in units
of half-bandwidth. The plots refer to the numerical solution of the MF equations in
eq.(5.13).
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Figure 5.3: (Upper panel) Occupation numbers relative to the different fermion species
as functions of the chemical potential for τ = 0.25D, 0.75D, 1.25D at U = 1D.
(Lower panel) Occupation numbers relative to the different fermion species as functions
of the total density for τ = 0.25D, 0.75D, 1.25D at U = 1D. The dots refer to the
values of nm evaluated with DMFT.
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Intermediate Coupling
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Figure 5.4: Total density as a function of the chemical potential for several values of
τ and for U/D = 2.5.

Fig.(5.4) shows the total density as a function of the chemical potential, for several

values of the field τ , for U = 2.5D < Uc1(τ = 0). The density profile does not change

very much as a function of τ until the field reaches the critical value τc, such that for

τ > τc plateaus develop at n = 2. Therefore, for τ < τc, A(ω) has a finite spectral

weight at the Fermi energy for any value of the chemical potential, while when τ > τc,

there is a finite range of values of µ such that the spectral function is gapped at the

Fermi level and the system is an insulator. The evolution of the spectral function for

several values of τ , at U = 2.5D is displayed in Fig.(5.5), where it is evident that for

τ > τc the ground state is a band insulator, as in the case of weak coupling. The band

should recover the non-interacting DOS for any flavor index. The discretization of the

effective bath used in the ED scheme for solving the AIM hides the result, nevertheless

the frequency range is clearly the correct one for every band.

Despite the trivial nature of this insulating state, the approach to this state as a

function of µ, τ and U is far from trivial.

As a first evidence of this last statement, it is worth to observe the abrupt change of

the density profile n(µ) as a function of the external field, implying that the gap of the

spectral function opens quite abruptly as a function of τ . Another non-trivial feature

of the system is given by the distinct behaviors of the occupation numbers relative to

different fermionic species as functions of τ and µ. The upper panel of Fig.(5.6) shows
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Figure 5.5: Spectral function relative to the three different flavor components for
τ = 0.025D, 0.1D, 0.2D at U = 2.5D and n = 2.
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the occupation numbers of the fermionic components as a function of the chemical

potential for several values of τ at U = 2.5D. As a direct consequence of the energy

levels disposition shown in Fig.(5.1), the occupation numbers order in the following

way n1 < n2 < n3. When τ � τc, the trend of the occupation number relative to the

m-th component is very similar to the symmetric case at τ = 0. When τ < τc but it

is close to the critical value, the occupation numbers display a non-monotonic trend

as a function of µ, that is very different from the behavior in the symmetric case. For

values of τ > τc, the system polarizes at n = 2, i.e. there is a finite range of values

of µ such that n1 = n2 = 1 and n3 = 0. Also in this case, n3(µ) and n2(µ) assume a

non-monotonic behavior when the system is close to its full polarization. The lower

panel of Fig.(5.6), shows the occupation numbers as a function of the total density.

Here, it is clear that the non-monotonic behavior of n2/3 occurs when n ∼ 2.

The lower panel of Fig.(5.7) shows the renormalized masses relative to the m-th

component of the quasi-particle, labeled as m∗m, as a function of the total density for

several values of τ at U = 2.5D. Until τ < τc, the QP masses are continuous function

of n and they have a maximum for n ∼ 2 for every flavor index. It is worth to notice

that for τ = 0.1D, that is close to the critical value τc ∼ 0.115D, the renormalized

masses of the fermionic species 2, 3 are much greater than m∗1. This difference is

emphasized when τ > τc, where m∗1/m1 tends continuously to the unity when n→ 2,

while m∗2/3 jump to their bare values almost discontinuously at n = 2.

Fig.(5.8) shows the renormalized correlation relative to the different couples of fermionic

species, that is defined as Dδ ≡ | 〈nmnm′〉− 〈nm〉 〈nm′〉 |/ 〈nmnm′〉+ 〈nm〉 〈nm′〉, where

δ = (m,m′). Dδ shows a selectivity of the correlations between the fermionic species

(2, 3), i.e. D(2,3) � D(1,2), D(1,3) for n ∼ 2 and τ ∼ τc. In a typical cold atomic

experiment, the probabilities for n-fold occupancy can be easily measured. Dδ depends

on the double occupancies and the single occupation numbers, therefore it is a

quantity related to the experiments in a more direct way respect to the quasi-particle

masses.

Fig.(5.9) displays the occupation numbers of the different fermionic species separately

as functions of the chemical potential for several values of τ . It is evident that while

n1(µ) tends continuously to its saturation value along both τ and µ axes, the same

statement does not hold for n2(µ) and n3(µ). This is much clearer looking at the plots

of n2/3 as a function of the total density. Indeed, n2/3(n = 2) jumps discontinuously

from a finite value in the range [0, 1] to 1(0) at τ = τc. This is resumed in Fig.(5.12),

where the occupation numbers are plotted as functions of τ at fixed density. The trend
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as a function of µ for τ = 0.025D, 0.1D, 0.2D at U = 2.5D. (Lower panel)
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of the occupation numbers curves n2/3(n = 2) it is similar to what is observed in the

single band Hubbard model in presence of an external magnetic field at intermediate

coupling [6][5], where the system displays a metamagnetic behavior. Conversely

n1(n = 2) tends continuously to its saturation value, with a trend similar to the

one obtained in the weak coupling regime. Therefore, the system shows an exotic

selective metamagnetic behavior, mixing two different trends that usually occur in a

distinct fashion. This selective metamagnetism is confirmed by the behavior of the

effective masses of the fermion components as a function of the chemical potential

and the magnetic field, as displayed in Fig.(5.10). Indeed, also the renormalized mass

of the m-th quasi-particle component, has a selective trend. In general, when τ < τc,

m∗m(n) is a continuous function and has a peak at n ∼ 2 for all the flavor indices.

Nevertheless, m∗1 decreases as a function of τ , while m∗2/3 are dramatically enhanced

when τ approaches its critical value. When τ > τc, as already mentioned above, the

effective masses are no more continuous functions of the total density, since at n = 2

the system is a band insulator and m∗m = mm for all the flavor indices. However, when

n 6= 2 the ground state is still metallic, and the quasi-particle renormalized masses

has a divergent trend for the indices m = 2, 3, when the n ∼ 2 and τ ∼ τc. This trend

is lost for τ � τc, and it is never observed for m∗1.

Also the non-trivial feature encountered in this regime relative to the non-monotonic be-

havior of the occupation numbers as a function of the chemical potential is accentuated

when τ ∼ τc and n ∼ 2.

For completeness the occupation numbers relative to the fermionic components in the

original basis are reported in Fig.(5.9). The unitary transformation that relates the

two reference frames, mix the occupation numbers in such a way that ñ1 = ñ3 > ñ2.

The polarized state is now described by the configuration ñ1 = ñ3 = 3/4, ñ2 = 1/2.

Furthermore, it is worth to notice that the selective metamagnetic behavior is totally

hidden in this basis, where both ñ1 and ñ2 have a finite jump at n = 2 at τ = τc.
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Figure 5.9: Occupation numbers of the three fermionic components m = 1, 2, 3 (from
left to right) in the rotated basis as function of the chemical potential (upper panel)
and the total density (lower panel) for several values of τ and for U/D = 2.5.
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Figure 5.10: Effective masses of the three fermionic components m = 1, 2, 3 (from left
to right) in the rotated basis as function of the total density for several values of τ
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Strong Coupling

In the coexistence region where Uc1 < U < Uc2, solutions of the DMFT equations are

not found for all the values of the parameters µ and τ . Furthermore, when U > Uc2

no FL phases are found at n = 2 and insulating states are found only for large values

of τ .

Fig.(5.13) shows the occupation numbers as a function of the total density for several

values of the external field at U = 3.3D, both in the rotated and original basis.

Metallic solutions at n = 2 are found only for small values of τ . It is worth to notice

that in this regime n1 and n3 assume a non-monotonic trend as a function of n, while

n2 is very close to the symmetric solution at τ = 0. Fig.(5.14) shows the effective

masses as a function of the total density for different values of τ . A similar behavior

as in the intermediate coupling regime is found: m∗1 decreases as a function of τ , while

m∗2/3 increase. Nevertheless, it is difficult to state whether the system has a selective

metamagnetic behavior or not, because of the numerical difficulties encountered in

this regime for higher values of τ , therefore τc could not be determined.

Also in this case the occupation numbers relative to the fermionic species in the

original basis are reported on the right side of Fig.(5.13). It is worth to notice that

in this basis the non-monotonic behavior it is not observed and that the occupation

numbers have a linear trend as a function of n.
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Figure 5.13: Occupation numbers of the three fermionic components in the rotated
(left side) and original (right side) basis as a function of the total density for different
values of the magnetic fields at U = 3.3D. The thick lines refer to n1, the dashed
lines to n2 while the dotted ones to n3.
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flavor indices m = 1, 2, 3.

Fig.(5.15) resumes the main results discussed so far about the DMFT solutions of

the Hubbard model in presence of a nearest neighbor hopping along the synthetic

dimension with OBC. In fact, it shows the density plots of the effective masses relative

to the three fermionic components on the plane (U, τ) at n = 2. The symbols drawn

over the density plots refer to the trend of the occupation numbers as a function of

the chemical potential: the circles (triangles) stand for a monotonic (non-monotonic)

trend. The critical line τc(U) represents a transition line between a FL and a band

insulator for U ≤ 2.5D and the greatest value of the magnetic field such that metallic

solutions are found for U > 2.5D. The masses have a singularity at the point (Uc2, 0).

Furthermore, the selective metamagnetic behavior of the system can be understood

observing the trend of the masses of different flavor indices along the τ axis: m∗1

decreases, while m∗2/3 increases. In addition, while for m = 1, 3 an increase of the

effective masses corresponds to the appearance of a non-monotonic trend of the

occupation numbers, the same statement does not hold for the flavor index m = 2. In

fact, the non-monotonic behavior of n2 disappears close to Uc2. A possible explanation

of that could rely on the fact that at strong coupling FL solutions at n = 2 are found

only for very small values of τ and the system is still in the linear response regime.

Therefore, m = 2 does not feel any shift of the chemical potential, i.e. µm=2 = µ, and

the behavior of n2(µ) is very close to the one obtained in symmetric case at τ = 0.

78



Figure 5.15: Density plots of the effective masses of the three fermionic components
evaluated at n = 2 on the plane (U, τ). Symbols are drawn over the density plots,
indicating whether the occupation number has a monotonic (circles) or non-monotonic
(triangles) trend as a function of µ.
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5.2.2 Synthetic hopping with PBC

In the case of a nearest neighbors hopping along the synthetic dimension with PBC,

the eigenvalues of the AGF matrix reads {λm} = τ{−2, 1, 1}. Therefore, a residual

SU(2) symmetry is preserved since the system is invariant under the permutation of

the flavor indices 2↔ 3.

In the atomic limit, i.e. t = 0, the system is an insulator at integer filling. In

particular, when n = 2, the ground state of the system is given by the product state

|Ψ〉 = |1〉1 ⊗ |Φ〉23, where |1〉1 = c†m=1 |0〉1 and Φ23 belongs to the bi-dimensional

degenerate subspace spanned by the kets {|1〉2 ⊗ |0〉3 , |0〉2 ⊗ |1〉3}. Therefore, the

system is simultaneously a paramagnetic Mott insulator made up by the fermionic

components with flavor indices m = 2, 3 and a ”band” insulator formed by the flavor

index m = 1. Therefore, in this limit n1 = 1 and n2 = n3 = 0.5.

Furthemore, for small values of τ , it is reasonable to expect that the phase diagram

sketched in Fig.(4.4) does not vary very much its boundaries even though the nature

of the insulating state is now totally altered respect its SU(3)-symmetric counterpart.

Hence, when U < Uc1 the ground state of the system is metallic for any value of the

total density, for Uc1 < U < Uc2 the composite insulator coexists together with the

FL phase, and finally for U > Uc2 only insulating solutions exist at n = 2 .

Fig.(5.16) shows the density and the occupation numbers of the fermionic components

as a function of the chemical potential, for U = 3.0D for several values of the field.

Since Uc1 < U < Uc2, both metallic and insulating solutions coexist in a finite range of

the chemical potential. The density profile relative to the FL solutions, becomes more

flat in the coexistence interval increasing the external field. This is due to the fact

that for large values of τ , the on site energy separation between the flavor components

m = 1, 2 (or m = 1, 3) is very large, therefore n1 tends to its saturation value very

rapidly as a function of µ and the interactions between these components can be

neglected. Since, in this regime only the interaction between the fermionic components

m = 1, 2 is expected to be relevant, the physics of the system is very similar to the

one of the single band Hubbard model at half-filling.

On the other hand, for small values of the field, the system has the very peculiar

feature that the difference between the two values of the m-th component occupation

number relative to the metallic and insulating solutions, i.e. ∆m = nmetalm −ninsm is much

greater than the difference between the values of the density, i.e. ∆ = nmetal − nins.
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This is due to the strong tendency of the system to fill the band relative to the m = 1

component and consequently to open a gap in the spectral function relative to the

m = 2, 3 components. This discrepancy is reduced increasing the intensity of the

magnetic field. It is worth to notice, that for intermediate values of the field, i.e.

τ/D = 0.05, nm reaches its saturation value abruptly and its trend is very similar

to the metamagnetic behavior discussed in the previous section in the case of OBC.

Furthermore, for τ/D = 0.02, 0.05 it is observed a non-monotonic trend for all the

flavor occupation numbers.

Fig.(5.17) shows the density and the occupation numbers of the three fermionic

components as a function of the chemical potential, for several values of τ at U = 3.65D.

Since U > Uc2 no FL phases are found at n = 2 as expected. In particular there are

two finite ranges of the chemical potential where a FL phase with density nmetal ∼ 2

coexists together with the insulating solution. Also in this case, for relative small

values of the field, a non-monotonic behavior of the occupation numbers as a function

of µ and a metamagnetic trend of the component m = 1 are observed . All these

peculiarities are lost when the magnetic field is high enough for the reasons already

discussed above.
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Figure 5.16: Density profiles and occupation numbers of the three fermionic com-
ponents (n2 = n3) as a function of the chemical potential for several values of the
magnetic field τ at U = 3.0D.
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5.3 Toward the realization of a two component

non-equilibrium state

It is interesting to wonder if the novel property relative to the non-monotonic trend of

nm(µ) could be exploited in order to provide a genuine non-equilibrium many body

state composed by two fermionic components. In fact, while the total compressibility

is always positive, i.e. κ ≡ ∂n
∂µ
≥ 0 , the same statement does not hold for the flavor

compressibility defined as κm ≡ ∂nm
∂µ

. The latter does not represent a thermodynamical

quantity, and the stability of the system only relies on κ. Nevertheless, if an experi-

mental setup could be arranged in order to suddenly get rid of one of the fermionic

components, the system could be found in a state composed by two fermionic species

whose overall compressibility is negative.

More formally, the procedure for eliminating one of the fermionic components, cor-

responds to a projection of the ground state of the system onto a subspace of the

original Hilbert space. The many body ground state of the three components system

|Ψ〉 belongs to the Hilbert space H that can be partitioned into H = H1 ⊗H2 ⊗H3,

where the subscript is relative to the flavor index. Therefore, Hm is the space spanned

by the many-body states |Ψm〉 =
∏

α c
†
αm |0〉, where α could be the lattice site R or

the wave vector k ∈ BZ. The projector onto H1 ⊗H2 ≡ H12 can be written formally

as P12 =
(∑

i |i〉 〈i|
)
⊗ |03〉 〈03|, where {|i〉} corresponds to an orthonormal basis of
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H12 and |03〉 is the vacuum state belonging to H3. Therefore, the projected wave

function now reads |Φ〉 = P12 |Ψ〉. Since the hamiltonian contains interactions among

the three different flavors, the original ground state cannot be written as product

of many body states that belong separately to the Hm spaces, i.e. |Ψ〉 6=
∏

m |Ψm〉,
where |Ψm〉 ∈ Hm. This implies that, the average values of operators acting on

H12 change after the projection, as for the case of the occupation numbers n1/2, i.e.

〈Φ| n̂1/2 |Φ〉 6= 〈Ψ| n̂1/2 |Ψ〉. Therefore, it is not assured that if κm < 0 when calculated

for the ground state of the three components system, it will be still negative after the

projection.

5.4 Conclusions

The combined possibility of simulating SU(N)-symmetric interactions and synthesizing

local gauge potentials, exploiting both the electronic structure of alkali and alkaline-

earth like atoms and their interactions with light, can give rise to many interesting

and exotic physical phenomena.

In particular, the scheme presented in the introduction of two Raman beams incident

on a optical lattice, is suitable for simulating an effective hopping along the synthetic

dimension, given by the flavor degree of freedom. In addition, a Pierles phase

exp (±iϕ ·R) dependent on the lattice site can be impressed upon fermions that hop

along the synthetic dimension. It has been discussed that the inhomogeneity brought

to the system by a non-zero magnetic flux is trivial as long as two AGF matrices MR

andMR′ are connected to each other by a unitary transformation that depends only on

the difference R−R′. Therefore, methods suitable for studying homogenous systems,

as single site DMFT, can be used in order to study this class of systems. Furthermore,

the symmetry of the interactions under SU(N) unitary transformations simplifies very

much the calculations and the numerical protocols that must be adopted for solving

the resulting multi-component Hubbard Model.

The increased number of possible permutations of the flavor indices, gives the possibility

of studying novel problems also in the limit of ϕ = 0. For instance, for N = 3, a

nearest neighbor hopping along the synthetic dimension can be simulated with both

OBC and PBC. These two cases correspond respectively to the AGF matrix M1 and

M2 presented in eq.(5.11). The differences between the spectra of these two simple

3× 3 matrices lead to distinct physical results.
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In the case of a synthetic hopping with OBC, the system shows a flavor selective

metamagnetic behavior at intermediate couplings. In particular, n1(n = 2) goes to its

saturation value continuously as a function of τ , while n2(n = 2) and n3(n = 2) has

a finite jump from a value in the range [0, 1] to 1 and 0 respectively, at the critical

value τ = τc. Furthermore the effective masses of the quasi-particle component m = 1

decreases as a function of τ , while m∗2/3 increases dramatically when τ ∼ τc.

This two distinct behaviors have been shown to occur in the single band Hubbard

model in presence of a magnetic field, but always separately. Therefore, this exotic

mixed magnetic behavior can be consider as a novelty brought by the increased flavor

degeneration. In the main text, the renormalized correlation Dδ relative to the different

couples of fermionic species as a function of n is also reported, in order to link the

theoretical description in a more direct way to experiments. Furthermore, since all

the quantities of interest were calculated as functions of the chemical potential, it is

possible with the presented data to take into account of the harmonic trap of a cold

atomic experiment using the Local Density Approximation, therefore constructing the

spatial profiles of the occupation numbers.

Afterwards, the case of a synthetic hopping with PBC has been addressed. The SU(2)

residual symmetry preserved by the M2 matrix, allows for an insulating mixed state

made up of a ”band” insulator and a paramagnetic Mott insulator. More in detail,

the spectral function of this new insulating state is composed by a totally filled band

relative to the flavor index m = 1 and a gapped distribution relative to the flavor

components m = 2, 3. Also in this case non-monotonic trends of the occupation

numbers as a function of µ is observed for intermediate and small values of τ .

In addition a non-monotonic trend of the occupation numbers as a function of the

chemical potential has been observed for intermediate values of τ . This novel feature

inspired the idea of constructing a genuine non-equilibrium state obtained as a

projection of the GS of the three-component system onto a subspace of the original

Hilbert space. In particular, the possibility of obtaining a two component system with

a negative overall compressibility has been discussed.
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CHAPTER 6

QUANTUM MAGNETISM IN THE

MULTI-COMPONENT HUBBARD

MODEL

The previous chapters were focused on the Mott transition in the paramagnetic sector,

where any magnetic ordering has been neglected. Nevertheless, at very low temperature

in the case of three dimensional systems, and at T = 0 for two dimensional systems,

some kind of magnetic ordering is expected at least in the strong coupling regime,

where the electrons become localized spins. In the particular, it is well known that

in the large-U regime and for a half-filled system, the single-band Hubbard model is

mapped onto the Heisenberg model, i.e.:

H = J
∑
RR′

SR · SR′ , (6.1)

where SµR =
∑

αβ c
†
Rα (σµ)αβ cRβ are the local spin components along the directions

µ = x, y, z and J = 2t2/U is the effective spin coupling obtained using second order

perturbation theory. The Néel temperature in the Heisenberg limit is TN ∝ J , therefore

it scales as the inverse of the interaction strength U .

In the opposite limit of weak interactions, the Néel temperature is exponentially
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small as a function of U for a bipartite nested lattice, as can be shown by a simple

Hartree mean field analysis of the Hubbard model. This can be understood through

considerations about the response of the system to an external field. In the mean

field approximation the response of the system to an external potential is given by its

susceptibility that reads χ(q, ω) = χ0/(1 +Uχ0), where χ0(q, ω) is the non-interacting

susceptibility. As will be explicitly shown in the next chapter, if the energy dispersions

satisfy the nesting property for a particular vector Q, i.e. εk+Q = −εk, as in the case

of an hyper-cubic lattice in d-dimension for Q =

d︷ ︸︸ ︷
(π, π, ..., π), Reχ0(0,Q) ∼ −ln (Λ/T ),

where Λ is an energy cutoff. Therefore, the Néel temperature can be calculated as

1 + UReχ0(0,Q) = 0 =⇒ TN ∝ exp(−D/U).

The weak and strong coupling regimes are connected by a smooth crossover and the

Néel temperature displays a peak at intermediate couplings. This is illustrated in

Fig.(6.1) that shows TN calculated using DMFT as a function of the interactions.

Figure 6.1: Néel temperature TN as a function of the interaction strength U/D
evaluated using DMFT in the case of a bipartite Bethe lattice at half-filling. The
bold line refers to QMC calculations, the thin line is obtained using static mean-field
theory, while the dotted line displays data obtained through IPT [28].

An alternative way to recover the broken symmetry consists in doping the system at a

fixed temperature. In the gran canonical ensemble, this is achieved by a variation the

chemical potential from its particle-hole symmetric value, how shown in the previous
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chapters. In fact, a similar analysis of the system in the case of µ 6= 0 in the weak

coupling regime at zero temperature yields Reχ0(0,Q) ∼ −ln (Λ/µ).

Indeed, the first part of this chapter is dedicated to the analysis of a doped antifer-

romagnetic system at finite temperature, in the particular case of the single-band

Hubbard model.

In the more generic case of N -fold flavor degeneration, spin hamiltonians can be derived

from the hamiltonian in eq.(2.6) in the large-U limit. The increased number of possible

spin and orbital permutations gives rise to a larger spectrum of the hamiltonian also

in the atomic limit, whose energy manifolds are fixed by the SU(N)×U(1) symmetry.

Therefore, the large-U limit provides different spin models belonging to different atomic

energy manifolds. In this chapter, the case of one atom in its ground state per lattice

site is considered. This corresponds in terms of the irreducible representations of

SU(N) to one Young tableaux per each site of the lattice and the SU(N)-Heisenberg

hamiltonian reads:

H = J
∑
〈RR′〉

Smm′(R)Sm
′

m (R′) (6.2)

where J = 2t2

U
is the super-exchange coupling and the Smm′ are the N2 − 1 generators

of the SU(N) Lie algebra that obey the following commutation relation:

[Smm′ , S
n
n′ ] = Snm′δ

m
n′ − Smn′δnm′ . (6.3)

In the case of N = 2 the Heisenberg model in eq.(6.1) is recovered, where its ground

state in a bipartite lattice is an AFM. In general with N > 2, and in a generic lattice

the situation can be far more complicated.

In the second part of this chapter, the case of N = 3 in the triangular lattice is

addressed. References [4],[65] may be considered as a starting point of the further

developments of this section. Here, it has been shown, that for N = 3 in the Heisenberg

limit, the ground state in the square and the triangular lattices with one fermion

per site is a tripartite AFM. The model in eq.(6.2) has been treated in the mean

field approximation plus harmonic quantum fluctuations in the thermodynamic limit,

and with ED and Density Matrix Renormalization Group (DMRG) methods in finite

clusters. The mean field analysis of the SU(3)-Heisenberg model that has been carried
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out is based on a site factorized ansatz on the many-body wave function:

|Ψ〉 =
∏
R

(dAR |A〉R + dBR |B〉R + dCR |C〉R) , (6.4)

where A,B,C stands for the three different flavors state and the vectors dR =

(dAR, dBR, dCR), are variational parameters to be optimized in order to minimize the

mean field energy expectation value, that reads:

EMF =
〈Ψ|H |Ψ〉
〈Ψ| Ψ〉

= J
∑
〈RR′〉

|dR · d∗R′ |
2 . (6.5)

Since J > 0, any configuration where the vectors dR are orthogonal among nearest

neighbors yields the ground state energy. The increase of internal degrees of freedom

leads, at the mean field level, to an higher degeneration of the ground state respect

to the common situation with N = 2. For example, in the case of the square lattice,

the ground state is double degenerate when N = 2, while for N = 3 the degeneration

space of the ground state is proportional to the size of the system. Nevertheless, the

quantum fluctuations selects a tripartite order in the square lattice shown in Fig.(6.2).

Figure 6.2: Schematic representation of a three sub-lattice (a) and a two sub-lattices
antiferromagnetic state of the SU(3) Heisenberg model in the square lattice. The
degeneration of the two configuration at the mean field level is lifted by adding
quantum fluctuations [65].

Linear flavor wave theory (LFWT), that is an extension of the usual spin wave

theory of the SU(2) Heisenberg model, formulated in the case of SU(3)-symmetry

in Refs.[56][57], may be used in order to take into account of quantum fluctuations.

Therefore, the quantum SU(3) spin operator can be represented in the following way:

Smm′(R) = b†m′(R)bm(R), (6.6)
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where bm(R) is the boson destruction operator relative to the m-th flavor at site R.

The ground state of the system can be now fixed, choosing a particular irreducible

representation of SU(3) group at each site. In this case of interest the representa-

tion corresponds to M Young Tableaux disposed horizontally per each site. This

corresponds to fix the number of the Schwinger bosons at M for every site:∑
α

b†m(R)bm(R) = M. (6.7)

The LFWT corresponds to let M to be large enough, in order to allow a large-M

expansion. It should be noted that the right representation that corresponds to the

physical situation of interest, i.e. on particle per site, it is given by M = 1, with

the large-M expansion corresponding to a semiclassical treatment of the Heisenberg

Model.

In the following, the case of an antiferromagnetic ordered state, where the spins on the

site l, which belongs to the sub-lattice Λα, point the α-direction is considered. Hence,

starting from the ordered state the following expansion for the Sαβ (R) operators can

be used:

Sαα(R) = M −
∑
β 6=α

bα†β (R)bαβ(R)

Sαβ ∼
√
M bα†β

Sβα ∼
√
M bαβ

Sβ
′

β = bα†β bαβ′ , with β, β′ 6= α. (6.8)

The superscript α indicates that the boson operators act on the sub-lattice Λα, where

the bosons on the α−axis condensate, i.e. bαα, b
†α
α ∼

√
M . Using eq.(6.8) the exchange

term between two sites R ∈ Λα and R′ ∈ Λα′ reads:∑
βγ

Sγβ(R)Sβγ (R′) =

M
[
b†αα′ (R)bαα′(R) + b†α

′

α (R′)bα
′

α (R′) + b†αα′ (R)b†α
′

α (R′) + bα
′

α (R′)bαα′(R)
]
. (6.9)

The last equation can be plugged into eq.(6.2) and after a Fourier transform of

the boson fields (defined in the sub-lattices) and a Bogoliubov transformation, the
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Heisenberg Hamiltonian finally reads:

H = −z
2
J M NΛ +M

∑
k∈RBZ

∑
α

∑
β 6=α

ωαβ(k)

[
b̃α†β,kb̃

α
β,k +

1

2

]
, (6.10)

where b̃αβ,k is the quasi-particle destruction operator, NΛ is the total size of the system,

z the lattice coordination number, and ωαβ(k) represents the energy associated to the

quasi-particle fluctuations along the β-axis in the Λα sub-lattice.

In the case of the triangular lattice, assuming a tripartite order, the fluctuations are

degenerate and reads ω(k) =
√

1− |γk|2, with γk = 1
3
(ei kx + 2e−i ky/2 cos(

√
3ky/2)).

The ordered moment is reduced from the unity by quantum fluctuations, yielding

〈Sαα(R)〉 = M −
〈

1
ω(k)
− 1
〉
BZ
∼ 0.484, therefore the tripartite order is stable under

quantum fluctuations [4].

In the square lattice, as can be understood from eq.(6.5), the classical ground state

is highly degenerate. The tripartite and bipartite order shown in Fig.(6.2) are both

admitted. Actually a more generic helical order state is admitted by the mean field

calculations, that is given by the following relation:

dl+2 = cos θ dl + sin θ dl × dl+1, (6.11)

where the subscript l stands for lattice sites belonging to the l-th diagonal. The

bipartite and tripartite order are obtained from the last equation respectively for

θ = 0, π
2
. In ref. [65] has been shown that the tripartite system is the one with

lowest zero point energy, once quantum fluctuations are added, and therefore is the

actual ground state. Nevertheless, the quantum fluctuations in this case diverges and

the ordered moment cannot be calculated using LFWT. Therefore, ED and DMRG

calculations are been performed, showing that the tripartite order is stable.

The Heisenberg model in eq.(6.2) is a very good representative of quantum magnetism

emerging from the Hubbard Model at strong coupling, but it is not reliable in the

case of weak and intermediate coupling. Therefore, all the results shown in this

introduction can be taken as benchmarks and inspiration for the upcoming sections of

this chapter, where the magnetic solutions of the SU(N) Hubbard model are studied

at weak and intermediate coupling, using Hartree-Fock method.
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6.1 DMFT analysis of a doped AFM.

In order to take into account of the antiferromagnetic solutions of the Hubbard model

using a DMFT scheme, the self-consistence equations in eq.(3.37) must be generalized

in the way a long range order may take place.

In general a bipartite lattice can be partitioned into two sub-latticesA andB. Therefore

the non-interacting hamiltonian may be expressed in terms of these two sub-lattices

as following:

H0 =
∑
σ

∑
k∈RBZ

εk

(
c†AkσcBkσ + c†BkσcAkσ

)
, (6.12)

where the summation over k has to be carried out over the reduced Brillouin zone

because of the doubling of the lattice spacing. The Green’s function of the interacting

lattice model can be obtained by inverting the following matrix:

G−1(iωn,k) =

(
ξAσ −εk
−εk ξBσ

)
, (6.13)

with ξAσ = iωn + µ − ΣAσ(iωn) and ξBσ = iωn + µ − ΣBσ(iωn). In the relation in

eq.(6.13) it is clear that a local form of the self-energy has been assumed, since Σ(iωn)

is diagonal in the sub-lattice indices. Therefore, the local Green’s function of the

lattice model reads:

Gασ = ξᾱσ

∫ ∞
−∞

dε
g(ε)

ξAσξBσ − ε2
. (6.14)

In the current case, where no external magnetic fields are considered, the system

is symmetric under the composite transformation of a translation A → B plus a π

rotation. This amounts to impose that GBσ = GAσ̄, that allows for studying the

original lattice model using only the local effective action relative to the sub-lattice

A. In this case, the self consistence relations are spin-dependent and in the case of a

Bethe lattice read:

G−1
σ (iωn) = iωn + µ− t2Gσ̄(iωn), (6.15)

whose physical meaning consists in the fact that the effective retarted potential felt

by the ↑ fermion is given by the effective bath of the ↓ fermions.
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Figure 6.3: Density and staggered magnetization as functions of the chemical potential
for several values of the temperature at U = 4D.

6.1.1 Thermodynamic instabilities of the doped AFM

The system is expected to display a second order phase transition as a function

of the chemical potential at high enough temperatures. Therefore in this regime,

there exists a critical value µ = µc(T ) that depends on the temperature such, that

a transition between an antiferromagnet to a paramagnet occurs and the staggered

magnetization vanishes. Since the second order character of the transition, the charge

compressibility of the system κ is expected to have a discontinuity when the transition

occurs. Furthermore, in Ref.[12] a dramatic enhancement of the charge compressibility

as a function of the temperature was reported. Nevertheless, since the high temperature

regime, it was not possible for the authors to establish whether the system was going

toward a divergency of κ or not.

Fig.(6.3) shows the magnetization and the density as functions of the chemical potential

for several values of the temperature T at U = 4D. The data were computed using an

ED solver at finite temperature with Ns = 6. At µ = µc, the staggered magnetization

m vanishes continuously and κ ≡ ∂n
∂µ

has a discontinuity, as expected. The trend of

the density curves increases its slope more and more as a function of the temperature

and a divergent behavior of κ(µc, T ) is observed as a function of T . This permits to

estimate a critical temperature Tc such that such a divergency occurs. Fig.(6.4) shows
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the divergent behavior of κ(µc, T ) evaluated on the critical line.

the phase diagram in the plane (T, µ) for U = 4D. The critical line µc(T ) separates

the antiferromagnetic region from the paramagnetic one where m = 0. The inset in

the figure, shows the divergent behavior of the compressibility κ(µc(T ), T ) calculated

on the critical line. It was possible to estimate the critical temperature Tc through a

logarithmic fit of the compressibility. For T < Tc, the DMFT cycle does not converge

for any value of the chemical potential. Conversely, a finite range of ”forbidden” values

of µ opens in correspondence of the critical point shown in the phase diagram.

Even though no solutions are found n correspondence of the ”forbidden” region, it

interesting to analyze the details relative to the DMFT cycle. In particular, Fig.(6.5)

shows the the density, the magnetization and the convergence test χ as a function

of the DMFT iteration i, at U = 4D and T < Tc, for three different values of

µ = 1.34D, 1.35D, 1.36D that correspond to three different regimes. In the first

one (µ = 1.34D), after a certain number of iterations the system achieves convergence.

In the second regime (µ = 1.35D), the system takes a very long iteration time to find

an homogenous solution. Furthermore, the observables m and n displays a damped

oscillating dynamics as a function of the iteration time. Finally the third regime

(µ = 1.36D) is characterized by a conservative oscillation trend of the observables as a

function of i, and no convergence is achieved. More specifically, the density oscillates
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between two values n− and n+ with n− < n+, that correspond to an antiferromagnetic

and a paramagnetic state respectively. It is interesting to wonder if it is possible to

grasp some physical insights from this additional informations relative to the cycle

dynamics. In particular, this intriguing oscillatory behavior between two states with

different densities, together with the divergence of the charge compressibility would

suggest that the system is moving toward a phase separation, where puddles of an

antiferromagnetic phase alternates with paramagnetic ones. This would be consistent

with the following interpretation of the DMFT cycle. At the iteration time i the site

Ri of the original lattice is treated as the interacting impurity of the effective action

Seff . Afterwards this last is solved and G−1
i is computed through the self-consistence

equation. Therefore, a new iteration starts at the time i + 1, and the site Ri+1,

that belongs to the nearest neighbors of Ri, is selected as the new impurity of the

effective action, feeling an effective potential G−1
i induced at the time i by its nearest

neighbors. Then, another iteration starts and the cycle proceeds in this way moving

from one site to its nearest neighbors. Following this interpretation, the period relative

to the undamped oscillations observed in the DMFT cycle, could be thought as an

effective length that measures the distance between the centers of the magnetic and

paramagnetic puddles. In this case the data reported in Fig.(6.5) would suggest a

characteristic length of the order of hundreds of the lattice spacing.

Fig.(6.6) shows the critical temperature Tc as a function of U . The curve displays a

maximum at intermediate coupling and decreases at stronger and weaker couplings.

The trend of Tc seems to mimick the Néel temperature behavior in the Heisenberg

limit and at intermediate coupling. At weaker couplings, the iteration time necessary

to achieve convergence increases dramatically.

In this case, rather than estimating Tc as a logarithmic fit of the charge compressibility

κ(µc(T ), T ) as for the specific case of U = 4D, the values reported in figure were

estimated in a different manner. In particular, Tc has been defined as the greatest

value of the temperature such that undamped oscillations appear in the DMFT cycle.

More in detail, the dots plotted in Fig.(6.6) were computed as the average T+
c (U)+T−c (U)

2
,

where T+
c (U) represents the lowest value of T such that DMFT solutions were found

for arbitrary values of µ, while T−c (U) is the greatest value of T such that oscillations

in the DMFT cycle appear for a finite range of µ. The error bars were computed as the

relative error between T±c (U). It is worth to notice that the values of Tc evaluated in

the two different manners for U = 4D are in a very good quantitative agreement.
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6.2 SU(3) AFM in the triangular lattice

Three flavors can be arranged in a lattice that can be divided into three sub-lattices,

in order to form an antiferromagnetic configuration. Straightforwardly, the triangular

lattice seems to be a perfect candidate to display an antiferromagnetic order of this

kind. Nevertheless, the situation is different from the case of the SU(2) Hubbard

model in the square lattice, where perfect nesting occurs.

This section is organized in three parts. In the first, the non-interacting gas instability

in the particle-hole channel is studied by means of RPA approximation. In the second

part the Hartree-Fock method is used for studying the emergence of the ordered phase.

In the last part, it is discussed a possible extension of DMFT for a tripartite lattice in

order to study the tripartite antiferromagnetic order and to take into account, in a

non perturbative way, the local quantum fluctuations.

6.2.1 RPA susceptibilities

In order to understand if is there any instability under the action of a magnetic field

in the particle-hole channel, it is useful to compute the RPA susceptibility. For this

purpose, consider the interacting part of the Hubbard hamiltonian:

Hint = U
∑
α<β

∫
ddx ρα(x) ρβ(x). (6.16)

The flavor density can be rewritten as ρα = δρα + 〈ρα〉, where δρα = ρα − 〈ρα〉. In

case of small fluctuations, the interacting hamiltonian can be linearized in the flavor

densities, i.e. discarding quadratic terms in δρα. The linearized hamiltonian reads

Hint ∼ U

∫
ddx

∑
α 6=β

〈ρβ〉 ρα −
1

2
〈ρα〉 〈ρβ〉 . (6.17)

The density of the flavor α is now decoupled from the others, but is subjected to an

effective external field created by the other flavor densities.

Linear response theory gives a formula for calculating the density average of the

system under the action of an external field Vext. In the case of a non interacting gas,

the formula reads:

〈ρα(ω,q)〉 = Vext(ω,q)χ0(ω,q) . (6.18)
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In the case the interactions are turned on the noninteracting χ0 must be replace by

the interacting one and the equation reads:

〈ρα(ω,q)〉 = Vext(ω,q)χ(ω,q) . (6.19)

Calculating χ is not an easy issue, in general. However, when U is small enough, the

interaction can be treated in the mean field approximation as discussed above. In this

case the particles don’t interact with each others but they feel an effective external

field to be summed up to Vext in eq.(6.18), in order to calculate 〈ρα〉 consistently.

Therefore:

〈ρα(ω,q)〉 =
(
Vext(ω,q) + V α

eff (ω,q)
)
χ0(q, ω), (6.20)

that is a system of coupled algebraic equations in 〈ρα〉, and can be reformulated in a

more convenient matrix form, as following: ρ1

ρ2

ρ3

 = Uχ0

 0 1 1

1 0 1

1 1 0


 ρ1

ρ2

ρ3

+ χ0

 V
(1)
ext

V
(2)
ext

V
(3)
ext

 . (6.21)

Now the interacting RPA susceptibility, will be calculated for two kind of external

fields:

Vλ1 = V

 1

−1

0

 Vλ2 = V

 1

1

−2

 (6.22)

The components of the external fields are chosen to be the same of the diagonal

elements of the Cartan subalgebra matrices of SU(3).

The solution of the system in eq.(6.21) is:

Vλ1 :



ρ1 =
χ0

1 + Uχ0

V

ρ2 = − χ0

1 + Uχ0

V

ρ3 = 0

Vλ2 :



ρ1 =
χ0

1 + Uχ0

V

ρ2 =
χ0

1 + Uχ0

V

ρ3 = −2
χ0

1 + Uχ0

V

(6.23)
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and consequently the interacting χ reads:

χ =
χ0

1 + Uχ0

. (6.24)

The non interacting susceptibility

In the mean field approximation the interacting susceptibility depends explicitly on χ0,

therefore the interacting system can be understood by means of the analytic properties

of χ0, that can be written using the Lindhard formula:

χ0(ω,q) =
1

Ω

∑
k

nF (ξk)− nF (ξk + Q)

ξk − ξk+Q + ω + i0+
, (6.25)

where ξk = εk − µ is the lattice energy dispersion measured respect to the chemical

potential.

Hence, the dimensionality together with the lattice topology and filling play a crucial

role, as for instance, in the case of the hypercubic lattice in d dimension at half-filling,

where the band dispersion satisfies the nesting property:

ξ(k + Q) = −ξ(k), (6.26)

with Q = (π, π, .., π). This property leads to a singularity of χ0 at the Fermi surface,

and in particular it can be shown that

Reχ0(0,Q) ∼ − ln(1/T ). (6.27)

This implies that there exists a temperature for any arbitrary small interaction U > 0,

such that the denominator of the RPA susceptibility vanishes, i.e Uχ0 = −1. This is

the reason why, at zero temperature there is always an antiferromagnetic ordering for

arbitrary small values of U .

In the case of the triangular lattice in two dimensions, the situation is different.

Indeed, there is no nesting property of the lattice energy dispersion, at least not for

the antiferromagnetic wave vector Q = 4π
3

(1, 0), that was calculated in the previous

section. This is the reason why the antiferromagnetic transition occurs at a finite

value of the interaction strength U in the tripartite triangular lattice.
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Nesting properties

This section is dedicated to the nesting property of the Fermi surface and more in

detail, eq.(6.27) is proved. Finally the same computation is carried out for a generic

filling, showing that no divergency of the χ0 occurs.

Let us consider the expression in eq.(6.25), in the case eq.(6.26) is fulfilled. In this

specific case the Lindhard function, at ω = 0 reads:

− 1

Ω

∑
k

tanh
(
βξk

2

)
ξk

= −
∫ +∞

−∞
dξ g(ξ)

tanh (βξ/2)

ξ
. (6.28)

In most of the cases, the density of states g(ξ) is consider constant and calculated at

the Fermi surface, and the integral in the RHS of the last equation is approximated

to:

−g(0)

∫ +∞

−∞
dξ

tanh (βξ/2)

ξ
exp(−α|ξ|), (6.29)

where an exponential cut-off of the frequencies is inserted in order to assure converge.

This passage is needed in order to simplify the calculations and to provide an analytic

expression of χ0, nevertheless it has also a physical meaning. Indeed, in order to have
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a divergent χ0, the condition in eq.(6.26) could be fulfilled not in the whole Brillouin

zone, but in a finite domain around the Fermi surface. Therefore, in this case, the

integral in eq.(6.30) would represent the summation over the subset of k-points where

the nesting property is satisfied, and where the approximation on the density of states

is now well understood. The integral in eq.(6.30) can be evaluated using the residue

theorem and expressed as a summation over the Matsubara frequencies, i.e.:

−g(0)

∫ +∞

−∞
dξ

tanh (βξ/2)

ξ
exp(−α|ξ|) =

−2πi g(0)
2

β

∑
iωn

exp(−ωn α)

iωn
= −4π g(0) atanh

(
e−π

α
β

)
∼ − ln(1/T ) , when T ∼ 0 . (6.30)

One of the most representative example of nesting property of the Fermi surface is

the case of the hyper-cubic lattice at half filling. This is the reason why for this kind

of lattice at half filling the system has an antiferromagnetic order for arbitrary small

values of the interaction.

The non interacting susceptibility has a similar behavior as a function of the chemical

potential (or doping). Indeed, in the case of the hyper-cubic lattice, the nesting

property is satisfied at half filling, where µ = 0, i.e. ξ = ε. In the case of µ 6= 0 the

Lindhard function at T = 0 reads:

−g(0)

∫ +Λ

−Λ

dξ
θ(−ξ)− θ(ξ + 2µ)

2(ξ + µ)
∼ − ln

(
Λ

µ

)
, (6.31)

where Λ is a finite cut-off and θ(x) is the Heaviside theta function.

6.2.2 Hartree-Fock calculations

The Hubbard model for three flavors interacting fermions reads:

H = −t
3∑

m=1

∑
<RR′>

c†RmcR′m + U
∑
m<m′

∑
R

nRmnRm′ . (6.32)

The hamiltonian above defined is SU(3) symmetric, therefore commutes with the

generators of the Lie SU(3) algebra Smm′ =
∑

i c
†
RmcRm′ .

Under symmetry consideration can be derived a plausible effective mean field hamilto-
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nian, using the Hartree-Fock theory, in order to study the magnetic solutions of the

Hubbard Model. A magnetic field directed along the z-axis would break the symmetry,

letting the hamiltonian in eq.(6.32) to commute not with all the SU(3) generators, but

only with the generators of the Cartan Subalgebra, given by the diagonal generators

of SU(3). For generic SU(N) symmetry, the number of the generators of the Cartan

generators are N − 1. Therefore in the case of SU(3) a two components magnetic

field is expected.

According to these considerations, the effective hamiltonian should have the following

form:

Heff = −t
∑

<RR′>

ψ†RψR′ + U
∑
R

ψ†RTTT ·∆R ψR, (6.33)

where TTT =
(
T

(1),T(2)
)
, that correspond to the Gell-Mann Matrices

T
(1) =

 1 0 0

0 −1 0

0 0 0

 T
(2) = 1√

3

 1 0 0

0 1 0

0 0 −2

 (6.34)

∆R = (∆R1,∆R2), and ψi = (cR1, cR2, cR3) is the multi-flavor spinor at site i.

The effective hamiltonian in eq.(6.33) is a generic hamiltonian in the presence of a

non-homogenous magnetic field along the z-axis in the case of SU(3) fermions, and

it is valid for any lattice topology. The particular case of a triangular lattice, with

a non-homogenous magnetic field with a tripartite shape will be addressed, giving a

generalization of antiferromagnetism in a tripartite lattice.

The effective hamiltonian

Now, the hamiltonian in eq.(6.32) can be written with an explicit spacial dependence

of the order parameter:

Heff = −t
∑

<RR′>

ψ†RψR′ + U
∑
R

eiQ·R ψ†RTTT ·ΛψR

+ U
∑
R

e−iQ·R ψ†RTTT ·Λ
∗ ψR, (6.35)
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where

Λ =
1

2

 ∆1e
−iπ

3 + ∆2e
iπ
3

∆1e
iπ
6 −∆2e

−iπ
6

 (6.36)

represent a complex order parameter, that depends upon the two real parameters ∆1,

∆2 that must be determined self-consistently. The form of the order parameter Λ

is justified in Appendix(D). After performing a Fourier transform of the fields the

hamiltonian reads:

Heff =
∑
k

εk ψ
†
kψk + U

∑
k

[
ψ†kTTT ·Λψk+Q + ψ†kTTT ·Λ

∗ ψk−Q

]
. (6.37)

In Fig.(6.8) it is shown how the Brillouin zone (BZ) can be partitioned into three

domains BZ1 (magenta color), BZ2 (green color), BZ3 (brown color) such that:

BZ =
3⋃
i=1

BZi and BZi ∩ BZj ≡ ∅, ∀ i 6= j (6.38)

and

BZi+ Q ≡ BZ( [i+ 1] mod 3 ). (6.39)

This partition of the BZ allows the summation over the BZ to be splitted into three

summations over the BZi and eventually to express all those sums as a function of a

summation over BZ1 only.

Indeed:

∑
BZ

ψ†kTTT ·Λψk+Q + h.c. =
3∑
i=1

∑
BZi

ψ†kTTT ·Λψk+Q + h.c. =

2∑
n=0

∑
BZ1

ψ†k+nQTTT ·Λψk+(n+1)Q + h.c. =
∑
n

∑
BZ1

φ
† (n)
k TTT ·Λφ

(n+1)
k + h.c.

=
∑
BZ1

2∑
n=0

∑
σ

λσ φ
†(n)
kσ φ

(n+1)
kσ + λ∗σ φ

†(n+1)
kσ φ

(n)
kσ , (6.40)

where λσ ≡
∑

i (Ti)σσ Λi and φk = (φ
(1)
k , φ

(2)
k , φ

(3)
k ) and φ

(n)
k = ψk+nQ , with n =

0, 1, 2.
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Figure 6.8: Partitioning of the Brillouin zone into the three subsets BZ1 (brown color),
BZ2 (magenta color) and BZ3 (green color). The Brillouin zone is given by the area
of the hexagon drawn with thick lines. Since the length of the hexagon side is 4π/3, it
is easy to grasp that BZ1 → BZ2 after a translation of Q and that BZ1 → BZ3 after
a translation of 2Q. Dots in the figure represent points of the reciprocal lattice.
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Eqs.(6.38,6.39) guarantees that {φ(i)
kσ, φ

(j)
k′σ′} = δσσ′ δij δkk′ .

For simplicity the notation will be changed as φ
(n)
kσ → φkσn.

The hamiltonian is block diagonal in the spin sector, therefore it can be expressed

as three 3 × 3 matrices whose indices correspond to the different color indices, i.e.

n = 1, 2, 3.

After defining the color spinor as Φkσ = (φkσ1, φkσ2, φkσ3), the full hamiltonian

reads:

Heff =
∑

k∈BZ1

∑
σ

Φ†kσHkσΦkσ, (6.41)

where:

Hkσ =

 ε(k) Uλσ Uλ∗σ

Uλ∗σ −1
2
ε(k) + g(k) Uλσ

Uλσ Uλ∗σ −1
2
ε(k)− g(k)

 , (6.42)

and where the relation ε(k + Q) = −1
2
ε(k) + g(k), ε(k + 2Q) = −1

2
ε(k) − g(k) has

been used, with:

g(k) ≡
√

3

[
sin

(
kx
2

+

√
3

2
ky

)
+ sin

(
kx
2
−
√

3

2
ky

)
− sin (kx)

]
. (6.43)

In its diagonal basis, the hamiltonian eventually reads:

Heff =
∑
kσn

ρkσn n̂kσn, (6.44)

where ρkσn are the eigenvalues of the matrix in eq.(6.42), n̂kσn = φ̃†kσnφ̃kσn, φ̃kσn =∑
m Unmφkσm, where U is the eigenvectors matrix relative to Hkσ .

It is remarkable that, as in the case of the SU(2) Hubbard model in the square lattice,

the hamiltonian eigenvalues don’t depend on the spin index. Therefore, the spectrum

is three fold degenerate.
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The self consistence equation for the magnetization

In this section, the self consistence equations for the order parameter Λ are derived.

Comparing the hamiltonian in eq.(6.35) with the original Hubbard model of eq.(6.32),

the order parameter must satisfies the following relations:[
Λ1 +

Λ2√
3

]
eiQ·R + h.c. = 〈nR2 + nR3〉 −

2

3[
Λ2√

3
− Λ1

]
eiQ·R + h.c. = 〈nR1 + nR3〉 −

2

3

−2Λ2√
3
eiQ·R + h.c. = 〈nR1 + nR2〉 −

2

3
, (6.45)

therefore:

−〈nR1 − nR2〉
2

= −1

2

〈
ψ†RT1 ψR

〉
= Λ1 e

iQ·R + h.c.

−〈nR1 + nR2 − 2nR3〉
2
√

3
= −1

2

〈
ψ†RT2 ψR

〉
= Λ2 e

iQ·R + h.c. (6.46)

In this way, after defining the ’staggered’ magnetization components as:

m1 ≡ − 1

2A

∑
R

eiQ·R
〈
ψ†RT1 ψR

〉
+ h.c.

m2 ≡ − 1

2A

∑
R

eiQ·R
〈
ψ†RT2 ψR

〉
+ h.c. (6.47)

Using eq.(6.46), it is now possible to compute m1 and m2 as a function of Λ.

Indeed:

m1 =
1

A

∑
R

eiQ·R
(
Λ∗1 e

−iQ·R + h.c.
)

+ h.c. = Λ∗1 + h.c.

m2 =
1

A

∑
R

eiQ·R
(
Λ∗2 e

−iQ·R + h.c.
)

+ h.c. = Λ∗2 + h.c. (6.48)

These relations have been carried out using the fact that the terms proportional to
1
A

∑
R e

i2Q·R → 0 whenA→∞.

The self consistence condition reads:

m = 2Re (Λ) . (6.49)
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Thus the physical meaning of Λ is now clear.

The condition in eq.(6.49) can be now explicited in the following way:

− 1

2A

∑
R

eiQ·Rψ†RTi ψR + h.c. = − 1

2A

∑
Rσ

τ iσ e
iQ·R ψ†RσψRσ + h.c. =

− 1

2A

∑
kσ

τ iσ ψ
†
kσψk+Qσ + h.c. = − 1

2A

∑
BZ1

∑
σn

τ iσ φ
†
kσnφkσn+1 + h.c. =

− 1

2A

∑
kσ

τ iσ Φ̃†kσ

(
UkσT U †kσ

)
Φ̃kσ (6.50)

where Uk is the matrix containing the eigenvectors of Hkσ, and Φ̃kα is the quasi

particle color spinor.

The average value of quantity in eq.(6.50) reads:

− 1

2A

∑
kσn

τ iσ

(
UkσT U †kσ

)
nn
nF (ρkσn) = 2Re(Λi) (6.51)

Using the definition of Λ in eq.(D.11) this last equation can be written explicitly for

the component of the field as:

1

2A

∑
kσn

τ 1
σ

(
UkσT U †kσ

)
nn
nF (ρkσn) +

∆1 + ∆2

2
= 0

1

2A

∑
kσn

τ 2
σ

(
UkσT U †kσ

)
nn
nF (ρkσn) +

√
3

∆1 −∆2

2
= 0 (6.52)

These equations together with:

1 =
1

A

∑
knσ

nF (ρkσn), (6.53)

that fixes the density to one fermion per site, correspond to the self consistence

equations of the order parameter.

Numerical Results

Eqs.(6.52, 6.53) represent a set of three non-linear equations of three variables: ∆1,

∆2, that are the order parameter components and µ, the chemical potential needed to
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fix the density.

The solutions of this system, that can be labeled as X = (∆̄1, ∆̄2, µ̄), has been

found numerically and they are of three kinds, where the following simple relations

hold:

1. ∆̄1 = −∆̄2 =⇒ n1 = n2,

2. ∆̄1 = 2∆̄2 =⇒ n1 = n3,

3. 2∆̄1 = ∆̄2 =⇒ n2 = n3,

where nα are the occupation numbers evaluated in the sub-lattice A.

Hence, it is worth to note that the system spontaneously breaks the symmetry

SU(3) → SU(2) × U(1), therefore preserving a local SU(2) symmetry, since the

occupation numbers of two flavors are always degenerate.

This in accordance with the result shown in the introduction, in the case of the

SU(3)-Heisenberg model, where the dispersion relation of the Flavor Waves of the

flavor B and C are found to be degenerate in the sub-lattice A.

In Fig.(6.9) the solutions of the order parameter are shown as a function of the

interaction strength. The thick lines refer to the solutions of eqs.(6.52, 6.53) that

correspond to minima of the energy, while the dotted ones represent unstable solutions,

i.e maxima of the energy. The dotted line interpolates between two spinodal points.

The first one occurs at Uc1/D ∼ 0.87 and it is the point such that for U > Uc1

magnetic solutions appear. The latter, occurs at Uc2/D ∼ 1.05, that is such that for

U > Uc2 the non-interacting gas begins to be unstable, that is in agreement with

the value calculated via RPA in the previous section. The phase transition occurs

at Uc/D ∼ 0.91, that corresponds to the value of the interactions such that the

free energies of the non-interacting gas and the AFM cross, as shown in Fig.(6.10).

The order parameter jumps from a finite value to zero, signaling a first order phase

transition.

The model with AGF

As discussed in the previous chapter, the introduction of the AGF with ϕ = 0, is

equivalent to introduce an hopping matrix between the fermion internal degrees of

freedom (flavors).
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Figure 6.9: Solutions of the first kind (∆̄1 ≡ ∆ = −∆̄2) of the order parameter as a
function of the interaction strength. The dotted line represent unstable solutions of
the eqs.(6.52, 6.53), while the thick black lines refer to minima of the energy. The
shaded area corresponds to the coexistence region between the normal phase and the
AFM. The red vertical line indicates the critical value Uc such that for Uc1 < U < Uc
the AFM is a metastable phase and the non-interacting gas is the actual ground state,
while for Uc < U < Uc2 the actual ground state is the AFM and the normal phase
corresponds to a relative minimum of the energy.
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Figure 6.10: Cross of the free energies of the non-interacting gas and the AFM (thick
lines). The dotted line corresponds to the energy relative to the unstable solutions
shown in Fig.(6.9). This value corresponds to a maximum of the energy between the
two minima when Uc1 < U < Uc2.
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Figure 6.11: Occupation numbers as a function of the interactions.
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Therefore, the onsite energy of fermions depends on the flavor index and it’s given by

the eigenvalues of the hopping matrix, that reads:

M = −

 0 t1 t2

t1 0 t1

t2 t1 0

 , (6.54)

In order to take into account of the ferromagnetic ordering in the HF scheme, two

additional variational parameters are needed in the parametrization of the occupation

numbers.

Therefore, eq.(D.2) has to be modified as following:

〈nR1〉 −
1

3
= δn1 −∆R1 −

1√
3

∆R2

〈nR2〉 −
1

3
= δn2 + ∆R1 −

1√
3

∆R2

〈nR3〉 −
1

3
= δn3 +

2√
3

∆R2 , (6.55)

where δnα is the homogenous variation of the occupation number from the symmetric

case where τ1 = τ2 = 0, that includes also the effect of the interactions. Fixing the

density at n = 1, it’s equivalent to impose a relation between theses variations. Hence,

eq.(6.55) reads:

〈nR1〉 −
1

3
= δn1 −∆R1 −

1√
3

∆R2

〈nR2〉 −
1

3
= δn2 + ∆R1 −

1√
3

∆R2

〈nR3〉 −
1

3
= −(δn1 + δn2) +

2√
3

∆R2 . (6.56)

The effective hamiltonian obtained using this parametrization is given by the following

formula:

Heff =
∑
kσ

εkσ c
†
kσckσ + U

∑
k

[
ψ†kTTT ·Λψk+Q + ψ†kTTT ·Λ

∗ ψk−Q

]
, (6.57)

where:

εkσ = εk + λσ − Uδnσ
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Eq.(6.57) differs from eq.(6.37) since the bands dependence on the flavor index.

Following the same procedure used earlier for the symmetric case, the effective

hamiltonian can be casted in a more compact form as in eq.(6.41) with a different

color matrix that reads:

H̃kσ = Hkσ + (λσ − Uδnσ)13×3 (6.58)

Hence, the eigenvalues read:

ρ̃kσn = ρkn + λσ − Uδnσ (6.59)

where ρkn are the eigenvalues of Hkσ and obviously the eigenvectors are unchanged

respect to the symmetric case.

The self-consistent equations for the staggered and the homogenous field are:

1

2A

∑
kn

[nF (ρk1n)− nF (ρk2n)]− δn1 − δn2

2
= 0

1

2A

∑
kn

[nF (ρk1n) + nF (ρk2n)− 2nF (ρk3n)]− (δn1 + δn2) = 0

1

2A

∑
kσn

τ 1
σ

(
UkσT U †kσ

)
nn
nF (ρkσn) +

∆1 + ∆2

2
= 0

1

2A

∑
kσn

τ 2
σ

(
UkσT U †kσ

)
nn
nF (ρkσn) +

√
3

∆1 −∆2

2
= 0

1

A

∑
knσ

nF (ρkσn)− 1 = 0 , (6.60)

where the tilde has been dropped in the notation of the eigenvalues defined in

eq.(6.59).

The new set of self-consistent equations couples the staggered field ∆Rα and the

homogenous magnetization δnα.

6.2.3 A DMFT scheme in the case of a tripartite geome-

try

The DMFT equations presented in Chapts.(4,5) don’t allow for solutions that display

an antiferromagnetic long range order.
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Therefore, this last section is devoted to the derivation of the DMFT equations that

allow for tripartite antiferromagnetic solutions in addition to the paramagnetic and

ferromagnetic solutions discussed in the previous chapters.

Self Consistence Equations in a tripartite geometry

A triangular lattice of side a can be viewed as a triangular lattice of side
√

3a with

three atoms per unit cell. In units of the original lattice side a, the vector of the basis

are θ1 = 1
2
(1,
√

3) and θ2 = (1, 0), while the primitive vectors of the new enlarged

lattice are τ1/2 = 1
2
(3,±

√
3).

In light of these considerations, the kinetic part of the hamiltonian in eq.(6.32) can be

expressed as following:

Hkin = −t
∑
〈RR′〉

ψ†RψR′

= − t
3

∑
rµ ν

ψ†A r (ψB r+µ + ψC r+ν) + ψ†B r+θ2
ψC r+θ2+µ + h.c., (6.61)

where ψ is the three component spinor, A, B and C stands for the three fermion

species in the unit cell, {µ} =
{

(1, 0); 1
2
(−1,±

√
3)
}

, {ν} =
{

(−1, 0); 1
2
(1,±

√
3)
}

,

and r runs over the new enlarged triangular lattice.

The Fourier transform of the fields is defined as

ψα r =
1√
Nα

∑
k∈RBZ

eik·r ψαk, (6.62)

where Nα is the number of lattice sites of the species of fermions α.

Substituting eq.(6.62) in eq.(6.61) yields:

Hkin =
∑

k∈RBZ

γk ψ
†
AkψBk + γ∗kψ

†
AkψCk + γkψ

†
BkψCk + h.c.

=
∑
kαβ

Hαβ(k)ψ†αkψβ k, (6.63)
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where γk = −t
[
eikx + 2e−ikx/2 cos

(√
3

2
ky

)]
and:

H(k) =

 0 γk γ∗k

γ∗k 0 γk

γk γ∗k 0

 . (6.64)

Assuming a local form of the self energy, that is diagonal in the sub-lattices indices,

the Green’s function of the interacting system is obtained by inverting the following

matrix:

G−1
m (k, iωn) =

 ξAm γk γ∗k

γ∗k ξBm γk

γk γ∗k ξCm

 , (6.65)

where m is the spin index and ξαm(iωn) = iωn + µm − Σαm(iωn) . Therefore, the

green’s function for the spin index m evaluated at site r = 0, in the sub-lattice α is

given by:

Gαm(iωm, r = 0) =
∑

k∈RBZ

Fαm(k, iωn), (6.66)

where Fαm are the diagonal elements of Gαm(k, iωn), whose analytical form in addition

to other details about the tripartite geometry are reported in the Appendix().

The cavity method can be now applied for every sub-lattice, and therefore the effective

action for a given sub-lattice α reads:

S
(α)
eff [φ∗, φ] = −

∫ β

0

dτ

∫ β

0

dτ ′
∑
m

φ∗α,m(τ)G(α)
W m(τ − τ ′)φαm(τ ′)

+ U

∫ β

0

dτ
∑
m<m′

φ∗αm(τ)φ∗αm′(τ)φαm(τ)φαm′(τ)−
∫ β

0

dτ
∑
m

µm φ
∗
αm(τ)φαm(τ),

(6.67)

where φ and φ∗ are now Grassmann variables, G(α)
W m is the Weiss field for the fermion

species m. The thermal average of an operator acting in the sub-lattice α can be

computed via the path integral

〈O〉α =
1

Zα

∫
D[φ, φ∗]O[φ, φ∗] exp

(
−S(α)

eff [φ, φ
∗]
)

(6.68)
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Consequently, the local Green’s function calculated as path integral reads

Gαm(τ − τ ′) = −〈φαm(τ)φ∗αm(τ ′) 〉α (6.69)

Hence, using eq.(6.66), the self-consistence condition reads:

Gαm(iωn) =
∑

k∈RBZ

Fmα(k, iωn), (6.70)

where Gαm(iωn) is the Matsubara Fourier transform of eq.(6.69).

Practical scheme using an ED-Solver

The action in eq.(6.67) corresponds to the following hamiltonian written in second

quantization:

Hα =
∑
l m

ε
(α)
lm d

†
lmdlm +

∑
l m

V
(α)
lm

(
d†l mcαm + h.c.

)
+ U

∑
m<m′

nαmnαm′ −
∑
m

µm nαm, (6.71)

where dl m, V
(α)
lm and ε

(α)
lm are respectively the destruction operator, the hybridization

amplitude, and the energy levels of the bath relative to the fermion species m in

sub-lattice α.

In this representation, the non-interacting Green’s function of the AIM in eq.(6.71)

reads:

Gαm(iωn; {V (α)
lm , ε

(α)
lm }) = iωn + µm −

∑
l

∣∣V (α)
lm

∣∣2
iωn − εlm

. (6.72)

In principle the number of fermions in the bath is infinite, but for practical purpose

as explained previously in Chapt.[4], this number is fixed to a finite value, namely NS.

With this approximation, the ground state of the AIM, and in case of needs also few

excited states, can be evaluated numerically using Lanczos technique.

This, how explained in Sec.(), allows for the evaluation of several spectral proper-

ties among which the Green’s function Gαm(iωn) and consequently the Self Energy

Σαm(iωn), through the Dyson equation:

G−1
αm(iωn) = G−1

αm(iωn)− Σαm(iωn). (6.73)
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Therefore, the DMFT-cycle reads as following:

• An initial guess of the Anderson parameters V
(α)
lm , ε

(α)
lm is chosen. This determines

the non interacting local Green’s function Gαm(iωn) through eq.(6.72) ;

• The AIM is solved separately for every sub-lattice, and the self-energy as well

as the Green’s function are evaluated ;

• Using eq.(6.66) yields a new Green’s function, from which can be extrapolated a

new non-interacting Green’s function GNEWαm (iωn) using the Dyson equation ;

• A new set of Anderson parameters is obtained by minimizing a suitable norm be-

tween the old and the new non-interacting Green’s functions |
(
GNEWαm (iωn)

)−1−
G−1
αm(iωn; {V (α)

lm , ε
(α)
lm })| .

• Then, a convergence test is performed. If it fails the cycle restarts. Conversely,

in case of success, the cycle breaks and the final set of parameters {V (α)
lm , ε

(α)
lm }

defines the Weiss field GW αm = G−1
αm(iωn; {V (α)

lm , ε
(α)
lm }).

It is important to note that the solution GW αm in the sub-lattice α strongly depends on

the self-energy of the other sub-lattice hamiltonians, via the self-consistence equation.

Therefore the sub-lattices, that are treated independently at the AIM level, are actually

strongly coupled. The main approximation is made on the self-energy, that is assumed

to be diagonal in the sub-lattice indices.
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CHAPTER 7

CONCLUSIONS.

In this work the properties relative to multicomponent fermionic systems in optical

lattices using Dynamical Mean-Field Theory at zero temperature have been studied.

This work is inspired on one side by the realization of multicomponent fermi gases

using cooled Ytterbium atoms, and on the other from advances in our understanding

of multiorbital systems in solid state.

Both systems can give rise to a countless list of interesting phenomena which depend

on several control parameters. This thesis mainly focuses on the possiblity of flavour-

selective behavior in systems with 3 spin components.

First it is addressed the case of a completely SU(3) symmetric system. First a complete

phase diagram for the Mott transition is constructed in this situation. As expected,

and previously found in some calculations, a Mott transition occurs for integer fillings,

which imply either one fermion per site or two fermion per site. The half-filled

condition which would correspond to 3/2 fermions per site, does not allow for Mott

localization. Despite this important difference, the two Mott-Hubbard transitions are

reminiscent of the popular Mott transition of a single-band Hubbard model showing a

coexistence of metallic and insulating solutions.

Then, it was considered the case of artificial gauge fields (AGF) which are experimen-

tally realized through Raman processes connecting the different nuclear spin levels.
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In particular, it was addressed the case where the amplitude of these processes is a

real number, which is formally equivalent to a local hybridization between the spin

species or to a hopping in a synthetic dimension. Using this latter language, the

results obtained can be classified in terms of ”boundary conditions”. In both cases it

was convenient to work in the basis which diagonalizes the local Hamiltonian turning

the AGF into energy splittings between the different levels.

In the case of a synthetic hopping with open boundary conditions, the local Hamiltonian

has three different eigenvalues. If the chemical potential is increased the three levels

fill at different rates. It has been shown that the system displays a flavor selective

”metamagnetic” behavior at intermediate couplings. In particular, one flavor reaches

complete saturation continuously as a function of the amplitude of the AGF, while

two other species reach saturation through a first-order jump at a critical value of

the AGF. In the same process the effective mass of the first species decreases as it

approaches saturation, while the two other fermion experience a huge enhancement of

the effective mass. This two distinct behaviors have been shown to occur in the single

band Hubbard model in presence of a magnetic field, but always separately.

In the case of a synthetic hopping with PBC the spectrum of the local Hamiltonian has

two generate states. The SU(2) residual symmetry allows to reach a mixed state where

one spin polarizes, while the two other species can combine in a paramagnetic Mott

insulating state. Also in this case non-monotonic trends of the occupation numbers as

a function of µ is observed for intermediate and small values of the AGF.

In both cases it has been observed, in the proximity of the values of the chemical

potential when the majority species is polarized, a negative derivative of the population

of some orbitals as a function of the chemical potential. This can be read as a sort

of spin-selective negative compressibility, which has been discussed in relation with

experiments on cold-atom systems.

Finally the magnetic state is studied. The formalism has been introduced to treat the

SU(3) case but the numerical study were limited to the doped SU(2) case because this

requires a smaller computational effort. Here it has been found that the compressibility

actually diverges at finite temperatures when the antiferromagnet becomes unstable

as a function of doping.

These results confirm the incredible richness of these multicomponent system which

can both generalize properties of solid state system and give rise to novel physics.

Even the simple SU(3) system displays indeed a number of interesting phenomena
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of different kinds. The new physics unveiled can be addressed experimentally with

present experimental setups and can be enriched by including some of the aspects

that have been neglected here.
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APPENDIX A

ALKALINE-EARTH ATOMS

MANY-BODY HAMILTONIAN

In this appendix the many-body hamiltonian in eq.(2.3) will be derived using simple

considerations.

As mentioned in the first chapter, the interactions among atoms occur in different

collision channels. Formally, if the coupling between different channels is neglected,

this amounts to write the hamiltonian as summation of different operators acting

on mutually orthogonal subspaces, each of them corresponding to a certain channel.

Therefore:

Ĥint =
∑
c

∑
|ψc〉

U
(
|ψc〉

)
|ψc〉 〈ψc| , (A.1)

where the subscript c runs over all possible channels, 〈ψc|ψc′〉 = 0 if c 6= c′ and U
(
|ψc〉

)
is the interaction strength that in principle depends on the generic many-body state

|ψc〉 of the two particles colliding in the channel c.

Consider now the case of alkaline-earth atoms where the collision channel are labeled by

the multi-orbital configurations ee, gg, eg+ and eg−, that correspond to states of two

particles being in the same orbital (ee and gg), or states symmetric or anti-symmetric

respect to orbital exchange of two particles in two different oribals (eg+ and eg−).
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Therefore, in the case of alkali atoms the hamiltonian reads:

Ĥint =
∑
α= e, g

Ĥαα + Ĥeg+ + Ĥeg−

=
∑
α

∑
|αα〉

U
(
|αα〉

)
|αα〉 〈αα|+

∑
|eg+〉

U
( ∣∣eg+

〉 ) ∣∣eg+
〉 〈
eg+
∣∣

+
∑
|eg−〉

U
( ∣∣eg−〉 ) ∣∣eg−〉 〈eg−∣∣ (A.2)

In order to express the whole hamiltonian in second quantization, the fermi fields are

defined as:

{
Ψ†αm(x),Ψβm′(y)

}
= δ(x− y) δmm′ δαβ ,{

Ψαm(x),Ψβm′(y)
}

=
{

Ψαm(x),Ψβm′(y)
}

= 0 , (A.3)

where Ψ†αm(x) is the Fermi field that creates a particle in x with orbital and spin

quantum numbers α and m and {.} is the anti-commutator.

The kets |αα〉 are symmetric under orbital exchange, therefore they can be anti-

symmetric under spin or spatial exchange. Therefore, one should consider both the

possibilities of a anti-symmetric and symmetric spatial wave function. In particular

both the following possibilities are available:

|αα〉 =
1

2

(
Ψ†αm(x) Ψ†αm′(y)−Ψ†αm′(x) Ψ†αm(y)

)
,

|αα〉 = Ψ†αm(x) Ψ†αm(y) (A.4)

Nevertheless interactions in cold atomic systems are usually considered as local, i.e.

U(|αβ〉) ≡ Uαβ
mm′(x−y) = Uαβ

mm′ δ(x−y). This excludes the second relation in eq.(A.4)

and the generic ket in the αα channel can be expressed in the much simpler way as

|αα〉 = Ψ†αm(x) Ψ†αm′(x) . (A.5)

Therefore, the collisions in the αα channel are governed by the many-body hamiltonian:

Ĥαα =

∫
dx
∑
mm′

Uαα
mm′ Ψ

†
αm(x)Ψ†αm′(x)Ψαm′(x)Ψαm(x) . (A.6)

Uαα
mm′ = 4π~2

m
aααmm′ , where aααmm′ = aαα is the s-wave scattering length relative to the

channel αα and it does not depend on the spin indices.
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The generic ket relative to the eg± channel, in the case of local interactions are given

by: ∣∣eg±〉 =
1

2

(
Ψ†gm(x) Ψ†em′(x)∓Ψ†gm′(x) Ψ†em(x)

)
, (A.7)

and the projector relative to this state reads

∣∣eg±〉 〈eg±∣∣ =
1

2

(
Ψ†gm(x) Ψ†em′(x)Ψem′(x)Ψgm(x)±Ψ†gm(x) Ψ†em′(x)Ψem(x)Ψgm′(x)

)
,

(A.8)

where the fact that m and m′ are dummy indices was used. Finally, the interacting

hamiltonians in the eg± channels read:

Ĥeg± =
U eg±

2

∫
dx ρg(x)ρe(x)∓

∑
mm′

Ψ†gm(x) Ψgm′(x) Ψ†em′(x)Ψem(x), (A.9)

where ρα(x) =
∑

m Ψ†αm(x)Ψαm(x).
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APPENDIX B

GAUSSIAN INTEGRALS

Within this appendix, quantities as partition functions, Green’s functions and other

physical observables are computed both for the non interacting and weakly interacting

Fermi gases.

Basics of the path integral formulation of many-body systems are required for the

comprehension of this chapter. In case of needs, the reader is invited to consult

references [52][1], where a detailed derivation of the path integral formulation of

many-body systems can be found.

B.1 Non interacting Fermi Gas

This section is dedicated to the computation of the partition function of the non-

interacting fermi gas, whose hamiltonian is given by:

H =
∑
α

(εα − µ)c†αcα . (B.1)
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The partition function of such a system can be expressed in terms of a functional

integral:

Z =

∫
D[φ, φ∗] exp

{
−
∫ β

0

∑
α

φ∗α(τ) (∂τ + εα − µ)φα(τ)

}
, (B.2)

where the integration is carried out over all possible anti-periodic coherent states

trajectories, whose eigenvalues components are {φα}, that are grassmannian variables.

The RHS of eq.(B.2) is a Gaussian integral and it can be computed straightforwardly

using the determinant forumla:

Z = det (∂τ + ξα) , (B.3)

where ξα ≡ εα − µ. It is now required to calculate the determinant of a differential

operator. It is possible to use the identity detA =
∏

λA
λA, where A is a generic

operator and λA are its eigenvalues. Hence, once the eigenvalues of the operator in

eq.(B.3) are known, the partition function can be evaluated.

The eigenvalues equation reads:

(∂τ + ξα)ψ(τ) = λψ(τ) ,

(−iωn + ξα)ψ(iωn) = λα(iωn)ψ(iωn) ,

λα(iωn) = −iωn + ξα . (B.4)

Now, it is possible to calculate the gran potential defined as Z ≡ e−βΩ.

Therefore, the gran potential is given by:

Ω = −T
∑
iωn

∑
α

ln(−iωn + ξα) . (B.5)

The summation over the Matsubara frequencies can be performed via the contour

integral over the complex plane,

1

2πi

∮
C

dz nF (z) ln(−z + ξα) = −T
∑
iωn

ln(−iωn + ξα), (B.6)

where the integration contour C = C1 +C2 +C3 +C4 is described in Fig.[B.1].

The only finite contributions to the contour integral are given by the line integrations
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Figure B.1: Integration contour. The wavy line represents the branch cut of the logarithm.

over C3 and C4, that read:

− 1

2πi

∫ ∞
ξα

dx
[

ln(−x+ ξα + iε)− ln(−x+ ξα − iε)
]
nF (x) = −

∫ ∞
ξα

nF (x)

T

∫ ∞
ξα

dx ∂x ln[1 + exp(−βx)] = −T ln
[

1 + exp(−βξα)
]
. (B.7)

Hence, the final expression for the gran potential of a free fermion system reads:

Ω = −T
∑
α

ln
[

1 + exp(−βξα)
]
. (B.8)

B.2 Effective action from the AIM

In DMFT the Anderson Impurity Model is often chosen as a representation of the

effective local theory obtained through the cavity method. In fact, the effective action

can be written starting from the AIM action and integrating out the bath degrees of

freedom. In this appendix such a calculation will be carried out explicitly using the

path integral formulation.
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In particular, the AIM hamiltonian in second quantization reads:

H =
∑
`m

ε`m d
†
`md`m +

∑
`m

V`m c
†
md`m + h.c.− µ

∑
m

n̂m + U
∑
m<m′

n̂mn̂m′ , (B.9)

where n̂m ≡ c†mcm is the number operator relative to the m-th component of the

impurity and d†`m is the creation operator of a fermion in the bath relative to the

m-component of the impurity, V`m is the amplitude of an hopping process from the

impurity to the bath.

The partition function of the AIM can be written using the path integral formulation

as:

Z =

∫ ∏
m

Dc̄mDcme−S1[c̄,c]

∫ ∏
`m

Dψ̄`mDψ`me−S2[ψ̄,c̄,ψ,c], (B.10)

where S1 =
∫ β

0
dτ
∑

m<m′ nm(τ)n′m(τ)− µ
∑

m nm(τ)

S2 =

∫ β

0

dτ
∑
`m

ψ̄`m(τ) (∂τ + ε`m)ψ`m(τ) +

∫ β

0

∑
`m

η̄`m(τ)ψ`m(τ) + ψ̄`m(τ)η`m(τ),

(B.11)

where c`m, c̄`m, ψ`m, ψ̄`m are grassmannian variables and η`m ≡ V ∗`mcm is interpreted

as the source relative to the field ψ̄`m.

The integral over the fields ψ`m and ψ̄`m, in eq.(B.10) can be computed straightfor-

wardly since only quadratic terms appear in S2. In fact, the following identity holds:

∫ ∏
`m

Dψ̄`mDψ`me−S2[ψ̄,c̄,ψ,c] = Zbath exp

[∫
dτdτ ′

∑
mm′ ``′

η̄`m(τ)hmm
′

` `′ (τ − τ ′) η`m(τ ′)

]
,

(B.12)

where Zbath is the partition function of a non-interacting bath whose formal evaluation

is given in eq.(), and (∂τ − ε`m)hmm
′

` `′ (τ − τ ′) = δmm′δ``′δ(τ − τ ′) , with hmm
′

``′ (τ − τ ′) =

δ``′δmm′h
m
` (τ − τ ′), therefore:

(∂τ + εm)hm` (τ − τ ′) = δ(τ − τ ′). (B.13)

It is possible to write the integral in the exponential in eq.(B.12) expanding the fields
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in Fourier series, i.e. η`m(τ) = T
∑

iωn
eiωnτη`m(iωn):

T 2
∑
iωn iνn

∫
dτdτ ′η̄`m(iωn)hm` (τ − τ ′)η`m(iνn)e−iωnτeiνnτ

′

= T
∑
iνn iωn

η̄`m(iωn)

δ(ωn−νn)︷ ︸︸ ︷(
2T

∫ 2β

0

dT eiT
ωn−iνn

2

) hm` (iωn)︷ ︸︸ ︷(∫ β

0

dtei t(ωn+νn)/2hm` (t)

)
η`m(iνn),

(B.14)

where T = τ + τ ′, t = τ − τ ′, and hm` (iωn) = − 1
iωn−ε`m

is the Fourier transform of the

function hm` (τ − τ ′) defined in eq.(B.13). Therefore, after the integration over the

bath fermions the integral in eq.(B.12) reads:

−Zbath exp

[
T
∑
iωn

∑
m

c̄m(iωn) ∆m(iωn) cm(iωn)

]
, (B.15)

where

∆m(iωn) =
∑
`

|V`m|2

iωn − ε`m
, (B.16)

is the hybridization function of the AIM, that corresponds to an effective retarded

potential felt by the m-th component of the impurity. Therefore the partition function

of the AIM can be finally written as

Zbath

∫ ∏
m

Dc̄Dc exp−Seff [c̄,c], (B.17)

where:

Seff [c̄, c] =

∫ β

0

∫ β

0

dτdτ ′
∑
m

c̄m(τ)G−1
m (τ − τ ′) cm(τ) + U

∑
m<m′

∫ β

0

nm(τ)n′m(τ ′),

(B.18)

where G−1
m is the Weiss field whose Fourier transform reads:

G−1
m (iωn) = iωn + µ−∆m(iωn). (B.19)
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APPENDIX C

SIMULATING ARTIFICIAL GAUGE

FIELDS

This appendix is devoted to the derivation of the effective Zeeman field presented in

eq.(2.10). For this scope, the general outlines of the 4-th chapter of the review by

Goldman et al.[29] will be followed.

C.1 Light-Matter interaction

In general, the dominant light-matter coupling term is given by the electric dipole

contribution [47], therefore the dipole hamiltonian reads:

Hdip = d̂ · E(t) =
∑
i

d̂iEi cos(ωt− φi), (C.1)

where d̂ = −e
∑

α r̂α is the electric dipole operator and r̂α is the position of the α-th

electron of the atom, Ei are the spatial components of the electromagnetic field. In

practice, alkali and alkaline earth atoms are generally used in cold atoms experiments,

where the lowest dipole transition occurs between the ground (n)S electron orbital

and the excited (n)P orbital with excitation energy Ee. Therefore, it is enough to
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consider the following atomic hamiltonian:

Hat = Ee Pe +
AFS
~2

L̂ · Ŝ, (C.2)

where Pg,e are the projectors onto the ground and the excited states manifolds

respectively, AFS is the fine structure constant and L̂, Ŝ are the total electronic orbital

and spin angular momenta. Therefore, the orbital angular momentum eigenstates

are {|l = 0,mL = 0〉 , |l = 1,mL = 0,±1〉}, with eigenvalues ~mL and ~2l(l+ 1) for L̂2

and L̂z respectively. The excited state projector can be written explicitly as Pe = L̂2

2~2 ,

and consequently the ground state projector reads Pg = 1− Pe.

The whole hamiltonian:

H = Hat +Hdip (C.3)

is time dependent since its dipole contributions oscillates with frequency ω. To get

rid of its time dependence, one can rotates the reference frame using the unitary

transformation U = exp (−iωtPe). This leads the whole hamiltonian to be mapped

to another time dependent hamiltonian H ′ = U †(t)H U(t) − i~U †∂tU(t). At this

point the rotating wave approximation (RWA) can be used, that consists in neglecting

the oscillating terms with frequencies ω and 2ω and it is valid until |Ee − ~ω| � Ee.

This leads to the an effective time independent hamiltonian H ′RWA = H ′at + H ′dip,

with:

H ′dip =
1

2

∑
i

Ẽ∗i PgdiPe + h.c.

H ′at = ∆ePe +
AFS
2~2

L̂ · Ŝ, (C.4)

where Ẽi = Ei exp(iφi) and ∆e = Ee − ~ω is called detuning and it comes from the

temporal dependence of the unitary transformation, i.e. −i~U †∂tU(t) = −~ωPe.

The light-matter interacting term Hdip can be treated via second order perturbation

theory. For a generic hamiltonian H = H0 + λV , the energy deviation ∆E = E − E0

from the degenerate unperturbed eigenvalue E0 can be expressed as:

∆E = λPV P + λ2PV Q (E −QH0Q)−1QV P, (C.5)

where P is the projector onto the degenerate subspace relative to the unperturbed

eigenvalue E0 and Q = 1−P is its orthogonal complement. Furthermore, the following
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series expansion is valid:

(E −QHQ)−1 =
∞∑
n=0

λn
[
(E −QH0Q)−1QV Q

]n
(E −QH0Q)−1. (C.6)

The energy deviation and the projection of the eigenket onto the degeneracy manifold

can be expanded in series of λ as:

∆E = λε1 + λ2ε2 + ... ,

P |ψ〉 = |φ0〉+ λ |φ1〉+ λ2 |φ2〉+ ... . (C.7)

Therefore, expanding up to second order in λ the Schrödinger equation projected onto

the degeneracy manifold, obtained by multiplying P |ψ〉 from the right to both sides

of the relation in eq.(C.5), and equating terms of the same order in λ one obtains the

following equations1:

PV P |φ0〉 = ε1 |φ0〉

PV P |φ1〉+ PV Q(E0 −QH0Q)−1QV P |φ0〉 = ε2 |φ0〉+ ε1 |φ1〉 , (C.8)

In the case of light-matter interaction, the atom ground state does not posses a

permanent electric dipole moment, i.e. Pg d̂Pg = 0. Therefore, the dipole interaction

must be expanded at least at second order, and using eqs.(C.8, C.4) the effective

hamiltonian of the system projected onto the ground state manifold can be written

as:

Heff = −PgH ′dip (H ′at)
−1
H ′dipPg. (C.9)

In the simple case of AFS = 0, the effective hamiltonian Heff = −∆−1
e

4

∑
ij Ẽ

∗
i Pgd̂id̂jẼj

and can be represented as

Heff = −1

4

∑
ij

Ẽ∗iDijẼ
∗
j , (C.10)

where ∆ij = ∆−1
e Pgd̂id̂jPg commutes with the orbital momentum, therefore it is a

scalar operator, and its expression can be simplified as Dij =
(
δij Pg d̂ · d̂Pg

)
/3∆e.

1Note that in eq.(C.6), every single element of the series must be expanded in powers of λ as well,
since E contains all the order of the expansion in eq.(C.7).
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Hence, the effective atomic hamiltonian can be written as:

Heff = us|Ẽ|2Pg, (C.11)

where us = −| 〈‖d‖〉 |2/12(Ee−~ω), with | 〈‖d‖〉 |2 ≡
∑

m′=0,±1 | 〈l = 0,mL = 0| d̂ |l = 1,mL〉 |2.

Therefore, for Ee > ~ω, when the detuning ∆e � AFS, the dipole interaction induces

an effective attractive field that depends on the laser intensity.

When AFS is taken into account

us = −| 〈‖d‖〉 |
2

36

(
1

ED2 − ~ω
+

1

ED1 − ~ω

)
, (C.12)

where ED1 = Ee − AFS, ED2 = Ee + AFS/2, and the effective hamiltonian acquires

another term that is proportional to the total angular momentum Ĵ = L̂ + Ŝ. In other

words, the fine structure term induces the effective magnetic field:

Beff =
iuv

(
Ẽ∗ × Ẽ

)
µB gJ

, (C.13)

where µB is the Bohr magneton, gJ is the electronic Landé factor and uv = 2us∆FS/(Ē−
~ω), with Ē = (2ED1 + ED2)/3.

In conclusion, the interaction between the atom with a laser field leads to the following

effective hamiltonian:

Heff = us Ẽ∗ · Ẽ +
µB gJ
~

Beff · Ĵ. (C.14)

C.2 The presence of an external magnetic field

In presence of an external magnetic field B the atomic hamiltonian reads:

HB = Ahf Î · Ĵ +
µB
~

B ·
(
gJ Ĵ + gI Î

)
, (C.15)

where Ahf is the hyperfine structure constant and gI is the nuclear Landé factor. In

alkali atoms |gI/gJ | ' 5× 10−4, so the term proportional to gI can be safely neglected

in the atomic hamiltonian.

Since in a given alkali atom Ee � AFS � Ahf , the combined effect of a static magnetic
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field together with a laser field can be studied adding to the hamiltonian in eq.(C.14)

(obtained in a perturbative manner) the contribution of the external magnetic field

given in eq.(C.15).

Therefore, the full hamiltonian in presence of both a light and a magnetic field reads:

HB&E = Ahf Î · Ĵ + us Ẽ∗ · Ẽ +
µB gJ
~

(Beff + B) · Ĵ . (C.16)

Assuming that the Zeeman splitting are small compared with the hyperfine splitting,

it is possible to proceed as for the anomalous Zeeman effect, by considering the term

proportional to gJ as a perturbation. In this case, the left hand side of the first relation

in eq.(C.8) is non trivial and reads

µB gJ
~

Btot ·
∑
m,m′

|j, i, f,m〉 〈j, i, f,m| Ĵ |j, i, f,m′〉 〈j, i, f,m′| , (C.17)

where Btot = Beff + B, {|j, i, f,m〉} are simultaenous eigenkets of Ĵ2, Î2, F̂2 and

F̂z where F̂ = Ĵ + Î, and ~m, ~2f(f + 1) are the eigenvalues of F̂z, F̂2 respectively.

Note that the summation runs over the values of m only, since a generic degenerate

hyperfine manifold is identified by the quantum number f .

The operator Ĵ transforms as a vector under rotations2, therefore the Wigner-Eckart

theorem [10] implies that:

〈j, i, f,m| Ĵ |j, i, f,m′〉 = C 〈j, i, f,m| F̂ |j, i, f,m′〉 . (C.18)

Using the relation 〈j, i, f,m| Ĵ · F̂ |j, i, f,m′〉 = Cf(f + 1)~2, eq.(C.17) transforms

into:

µB gJ
~

Btot ·
∑
m,m′

|j, i, f,m〉 〈j, i, f,m| (Ĵ · F̂)F̂ |j, i, f,m′〉 〈j, i, f,m′|

=
µB gF
~

Btot ·
∑
m,m′

|j, i, f,m〉 〈j, i, f,m| F̂ |j, i, f,m′〉 〈j, i, f,m′|

(C.19)

where gF = gJ
f(f+1)−j(j+1)−i(i+1)

2f(f+1)
and it has been used the relation Ĵ · F̂ = (F̂2 − Ĵ2 −

Î2)/2.

Therefore, the effective hamiltonian acting on the hyperfine manifold with fixed

2Remember that in this case the generator of rotations in space is F̂.
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quantum number f reads:

Heff = us Ẽ∗ · Ẽ +
µB gF
~

(Beff + B) · F̂ . (C.20)

C.3 Actual scheme used in AGF experiments

The effective hamiltonian in eq.(C.20) contains the operator F̂ whose components are

F̂z, F̂y = F+ − iF− and F̂x = F+ + iF−, where F± are the ladder operators, acting on

the hyperfine manifold as F̂± |f,m〉 =
√
f(f + 1)−m(m± 1) |f,m± 1〉. Therefore,

while F̂z splits the hyperfine levels, F̂± describes Raman transitions which change m

by ±1. Nevertheless, this scheme is not yet the one used in current experiments on

AGF.

In a more realistic scenario, an ensemble of ultracold atoms is subjected to an external

magnetic field B = B0 ez and simultaneously is illuminated by several laser beams

with two frequencies ω and ω+δω, where δω = gF µB B0/~+δ. Therefore, an effective

magnetic field is induced by the electric field E = E− exp(iωt) + E+ exp[−i(ω + δω)t]

as stated in eq.(C.13). Hence, the hamiltonian in eq.(C.20) is now time-dependent

and the RWA can be performed, as long as it is assumed that |δ/δω| � 1. Therefore,

sending Heff → S†Heff S−i~S†∂tS, where S = exp(−iF̂zδωt), the rotated hamiltonian

after the RWA reads:

Heff = us

(
Ẽ∗ω− · Ẽω− + Ẽ∗ω+

· Ẽω+

)
+ Ω · F̂, (C.21)

where Ωz = δ +
Beff 0·ez

~ , Ω± = µB gF
2~ [Beff ± · (ex ± ey)], with

Beff 0 = iuv
µBgJ

(
Ẽ∗ω− × Ẽω− + Ẽ∗ω+

× Ẽω+

)
and Beff ± = iuv

µBgJ
Ẽ∗ω∓ × Ẽω± .

In the case of the two raman beams depicted in Fig.(2.7) the effective Zeeman field

reads:

Ω = δ ez + ΩR [sin(2kRx)ex − cos(2kRx)ey] , (C.22)

where ΩR = (gF/gJ)uvE
2/~ is the Rabi frequency of the Raman coupling.
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APPENDIX D

THE ORDER PARAMETER OF THE

TRIPARTITE AFM.

In order to be consistent with the model in eq.(6.32), the effective hamiltonian in

eq.(6.33) must be obtained from the first one by the contractions of the interacting

terms. This sets a first relation between the occupation numbers and the external

effective field, that reads:

〈nR3〉+ 〈nR2〉 −
2

3
= ∆R1 +

1√
3

∆R2

〈nR1〉+ 〈nR3〉 −
2

3
= −∆R1 +

1√
3

∆R2

〈nR1〉+ 〈nR2〉 −
2

3
= − 2√

3
∆R2 (D.1)

that corresponds to

〈nR1〉 −
1

3
= −∆R1 −

1√
3

∆R2

〈nR2〉 −
1

3
= ∆R1 −

1√
3

∆R2

〈nR3〉 −
1

3
=

2√
3

∆R2 (D.2)
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Figure D.1:

∆Ri
may be redefined using two linear transformation: the first one being: ∆R2 →√

3∆R2 and the second one reads: (∆R1 + ∆R2)→ ∆R1, (∆R1 −∆R2)→ ∆R2. These

transformations lead to a simplified linear system of equations:

〈nR1〉 −
1

3
= −∆R1

〈nR2〉 −
1

3
= ∆R2

〈nR3〉 −
1

3
= ∆R1 −∆R2 (D.3)

Now, the explicit dependence of ∆R on the lattice site, will be carried out using the

lattice geometry and imposing symmetries.

A generic lattice site can be expressed in terms of the generating vectors of the lattice,

namely τ 1/2 = (±1/2,
√

3/2), as R(m,n) = m τ 1 + n τ 2, with m,n ∈ Z. Therefore

the system of eq.(D.3), it is expressed in terms of the integers m and n. In the case of

a long range magnetic order of the form of Fig.(D.1), it is easy to see that a translation

of τ1 corresponds to a rotation of 2π/3, while a translation of τ 2 to rotation of −2π/3.

Thus ∆R must be of the form such that, when it is translated of τ 1:

〈nR1〉 → 〈nR2〉 ,

〈nR2〉 → 〈nR3〉 ,

〈nR3〉 → 〈nR1〉 ,
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while when it is translated of τ 2 must give:

〈nR1〉 → 〈nR3〉 ,

〈nR2〉 → 〈nR1〉 ,

〈nR3〉 → 〈nR2〉 .

A possible parametrization of ∆R is given by the following equations:

〈δn1〉 = ∆1 f(m− n− 1) + ∆2 f(m− n)

〈δn2〉 = ∆1 f(m− n) + ∆2 f(m− n+ 1)

〈δn3〉 = ∆1 f(m− n+ 1) + ∆2 f(m− n− 1), (D.4)

where f(`) = 2√
3

sin
(

2π `
3

)
, where ` is an integer, therefore the final expression of the

two component field is the following:

∆R1 = −∆1f(m− n− 1)−∆2f(m− n)

∆R2 = ∆1f(m− n) + ∆2f(m− n+ 1) (D.5)

where ∆1 and ∆2 are the amplitudes of the field to be optimized in order to minimize

the variational energy.

This results must be related to the previous definition of ∆ in the hamiltonian in

eq.(6.33), therefore in order to obtain the original ∆ the results in eq.(D.5) are

combined in the following way:

∆original

R1 =
∆R1 + ∆R2

2

=
1

2
{∆1 [f(m− n)− f(m− n− 1)] + ∆2 [f(m− n+ 1)− f(m− n)]}

∆original

R2 =

√
3

2
(∆R1 −∆R2)

= −
√

3

2
{∆1 [f(m− n) + f(m− n− 1)] + ∆2 [f(m− n+ 1) + f(m− n)]}

(D.6)

Hereafter the apex original that has been used for clarity will be dropped.
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The following formula:

A sin(αx) +B sin[α(x+ y)] = B cos(αx) sin(αy) + [A+B cos(αy)] sin(αx)

implies that:

f(m− n)∓ f(m− n− 1) = ±g(m− n) +

(
1± 1

2

)
f(m− n)

f(m− n)± f(m− n+ 1) = ±g(m− n) +

(
1∓ 1

2

)
f(m− n),

where g(`) = cos
(

2π`
3

)
and from which it can be recognized that f(`) + f(` − 1) +

f(`+ 1) = 0. Using these formulae the expression of the order parameter reads:

∆R1 =
∆1

2

[
g(m− n) +

3

2
f(m− n)

]
+

∆2

2

[
g(m− n)− 3

2
f(m− n)

]
∆R2 = −

√
3

2

{
∆1

[
−g(m− n) +

1

2
f(m− n)

]
+ ∆2

[
g(m− n) +

1

2
f(m− n)

]}
(D.7)

This last equation is almost fully simplified, as last step the following relation

A cos(αx) +B sin(αx) = 1
2
(A− iB)eiαx + h.c., and the following definition

2π(m− n)

3
= Q ·R, with Q =

(
4π

3
, 0

)
, (D.8)

are plugged into eq.(D.7), leading to the final explicit form of the effective field:

∆R = eiQ·RΛ + h.c., (D.9)

where Λ = (Λ1,Λ2)

Λ1 =
1

4

[
∆1

(
1− i

√
3
)

+ ∆2

(
1 + i

√
3
)]

Λ2 =

√
3

4

[
∆1

(
1 + i

1√
3

)
−∆2

(
1− i 1√

3

)]
(D.10)
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that can be rewritten in the more elegant polar form as

Λ =
1

2

 ∆1e
−iπ

3 + ∆2e
iπ
3

∆1e
iπ
6 −∆2e

−iπ
6

 . (D.11)
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