
SISSA

International School for Advanced Studies

PhD course in Statistical Physics

VII cycle

Academic Year 2015/2016

Aspects of localization in disordered
many-body quantum systems

Thesis submitted for the degree of

Doctor Philosophiae

Candidate:

Valentina Ros

Supervisors:

Markus Müller and Antonello Scardicchio





Abstract
For a quantum system to be permanently out-of-equilibrium, some non-trivial mechanism
must be at play, to counteract the general tendency of entropy increase and flow toward
equilibration. Among the possible ways to protect a system against local thermalization,
the phenomenon of localization induced by quenched disorder appears to be one of the
most promising. Although the problem of localization was introduced almost sixty years
ago, its many-body version is still partly unresolved, despite the recent theoretical effort to
tackle it. In this thesis we address a few aspects of the localized phase, mainly focusing on
the interacting case. A large part of the thesis is devoted to investigating the underlying
“integrable” structure of many-body localized systems, i.e., the existence of non-trivial
conservation laws that prevent ergodicity and thermalization. In particular, we show
that such conserved operators can be explicitly constructed by dressing perturbatively
the non-interacting conserved quantities, in a procedure that converges when scattering
processes are weak enough. This is reminiscent of the quasiparticle theory in Fermi
liquids, although in the disordered case the construction extends to the full many-body
energy spectrum, and it results in operators that are exactly conserved. As an example of
how to use the constructive recipe for the conserved quantities, we compute the long-time
limit of an order parameter for the MBL phase in antiferromagnetic spin systems. Similar
analytical tools as the ones exploited for the construction of the conserved operators are
then applied to the problem of the stability of single-particle localization with respect
to the coupling to a finite bath. In this context, we identify a quantum-Zeno-type effect,
whereby the bath unexpectedly enhances the particle’s localization. In the final part of
the thesis, we discuss several mechanisms by which thermal fluctuations may influence
the spatial localization of excitations in interacting many-body states.
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Introduction

Disorder in condensed matter systems is not only abundant and often unavoidable: it
is also the primary source of a rich phenomenology, expecially in quantum mechanical
problems of randomly scattered and interfering matter waves. In his seminal work of
1958 [10], P. W. Anderson made this intuition concrete by incorporating the randomness
as a key ingredient in the theoretical modeling of a quantum system, following the
principle that “a random system is to be treated not as just a dirty regular one, but in
a fundamentally different way” [11]. His prediction of the suppression of transport,
then called “localization”, laid the foundations for the theory of quantum dynamics in a
strongly-disordered environment. Its implications go far beyond the realm of solid state
physics, as the occurrence of localization challenges the basic assumptions underlying
the theory of equilibration and thermalization in isolated quantum many-body systems.

Motivated by the problem of energy transport in spin systems, Anderson formulated
in [10] a tight-binding model of a single particle moving in a stochastic potential land-
scape, and argued for the suppression of the particle’s diffusion at sufficiently strong
disorder. In the single-particle setting, the absence of dc transport is encoded in the
exponential decay in real space of the eigenfunctions. This implies that initial wave
packets with compact support remain confined in the vicinity of the initial support at any
later time: even when the system’s energy is large enough to overcome the surrounding
potential barriers, the ‘quantum random walker’ is localized by the random environment.
The effect of disorder is particularly dramatic in low dimensionality (d ≤ 2), where for
arbitrarily weak strength of the randomness the full set of single-particle eigenstates is
exponentially localized and the system is insulating [3]. In d ≥ 3, as the strength of
the disorder is weakened, a transition occurs: localization survives in the eigenstates
at the edges of the energy spectrum, while states in the middle of the energy band
become delocalized in space. A disorder-dependent critical energy (called “mobility
edge”) appears within the spectrum, separating the energies corresponding to localized
and delocalized states. The Anderson transition has dynamical signatures: transport
coefficients are exactly zero if all the eigenstates are localized (or, at T = 0, if the Fermi
level belongs to the localized region of the spectrum), while they are finite (albeit possibly
small) at any finite temperature in presence of delocalized portions of the spectrum.

The suppression of transport is a signature of the coherence of the scattering processes
of the particle on the surrounding impurities. As such, it is spoiled by fluctuations (e.g.
lattice vibrations) that restore transport by allowing transitions between eigenstates lo-
calized in different regions of space. The non-trivial statement following from Anderson’s
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Introduction

work is that “the model itself provides no such reservoirs and permits no transport, in spite
of its large size and random character” [10]. Whether the same statement remains true
even in the presence of interactions between the constituent degrees of freedom is a
question of theoretical interest and practical relevance, which motivated the search for
the so called Many-Body Localized (MBL) phase [63].

The problem of localization for many-body systems was first addressed systematically
in [72, 20], where it was shown that the fermionic single-particle localized phase is
perturbatively stable with respect to the addition of weak interactions. The exponential
tails emerge in this case in the correlations of the density operators on individual many-
body eigenstates, which are exponentially decaying in the distance between the operators
themselves, implying the vanishing of the diffusion constant [20]. The perturbative
analysis has gained support from subsequent numerical works revealing signatures of
a localized phase even in the large interaction regime, provided that the randomness
is sufficiently large [132, 21, 134, 108]. Traces of MBL have been found in various
one-dimensional fermionic systems on a lattice and in disordered spin chains: they are
encoded in both the properties of the many-body eigenstates and energies (such as the
area-law scaling of the bipartite entanglement entropy and the Poissonian level statistics)
and in dynamical features such as the logarithmic growth in time of the entanglement
entropy of a time evolved product state.

These features of MBL systems are in sharp contrast with the conventional scenario
for thermalization of an isolated, extensive quantum system. The latter assumes that
the environment of any small subsystem of the macroscopic body acts as a thermal
bath with which the subsystem can exchange particles and energy, and which leads
to the eventual thermalization of the subsystems, independently of its initial state. In
MBL systems, due to the suppression of transport over large scales, some local memory
of the initial condition is retained for arbitrarily large times. Thus, they violate the
standard assumption behind quantum thermodynamics, namely the ergodicity of the
quantum dynamics in the presence of interactions. MBL disordered systems, despite
being thermodynamically large, interacting and at finite excitation energy densities, fail
to equilibrate through their own dynamics and remain permanently out-of-equilibrium. As
such, they open interesting possibilities for: (i) the storage of quantum information, that
can be locally manipulated and retrieved [152] (ii) the protection of topological order at
finite temperature, or the realization of long-range order and finite temperature phase
transitions in d = 1, that would be forbidden by the equilibrium statistical mechanics [136,
81, 35].

The authors of [72, 20] predicted an extensive mobility edge separating the lower-energy
localized many-body eigenstates from the extended, higher-energy ones. The extensivity
of the mobility edge entails that the dynamical transition occurs at a finite temperature
Tc > 0 (related to the critical energy by the standard thermodynamical relation), be-
low which the scattering processes are unable to restore the diffusive transport of the
densities associated to the global conserved quantities (energy, spin, particle number
etc), and thermalization is hindered. While the possibility of extensive mobility edges
is debated [49], there is a relatively broad consensus in the community regarding the
existence, for lattice models with bounded energy density, of a strong-disordered phase in
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which the entire spectrum is MBL. This has been proved [86] for a disordered spin chain
under a reasonable assumption, and its signatures have been detected experimentally in
artificial quantum systems with tunable interactions and disorder [151, 158].

At given energy density, as the disorder is weakened a phase transition occurs, marked
by the sharp change in the structure of the individual eigenstates, that become delocal-
ized and develop extensive entanglement entropy. The transition has only dynamical
signatures: transport is restored, and with it thermalization. Lying outside the realm of
equilibrium statistical mechanics, this transition poses fundamental questions concerning
its properties and nature, that are the subject of ongoing research.

Structure of the thesis

Most of the content of this thesis concerns the analysis of the localized phase: the latter
is amenable to analytical treatment, since perturbative methods are controlled in the
regime of strong disorder. The thesis is structured as follows: in the introductory chapter,
the notion of localization is recalled, together with the perturbative arguments for its
stability in the weakly interacting regime. The phenomenology of Many-Body Localized
systems is discussed, and interpreted in the light of their emergent integrability. Some
aspects of the dynamical transition to the delocalized, thermal phase are also briefly
discussed. In the core of the thesis, my original achievements are reported.

– In Chapter 2, I present a recipe to construct the conserved quantities for a system
of interacting fermions on a disordered lattice. The operators are built in terms of
an expansion in a local operator basis, which is argued to converge in a regime of
parameters corresponding to weak interactions among the fermions. The structure
of the resulting operators is argued to imply the suppression of transport.

– In Chapter 3, I exploit the recipe for the explicit construction of the conserved
charges to compute the long-time limit of the remanent magnetization of an
antiferromagnetic quantum spin chain. The latter is proposed to be an order
parameter of the MBL phase, that is readily accessible by experiments in magnets.

– In Chapter 4, I address some aspects related to the stability of localization with
respect to the coupling to additional degrees of freedom, focusing on the problem
of a localized single particle coupled to a finite bath. I discuss the occurrence
of a “quantum Zeno effect” in the strong coupling regime, in which repeated
“measurements” of the particle by the bath are responsible for the enhancement of
localization.

– The above results are derived within a perturbative treatment, exploiting an ap-
proximation dubbed “forward approximation” whose nature and accuracy I analyze
in Chapter 5.

– The final chapter contains a discussion on mechanisms by which thermal fluctua-
tions may enhance the mobility of individual excitations in interacting systems, and
proposes some analytical schemes to address them.
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ration.
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1 How disorder breaks quantum ergodicity:
Many-Body Localization

The chapter is structured as follows: In Sec. 1.1 we discuss how ergodicity breaking
has been probed experimentally in interacting, disordered systems; the experimental
results provide an intuitive idea of the phenomenon of MBL and of its diagnostics. In
Sec. 1.2, we discuss in more detail the criteria for localization and their implications.
This discussion is carried on assuming that no mobility edge is present, i.e. that the full
many-body spectrum is localized, irrespectively of the energy density. This possibility
can be realized in disordered systems in discrete space, e.g. spin chains or fermions on a
lattice having a finite number of energy bands: in this case, the parameters can be chosen
in such a way that the putative transition temperature is larger than the bandwidth, thus
ensuring that the full spectrum is localized. Under this hypothesis, the features of MBL
systems can be explained assuming the existence of a complete set of approximately local
integrals of motion, as we discuss in Sec. 1.3. In Sec. 1.4 we recall the perturbative
arguments for the existence and stability of the localized phase, which represent the main
tool to treat this phase analytically. We conclude the chapter by briefly commenting on
the breakdown of localization and on the disorder-driven dynamical phase transition
from an MBL state to an ergodic, diffusive and thermalizing one (Sec. 1.5).

1.1 Quenching disordered systems: the emerging picture

The most direct dynamical protocols probing quantum ergodicity breaking feature isolated
systems that are initialized in a state with a well-defined local structure, and that are
shown to remain localized (in their time evolution) in states resembling their initial
condition.

For disordered systems, protocols of this sort have been realized in [27, 148], where a
non-interacting Bose-Einstein condensate is prepared (via trapping) in a confined region
of space, and subsequently let evolve (releasing the trap) in a random potential generated
with a laser speckle pattern [27] or in a quasi-disordered optical lattice [148]; the density
profile at later times is shown to be localized around the region where the condensate
was trapped at t = 0, with exponential tails departing from the localization center, see
Fig. 1.1.
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

(a) (b)

Figure 1.1: (a) Pictorial representation of the protocol realized in [27]: a small BEC is
formed in a trap, and a weak disordered optical potential is superimposed. When the trap
is switched off, the BEC starts expanding and then localizes, as observed by direct imaging
of the fluorescence of the atoms irradiated by a resonant probe. (b) Density profile of
the localized BEC, one second after release, in linear or semi-logarithmic coordinates.
Figures taken from Ref. [27]

The same rationale is behind the more recent experiments probing localization in systems
of interacting cold atoms and trapped ions [151, 158, 40]. In [151], a one-dimensional
interacting Aubry-André model is realized with ultra-cold fermions in an optical lattice Λ.
The model has the Hamiltonian

HAA = −J
∑
i∈Λ,σ

(
c†i,σci+1,σ + c†i+1,σci,σ

)
+ ∆

∑
i∈Λ,σ

cos (2πβi+ φ)ni,σ +U
∑
i∈Λ

ni,↑ni,↓,

(1.1)

where ci,σ, c
†
i,σ are annihilation and creation operators of a fermion with spin σ = {↑, ↓}

at a site i ∈ Λ, ni,σ = c†i,σci,σ is the local density, β is the incommensurable ratio between
the periodicities of the two lattices that are superimposed to realize the quasi-disordered
potential, and φ is a phase offset. A quench-protocol is realized: the system is prepared in
a density wave |ψ0〉 with only the even sites occupied, which is a highly-excited eigenstate
of (1.1) with J = 0. Subsequently, the system is let evolve with the dynamics given
by (1.1). For strong fluctuations in the potential, i.e. for sufficiently large ∆/J , the
time-evolved pure state is found to retain the density pattern of |ψ0〉: the imbalance
between the occupation of even and odd sites, defined as

I(t) =
2

|Λ|
∑
i∈Λ

(−1)i〈ψ0|ni(t)|ψ0〉, (1.2)

does not decay to zero but rather relaxes to a finite value, see Fig. 1.2 (a).

A conceptually analogous protocol is realized in [158] with a system of trapped ions
subject to optical dipolar forces, which is described by an effective long-range transverse
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1.1. Quenching disordered systems: the emerging picture

(a) (b)

Figure 1.2: (a) Imbalance defined in Eq. (1.2) as a function of time measured in units
of J−1, for different values of disorder ∆, cfr. (1.1). The circles are experimental points
obtained averaging over six realizations of disorder, while the continuous lines are DMRG
calculations. The figure is taken from Ref. [151]. (b) Hamming distance defined in Eq.
(1.4) as a function of time measured in units of J−1

max, for different values of disorder. The
figure is taken from Ref. [158]

field Ising model with Hamiltonian

HLRI =
∑
i<j∈Λ

Jijσ
x
i σ

x
j +

B

2

∑
i∈Λ

σzi +
∑
i∈Λ

Di

2
σzi (1.3)

where σκi , κ ∈ {x, y, z} are Pauli matrices, Di ∈ [−W,W ] independent random local fields
extracted from a uniform distribution, and Jij ∝ Jmax/|i − j|α with α > 1 (α ≈ 1.13
in [158]). In this setting, the system is initialized in a Néel ordered state |ψ0〉 = | ↑↓↑ · · · 〉
analogous to the density wave in the fermionic case, and the normalized Hamming
distance is measured,

D(t) =
1

2
− 1

2|Λ|
∑
i∈Λ

(−1)i〈ψ0|σzi (t)|ψ0〉, (1.4)

with similar outcomes as for the imbalance, see Fig. 1.2 (b).

Another, similar protocol has been implemented in [40] in two dimensions, by tracking
the time evolution of an initially prepared density domain wall for interacting bosons in
a disordered optical lattice. Signatures of localization have been observed away from the
strongly-disordered regime, being encoded in the fact that the domain wall configuration
does not completely melt for very long time scales.

The results summarized in Fig. 1.2 are interpreted as the experimental proof of the
existence of a Many-Body Localized phase at sufficiently strong disorder, whose main
features are the following:

(i) The transport of conserved quantities is suppressed: the fermions (or spin excitations)
do not move but remain frozen in their initial location for very long time scales.

7



Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

The detailed spatial pattern of the particle-density (or the spin-density) of the initial
state is not spoiled by the dynamics;

(ii) Relaxation occurs, toward a state preserving memory of the initial condition: the
imbalance and Hamming distance do relax to a stationary value, which is, however,
incompatible with ergodicity, in the sense that the system retains local memory of
its initial condition;

(iii) Quantum thermalization fails: thermalization requires that out-of-equilibrium initial
conditions evolve toward states that are independent of their detailed local structure,
being characterized only by few parameters (temperature, chemical potential etc.)
conjugated to the macroscopic conserved quantities. More precisely, an isolated
quantum system initialized in a pure state |ψ〉 is said to thermalize whenever, given
an (arbitrary) decomposition into a finite subsystem A and the remainder AC , the
reduced density matrix associated to A:

ρA(t) = TrAC (|ψ(t)〉〈ψ(t)|) (1.5)

converges for t→∞ to the equilibrium reduced density matrix

ρ
(eq)
A (T ) =

1

Z(T )
TrAC

(
e−H/kBT

)
. (1.6)

H is the system’s Hamiltonian and T is the temperature, defined by 〈ψ|H|ψ〉 =
Tr
(
Hρ(eq)(T )

)
(for simplicity, we are assuming that the energy is the only conserved

quantity in the system). The convergence is understood as

lim
t→∞

lim
|Λ|→∞

Tr (O ρA(t)) = Tr
(

O ρ
(eq)
A (T )

)
, (1.7)

for any local observable O supported in the subsystem A. The condition (1.7)
assumes that the number of degrees of freedom in A is kept finite in the thermo-
dynamic limit, and that the latter is taken before the infinite time limit, to avoid
quantum revivals and recurrence phenomena. It is manifestly violated in the above
experimental realizations, where the expectation values of the single-site occupa-
tion numbers ni,σ or spin operators σzi do not relax to their thermal value (which
would be zero given the choice of the initial state) but remain close to the initial
values ±1.

The picture emerging from the experimental realizations contrasts with the expected
scenario for the dynamics of an interacting quantum system following a quantum quench.
The latter predicts that, as the quench is performed, the excitations start spreading
through the system in such a way that their cumulative effect on single sites results in an
effective averaging process: the information stored in each site becomes infinitely diluted
across the lattice as time progresses, and the system reaches a local steady state [41, 19].
The condition (1.7) formalizes this picture, as it states that the information on the initial
condition (which is preserved by the quantum dynamics due to its unitarity) is encoded
into global observables, and cannot be recovered by means of local measurements
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1.2. Many-Body Localization: a multifaceted phenomenology

restricted to the subsystem A. On the contrary, MBL systems initialized in a strongly out-
of-equilibrium condition relax toward a non-equilibrium stationary state which preserves
the information on the initial condition at each site: the dynamics is not ergodic, despite
the system being thermodynamically large, interacting and at finite energy density.

This gives an intuitive notion of what is meant by Many-Body Localization. It is however
fair to say that a precise, comprising definition of MBL has not yet been formulated,
and the equivalence of the many existing definitions has not yet been established. In
the following section, we present a more detailed discussion of the features that are
commonly interpreted as signatures of this phenomenon.

1.2 Many-Body Localization: a multifaceted phenomenology

We begin by introducing the main theoretical models in which localization has been
argued to occur. The notion of localization was first introduced in [10] for the so-called
“Anderson model” of a quantum random walker in random environment, with Hilbert
space l2(Λ) (with Λ a d-dimensional lattice), and Hamiltonian

HAnd =
∑
a∈Λ

εac
†
aca +

∑
〈a,b〉

Vab

(
c†acb + c†bca

)
≡ H(0)

And + VAnd. (1.8)

In (1.8), 〈a, b〉 denote the edges in Λ, VAnd is the kinetic term (customarily called the
“hopping term”), and εa are independent random variables defining a stochastic process
indexed by the sites a ∈ Λ. Following [10], the choices Vab = V and εa ∈ [−W/2,W/2]
are conventionally made. Due to the presence of the static randomness, (1.8) corresponds
to a whole family of stochastic Hamiltonians, one for each realization of the random
landscape. The problem has thus to be formulated within a statistical framework, through
statements concerning the typical properties of the family, that are realized with probability
one with respect to the probability measure generated by the stochastic potential.

Anderson’s approach was extended to the many-body setting in [20, 72] for fermionic
Hamiltonians of the form

Hint = HAnd + U =
∑
α

Eαnα +
1

2

∑
αβ,γδ

Uαβ,γδc
†
αc
†
βcγcδ, (1.9)

where α labels the single-particle states, i.e., the eigenstates of the quadratic part (1.8).
Subsequently, starting from [132], the occurrence of a localized phase in disordered
spin chains was investigated numerically by studying the features of eigenstates. The
prototypical model exploited in the numerics is the XXZ spin chain in random fields,

HXXZ =
∑
a∈Λ

[
J
(
σxaσ

x
a+1 + σyaσ

y
a+1

)
+ Jzσ

z
aσ

z
a+1 + haσ

z
a

]
=
∑
a∈Λ

Ha, (1.10)

with ha ∈ [−W/2,W/2], which is equivalent to a model of interacting fermions in a
disordered potential through the Jordan-Wigner transformation [93]. More recently,
rigorous results on the existence of the MBL phase have been derived in [86] for the

9



Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

chain:

HImb =
∑
a∈Λ

(
haσ

z
a + Jaσ

z
aσ

z
a+1 + γΓaσ

x
a

)
= H0 ({σza}) + γV ({σxa}) (1.11)

with random couplings ha,Γa, Ja bounded by 1 and γ assumed to be small.

In the following, we present a list of the main features which emerge from the theoretical
analysis of the above models in the localized regime, that have been explored either
numerically (for systems in d = 1) or by means of perturbative arguments (in any d). We
begin with the original formulation given in [10].

1.2.1 Infinite decay time of local excitations: Anderson’s criterion

In its most direct formulation, localization corresponds to the fact that a degree of
freedom placed at t = 0 in a site a ∈ Λ remains in the nearby region of space up to
infinite time: The local state |a〉 ∈ l2(Λ) associated to the site a has infinite decay time.

This feature is captured by the long-time behavior of the survival probability amplitude,

A(t) = θ(t)〈a|e−iHt|a〉 =
i

2π

∫
B
dze−iztGaa(z) =

i

2π

∫
B
dz

e−izt

z − εa − Sa(z)
, (1.12)

with B = {z : =z = η > 0}. In (1.12), the survival probability is given in terms of the
diagonal matrix elements of the resolvent operator:

Gaa(z) = 〈a| 1

z −H |a〉 ≡
1

z − εa − Sa(z)
, (1.13)

where Sa(z) is the local self energy at site a and z = E + iη. The functions Gaa(z), Sa(z)
are analytic in the upper half complex plane, and thus admit the integral representations

Gaa(z) =

∫ ∞
E0

dE′
Aa(E

′)

z − E′ ,

Sa(z) =

∫ ∞
E0

dE′
Γa(E

′)

z − E′ ,
(1.14)

where E0 is the ground state energy of (1.8), Aa(E) is the local density of states (or
spectral function) and Γa(E) > 0 is also a measure defined on the real line. For finite |Λ|,
the functions (1.14) have isolated poles on the real axis, as it holds

Aa(E) =
∑
α

|〈φα|a〉|2δ(E − Eα),

Γa(E) =
∑
α

|〈a|V (a)|φ̃α〉|2δ
(
E − Ẽα

)
,

(1.15)

where |φα〉 are the eigenstates of HAnd with energy Eα, while |φ̃α〉 are the eigenstates of
the modified Hamiltonian H̃(a) = H −V (a) obtained removing the terms V (a) connecting
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1.2. Many-Body Localization: a multifaceted phenomenology

the site a to its neighboring ones in the lattice [57].

The long-time behavior of A(t) depends on whether the isolated poles of Gaa(z) coalesce
into a branch cut in the thermodynamic limit, that is to say that Aa(E) and Γa(E) become
continuous in that limit. In this case, Γa(E) gives the width of the spectral function
Aa(E),

Aa(E) =
1

π

Γa(E)

(E − εa −<Sa(E))2 + (Γa(E))2
, (1.16)

as it follows from the fact that Γa(E) = −=Sa(E) (using the Sokhotski-Plemelj theorem
together with (1.13)). A finite width of the spectral function implies that the survival
probability (1.12) is exponentially damped, with a decay rate that is functionally related
to Γa(E) 1. Thus, the only possibility for localization is that no branch cut develops in
the thermodynamic limit, meaning that Aa(E),Γa(E) remain singular functions of the
form (1.15), i.e., measures concentrated on a countable set of points. In this case, the
integral (1.12) is contributed only by the residua of the poles of Gaa(z), each of which
is multiplied by an oscillating phase: the survival probability remains finite for t→∞,
and the local state |a〉 does not decay. This corresponds to HAnd having “pure point”
spectrum2: an instance of this is given by the trivially localized limit V = 0.

Localization is therefore encoded in the (non-)regularity of Aa(E),Γa(E). The latter
are however random objects, whose detailed structure is washed out if an average over
disorder is performed (the average over the position of poles reproduces a continuous
function). As pointed out in [10], the two scenarios discussed above can be distinguished
within a statistical framework by inspecting the scaling of the full probability distribution
of =Sa(E + iη) in the limit η → 0. Indeed, when Γa(E) is a continuous function in the
thermodynamic limit for almost all disorder realizations (with Γa(E) = − limη→0=Sa(E+
iη)), its distribution is regular for η → 0. If instead Γa(E) is singular, of the form (1.15),
for finite η the function =Sa(E + iη) is a sum of Lorentzians of width η centered at
random points; for a fixed E, with probability close to one =Sa(E + iη) is of order η,

1This is easily seen in the following way: In presence of a cut, the integral (1.12) needs to be performed
analytically continuing Gaa(z) to the second Riemann sheet, where

Sa(z)→ SIIa (z) =

∫ ∞
E0

dE′
Γa(E′)

z − E′ − 2πiΓa(z). (1.17)

In the second Riemann sheet, the integrand in (1.12) exhibits an additional pole (or poles) z< satisfying
z< − εa − SIIa (z<) = 0. The residue associated to this pole contains an exponentially decaying factor with
rate γ = −=z< = −=SIIa (z<).

2 A rigorous version of this argument relating the spectral properties of HAnd with the occurrence of
bound states is given by the RAGE (Ruelle, Amrein, Georgescu and Enss) theorem [43]. The theorem exploits
the fact that pure point spectrum implies the existence of a complete set of proper eigenstates (i.e., states
belonging to the Hilbert space |φα〉 ∈ l2(Λ)): the decay (in space) of the eigenstates (that ensures that they
are normalizable) suffices to prove that

lim
L→∞

sup
t≥0

∑
x/∈CL

|〈x|e−itH |a〉|2
 = 0, (1.18)

for any a ∈ Λ and CL a cube of side L centered at the origin of Λ.
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

being of the order of V 2/η only if E is within a Lorentzian, which occurs with vanishing
probability ∼ η/W . Thus, in the limit η → 0 the distribution of =Sa(E + iη) becomes
singular, peaked at zero. As a result, localization occurs at a given energy E whenever

lim
η→0

lim
|Λ|→∞

P (−=Sa(E + iη) > 0) = 0, (1.19)

where the probability is over the disorder realizations. This criterion for localization
is recast in [10] as a problem of convergence of the perturbative expansion for Sa(E)
around the trivially localized limit V = 0, see Sec. 1.4.

1.2.2 Accounting for scattering processes: Anderson’s argument revisited

The arguments in favor of MBL given in [20, 72] are formulated in the same vein as
Anderson’s original approach, in terms of the scattering rate Γα(ε, t) associated to the
quasiparticle excitations of the model (1.9). Following [20] we set

Γα(ε, t) = −=SRα (ε, t), (1.20)

where

SRα (ε, t) =

∫
dτeiετ SRα

(
t− τ

2
, t+

τ

2

)
(1.21)

is the Wigner transform of the retarded self energy associated to the one-body Green
function

GRα (t1, t2) = −iθ(t1 − t2)〈
{
cα(t1), c†α(t2)

}
〉, (1.22)

the quantum average in (1.22) being taken over a density matrix that has to be deter-
mined as a solution of the quantum Boltzmann equation. The thermodynamic limit is
assumed, as well as an infinitesimal coupling b to a thermal bath, playing the same role
as η in the single-particle case. In full analogy with the single particle case, the criterion
for Many-Body Localization reads

lim
b→0

lim
|Λ|→∞

P (Γα(ε) > 0) = 0. (1.23)

In both [20, 72], this condition is rephrased in terms of the convergence in probability
of the diagrammatic expansion for Γα(ε). The perturbation theory is controlled by the
ratio U/δξ between the two relevant energy scales of the Hamiltonian (1.9), that are: (1)
the average energy gap between the single particle states whose localization centers lie
within the same “localization volume”, i.e., a volume of the size of the localization length
ξ in (1.28),

δξ =
1

νξd
(1.24)

with ν the density of states, and (2) the typical value U of the interaction matrix elements.
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1.2. Many-Body Localization: a multifaceted phenomenology

The latter defines the dimensionless constant:

λ = U νξd (1.25)

measuring the strength of the interaction.

The dynamical implications of (1.23) are best understood by looking at the quantum
Boltzmann equation (cfr. Eq. (57) in [20]). The scattering rate Γα enters in the collision
integral, governing the relaxation of the expectation value of the local occupations nα(ε, t)
of the single-particle energy levels. Its singular dependence on ε in the thermodynamic
limit, when the coupling to the bath is sent to zero, indicates that the irreversible evolution
of the local occupation toward their thermal equilibrium values is hindered. This suggests
that in the absence of an external reservoir the system fails to act as a heat bath for itself,
as is however required for (1.7) to hold.

1.2.3 MBL as absence of dc transport

The criterion (1.19) implies that local states |a〉 are bound states: this is known as
“spectral localization”. Stronger statements, referred to as “dynamical localization”, can
be rigorously proved in the one-body setting. They correspond to the following bound
holding almost surely for some constants C, ξ > 0:

sup
t≥0
|〈a|e−iHt|b〉| < Ce−|a−b|/ξ. (1.26)

This implies that localized initial conditions |a〉 have, with probability one, uniformly in
time bounded moments of all orders q > 0,

sup
t≥0

(∑
x

|x|2q|〈x|e−iHt|a〉|2
)
<∞. (1.27)

This rules out the possibility of transport, in particular of diffusive transport (which is
however expected in the weak disorder regime for d ≥ 3).

Eq. (1.26) is rigorously proved exploiting the fingerprint of localized disordered systems,
that is, the presence of exponential tails, cfr. Fig.1.1. In particular, the eigenstates
envelopes satisfy

|φα(a)| ∼ Aα exp
(
−|a− rα|

ξα

)
, (1.28)

where rα is the localization center of φα and ξα its localization length. Exponential
bounds can be derived on either the local matrix elements of the resolvent [65], or on
their fractional moments [5] or on the eigenstates correlators [85]. The derivation of
these bounds is partly based on perturbative arguments, and it casts the reasoning of
[10] into a rigorous analytic framework.

Arguments for the vanishing of the diffusion constant are given also for the many-body
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

case [20, 72]; similarly to the single particle case, they rely on the exponential spatial
decay of the correlations of the local density operators ρ(r) on the exact many-body
eigenstates |En〉:

Lρnm(r) =
∑
r′

〈En|ρ(r′)|Em〉〈Em|ρ(r′ + r)|En〉 . exp
(
− |r|
ξ(E)

)
, (1.29)

where En ≈ Em ≈ E. We present a variant of these arguments in Sec. 1.3.2. Besides
being evident in the experimental realizations discussed in Sec. 1.1, the absence of
diffusion has been addressed numerically by analyzing the dc conductivity [18, 22] and
the dynamical correlation functions in the infinite-time limit [134, 103]. Note that for
charged particles, a vanishing diffusion constant corresponds to a vanishing electrical
conductivity, given the Einstein relation which relates linearly the two quantities.

1.2.4 MBL as Anderson localization in Fock-space

It is evident from (1.28) that the localized eigenstates of (1.8) are effectively (up to
exponentially small errors) a linear combination of a finite number of local eigenstates
of H(0)

And, the ones lying within a compact region of size ξα around rα: each state φα can

thus be considered as a weak deformation of an eigenstate of H(0)
And centered at rα. A

useful indicator capturing this spatial structure is the inverse participation ratio (IPR):

IPR =
∑
a∈Λ

|〈φα|a〉|4, (1.30)

which is proportional to 1/ξd for exponentially localized eigenstates, while it tends to
zero as |Λ|−1 in the delocalized phase 3.

In the interacting case, this intuition translates into the statement that many-body
eigenstates are weak deformations of the eigenstates of the non-interacting Hamiltonian,
either Fock states in (1.9) or “classical basis states” (product states in the basis of the σza)
in (1.10). This is consistent with the picture, proposed in the seminal work [9], of MBL
as Anderson localization “in Fock space”, i.e., in an abstract graph whose sites correspond
to the non-interacting eigenstates and whose geometry is determined by the interactions.

Several eigenstate features corroborate this picture. The expectation values of the
local observables commuting with the non-interacting Hamiltonian (the single-particle
occupation numbers nα or local spin operators σzi ) are shown to be close to ±1 also on
MBL eigenstates [134]. This has been proved in [86] for the model (1.11), for which it
is shown that:

E

[∑
n

|〈En|σza|En〉|
]

= 1−O(γκ), (1.31)

3Since the IPR equals the infinite-time averaged probability that a particle initialized at site a returns to
the same site, its finite value implies that (1.12) does not decay to zero as t→∞.
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where κ > 0, the average is over the disorder, and |En〉 are the many-body eigenstates.
The IPR of classical states in the basis of the eigenstates of (1.10) considered in [46]
suggests that the classical states are a superposition of “small” number of many-body
eigenstates, which scales exponentially with |Λ| but slower4 than the dimension of the
many-body Hilbert space N = 2|Λ|. A similar diagnostic is the participation entropy
analyzed in [108].

1.2.5 MBL as area-law entanglement in highly excited states

The scenario according to which MBL eigenstates are a weak deformation of the non-
interacting ones [21] entails that, similarly to the Fock states, the excited eigenstates
|En〉 have low entanglement. For 1d systems, this is captured by the bipartite eigenstate
entanglement entropy S, which is obtained splitting the system into a left half L and a
right half R, and tracing out the degrees of freedom corresponding to one of the halves:

S = −Tr (ρR log2 ρR) (1.32)

with

ρR = TrL (|En〉〈En|) . (1.33)

It is shown in [21, 108, 101] that S does not scale with system size but obeys an area-law,
see Fig. 1.3.

Figure 1.3: Numerical data for the bipartite entanglement entropy (1.32) for the Hamilto-
nian (1.10) with J = Jz = 1 and ha ∈ [−h, h], as a function of system size L for different
disorder strengths in the middle of the spectrum (left) and in the upper part (right). For
strong disorder, S/L decreases signaling area-law. The figure is taken from [108]

This is a typical property of the ground state of gapped Hamiltonians, which in the MBL
case extends to the whole spectrum. It is a remarkable feature, as it implies that MBL
eigenstates of extensive energy can be efficiently represented via Density-Matrix-RG or

4In the many-body case, the analogue of (5.20) decays to zero with the system size in both the localized
and delocalized phase: while in the delocalized phase the decay is expected to be as fast as N−1, the MBL
phase is characterized by a slower decay. To sharply distinguish between the two phases, the authors of [20]
considered the IPR of single-particle excitations on top of the many-body eigenstates, in the basis of the
many-body eigenstates themselves. The latter decays to zero in the delocalized phase, while it remains finite
whenever MBL occurs.
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Matrix Product States [177, 64, 97] and Tensor Networks [34]. Moreover, it allows to
access to the dynamical properties in the MBL phase adapting computational approaches
originally designed for the ground-state physics; a paradigmatic example is the Strong
Disorder Renormalization Group (SDRG) scheme, which was developed in [45, 60, 83]
to capture the low-temperature thermodynamical properties of random magnets, and has
been recently exploited to characterize the MBL phase by either constructing approximate
many-body eigenstates [136] or by describing the dynamical evolution of initial product
states [172, 173].

1.2.6 MBL as violation of the Eigenstate Thermalization Hypothesis

A further aspect of the lack of thermalization in the MBL phase is the inherent incompati-
bility of the structure of the eigenstates with the Eigenstate Thermalization Hypothesis
(ETH). The ETH is a scenario furnishing a microscopic justification for thermalization,
going back to [90] and later developed in [52, 161, 147] (see Sec.(7.2) in [69] for a
comprehensive historical review). It states that the individual eigenstates |En〉 of a ther-
malizing Hamiltonian locally reproduce the canonical ensembles, that is to say that (1.7)
is true with ρA = TrAC (|En〉〈En|).

In [162] the ETH is formulated as the conjecture that that the diagonal matrix elements
of (few-body) observables O on the individual eigenstates are smooth functions of the
eigenstate energy, being approximately constant in each energy shell and equal to their
microcanonical value. More precisely, it is postulated that

〈En|O|Em〉 = δnmO(E) + e−S(E)/2f(E,ω)Rnm, (1.34)

where E = (En + Em)/2 is the mean energy, ω = En − Em, O(E) is the thermal
expectation value, S(E) the microcanonical entropy, f(E,ω) a spectral function that
depends smoothly on its arguments, and Rnm a random variable with zero mean and
unit variance, that in [162] is assumed to be Gaussian distributed 5. The ansatz (1.34)
guarantees that any initial condition reaches a stationary state that is locally thermal at
t→∞, up to corrections that are exponentially small in the system size.

The picture underlying (1.34) is that the eigenstates of thermalizing quantum systems
are locally indistinguishable, and “as random as possible” subject to the global energy
constraint. This contrasts with the Fock space localization picture discussed in Sec. 1.2.4,
that entails that MBL eigenstates in the same energy shell are all locally distinguishable
and non-thermal: the expectation values of the local observables (such as nα or σzi ) are

5This assumption is made since the system considered in [162] has a classically chaotic counterpart and
thus Berry’s conjecture is expected to apply (i.e., the eigenstates in the bulk of the spectrum are expected
to be a superposition of plane waves with random phases and random Gaussian amplitudes [24]). This
feature is, however, non generic, and recently shown to be false for a one-dimensional disordered spin
chain in its delocalized, thermalizing phase [107], for which (i) the exponential decay with system size
of the off-diagonal matrix elements exhibits a power law correction, and (ii) the fluctuations of Rnm are
non-Gaussian. This is consistent with the anomalous transport properties observed numerically in this class
of systems [15, 109, 4, 94], characterized by a disorder-dependent dynamical exponent vanishing in the
MBL phase.
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far from their equilibrium value, they strongly fluctuate between states that are close
in energy [106], thus allowing to distinguish them. ETH is also incompatible with the
area-law scaling of the bipartite entanglement satisfied by MBL eigenstates, as it requires
that the entanglement equals to the thermal equilibrium entropy of the subsystem, that
scales with the number of it degrees of freedom. This dichotomy has been exploited to
pinpoint the phase diagram of disordered systems by probing the violation of ETH in
individual eigenstates, obtained from the exact diagonalization of finite samples.

1.2.7 MBL as absence of level repulsion

Starting from the earlier works [23, 12], the statistics of the energy levels of finite
disordered samples has been extensively exploited to detect MBL [33, 132, 42]. In partic-
ular, the average value 〈r〉 of the dimensionless ratio rn = min(δn, δn+1)/max(δn, δn+1),
where δn = En+1 − En is the spacing between consecutive eigenvalues, has been used as
an indicator of the absence of level repulsion in the MBL phase (signaled by the fact that
〈r〉 → 0.39 approaches the theoretical value associated to the Poisson distribution as the
systems size is increased [108]).

The absence of level repulsion is interpreted as a signature of “integrability” [25], as
opposed to the level repulsion exhibited by the random matrix universality classes,
commonly regarded as the hallmark of quantum chaos [28, 137, 163]. Its connection
with localization is rather intuitive in the single particle case: the exponential decay of
the eigenfunctions (1.28) implies that disjoint, distant regions of space are essentially
uncorrelated and create almost independent eigenvalues, that are described by a Poisson
point process. This statements is rigorously proved for the Anderson model [116] on
the basis of the Minami estimate, which bounds the probability of occurrence of two
eigenvalues (of the finite volume Hamiltonian) in a small energy interval. By contrast,
extended states imply that distant regions have mutual influence, and thus create some
repulsion between energy levels [117].

The same intuitive picture is expected to hold for MBL systems, in view of the localization
in Fock space that implies that states that are nearby in energy are typically localized far
apart in Fock space and do not interact (in the sense that the off-diagonal matrix elements
of local operators between such states are exponentially small, thus suggesting that no
mixing occurs). On the other hand, the ansatz (1.34) points toward level repulsion, as it
posits that the off-diagonal matrix elements of local operators are typically much larger
than the level spacing ωmin ∼ exp (−S(E)).

1.2.8 MBL as slow growth of entanglement

The above discussion indicates that in the localized phase, the structure of eigenstates
is not significantly altered by the interactions: the main features of non-interacting
localized states (low entanglement of eigenstates, non-thermal expectation values of
local observables etc.) extend to the many-body case. This raises the question of whether
the effect of interactions is negligible altogether. This is not the case, as signatures of

17



Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

the interactions can be traced in the real-time dynamics of the bipartite entanglement
entropy S(t), obtained from (1.32), substituting |En〉 in (1.33) with the time-evolved
pure state |ψ(t)〉 of the entire system.

Numerical simulations have been performed for disordered spin chains initialized in a
weakly-entangled/product state [39, 178, 17]; after an initial fast growth dominated by
the direct nearest-neighbor interactions across the cut (until times of the order of the
inverse interaction coupling), S(t) exhibits a slow, logarithmic growth, which is expected
to continue indefinitely for an infinite system. For finite systems, S(t) saturates to a value
that depends on the initial state only [128, 154], which is extensive but nevertheless
smaller than the one expected in the thermal regime.

(a) (b)

Figure 1.4: (a) Unbounded growth of the bipartite entanglement after a quench starting
from a site-factorized σz eigenstate of the Hamiltonian (1.10) with J = J⊥, ha ∈ [−5, 5],
L = 10 and different interaction strengths Jz. The inset shows the same data with a
rescaled time axis and subtracted Jz = 0 values. (b) Growth of the particle number
fluctuations of a half chain after the quench. The behavior is qualitatively different than
the entanglement entropy: the interactions do enhance the particle number fluctuations,
but while there are signs of a logarithmic growth as for the entanglement, this growth
slows down with time. Figures taken from Ref. [17]

The logarithmic scaling is a peculiar feature of the MBL phase 6, that allows one to
distinguish it from the non-interacting localized phase, where local disturbances prop-
agate only to the scale of the localization length ξ and S(t) saturates to a finite value
independent of the system size.

The unbounded growth of S(t) is nevertheless compatible with the suppression of trans-
port, see Fig. 1.4. It is ascribed to the interaction-induced dephasing between the
eigenstates involved in the decomposition of the initial product state. The same mecha-
nism is at the root of other distinguishing dynamical features of MBL systems, such as:
(i) the power-law decay in time of the response to a (properly designed) spin-echo proto-
col [152], (ii) the power-law relaxation (toward non-thermal values) of the expectation

6As opposed to the linear growth in clean integrable or non-integrable systems [32, 98] and to the
sub-ballistic growth in disordered, delocalized systems close to the MBL phase [109, 174].
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value of local observables after a quench [155], (iii) the suppression, with respect to the
non-interacting case, of the revival rates of single-site observables [170], (iv) the power
law decay of the average two-sites entanglement [82]. It indicates that the interactions,
despite being unable to restore the diffusive transport of the global conserved charge and
to induce thermalization, are nevertheless responsible for a slow propagation of quantum
correlations over the entire system.

1.2.9 On the distinctions between the various characterizations of MBL

As it emerges from the above summary, the MBL phase has been characterized either
by probing the dynamical properties of the system, or by focusing on the structure of
the many-body eigenstates. These two approaches are in principle not equivalent. The
first route leads to the original definition of MBL as an insulating phase in which the
dc transport of the global conserved quantities is completely suppressed [72, 20]. The
suppression of transport is certainly a key feature of localized systems, which distinguishes
them from other systems in which the full ergodicity in phase space breaks down, such as
systems with spontaneously broken symmetries, one-dimensional integrable systems (see
Sec. 1.3.3) or spin glasses, in which the thermal conductivity remains finite. However,
this characterization is not exhaustive in the following sense: first, it is known that in
one dimension the diffusion constant is zero also in (part of) the delocalized phase,
where thermalization is nevertheless restored via a sub-diffusive transport, see Sec. 1.5.2.
Secondly, a notion of localization has been defined also for periodically driven systems
[139, 138, 44, 1], for which there are no conserved quantities and thus no meaningful
dc transport can be defined. In this case, MBL is understood in the sense discussed
in Secs. 1.2.6, 1.2.7. On the other hand, the characterization of this phase in terms
of the violation of the ETH may also be restrictive, an obvious reason being that the
ETH is only a sufficient and not a necessary condition for thermalization (defined in Eq.
(1.7)). Moreover, while localization (as well as thermalization in the sense of (1.7)) is a
statement about the long-time limit of thermodynamically large systems (see Sec. 1.2.1),
the ETH ansatz determines the stationary behavior of finite-size samples. It is possible
for a system to have eigenstates satisfying ETH at any finite size, but to have a relaxation
time which diverges exponentially with the system size, in such a way that transport and
thermalization are hindered in the thermodynamic limit [38].

Keeping these distinctions in mind, we illustrate in the following section how the full set
of diagnostics of the MBL phase can be justified by means of phenomenological models
involving conserved quantities. This suggests that the “emergent integrability” of MBL
systems might be considered as a comprehensive characterization of this phase.

1.3 Quasilocal integrals of motion: a unifying framework

MBL systems challenge the basic assumption underlying the statistical description of
quantum systems in their long-time limit, that is that scattering processes at finite energy
density restore ergodicity. It is a common expectation that the failure of ergodicity in
closed, interacting systems is related to some sort of integrability. In fact, the behavior of
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MBL systems points toward the existence of an extensive number of conservation laws
that strongly constrain the quantum dynamics, preventing transport and thermalization.
This expectation has been made concrete in [153, 80, 166], where it has been suggested
that MBL Hamiltonians are non-linear functionals of a complete set of conserved operators
Iα of the form

Hdiag = h0 +
∑
α

hα Iα +
∑
α,β

hαβ IαIβ +
∑
α,β,γ

hαβγ IαIβIγ + · · · , (1.35)

where the dots stand for higher order products. The Iα, also referred to as “l-bits”, are
expected to be functionally independent (meaning that each conserved operator cannot
be expressed as a function of the others) and mutually commuting. The set is complete
in the sense that every many-body eigenstate can be labeled in a unique way with the
eigenvalues of the Iα.

While the expansion (1.35) is to some extent generic (in particular, to determine Hdiag it
is necessary to specify a number of coefficients which scales with the size of the Hilbert
space [121]), the fingerprint of localization is the “quasilocality” of the Iα. The notion of
quasilocality extends, at the operator level, the structure of the single-particle eigenstates:
similarly to (1.28), the operator norm of Iα is expected to decay exponentially away from
a region of typical size ξop centered in a given point Rα. Precisely, let

Iα =
∑
I
A(α)
I OI (1.36)

be the expansion of Iα in a basis of local operators OI labeled by I. For the spin
chains (1.10) and (1.11), a suitable basis is made by the tensor products of local spin
operators σα1

i1
⊗· · ·⊗σαnin with α = {x, y, z}, while in the fermionic case (1.9) the normal-

ordered tensor products of creation and annihilation operators of single-particle states
can be considered, see Sec. 2.1.1. Let S(I) denote the “support” of OI , i.e., the set of
points/local degrees of freedom on which the operators acts non-trivially. Quasilocality
entails that

|A(α)
I | . Cα exp

(
−d [Rα, S(I)]

ξop

)
, (1.37)

where d [Rα, S(I)] is the distance between Rα and the furthest degree of freedom in
S(I). This has to be understood as a statement about the typical decay of the coefficients
-with respect to the realization of the randomness.

This spatial structure implies that the expansion (1.35) is not structureless: the typical
value of the coefficients hαβ··· is expected to decay exponentially in the distance between
the localization centers of the corresponding operators, on the scale 7 ξop. This is a key
ingredient for MBL: the interactions between the Iα induce dephasing, which occurs over

7The length scale ξop is presumably not the same length scale governing the decay of the correlations of
local observables in individual eigenstates, cfr. Eq. (1.29). The latter is expected to exhibit a dependence on
the energy, which is generated since not all the terms in the expansion (1.36) survive when projected onto
specific eigenstates: the coefficients of the surviving terms set the eigenstate-dependent length-scale ξ(E).
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a broad range of time scales due to the exponential 8 structure.

The phenomenological models in [153, 80, 166] assume two additional features for
the conserved quantity, namely that (i) the Iα have binary spectrum, and thus can
be considered as effective spins (or occupation number) operators, and (ii) the full
spin (or fermionic) algebra can be constructed, with ladder operators I±α . This follows
straightforwardly from the construction in [86], see Sec. 2.3, where the conserved
quantities of the chain (1.11) are obtained from the Pauli operators σza by means of a
unitary rotation U , Iα = U†σzaU and I±α = U†σ±a U , that obviously preserves the spectrum
and the commutation relations. Additionally, the operators Iα are expected to be a weak
deformation of the local degrees of freedom that are conserved by the non-interacting
part of the Hamiltonian, either nα for (1.9) or σza for (1.10). This is implicit in all the
constructions of conserved quantities proposed in the literature.

1.3.1 The key dynamical feature: dephasing without dissipation

Following [155], we discuss the dynamics given by the model (1.35), which consists in
dephasing processes involving the elementary excitations Iα. We assume that Iα is an
effective spin, with spectrum spec(Iα) = {iα} = {±1}, and denote with |+〉α and |−〉α
the corresponding eigenstates. Dephasing refers to the suppression of the off-diagonal
matrix elements of the reduced density matrix associated to a given subsystem, which
reflects the loss of coherence due to the interaction with the surrounding degrees of
freedom. When the subsystem is a single Iα degree of freedom, the suppression is power
law in time; this is most easily shown considering an initial state that is a product state in
the Iα basis, parametrized as

|ψ〉 = ⊗Nα=1 (Aα,+|+〉α +Aα,−|−〉α) . (1.38)

The reduced density matrix associated to one Iα operator reads

ρα(t) =

(
|Aα,+|2 A∗α,−Aα,+

∑
I′ PI′e

i(E+(I′)−E−(I′))t

Aα,−A
∗
α,+

∑
I′ PI′e

−i(E+(I′)−E−(I′))t |Aα,−|2

)
,

(1.39)

where I ′ is a configurations of all other Iα effective spins except Iα, PI′ =
∏
α 6=a |Aα,i′α |2

its probability in the state (1.38) and:

E1(I ′) = hα +
∑
α6=α

hααi
′
α +

∑
α,β 6=α

hααβi
′
αi
′
β + · · · . (1.40)

The terms in (1.40) which contain quantum numbers i′α of operators Iα localized at
maximal distance d = d(α, α) form Iα decay as ∼ H0 e

−d/ξop with H0 some typical energy
scale. This exponential decay implies that degrees of freedom dephase on a sequence of

8In the non interacting limit (i.e., in the fermionic language, when the Hamiltonian is quadratic), the
Hamiltonian is a linear functional H =

∑
αEαnα of the conserved operators, that are the occupation

numbers nα of the single-particle eigenstates.
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time scales depending on their distance from Iα: at a given time t, the phases in (1.39)
that are effectively randomized correspond to those d for which H0e

−d/ξop t & 1, and
thus only the degrees of freedom at distance

d(t) ∼ ξop log(H0t) (1.41)

have dephased. For any t, we can thus split

E+(I ′) = E
≤d(t)
+ (I ′) + E

>d(t)
+ (I ′), (1.42)

where E>d(t)
+ (I ′) depends only on quantum numbers i′α of operators localized at distance

d(α, α) > d(t). Under the assumption that the PI′ are all approximately equal (Aα,− '
Aα,+ ' 1/

√
2), it holds:

∑
I′

PI′e
i(E+(I′)−E−(I′))t ∼ 1

2|Λ|

∑
i′α=±1

α:d(α,α)>d(t)

e2iE
>d(t)
+ (I′)

 ∑
i′β=±1

β:d(β,α)≤d(t)

e2iE
≤d(t)
+ (I′)

 . (1.43)

The sum in square brackets in (1.43) is a sum over N(t) ∼ 22d(t) random numbers of
zero mean, which decays as (N(t))−1/2; thus

[ρα(t)]12 ∼
1√
N(t)

∼
(

1

H0t

)Cξop
, (1.44)

with C = log 2. It follows that the expectation values of the I±α on the time evolved (1.38)
decay as a power law; the same holds true (with different C) for a generic initial state,
and for the operator-strings

Π~z
~α = Iz1α1

Iz2α2
· · · Iznαn , (1.45)

with ~α = (α1 · · ·αn), ~z = (z1 · · · zn), zi ∈ {+,−, 1} and I1
α ≡ Iα, containing at least

a pair of I±α terms [155]. Note that the diagonal matrix elements in (1.39) are time
independent, as it follows from the fact that the Iα are constants of motion.

We reviewed this discussion in view of the fact that the scaling (1.41) plays an important
role in understanding the peculiar dynamical features of MBL systems, as it appears in
the following section.

1.3.2 A comprehensive characterization of MBL

We now discuss how the MBL features recalled in Sec. 1.2 follow from the existence of
quasilocal conserved operators with exponentially decaying mutual interactions.

(i) Suppression of transport: we report the argument given in [149]. The Kubo formula
for the DC conductivity σ at inverse temperature β associated to a local current
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density Jr reads:

Re[σ(ω → 0)] =
πβ

Ω

∑
r′r

∑
m,m′

e−βEm′

Z 〈m′|Jr′+r|m〉〈m|Jr′ |m′〉 δη (Em′ − Em),

(1.46)

where Ω is the system’s volume, Z is the partition function, |m〉 the system’s
eigenstates and δη(x) = π−1η/(x2 + η2) a regularized δ-function. Let us first
consider a complete set of strictly local conserved quantities, acting on degrees
of freedom that belong to a compact spatial region with finite diameter ζ. Since
the set is complete, for any pair m,m′ there is a Ĩ such that Ĩ|m〉 = Ĩm|m〉 and
Ĩ|m′〉 = Ĩm′ |m′〉 and Ĩm′ 6= Ĩm. For a strictly local current operator and r > ζ, one
of the two current matrix elements

〈m′|Jr′ |m〉 =
〈m′|

[
Jr′ , Ĩ

]
|m〉(

Ĩm − Ĩm′
) , 〈m′|Jr′+r|m〉 =

〈m′|
[
Jr′+r, Ĩ

]
|m〉(

Ĩm − Ĩm′
) (1.47)

is exactly zero: in Eq. (1.46) the sum over r is restricted to r . ζ. Furthermore,
for any m the sum over m′ is restricted to a finite set, since Jr′ |m〉 can differ only
in a finite number (≤ exp(cζd), with c = O(1)) of integrals of motion from |m〉.
Thus, in the thermodynamic limit, when η → 0, the contribution to the δ-function
vanishes with probability one, and Re[σ(ω = 0)] = 0 9.

For quasilocal conserved quantities, the matrix elements 〈m′|Jr′ |m〉 are not exactly
zero also for those eigenstates for which Ĩ is supported at distance xζ from r′:
they are exponentially small in x. Since there are also exponentially many states
m,m′ which satisfy these criteria, some energy differences Em − E′m in (1.46)
become exponentially small. The competition between the matrix elements and
the energy denominators is however dominated by the exponential decay of the
matrix elements with probability one: this is the key statement that guarantees
the existence of quasilocal Iα (see the following chapter). It follows that the
conductivity remains zero when quasilocality is properly taken into account.

(ii) Low entanglement in eigenstates: all the eigenstates of (1.35) are product states
of the approximately-local quantities Iα: their bipartite entanglement entropy is
area-law, as the bipartition only affects the Iα that are localized in the vicinity of
the cut.

(iii) Ergodicity breaking and violation of ETH: as in ordinary integrable systems, the
locality of the conserved quantities implies that local memory of the initial condition
is preserved at any time, thus preventing thermalization in the sense of (1.7). More-
over, since the many-body eigenstates are simultaneous eigenstates of operators
that are weak deformations of the nα (or σza), the expectation value of the latter
operators does not depart significantly from ±1: it is non-thermal and it fluctuates

9Note that the potentially singular term from m = m′ does not contribute because 〈m|Jr|m〉 = 0 by time
reversal invariance.
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significantly between states that are close in energy, since such states might differ
by the eigenvalues of integrals of motion having large overlap with nα (or σzα).

(iv) Absence of level repulsion: The absence of level repulsion arises because adjacent
states in the spectrum typically differ by an extensive number of eigenvalues of the
Iα: they are unable to hybridize and thus do not repel at the scale of the mean level
spacing.

(v) Slow growth of entanglement: the logarithmic growth of the bipartite entanglement
entropy S(t) follows from the relation (1.41), which determines the number of
degrees of freedom in the left-half of the system that have entangled with the right-
half at time t [79, 154]. A Lieb-Robinson bound10 with a logarithmic lightcone has
been derived in [99] under a stronger assumption of quasilocality of the conserved
quantities, formulated in terms of averages rather than in probability, i.e., requiring
that

E [‖[Iα,O]‖] ≤ e−x/ξ||O|| (1.48)

for a constant ξ and any operator O whose support is at distance x from the
localization center of Iα. The bound implies that the growth of the bipartite
entanglement entropy is at most logarithmic.

(vi) Power law decay of expectation values: Consider an operator O with finite support
(i.e., a functional of a finite number of Pauli or fermionic operators); expanded in
the basis of the Iα, I±α it reads

O =
∑
~α

C~α (Iα1Iα2 · · · Iαn) +
∑
~α,~z

B~α,~z Π~z
~α = O + Oosc, (1.49)

where Π~z
~α defined in (1.45), and thus Oosc, contain I±α terms, while

O = lim
T→∞

1

T

∫ T

0
O(t) dt =

∑
~α

C~α (Iα1Iα2 · · · Iαn) (1.50)

commutes with (1.35). Due to the quasilocality of the Iα and the locality of
O, the coefficients C~α have themselves an exponentially decaying structure. Let
|ψ〉 =

∑
I AI |I〉 be an initial state expanded in the basis of simultaneous eigenstates

|I〉 of the Iα. The arguments in Sec. 1.3.1 imply that the second term in

〈ψ(t)|O|ψ(t)〉 =
∑
I

|AI |2〈I|O|I〉+
∑
I,J

AIA
∗
Je
i(EJ−EI)t〈J |Oosc|I〉 (1.51)

decays as a power law in time, due to the randomization of the relative phases in
the eigenstates decomposition. The expectation value (1.51) thus exhibits a power
law relaxation to the constant, non-thermal value

∑
I |AI |2〈I|O|I〉.

10The Lieb-Robinson bounds limit the speed at which the information propagates under the dynamics given
by quantum many-body systems with local interactions. They state that an effective “speed of light” exists,
defining an effective “lightcone”, such that correlations outside the lightcone are exponentially suppressed in
their distance [104].
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These considerations suggest that the existence of quasilocal integrals of motion may
be considered as a fundamental defining property of Many-Body Localization. Note
that also the scenario mentioned in Sec. 1.2.9, involving systems that are MBL in the
thermodynamic limit but nevertheless satisfy the ETH at any finite size, can be justified
by assuming the existence of a set of quasi-local operators (“l∗−bits” in the language of
[38]) that are approximately conserved at any finite size, such that their commutator with
the finite size Hamiltonian is not exactly zero but vanishes exponentially in the system
size.

1.3.3 The role of disorder: a robust integrability

We have argued above that the quantum ergodicity breaking in MBL systems can be
explained in terms of an “emergent integrability”. Of course, quantum ergodicity break-
ing is not an exclusive feature of disordered systems: extensive sets of commuting local
conserved quantities exist in “ordinary” integrable systems, by which we mean systems
satisfying the Yang-Baxter relations [164, 125]. However, there are two essential dif-
ferences: (1) while ordinary integrability is not robust with respect to arbitrary local
perturbations, the fact that an extensive set of quasilocal operators exists in the MBL
phase remains true when the MBL system is perturbed locally (although the detailed
structure of the Iα might change); (2) the spatial structure of the conserved quantities
differs in the two cases, with relevant implications for the transport properties of the
systems.

Ordinary integrable systems are characterized by the fact that arbitrary multi-particle
scattering process can be factorized in terms of subsequent two-particle scattering events;
the Yang-Baxter relations constraint the two-particle scattering matrix in a way that
encodes this factorization. Given this structure, an extensive set of integrals of motion Ik
can be systematically constructed11 as derivatives of a generating function,

Ok =
∂k

∂ku
log T (u)

∣∣∣∣
u=0

, (1.52)

where T (u) is a member of a one parameter family of commuting transfer matrices T (u).
The commutativity [T (u), T (u′)] = 0 is guaranteed by the validity of the Yang-Baxter
equations. Since the Hamiltonian is itself a member of the commuting family, O1 = H, it
follows that all other operators are conserved.

The logarithm in (1.52) guarantees [110] that the operators Ok are “extensive local
conserved charges”, where local means that they are sums over all lattice sites of densities
having compact support (this is the same notion of locality that applies to the Hamiltonian
itself)12. Thus, the expansion of an operator Ok involves the full set of local, physical

11Despite its compact formulation, this recipe turns out to be often computationally impractical: the
spectral properties of integrable systems are thus usually obtained by means of alternative methods, such as
Bethe Ansatz techniques.

12Conserved charges satisfying a weaker notion of locality (also dubbed “quasilocality”) have been
introduced for clean integrable systems as well [84]; however, the notion of quasilocality in that context is
different with respect to the one expressed in (1.37), and it refers to the fact that the density is quasilocal,
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degrees of freedom. In contrast, quasilocal operators in MBL are well-approximated
(in norm) by their truncation to finite volumes of size ξop: the truncation itself is ap-
proximately conserved, as it commutes with the Hamiltonian up to exponentially small
errors. This exponential decay is the exclusive feature of disordered systems, resulting
from the local separation of scales produced by the randomness (as it appears in the
perturbative setting, see Sec. 1.4.4). As argued in 1.3.2(i), it is this structure that implies
the vanishing of the diffusion coefficient, as opposed to the efficient transport in clean
integrable systems [112, 165, 181, 180].

For MBL systems, no Yang-Baxter-based recipe such as (1.52) is available; this raises
the question of which is the best recipe to construct the conserved quantities, which
optimizes the locality of the resulting operators. Their exponential localization suggests
that any such recipe should build the Iα as local deformations of the local, physical
degrees of freedom: this idea is at the root of the perturbative construction discussed in
the following chapter.

1.4 The mechanism for localization: perturbative arguments

In this section, we review the perturbative arguments developed in [10, 20, 72] to argue
for the existence of the localized phase and its stability with respect to weak scattering
processes. The perturbative treatment illustrates the main mechanism by which the
quenched disorder generates localization: hopping (or scattering) processes are typically
associated to large energy mismatches, and thus they are suppressed being typically
off-shell, that appear as large denominators in the perturbation theory, guaranteeing its
convergence. In reviewing these arguments, we comment on the role of rare fluctuations
of the randomness giving rise to resonances, and introduce an approximation scheme
(which we refer to as the “forward approximation”) that is exploited throughout the
following chapters.

1.4.1 Anderson’s logic: the relevant divergences signaling delocalization

Anderson’s argument for single-particle localization relies on the perturbative expansion
for the local self energy in (1.13),

Sa(z) =
∑

loops(a)

Vasn

n∏
i=1

Vsisi−1

z − εsi
, (1.53)

where the sum is over all the loops l = (s0 = a, s1, · · · , sn+1 = a) in Λ that include the
site a only as a starting and ending point, the weight of each loop being the product of
“locators” Vij(z − εi)−1. The expansion is derived from the perturbative series for the

rather than the conserved quantity itself.
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propagator

Gba(z) =
1

z − εa

[
δab +

Vba
z − εb

+
∑
c

Vbc
z − εb

Vca
z − εc

+ · · ·
]

=
1

z − εa
∑

paths(a,b)

n∏
i=1

Vsisi−1

z − εsi
,

(1.54)

obtained by means of iteration of the operator identity:

G(z) =
1

z −H(0)
And

+
1

z −H(0)
And

VAnd
1

z −HAnd
= G0(z) +G0(z) VAnd G(z). (1.55)

Due to the boundedness of the spectrum of HAnd, the series converges at least for =z = η
sufficiently large. As pointed out by Anderson, the convergence of the expansion (1.53)
when approaching the real axis implies localization, as the criterion (1.19) holds true at
any finite order in perturbation theory with probability one. To lowest order in VAnd, for
instance, the distribution of the random variable

=S(1)
a (E + iη) = −η

∑
c 6=a

|Vac|2
(E − εc)2 + η2

(1.56)

is heavy-tailed, with a typical value which is finite for η finite, but goes to zero with η → 0.
Since this argument extends to any order in V , it follows that the violation of (1.19)
requires that the full perturbative series diverges, in such a way that the analysis order-
by-order in VAnd becomes meaningless. The problem has thus to be addressed directly
in the thermodynamic limit, sending η → 0 only once the limit |Λ| → ∞ is performed;
the two limits do not commute, as in problems in which spontaneous symmetry breaking
occurs.

The issue of convergence has, however, to be addressed properly, as divergent subse-
quences in (1.53) appear almost surely, while they do not necessarily signal delocalization.
These divergences are generated by the repetition of large factors that are present almost
surely in (1.53) for z sufficiently close the real axis. For instance, a large factor appears to
lowest order in the hopping whenever there are two neighboring resonant fields εa ≈ εb,
so that for E ∼ εa and η small∣∣∣∣ Vab

E + iη − εa
Vbc

E + iη − εb

∣∣∣∣ > 1. (1.57)

Since the sum (1.53) contains all possible paths bouncing back and forth between the
sites a and b, which contribute with arbitrarily large powers of the factor (1.57), the
expansion diverges at η → 0.

This divergence signals that a local resonance occurs between the two almost degenerate
eigenstates of H(0)

And localized at a, b, whose accidental degeneracy is lifted by the hopping,
that hybridizes the local degrees of freedom in a non-perturbative way. In the localized
phase, resonances are present, but remain typically confined within a finite region of
space of the size of the localization length, which defines the length scale over which the
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local degrees of freedom hybridize. At larger scales in the localized phase, resonances
become sufficiently rare for the perturbation theory to be asymptotically well defined.
On the contrary, delocalization is signaled by the fact that large resonant segments∣∣∣∣Vi1kn−1

z − εi1
· · · Vk1in

z − εk1

Vinin−1

z − εin
· · · Vi2i1

z − εi2

∣∣∣∣ > 1 (1.58)

appear at arbitrarily large n. This means that the hopping keeps mixing degrees of
freedom at large distance, producing extended eigenstates.

1.4.2 Local resummations and “renormalized” perturbation theory

Divergences such as the one discussed above can be cured by means of a resummation
of the subsequence containing all higher powers of the resonant term. For instance, in
the case of the first order resonance (1.57), one considers the set of all loops that reach
site b (from some other site c in the lattice), repeatedly jump back and forth the sites a, b,
and eventually leave site b jumping to some other site d. Resumming the corresponding
weights one obtains:

Vdb
z − εd

[
1 +

Vba
z − εb

Vab
z − εa

+

(
Vba
z − εb

Vab
z − εa

)2

+ · · ·
]

Vbc
z − εb

· · · = Vdb
z − εd

[
Vbc

z − εb − |Vba|
2

z−εa

]
· · ·

(1.59)

The correction in the denominator (1.59) is exactly the self energy that one would
get at site b solving exactly the two level system made out of the sites a, b. Thus, this
resummation is equivalent to a local exact diagonalization (see Sec. 3.2.4 for an example
at the operator level).

The resummations can be carried on systematically at any order, resulting in an expansion
over self-avoiding loops, abbreviated as sloops(a):

Sa(z) =
∑

sloops(a)

ωsl =
∞∑
n=0

 ∑
sloops(a;n)

ωsl

 ≡ ∞∑
n=0

s(n)
a (z), (1.60)

where s(n)
a (z) sums the contributions of all loops of length n. The weight of a loop

sl = (a, j1, j2, · · · , a), with jl 6= jk for l 6= k, equals

ωsl = Vajn
Vjnjn−1

z − εjn − S(a,··· ,jn−1)
jn

(z)
· · · Vj2j1

z − εj2 − S
(a,j1)
j2

(z)

Vj1a

z − εj1 − S
(a)
j1

(z)
, (1.61)

where S(a,b,c)
d is the sum over all loops starting and ending in d, never visiting d again nor

any of the sites a, b, c, of loop weights of the form (1.53). This “renormalized” expansion
is obtained as for (1.59): consider (1.61), and consider the set of all paths in (1.53)
hopping to a site j1, going back to it arbitrarily many times, and sharing the subsequent
history once they leave site j1. For =z large enough, the sum over all possible loops
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around j1 (never going back to site a) converges. Its resummation S
(a)
j1

(z) is the self-
energy correction in (1.61); this step is iterated for every site along the loop. Finally,
the self-energy corrections can themselves be expanded in terms of self-avoiding loops
performing an analogous resummation.

The above manipulation can be safely performed for =z large enough. Localization occurs
in the regime of parameters in which (1.60) is still convergent for =z = η → 0. This in
turn requires that the expansion of each self-energy correction in the denominators is
itself convergent in this limit. The whole procedure can be thought of as a self-consistent
argument: the resummation is performed assuming that resonances do not proliferate in
space at arbitrary distance, in such a way that the series for the self-energy corrections
converges when approaching the real axis. Then, the convergence of the renormalized
series for Sa(z) is analyzed, to check self-consistently the assumption.

1.4.3 Closing the equations: the Bethe lattice case

The random variable (1.60) is difficult to treat probabilistically due to the statistical
correlations between the self-energy corrections appearing in the denominators. For
instance, the terms S(a)

j1
(z) for the various sites j1 that are nearest neighbors of a contain

the same local random fields, since even if the site a is removed, there are still loops
surrounding each j1 which contain some other j′1. This type of correlations is absent
in lattices having a tree structure such as the Bethe lattice: in that case, the expansion
(1.60) simplifies substantially, as the only loops around site a that are self-avoiding are
the ones of the form sl = (a, j1, a) with j1 a nearest neighbor of site a. This implies

Sa(z) =

K+1∑
j=1

V 2
aj

z − εj − S(a)
j (z)

≡
∑
j:〈j,a〉

V 2
aj

z − εj − Σcav
j (z)

, (1.62)

where j labels the sites that are nearest neighbors of site a, and K + 1 is the connectivity
of the lattice. In (1.62), Σcav

j (z) is a cavity self-energy, i.e., it is the local self energy at
the vertex of the sub-tree rooted in j, obtained from the Bethe lattice once the site a is
removed. It satisfies the recursion:

Σcav
j (z) =

K∑
l=1

V 2
jl

z − εl − Σcav
l (z)

. (1.63)

The variables Σcav
l (z) in (1.62) are independent for l 6= l′, and equally distributed in the

thermodynamic limit. Thus, (1.63) is a self-consistency equation for their distribution. In
particular, for z = E + iη,

Γj(z) =

K∑
l=1

V 2
jl

(E − εl −<Σcav
l (z))2 + (η + Γl(z))2

[η + Γl(z)] , (1.64)

where Γj(z) = −=Σcav
j (z), and a similar equation holds for <Σcav

j (z). Exactly at η = 0,
(1.64) admits as a solution a distribution supported on the real axis, =Σcav

j (z) = 0. In
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

the localized phase, this solution is stable with respect to the perturbation E → E + iη,
meaning that the self-consistent distribution of Σcav(E + iη) converges to a distribution
supported on the real axis as η → 0, cfr. (1.19). The analysis of the stability of this
solution is performed in [2, 6], where an exact criterion for localization is obtained
by linearizing (1.64) around =Σcav = 0. In [6], the criterion is derived iterating the
linearized equation, which yields

Γj(z) =

 ∑
paths: j→∂L

L∏
i=1

[
Vsi−1si

E − εsi −<Σcav
si (z)

]2
ΓsL(z), (1.65)

where the sum is over all paths (s0 = j, s1, · · · , sL) from site j to any of the KL sites
sL ∈ ∂L at distance L. The stability requires the typical value of the sum in brackets in
(1.65) to decay exponentially with L as η → 0. Intuitively, this corresponds to the fact
that the susceptibility of local levels in the bulk with respect to an infinitesimal coupling
to a bath at the boundary sites sL ∈ ∂L (inducing a broadening ΓsL of the local levels)
decays to zero in the thermodynamic limit, implying that the effect of the infinitesimal
bath at the boundary does not “propagate” to the bulk13. In the approximation in which
the real parts of the self energies are neglected, this decay condition yields the criterion:

2eV K

W
log

(
W

2V

)
< 1, (1.66)

for E = 0 and Vab ≡ V . The same critical condition is found in the framework developed
in [2] setting <Σcav ≡ 0 (i.e., imposing its distribution to be a delta function in zero),
and in [9] with a calculation on the probability of resonances similar to the one reported
in the following section.

1.4.4 Finite d and the forward approximation

In [10, 168], the convergence radius of the perturbative expansion is estimated by
computing the probability that (1.60) is dominated by a convergent geometric series, i.e.
that there exists a z < 1 such that:

Pa,N ≡ P
(
∀n > N, |s(n)

a (E)| < zn
)
N→∞−→ 1. (1.67)

This is done within the forward approximation, which consists in neglecting the self-
energy corrections in (1.61). As a consequence, the weight of each loop reduces to a
product of independent random variables, as the original loop weights in (1.53); in
fact, this approximation amounts to restricting the sum (1.53) to only the loops that are
self-avoiding, neglecting the loops that go back to already-visited sites (hence the term
“forward”).

13More rigorously, it is proved in [6] that the exponential increase with L of the typical value of the sum
in (1.65) implies a violation of a tightness condition of the distribution of the imaginary part of the cavity
propagators, implying that the hypothesis that =Σcav = 0 is inconsistent.
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1.4. The mechanism for localization: perturbative arguments

Exponential bounds of the form (1.67) are expected to hold if the fluctuations of the
random fields εi are large (W � V ), as typically V/εi ∼ V/W , and thus the typical value
of each loop weight scales as (V/W )n. In particular, resonances of the form (1.57),(1.58)
are rare, due to the local separation of scales produced by the uncorrelated randomness.
Indeed, since the probability that two instances εi, εj both lie within the same interval
[E − δ, E + δ] is of order O(δ2/W 2), for small δ a large portion of the lattice needs to be
sampled to find two such local fields. The corresponding sites are typically at a distance
R(δ) which is large, with an effective coupling that is exponentially suppressed in this
distance, ∼ V exp (−R(δ)/ξ): in the localized phase, typically δ > V exp (−R(δ)/ξ) and
the pair is not resonant. On the contrary, inspecting the potential locally in space, one
shall typically find |εi − εj | ∼W , i.e., local energy mismatches of O(W ) are generated by
the quenched disorder.

This reasoning holds for typical values of single loop weights. The probabilistic statement
(1.67) requires, however, to control the rare instances of the disorder giving rise to
atypically large path weights, containing resonant segments, as such rare instances
dominate the sum over loops of a given length. This means that the large deviations of
the path weights have to be determined. For products of independent random variables,
this can be easily obtained from the corresponding generating function. We briefly recall
how the calculation of (1.67) is performed, as it bears some similarities with the one
performed in the many-body case in the next chapter.

Consider E = 0 and Vab ≡ V : for uniformly distributed local fields εa ∈ [−W/2,W/2],
setting

|ωsl| = V
n∏
i=1

V

|z − εji |
≡ V

(
2V

W

)n
wn, (1.68)

one finds that the distribution of wn equals

Pwn(w) =
(logw)n−1

(n− 1)!w2
. (1.69)

Thus, the weight of each loop has a fat-tailed distribution. In finite dimensions, the
number of self-avoiding loops of length n scales exponentially with n, approximately
as ∼ κn for some constant κ = κ(d) depending on the dimensionality. Different loops
are statistically correlated, due to their partial overlap in space. Assuming that these
correlations are negligible, the distribution of s(n)

a (z) in (1.60) is obtained exploiting the
fact that, due to the fat-tails of the distribution, the sum over the loops is dominated by
the maximal term:

P
(
|s(n)
a (z)| < zn

)
≈ P

(
max

sloops(a;n)
|ωsl| < zn

)
≈ [P (|ωsl| < zn)]K

n

≈ exp [−Kn logP (|ωsl| > zn)] .

(1.70)
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Approximating

P (|ωsl| > zn) =

∫ ∞
(Wz/2V )n

dω Pωn(ω) ≈ Pωn
(
Wz

2V

)
, (1.71)

the probability in (1.67) is estimated to be

Pa,N ≈
∞∏
n=N

(
1− exp

[
−
(

2eV κ(d)

Wz
log

(
Wz

2V

))n
O(n−

1
2 )

])
. (1.72)

Imposing the limiting condition (1.67) for z → 1, one recovers the condition (1.66) with
K → κ(d).

A criterion of the form (1.66) is found whenever the distribution of fat-tailed variables of
the form (1.68) is sampled exponentially-many times; it originates in the competition
between two exponentials in (1.70): the growth of the number of terms and the decay of
the large deviation probability of each individual term; it states that the transition occurs
when the maximal value obtained in the sampling is of order O(1). Analogous results
are recovered throughout the following chapters: they are derived in different settings,
under the common assumption that the correlations between the random variables can
be neglected, in such a way that an independent sampling can be performed. We analyze
the validity of this assumption in Chapter 5.

The condition (1.66) is termed the “upper limit condition” in [10], as it overestimates
the critical value of W/V at which the transition to the delocalized phase occurs. The
reason for this is that the forward approximation exploited to derive (1.66) overestimates
the effect of small denominators: indeed, suppose that the site j2 in a self avoiding loop
i → j1 → j2 · · · is resonant at the given energy, V/|E − εj2 | � 1. Then, the locator
corresponding to the previous site j1 along the self-avoiding path has a huge self energy
correction, since S(i)

j1
contains a factor

S
(i)
j1

(E) = Vj1j2
1

E − εj2
Vj2j1 + · · · . (1.73)

The weight of the loop is thus

Vij1
1

E − εj1 −
V 2
j1j2

E−εj2
+ · · ·

Vj1j2
1

E − εj2 − · · ·
, (1.74)

so that for E − εj2 → 0 the divergence of the second locator is compensated by the
divergence of the self-energy in the first locator. Small denominators essentially neutralize
themselves by introducing enormous self-energies for the neighboring sites which then
appear as very large denominators: the forward approximation misses this effect. The
local resummations discussed in Sec. 1.4.2 thus enhance the convergence as compared
to the naive perturbative expansion in the forward approximation. In single particle
localization problems on the Bethe lattice with large connectivity, it is known that the
critical hopping is increased by a factor e/2 [2, 14].
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1.4. The mechanism for localization: perturbative arguments

1.4.5 The many-body problem: a self-consistent approach

We now discuss the generalization of the above arguments to the many-body case. In [20],
the scattering rate Γα(ε) in (1.20) is obtained within the “imaginary Self-Consistent Born
Approximation” (imSCBA). The SCBA resums a subset of diagrams of the perturbative
expansion for the many-body self energies, and results in a self-consistent equation for
Γα(ε) having a structure similar to (1.64):

Γα(ε) = b+π
∑
β,γ,δ

|Vαβ,γδ|2
∫
dε′dωAβ(ε′)Aγ(ε′+ω)Aδ(ε−ω)F (nβ, nγ , nδ) . (1.75)

In (1.75), b is the infinitesimal coupling to the bath, F (nβ, nγ , nδ) = nβ(1−nγ)(1−nδ) +
(1− nβ)nγnδ and Aα(ε) is the many-body spectral function

Aα(ε) ≈ 1

π

Γα(ε)

(ε− Eα)2 + Γ2
α(ε)

, (1.76)

defined from the retarded Green function (1.22) in an analogous way as (1.13). Note
that in (1.76) the real part of the self-energy is neglected: hence the term “imaginary” in
imSCBA.

In full analogy with the Bethe lattice case, the stability of the solution Γα(ε) = 0 with
respect to the infinitesimal coupling to the bath is analyzed, by iterating the linearized
version of (1.75). Note however that in the many-body case, the equation (1.75) is a
closed equation for the scattering rate at fixed occupations nα (we neglected the functional
dependence of Γα on {nα} in the notation). The time-evolution of the occupations is given
by the Boltzmann equation; to address the localized regime, the authors of [20] perform
the average in (1.22) over the subset of non-interacting Fock states (on which nα = ±1)
at a fixed energy density E. The latter is parametrized in terms of a temperature T ,
which corresponds to the typical energy range over which the single particle excitations
contributing to the Fock state are distributed 14. In the many-body case, the stability
analysis requires to estimate the typical size of the sum of all scattering amplitudes
generated by the iteration of (1.75), at any given order in the interaction. This is done
in [72, 20], where it is argued that the stability breaks down at a critical value of
temperature (and not of the intensive energy ε of the excitation) that is estimated to be:

Tc
δξ

=
C

λ log(1/λ)
, (1.77)

where δξ, λ are defined in Eqs. (1.24), (1.25). Not surprisingly, the self-consistent
approximation produces an estimate of the Bethe lattice form (1.66), with an effective
connectivity Keff = T/δξ and the interaction strength replacing the hopping strength.

The analysis in [72, 20] is to some extent analogous to the evaluation of probabilistic

14Reasoning as in [73], one might estimate this energy scale by saying that in typical Fock states with
energy E above the ground state, the energy is split among NE ∼ (E/∆)1/2 excitations, where this estimate
is done accounting for Fermi statistics (E ∼

∑NE
k=1 k ∆ ∼ ∆N2

E , with ∆ the average level spacing between
single-particle levels). Thus, each excitation has a characteristic energy of the order of T ∼ E/NE ∼ (E∆)

1
2 .
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

bounds on the sum over path weights in Anderson’s single-particle treatment. A similar
calculation is performed in the following chapter, when estimating the convergence of the
perturbation theory for conserved quantities. In particular, the SCBA generates self-energy
diagrams corresponding to decay processes where the number of quasiparticles produced
in the final state is maximized, thus maximizing the phase space available for the decay:
the same class of diagrams in considered in Sec. 2.2.2. They appear naturally in that
framework (that is formulated in the language of an effective single-particle problem) as
the terms corresponding to self-avoiding paths in a lattice whose sites correspond to Fock
states. This connects with Anderson’s upper limit approximation recalled above.

In the many body case, however, the validity of the approximations under which (1.77)
is derived is a more subtle issue. It is argued in [49] that the prediction of a transition
at a finite temperature is a feature of the ImSCBA, which is unstable with respect to the
reinstatement of those scattering processes neglected in this approximation. Moreover,
the treatments in [72] and [20] (as well as the one discussed in the following chapter)
do not account for the phenomenon of spectral diffusion, which has been recently argued
to enhance delocalization [30], reducing substantially the estimated critical temperature
(1.77). We discuss in more details these caveats in Secs. 1.5.1, 2.4 and 2.2.6(D),
respectively.

1.4.6 The breakdown of perturbation theory: what does it imply?

In the following chapters, we provide estimates for the boundary of stability of the
localized phase based on perturbative arguments. A word of caution is however in
place. Anderson’s criterion for localization, as well as its extension to the many-body
case, are sufficient but not necessary for localization. In other words, the breakdown of
perturbation theory does not necessarily entail delocalization. This is clear in the single
particle case, where the system’s behavior for large hopping depends on dimensionality:
in d ≥ 3 the divergence of perturbation theory signals a transition to delocalization,
whereas in one or two dimensions it only indicates a crossover to a weakly localized phase,
in which localization emerges due to the destructive interference among the trajectories
of the “quantum random walker” that return to the origin, whose amplitudes sum up
coherently in the quantum case.

A phenomenological description of the role of dimensionality in the single particle case is
given within the scaling theory of localization developed in [3], which we briefly recall.
The essential ingredient is the Thouless dimensionless conductance g(L), introduced
in [55] to characterize disordered samples of size L and defined as g(L) = δE(L)/∆(L),
with ∆(L) = 1/νLd the mean spacing between the energy levels in the sample, and
δE(L) the typical variation |δ2Eα/δφ

2| of the eigenvalues Eα when replacing the periodic
boundary conditions by twisted ones. The energy scale δE(L) characterizes the sensitivity
of the finite system to perturbations at the boundary: it is exponentially decaying for
localized systems with L & ξ, while it equals δE(L) = ~D/L2 = ETh in the diffusive
regime, with D the diffusion constant. ETh is the so called Thouless energy, defined as
the inverse of the typical time required by a perturbation to diffuse through the sample.
The theory in [3] is based on the one-parameter-scaling hypothesis, that assumes that
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1.5. The many-body dynamical phase transition

g(L) is the only relevant scaling parameter at the transition 15. This translates into the
continuous relation:

d log g(L)

d logL
= β(g(L)), (1.78)

where the sign of the scaling function β determines the asymptotic transport properties in
the infinite volume limit. Although the full function β is unknown, its qualitative behavior
is obtained extrapolating from the asymptotic behavior at large g (β(g) = d−2−c/g) and
small g (β(g) ∼ log(g)), assuming a continuous and monotone function. This, together
with the fact that the quantum “weak localization” corrections to the mean-free-path-
expression for the conductivity are negative (meaning c > 0) [102], suffices to determine
that the lower critical dimension for the Anderson transition is d = 2: for d ≤ 2, β(g)
remains always smaller than zero, implying that the system is asymptotically insulating
for any value of disorder and no fixed point β(gc) = 0 is present.

1.5 The many-body dynamical phase transition

As follows from the perturbative treatment, the stability of the localized phase is guar-
anteed by the rareness of resonances: the local degrees of freedom that are strongly
hybridized by the interactions (or hopping) form a dilute set in space, as the typical
energy differences associated to local rearrangements are large for strong randomness.
As the disorder is decreased, the local degrees of freedom start hybridizing at any length
scale and resonances proliferate in space, producing eigenstates that are delocalized (in
real space or in Fock space). As a consequence, the MBL phase becomes unstable and
a disorder-driven transition to delocalization occurs. In the perturbative setting, this is
signaled by the divergence of the perturbative expansion around the trivially local limit.

Not much is known about this dynamical phase transition. On one hand, since the
numerical techniques exploited to understand the localized phase rely on the weakly-
entangled structure of the MBL eigenstates, they are inadequate to tackle the transition.
On the other hand, a suitable theoretical framework has not yet been developed. In this
section, we report the main debated issues concerning the many-body localization-to-
delocalization transition, together with a short review of the results that have emerged
from the theoretical analysis and of the methods with which they have been obtained.

1.5.1 The finite temperature crossover?

In the perturbative framework, the transition to many-body delocalization occurs at a
critical value of disorder (or interaction) which depends on the energy density of the
system and thus on its effective temperature, see Eq. (1.77). In other words, for a fixed
value of the parameters in the Hamiltonian, an extensive mobility edge Ec is predicted
within the spectrum. It separates the localized many-body eigenstates for which (1.29)

15It is assumed that when merging bd cubes of size L, the conductance of the resulting sample of size
bL is a function of the conductance of each block only, g(bL) = f(b, g(L)), with no additional separate
dependence on the energy, disorder or length L.
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

holds true and the transport coefficients vanish, from the ones in which the correlations
do not decay exponentially and transport is recovered. The fact that Ec scales with the
volume implies16 that a “finite-temperature metal to insulator transition” occurs, with the
conductivity vanishing exactly at the critical temperature Tc, see Fig. 6.2(a). Signatures
of mobility edges have been found in exact diagonalization studies of small systems, see
Fig. 6.2(b).

The scenario of the finite temperature transition has been questioned in Ref. [49]: there
it is argued that the assumption of coexistence of both MBL and delocalized eigenstates at
the same values of disorder and interactions is inconsistent, thus ruling out the possibility
of a transition driven by changes in the thermodynamic variables (the temperature T or
the chemical potential µ). As a consequence, MBL as a function of temperature is “all
or none”: either all eigenstates are localized and the “integrability” picture of Sec. 1.3
holds true (the latter entails that each single eigenstate is a product state in the basis
of conserved operators, and thus it is many-body localized), or none of them is and the
systems is thermalizing at any temperature. In light of this argument, the numerical
evidence for a mobility edge in Fig. 6.2(b) should be interpreted as a finite size effect,
the transition line being actually a crossover line.

The main idea behind the argument in [49] is that for delocalization to occur it is not
necessary that the whole system is excited at energy densities larger than the putative
mobility edge. Rather, rare spontaneous local fluctuations in the energy density, termed
“bubbles” in [49], are sufficient to restore transport and thermalization, as they can
move resonantly through the system and act as a mobile bath. The inconsistency of
the coexistence is argued by the following steps: if an ergodic phase exists at high
temperature, typical states at lower temperature will contain a finite density of such
bubbles, due to local thermal fluctuations. Bubbles can appear at any location in space
with finite probability. For resonant spots that are sufficiently large to admit an ETH,
random-matrix-like description, it can be argued that (1) bubbles are mobile: the set
of configurations corresponding to states with bubbles located in different positions
constitute a resonant sub-graph in Hilbert space, and (2) the hybridization is robust with
respect to couplings to configurations that do not belong to the sub-graph: bubbles do not
diffuse and loose their extra energy in the environment, as the latter is in the supposed
MBL phase and thus cannot transport the extra energy to infinity. Since the many-body
eigenfunctions hybridize essentially all configurations which are resonantly connected, it

16If indeed on the eigenstates |ψn〉 with En < Ec the conductivity within the state is zero, σ(En) = 0,
then a saddle point estimate gives:

σ(T ) =
∑
n

e
− En

kBT

Z(T )
σ(En) ≈

∫∞
Ec
dE e

S(E)− E
kBT σ(E)∫∞

E0
dE e

S(E)− E
kBT

=

{
σ(Ẽ(T )) if Ẽ(T ) > Ec
∝ exp

[
−Ec−Ẽ(T )

kBT

]
if Ẽ(T ) < Ec,

(1.79)

where Ẽ(T ) solves

∂S(E)

∂E

∣∣∣∣
E=Ẽ(T )

=
1

kBT
. (1.80)

Since the difference Ec − Ẽ(T ) scales with the system’s volume, it diverges in the thermodynamic limit,
implying that σ(T ) = 0 for all T < Tc with Tc the temperature corresponding to Ec.
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(a)

(b)

Figure 1.5: (a) Schematic temperature dependence of the dc conductivity as predicted in
[20] for a fermionic Hamiltonian (1.9). Below the critical temperature given in (1.77),
the conductivity is exactly zero. (b) Mobility edge obtained numerically in [108] for
the Hamiltonian (1.10) with J = Jz = 1, W/2 = h and ε the energy density. The
various symbols correspond to different diagnostics, see [108]. The figures are taken
from Refs. [20] and [108].

follows that the latter are delocalized: the putative localized phase at low temperature is
destroyed. A similar argument implies that no genuine localization exists in disorder-free
systems [48].

This “bubble” argument rules out the possibility of mobility edges in the many-body case,
which are claimed to disappear as long as one goes beyond the level of approximation
discussed in Sec. 1.4.5. However, it is fully consistent with the existence of an MBL
phase at sufficiently strong disorder, in which conserved quantities exist. We investigate
this issue further in Sec. 2.4: there, we reformulate the problem in the language of the
conserved operators, and illustrate how the scenario of delocalization driven by bubbles
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

cannot be captured within our approximate treatment.

1.5.2 Diverging lengths, local discontinuities: the nature of the transition?

Method and diagnostics. To date, most of the works addressing the transition resort to
exact diagonalization of one dimensional models of limited size [134, 108, 101, 15, 105],
or to phenomenological RG-like procedures [174, 140]. The RG scheme in [174] operates
on a coarse-grained model made of a sequence of blocks i of varying length, each one
being characterized by a single parameter gi = Γi/∆i, defined as the ratio between an
“inverse time of entanglement spreading” across the block Γi, and the local level spacing
∆i. The parameter gi is analogous to the Thouless conductance identified in [3] as the
relevant scaling variable for single-particle localization, see Sec. 1.4.6. Blocks are merged
and assigned an insulating (g � 1) or conducting (g � 1) character according to RG rules
that have a phenomenological justification. The block parameters gi are not derived from
a microscopic model (although the distribution of similar parameters can be computed
with exact diagonalization [156] and in principle used as an input for the RG), and no
intermediate behavior gi ∼ 1 is allowed. Another framework has been developed in [140]
to construct the percolating resonant network driving the transition, by progressively
merging resonant clusters at larger and larger scales; the method captures only the
collective many-body resonances that are “factorizable” into resonances at larger energy
(and shorter length) scales, and assumes that these are the relevant ones driving the
transition. Both methods are restricted to the case d = 1.

Among the quantities that have been more intensively studied, the entanglement entropy
in eigenstates plays a central role. Its density s = SA/L

d
A (with A a region of linear

dimension LA, SA = −Tr (ρA log2 ρA), ρA = TrAc (|En〉〈En|) and |En〉 a many-body
eigenstate) is a natural order parameter for the dynamical transition, as it changes
sharply from zero in the MBL phase to a finite value in the delocalized phase. Its full
distribution has been studied numerically [106, 105]. In particular, the variance (in the
case of LA = L/2) is a useful indicator, as it peaks at the transition [101]; similarly, the
total correlations in the diagonal ensemble emerging from the dephasing of an initial
product state also peak at the transition [70].

Some results. With the above methods, the following results have been obtained:

– On the delocalized side of the transition, a finite-size scaling analysis has been
performed on the variance of the eigenstates entanglement entropy [101, 108],
see Fig. 1.6. The resulting collapse is interpreted as an indication of the fact that
the transition is continuous, characterized by a divergent length scale ξ ∼ δ−ν

with δ measuring the distance to the critical point. Finite-size scaling has been
performed also within the RG description, on the typical value of the scaling variable
〈log g(l)〉 [174], and on the size of the longest resonant clusters [140]. Different
results are obtained for the critical exponent: ν ≈ 3 is obtained within the RG,
while ν ≈ 1 is obtained from exact diagonalization. The latter exponent violates
the Harris bound ν > 2/d, with d the spatial dimension [37].
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1.5. The many-body dynamical phase transition

Figure 1.6: Finite-size scaling of the standard deviation σE of the bipartite entanglement
entropy per site S/L in the middle of the spectrum (left) and in the upper part (right),
for the Hamiltonian (1.10) with J = Jz = 1 and ha ∈ [−h, h]. The standard deviation
displays a peak at the transition [101]; a scaling of the form σE = (L− c)g

[
L

1
ν (h− hc)

]
is assumed. The figures are taken from Ref. [108]

– Under the assumption that the transition is continuous and characterized by a
unique divergent length scale ξ ∼ δ−ν , it is proved in [74] that for a sub-region of
size LA � ξ, L, SA should exhibit thermal, volume-law behavior in the quantum
critical regime. This holds true, provided that SA is a scaling function of ξ/LA only
and that it varies continuously at the transition. The continuity hypothesis for SA
has been recently questioned in [96], where it is argued that the entanglement
entropy of local sub-regions is discontinuous at the transition in the limit L→∞.
This is in line with numerical results showing sub-thermal entanglement entropy in
the quantum critical regime [101, 108, 53, 105].

– In the thermal phase in d = 1 close to the transition, transport is found to be sub-
diffusive [16, 4, 179, 94], and the entanglement spreading sub-ballistic [109, 174].
The RG treatment also gives a length-time scaling that is power-law l ∼ t1/z with a
continuously disorder-dependent exponent z(w) that equals 2 deep in the thermal
phase, where transport is diffusive, it increases with disorder and it presumably
diverges in a universal way z ∼ (w − wc)−ζ at the transition to the MBL phase,
where the logarithmic scaling sets in.

– The numerical method in [53] working directly in the thermodynamic limit pro-
duces an estimate of the critical value of disorder that is higher than the ones
obtained from finite size studies. This indicates that the latter tend to overestimate
the extent of the MBL phase, and that the MBL phase would actually become
unstable at smaller disorder but only at much longer length scales than the ones
accessible with exact diagonalization.

These results suggest the following picture for the dynamical transition in d = 1: delocal-
ization occurs as an instability of the localized phase, generated by a sparse17 network

17For the effective model discussed in [140], the scaling function Ξ associated to the length ξloc of the
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Chapter 1. How disorder breaks quantum ergodicity: Many-Body Localization

of delocalized, entangled regions that suffice to thermalize the whole system in the
thermodynamic limit [96]. In the thermal phase nearby the transition, the instability
appears only at long length scales, while small systems look localized; the slowing down
of transport and of the entanglement spreading is ascribed to the presence of the locally
insulating regions within the thermal phase, which are rare but (in one dimension) ob-
struct transport. These “Griffiths effects” occur also in the localized phase in the vicinity
of the transition, where rare thermal region dominate the low-frequency behavior of the
ac conductivity [4, 71].

1.5.3 The role of dimensionality: MBL above d = 1?

While the role of dimensionality is understood in the single particle case, see Sec. 1.4.6,
the same is not true for the many-body case. The numerical works are confined to d = 1
for computational reasons; on the other hand, the approximate perturbative arguments
were made for arbitrary dimensions d. However, the role of dimensionality seems crucial
when going beyond the perturbative regime: the proof in [86] makes explicit use of the
fact that d = 1, which appears to be a necessary requirement for the full construction to
hold, see Sec. 2.3. A similar line of arguments leads to the conclusion that MBL might be
unstable with respect to the insertion of low-disordered regions in d ≥ 2 [47]. Also in
[38] it is argued that the conserved quantities are unstableto the coupling to a thermal
boundary in d ≥ 2. On the other hand, signatures of localization have been measured on
experimental time scales, as reported in Sec. 1.1.

maximally extended resonant cluster, ξloc ∼ LΞ
(

(W −Wc)L
1/ν
)

, has a value at criticality (Ξ(0) ≈ 10−2)

that is much smaller than the one of ordinary percolation (Ξ(0) ≈ 0.5). This suggests that the cluster of
resonating degrees of freedom is sparse at the transition.
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2 Dressing occupation numbers: the Fermi
insulator

The goal of this chapter is to show that exactly conserved operators n̂α can be constructed
for a fermionic Hamiltonian of the form

H =
∑
α

Eαnα +
∑
α,β,γ,δ

Uαβ,γδ c
†
αc
†
βcγcδ. (2.1)

The n̂α are obtained form a perturbative dressing of the non-interacting number operators
nα. They can be chosen to have binary spectrum {0, 1} and to form a complete set, so
that (2.4) can be rewritten in terms of these occupation numbers as

H =
∑
α

Hαn̂α +
1

2

∑
α 6=β

Hα,β n̂αn̂β + ... . (2.2)

The expression (2.2) is an exact quasi-particle energy functional, which determines the
energy of any quasi-particle as a function of the occupations of all others: it thus defines
an “interacting Fermi insulator”.

The chapter is structured as follows: In Sec. 2.1 we summarize the logic of the con-
struction and the main technical problems addressed. In Sec. 2.2, we give the details
of the construction and discuss the convergence of the operator expansion for the n̂α.
This is done within some approximations, and relaxing the hypothesis on the binarity
of the spectrum. In Sec.2.3, we discuss how the approximations we make can be lifted,
comparing our perturbative construction with the mathematically rigorous treatment of
Ref. [85]. Finally, in Sec. 2.4 we address the problem of the divergence of the operator
expansion as the transition to delocalization is approached, connecting to the debate on
the existence of many-body mobility edges shortly described in the previous chapter.

2.1 Construction of exact quasiparticles: a road map

We consider a fermionic Hamiltonian on a lattice Λ,

H =
∑
i∈Λ

c†i

[
− 1

2m
∆(Λ) + Vdis(i)

]
ci +

1

2

λ

νad

∑
i,j∈Λ

c†ic
†
j u(i− j) cjci, (2.3)
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Chapter 2. Dressing occupation numbers: the Fermi insulator

where ∆(Λ) is the lattice Laplacian, Vdis is a random disordered potential, a the lattice
constant, ν the single-particle density of states, and u(i− j) a dimensionless, normalized,
short-ranged interaction kernel. The disorder potential is chosen such that the single
particle part of the Hamiltonian possesses only fully localized wave-functions φα with
energies Eα, α = 1, ..., |Λ|. We define the model on a lattice in order to have a finite
bandwidth of the single particle problem, that we denote withW, Eα ∈ [−W/2,W/2].
This allows us to discuss the perturbation theory at the operator level (in a sense, it
allows us to take a meaningful limit of infinite temperature). In the basis of single particle
eigenstates, (2.3) reads

H =
∑
α

Eαnα +
λ

νad

∑
α<β,γ<δ

uαβ,γδ c
†
αc
†
βcγcδ ≡ H0 + U, (2.4)

where some ordering “<” between the single particle indices is assumed, and the interac-
tions are antisymmetrized uαβ,γδ = uβα,δγ = −uβα,γδ.

2.1.1 The perturbative series and its local divergences

In the absence of interactions, the occupation numbers nα are mutually commuting,
conserved quantities. Their quasilocality follows directly from the spatial localization
of the single particle wave-functions φα: the operator c†icj contributes to the operator
expansion:

nα =
∑
i,j

φ∗α(i)φα(j)c†icj (2.5)

with a weight which decays exponentially in the distance between its support (the
sites i, j) and the localization center rα of φα. By truncating the sum (2.5) to terms
with support only within a neighborhood of mξ of rα, one obtains an operator whose
commutator with the Hamiltonian vanishes up to exponentially small terms. As m→∞
the operator rapidly converges (in the operator norm) to the conserved nα.

We aim at constructing an extensive set of |Λ| operators n̂α that are quasilocal, complete
and conserved by the full interacting Hamiltonian (2.4),

[n̂α, H] = 0. (2.6)

n̂α can be sought as an element of the space C of particle-conserving operators on the
Hilbert space, and without loss of generality we may require it to be Hermitian. Since the
spectrum of the many-body system is almost surely non-degenerate, it follows that such
conserved quantities also satisfy [n̂α, n̂β] = 0. Their mutual commutativity implies that
the n̂α form a commutative algebra: the choice of a basis spanning this algebra is not at
all unique, as it will appear clear in the following.

When attempting to construct n̂α perturbatively, it is natural to consider the formal
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2.1. Construction of exact quasiparticles: a road map

expansion

n̂α = nα +
∑
n≥1

λn∆n̂(n)
α , (2.7)

where ∆n̂
(n)
α is determined recursively from ∆n̂

(n−1)
α , as the solution of[

U,∆n̂(n−1)
α

]
+
[
H0,∆n̂

(n)
α

]
= 0. (2.8)

We define two relevant operator subspaces: the kernel K of the linear map AdH0(X) =
[H0, X] defined for X ∈ C, and its image, O = AdH0(C). The latter is the orthogonal
complement of K with respect to the inner product of operators, 〈A,B〉 = Tr[A†B],
C = K ⊕ O. K is spanned by all possible products of nα’s, while O is spanned by the
normally ordered operators

OI,J =
∏
β∈I

c†β

∏
γ∈J

cγ I 6= J , (2.9)

where I = (β1, · · · , βN ) and J = (γ1, · · · , γN ) are sets of indices labeling the single
particle states, and the same ordering “<” as previously is chosen for the indices β, γ. Let
us discuss the existence and uniqueness of the solution of (2.8).

Existence. The equation (2.8) can be solved for ∆n̂
(n)
α provided that the commutator with

H0 can be inverted. This requires that at any order n,
[
U,∆n̂n−1

α

]
∈ O; equivalently,

x(Ψ0) := 〈Ψ0|[U,∆n̂(n−1)
α ]|Ψ0〉 = 0 for every eigenstate Ψ0 of H0. This is true for time-

reversal symmetric Hamiltonians having real matrix elements in the basis of single particle
eigenstates: indeed, at any stage of perturbation theory ∆n̂

(n−1)
α has real coefficients

in the occupation number basis: thus, x(Ψ0) is real. On the other hand, from the anti-
Hermiticity of [U,∆n̂

(n−1)
α ] it follows that x(Ψ0) is purely imaginary, and thus it vanishes

indeed.

Uniqueness and binarity. Of course, the conservation equation determines ∆n̂
(n)
α up to

arbitrary terms belonging to K. Denoting the latter with ∆K
(n)
α , we may formally write

∆n̂(n)
α = i lim

η→0

∫ ∞
0

dτe−ητeiH0τ
[
U,∆n̂(n−1)

α

]
e−iH0τ + ∆K(n)

α ≡ ∆J (n)
α + ∆K(n)

α ,

(2.10)

where ∆J
(n)
α belongs to O. We claim that at any order, ∆K

(n)
α can be uniquely fixed in

terms of the ∆n̂
(m)
α with m < n imposing the binarity of the spectrum, i.e. n̂2

α = n̂α. The
result reads

∆K(n)
α = (1− 2nα)

[
n−1∑
m=1

∆n̂(m)
α ∆n̂(n−m)

α +

{
nα −

1

2
,∆J (n)

α

}]
. (2.11)
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Chapter 2. Dressing occupation numbers: the Fermi insulator

Thus, the perturbation theory uniquely defines1 a set of number operators. We report the
derivation of (2.11) in Appendix 2.A.

Let us now address the problem of quasilocality. Despite the perturbative equations are
solvable at any finite order, the resulting series (2.7) is affected by the same “trivial”
divergences as Anderson’s perturbation theory for the self energies, Sec. 1.4.1. Rare
resonances between almost degenerate Fock states produce terms with a large norm
that, even if rare, appear repeatedly in (2.7), at any order in λ. An example of these
repetitions is given in the following.

Suppose that at order n the series expansion contains the term Jn ≡ JnOcα, where
O = c†i1 · · · c

†
im
cj1 · · · cjm−1 is a string of operators with i, j 6= {α, β, γ, δ}. The

amplitude Jn = O(λn) contains the energy denominator:

Jn ∝
(

m∑
k=1

Eik −
m−1∑
k=1

Ejk − Eα
)−1

≡ (∆E)−1 , (2.12)

which we assume to be atypically small. One then easily finds a subsequence of
the series (2.7), which contains arbitrarily high powers of the small denominator.
Indeed, let us restrict the interaction U to the term Uαβ,γδ

(
c†αc
†
βcγcδ + h.c.

)
with

Uαβ,γδ = λuαβ,γδ/(νa
d); higher order terms in the perturbative expansion are

obtained by subsequent application of (2.10) to Jn; this produces:

Jn+1 ≡ Jn
Uαβ,γδ

∆E + Eαβ,γδ
Oc†βcγcδ ≡ Jn+1 Oc†βcγcδ,

Jn+2 ≡ −Jn+1
Uαβ,γδ

∆E O (nβ(1− nγ)(1− nδ) + (1− nβ)nγnδ) cα,

Jn+3 ≡ Jn+1

[
Uαβ,γδ

∆E
Uαβ,γδ

∆E + Eαβ,γδ

]
Oc†βcγcδ,

(2.13)

with Eαβ,γδ = Eα +Eβ −Eγ −Eδ. By iteration of this procedure, a sub-sequence of
operators containing arbitrarily high powers of (∆E)−1 is generated, preventing the
convergence of the series if the term in brackets is larger than 1. Divergences of this
kind have to be properly re-summed for the series expansion to make sense. For
example, all terms multiplying Oc†βcγcδ re-sum into a self-energy correction of the
denominator in the first line of (2.13):

J ≡ Jn

 Uαβ,γδ

(∆E + Eαβ,γδ)−
U2
αβ,γδ

∆E

Oc†βcγcδ ≡ J Oc†βcγcδ. (2.14)

1Note that it is not obvious from the outset that this simple perturbative scheme should work and produce
a local operator. Indeed, we are applying the perturbation theory to an extensive set of operators which are
all null eigenvectors of AdH0(·). In principle one should use degenerate perturbation theory for all these
operators simultaneously, which could turn out to require a non-local change of basis. In the remaining of
the chapter it is shown, however, that this is not the case.
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2.1. Construction of exact quasiparticles: a road map

The term in square brackets in (2.14) contains a very large self energy correction
U2
αβ,γδ/∆E , which compensates the divergence in Jn when ∆E → 0.

As in the single particle case, it is necessary to implement systematically the resummation
of repeated terms. To do this at the operator level, it turns out to be convenient to
drop the terms ∆K

(n)
α in (2.10), thus defining a new set of operators n̂α → Iα such that

Iα − nα ∈ O. Such operators admit the expansion:

Iα = nα +
∑
N≥1

∑
I6=J

|I|=N=|J |

A(α)
I,J

(
OI,J +O†I,J

)
, (2.15)

where OI,J is defined in (2.9). The operator expansion (2.15) is non-generic due to
the constraint I 6= J which guarantees that Iα − nα is in the subspace O. The above
perturbative reasoning guarantees that (2.15) is a consistent ansatz for the conserved
quantities, whose coefficients are uniquely determined just by imposing [H, Iα] = 0. Note
that (2.15) should no longer be seen an expansion in λ, but rather as an expansion in
the support on which the operators OI,J act. In particular, even though motivated by
perturbative considerations, in any finite system the above ansatz uniquely determines
a conserved operator even if perturbation theory does not converge: in that case Iα is
defined as the finite (possibly exponentially large) sum (2.15) whose coefficients are
solved by imposing [H, Iα] = 0. In a delocalized regime, the operator will have support
on the whole system.

The choice (2.15) allows us to reformulate the problem within a single-particle setting,
and to implement the set of approximations discussed in Sec. 1.4.1. The drawback
of the above ansatz is that it does not define an operator with binary spectrum. We
expect however that the convergence of the operator expansion still holds in a non-trivial
regime of parameters, also once the missing terms (necessary to impose the binarity)
are reinstated2. In the following section, we summarize the logic followed to argue that
(2.15) converges in the thermodynamic limit, to a quasilocal operator. The technical
details are postponed to Sec. 2.2.

2.1.2 Arguing for convergence: main logical steps

The coefficients in (2.15) depend on the interaction strength λ, and approach zero as
λ → 0. The goal is to argue that for sufficiently small λ the expansion converges in
probability, that is, for any ε > 0:

lim
R→∞

P

 ∑
I6=J

r(I,J )>R

|A(α)
I,J | < ε

 = 1, (2.16)

2In a sense, if the expansion (2.15) converges, it can be appropriately normalized to impose I2
α = Iα.
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Chapter 2. Dressing occupation numbers: the Fermi insulator

where r(I,J ) = maxβ∈I∪J |rα − rβ| is the maximal distance between the localization
center rα of the state α and any of the states β that are acted upon by the operator
OI,J . This ensures that the series defining the operator Iα converges almost surely (since
||OI,J || = 1 for all I,J ), and that the resulting operator Iα is quasi-local in the sense of
1.37.

The arguments for the convergence of (2.15) are at the same level of approximation as the
ones in [10, 9, 20, 72]. They rely on a mapping to an equivalent single-particle problem,
obtained imposing [Iα, H] = 0 and interpreting the resulting linear constraints for the
amplitudes A(α)

I,J as the equations for a single particle hopping on a disordered “operator
lattice” with sites labeled by the Fock indices (I,J ). In particular, the exponential decay
of the coefficients of OI,J corresponds to the localization of the particle on the lattice, in
analogy with the non-interacting case (2.5). In turn, the delocalization of the particle
corresponds to the divergence of the operator expansion (2.15). The non-interacting
limit is recovered when the particle is fully localized at the site (α, α).

The localization in the operator lattice is argued within a forward approximation, which
boils down to replacing each amplitude in (2.15) with its lowest order expansion in the
strength of the interaction λ. The approximation is controlled by the largeness of the
parameter giving the connectivity of the operator lattice,

K = 4
W
δξ
, (2.17)

with W the bandwidth of the quadratic part of (2.4), and δξ is the average level spac-
ing within a localization volume, defined in (1.24). As a consequence of the forward
approximation, the amplitudes in (2.15) can be written as a sum over self-avoiding paths
in the operator lattice, cfr. (2.32), in analogy with the Anderson problem. Moreover,
within this approximation the number of sites in the lattice at distance N form the site
(α, α) grows exponentially with N , as KN . Thus, a setting similar to the one of single
particle problems on the Bethe lattice is recovered: one expects a transition to occur, due
to the competition between the exponential growth of the number of sites at a distance
N from the root, and the exponential decay of the weights of the self avoiding paths of
length N . At variance with the Bethe lattice, however, in the operator lattice there are
typically many self-avoiding paths leading to a given site (and plenty of loops, see Fig.
2.1). In particular, the number of paths connecting the root (α, α) to a given site scales
factorially with their length. This factorial must be compensated in order to recover the
exponential scaling required for the transition. We argue that the compensation occurs,
as the self-avoiding paths have strongly correlated weights which partially cancel among
each others (see also the observation in Sec. 2.1.2 in [20], and the discussion in [73] in
the zero-dimensional setting). We develop a systematic way to deal with this “problem
of the factorials”, exploiting a diagrammatic representation of the scattering processes
associated to each path and explicitly showing the cancellations, see Sec. 2.2.3. This leads
to the introduction of “effective paths”, whose weight is the result of the resummation of
the weights of strongly correlated self-avoiding paths.

Once the exponential scaling of the number of (effective) paths is recovered, the estimate
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2.2. Construction of exact quasiparticles: details

of (2.16) requires to address the following two issues:

I1: The computation of the large deviation probability of individual path or effective
path weights. This must account for the correlation of the energy denominators
of the locators in a single path, that is present in the many-body even within the
forward approximation. This is discussed in Sec. 2.2.4.

I2: The estimate of the total number of effective paths of a given length. This requires
to evaluate the number of distinct scattering processes leading to a given final
configuration in operator space. This computation is reported in Sec. 2.2.5.

Combining these results, we obtain an estimate for the critical value of the interactions
λ′c at which the integrals Iα become non-local almost surely. The estimate is of the form
λ′c ∝ 1/K logK, cfr. Eq. (2.93). Although it can not be logically excluded that λ′c is
smaller than the λc at which delocalization occurs (since it might be possible to find for
λ′c < λ < λc a prescription for conserved quantities that leads to more local operators
than the one given by (2.15)), we believe that the two values cannot be distinguished
within the approximations made. Hence, we use the notation λc indistinctly for both
critical values, and interpret λ′c as an estimate of the boundary of stability of the MBL
phase, holding at infinite temperature (see Sec. 2.2.6).

2.2 Construction of exact quasiparticles: details

In the following section, we discuss in detail how the program outlined in the previous
section is implemented.

2.2.1 An Anderson problem in operator space

A. Details of the model: relevant parameters and energy scales

Since the detailed features of (2.4) are not relevant for our analysis, we coarse grain
the model, reducing it to an array of coupled quantum dots of size of the order of the
single-particle localization length ξ, which we refer to as localization volumina3. We
set the matrix elements uαβ,γδ to be non-zero only if the corresponding single-particle
states have localization center in the same volume or in adjacent ones: this accounts
for the locality of the interactions. Moreover, since the matrix elements decrease rather
rapidly when the energy difference between involved levels exceeds δξ, we take uαβ,γδ to
be non-zero only if

|Eα − Eδ|, |Eβ − Eγ | . δξ or |Eα − Eγ |, |Eβ − Eδ| . δξ. (2.18)

3The coarse-grained model that we consider differs from the one in [20], where the single particle
Hamiltonian is diagonalized separately in each localization volume, the inelastic scattering processes are
restricted to single-particle states within the same volume, and the volumina are coupled by the hopping
terms (elastic processes).
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Chapter 2. Dressing occupation numbers: the Fermi insulator

In this case, we sets

uαβ,γδ = νad δξ ηαβ,γδ (2.19)

where ηαβ,γδ is a uniform variable in [−1, 1]. Correlations between the single-particle
energies Eα are neglected.

We assume that ξ � a. This condition ensures that a large number

Nloc =
W
δξ

=Wνξd (2.20)

of single particle wave-functions overlap significantly in space: this will provide the large
parameter (2.17) of our analysis. The latter counts the number of scattering process of
a particle (hole) α to a 3-particle-hole state (β, γ, δ) satisfying the constraint of locality,
together with (2.18): for fixed α, one out of (β, γ, δ) equals any of the closest energy
levels above or below α in the local spectrum, while the remaining pair can be chosen in
2Nloc different ways.

The largeness of K justifies the approximation that we make, of neglecting terms uαβ,γδ
where two or more indices are identical, as the phase space associated to these scattering
processes is suppressed4 by a factor 1/K. These terms are a priori accounted for in
[20], where the basis of Hartree-Fock orbitals is considered instead of φα; however, they
are ultimately neglected also in that work, when performing the statistical analysis of
diagrams. Our choice of the basis φα is made as it allows us to work in full generality in
the operator space, while HF orbitals depend on the non-interacting occupation numbers,
i.e., they depend on the many-body state on top of which the single particle excitations
are considered.

B. The mapping to a single-particle problem

In this section we present the equations defining AI,J in (2.15). To illustrate the
procedure, we first discuss the non-interacting case and then proceed with the interacting
problem.

Warm up: the non-interacting case. Consider a non-interacting Anderson Hamiltonian
(1.8) with Vab = V , together with the quadratic ansatz

Ik = nk +
∑
i<j

A(k)
ij

(
c†icj + c†jci

)
, (2.21)

4Indeed, for a scattering α → β with the simultaneous creation of (γ, α), both γ and β are almost
fixed by (2.18). For a scattering α→ β from a particle γ which remains in place, the following argument
holds: if this is to be a resonant contribution, one needs the energy increment ∆E of the vertex to be
|∆E| = |Eα − Eβ | . δξ/K. In a scattering where γ switches to a neighboring state δ, with |Eγ − Eδ| ∼ δξ,
one can optimize α, β among the K different choices, such as to make ∆E of order δξ/K. However, if γ
remains in place, the optimum over the K choices for α, β will yield a parametrically bigger ∆E = Eα − Eβ ,
because of the repulsion between the neighboring levels α, β. Therefore such processes are systematically
much less resonant than processes involving four distinct levels.

48



2.2. Construction of exact quasiparticles: details

Imposing [H, Ik] = 0 and setting

A(k)
ii ≡ δk,i, (2.22)

we obtain the set of linear equations for A(k)
ij with i 6= j:

(εi − εj)A(k)
ij − V

(
A(k)
i−1j +A(k)

i+1j −A
(k)
ij−1 −A

(k)
ij+1

)
= 0. (2.23)

In view of these equations, we re-interpret A(k)
ij as the wave-function amplitudes of a

particle on a square lattice with sites (i, j), and correlated on-site disorder Ei,j = εi − εj ,
subject to the constraint (2.22). An explicit expression for them can be given in terms of
the eigenfunctions φα as:

A(k)
ij =

∑
α

ωkαφα(i)φα(j), (2.24)

where the ωkα have to be determined from the constraint∑
α

ωkα[φα(i)]2 = δk,i. (2.25)

Again, the exponential decay of the amplitudes (2.24) in |i− j| follows from the localiza-
tion in space of the φα. It implies the convergence of the expansion (2.21) to a quasilocal
operator Ik (that differs from the particle number operators nα in (2.5), as it can be
easily seen from the fact that (2.21) does not contain any diagonal terms i = j 6= k).

The many-body case. Let us go back to the interacting case. To deal with large index
sets, we introduce the following notation: for any index set X = (x1 · · ·xN ), we define
diagonal coefficients as zero, except if X = {α}:

A(α)
X ,X ≡ δX ,{α}. (2.26)

Moreover, for any l,m (with l < m) and any single particle labels γ, δ (with γ < δ), we
define the index sets:

Xl ≡ (x1 · · ·��xl · · ·xN ),

X γlm ≡ (γ x1 · · ·��xl · · ·��xm · · ·xN ),

X γδlm ≡ (γ δ x1 · · ·��xl · · ·��xm · · ·xN ).

(2.27)

In general, the set X ······ is obtained from X by eliminating the indices in the subscript and
appending the ones in the superscript on the left. The resulting sets are thus not ordered;
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let σ [·] denote the sign of the permutation which orders the set, and set:

s [Xl] ≡ l,
s
[
X γlm

]
≡ l +m+ σ

[
X γlm

]
,

s
[
X γδlm

]
≡ l +m+ σ

[
X γδlm

]
.

(2.28)

Finally, for index sets with |Y| = |Z| we define the modified amplitudes:

Ã(α)
Y,Z ≡ (−1)s[Y]+s[Z]A(α)

Y,Z . (2.29)

With this notation, the condition [H, Iα] = 0 is equivalent to the following set of linear
equations for A(α)

I,J :

0 =

(
N∑
n=1

Eαn − Eβn
δξ

)
A(α)
I,J+

+λ

N∑
l,m=1
l<m

∑
γ<δ

(
ηαlαm,γδÃ

(α)

Iγδlm,J
− ηγδ,βlβmÃ

(α)

I,J γδlm

)+

+λ
N∑

l,m=1
l<m

N∑
n=1

(−1)N+1

[∑
γ

(
ηαlαm,γβnÃ

(α)

Iγlm,Jn
− ηγαn,βlβmÃ

(α)

In,J γlm

)]
,

(2.30)

where (I,J ) = (α1 · · ·αN , β1 · · ·βN ) and I 6= J . The diagonal coefficients appearing on
the right-hand side are defined in (2.26).

Similarly as in the single-particle example, Eq. (2.30) can be thought of as a hopping
problem for a single particle on a lattice with sites given by the Fock indices (I,J ) and
local, correlated disorder

EI,J =
N∑
n=1

(Eαn − Eβn). (2.31)

The hopping is provided by the interaction U , see Fig. 2.1a. The non-interacting limit
corresponds to the wave-function A(α) being completely localized on the site (I,J ) =
(α, α). The requirement of convergence of the operator expansion (2.15) can thus be
interpreted as a localization condition for the hopping problem on the disordered lattice
of Fock indices.

C. A lattice with a hierarchical structure

The lattice geometry, as determined by the interactions, is rather complicated. However,
Eqs. (2.30) have a clear hierarchical structure: the equation for index sets I,J of length
N are coupled only to amplitudes with index sets of equal or shorter length. Therefore,
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the sites can be organized into generations, according to the length of their index sets
(this structure was first highlighted in [9] when analyzing the quasiparticle decay in a
zero-dimensional quantum dot). Hopping is possible only within the same generation
(second term in (2.30)) or between consecutive ones (third term in (2.30)). In the latter
case, the hopping is unidirectional, and thus the hopping problem is non-Hermitian.

(a) (b)

Figure 2.1: Structure of the operator lattice before (a) and after (b) making the forward
approximation. Vertices correspond to Fock indices (I,J ); links are drawn between index
pairs, which are connected by the interaction U , that is, if the pairs appear simultaneously
in at least one of the Eqs. (2.30).

The connectivity of the lattice is a fluctuating variable, determined by the restrictions
in energy 2.18 and space (the states involved need to be in the same or in an adjacent
localization volume) of the matrix elements uαβ,γδ. A crucial feature for the following
analysis is the different scaling of the inter- and intra-generation connectivity. Hoppings
from a site (I,J ) in generation N to a site (I ′,J ′) in generation N +1 requires a particle
(or hole) in a state α to scatter to the closest energy level γ above or below α in the
single particle spectrum (due to (2.18)), while another particle-hole pair of adjacent
levels (β, δ) is created. The number of Fock states (I ′,J ′) accessible from (I,J ) via the
decay of a given quasiparticle α is thus of the order of ∼ 4Nloc, i.e. of the connectivity
(2.17). In contrast, hoppings from (I,J ) to a site of the same generation correspond to
processes where each member of a pair of particles (or holes) scatter to one of the two
closest energy levels: there are 4 possible final states to which a given pair can decay.

2.2.2 The forward approximation

If K is large, the number of decay processes of a single particle (or hole) α leading
to a site in the following generation is much larger than the one staying in the same
generation. This motivates the approximation of neglecting the hopping within the same
generation, i.e., of neglecting the second term in (2.30), that we refer to as the forward
approximation. Its consequences are the following:

(i) The structure of the lattice simplifies substantially, as some sites that are connected
to (α, α) only through inter-generation hoppings are eliminated (the corresponding
amplitudes in (2.15) approximated to zero). As pointed out in Sec. 2.1.2, the
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resulting simplified lattice, see Fig. 2.1, resembles a Bethe lattice due to the
exponential scaling ∼ KN of the number of sites with their generation N . However,
at variance with the Bethe lattice and similarly to the finite dimensional case, there
are plenty of loops.

(ii) Once the second term in (2.30) is dropped, the equations for the amplitudes on the
retained sites become recursive equations for increasing generations, with initial
condition A(α)

α,α = 1; this allows one to derive a closed expression for the amplitude
at the sites (I,J ) as a sum over all directed, self-avoiding paths from the root (α, α)
to the given site:

A(α)
I,J =

∑
directed paths
(α,α)→(I,J )

(−1)σpath

N−1∏
i=1

λ ηαiβi,γiδi δξ∑i
k=1 Eαkβk,γkδk

≡
∑

directed paths
(α,α)→(I,J )

ω
(N)
path, (2.32)

where the factor (−1)σpath takes into account the global fermionic sign associated
with the path, arising from the sign factors in (2.30). The expression (2.32) for
A(α)
I,J is of order λN−1, that is, the lowest possible order in λ for amplitudes of

operators involving 2N particle-hole indices, as at least N − 1 interactions are
needed to create the corresponding excitations. Thus, the forward approximation
amounts to setting to zero, for any N , any term in (2.15) that is of O(λN ) or
smaller.

(iii) Within this approximation, the convergence (2.16) is controlled by the generation
numberN . Indeed, since the amplitudesA(α)

I,J are of order λN−1 and the interaction
is local, the indices satisfy r(I,J ) ≤ Nξ: amplitudes involving single particle states
sufficiently far away from the localization center α must belong to sufficiently high
generations. Thus, (2.16) can be restated as

lim
N∗→∞

P

 ∑
N>N∗

∑
I6=J

|I|=N=|J |

∣∣∣A(α)
I,J

∣∣∣ < ε

 = 1 (2.33)

for arbitrary ε > 0. A sufficient condition for (2.33) to hold is that for some z < 1
and for N∗ sufficiently big:

P

∀N > N∗,
∑
I6=J

|I|=N=|J |

∣∣∣A(α)
I,J

∣∣∣ < zN−1

 = 1− ζ(N∗) (2.34)

with

lim
N∗→∞

ζ(N∗) = 0. (2.35)

This condition implies the quasilocality of the operators Iα within the forward
approximation, as it implies that the first appearance of operators cβ, c

†
β ’s in Iα,
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with |rβ − rα| ≈ Nξ and N � 1, is with high probability exponentially small in
N . The constant z = exp (1/ξmb) in (2.34) defines a length scale ξmb, such that
truncating the expansion at that scale yields operators that are conserved up to
exponentially small corrections: this scale is a localization length pertaining to the
interacting problem. The critical value at which the expansion diverges is recovered
for z → 1.

The forward approximation simplifies considerably the setting in which to address the
convergence of the perturbative expansion. However, it is not free of subtleties. In the
following subsections, we derive our main results within this approximate scheme, and
postpone to Secs. 2.2.6 and 2.4 the discussion on the caveats related to the approxima-
tions made, and on the possible effects produced whenever the neglected terms are taken
into account.

2.2.3 Solving the “problem of the factorials”

In this section, we address the problem of the loops formed by highly correlated paths
in the operator lattice obtained in the forward approximation. To better understand the
nature of the problem, it is useful to consider the diagrammatic representation of the
paths shown in Fig. 2.2.

Each path is of length N is associated to an ordered graph with N vertices, having two
main branches representing the decay of the operators cα and c†α of the initial operator
nα. Self-avoiding paths on the lattice translate into graphs having the geometry of a
tree, with a root and N nodes corresponding to the creation of particle-hole pairs. The
intermediate states of the graph correspond to the sites (I,J ) along the path in the
operator lattice, their energy being EI,J in (2.31). The order of the sites along the path
fixes the order of the interaction vertices in the graph. The problem of the factorials
arises as to each fixed set of N scattering processes, there exist a multiplicity of graphs
corresponding to the different order in which the scattering processes occur: each such
graph has a different amplitude, as the weights of the paths (2.32) depends on the order
in which the interactions occur due to the structure of the energy denominators.

This suggests to introduce a distinction between graphs and diagrams. Graphs differing
only in the ordering of vertices (while sharing the same geometry and labeling of the
legs) are grouped into diagrams d. An example of graphs belonging to the same diagram
is shown in Fig. 2.3: the three paths connecting the state (I,J ) = (α2β2β1α3, γ2γ1δ3γ3)
to the root (α, α) involve the same interaction matrix elements. The corresponding
amplitudes are obviously highly correlated among each others, as they involve the same
energies, and strong cancellations between them occur: in the example of Fig. 2.3, the
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Figure 2.2: Self-avoiding path in the operator lattice and associated ordered scattering
graph. The sites (I,J ) along the path correspond to the intermediate states of the graph,
indicated by dashed lines. Hoppings on the lattice correspond to vertices Uα1α2,β1β2 in
the graph. The energy EI,J of an intermediate state is the sum of the energy differences
Eα1α2,β1β2 = Eα1 +Eα2 −Eβ1 −Eβ2 associated with all preceding scatterings. The three
excitations emanating from a vertex are associated to the outgoing legs as follows: the
excitation with energy level adjacent to the incoming one is associated with the central
leg. The upper and lower leg correspond to the particle and the hole, respectively, of the
additionally created pair. The condition (2.18) requires them to have an energy difference
of the order of δξ.

sum of the energy denominators 5 satisfies

Σ ≡ 1

E1(E1 + E2)(E1 + E2 + E3)
+

1

E1(E1 + E3)(E1 + E2 + E3)

+
1

E3(E3 + E1)(E3 + E1 + E2)
=

1

E3

1

E1(E1 + E2)
,

(2.36)

where Ei is the energy difference between out- and in-going states at the vertex i. Thus,
the sum can be written as a single term ω̃Γ that is the product of two weights of the form
(2.32), describing the independent decay of the particle c†α and the hole cα respectively:

ω̃Γ

(λδξ)3
≡ η3

E3

η1η2

E1(E1 + E2)
, (2.37)

where ηi is the random variable associated the vertex i. This is the simplest example of a
cancellation between path weights: we refer to ω̃Γ as the weight of the ‘effective path’
associated to the diagram, and we denote it by Γ.

5The global sign of amplitudes of tree-like diagrams without loops does not depend on the order in which
the interactions act. This is because the associated four-fermion interaction terms mutually commute, which
implies that the signs arising from eventually bringing the operators into the normal order are the same for
all vertex orders. This justifies the fact that amplitudes are summed keeping fixed the same relative sign.
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(a) (b) (c)

Figure 2.3: Loops in the many-body lattice corresponding to different processes with the
same final state, and the corresponding ordered graphs. The graphs differ only in the
order in which the interactions U1, U2, U3 act. The weights of such paths are strongly
correlated: they are all proportional to the same product of matrix elements, U1U2U3, and
have highly correlated denominators. The sum over all these ordered graphs constitutes
a diagram.

Correlated paths exist for all diagrams with branchings (i.e., vertices where more than
one of the outgoing excitations undergo further scattering): the order of the subsequent
interactions on different branches can be permuted. This corresponds to different paths
on the lattice and different ordered graphs, respectively. We argue that resummations of
the kind (2.37) can always be performed, in such a way that to each diagram a number
of effective paths can be associated, that is much smaller than the number of paths (or
graphs) belonging to the diagram. We discuss this considering diagrams whose topology
has increasing degree of complexity.

Singly branched diagrams. It can easily be checked by induction that the factor-
ization (2.36) generalizes to an arbitrary number of interactions in diagrams whose
only branch is the one between the particle and holes c†α, cα. The sum over all path
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weights factorizes into the product of the amplitudes associated to the independent
decays of the particle c†α and the hole cα, as in (2.37).

Figure 2.4: Branched decay of a single particle.

Multiply branched diagrams. Let us now discuss further branchings in the sub-
diagrams describing the independent decays of the particle c†α and the hole cα.
Consider a multi-branched decay of the single particle c†α, as shown in Fig. 2.4.
There the particles γ and δ, which are produced in the first scattering, decay further
through n vertices Ui=1,...,n, and the vertex Ũ , respectively. The possible orderings
of this diagram correspond to n+ 1 correlated paths, which differ by the relative
position of the vertex Ũ with respect to the Ui. Their sum,

Σ′ =
1

E0(E0 + Ẽ)(E0 + Ẽ + E1) · · · (E0 + Ẽ + · · ·+ En)
+

1

E0(E0 + E1)(E0 + E1 + Ẽ) · · · (E0 + E1 · · ·+ En)
+ · · ·+

1

E0(E0 + E1)(E0 + E1 + E2) · · · (E0 + E1 · · ·+ Ẽ)
,

(2.38)

does not simply factorize, but it can nevertheless be written in compact form through
an integral representation,

Σ′ = lim
ε→0

∫
dω1dω2δ (ω1 + ω2 − E0)

ω−1 (ω−1 + Ẽ) · ω−2 (ω−2 + E1) · · · (ω−2 + E1 + · · ·+ En)
, (2.39)

where ω−i = ωi − iε. Indeed, the sum Σ′ (multiplied by the matrix elements of the
correspondent vertices) must be equal to the retarded Green function associated to
the independent, parallel decay of the particle γ and the hole δ, computed in the
forward scattering approximation and at energy E0. For loop-free graphs like the
one of Fig. 2.4, the decay processes of the particle γ and the hole δ are independent.
In the time domain, the Green function of their joint decay is the product of the
individual Green functions, which leads to the convolution (2.39) in frequency
space.
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The expression (2.39) for a branched diagram is a random variable, whose probabil-
ity distribution is hard to analyze. However, the analytic structure of the integrand
can be exploited to rewrite Σ′ as a sum over a much smaller number of terms than
the number of orderings in Eq. (2.38). After performing the integral over ω2 in
Eq. (2.39), we find a number of poles in the complex plane of ω1. Using the residue
theorem, we can write (2.39) as the sum over residues of the poles in the half plane,
which contains less poles. In the particular example considered, closing the contour
on the upper half plane yields the algebraic identity:

Σ′ =
1

Ẽ
1

E0(E0 + E1)(E0 + E1 + E2) · · · (E0 + E1 + · · ·+ En)
−

1

Ẽ
1

(E0 + Ẽ)(E0 + Ẽ + E1)(E0 + Ẽ + E1 + E2) · · · (E0 + Ẽ + E1 + · · ·+ En)
.

(2.40)

For the considered sub-diagram, the sum over all the n+ 1 orderings of vertices is
reduced to the sum of only two ‘effective path’ weights, whose denominators have a
similar structure as the denominators in the original path weight (2.32).

Figure 2.5: A diagram with multiple branchings.

General branched diagrams. A convolution formula analogous to Eq. (2.39) can
be written for any branched diagram: to each branching one associates an integral
of the form (2.39) with one auxiliary frequency per decaying branch, as well as an
energy conserving δ-function for the vertex. Then one eliminates the δ-functions by
integrating over the frequency variable, that occurs most often in the denominators.
Using the residue theorem, the remaining integrals can be carried out, and the sum
over all orderings of a diagram with fixed geometry can be expressed as a much
smaller sum of weights of effective paths.

As a further example, we give the explicit expression for the effective path weights
associated to diagrams with the geometry of Fig. 2.5. For fixed indices on all
segments, there are 105 different orderings of the interactions.a Their sum has the
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integral representation:

I0 ({U}) = lim
ε→0

∫
dω̃1dω̃2 δ (ω̃1 + ω̃2 − E0)

ω̃−1 (ω̃−1 + Ẽ3)ω̃−2 (ω̃−2 + E1)
I1 (ω = ω̃2 + E1 + E2) , (2.41)

where ω−i ≡ ωi − iε, and I1 (ω) is the integral representation of the sum of all the
weights of the subdiagram in the dashed frame, with incoming energy ω:

I1 (ω) =

∫
dω1dω2dω3 δ (ω1 + ω2 + ω3 − ω)

ω−1 (ω−1 + Ẽ2)ω−2 (ω−2 + Ẽ1)ω−3 (ω−3 + E3)(ω−3 + E3 + E4)
. (2.42)

By means of the residue theorem, I0 can be rewritten as the sum over only 8 effective
path weights:

I0 ({U}) =
1

Ẽ3

1

E0(E0 + E1)
I1(E0 + E1 + E1)

− 1

Ẽ3

1

(Ẽ3 + E0)(Ẽ3 + E0 + E1)
I1(Ẽ3 + E0 + E1 + E1)

(2.43)

with:

I1(ω) =
1

Ẽ1Ẽ2

[
f(ω)− f(ω + Ẽ1)− f(ω + Ẽ2) + f(ω + Ẽ1 + Ẽ2)

]
(2.44)

and:

f(X) =
1

X(X + E3)(X + E3 + E4)
. (2.45)

Note that as a function of the Ei and Ẽi, I0 has poles only due to denominators which
involve the incoming energy E0, while I0 remains regular as any of the Ẽi → 0, due
to cancellations among different terms.

aThe interactions in the red dashed frame can be ordered in 15 different ways, for each of which
the interaction Ũ3 can be placed in 7 different positions.

This reasoning illustrates how to systematically perform the resummation of correlated
paths, generating a set of effective paths for each diagram d. Denoting with DI,J the set
of all diagrams d with final state I,J , and with P(d) the set of effective path weights ω̃Γ

associated to each d, we may write:

A(α)
I,J =

∑
d∈DI,J

 ∑
Γ∈P(d)

ω̃Γ

 ≡ ∑
d∈DI,J

S(d). (2.46)

The fact that the procedure described in this section suffices to solve the problem of the
factorials, meaning that the factorially-large number of self-avoiding paths reduces to a
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number of effective paths |P(d)| that is only exponential in N , is shown to be true in Sec.
2.2.5.

We now come to the solution of the technical issues listed in Sec. 2.1.2, which is necessary
in order to estimate the probability distribution of (2.46) for the computation (2.34).
This is done in the following two sections.

2.2.4 Issue 1: Large deviations of effective paths

In this section, we compute the large deviations of the path weights, asymptotically
in their length N . As we shall argue in Sec. 2.2.6, the large deviations of operator
amplitudes (2.46) are essentially determined by the large deviations of effective path
weights. The weight of any effective path is the products of two terms, describing the
decay of c†α and cα, respectively. In each of those terms, (cf. (2.40) and (2.43)), the
functional dependence on the Ei is similar to that in the original path weights (2.32).
We thus compute the large deviations of the latter, and subsequently argue that general
effective paths behave essentially identically.

Because of the energy restrictions (2.18) the energy differences Eαβ,γδ/δξ are random
variables of order O(1). For simplicity, we take them as independent Gaussian random
variables with zero mean and unit variance. The denominators in (2.32) are partial sums
of such energies, and we may write:

|ωpath| =
N−1∏
i=1

λ|ηαiβi,γiδi |
|si|

, (2.47)

where si = (E1 + · · · + Ei)/δξ, with Ei ≡ Eαiβi,γiδi . Since rare events occur because
small denominators are produced, we characterize the distribution of the product of
denominators. The numerator behaves as ∼ (ληtyp)N−1, with ηtyp = exp[〈log |η|〉] = 1/e,
and we neglect the Gaussian fluctuations of its logarithm.

The distribution function PN (y) of

YN ≡ −
N∑
i=1

log |si| (2.48)

can be obtained from its generating function,

GN (k) ≡ E
[
e−kYN

]
, (2.49)

by inverse Laplace transform,

PN (y) =
1

2πi

∫
B
eykGN (k)dk, (2.50)

where B is the Bromwich path in the complex k-plane. In the present case, the relevant y
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scales linearly with N , and thus we define ỹ = y/N , and

PN (Nỹ) =
1

2πi

∫
B
eNφNdk, (2.51)

where the function

φN (ỹ, k) = ỹk +
logGN (k)

N

N→∞→ φ(ỹ, k) (2.52)

has a well-defined limit, φ(ỹ, k), for large N . In the following, we compute (2.51) with a
saddle point calculation, assuming N � 1.

As we derive in Appendix 2.B, it holds:

φ(ỹ, k) = ỹk + log

[
Γ

(
k + 1

2

)
+
√

2πδλ(k)

]
− 1

2
log 2π. (2.53)

In the saddle point calculation, the contour in (2.51) has to be deformed to pass parallel
to the imaginary axis through k∗ = k∗(ỹ), which satisfies:

ỹ = − d

dk

[
lim
N→∞

logGN (k)

N

]
k=k∗(ỹ)

= − d

dk

{
log

[
Γ

(
1 + k

2

)
+
√

2πδλ(k)

]}
k=k∗(ỹ)

= −

1

2
ψ(0)

(
1 + k

2

)[
1 +

√
2πδλ(k)

Γ
(

1+k
2

) ]−1

+

√
2πδλ′(k)

Γ
(

1+k
2

)
+
√

2πδλ(k)


k=k∗(ỹ)

,

(2.54)

where ψ(0)(x) ≡ d log[Γ(x)]/dx.

As we shall see in Sec. 2.2.6, in the case of parametrically small interaction strength λ
(which is relevant for large connectivity K), we can restrict our attention to ỹ � 1. For
large values of ỹ, the saddle point tends to k∗ → −1. To isolate the singularity in k = −1
we use the Laurent expansion of ψ(0)(x) around x = 0:

ψ(0)

(
1 + k

2

)
= − 2

k + 1
− γ +

π2

12
(k + 1) + O((k + 1)3), (2.55)

where γ is the Euler constant. This allows us to recast (2.54) in the following form:

ỹ =
1

k∗ + 1
+Q(k∗ + 1). (2.56)

Here, Q(·) is an analytic function with expansion:

Q(x) =
γ

2
− π2

18
x+ O(x2). (2.57)
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This yields the equation

1 + k∗ =
1

ỹ

(
1− Q(k∗ + 1)

ỹ

)−1

, (2.58)

which can be solved by iteration as an expansion in 1/ỹ:

1 + k∗(ỹ) =
1

ỹ
+
γ

2

1

ỹ2
+

(
γ2

4
− π2

18

)
1

ỹ3
+ O

(
1

ỹ4

)
. (2.59)

Expanding (2.53) in powers of k + 1 and substituting (2.59) we find:

φ(ỹ, k∗(ỹ)) =− ỹ + log ỹ − 1

2
log
( π

2e2

)
− γ

2ỹ
+

1

8

(
5π2

18
− γ2

)
1

ỹ2
+ O

(
1

ỹ3

)
.

(2.60)

Finally, within the saddle point approximation to Eq. (2.50), for ỹ � 1 we obtain

PN

(
− log

[
N∏
i=1

1

|si|

]
= Nỹ

)
= C(ỹ, N)

(
2e√
2π

)N
ỹNe−NF(ỹ)

[
1 +

1

N

]
, (2.61)

where

F(ỹ) = ỹ +
γ

2ỹ
− 1

8

(
5π2

18
− γ2

)
1

ỹ2
+ O

(
1

ỹ3

)
. (2.62)

The prefactor

C(ỹ, N) =

(
1

2πNφ
′′
N (k∗(ỹ))

) 1
2 c(k∗(ỹ))

λmax(k∗(ỹ))
(2.63)

yields only logarithmic corrections to the exponent.

When restricting to the linear term in (2.62), the large deviation statistics for the corre-
lated denominators coincides with that of independent, identically distributed Gaussian
energy denominators. Indeed, from Eqs. (2.127) and (2.128) it follows that to leading
order in k+1 the exponential growth of GN is almost equal to that of the generating func-

tion gN (k) =
[
2
k+1

2 Γ
(
k+1

2

)
/
√

2π
]N

associated with products of N independent Gaussian
denominators with unit variance. For ỹ � 1, the tail of the distribution is determined by
the residue of the pole of the generation function at k = −1, which is identical in the two
cases. Repeating the above derivation of large deviations for independent denominators
with generating function gN (k), one finds that it differs from (2.61) at order O (1/ỹ):
the tails for correlated denominators are suppressed by a factor exp

(
−N log 2

2
1
ỹ

)
. The

correction δλ(k) in (2.129) contributes to (2.62) only at order O
(
1/ỹ2

)
.

Physically, this result can be understood as follows: by restricting to ỹ � 1, we are
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concentrating on very rare realizations of YN . Those are insensitive to the details in the

structure of the denominators. Indeed, atypically big values of objects like
(∏N

i=1 si

)−1

arise from restraining the random walk (s1, · · · , sN ) to the vicinity of the origin. This
boils down to computing the probability that si is small conditioned on the fact that
si−1 was small. To leading order in the typical smallness of such denominators, one
obtains the same result as by minimizing N denominators independently. The leading
correction with respect to the case of iid denominators consists in a small suppression of
the tail, since it is slightly less probable to encounter small denominators, when they are
correlated.

The above reasoning can be extended to more general weights ω̃Γ, associated with
effective paths. Indeed, the corresponding denominators are still products of single
energies or partial sums (see Eq. (2.40) or Eq. (2.43). In the limit of very large deviations
(ỹ � 1) they all share the same tail distribution (2.61), the only relevant parameter
being the total number N of denominators. Therefore, approximating the numerator in
ω̃Γ with its typical value (ληtyp)N and using (2.61), we finally obtain:

P
(

log |ω̃Γ|
N

= x̃+ log ληtyp

)
≈ C(x̃, N)

(
2e√
2π

)N
x̃Ne−NF(x̃), (2.64)

with F given in (2.62).

2.2.5 Issue 2: how many terms are we summing on?

In this section, we estimate the total number of effective paths of length N , which we
denote with:

NN =
∑
I6=J

|I|=N=|J |

∑
d∈DI,J

P(d). (2.65)

We do this in two steps: as a first step, we estimate the number of diagrams at a given
order N , that we denote with Ndiag. Each diagram d is associated to a certain number
|P(d)| of effective paths, which depends on the structure of the diagram. In the second
step, we compute an upper bound on this number, that we denote with |P|.

Counting the number of diagrams with a given final state (I,J ) = (α1 · · ·αN , β1 · · ·βN )
is complicated due to the locality, which imposes constraints on the geometry of the
diagrams. Indeed, the localization centers rαi , rβi of the single particle indices in the final
state (I,J ) = (α1 · · ·αN , β1 · · ·βN ) are distributed over a certain number of localization
volumina of size ξ around rα, with a given number of single particle indices per localiza-
tion volume. Due to the energy restrictions (2.18), particles and holes belonging to the
same localization volume are organized in pairs: members of a pair are produced in the
same scattering process, and have an energy difference of order δξ. Only particle-hole
pairs in nearby localization volumina can be involved in the same interaction vertex:
this is what imposes the constraints on the geometry. For example, consider the case of
spatial dimension d = 1 and consider states (I,J ) having only one particle-hole pair per
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localization length: necessarily, they must be associated to diagrams with no branchings
in the decays of c†α and cα, since the particle-hole pairs must be created in a fixed order
dictated by their spatial sequence, and thus no permutation is possible. In contrast, final
states with several pairs per localization length can be reached by a variety of diagrams.

We estimate Ndiag by computing a lower and an upper bound on it. The lower bound
is obtained focusing on a subclass of diagrams, corresponding to scattering processes
with a “necklace structure”, in which the particle-hole pairs are created in a sequence
of n groups of mi=1,...,n pairs, each group belonging to a single localization length. We
estimate the number of diagrams with this structure, that we denote with Nneck

diag . The
counting is similar to the one in Ref. [72]: however, in this calculation we include
diagrams corresponding to final states with a non-uniform density of particle and hole
indices per localization length, which have a larger abundance. An upper bound on Ndiag
is easily obtained dropping any constraint on the geometry due to locality. Combining
these results, we obtain the estimate given in Eqs. (2.81), (2.82).

A. How many diagrams? A lower bound

This section is splitted into two parts: in the first one, we consider a fixed sequence of
mi=1,...,n and we count all possible diagram with necklace structure characterized by this
sequence. In the second part, we sum over all possible sequences mi=1,...,n in order to get
the total number of necklace diagrams.

Constructing necklace diagrams. Consider a sequence of mi=1,...,n. Each mi is bounded
by the maximal number of particle-hole pairs per localization volume (Nloc = K/4), and∑n

i=1mi = N . Due to locality, pairs belonging to the i−th and (i+ 1)−th group belong
to neighboring localization volumina in real space; pairs belonging to different groups
i, j 6= {i− 1, i+ 1} might belong to the same localization volume. We construct the
possible diagrams corresponding to a fixed sequence mi=1,...,n in two steps: first, for every
group i we build all possible sub-diagrams with final indices corresponding to the indices
of the mi pairs, as illustrated in Fig. 2.6. Then, we connect sub-diagrams of neighboring
groups by a single scattering vertex.

A central ingredient for this step is the number of all possible geometries of diagrams
with m interactions in a given localization volume, see Fig. 2.6, that we denote by Tm
and determine in Appendix 2.C, the result being:

Tn =
3

3
2

+3n

π

Γ
(
n+ 2

3

)
Γ
(
n+ 4

3

)
Γ (2n+ 3)

∼ 3

4

√
3

π

1

n
3
2

(
27

4

)n
. (2.66)

Following the reasonings explained in Fig. 2.6, we find the number of necklace diagrams
associated with fixed groups of mi pairs to be

nneck =

n∏
i=1

[mi2
mimi!Tmi ] . (2.67)
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(a) The m1 pairs of the first group belong to the localiza-
tion volume containing the localization center rα, with
one pair (α̃β̃ in the Figure) with energies close to εα. The
remaining m1 pairs (m1−1 in the same volume and one
in the adjacent volume) are produced in m1 scatterings
organized in diagrams with all possible geometries (Tm1

of them). For each geometry, a factor m1 comes from the
choice of the vertex (red in the Figure) that produces a
pair in the subsequent localization volume.

(b) The indices of the remaining m1 − 1 pairs in the
localization volume are assigned to the legs. This fixes
all labels up to the internal legs. For the first localiza-
tion volume, the possible internal indices satisfying the
energy restrictions are 2m1−2, α being fixed.

(c) For a fixed geometry and a set of final labels, the per-
mutation of assignments of labels to the legs gives rise to
an independent diagram with the same final state, since
the matrix elements of the interactions change. There
are (m1 − 1)! such permutations (the pair α̃β̃ is fixed).
When legs are permuted, the corresponding internal in-
dices must change as well in order to satisfy the energy
restriction of the interactions (in the Figure, α̃(i)

3 → α̃
(i)
5

and β̃(i)
3 → β̃

(i)
5 ).

(d) Diagrams corresponding to the decay processes in
the adjacent localization volume are attached to a pair of
legs selected in (a). Again, m2 interactions occur on two
branches, in a total of Tm2 possible distinct geometries.
There are m2 choices to select the pair of legs to which
to attach the next subdiagram. For any of the m2! label-
ings of the remaining external legs, there are two choices
for each internal index, corresponding to whether the in-
coming particle scatters up or down in energy. In total
there are m22m2m2!Tm2 different diagrams associated
to this group of pairs. The same counting holds true for
the subsequent groups.

Figure 2.6: Construction of the diagrams representing the decay of groups of mi particle-
hole pairs, where members of the same group belong to the same localization volume. The
diagrams are constructed by connecting sub-diagrams describing the decay of each single
group of pairs. We restrict the combinatorics to only one scattering vertex connecting the
sub-diagrams of different groups.
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The origin of the various factors is explained in detail in Fig. 2.6: the factor mi counts
the number of pairs which are created subsequently to the first pair entering the volume
associated to the group i. One of those mi pairs belongs to the adjacent localization
volume and creates the subsequent cascade of pair creations there. The second factor
describes the choice of two levels (the level closest in energy above or below) to which
an incoming quasiparticle may scatter at a vertex. The factorial term comes from the
choice of assigning the mi pairs to the final legs of a given tree diagram in the localization
volume of group i.

We now count the number of possible diagrams having this structure of mi. Consider first
the case in which only a single group i of pairs occupies a given localization volume. The
number of choices of {mi} particle-hole pairs is given by

ns({mi},K) ≡
n∏
i=1

2mi
(
Nloc −mi

mi

)
=

n∏
i=1

[
2mi
(K/4−mi

mi

)]
. (2.68)

Indeed, a configuration of mi pairs of (disjoint) adjacent levels, and the remaining
Nloc − 2mi untouched levels in the same localization volume form a set of Nloc − mi

objects, out of which mi are pairs. This explains the binomial factor. For each pair, one
can choose how to assign the two levels to particle and hole, respectively. This yields the
factor 2mi .

As we will see below, the relevant mi are of order O(1)� K. We therefore approximate:(K/4−mi

mi

)
≈ (K/4)mi

mi!
. (2.69)

Note that the necklace structure will in general fold back and forth in real space, such that
several groups will get to lie in the same volume. Nevertheless, the above approximation
remains good as long as the total number of pairs created in a given localization volume
is significantly smaller than K.

Counting necklace diagrams. Combining Eqs. (2.67-2.69), the total number of necklace
diagrams is:

Nneck
diag ≈

∑
{mi}|

∑
imi=N

1

2

n∏
i=1

[2KmimiTmi ] . (2.70)

The factors of 2 arise due to freedom of each group to scatter to the left or the right of
the preceding group as long as there is still significant phase space in the corresponding
localization volumina. The correction due to the finiteness of K � 1 is small and was
thus neglected.

We now determine the distribution of group sizes {mi} which dominates the sum (2.70),
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writing

Nneck
diag ≈

1

2

∑
{mi}|

∑
imi=N

∏
i

2KmimiTmi =
KN
2

∑
{mi}|

∑
imi=N

∏
i

2miTmi

=
KN
2

∑
{nm}|

∑
mmnm=N

( ∑
m nm

n1, n2, ..., nm

)∏
m

(2mTm)nm ,

(2.71)

where nm =
∑

i δm,mi is the number of groups i with m pairs. For the relevant m’s,
nm ∼ N � 1; therefore, at large N the sum (2.71) is dominated by the saddle point over
the nm. Imposing the constraint

∑
mmnm = N with a Lagrange multiplier µ yields the

saddle point equations:

µm = − log(nm) + log(
∑
m

nm) + log(2mTm), (2.72)

and thus

nm∑
m′ nm′

= 2mTme−µm. (2.73)

The Lagrange multiplier µ is fixed by the constraint:

1 =
∑
m

2mTme−µm = −2
d

dµ
[T (x = e−µ)], (2.74)

with T (x) =
∑

m Tmxm = [T (x)]2, where T (x) is defined in (2.135). The solution of
Eq. (2.74) is:

e−µ = 0.0941. (2.75)

The saddle point solution can thus be written as

nm
N

= AmTme−µm, (2.76)

where 1/A = d2/dµ2[T (x = e−µ)2] = 1/0.778, as follows from the constraint
∑

mmnm =
N . The resulting values for nm/N are shown in Fig. 2.7a. The probability that a given
pair is created in a scattering process involving a total of m pairs in the same localization
volume is plotted in Fig. 2.7b. We see that most pairs are created together with a few
more pairs within the same localization volume.

Plugging (2.76) into the saddle point for Nneck
diag , we find the number of diagrams to grow

like

Nneck
diag ≈ (Keµ)N ≈ (10.6K)N . (2.77)
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Figure 2.7: The plot (a) shows the distribution of the number nm/N of groups of
m particle-hole pairs in necklace diagrams dominating NN . The plot (b) shows the
probability mnm/N that a given pair belongs to a group containing m pairs.

A comment: the spatial structure of the dominating processes. Following the above reason-
ing we find that in the restricted set of necklace diagrams the optimal distribution of
group sizes mi’s is peaked at values of order O(1), but still clearly larger than one. Upon
folding of the necklace, the number of pairs per localization volume will become even
more significantly larger than 1. Thus we see that multiple scattering processes within a
localization volume significantly enhance the delocalization tendency. This shows that the
many-body problem is genuinely different from an effective one-body problem, in which
a simple excitation would propagate nearly ballistically, by shedding one particle-hole
excitation in every localization volume. This might have implications for localization in
higher dimensions (if any), as it suggests that the necklace-type diagrams are diffusing
back and forth a lot. This contrasts with the model in [20], where the hopping strength
between adjacent volumina was assumed to be parametrically smaller than λ, which
favored the particle-hole creation cascade to fully explore a localization volume before
moving on to the next volume. The latter led to conjecture a critical exponent for the
localization length in higher dimensions by relating the decay processes of single particle
excitations to self-avoiding random walks. This scenario hardly holds in our model, as
the optimal processes are not of this kind.

B. How many diagrams? An upper bound

An upper bound on Ndiag can be easily obtained realizing that all possible diagrams
consist in all geometrically possible labellings of trees of size N . The number of trees
grows as (27/4)N . For each label one has roughly 3K possibilities, as the pair must lie in
a localization volume adjacent to or identical with the one of the pair preceding it on the
tree. This yields the simple upper bound

Ndiag < (3 · 27

4
K)N ≈ (20.25K)N , (2.78)

which yields a growth factor which is only about a factor of 2 bigger than the much more
conservative estimate (2.77).
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Figure 2.8: Diagram with colored branches. The branches with maximal and minimal
(equal to zero) number of interactions along them are colored in red and gray, respectively.
In this case, the three branches that remain after eliminating the red one contribute
2 residua each. The total number of effective paths is obtained by multiplying these
numbers, which gives 23 = 8.

C. How many effective paths for each diagram?

The minimal number of effective paths associated to a diagram d equals to the product of
the number of residua of any of the performed integrals in the representation (2.39) and
analogous. This number can be determined from the structure of the diagram using the
following rules:

1. eliminate the final leaves which are not associated to auxiliary frequencies, since
they do not contribute with poles in the integral representation (Fig. 2.8 represents
the diagram of Fig. 2.5, with these eliminated branches colored in gray);

2. determine the directed path (branch) with the maximal number of interactions
along it (red one in Fig. 2.8), and eliminate the auxiliary frequencies along this
path integrating the corresponding δ-functions;

3. all remaining branches contribute one more residua than interactions along the
branch.

To obtain an upper bound on |P(d)|, we compute the minimal number of effective
paths associated to diagrams dmax with a maximally branched geometry, see Fig. 2.9.
The maximally branched diagram consists of two regular rooted trees with L(N) ≡
log(N + 1)/log 3 generations. Since the weights of the two sub-diagrams factorize,
we need to count only the effective paths associated to one of them, and square this
number. We therefore consider one sub-diagram, and organize its branches according
to the number of interactions along it (in Fig. 2.9b, branches with the same number of
interactions have the same color). The number l of interactions along a branch ranges
from 1 to L(N)− 1. There are 2 · 3L(N)−1−l branches with l interactions; each of them
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contributes with (l + 1) residua, yielding a total number of

L(N)−1∏
l=1

(l + 1)2·3L(N)−1−l
= exp

(
3L(N)

∞∑
k=1

2 log k

3k
− 2

3

∞∑
k=0

log (k + L(N) + 1)

3k

)
(2.79)

terms. Using that 2
∑∞

k=1 3−k log (k) = 0.29, one finds that the minimal number of
effective paths for diagrams with this geometry, which is the square of the above, scales
as:

|P| = exp [0.58N + o(N)] . (2.80)

(a) (b)

Figure 2.9: (a) Diagram with the maximal possible number of branchings. (b) Branches
with the same number of interactions are drawn with the same color.

D. Total number of effective paths of a given length

The total number of effective paths NN is the sum over all diagrams with N interactions
of the number of effective paths associated to each diagram, |P(d)|. Approximating the
latter with (2.80) and using eα ≈ e0.58 = 1.79 together with (2.77) and (2.78), we find

NN ≈ (C K)N , (2.81)

with

18.97 < C < 36.25. (2.82)

2.2.6 The regime of stability of the perturbative construction

With the elements given in Secs. 2.2.4 and 2.2.5, we are in the position to estimate
the left hand side of (2.34). We begin by arguing that, among all the effective paths in
(2.46), only very few ones dominate the sum. Based on this hypothesis, we estimate the
convergence radius of the perturbation theory for operator. Finally, we comment of the
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weak convergence of the operator expansion.

A. Domination by rare, large effective paths

We argue that (2.46) is a random variable with fat tail, dominated by the single effective
path with maximal weight contributing to it,

A(α)
I,J ≈ max

d∈DI,J

(
max

Γ∈P(d)
ω̃Γ

)
≈ max

Γ:(α,α)→(I,J )
ω̃Γ. (2.83)

It follows from (2.64) that the ω̃Γ are random variables with fat-tailed distributions. The
effective paths associated to a diagram d ∈ DI,J all involve the same set of energies
in their denominators, and are thus correlated. We expect however that the tail of the
distribution of their sum, S(d) in (2.46), is similar to the tail distribution of a single
effective path, since in the case of a large deviation, S(d) is very likely to be dominated
by the effective path with the biggest weight.

Indeed, consider a rare set of energies Ei, which produces an atypically large value of
S(d). There is typically one single effective path for which all denominators become
simultaneously small, while the combination of energies in the denominators of other
effective paths are very likely to be suboptimal for a fraction of the denominators.
Therefore, with high probability, S(d) will approximately be equal to the maximum
over all effective paths weights: S(d) ≈ maxΓ∈P(d) ω̃Γ. The set of energies Ei that
optimize distinct effective paths are typically different, and thus these rare events can be
approximated as being independent from each other. Hence, the tail of the distribution
of S(d) is enhanced with respect to the tail of a single path weight by a factor |P(d)|.

This reasoning requires a word of caution: inspecting the explicit examples of Eq. (2.40)
or Eq. (2.43), one can see that there exist energy realizations for which cancellations
occur between effective paths with significant weight. This happens when the single path
weights are individually big, but Ẽ is much smaller than all the other energy variables
Ei, which leads to a cancellation between effective paths. However, such configurations
require an atypically small Ẽ and do not occur with significant probability. Therefore the
suppression of the tail distribution due to such effects is hardly relevant.

Correlations between effective path weights of different diagrams are even weaker than
those above, since they share at most a fraction of all Ei. Therefore we may approximate
rare deviations of S(d) and S(d′) as independent if d 6= d′. Given that the S(d) are
themselves fat-tailed random variables, the sum over diagrams is dominated by the
largest term, and so is (2.46). As a consequence, we obtain the approximation

P (A(α)
I,J = a) ≈ |DI,J |P(d)P (ω̃Γ = a) ≈ NNP (ω̃Γ = a), (2.84)

where P(d) is an average number of effective paths contributing to a diagram, which we
replaced with |P| computed in (2.80).
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B. Putting everything together: the convergence radius

Similarly to the effective path weights of different diagrams, also the amplitudes A(α)
I,J

associated to different sites I,J are weakly correlated, and we treat them as independent
random variables. Let us now consider the probability in (2.34):

P

∀N > N∗,
∑
I6=J

|I|=N+1=|J |

∣∣∣A(α)
I,J

∣∣∣ < zN

 ≈ ∏
N>N∗

P

 ∑
I6=J

|I|=N+1=|J |

∣∣∣A(α)
I,J

∣∣∣ < zN

 .

(2.85)

Here we approximated the probability to satisfy the condition at each generation to be
independent from the previous generations. As follows from (2.84) and from the fact that
the effective paths ω̃Γ have fat tails, the amplitudes A(α)

I,J have themselves a fat-tailed
distribution. Their sum is therefore dominated by the maximal amplitude, and each
factor on the right hand side (2.85) can be computed as:

P

 max
I6=J

|I|=N+1=|J |

|A(α)
I,J | < zN

 =
∏
I6=J

|I|=N+1=|J |

(
1− P

(
|A(α)
I,J | > zN

))

≈ exp

− ∑
I6=J

|I|=N+1=|J |

P
(
|A(α)
I,J | > zN

) .

(2.86)

Using (2.84), the exponent in (2.86) is re-written as:∑
I6=J

|I|=N+1=|J |

P
(∣∣∣A(α)

I,J

∣∣∣ > zN
)
≈ NNP

(
|ω̃Γ| > zN

)
. (2.87)

In (2.87), the competition between two exponential terms is recovered. The probability
in (2.87) is a large deviation probability: indeed, the weights ω̃Γ of effective paths are of
order O

(
λN
)
: in order for ω̃Γ to be bigger than zN (with z arbitrarily close to 1), this

decay factor must be compensated by an atypical smallness of the energy denominators.
Using (2.64), we estimate:

P
(
|ω̃Γ| > zN

)
≈
(

2e√
2π

)N ∫ ∞
log
(

z
ληtyp

)C(x̃, N)x̃Ne−NF(x̃)dx̃. (2.88)

Note that the large deviation result applies since x̃ ≥ log
(

z
ληtyp

)
� 1. Approximating the

integral with the value of the integrand at the extremum, setting z = 1 and neglecting
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sub-exponential terms in N we obtain:

P (|ω̃Γ| > 1) ≈
(

2e√
2π

log

(
1

ληtyp

))N
e
−N

[
log
(

1
ληtyp

)
+O
(

1/ log
(

1
ληtyp

))]
. (2.89)

Substitution of (2.89) and (2.81) into (2.87) yields:∑
I6=J

|I|=N+1=|J |

P
(∣∣∣A(α)

I,J

∣∣∣ > 1
)
' exp [N log G(λ,K) + o(N)] , (2.90)

with

G(λ,K) =
2eCηtyp√

2π
λK log

(
1

ληtyp

)
. (2.91)

Taking into account (2.85) and (2.86), we finally obtain:

P

∀N > N∗,
∑
I6=J

|I|=N+1=|J |

∣∣∣A(α)
I,J

∣∣∣ < 1

 =
∏

N>N∗

exp
[
−eN log G(λ,K)+o(N)

]
. (2.92)

If G(λ,K) < 1, then, for N∗ sufficiently big, each of the factors in (2.92) is arbitrarily
close to 1. Therefore, their product converges to 1 in the limit N∗ →∞ (see also [168]
for a similar reasoning). This allows us to conclude that, for all values of λ for which
G(λ,K) < 1 holds, (2.34) holds, too, and the series in operator space (2.15) converges to
a quasi-local operator. In this regime, the excitation of the single particle level α, localized
at rα, is very unlikely to create a distant disturbance at rβ with large L = |rβ − rα|, its
probability tending to zero exponentially as L→∞: there is no diffusion at small λ. The
critical value for λ is given by G(λc,K) = 1. For large K and using ηtyp = 1/e, we get:

λc =

√
2π

C 2e

1

K logK . (2.93)

For λ < λc, the operator series (2.15) converges in norm to an operator that is quasilocal.
The delocalization threshold (2.93) looks identical to the critical ratio between hopping
and disorder strength for a single particle problem on a Bethe lattice with effective
connectivity Keff = (C/

√
2π)K, which is a significantly larger than the connectivity

associated with each vertex, K. This reflects the fact that in the many-body problem the
same final state can be reached with many different decay processes. The results are
nevertheless similar, because both problems are dominated by very few resonant paths,
whereby the large local connectivity in the many-body problem ensures that different
resonant paths are likely to be uncorrelated, even if they lead to the same final state.
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C. Acting on the Hilbert space: Fermi-blocking and temperature dependence

The above construction is carried on at the operator level: no assumption about the
occupation of the single-particle energy levels or about the position of the Fermi level EF
is made. The convergence of the series in operator norm entails localization in whatever
state the system is. When acting on some many-body states, however, the constructed
operators get annihilated when attempting to create particles on occupied states or holes
on already empty states. This translates into a reduction of the phase space associated
to the decay processes, which in turns implies that the connectivity K is reduced to
an effective connectivity Keff , whose typical value depends both on the average energy
density of the states Ea and the average filling fraction of the band. This might increase
the convergence of the perturbative expansion.

In an infinite temperature state, and at a filling fraction νF each particle-hole creation
operator has a chance to annihilate the state with probability 1 − νF (1 − νF ), or, in
other words, only a fraction of [νF (1 − νF )]N of all operators will not annihilate a
typical infinite temperature state. This reduces the connectivity to Keff ∼ νF (1− νF )K.
Similar considerations apply to finite temperature: it is not difficult to see that if we
use typical values for occupation numbers as given by the Fermi distribution (without
assuming the underlying states to be thermal), repeating the above considerations at
finite temperature T � EF we obtain Keff ∼ T/δξ. Substitution into (2.93) gives an
estimate of the boundary of stability of the MBL phase that is consistent with the one in
[20] (and its extension to infinite temperature [16]). This is not surprising, as the class of
diagrams that are statistically analyzed is the same: the paths jumping from generation
to generation in the operator lattice, selected by the forward approximation, correspond
to many-body processes where at each vertex an additional particle-hole pair is created.
The same type of processes are retained within the imSCBA, see Sec. 1.4.5. Thus, the
same estimate for the critical temperature is recovered. The reason why this result is not
in contradiction with the scenario discussed in Sec. 1.5.1 is that the above considerations
hold true only within the forward approximation, as discussed in Sec. 2.4.

D. A critical assessment of the approximations made

The explicit estimate (2.93) is the result of a series of approximate steps; let us briefly
comment on the legitimacy of the approximations made. The main simplification that we
have performed consists in neglecting the second term of Eq. (2.30). This is a controlled
approximation whenever the operator sites (I,J ) have a density of Fock indices per
localization volume that is much smaller than the maximally possible ∼ K/ξd. However,
some subtleties arise at sufficiently high orders in perturbation theory, where operators
with a high density of indices per localization volume appear. The reason is that the
transitions from a given (I,J ) that are due to the second term of Eq. (2.30) can involve
any pair of particles or holes in the same localization volume: for operators with a high
density of indices per localization volume, those transitions can be as numerous as the
third class of terms in Eq. (2.30). We expect that these neglected terms produce a shift in
the estimate of the critical threshold (2.93), but do not spoil the norm convergence of
the operator expansion at finite but small enough λ (as it follows also from the rigorous
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results summarized in Sec. 2.3). However, their impact on the weak convergence of
the expansion projected on typical many-body states is more delicate. The neglected
terms have indeed the potential to invalidate the statement on the occurrence of a finite
temperature transition: we illustrate how in Sec. 2.4.

An additional source of approximation was introduced in Sec. 2.2.1. It corresponds
to the fact that the shifts in the single-particle energy levels generated by the diagonal
Hartree-terms are neglected. The latter are however relevant, as recently observed
in [30]; indeed, they are responsible for the rearrangement of the energy levels within a
localization volume, once a new particle-hole excitation is created in the volume. Even at
weak interactions the rearrangements are rapidly so important that previously resonantly
coupled configurations are driven out of resonance, while new pairs of configurations can
become resonantly coupled. The latter do not need to involve the hopping of particles
that have previously moved, however, in contrast to the framework of previous analyses.
This phenomenon of spectral diffusion [31, 76] should be appropriately taken into account
when estimating the number of resonant channels by which an excitation can decay:
in essence, at any step of the decay process, for a further decay to occur to the next
localization volume it is sufficient that at least one of the particle-hole pairs belonging
to the localization volume of the newly created pair can undergo a resonant transition.
The above estimates are instead performed requiring that the newly created pair itself
can decay resonantly: this underestimates the number of decay channels available. It
is expected that the spectral diffusion, if appropriately taken into account, leads to a
reduction of the critical interaction strength (2.93) by a factor K−a with a > 0. Similarly,
the critical temperature obtained accounting for this effect [30] is parametrically smaller
than (1.77).

2.3 Beyond perturbation theory: the rigorous arguments for
MBL

The condition (2.34) states that the probability of collective, high-order resonances
between unperturbed degrees of freedom decays exponentially in the number of degrees
of freedom involved, thus indicating that resonances do not proliferate asymptotically
in the perturbation theory (and thus, within the forward approximation, asymptotically
in space). A rigorous proof of localization should control resonances at any length
scale, taking into account the renormalization of the energies due to resonant transitions
occurring at the shorter scale and lower perturbative orders. This program has been
carried out rigorously in [86] for the random spin chain (1.11), with a “multi-scale”
approach that is reminiscent of the proof of localization in the single-particle case
[100, 65]. In this section, we compare the treatment in [86] with our perturbative
approach; this illustrates how the approximations performed within our treatment can
be lifted. In Appendix 2.D, we shortly comment on the relation between our construction
and the alternative recipe to build the conserved quantities proposed in [36].

The reasoning in [86] is based on the construction of a unitary operator U which brings
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the Hamiltonian into a diagonal form in the {σzi } basis,

H ′ = UHU† = f ({σzi }) = h0 +
∑
i

hiσ
z
i +

∑
i,j

hijσ
z
i σ

z
j + · · · . (2.94)

Quasilocality means that its generator A, U = eA, is quasilocal almost everywhere, up
to a collection of rare regions where U is far from the identity. The quasilocality of U is
rephrased in terms of bounds on the expectation values of the local observables σzi on the
many-body eigenstates, see Eq. (1.31). Operators with compact support are deformed
by U into quasilocal operators: an extensive set of quasilocal conserved charges is thus
simply given by

Ik = U†σzkU , (2.95)

and it follows from (2.94) that H = f ({Ik}).

The construction of U is performed within an iterative scheme, U = limn→∞ Un · · ·U1,
running over a sequence of length scales Ln exponentially increasing with n. Any rotation
Un is chosen so as to eliminate the off-diagonal couplings obtained at the n-th step
Hamiltonian (H(n−1) = Un−1H

(n−2)U †n−1, where H(0) = H) that are of order O(γLn): it
implements perturbation theory in the regions where the latter is controlled, and exact
diagonalization in resonant regions of size of the order of Ln. The generator of the
rotation admits an expansion over graphs with a random amplitude (similarly to the
expansion over paths in the perturbative construction), whose statistical distribution has
to be controlled. It is proved that at any scale, the resonant transitions are rare enough
not to spoil the exponential decay inherent in the perturbation theory. The proof relies
on an assumption of “limited level attraction” for the energy levels of the many-body
Hamiltonian restricted to arbitrary finite volumes of size n, which requires that

P

(
min
α 6=β
|Eα − Eβ| < δ

)
< δνCn (2.96)

for some positive ν, C and any δ > 0, and α, β labeling the eigenvalues.

We briefly comment on how the expansion over graphs emerges within this context; when
it is possible, we make comparisons with the content of Sec. 2.2.

The perturbative framework. The construction is based on an iterative scheme to diago-
nalize Hamiltonians H = H0 + γV (H0 =

∑
σ Eσ|σ〉〈σ| being the diagonal part, V the

off-diagonal one and γ the small parameter controlling the convergence of the procedure)
by means of consecutive rotations. At any step n of this general scheme, a rotation Ũn is
fixed by imposing a constraint on its generator Ã(n). At first order, the operator Ũ1HŨ

†
1

is diagonal up to O(γ2) provided that Ã(1) satisfies[
Ã(1), H0

]
= −γV. (2.97)
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This requires the following matrix elements of Ã(1) in the basis of H0:

〈σ|Ã(1)|σ′〉 =
γ

Eσ − Eσ′
〈σ|V |σ′〉. (2.98)

For the Hamiltonian (1.11), one has

Ã(1) = −γ
∑
i∈Λ

∑
ρ,τ=±1

Γi
hi + 2τJi + 2ρJi−1

(
1 + ρσzi−1

2

)
iσyi

(
1 + τσzi+1

2

)
=
∑
i

Ã(1)(i).

(2.99)

As an effect of the partial rotation, higher-order interaction terms are generated, that
couple classical spin configurations differing by an arbitrarily large number of single spin
flips:

eÃ
(1)
He−Ã

(1)
= H0 +

∞∑
n=1

Adn
Ã(1)

n!

{
n

n+ 1
V

}
. (2.100)

In the absence of resonances, the newly generated couplings fulfill exponential bounds
that guarantee the convergence of the transformed Hamiltonian and encode its quasilo-
cality. The commutators

Adn
Ã(1) {V } = γ

∑
i1,···in,i0

[
Ã(1)(in),

[
Ã(1)(in−1), ...,

[
Ã(1)(i1), σxi0

]]]
= H0 +Ṽ (1) (2.101)

are nonzero only for sequences of sites i1, · · · in, i0 that are adjacent in space, meaning
that ip must be nearest neighbor of at least one among the i0, i1, · · · , ip−1 for all 1 ≤ p ≤ n
(this local structure is analogous to the one we exploit in the computation in Sec. 3.2).
Any ordered sequence of operators Ã(1)(j1)Ã(1)(j2)...V (jp)...Ã

(1)(jn) resulting from the
expansion of (2.101) is associated to a graph g: the matrix elements of Ṽ (1) in the basis
|σ〉 can thus be expanded as a sum over graphs, the amplitude of each graph being the
product of factors of the form γ/δE with δE some energy denominator, as in (2.32).

In the absence of resonances, i.e., if the energy denominators are bounded from below
|δE| > γ, the amplitude of each graph is exponentially small in its length (i.e. the
number of operators in the corresponding operator sequence). The number of choices
of the indices i,..., i0 giving rise to non-zero commutators grows factorially with n: thus,
the sum is contributed by a number of graphs growing faster-than-exponential; in the
perturbation theory, this growth is compensated by the n! terms in the denominator
of Eq.(2.100), which is present due to the fact that the expansion is performed on the
generator and not on the unitary operator itself. Thus, no “problem of the factorials”
arises at this level, and the sum over graphs is exponentially bounded.

Dealing with resonant regions. The exponential bounds fail in the presence of small de-
nominators. At first order, resonant processes are just single-spin flips: small denom-
inators are accounted for by identifying the set S1 of resonant sites (such that the
corresponding denominator in Ã(1)(i) is smaller than an energy cutoff ε for some choice
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of ρ, τ) and setting

V (res) =
∑
i∈S1

γiσ
x
i , V (per) =

∑
i/∈S1

γiσ
x
i , A(1) =

∑
i/∈S1

Ã(1)(i). (2.102)

The modified rotation Ω1 = eA
(1)

implements the perturbation theory on the non-resonant
sites, in such a way that the transformed Hamiltonian

eA
(1)
He−A

(1)
= H0 +V (res) +

∞∑
n=1

AdnA(1)

n!

{
n

n+ 1
V (per) + V (res)

}
= H0 +V (res) +V (1)

(2.103)

is quasilocal except for the resonant term V (res). The smallest connected components in
S1 (at this stage, isolated sites) are diagonalized exactly with a local rotation O1. The
composition U1 = O1Ω1 defines the first partial rotation in the iterative scheme. At this
step, the deviation of the expectation value (1.31) from the classical value is controlled
by the probability of having resonant single-spin flips in i, that is O(ε) = O(γ1/20).

Fractional moments bounds. The above procedure is iterated over the sequence of length
scales Ln: at any step, the terms in V (n−1) that are contributed by non-resonant graphs
of length |g| ∈ (Ln−1, Ln) defines the n-th order generator A(n), as in (2.97), while the
couplings corresponding to graphs that are resonant (i.e., that violate exponential bounds
in their length) are diagonalized exactly. The result (1.31) follows from the exponential
bounds on the probability of the resonant graphs,

P
(
|A(n)

σσ′(g)| > (γ/ε)|g|
)
≤ (cε)s|g|, (2.104)

similarly to (2.34). In (2.104), s is some fixed constant and A(n)
σσ′(g) is the contribution

of a graph g to the matrix elements of the n-th step generator, between the unperturbed
eigenstates |σ〉, |σ′〉. The graphs at the n-th scale are built from the ones at the previous
scale, thus they contain energy denominators which are renormalized at any smaller scale
by the rotations Oi. The bound (2.104) is derived (by means of a Markov’s inequality)
from the fractional moment bound on the graph-amplitude

E|A(n)
σσ′(g)|s ≤ γs|g|E

∏
τ,τ ′∈g

|E(j)
τ − E(j)

τ ′ |−s ≤ (cγ)s|g|. (2.105)

obtained in [86] for s = 2/7. The need for fractional moments s < 1, first exploited in
the single particle case in [5], is due to convergence, since the amplitudes of graphs are
fat-tailed distribution and have no finite mean. This is found also in our perturbative
construction, reflected in the fact that the generation function (2.49) is defined only
for k > −1. The assumption (2.96) is relevant for obtaining bounds for graphs whose
amplitude is contributed by resonant regions at the smaller scale.

Beyond the forward approximation. The bound (2.105) is valid for graphs that do not
contain many repeated flips of the same spins, which would correspond to non-self-
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avoiding paths in the perturbative treatment. In this case, the same energy denominator
appears at a large power p, and the fractional moment diverges as |h|−ps which is not
integrable for p > 1/s. Bounds in the span (not in the length) of these non-self-avoiding
graphs can however be obtained exploiting inductively the bounds on graph amplitudes at
smaller scales. This allows one to solve the problem beyond the forward approximation.

Why is d = 1 needed? For the above procedure to work, it is necessary to control the
influence of the resonant regions on the surrounding localized degrees of freedom, to
prove that the local ergodic spots do not “melt” the neighboring degrees of freedom,
destroying localization once the mutual interactions are accounted for. To this aim, to
each resonant region of size L a “buffer zone” is associated, whose length R is chosen in
such a way that the coupling of the resonant regions with the degrees of freedom outside
the buffer zone is weaker than the local level spacing. While in one dimension this fixes
the size of the buffer zone to be of the order of the size of the resonant spot (this follows
from the constraint γR ≈ 2−L−R), in higher dimension the two quantities do not have a
comparable scaling, but the buffer zones are much larger than the resonant spots. This
prevents the extension of this procedure.

The results shortly summarized in this section constitute a rigorous proof (based on a
reasonable assumption) of the existence of a MBL regime in which the full spectrum is
localized and the system is “integrable”. The proof frames the perturbative arguments in
a mathematically rigorous scheme. To conclude the chapter, we finally come to the more
controversial issue of the breakdown of MBL and of the occurrence of a finite temperature
transition.

2.4 The fate of conserved quantities at the transition

If a many-body mobility edge does exist, it is natural to expect that the localized, low
temperature phase is still governed by quasilocal conservation laws inhibiting transport,
while such integrals of motion do not exist at higher temperature. Thus, one expects that
(quasilocal) conserved quantities are recovered once a projection onto a portion of the
Hilbert space is performed.

One step toward the formalization of this expectation has been made in [67], by con-
sidering the projection of local spin operators onto a subspace H1−f of the total Hilbert
space H = H1−f ⊕Hf , spanned by a finite fraction (1− f) of eigenstates. The resulting
projected operators are argued to be “local” in the sense that their “weight” in compact
regions of the chain remains finite in the thermodynamic limit, although there is a global
dressing of the operators whose total weight scales with f 6. Conserved quantities are
obtained from this set of projected operators by time-evolving with respect to the Hamil-
tonian governing the dynamics in H1−f , and time-averaging the result (following the

6Precisely, given any such operator O and its decomposition O = OA + O⊥, where OA is supported on
some compact interval of the spin chain of size NA, the ratio of the Frobenius norms λ = ‖OA‖2/‖O‖2
remains finite as the thermodynamic limit is taken with NA kept fixed (and it scales as 1− f). However,
‖O⊥‖ does not decay to zero exponentially as NA is increased, as it would be required for the operator to be
quasilocal.
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recipe discussed in Appendix 2.D). This analysis seems to suggest that in presence of a
mobility edge, operators satisfying this weaker notion of locality might be obtained by
projecting out the fraction of the Hilbert space that is delocalized (note however that in
[67] only parameters corresponding to a fully MBL spectrum are considered).

The construction performed in this chapter suggests another possible formulation, namely,
that in presence of a mobility edge the expansion (2.15) does not converge in the operator
norm, but the convergence is recovered once the operators are projected on the fraction
of the Hilbert space spanned by the low-energy states. For this to occur, the terms in the
operator expansion that make it divergent must be annihilated by the projection. Within
the forward approximation, this scenario is indeed realized, as shown in Sec. 2.2.6: the
projection onto typical states at a given temperature T enhances the convergence of the
series expansion, since T essentially replaces the bandwidth in the analytical estimates,
reducing the effective connectivity of the problem. This leads to a larger domain of (weak)
convergence of the operator expansion, suggesting the possibility of a delocalization
transition at finite temperature. A similar consideration shows that the transition at
T = ∞ takes place in a regime where the operator expansion is not convergent in the
operator norm, but converges only weakly on typical high energy states, due to the Fermi
blocking.

Figure 2.10: Pictorial representation of the supports of two different operators OI,J and
OI′,J ′ contributing to the series expansion (2.15). In the pictures, the wave-functions
are the single particle states contributing to (I,J ) and (I ′,J ′). Both operators involve
degrees of freedom whose maximal distance to the localization center rα is the same:
r(I,J ) = r(I ′,J ′); however, the length of the support N of the operators (shaded in
the picture) increases when N grows in the first case, while it remains bounded in the
second case.

Beyond the forward approximation, however, the problem is more subtle. In particular,
to address the question of whether or not a finite temperature transition is possible one
has to inspect how the full operator series diverges as λ approaches the critical value
(2.93). The series (2.15), or subsequences of it, can in fact diverge for two reasons:
either (i) the amplitudes of terms with growing N do not decrease sufficiently fast, so
that the divergence is driven by operators whose support grows indefinitely, or (ii) there
are divergent subsequences of operators having bounded index level N , but supports
which wander off to infinity. These two possibilities are illustrated in Fig. 2.10.
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The possibility (i) is what is accounted for within the forward approximation. In this
case, the fraction of terms at λc which survive when applied on finite T states decreases
rapidly with N . The possibility (ii), instead, is not accounted for in the approximation
we have made, as the operators with bounded N but increasingly far localization center
are neglected. A divergence driven by this set of operators is made less likely by the
largeness of the parameter K, which is indeed invoked to neglect these terms. However, it
is difficult to exclude that there is no such divergent subsequence which contributes with
a relative weight which is parametrically small in K but finite. In that case, a projection
would not affect its convergence properties: upon restricting to finite T states, the norm
of the relevant operators is typically reduced by a factor which remains bounded from
below. Thus, if the series diverges because of terms of this sort, it will continue to
diverge despite the projection. This second scenario would thus lead to a phase diagram
such as the one in Fig. 2.11 (b). Physically, it corresponds to the type of transport and
delocalization driven by compact but mobile bubbles discussed in Sec.1.5.1, and would
not be captured within the approximate treatment discussed in this chapter.

(a) (b)

Figure 2.11: Different phase diagrams corresponding to the two scenarios discussed in
the text. In both figures, the blue region corresponds to the regime of norm-convergence
of the operator expansion, the green one to the regime of weak convergence on typical
states at the given temperature T and the yellow one to the divergence of the series.
(a) Phase diagram with a T -dependent transition line λc(T ) separating the regime of
weak convergence from the delocalized one. This corresponds to the scenario in which
the divergence is driven by a subsequence of operators with increasing support, that
are annihilated by the projection onto typical states at a given T . (b) Phase diagram
with a T -independent transition line λc(νF ), obtained substituting K in (2.93) with
Keff = νF (1 − νF )K, where νF the filling fraction. This corresponds to the scenario in
which the divergence is driven by a subsequence of operators with bounded support. The
dotted line is a crossover line.

80



Appendix

2.A Imposing a binary spectrum at any order (Eq. 2.11)

In this Appendix we show how the operators ∆K
(n)
α can be fixed, order by order in λ, to

guarantee that the operators n̂α have the spectrum of occupation numbers, i.e., {0, 1}.
This is equivalent to the condition:

n̂2
α = n̂α. (2.106)

We work by induction on m. We set ∆B
(0)
α = nα and we omit the index α for simplicity.

We define the truncation to m-th order of n̂:

n̂≤m ≡ n+
m∑
i=1

λi∆n̂(i), (2.107)

and assume that the property (2.106) holds to order O(λm−1), namely:

(n̂≤m−1)2 = n̂≤m−1 + o(λm−1). (2.108)

Note that n̂≤0 is naturally binary, with (n̂≤0)2 = n̂≤0.

We denote with ∆J (m) the solution of the equation:

[H0,∆J
(m)] + [U,∆n̂(m−1)] = 0 (2.109)

in the subspace O, cf. Eq. (2.10), and define

J≤m ≡ n̂≤m−1 + λm∆J (m). (2.110)

The operator J≤m is not binary to order O(λm); however, we show that it is possible
to add to ∆J (m) a suitably chosen operator ∆K(m) in the kernel K of the linear map
f(X) = [H0, X], so that

n̂≤m = J≤m + λm∆K(m) ≡ n̂≤m−1 + λm∆n̂(m) (2.111)

is binary to order O(λm). To show this, it is sufficient to show that the difference
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(
J≤m

)2 − J≤m, truncated to order O(λm), is an element of the subspace K, i.e.:

[H0, (J
≤m)2] = [H0, J

≤m] + o(λm). (2.112)

It holds:

(n̂≤m)2 =[(n̂≤m−1)2]m−1 + λm
m∑
a=0

∆n̂(a)∆n̂(m−a) + o(λm)

=n̂≤m−1 + λm
m∑
a=0

∆n̂(a)∆n̂(m−a) + o(λm),

(2.113)

where [X]m−1 denotes the restriction of the Taylor series of X(λ) to terms up to order
λm−1. Using the inductive step m− 1 we have from (2.113)

[H0, (J
≤m)2] = [H0, n̂

≤m−1] + λm[H0,

m∑
a=0

∆n̂(a)∆n̂(m−a)] + o(λm), (2.114)

where in the terms with a = 0,m we have replaced ∆J (m) with ∆n̂(m), since Eq.(2.114)
does not depend on the choice of ∆K(m). Given that

[H0,∆n̂
(a)∆n̂(m−a)] = ∆n̂(a)[H0,∆n̂

(m−a)] + [H0,∆n̂
(a)]∆n̂(m−a)

= −∆n̂(a)[U,∆n̂(m−a−1)]− [U,∆n̂(a−1)]∆n̂(m−a),

summing over a we get

[H0,
m∑
a=0

∆n̂(a)∆n̂(m−a)] = −[U,
m−1∑
a=0

∆n̂(a)∆n̂(m−a)]. (2.115)

Using that (2.106) at the inductive step m− 1 implies

m−1∑
a=0

∆n̂(a)∆n̂(m−a) = ∆n̂(m−1), (2.116)

and using (2.109), we find

[H0, (J
≤m)2] = [H0, n̂

≤m−1] + λm[H0,∆J
(m)] + o(λm)

= [H0, J
≤m] + o(λm),

(2.117)

which proves (2.112).

By choosing:

n̂≤m ≡ J≤m + λm
(

1− 2∆n̂(0)
) [(

J≤m
)2 − J≤m]

m
(2.118)

the condition (2.108) is fulfilled to order O(λm). Equation (2.11) follows from noticing
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that: [(
J≤m

)2 − J≤m]
m

=

m−1∑
i=1

∆n̂(i)∆n̂(m−i) +

{
∆n̂(0) − 1

2
,∆J (m)

}
. (2.119)

2.B Generating function for path weights (Eq. 2.52)

This appendix is devoted to the derivation of (2.52). We take the variables Ei/δξ to be
Gaussian, with probability density

f(x) =
1√
2π
e−

x2

2 . (2.120)

The expectation value over the joint distribution of Ei/δξ = si − si−1 (s0 ≡ 0) can be
written as:

GN (k) =

∫ N∏
i=1

f(si − si−1)ek log |si|dsi =

∫
ON−1
k [f ](sN )|sN |kdsN , (2.121)

where the integral operator Ok [·] acting on a function g is given by:

Ok [g] (s) =

∫
f(s− x)|x|kg(x)dx. (2.122)

The integral operator conserves the parity; we consider the basis of even functions:

gn(x) =
e−

x2

2 x2n√
2π(2n)!

, n = 0, 1, . . . , (2.123)

on which the linear action of Ok is given by:

Ok [gn] (x) =
1

2π

∫
e−

1
2

(x−y)2
e−

y2

2 |y|k+2ndy =
∑
m≥0

Omn(k)gm(x), (2.124)

with the matrix

Omn(k) =
1√
2π

Γ
(

1+k
2 + n+m

)√
(2m)!(2n)!

. (2.125)

From (2.121) we thus readily obtain the following expression for GN (k):

GN (k) =

∞∑
m=0

(
O(k)N−1

)
m0
am, (2.126)
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with am(k) =
∫∞
−∞ gm(sN )|sN |k dsN = 2

k+1
2 +m√

2π(2m)!
Γ
(
k+1

2 +m
)
.

The matrix Omn(k) can be interpreted as a k-dependent Hamiltonian describing a particle
hopping on a semi-infinite open chain with sites labeled by integers m = 0, 1, 2, . . . . The
large N behavior of logGN (k) is dominated by the largest eigenvalue λmax(k) of O. Since
for any k > −1, O(k) is symmetric and positive definite, the Perron-Frobenius theorem
ensures that λmax(k) is positive and unique, and

GN (k) ≈ c(k) [λmax(k)]N−1 , (2.127)

where c(k) = φmax,0 ·
∑

m≥0 amφmax,m, and φmax is the normalized eigenvector corre-
sponding to λmax.

Numerical results for the maximal eigenvalue are shown in Fig. 2.B.1. They are obtained
by truncating the matrix O to an increasing set of basis states (or chain of sites) m ≤ L.
For k close to the singularity k = −1 the results rapidly converge with increasing size
L. In this region, we can extract information on the limiting curve λmax(k) from the
truncated chain. In particular, we see from the plot that both the function log λmax(k)
and its negative slope diverge at k = −1, which will also follow form the analysis below.
We expand λmax(k) in the vicinity of the singular point: this regime will indeed be the
relevant one for the large deviation calculation.

Figure 2.B.1: Left. Maximal eigenvalue log λmax(k) computed for truncated matrices
O(k) with basis sets of size L = 120 (red), L = 200 (green), L = 300 (blue). Close to
the singularity k = −1, λmax(k) converges rapidly with L. Right. Comparison between
log λmax(k) obtained numerically for the truncated matrix (with L = 300 basis functions)
and the analytic expression log[Γ

(
k+1

2

)
+ g(k)] with g(k) expanded at zeroth (red), first

(brown) and second (orange) order in (k + 1).

Due to the proximity to a logarithmic divergence at k = −1, to order O(1 + k) the
eigenstate φmax for k ∼ −1 is localized on the first site (n = 0) of the corresponding
hopping chain, |φmax〉 ' |0〉, with an eigenvalue

λmax(k) ' O(k)00 =
1√
2π

Γ

(
1 + k

2

)
. (2.128)
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Corrections to the maximal eigenvalue (2.128) can be evaluated perturbatively in the
matrix elements Oik 6=00 (2.125), which yields

λmax(k) =
1√
2π

Γ

(
1 + k

2

)
+ λ

(2)
max(k) + λ

(3)
max(k) + · · · ≡ 1√

2π
Γ

(
1 + k

2

)
+ δλ(k).

(2.129)

One can show that δλ(k) is analytic around k = −1 and satisfies δλ(k → −1) → 0.
This is due to the fact that in n-th order perturbation theory λ(n)

max is proportional to
denominators of the form 1/On−1

00 ∼ (k + 1)n−1. The leading term in δλ(k) results from:

λ
(2)
max(k) =

∞∑
m=1

(2π)−
1
2

[
Γ
(

1+k
2 +m

)]2
Γ
(

1+k
2

)
(2m)!− Γ

(
1+k

2 + 2m
) =

1√
2π

π2

36
(k+1)+O(k+1)2. (2.130)

From this it follows that

φ(ỹ, k) := ỹk + lim
N→∞

GN (k)

N
= ỹk + log

[
Γ

(
k + 1

2

)
+
√

2πδλ(k)

]
− 1

2
log 2π,

(2.131)

as given in the main text.

2.C Counting the geometries of diagrams (Eq. 2.66)

In this Appendix, we determine Tm in (2.66). The latter equals the number of trees with
one root (of connectivity 2) and m nodes (of connectivity 4). These trees are obtained by
merging two trees of branching ratio 3 at the root, and therefore

Tn =
∑
n1,n2≥0

n1+n2=n

T (n1)T (n2), (2.132)

where T (m) is the number of trees with m vertices (including the root) and branching
ratio 3. This number satisfies the recursion equations

T (0) = 1, (2.133)

T (n) =
∑

n1+n2+n3=n−1

T (n1)T (n2)T (n3). (2.134)

We can define the generating function

T (x) =
∑
n≥0

xnT (n), (2.135)
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which in virtue of (2.134) satisfies the polynomial equation

T (x) = 1 + xT (x)3. (2.136)

Notice that the first singularity of T (x) is a branch-cut at x = 4/27, which implies the
large-n behavior T (n) ∼ (27/4)n. However, we can find the n-th order of the expansion
for small x using Lagrange’s inversion theorem for the inverse function of

x(T ) =
T − 1

T 3
, (2.137)

expanding around T = 1 (x = 0).

This yields

T (n) =
1

n
lim
T→1

[
1

(n− 1)!

dn−1

dTn−1

(
T − 1

x(T )

)n]
=

1

2n+ 1

(
3n

n

)
. (2.138)

In general, for k-body interactions we have T (n) =
(

(k−1)n
n

)
/((k − 2)n+ 1) diagrams. For

k = 3 these are the numbers of binary trees with n vertices, or Catalan numbers. There
are two ways to solve Eq. (2.132) and find Tn. The first one is to notice that its generating
function T (x) satisfies T (x) = T (x)2, write Eq. (2.137) in terms of T and use Lagrange’s
inversion theorem again. Alternatively, one can use the explicit form of T (n) and apply a
summation formula for the ratio of four Γ-functions to obtain:

Tn =
3

3
2

+3n

π

Γ
(
n+ 2

3

)
Γ
(
n+ 4

3

)
Γ (2n+ 3)

∼ 3

4

√
3

π

1

n
3
2

(
27

4

)n
. (2.139)

2.D Comparison with the infinite-time averages of local den-
sities

In [36], it is proposed to construct conserved quantities as the infinite-time averages of
the local energy- or spin-densities of the Hamiltonian (1.10). The infinite-time averages
of operators are obviously conserved; moreover, if a set of quasilocal operators Iα can
be constructed, it follows that the average (1.50) of operators O with finite support is a
quasilocal conserved quantity. Similarly to the operators defined by (2.15), the resulting
conserved operators are not pseudospins, as the time-averaging does not preserve the
spectrum 7. To discuss the further (apparent) similarity with our operators constructed
perturbatively, we consider the fermionic case. The operators Iα, corresponding to (2.10)

7They are nevertheless measurable in the following sense: for a chain with N spins with Oi = σzi , the
coefficients in the expansion

σzi =
∑
~l,~κ

M~κ
~l
σκ1
l1
· · ·σκn

ln
, (2.140)

with κi ∈ {z, x, y}, can be obtained measuring multi-spin correlations on a time-averaged density matrix ρ,

M~κ
~l

= 2−NTr
(
σκ1
l1
· · ·σκnln ρ

)
, (2.141)
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with ∆K
(n)
α = 0, can be formally written as

Iα = nα +

∞∑
k=1

ik lim
η1→0

· · · lim
ηk→0

Ik ({ηi}) (2.142)

with

Ik ({ηi}) =

∫ ∞
0

dtk · · ·
∫ ∞

0
dt1

k∏
i=1

e−ηiti [U(t1), [U(t1 + t2), · · · [U(t1 + t2 + · · · tk), nα]]]

=

∫ ∞
0

dt′k

∫ t′k

0
dt′k−1 · · ·

∫ t′2

0
dt′1

k∏
i=1

e−ηi(t
′
i−t′i−1) [U(t′1), [U(t′2), · · · [U(t′k), nα]]],

(2.143)

where we set t′0 = 0, and the time evolution of the interactions is with respect to the
Hamiltonian H0. This expression resembles the expression for the Heisenberg time
evolved operator nα(t) expanded perturbatively in U ,

nα(t) = nα +
∑
m

im
∫ t

0
dtk · · ·

∫ t2

0
dt1 [U(t1), [U(t2), · · · [U(tk), nα]]], (2.144)

when an infinite time limit is taken with the substitution∫ t

0
dtk −→ lim

η→0

∫ ∞
0

dtk e
−ηtk (2.145)

at any order in U . Despite the apparent similarity, however, the two sets of operators
differ, due to the presence in (2.142) of the various regulators, whose limits have to
be taken in the appropriate order. It can be checked that the role of the regulators
is to project each commutator in (2.143) in the subspace O, so that at any order in
the interaction (2.142) does not have any diagonal matrix elements in the basis of H0.
Instead, the operator (2.144) does. This can be checked most easily by comparing the
second order terms of (2.143) with the ones of (2.144), which can be rewritten as∫ ∞

0
dt2e

−ηt2
∫ t2

0
dt1 [U(t1), [U(t2), nα]] =

∫ ∞
0
dt2

∫ ∞
0

dt1e
−η(t2+t1) [U(t1), [U(t2+t1), nα]],

(2.146)

or by comparing the results in the single particle case, cfr. Sec. 2.2.1(B).

where ρ at t = 0 describes the state with magnetization one at site i and zero everywhere else, ρ =
2−N (1 + σzi )⊗

∏
k 6=i 1k. The σzi thus provide information on the spreading of the spin through the infinite

temperature ensemble.
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3 MBL in antiferromagnets: remanent mag-
netization

The existence of extensively-many conservation laws represents a powerful tool for
understanding the quantum dynamics. This is manifestly clear for ordinary integrable
systems, for which the long-time limit following quantum quenches is captured by a
suitable statistical ensemble taking into account the full set of conserved charges [171].
In this chapter, we aim at making a step toward the characterization of the long-time limit
of an MBL system following a quantum quench, making use of the conserved operators
constructed in the previous chapter. We apply the perturbative results to the study of an
experimentally measurable quantity in quantum magnets, which is a magnetic analogue
of the remanent density wave measured in the cold atom experiments, see Sec. 1.1.

The chapter is structured as follows: In Sec. 3.1 we propose the remanent magnetization
in antiferromagnetic samples as a readily accessible order parameter for MBL. In Sec. 3.2,
we explicitly show how the perturbative construction of the conserved quantities allows
to make analytic predictions for this quantity of experimental relevance. In this context,
we also illustrate how to explicitly account for resonances to the lowest order in the per-
turbation, by means of the re-summation of the divergent subsequences in the expansion.
In Sec. 3.3, we comment on the non-interacting limit of the model.

3.1 A simple probe of ergodicity breaking in magnets

We aim at computing explicitly the out-of-equilibrium remanent magnetization that
persists in an MBL antiferromagnetic sample after polarizing it ferromagnetically at t = 0.
More precisely, we consider an anisotropic Heisenberg spin-1/2 chain

H =
∑
k

(
hkσ

z
k −

∑
α=x,y,z

Jασ
α
k σ

α
k+1

)
(3.1)

subject to random fields hk along the Ising axis. In (3.1), σαi are Pauli matrices. We
assume Jz < 0, as well as Jx 6= Jy, to ensure the the total magnetization is not conserved.
Such Hamiltonian can be realized, e.g., in Ising compounds with both exchange and
dipolar interactions. However, essentially any quantum antiferromagnet with sufficiently
strong disorder and non-conserved magnetization should exhibit qualitatively the same
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Chapter 3. MBL in antiferromagnets: remanent magnetization

phenomenology as the chain described here.

We assume that by applying a strong field, the antiferromagnetic chain is prepared in the
fully magnetized state |ψ0〉 with density matrix:

|ψ0〉〈ψ0| =
∏
i

1 + σzi
2

. (3.2)

After switching off the field, the dynamics is governed by (3.1). This protocol can be
viewed as a quantum quench, in which a high energy eigenstate of the Hamiltonian with
Jx = 0 is prepared, and the quantum fluctuations Jxσxkσ

x
k+1 are switched on abruptly

at time t = 0 (see Fig. 3.1 for a schematic sketch of the protocol). We are interested
in the long-time behavior of the magnetization, and thus consider the time averaged
magnetization at site j:

m̂j = lim
T→∞

1

T

∫ T

0
dtmj(t); mj(t) = 〈ψ0|σzj (t)|ψ0〉. (3.3)

The remanent magnetization is defined as the site average:

m̂ =
1

L

L∑
j=1

m̂j . (3.4)

Figure 3.1: Relaxation of the total magnetization from a fully polarized initial state. The
black curve is the stationary value L−1

∑
j m̂j: it vanishes at the critical point separating

the MBL and delocalized phases (red point), and it is non-analytic for Jx/h � 1, cfr.
Eq. (3.31).

The quantity (3.4) serves as an order parameter for the dynamical phase transition:
a finite remanence implies non-ergodicity, since an ergodic dynamics would relax the
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magnetization completely. It is a magnetic analogue of the remanent density modulation
measured in the cold atoms experiments [151, 29] recalled in Sec. 1.1 (see the discussion
in Sec. 3.3.1). At variance with the imbalance and analogous quantities, however, (3.4) is
much simpler to access experimentally, since it focuses on the total magnetization (at q =
0), which can be readily picked up by a squid, without requiring scattering measurements
to resolve spatial patterns. Thus, the remanent magnetization is a experimentally readily
observable consequence of MBL, accessible by standard experimental probes in magnets.
This is of interest as direct observations of MBL in solid-state materials are still lacking
(although an indirect signature of MBL in the from of strongly suppressed absorption
of radiation was also found in electron-glasses [133]), mostly due to the lack of simple
enough protocols or observables.

3.2 Conserved pseudo-spins: a computational tool

We consider (3.1) with random fields hk uniformly distributed in [−h, h], and assume
a strong anisotropy of the couplings, |Jy| � |Jx| � |Jz|, h. For simplicity we restrict to
Jy = 0. In the following, we denote with σ̂ the conserved operators constructed following
the perturbative recipe, to stress that they are not occupation numbers but effective spins
with spectrum ±1.

For Jx = 0, the spin chain (3.1) is classical and trivially localizes dynamically, as the
σzk form a complete set of commuting, local, conserved operators. The eigenstates are
product states in this basis, and the local magnetization is trivially conserved, mj(t) = 1.
For finite Jx, σzj (t) has a non-trivial time dependence, which reduces m̂j . In the MBL
regime, however, the time evolution is strongly constrained by the conservation of dressed
spins σ̂k = σzk +O(Jx/h) with |k − j| . ξmb and ξmb the length scale characterizing the
decay of the operator norm. As a consequence, partial memory of the initial order
〈σzj 〉 = 1 is retained for arbitrarily long time, resulting in a finite remanence of the
site-averaged magnetization (3.4). To determine m̂, we first derive an expression for it in
which the conserved quantities appear explicitly.

3.2.1 Remanent magnetization in terms of conserved charges

In the absence of spectral degeneracies, (3.3) can be expressed via a Lehmann represen-
tation as

m̂j =
∑
α

〈ψ0|PασzjPα|ψ0〉, (3.5)

where

Pα = |ψα〉〈ψα| =
L∏
k=1

(
1 + i

(α)
k σ̂k
2

)
(3.6)
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projects onto the eigenstate labeled by the quantum numbers i(α)
k ∈ {±1} of the dressed

spins σ̂k. Using the operator identity

∑
α

Pασ
z
jPα = σzj +

L∑
n=1

∑
kn>kn−1···>k1

n∏
l=1

(
σ̂kl
2

)[[[
σzj , σ̂k1

]
, σ̂k2

]
, · · · , σ̂kn

]
,

we obtain the following expression for the remanent magnetization:

m̂j = 1+
L∑
n=1

∑
kn>kn−1···>k1

Tr

{
n∏
i=1

(
σ̂ki
2

)[[[
σzj , σ̂k1

]
, σ̂k2

]
, · · · , σ̂kn

] L∏
i=1

(
1 + σzi

2

)}
,

(3.7)

where Tr {·} denotes the trace, and an ordering among the labels of the operators σ̂k
is assumed (in the perturbative setting this ordering is natural, as there is a mapping
between the set of conserved operators σ̂k and the sites k, since σ̂k is a perturbation of
σzk). We give the derivation of (3.7) in Appendix 3.A. As we illustrate in the following
section, this formula is particularly suitable for perturbative calculations.

3.2.2 Conserved pseudo-spins for the anisotropic Heisenberg chain

We proceed in constructing the conserved quantities for the spin Hamiltonian (3.1) with
Jy = 0, to lowest order in Jx. We set

σ̂k = σzk + ∆σ̂
(1)
k +O(J2

x) ≡ σ̂(1)
k +O(J2

x), (3.8)

and consider (2.10),

∆σ̂
(n)
k = i lim

η→0

∫ ∞
0

dτe−ητeiH0τ
[
U,∆σ̂

(n−1)
k

]
e−iH0τ + ∆J

(n)
k , (3.9)

with

H0 =
∑
i

(
hiσ

z
i − Jzσzi σzi+1

)
,

U = −
∑
i

Jxσ
x
i σ

x
i+1 = −

∑
i

Jx
(
σ+
i σ

+
i+1 + h.c.+ σ+

i σ
−
i+1 + h.c.

)
,

(3.10)

where we introduced σ± = (σx ± iσy)/2. In (2.10), the operator ∆J
(n)
k is a suitable

polynomial in σzi such that σ̂2
k = 1 is satisfied at the given order in U . As discussed in

Sec. 2.1.1, neglecting it at any order leads to a modified operator that is still conserved,
although it does not have binary spectrum.
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For a site k in the bulk,

[U, σzk] = 2Jx
(
σ+
k σ

+
k+1 + σ+

k σ
−
k+1 + σ+

k−1σ
+
k − σ+

k−1σ
−
k − h.c

)
. (3.11)

Applying the Baker-Campbell-Hausdorff formula in (3.9), we find that ∆σ̂
(1)
k is a sum of

commutators of (3.11) with H0, which are nonzero only for terms in H0 involving spins
at sites i with |k − i| ≤ 1, |k + 1− i| ≤ 1. Thus, we may consider the ansatz:

∆σ̂
(1)
k =

∑
ρ,τ=±1

(
A(k)
ρτ O

(k)
ρτ −A(k−1)

ρτ O(k−1)
ρτ

)
+

∑
ρ,τ=±1

(
B(k)
ρτ ∆(k)

ρτ +B(k−1)
ρτ ∆(k−1)

ρτ

)
,

(3.12)

where we define the local operators

O(k)
ρτ =

1 + ρ σzk−1

2

[
σ+
k σ
−
k+1 + h.c.

] 1 + τ σzk+2

2
,

∆(k)
ρτ =

1 + ρ σzk−1

2

[
σ+
k σ

+
k+1 + h.c.

] 1 + τ σzk+2

2
.

(3.13)

Using that[
σ+
k σ
−
k+1 + σ−k σ

+
k+1, H0

]
= −2

(
hk − hk+1 − Jz(σzk−1 − σzk+1)

) [
σ+
k σ
−
k+1 − σ−k σ+

k+1

][
σ+
k σ

+
k+1 + σ−k σ

−
k+1, H0

]
= −2

(
hk + hk+1 − Jz(σzk−1 + σzk+1)

) [
σ+
k σ

+
k+1 − σ−k σ−k+1

]
,

(3.14)

we find that (3.8) with ∆σ̂
(1)
k in (3.12) is conserved to first order in Jx provided that

A(k)
ρτ = − Jx

hk − hk+1 + Jz(τ − ρ)
,

B(k)
ρτ = − Jx

hk + hk+1 − Jz(τ + ρ)
.

(3.15)

To lowest order in Jx, the operator squares to one.

3.2.3 Apparent divergences generated by resonances

At low orders, the sum over multi-indices in Eq. (3.7) reduces to the few terms involving
indices sufficiently close to k, since other commutators vanish. We argue that the lowest
order corrections to m̂j are given by the terms with n = 1, 2 in (3.7): inserting (3.12)
into (3.7) and (3.5), we find:

m̂j = 1−
(
B

(j)
1,1

)2
−
(
B

(j−1)
1,1

)2
+O(J3

x), (3.16)

where the amplitudes A(j)
ρτ do not contribute (at this order) due to the particular choice

of the initial state. We justify the result (3.16) in the following.
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First, we argue that the second-order contribution to m̂j is contributed only by products
of conserved operators expanded at first order, so that (3.8) suffices to determine (3.16).
Indeed, the zero-th order contribution to m̂j is fully reproduced by the term with n = 0 in
(3.7), since the terms with n ≥ 1 are exactly zero for σ̂i → σzi . Consider now the possible
first order corrections: for any n ≥ 1, the term of O(Jx) must belong to the expansion of
σ̂k1 (otherwise the commutator with σzj would be zero). The commutator produces terms
of the form σ+

j σ
−
j+1 and similar; such terms are preserved by the commutation and by the

product with other σzi operators, and are annihilated by the trace. For the same reason,
the second order contributions obtained expanding σ̂k1 to second order in Jx is zero.

The relevant second order contributions come from terms in (3.7) in which σ̂k1 and some
other conserved quantity σ̂ki are both expanded to first order in Jx. To identify them, it
is sufficient to consider n = 1, 2. With the notation:

Õ(k)
ρτ =

1 + ρ σzk−1

2

[
σ+
k σ
−
k+1 − h.c.

] 1 + τ σzk+2

2
,

∆̃(k)
ρτ =

1 + ρ σzk−1

2

[
σ+
k σ

+
k+1 − h.c.

] 1 + τ σzk+2

2
,

(3.17)

we find:[
σzj , σ̂

(1)
k

]
= 2

∑
ρ,τ

(
A(k)
ρτ (δk,j − δk+1,j) Õ

(k)
ρτ −A(k−1)

ρτ (δk−1,j − δk,j) Õ(k−1)
ρτ

)
+ 2

∑
ρ,τ

(
B(k)
ρτ (δk,j + δk+1,j) ∆̃(k)

ρτ +B(k−1)
ρτ (δk−1,j + δk,j) ∆̃(k−1)

ρτ

)
.

(3.18)

For n = 1, only the terms in σ̂(1)
k

[
σzj , σ̂

(1)
k

]
/2 that are a polynomial in σzj give a non-zero

contributions once the trace is performed; such terms are proportional to the products:(
σ+
k σ
−
k+1 + h.c.

) (
σ+
k σ
−
k+1 − h.c.

)
=

1

2

[
σzk+1 − σzk

]
,(

σ+
k σ

+
k+1 + h.c.

) (
σ+
k σ

+
k+1 − h.c.

)
= −1

2

[
σzk + σzk+1

]
.

(3.19)

The first operator in (3.19) is however annihilated when acting on the totally polarized
initial state. Thus, the contribution of this term once the trace is performed reduces to:

−2

[(
B

(j)
1,1

)2
+
(
B

(j−1)
1,1

)2
]
. (3.20)

For n = 2, two cases have to be considered: either the operator σ̂k2 in the commutator[[
σzj , σ̂k1

]
, σ̂k2

]
is expanded to first order in Jx, or one of the two operators σ̂k1 , σ̂k2 to

the left of the commutators is expanded. In the first case, one needs to compute the term
in the expression:

σzk1
σzk2

4

[[
σzl , σ̂

(1)
k1

]
, σ̂

(1)
k2

]
, k2 > k1 (3.21)
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which commutes with the operators σzi , and which is not annihilated once acting on the
fully polarized state. Such term can be generated only for k2 = k1 + 1 ≡ k+ 1, and equals

σzkσ
z
k+1

2
(δk,j + δk+1,j)

∑
ρ,τ

(
B(k)
ρτ

)2 1 + ρσzk−1

2

[
σ+
k σ

+
k+1 − h.c., σ+

k σ
+
k+1 + h.c.

] 1 + τσzk+2

2

(3.22)

Using that[
σ+
k σ

+
k+1 − h.c., σ+

k σ
+
k+1 + h.c.

]
= σzk + σzk+1 = 2

(
P

(k)
1,1 − P

(k)
−1,−1

)
(3.23)

where we defined

P (k)
ρ,τ =

1 + ρ σzk
2

1 + τ σzk+1

2
, (3.24)

and taking the trace we get the contribution(
B

(j)
1,1

)2
+
(
B

(j−1)
1,1

)2
. (3.25)

Finally, the remaining contribution is zero, as the first order term in the expansion of the
product σ̂(1)

k σ̂
(1)
k+1 is zero. Summing (3.20) and (3.25) we recover (3.16).

We are now in the position to understand the role of resonances: the spatial average of
(3.16) is recovered performing a disorder average 〈m̂j〉dis over random fields. The latter
is an analytic function of the couplings for |Jz| > h, while it is ill-defined for |Jz| < h; the
apparent divergence is due to rare resonances between classical configurations differing
by the flip Jxσxi σ

x
i+1 of two neighboring spins, that give rise to arbitrarily small energy

denominators in Eq. (3.15). Thus, the correct computation of (3.4) needs to account for
the presence of these non-perturbative terms.

3.2.4 Local resummation of resonances: a concrete example

As discussed in Sec. 2.1.1, local resonances has to be treated by performing a re-
summation of the divergent subsequences in the operator expansion, which is equivalent
to an exact diagonalization of the resonant degrees of freedom, in the spirit of Sec. 2.3. In
the present case, we re-sum the leading resonances considering the simpler Hamiltonian

H(k) ≡
L∑
i=1

(
hiσ

z
i − Jzσzi σzi+1

)
− Jxσxkσxk+1, (3.26)

where only one (resonant) Jx−coupling is retained. For this Hamiltonian, a full set of
exactly conserved operators σ̃i satisfying σ̃2

i = 1 can be constructed explicitly. It amounts
to finding a local rotation that maps the σzk, σ

z
k+1 to two operators σ̃k, σ̃k+1, and thus

resums all perturbative terms containing higher powers of the resonant Jx−coupling.
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The operators σ̃k, σ̃k+1 take the form

σ̃k = σzk+
∑
ρτ=±1

(
Ã(k)
ρτ O

(k)
ρτ + C(k)

ρτ K
(k)
ρτ

)
+
∑
ρτ=±1

(
B̃(k)
ρτ ∆(k)

ρτ +D(k)
ρτ J

(k)
ρτ

)
, (3.27)

where

K(k)
ρτ =

1 + ρ σzk−1

2

[
P

(k)
1,−1 − P

(k)
−1,1

] 1 + τ σzk+2

2
,

J (k)
ρτ =

1 + ρ σzk−1

2

[
P

(k)
1,1 − P

(k)
−1,−1

] 1 + τ σzk+2

2
.

(3.28)

Together with the Ĩi = σzi for i 6= k, k + 1, they serve as a new basis for the perturbation
theory in the remaining, non-resonant Jx−couplings. As we show in Appendix 3.B, the
amplitudes are given by

Ã(k)
ρτ = − Jx(

[hk − hk+1 + Jz(τ − ρ)]2 + J2
x

)1/2
,

C(k)
ρτ = −1 +

hk − hk+1 + Jz(τ − ρ)(
[hk − hk+1 + Jz(τ − ρ)]2 + J2

x

)1/2
,

B̃(k)
ρτ = − Jx(

[hk + hk+1 − Jz(ρ+ τ)]2 + J2
x

)1/2
,

D(k)
ρτ = −1 +

hk + hk+1 − Jz(ρ+ τ)(
[hk + hk+1 − Jz(ρ+ τ)]2 + J2

x

)1/2
.

(3.29)

3.2.5 The non-analyticity of the remanent magnetization

Inserting the modified coefficients (3.29) into (3.5), we find again (3.16), but with the
substitution:

B(j)
ρτ −→ −

Jx(
[hj − hj+1 − Jz(τ + ρ)]2 + J2

x

)1/2
. (3.30)

Computing the disorder average, we obtain the remanent magnetization

〈m̂j〉dis = 1− π|Jx|
h

(
1 +

Jz
h

)
+O(J2

x). (3.31)

Thus, for |Jz| < h, (3.31) is non-analytic in Jx: this feature is a signature of resonances,
the non-analytic cusp at Jx = 0 being most pronounced in the limit of vanishing Ising
interactions, Jz → 0 (recall that Jz < 0).
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3.3 Beyond the perturbative regime: possible directions

3.3.1 Atomic analogues of the remanent magnetization

The gauge transformation U =
∏L
j=1 exp

(
iπ2 jσ

x
j

)
maps the antiferromagnetic chain (3.1)

into its ferromagnetic counterpart with Jx → Jx, Jy,z → −Jy,z, and the initial state |ψ0〉
into a Néel state. The order parameter is mapped into the staggered magnetization. Such
a quantity has been studied numerically in [175] for disordered, long-range transverse
field Ising chains, modeling the ion-trap quantum simulators discussed in Sec. 1.1. The
staggered magnetization is a close analogue of the particle imbalance also discussed in
Sec. 1.1, see Eq. (1.2) with |Λ| = L.
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Figure 3.1: Dependence of the remanent density imbalance on the hopping strength J
for a chain of non-interacting fermions (L = 100, 5 · 103 realizations). The continuous
red line is the analytical estimate (3.31) with Jx = J, Jz = 0. The blue dashed line is a
power law fit a+ c(J/h)−2, with a = 0.003, c = 0.101.

To make a comparison with these quantities, we exploit the fact that a ferromagnetic
spin chain with Jx = Jy is equivalent, via the Jordan-Wigner transformation, to a one-
dimensional model of interacting spin-less fermions in a disordered potential. For Jz = 0
it reduces to the non-interacting Anderson model

H = −J
L−1∑
i=1

(
c†ici+1 + h.c.

)
+ 2

L∑
i=1

hini (3.32)

for which the imbalance is a sum over single particle contributions, weighted with the
occupation probability of eigenstates in the initial state. A standard calculation leads to
the remanent imbalance (1.2) in the form

Î =
1

L

L∑
α=1

L∑
l=1

L∑
k=1

(−1)l + (−1)l+k

2
φ2
α(k)φ2

α(k) =
1

L

L∑
α=1

(
L∑
k=1

(−1)kφ2
α(k)

)2

, (3.33)

where φα(i), with 1 ≤ α, i ≤ L are the localized single particle eigenstates of the quadratic
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Hamiltonian (3.32), and we assumed L even (so that L−1
∑L

l=1(−1)l = 0). This solvable
case is interesting as it can be analyzed deeper into the weak disorder limit.

Fig. 3.1 shows the imbalance as a function of J/h, as obtained by exact diagonalization.
At small J/h a linear cusp with the slope predicted in (3.31) (using Jz = 0, Jx = J) is
seen. For large J/h, Î decays algebraically, as (J/h)−2. This scaling can be understood
by writing

φ2
α(k) =

xαk
ξ
e
− |k−rα|

ξ , (3.34)

where rα denotes the localization center of φα, ξ its localization length (we are neglecting
its energy dependence), and the xαk are positive random variables of O(1) that capture
the fluctuations of the squared amplitudes under the exponentially decaying envelope.
Partitioning the chain into segments of length l = bξc and approximating the xαk as
uncorrelated variables we obtain:

Î ≈ 1

L

L∑
α=1

 L/l∑
R=1

(−1)R l
e−|R−Rα|

ξ

R l∑
k=(R−1)l

(−1)kxαk

2

≈ 1

L

L∑
α=1

 L/l∑
R=1

(−1)R l
e−|R−Rα|√

ξ

2

∼ c

ξ
∼ c

(
J

h

)2

,

(3.35)

where Rα is the block containing the localization center rα, and we have used that in the
weak-disorder regime ξ ∼ (J/h)2 [119]. The scaling (3.35) is verified numerically in Fig.
3.1. We note that in [151] a different scaling of the form 1/ξ2 was obtained for the same
quantity. The discrepancy with Eq. 3.35 arises because the fluctuations of the amplitudes
within a correlation length were neglected in that work.

Let us finally comment on the qualitative effects of fermionic interactions. The addition
of a term U

∑L
i=1 nini+1 (the equivalent of Ising interactions) to the Hamiltonian (3.32)

may have opposite effects, depending on the value of J/h. For J/h� 1, the interaction
broadens the distribution of the energy denominators, and thus acts as an additional
source of disorder, which reduces the deviation of 〈Î〉dis from the classical limit. The
same holds in the magnetic analogue as confirmed by Eq. (3.31). For larger J/h > 1,
the single particle localization length becomes substantial. The dominant effect of
interactions is then to mediate (virtual) scattering between single particle states, as
discussed in Ref. [72, 20]. One expects that this suppresses the remanent imbalance, as
was indeed observed in the experiments of Ref. [151]. For large enough interactions the
inelastic scattering processes induce delocalization, as reflected by a breakdown of the
locality of the conserved quantities σ̂k discussed in the previous chapter. One expects the
order parameter to vanish at a U -dependent critical hopping J∗(U)/h. The perturbative
arguments in the previous chapter predict that, for ξ � a with a the lattice constant,
the localized phase is stable for U < U∗, where U∗ ∝ δξ/ log (W/δξ) with W the total
bandwidth of the non-interacting Hamiltonian (3.32), δξ = 1/νξ and ν the density of
states. In one dimension, ξ � a corresponds to J/h � 1, implying W ∼ 1/ν ≈ J and
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ξ ≈ (J/h)2. This gives

U∗(J) ∼ J

(h/J)2 log [(J/h)2]
, (3.36)

modulo the correction due to spectral diffusion discussed in Sec. 2.2.6.

3.3.2 Exploiting numerical approaches

We conclude the chapter with a comment: since the simple formula (3.7) is derived under
the sole assumption that the conserved operators have spectrum ±1, it could be used
in conjunction with the numerical recipes that have been recently devised to construct
pseudo-spin operators by diagonalizing the Hamiltonian iteratively [120, 135, 145, 146],
by applying RG schemes [136, 173, 121], or by variational procedures [131, 88]. This
would allow one to go beyond the perturbative regime and to explore how the order
parameter vanishes at the delocalization transition, or whether it exhibits a non-trivial
scaling with the system size, potentially reflecting aspects of multifractality of the critical
wave functions.
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Appendix

3.A Expression for the local magnetization (Eq. 3.7)

In this Appendix we derive the identity (3.7). The operator in Eq. (3.5) is rewritten as

∑
α

Pασ
z
jPα =

∑
i1=±1

∑
i2=±1

· · ·
∑
iL=±1

L∏
k=1

P (ik) σ
z
j

L∏
k=1

P (ik), (3.37)

where we introduced the projectors:

P (ik) ≡
1 + ikσ̂k

2
. (3.38)

To derive Eq. (3.7), we make use of the operator identity AB = BA + [A,B] together
with: [

A,
L∏
k=1

Bk

]
=

L∑
k1=1

(
k1−1∏
k=1

Bk

)
[A,Bk1 ]

 L∏
k=k1+1

Bk

 . (3.39)

For

A(1) = σzj , B(1) =

L∏
k=1

Bk =

L∏
k=1

P (ik), (3.40)

the above identities imply

L∏
k=1

P (ik) σ
z
j

L∏
k=1

P (ik) =

L∏
k=1

P (ik)

σzj +

L∑
k1=1

[
σzj ,

ik1 σ̂k1

2

] L∏
k=k1+1

P (ik)

 . (3.41)

Applying (3.39) once more with

A(2) =

[
σzj ,

ik1Ik1

2

]
, B(2) =

L∏
k=k1+1

P (ik) (3.42)
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gives

L∏
k=1

P (ik)

[
σzj ,

ik1 σ̂k1

2

] L∏
k=k1+1

P (ik) =

L∏
k=1

P (ik)

[σzj , ik1 σ̂k1

2

]
+

L∑
k2=k1+1

[[
σzj ,

ik1 σ̂k1

2

]
,
ik2 σ̂k2

2

] L∏
k=k2+1

P (ik)

 .

(3.43)

Further iterations with

A(n) =

[[[
σzj ,

ik1Ik1

2

]
, · · ·

]
,
ikn−1Ikn−1

2

]
, B(n) =

L∏
k=kn−1+1

P (ik) (3.44)

finally leads to

L∏
k=1

P (ik) σ
z
j

L∏
k=1

P (ik) =

L∏
k=1

P (ik)

σzj +
L∑

N=1

∑
kN>···>k1

[[[
σzj ,

ik1 σ̂k1

2

]
, · · ·

]
,
ikN σ̂kN

2

] .

(3.45)

The identity (3.7) is recovered using that ik ∈ {±1} and that∑
ik=±1

P (ik) = 1. (3.46)

3.B Expression for the rotated operators (Eq. 3.27)

In this Appendix we justify the ansatz (3.27) and derive the expression for the coefficients.
The ansatz (3.27) is motivated by the following considerations: the first-order truncation

σ̂k = σzk + δσ̂
(1)
k = σzk +

∑
ρ,τ±1

(
A(k)
ρτ O

(k)
ρτ +B(k)

ρτ ∆(k)
ρτ

)
(3.47)

with O(k)
ρτ ,∆

(k)
ρτ given in (3.13), exactly commutes with the reduced Hamiltonian (3.26),

that can be written as

H(k) = H0 − Jxσxkσxk+1 = H0 − Jx
∑

ρ,τ=±1

(
O(k)
ρτ + ∆(k)

ρτ

)
≡ H0 + U (k). (3.48)

This can be deduced from (3.9) setting U → U (k) and ∆J
(n)
k = 0 ∀n, noticing that[

U (k),∆σ̂
(1)
k

]
= 0 and thus that the perturbative expansion ends at first order. To impose

the binarity of the spectrum, it is necessary to reintroduce the ∆J
(n)
k terms in order to
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cancel the terms Î2
k − 1. The latter are proportional to:

(
σ+
k σ

+
k+1 + h.c.

)2
=

1 + σzkσ
z
k+1

2
= P

(k)
1,1 + P

(k)
−1,−1,(

σ+
k σ
−
k+1 + h.c.

)2
=

1− σzkσzk+1

2
= P

(k)
1,−1 + P

(k)
−1,1,

(3.49)

where P (k)
ρ,τ is defined in (3.24). The observation that

1

2

{
σzk, P

(k)
1,−1 − P

(k)
−1,1

}
=

1

2

{
σzk,

σzk − σzk+1

2

}
= P

(k)
1,−1 + P

(k)
−1,1,

1

2

{
σzk, P

(k)
1,1 − P

(k)
−1,−1

}
=

1

2

{
σzk,

σzk + σzk+1

2

}
= P

(k)
1,1 + P

(k)
−1,−1,

(3.50)

suggests to consider the form (3.27). We now determine the coefficients in (3.27). The
condition

[
σ̃k, H

(k)
]

= 0 imposes:

Ã(k)
ρτ (hk − hk+1 + Jz(τ − ρ)) + Jx

(
1 + C(k)

ρτ

)
= 0

B̃(k)
ρτ (hk + hk+1 − Jz(τ + ρ)) + Jx

(
1 +D(k)

ρτ

)
= 0,

(3.51)

from which (3.15) are recovered for C(k)
ρτ = 0 = D

(k)
ρτ . This follows from:[

σ̃k, H
(k)
]

=
[
σzk, U

(k)
]

+∑
ρτ=±1

([
C(k)
ρτ K

(k)
ρτ +D(k)

ρτ J
(k)
ρτ , H

(k)
1

]
+
[
Ã(k)
ρτ O

(k)
ρτ + B̃(k)

ρτ ∆(k)
ρτ , H0

])
,

(3.52)

together with:[
σ+
k σ
−
k+1 + σ−k σ

+
k+1, H0

]
= −2

[
hk − hk+1 − Jz(σzk−1 − σzk+1)

] (
σ+
k σ
−
k+1 − σ−k σ+

k+1

)[
σ+
k σ

+
k+1 + σ−k σ

−
k+1, H0

]
= −2

[
hk + hk+1 + Jz(σ

z
k−1 − σzk+1)

] (
σ+
k σ

+
k+1 − σ−k σ−k+1

)[
σzk, U

(k)
]

= −2Jx
(
σ+
k σ
−
k+1 − σ−k σ+

k+1 + σ+
k σ

+
k+1 − σ−k σ−k+1

)[
σzk+1, U

(k)
]

= −2Jx
(
−σ+

k σ
−
k+1 + σ−k σ

+
k+1 + σ+

k σ
+
k+1 − σ−k σ−k+1

)
.

(3.53)

Using (3.49) and (3.50), we obtain that Ĩ2
k = 1 is satisfied provided(

Ã(k)
ρτ

)2
+
(
C(k)
ρτ

)2
+ 2C(k)

ρτ = 0,(
B̃(k)
ρτ

)2
+
(
D(k)
ρτ

)2
+ 2D(k)

ρτ = 0

(3.54)

for each choice of τ, ρ = ±1. It can be checked that Eqs.(3.51), (3.54) are solved by
(3.29). Similar expressions are obtained for the operator σ̃k+1.
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4 When a finite “bath” enhances localiza-
tion: a quantum Zeno effect

Localization is a quantum phenomenon, having its root in the discreteness of the local
spectrum which causes the suppression of the local hopping (or scattering) processes
by making them off-shell. Such a mechanism requires the system to be isolated: in the
presence of an infinite environment with continuous spectrum, the particles can draw
from it the energy required to undergo on-shell transitions. This raises the following
question: does the interaction of a localized systems with additional “bath-like” degrees
of freedom always restore transport and ergodicity?

Remarkably, this is not the case: the coupling of a localized system to a finite or “small
bath” (i.e. a bath with a finite number of degrees of freedom) can result in a phenomenon
of bath-induced localization, in which the suppression of transport is actually enhanced
by the strong coupling to the small bath. In this chapter we address an example of this
phenomenon, focusing on the case of a single propagating degree of freedom.

The chapter is structured as follows: Sec. 4.1 introduces the problem and summarizes
the results. In Sec. 4.2, an adaptation of the forward approximation scheme to the
wave-functions is discussed, and applied in Sec. 4.3 to the estimate of the boundary
of stability of the localized regime for a single particle coupled to a small bath. The
mechanism by which the bath enhances the particle localization at strong coupling is
discussed. A comparison of the analytics with exact diagonalization is given in Sec. 4.4.
We conclude the chapter with a comment on the role of dimensionality, Sec. 4.5.

4.1 Coupling a disordered single particle to a “small bath”

4.1.1 When does a finite set of degrees of freedom act as a bath?

It is common wisdom that localization is destroyed when coupling the system to a
delocalized bath with a continuous density of states, such as a phonon bath. In the single
particle case, transport is restored even at very small temperatures, since phonon-assisted
hopping between single particle states localized in different regions of space gives rise
to a non-zero “variable range hopping” conductivity [87]. Even with phonons that are
marginally localized (i.e., localized at all non-vanishing frequencies with a localization
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length that diverges on approaching the zero frequency limit), a similar variable-range
hopping occurs, although it involves the exchange of a number of phonons which diverges
in the low temperature limit [13]. Likewise, in the many-body case it was argued in
[127, 92] that, when coupling weakly a localized system to a thermodynamically large
bath, the exact eigenstates of the combined system and bath immediately become thermal,
while the spectral functions of local operators continue to show signatures of localization
up to a crossover coupling that is independent of the size of the bath.

The question addressed in this chapter is however different, as it concerns the coupling
to a finite number of degrees of freedom having discrete spectrum, which we refer to
as a “small bath”. In particular, it can be formulated in the following way: how many
degrees of freedom are needed in such a small bath in order for it to delocalize the
system? For this question to be meaningful, we assume that the bath is protected against
localization, in such a way that the (strongly) localized system does not localize the
degrees of freedom in the bath [126]. For simplicity, we restrict the discussion to a single
propagating degree of freedom, without however imposing restrictions on the strength of
the coupling to the bath.

4.1.2 A simple model

We now introduce a simple model for the phenomenon of “bath-induced localization”.
We consider the joint system of particle and finite bath to be described by an Hamiltonian
of the form

H = Hsys +Hbath +Hcouple. (4.1)

We take the single particle Hamiltonian to be of the Anderson form,

Hsys = −t
∑
〈ij〉

c†icj +
∑
i∈Λ

εic
†
ici, (4.2)

on a d-dimensional regular lattice Λ of Ld sites, with the εi extracted from the uniform
distribution [−W,W ]. In (4.2), the tensor product with the identity operator in the
Hilbert space of the bath is omitted.

The small bath is modeled as a quantum dot, or a zero-dimensional system. This
guarantees that the coupling to the localized particle does not introduce any spatial
disorder in it, as the system couples uniformly to the entire bath (from the system’s point
of view, the bath is zero dimensional). We further assume that the latter has bandwidth
Ω, and can be in any one of N possible states, so that its level spacing is δ ≈ Ω/N . In the
limit N →∞ the spectrum might be continuum. The Hamiltonian of the bath may then
be modeled simply as a properly rescaled N ×N Hermitian random matrix taken from
the GOE ensemble,

Hbath = ω
∑
α′,β′

Mα′,β′ |α′〉〈β′| ≡ ωM, (4.3)
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Table 4.1: Model’s parameters

Particle hopping and disorder t,W
Coupling between particle and bath λ
Size of the bath’s Hilbert space N
Bandwidth of the bath’s Hamiltonian Ω

Rescaled bandwidth of the bath ω = Ω/(2
√

2N)
Average gap between bath’s eigenstates δ
Line broadening of bath’s eigenstates ∆

where M is a GOE matrix distributed according to: P (M) ∝ e− 1
2

TrM2
with

〈Mα,β〉 = 0, 〈M2
α,β〉 = 1/2 for α 6= β, 〈M2

α,α〉 = 1. (4.4)

For simplicity of notation, we have introduced the variable

ω =
Ω

2
√

2N
, (4.5)

and in (4.3) the identity operator in the space of the particle is also omitted. The GOE
statistics of the bath is representative of it being in a delocalized phase. The eigenstates
of (4.3) are labeled by {α}α=1,...,N , with eigenvalues Eα. The density of levels Eα is
given by the semicircle law [115]

ρ(E) =
8N

πΩ2

√(
Ω

2

)2

− E2, (4.6)

and hence δ ≡ 1/ρ(0) = πω/
√

2N in the middle of the spectrum.

The coupling between the system and the small bath is chosen of the following form:

Hcouple = λ
∑
i∈Λ

∑
α,β

M
(i)
α,β c

†
ici ⊗ |α〉〈β| = λ

∑
i∈Λ

ni ⊗M (i), (4.7)

i.e. a coupling of strength λ which can scatter the bath from any eigenstate to any other
eigenstate (irrespective of the energy transfer involved) with a random amplitude M (i)

α,β .
This is the simplest coupling that does not introduce localization into the bath, at the
same time allowing for energy to be transferred. For simplicity, we choose the amplitudes
of M (i) to form a random GOE matrix as well. The main parameters of this model and
their mutual relations are summarized in Table 4.1.

The hopping problem in the presence of a bath is represented pictorially in Fig. 4.1(a),
for the case d = 1. For every position of the particle in Λ, there is a “tower” of N states,
which differ only in the configuration of the bath. This tower of states has bandwidth
∼ ω
√
N and level spacing ∼ ω/

√
N . A nearest neighbor hop of the particle leaving the

state of the bath unchanged causes an energy shift of magnitude W in the weak λ limit.
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Henceforth, we assume that

ω√
N
< W < ω

√
N, (4.8)

so that the “offset” of the tower of states on neighboring sites is bigger than the level
spacing in the tower, but nonetheless adjacent towers do overlap. Right at the edge of
the towers of states there are Lifshitz tails - states that are not near degenerate with any
nearby states. However, we consider the properties of typical states well away from the
edges of the spectrum, where the towers of states all overlap.

4.1.3 The outcome: an unexpected phase diagram

To determine the effect of the bath on the single particle, we analyze the stability of
localization as a function of the coupling λ. We identify the region of parameters in
which the perturbation theory in t is convergent, and compute its boundary in the various
coupling regimes. The outcome of the analysis is illustrated qualitatively in Fig. 4.1 (b).

(a)

t

�

weakly localized or delocalized

ZenoAnderson

localized

p
W!

23/4N1/4

(b)

Figure 4.1: (a) Figure illustrating the basic setup: the band of states on every site i has
bandwidth ω

√
N and level spacing ω/

√
N . The red line indicates the hoppings between

sites with no change in the state of the bath, relevant in the weak coupling regime. The
blue line indicates hopping processes between states that are nearly on shell, allowed
by the system-bath coupling at λ = λc ∼

√
ωW/N1/4. (b) Schematic phase diagram for

the single particle, with a boundary indicating the stability of the locator expansion. The
locator expansion is maximally unstable around λc, corresponding to the crossover (for
small t) from Anderson localization to quantum Zeno localization. For λ > λc, the phase
boundary is approximately linear in λ, whereas for λ < λc is scales as 1/λ.
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An interesting feature emerges from the perturbative treatment: the effect of the bath on
the particle’s localization is non-monotonic in the coupling λ. At weak couplings, the bath
facilitates transport by allowing the system to borrow from it the energy required to get
on shell. Above a certain value of the coupling, however, the bath enhances localization.
As we discuss in Sec. 4.3.2, the bath-induced localization originates in an orthogonality
catastrophe, whereby the bath ‘dresses’ the system and suppresses its hopping matrix
element. We refer to this regime as the “Zeno-localized” regime, due to its similarity with
the quantum Zeno effect [26, 95, 118], where frequent measurements of the position of
a particle impede its motion. As a result of this effect, in the localized regime (for weak
hopping t) the single particle exhibits a crossover between an Anderson localized regime
and the quantum-Zeno localized regime.

The detailed calculation of the “phase boundary” in Fig. 4.1(b) is performed in Sec.
4.3.3. We refer to the region of convergence of the perturbative expansion as the regime
of “strong localization”. When discussing one or two dimensions, we might denote the
large-t region of the phase diagram as the regime of “weak localization”, following the
considerations in Secs. 1.4.6 and 4.5. We point out that it is essential, for the arguments
given in the following sections, that the system contains a single particle. The many-body
case is much harder to discuss, as indirect couplings of the particles through the bath can
occur.

4.2 A perturbative expansion for the eigenstates

The phase diagram discussed in the previous section is determined examining the lo-
calization properties of the particle’s eigenfunctions within a forward-approximation
scheme. To this aim, we formulate in this section a criterion for localization, which is
given in terms of the convergence of the perturbative expansion of the wave-function
amplitudes themselves, rather than of the self energies as in Sec. 1.4.1. This connects
also to the content of Chapter 2.

To keep the discussion as general as possible, we consider a generic graph G with N
sites labeled by i, and define an effective single particle problem on it, with a disordered
Hamiltonian

H =
∑
i∈G

Ei c
†
ici + V

∑
〈i,j〉

(
c†icj + c†jci

)
. (4.9)

The edges 〈i, j〉 define the geometry of the graph G. We define the distance d(a, b) between
two arbitrary sites a, b ∈ G as the minimum number of edges in the graph connecting
them, and refer to it as the graph distance in the following. For N finite, we denote
with ψα the eigenfunctions of the Hamiltonian (4.9), with eigenvalues Eα. We derive
a perturbative expansion for the eigenfunctions’ amplitudes within the Lowest Order
Forward Approximation, henceforth LOFA, which amounts to expanding the amplitude at
each site to lowest order in the hopping V .

Similarly to the self energies discussed in Sec. 1.4.1, the matrix elements of the resolvent
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between two states associated to the sites a, b ∈ G admit an expansion in terms of
self-avoiding paths p ∈ spaths(a, b) in the graph G connecting the sites a and b, p =
(a, 1, 2, ..., b):

Gba(E) = 〈b| 1

E −H |a〉 =
1

E − Ea − Sa(E)

∑
p∈spaths(a,b)

∏
i∈p

V

E − Ei − S(p)
i (E)

, (4.10)

where we introduced the compact notation S(p)
i (E) for the self-energy-like corrections

obtained resumming the loops around site i, never crossing site i again, nor any of the
sites (a, 1, · · · , i− 1) already visited by the non-repeating path p. The local self energy
Sa(E) is related to the local Green function by the usual identity

Ga(E) ≡ 1

E − Ea − Sa(E)
, (4.11)

and it is obtained as the sum of the amplitudes of all the closed paths in which site a
appears only as starting and ending point. To lowest order in V ,

Sa(E) =
∑
j∈∂a

V 2

E − Ej
+O(V 3), (4.12)

where ∂a is the set of nearest neighboring sites of a. From the spectral decomposition of
the resolvent it follows

Gba(E) =
∑
α

ψα(b)ψ∗α(a)

E − Eα
, (4.13)

so that, assuming no degeneracy of the eigenvalues, the residue at E = Eα gives

lim
E→Eα

(E − Eα)Gba(E) = ψα(b)ψ∗α(a), (4.14)

The expression for the eigenfunction is obtained as follows: the eigenenergy Eα satisfies
Eα = Ea + Sa(Eα), thus the first factor of (4.10) has a pole at Eα with residue |ψα(a)|2,
as it follows from (4.11) and (4.14). Then:

lim
E→Eα

(E − Eα)Gba(E) = |ψα(a)|2 lim
E→Eα

∑
p∈spaths(a,b)

∏
i∈p

V

E − Ei − S(p)
i (E)

, (4.15)

which gives

ψα(b) = ψα(a)
∑

p∈spaths(a,b)

∏
i∈p

V

Eα − Ei − S(p)
i (Eα)

, (4.16)

with ψα(a) obtained from Sa(Eα) using (4.14). From (4.16), it is possible to obtain the
wave function amplitudes (more precisely, the ratio ψα(b)/ψα(a) between the amplitudes)
in forward approximation, by neglecting the self-energy-like corrections. The lowest
order expansion in V is easily obtained: assume that α labels an eigenstate localized
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at site a for V → 0. Since Sα = O(V 2), to lowest order Eα → Ea, ψα(a) → 1, Si → 0,
giving

ψα(b) =
∑

p∈spaths∗(a,b)

∏
i∈p

V

Ea − Ei
, (4.17)

where the set spaths∗(a, b) ⊂ spaths(a, b) contains only the shortest paths from a to b, of
length d(a, b).

It is immediate to realize that this expansion is analogous to the one exploited in Sec.
2.2.2 for the coefficients A(α)

I,J of the conserved operators (or, equivalently, for the
wave-function amplitude of the effective single-particle problem). Indeed, in that case,
neglecting the second term in Eq. 2.30 is equivalent to restricting only to the shortest
paths connecting the root (α, α) to a given site (I,J ), since the latter are the paths that
jump from one generation to the next, without “excursions” within the same generation1.

When the single particle problem on G is localized, the wave functions are expected to be
exponentially decaying at large distance. More precisely, for a state ψα with localization
center a, it is expected that there exists a ξ > 0 such that:

P
(

log |ψr|2
r

≤ −1

ξ

)
→ 1 for r →∞, (4.18)

where

ψr ≡ max
b: d(b,a)=r

|ψα(b)|, (4.19)

the probability is over the disorder realizations, and a limit of infinite size of the graph is
assumed.

When the amplitudes in (4.19) are expanded as in (4.17), the condition (4.18) reduces
to the statement that the lowest order FA series is asymptotically exponentially bounded,
and thus convergent. Thus, one recovers the criterion (2.34), with z = exp [1/(2ξ)].
A “lowest order” estimate of the localization length of ψα is obtained identifying the
minimum value of ξ for which Eq. (4.18) holds true. Moreover, in this approximation the
criterion (4.18) can be interpreted as the requirement that resonances do not proliferate
at asymptotically large distances. Indeed, an amplitude of O(1) at a site b at distance r
from the localization center a corresponds to a resonance between the two sites a, b. As
a matter of fact, the corresponding two sites problem can be considered as a two-level
system with reduced Hamiltonian

h =

(
0 hr
hr ∆

)
, (4.20)

1Note however that in the operator setting, the “forward approximation” introduces a further simplifica-
tion, that is that certain sites that are reachable from the root only through hops within the same generation
are completely neglected.
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where ∆ = Ea − Eb, and

hr = V
∑

p∈spaths(a,b)

∏
i∈p

V

Ea − Ei − S(p)
i (Ea)

, (4.21)

where the products are taken over all sites in the path, excluding a, b. The sites are
resonant when |∆| < hr. Considering hr to lowest order in V , one finds that this is
equivalent to |ψ(b)| & 1, with ψ(b) computed in the LOFA. Thus, with (4.18) one is
probing the statistics of resonances within this approximation, and requiring that the
probability to find at least a resonant site at any sufficiently large distance r from the
localization center decays to zero in the localized phase.

4.3 The forward approximation analysis

We set up the analysis of the single particle problem in the perturbative framework
discussed in 4.2, suitably modified to account for the presence of the small bath.

In the absence of coupling (λ = 0) the usual perturbation theory is recovered: for t = 0,
the bands of states in Fig. 4.1(a) are decoupled for different sites. Although the statistics
of the bath alone are Wigner-Dyson, the overall spectral statistics are Poisson, due to the
presence of the Ld local integrals of motion ni: the spectrum is the superposition of Ld

copies of Hbath spectra, shifted by the random energies εi. Meanwhile, the eigenstates
take the form |Ψ〉 = |i〉 ⊗ |α〉, where |α〉 is an eigenstate of the bath Hamiltonian (4.3)
with energy Eα. On turning on non-zero t (but still at λ = 0), the system becomes able
to execute hoppings, which however do not involve any change in the state of the bath.
A nearest neighbor hop thus typically involves an energy change of order W , so that
strong localization occurs for t . W , up to logarithmic corrections (see Sec. 1.4.4) As
long as the particle is localized, there remain Ld local integrals of motion (the occupation
numbers of the localized eigenfunctions), and the spectral statistics thus remain Poisson.

To discuss the effect of a non-zero coupling λ, we move from the following observation:
for the model (4.3), (4.7), it is possible to define a local bath Hamiltonian

H
(i)
bath = ωM + λM (i), (4.22)

with eigenstates |α(i)〉 satisfying

H
(i)
bath|α(i)〉 = Eα(i)

|α(i)〉, (4.23)

and some average energy gap between the eigenvalues that we denote with δ̂(λ, ω).
In the following, we shall use the simplified notation |αi〉 to denote eigenstates of the
Hamiltonian (4.22): in this notation, the index i labels the site-dependent Hamiltonian,
and not its various eigenstates that are instead labeled by the running index α.

For t = 0 in (4.2), the sites i ∈ Λ are decoupled, and the eigenstates of the joint particle
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and bath system are of the form

|Ψt=0〉 = |i〉 ⊗ |αi〉. (4.24)

When switching on the hopping t, the expansion in the lowest order forward approxima-
tion in t of a wave-function |Ψ〉 with localization center at a site i = 0 reads:

|Ψ〉 = |0〉 ⊗ |α0〉+
∑
α1

A1,α1 |1〉 ⊗ |α1〉+
∑
α2

A2,α2 |2〉 ⊗ |α2〉+ ...+

· · ·
∑
αn

An,αn |n〉 ⊗ |αn〉+ ... ,
(4.25)

where for simplicity we assumed d = 1. The amplitudes An,αn in (4.25) are of order tn,
and can be written as

An,αn =
∑

p∈paths(α0,αn)

Ap, (4.26)

where

Ap =
n∏
i=1

t〈αi−1|αi〉
εi + Eαi − ε0 − Eα0

(4.27)

is the amplitude of one particular path from α0 → αn, described by a particular sequence
p = (α1, α2, ..., αn) of eigenstates of the bath Hamiltonians H(i)

bath. The amplitude for the
particle to be at site n equals

∑
αn
An,αn .

The perturbative expansion in the hopping t thus requires to compare the matrix element
of a transition |i〉 ⊗ |αi〉 → |j〉 ⊗ |βj〉, that is t|〈αi|βj〉|, with the energy difference
∆E = εi − εj + Eαi − Eβj . The bath induces a site-dependent renormalization of the
hopping,

t→ tαβij = t|〈αi|βj〉|, (4.28)

which now depends on the overlap between eigenstates of the bath Hamiltonians (4.22)
at different sites. The effective energy gap is also dominated by the bath: the latter
allows to optimize the energy denominator over the states |αj〉, in such a way that
|Eαi − Eβj | ∼ W + δ̂(λ, ω), provided that the corresponding matrix element is not
suppressed.

In the following, we discuss this modified locator expansion, focusing separately on the
different regimes of perturbatively weak coupling λ < ω/

√
N , of strong coupling λ > ω

and of intermediate coupling ω/
√
N < λ < ω.
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4.3.1 Weak coupling: the Anderson localized regime

Let us consider the bath Hamiltonians (4.22): the eigenstates of the bare Hamiltonian
(4.3) start to mix with each other when λ becomes comparable to the level spacing
∼ ω/

√
N ; for λ < ω/

√
N , the eigenstates of (4.22) are only slightly deformed from

site to site. In this case, the hopping between neighboring sites is not enhanced by the
presence of the bath. Indeed, consider the first order term in the amplitude (4.27). The
optimal locator is associated to hopping processes leaving the bath untouched, i.e., such
that the states |α0〉 and |α1〉 are perturbatively closed, being a perturbation of the same
eigenstate |α〉 of ωM . In this case the first order correction to the localized eigenstate
(4.25) reads:

δΨ ∼ t

W

(
1− λ2

2δ2

)
, (4.29)

as it follows from computing the overlap 〈α0|α1〉 perturbatively in λ/δ. The locator
associated to hopping processes changing the state of the bath, |α0〉 → |β1〉 with Eα0 −
Eβ1 ∼W , is at most:

δΨ =
t

ε1 − ε0
max
β1

λ

ε0 − ε1 + Eα0 − Eβ1

∼ tλ

Wδ
<

t

W
.

So in this regime, the bath is typically not excited by the particle traveling. This is
illustrated in Fig. 4.1(a): the solid red lines indicate the trajectory followed by a
particle hopping without changing the state of the bath. The criterion for breakdown
of the locator expansion derived imposing that the optimal locator (4.29) is O(1) reads
tc ∼ W (1 − λ2/(2δ2)), and it is thus only slightly altered by a non-zero λ. For t < tc
strong localization occurs, the exact eigenstates are effectively product states of system
and bath, and the entropy of entanglement of the system with the bath is close to zero.

4.3.2 Strong coupling: the quantum Zeno regime

Consider now the opposite limit of strong λ. At t = 0, a λ > δ causes the hybridization
of the levels in the bath. For λ � ω, the Hamiltonian of the bath is dominated by the
coupling M (i) to the particle, and the bath levels are hybridized in a radically different
way for each position i of the particle. The eigenstates of the different H(i)

bath in (4.22)
have overlap:

〈αi|βj〉 = δα,βδi,j + (1− δi,j)xij/
√
N, (4.30)

where the δi,j is a Kronecker delta function and xij is a Gaussian random variable
< xij >= 0 and < x2

ij >= 1.

We turn on a small hopping t and consider the problem (4.25). Any hop in the system
|i〉⊗|αi〉 → |j〉⊗|βj〉 strongly modifies the state in the bath. By inspecting (4.28) together
with (4.30), one realizes that in this regime a direct hopping (blue line in Fig. 4.1(a)),
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which stays on shell to a precision δ ∼ ω/
√
N is suppressed because the corresponding

matrix element is.

This can be formalized realizing that the large coupling problem can be mapped to an
equivalent Bethe lattice problem with connectivity κ ∼ N (counting the possible states
|βj〉: in higher dimension, a factor of d has to be added), effective hopping

τ = t
1√
N

(4.31)

and effective disorder

W = λ
√
N. (4.32)

The effective disorderW is determined from the bandwidth of the local bath Hamiltonians
H

(i)
bath: the latter equals

√
2Nω2 (1 + λ2/ω2) ∼ λ

√
N for λ > ω. The known Bethe lattice

results, see Eq. 1.66, imply that the eigenstates are localized for

t . λ/ lnN. (4.33)

Thus, at large λ a very large hopping is needed for the perturbative expansion to break-
down.

The effect of the bath in this regime is twofold: on one hand, it enlarges the effective
bandwidth of the single particle problem; on the other hand, it suppresses the hopping
because the overlap between bath states corresponding to the particle being on different
sites is itself suppressed. This can be viewed as an orthogonality catastrophe, where
the particle is “dressed” by the bath in a different way depending on which site it is on.
In the limit λ → ∞ the hopping is completely ineffective. This bears some similarities
with the Quantum Zeno effect, namely the fact that a small system coupled with a large
quantum system, possibly a detection apparatus, does not evolve or evolves only into
a given subspace whenever the coupling is too large [58, 56]. In this limit, the exact
eigenstates are simply product states |Ψ〉 = |i〉|αi〉, which, however, are exact eigenstates
of the system-bath coupling. The entropy of entanglement of system and bath in an
eigenstate is again zero as for λ small, and the particle is localized on a single site.

4.3.3 The intermediate regime

In the intermediate regime, the coupling λ has to be treated non-perturbatively. This
requires to compute the overlap between bath states in (4.28) as λ is varied. We do this
as a first step in the analysis. Turning on a coupling λ > ω/

√
N causes the eigenstates

of ωM within an energy window ∆ to hybridize. The width of this energy window
may be determined by calculating the decay rate of an eigenstate |α〉 of ωM due to
the perturbation V = λM (i) using Fermi’s golden rule. Given a density of final states
δ−1 =

√
2N/πω the calculation indicates that the decay rate is

∆ ' 2πλ2

√
2N

πω
, (4.34)
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and suggests that the broadened spectral line is a Lorentzian with width ∆. Thus, the
eigenstates |βi〉 of ωM + λM (i) should be wave packets of eigenstates |α〉 of ωM , with

|〈βi|α〉| =
√

δ∆/π

(Eβ(i)
− Eα)2 + ∆2

. (4.35)

As λ → ω, ∆ → 2ω
√

2N = Ω indicating complete hybridization of all states. For
λ→ δ/

√
2π, the decay of |α〉 is no longer to a continuum of states, and ∆→ δ, indicating

no hybridization. Thus, at its boundaries of validity the Fermi’s golden rule correctly
matches on the weak and strong λ limits.

The overlap between the eigenstates of the H(i)
bath for different sites i can be computed

in a similar fashion, with an analogous result. We report this short calculation in the
following.

Consider an eigenstate |α(i)〉 of H(i)
bath, and the perturbation λ(M (i+1)−M (i)) ≡ λV .

The new H
(i)
bath + λV = H

(i+1)
bath has eigenstates |α(i+1)〉. We exploit once more a

simplified notation, using |αi〉 and |αi+1〉 for the two states, and Ei, Ei+1 for their
energies. The overlap is derived from the identities:

〈αi|
1

E −H(i+1)
bath

|αi〉 =

∫
dE′ρ(E′)

1

E − E′ |〈αi|α
′〉|2 =

1

E − Ei − Sαi(E)
, (4.36)

where Sαi is the self-energy function on the state |αi〉, ρ is the density of states
of H(i+1)

bath and |α′〉 denotes a state in the spectrum with energy E′. We take E →
Ei+1 + i0+, and take the = part of (4.36) which gives:

πρ(Ei+1)|〈αi|αi+1〉|2 =
∆

(Ei+1 − Ei)2 + ∆2
, (4.37)

where ∆ = =Sαi(Ei+1) and we have assumed that 〈αi|α′〉 is some smooth function
of the energy (this is true on average). At second order in the perturbation it holds

Sαi(E) ≈ λ2

∫
dE′ρ(E′)

|〈α|V |α′〉|2
E − Eβ

, (4.38)

and thus

∆ = =Sαi(Ei+1) ≈ 2λ2πρ(Ei+1) (4.39)

using that |〈α|V |α′〉|2 = 2, again true on average. Setting ρ(E) ≡ 1/δ we obtain

P (Ei, Ei+1) ≡ |〈αi|αi+1〉|2 ∼
∆δ/π

(Ei − Ei+1)2 + ∆2
, (4.40)

in analogy with (4.35).
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To get an intuition on the non-monotonic dependence of localization on λ, we first
analyze the magnitude of the first order term in t in (4.25), postponing the analysis of
the full expansion to Sec. 4.3.3.

Non-monotonicity from the first order term

Since |εi − εi+1| = O(W ), a direct hopping (blue line in Fig. 4.1(a)) which stays
on shell to a precision δ ∼ ω/

√
N must involve transitions between bath states with

|Ei − Ei+1| ∼W . The amplitude of the overlap between these states may be estimated
by inserting (Ei − Ei+1) ∼W into Eq. (4.40). In this way, one finds that the correction
to the wave function from direct hopping processes is, at leading order in t,

δΨ ∼
∑
α1

t|〈α0|α1〉|
ε1 − ε0 + Eα1 − Eα0

∼
(
t

δ

√
∆δ√

W 2 + ∆2

)
. (4.41)

The non-monotonic behavior in λ is already encoded in (4.41). Indeed, the line broaden-
ing ∆ in (4.34) becomes comparable to W for

λc =

√
Wω

2
√

2N
. (4.42)

Two distinct regimes can be identified:

(i) For λ < λc, it holds ∆ < W , and (4.41) can be approximated by tλ/Wδ: thus,
the locator is enhanced by a factor λ/δ > 1 with respect to its typical value in the
absence of a bath. This expression may be understood as follows: since ∆ < W ,
a direct hop via the blue line in Fig. 4.1(a) is forbidden, as the two bath states
involved have vanishing overlap. Instead, the particle first hops without changing
the state of the bath, going off shell by an amount W , and then the bath relaxes
to bring the system back on shell, to a precision δ. The matrix element for this
two-step process is tλ/W .

(ii) For λ > λc, it holds ∆ > W and the expression (4.41) can be approximated by t/λ,
using that ∆ ∼ λ2/δ. This preludes to the Zeno regime, as the locator is suppressed
for large λ. The same result is obtained by reasoning that for λ > λc, a direct
hopping is not forbidden, since bath states are hybridized over an energy window
∆ > W . However, the matrix elements are suppressed by a factor of

√
Ñ , where

Ñ = ∆/δ ∼ (λ/ω)2N is equal to the number of states involved in the hybridization.
For λ > ω, i.e. in the Zeno regime, Ñ = N .

These considerations illustrate that, when performing a locator expansion in small t, the
successive corrections to the wave function are suppressed by powers of t/λ if λ > λc,
and by powers of tλ/Wδ if δ/

√
2π < λ < λc. This suggests that the boundary of stability

of the perturbative expansion is given by t ' λ and t ' Wδ/λ for large and small λ,
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respectively. In the next section, we discuss the more refined calculation accounting for
all orders in t, which reproduces the first order results up to logarithmic corrections.

Non-monotonicity at any order

For simplicity of notation, we restrict in the following to the case of a single particle in one
dimension, and remark what has to be adapted in case of higher dimension. Following
the reasoning outlined in Sec. 4.2, we determine the probability to have a significant
amplitude at a large distance n from the localization center i = 0 of the eigenstate (4.25).
More precisely, we identify the region of parameters where:

P

(∣∣∣∣∣∑
αn

An,αn

∣∣∣∣∣ < zn

)
n→∞−→ 1 (4.43)

for some z < 1. The convergence radius of the lowest order forward approximation is
determined setting z → 1.

The calculation is similar to the one performed in Chapter 2: the expansion converges
whenever the exponential growth with n of the number of paths (having the particle in
position n in the final state) is compensated by the exponential decay of the probability
of having a single path with atypically large weight of O(1). This is essentially the same
mechanism driving the transition on a Bethe lattice, and occurs in this setting due to the
domination of the sum in (4.43) by a single term. More precisely, the distribution of the
amplitude Ap of a particular path weight (4.27) is fat-tailed. As a consequence, both the
sums (4.26) and

∑
αn
An,αn are very well approximated by their maximum term:∣∣∣∣∣∑

αn

An,αn

∣∣∣∣∣ ' |max
αn

An,αn | ' max
αn

max
p∈paths(α0,...,αn)

|Ap|, (4.44)

which is effectively the maximum over all the paths of length n emanating from α0,
irrespective of the final state of the bath αn. We call this set of paths paths∗(α0). Since
each bath state |αi〉 along the path can be chosen among N possible states, the size of
paths∗(α0) is Nn. Treating the different paths as independent, one recovers:

P
(

max
p∈paths∗(α0)

|Ap| < zn
)
≈ exp [−NnP (|Ap| > zn)] . (4.45)

For a particle in a higher dimensional lattice, the sum (4.26) has to be modified to
account for the fact that two lattice sites at distance n can be connected by multiple
lattice paths of shortest length n, whose number is approximately equal to dn. For each
of these paths the sequence of bath states can be chosen among Nn possibilities. Thus
(4.45) remains valid with the substitution N → Nd.

The estimate of (4.45) requires to compute the large deviations of the random variables
(4.27), taking into account the dependence of the renormalized hopping (4.28) on the
coupling λ, assuming that the latter is in the intermediate regime. The large deviations
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4.3. The forward approximation analysis

for large n are obtained from the generating function of the (4.27), by inversion of the
Laplace transform within a saddle point approximation, following the same scheme as in
Sec. 2.2.4. The generating function at large n is dominated by the maximal eigenvalue
of an integral operator, whose kernel depends explicitly on the parameter

q ≡ W

∆
=

(
λc
λ

)2

, (4.46)

with λc introduced in (4.42). Analytic calculations can be performed in the two limits
q � 1 and q � 1, see Appendix 4.A. In the first case, from (4.43) for z → 1 one obtains
the approximate convergence criterion:

√
2e

π

td

λ
log

(
2W

ω

λ
√
N

t

)
. 1, (4.47)

which is in agreement with the condition t/λ . 1 obtained in Sec. 4.3.3 (ii). In the
second case, one finds the approximate criterion

4e

π

td

W

λ
√
N

ω
log

(
2Wω

λ2
√

2N

)
log

W
t

√
W
√

2N

ω

 . 1, (4.48)

which is again in agreement with the condition tλ/Wδ . 1 obtained in Sec. 4.3.3(i).
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Figure 4.1: Results of analytic calculations in the forward approximation for fixed W = 3,
N = 300, ω = 4 (substitution into Eq. (4.42) gives λc = 0.5). (a) The t − λ phase
diagram; the light region is the regime of convergence of the lowest order forward
approximation. The calculation assumes that states in the bath are hybridized according
to Eq. (4.35), and is thus not applicable at λ < δ/

√
2π. (b) Localization length as a

function of λ, along a horizontal slice through the top diagram that stays always on the
“strongly localized” side of the phase boundary. The maximum is close to λ ≈ 0.3, which
indicates that the system is least localized at this intermediate value of λ. Due to the
nature of the forward approximation, t(λ) and ξ(λ) are underestimated, while the ratio
ξ(λ)/ξ(0) is overestimated.
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Chapter 4. When a finite “bath” enhances localization: a quantum Zeno effect

For intermediate values of q, the saddle point calculation can be performed numerically,
the result being the phase diagram illustrated in Fig. 4.1. The latter confirms that strong
localization is least stable when λ ≈ λc, and becomes more stable both for weak λ (the
Anderson localization limit), and for strong λ (the quantum Zeno limit). The minimum

value of t that can cause breakdown of the locator expansion is tc(λc) =
√
ωW/(2

√
2N).

Thus, for any t the localization length should peak at this value of λ. This is observed in
the analytic calculations (Fig. 4.1), where the localization length at fixed λ is obtained
computing the minimum value zmin for which (4.43) holds true. The same effect is found
also in the numerics discussed in the following section, see Fig. 4.1. We report the saddle
point calculation in Appendix 4.A.

4.4 The exact diagonalization results

To estimate numerically the localization properties of the particle we perform exact
diagonalization in d = 1 and look at the probability distribution of the position of the
particle in the eigenstates |Ψ〉 of the coupled system and bath,

pi =
N∑

αi=1

|〈i, αi|Ψ〉|2. (4.49)

We consider the inverse participation ratios of p,

Iq =

(∑
i

pqi

)−1

. (4.50)

and extract the localization length from I2 ∼ ξd. Additional information is contained in
the entropy of entanglement of the particle with the bath, S = −Tr (ρ ln ρ), where ρ is
the reduced density matrix of the particle, ρ = Tr bath|Ψ〉〈Ψ| with |Ψ〉 an exact eigenstate
of the coupled system and bath. In the present problem the entanglement entropy and
the inverse participation ratios are correlated, since the less the particle is localized, the
more it is entangled with the bath.

The numerical results for a one-dimensional system are presented in Fig. 4.1, and show
the evolution of the inverse participation ratio and entanglement entropy along horizontal
slices taken through the phase diagram in Fig. 4.1(b). The numerics are for t = 1, which
is kept fixed, while the disorder W varies. Note that for W & 2

√
2N/ω ≈ 12 we are

entirely in the strongly localized regime, for any value of λ. The first panel of Fig. 4.1
shows how the inverse participation ratio I2 varies for an infinite size system coupled to
a bath with coupling λ. We have extrapolated the finite size numerics to infinite L by
using a fit of the form

Iq(L) = Iq(∞) + aI/L, (4.51)

which turns out to be a very good fitting form for the data. We observe as expected
a non-monotonic behavior, with weak λ increasing the inverse participation ratio and
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strong λ suppressing it.

The second panel on Fig. 4.1 shows the evolution of the entanglement entropy with cou-
pling λ, extrapolated from the finite size system, analogously to the inverse participation
ratio, using a fit of the form

S(L) = S(∞) + aS/L. (4.52)

We show this finite size scaling in the inset; the results for the finite size scaling of I2

are very similar. At weak λ, the particle becomes more entangled with the bath as λ is
increased, but for larger λ the entanglement entropy becomes a decreasing function of
the coupling, and in the extreme λ→∞ limit one recovers an unentangled product state.
The entanglement entropy is maximized at the same value of λ = λc that maximizes the
inverse participation ratio.

Fig. 4.2 shows how the value of λc, which maximizes both the participation ratio and the
entanglement entropy, varies with W . We compare the numerical result with our analytic
estimate of Eq. (4.42), obtaining a good agreement.

4.5 A comment on the role of dimensionality

The calculation in Sec. 4.3 identifies the regime of strong localization, in which the
perturbative expansion in t is convergent. What happens outside such a regime, i.e. in
the large t region of the phase diagram, is highly sensitive to dimensionality. Indeed, the
same results as for the conventional Anderson problem (see Sec. 1.4.6) are expected:
this follows from the fact that even in the presence of the bath the hopping problem
may be viewed as a (multi band) problem of a fermion moving in a random potential
in the orthogonal symmetry class, and thus he scaling theory results should extend to
this context as well. Based on this, we conclude that in one or two dimensions the
divergence of the locator expansion signals the crossover to weak localization, while in
higher dimension the boundary shown in Fig. 4.1(b) is a true phase boundary separating
localized and delocalized phases.

The arguments in [3] may be used to estimate the dependence of the localization length
on the parameters of the problem, in d = 1, 2. The localization length is simply the length
scale on which g becomes of order one, i.e. g(ξ) = 1. In one dimension the solution of
the scaling equation (Eq. (1.78) with β(g) = d− 2 = −1) gives g(L) ∼ g0/L, where g0 is
the bare conductance at the scale l0. Thus, g = 1 happens on length scales that are only
power law large in g0. In two dimensions the localization length is exponentially large in
g0, g(L) ∼ g0 − c log(L/l0), giving ξ ∼ l0exp(g0/c)). The dependence on the parameters
in (4.1) is obtained identifying the bare conductance g0 with the ratio of matrix element
to level spacing. This parameter takes value g0 ≈ t/W for λ < ω/

√
N , g0 ≈ tλ

√
N/Wω

for ω/
√
N < λ < λc, and g0 ≈ t/λ for λ > λc according to the analysis developed in Sec.

4.3.
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Figure 4.1: Results of exact diagonalization performed for about 50 states in the center
of the band for the parameters t = 1, ω = 4, N = 300, and varying W . The values
of W are chosen so that we span the phase diagram in Fig. 4.1(b). For W < 12, we
slice through the “weak localization” region, whereas for W > 12 we stay always in the
strong localization regime. The entanglement entropy and the participation ratios have
a pronounced maximum close to the (same) hybridization threshold λc. The peak is
sharper when we go through the weak localization regime. Inset. Example of the finite
size scaling of SL for a given value of λ = 0.8 and W = 6. To extrapolate the infinite
size S∞ we used (4.52) with L ranging from 10 through 70, taking around 50 disorder
realizations for each system size.
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Figure 4.2: Value of λc for t = 1 and the different disorders W . In blue we plot the
numerical data, with their errors coming from the resolution in λ at which the plots in
Fig. 4.1 are computed. In dashed green we plot the analytic estimate of Eq. (4.42). We
note that the exact diagonalization data agree well with the analytic prediction.
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Appendix

4.A Derivation of the phase diagram (Fig. 4.1)

To get the distribution of |Ap|, it is convenient to extract all energy scales and to write
the amplitude in terms of a new variable Zn > 0 defined from:

|Ap| =
(
t

W

√
δ

π∆

)n
eZn . (4.53)

The Laplace transform of the probability distribution Pn(Z) of the variable Zn reads:

g(s) =

∫ ∞
0

dZPn(Z)e−sZ . (4.54)

Assuming ε0 + Eα0 = 0 (this gives the transition at the center of the band), we find

g(s) =
1

(s+ 1)n

(
8W

πΩ

)n
g̃(s), (4.55)

where

g̃(s) =
n∏
i=1

∆

4W

∫ Ω
2∆

− Ω
2∆

dEi

[
1−

(
2∆

Ω
Ei

)2
] 1

2

ΞW
∆

(Ei, s) exp
{s

2
log
(
1 + (Ei − Ei−1)2

)}
(4.56)

where the variables Ei ≡ Eαi/∆ are dimensionless and

Ξw(x, s) =
∣∣∣1 +

x

w

∣∣∣s+1
sgn (w + x) +

∣∣∣1− x

w

∣∣∣s+1
sgn (w − x (4.57)

The inversion of the Laplace transform gives

Pn(Z) =
1

2πi

(
8W

πΩ

)n ∫
B
ds

esZ g̃(s)

(s+ 1)n
. (4.58)

The Bromwich path is to the right of the n-pole s = −1. For the purpose of computing
the large deviations giving rise to a resonance, we consider Z = O(n) for large n, so
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Z = nζ; then

Pn(Z) =
1

2πi

∫
B
ds enf(s), (4.59)

with

f(s) = sζ − log(s+ 1) + log
8W

πΩ
+

1

n
log g̃(s). (4.60)

The distribution can be computed within the saddle point approximation, assuming
n� 1.

To compute (4.56), we make some approximation. In the intermediate regime λ < ω

it holds that ∆ < Ω; thus, we approximate 1 −
(

2∆
Ω Ei

)2 → 1; moreover, since the
saddle point is dominated by the region with s → −1, we set Ξ(x, s) ' Ξ(x,−1) =
2Θ(W/∆− |x|), so that

g̃(s) ≈
n∏
i=1

∆

2W

∫ W
∆

−W
∆

dEi e
s
2

log(1+(Ei−Ei−1)2)

=

n∏
i=1

∆

2W

∫ W
∆

−W
∆

dEi
[
1 + (En − En−1)2

] s
2 · · ·

[
1 + (E2 − E1)2

] s
2
(
1 + E2

1

) s
2 .

(4.61)

This function is regular at s = −1 and it can be seen as the n−th application of an integral
Kernel:

K(x′, x) =
(
1 + q2(x′ − x)2

) s
2 , (4.62)

with measure dµ(x) = dx/2, to the function φ = (1+q2x2)s/2. The parameter q is defined
in (4.46). Denoting with α(s, q) the largest eigenvalue of the integral operator K, we
have:

g̃(s) = c α(s, q)n (4.63)

to leading exponential order in n (c does not scale with n). As K is a positive Kernel, by
the Perron-Frobenius theorem, the largest eigenvalue is positive and corresponds to a
positive eigenfunction F without any node on the interval [−1, 1] solving the equation∫ 1

−1

dx

2
(1 + q2(x′ − x)2)s/2 F(x) = α(s, q) F(x′). (4.64)

In the following, we consider separately the limits of large and small q.

The small q limit. For small q it holds

K(x′, x) ' 1 +
sq2

2
(x′ − x)2 +O(q4). (4.65)

Then the eigenvalue problem can be solved exactly with an ansatz of the form F(x) =
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a+ bx2 which for small q gives

α = 1 +
q2s

3
+
q4s2

45
+O(q6), (4.66)

so to lowest order

1

n
log g̃(s) = q2 s

3
+O(q4). (4.67)

Inserting (4.67) into (4.60), we get that df(s)/ds equals zero at the point

s∗q�1 = −1 +
1

ζ + q2/3
, (4.68)

where

f(s∗q�1) = −ζ + 1 + log

(
8W

πΩ
(ζ + q2/3)

)
− q2

3
. (4.69)

Taking (4.53) into account we obtain:

P(|Ap| > zn) ≈ Cn
[√

2e

πz

t

λN
e−

q2

3 log

(
2zW

t

√
Nλ

ω
e
q2

3

)]n
, (4.70)

where Cn scales sub-exponentially in n. The criterion NP (|Ap| > zn)1/n < 1, see (4.45),
is equivalent in dimension d to:

√
2e

π

td

λ
e
− 1

24

(
Wω

λ2
√
N

)2

log

(
2W

ω

λ
√
N

t
e

1
24

(
Wω

λ2
√
N

)2
)

= 1, (4.71)

where we have taken the limit z → 1. Since Wω/λ2
√
N = 2

√
2(λc/λ)2 is small in the

small q regime the exponential factors in (4.71) can be neglected. Then the criterion for
localization reduces to:

√
2e

π

τκ

W log

(
2W

ω
√
N

W
τ

)
< 1, (4.72)

which equals the critical condition for localization on a Bethe lattice with the effective
parameters W = λ

√
N,κ = Nd and τ = t/

√
N , up to an additional factor W/ω

√
N ∼

W/δ > 1 in the logarithmic correction. Thus, the extrapolation to the Zeno regime is
consistent with Eq. (4.33) in the main text.

The large q limit. For generic q the integral equation is not easy to solve but the point
s = −1 to which the saddle point is going to be very close, is regular. An approximation
to the largest eigenvalue which works remarkably well for all values of q and s < 0 is
obtained by taking the simple trial function F = 1.

The double integral α = 〈F|K|F〉 can then be transformed into a single integral (since it
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Figure 4.A.1: Comparisons of the largest eigenvalue of the kernel in (4.64) and its
approximate form (4.74). (a) Continuous line is the exact numerical results, dashed lines
are analytical approximations. (b) Relative error, in percent for s = −1.

depends only on x′ − x)

α(q, s) = 2

∫ 1

0
(1− x)(1 + q2x2)s/2dx (4.73)

and from this one gets:

α(q, s) =
1

2q2(s+ 2)

(
4q2(s+ 2)F

(
1

2
,−s

2
;
3

2
;−4q2

)
−
(
4q2 + 1

) s
2

+1
+ 1
)
, (4.74)

where F (a, b; c;x) is the hypergeometric function. The comparison with the numerics is
in Fig. 4.A.1, the error never exceeds 1.6% and is exact both in the large-q and in the
small-q limit. For small q one recovers (4.66). We derive an analytic estimate of the
critical hopping in the regime of large q exploiting the approximate expression (4.74). At
large q it holds

α(s, q) = qsα̃(s, q) +O
(

1

q2

)
(4.75)

with

α̃(s, q) =

[
2s+1

(s+ 1)(s+ 2)
+

1

q1+s

√
πΓ(−(s+ 1)/2)

2Γ(−s/2)

]
. (4.76)

Neglecting higher order terms in 1/q, the saddle point is attained at the point s∗q�1

satisfying:

s∗q�1 = −1 +
1

ζ + log q + d
ds log α̃(s∗q�1, q)

. (4.77)
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The function log α̃(s, q) has the expansion:

log α̃(s, q) = α0(q) + α1(q)(s+ 1) +O((s+ 1)2), (4.78)

with

α0(q) = log [log(4q)− 1] , α1(q) = − log q

2
− 1

2
+O

(
1

log q

)
. (4.79)

For q large, the saddle point s∗q�1 approaches the point s = −1; in this regime one can
therefore set

s∗q�1 ≈ −1 +
1

ζ + log q + d
ds log α̃(−1, q)

= −1 +
1

ζ + log q + α1(q)
. (4.80)

Substitution into (4.60) gives:

f(s∗q�1) = −ζ + 1 + log [ζ + log q + α1(q)] + log

(
8W

πΩ

log(4q)

q

)
+O

(
1

log q

)
, (4.81)

from which one gets

P(|Ap| > zn) ≈ Dn

[
4e

πz

tλ

Wω
√
N

log

(
2Wω

λ2
√

2N

)]n
logn

W
t

√
W
√

2N

ω

 , (4.82)

with Dn scaling sub-exponentially with n. In this limit, the locator expansion converges
(in d dimensions) for:

4e

π

td

W

λ
√
N

ω
log

(
2Wω

λ2
√

2N

)
log

W
t

√
W
√

2N

ω

 < 1. (4.83)

Arbitrary q. For arbitrary q the saddle point equation in s has to be solved numerically.
The estimate of the critical value of the hopping is obtained solving numerically the
equation

NPn

(
n log

[
W (∆π)1/2

tδ1/2

])1/n

= 1 (4.84)

with Pn defined in (4.59), which is equivalent to NP (|Ap| > zn)1/n = 1 with z → 1.
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5 Numerical tests on the forward approxima-
tion

Most estimates derived in the previous chapters are obtained within the forward approxi-
mation, which consists in resumming only the amplitudes associated to the self-avoiding
(shortest) paths in the perturbative expansion, or equivalently in neglecting the self-
energy corrections. We devote this chapter to a numerical test of the performance of this
approximation.

The (Lowest Order) Forward Approximation (LOFA) can be efficiently implemented
numerically using transfer matrix techniques. We test it by computing the critical values
for the localization-delocalization transition for both an Anderson problem in high
dimensions d and for a disordered XXZ spin chain, and compare with the most precise
exact diagonalization results that are available.

The chapter is structured as follows: In Sec. 5.1 we introduce the numerical implementa-
tion of the LOFA, and discuss the criterion for the transition given in terms of the statistics
of resonances. In Secs. 5.2 and 5.3 we report the numerical results for the Anderson
model in high d and for the XXZ chain, respectively. We conclude the chapter with some
comments on the connection of the Lowest Order Forward Approximation approach with
the problem of directed polymers in random media, and with a comparison with exact
results on the Bethe lattice.

5.1 Computing numerically the probability of resonances

The derivation of the LOFA for the eigenstates in Sec. 4.2 does not rely on the particular
structure of the graph G nor on the independence of the on-site energies, and thus it
can be applied to hopping problems of graphs with different geometries or correlated
local energies. In particular, its extension to the many-body setting is straightforward,
once the many-body problem is interpreted as a single particle hopping problem in some
“configuration space” (or Fock space), as discussed in Secs. 1.2.4 and 2.2.1. In this
chapter, we focus on the following two cases:

(1) Anderson model in 3 ≤ d ≤ 6. In this case, the graph G in (4.9) is a cube of side L,
and we rewrite the Hamiltonian (4.9) with the conventional notation Ei → εi and
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V → t,

H =
∑
i

εini + t
∑
〈i,j〉

(
c†icj + c†jci

)
. (5.1)

The on-site variables are independent from site to site, and uniformly distributed in
[−W/2,W/2]. We label with a the site at one corner of the cube, which we treat
as the origin. Given any other site b, the orientation of the non-repeating, shortest
paths from a to b induces a natural orientation of the edges of the cube, which is
thus directed, see Fig. 5.1(a). We denote with r(b) the lattice distance of the site b
to the origin a; assuming that a is the localization center of a wave function ψα, its
amplitude at a given site b in the LOFA reads:

ψα(b) =
∑

p∈spaths∗(a,b)

r(n)∏
i=1

t

εa − εi
. (5.2)

(a) (b)

Figure 5.1: (a) Anderson model on a cube of side L = 3. The red, dashed edges form
one of the non-repeating paths connecting the sites a and b, of length r = (L− 1)d = 6.
The other elements in the set of shortest paths spaths∗(a, b) are obtained following the
arrows. (b) Graph corresponding to the configuration space of the chain (5.3) with L = 6.
Each site in the graph is associated to a classical basis state with zero z-component of the
total spin. The initial Néel state | ↓↑ . . . 〉 and the final, totally flipped state | ↑↓ . . . 〉 are
highlighted with circles. The red, dashed edges form one of the shortest paths connecting
the two states, of length L/2 = 3.

(2) An XXZ spin-1/2 chain. We consider the an XXZ spin-1/2 chain in random magnetic
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field,

H(t) = −
L∑
i=1

his
z
i −∆

L∑
i=1

szi s
z
i+1 − t

L∑
i=1

(sxi s
x
i+1 + syi s

y
i+1), (5.3)

where periodic boundary conditions are assumed (sα1 = sαL+1), and the random
fields hi are uniformly distributed in [−h, h]. The many body problem given by (5.3)
can be seen as a single particle hopping problem in the space of the 2L product states
in the basis of the operators szi , which span the full Hilbert space and diagonalize
H(0). We denote these classical basis states with |n〉. The mapping to the hopping
problem is obtained by interpreting each |n〉 as a vertex n of a graph G, with
associated random energy En defined by H(0)|n〉 = En|n〉. We thus set En → En,
V → t in (4.9). The third term in (5.3) provides the hopping between different
sites, thus defining the geometry of the graph. Due to spin conservation, the
full configuration space, and consequently the graph, are partitioned into disjoint
sectors corresponding to different values of the z-component of the total spin; we
restrict to the sector of total spin equal to zero, corresponding to a connected graph
with

(
L
L/2

)
vertices (a pictorial representation of the graph for L = 6 is given in

Fig. 5.1(b)). We fix as the origin of the graph the site corresponding to the Néel
state |n1〉 = | ↓↑ . . . 〉, which we assume to be the localization center of a wave
function Ψα whose amplitude on some other site n2 ∈ G reads:

Ψα(n2) =
∑

p∈spaths∗(n1,n2)

∏
n∈p

t

En1 − En
. (5.4)

5.1.1 A criterion for the transition within the LOFA

For a general Hamiltonian of the form (4.9), the localized phase can be characterized
by the validity of the condition (4.18) which imposes the exponential decay of the
eigenfunctions on G,

P
(

log |ψr|2
2r

≤ − 1

2ξ

)
→ 1 for r →∞. (5.5)

In the delocalized phase on the other hand, exponential bounds of the form (5.5) cease
to hold for any finite ξ, indicating that for any arbitrarily small, positive ε = ξ−1 and at
arbitrarily large distances r from the localization center a of ψα, there exist sites b ∈ G
such that the ratio log |ψα(b)|2/2r exceeds the constant −ε with some finite probability.
One might expect that the following stronger condition holds for any arbitrarily small,
strictly positive value of ε:

P

(
log |ψr|2

2r
≥ −ε

)
→ 1 for r →∞. (5.6)

Within the LOFA scheme, this condition is equivalent to the statement that resonances do
occur at any arbitrary large distance from the localization center of ψα. The transition to
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delocalization can thus be detected by inspecting the statistics of the resonances within
the LOFA. In the following, we compute the quantities (5.2) and (5.4) numerically by
means of a transfer matrix scheme, and use their statistical distribution to determine the
values of disorder W,h at which (5.6) holds, choosing ε of the order of the numerical
precision. We choose b in (5.2) to be the site at the opposite corner of the cube with
respect to a, and increase the system size L to inspect the scaling of the probability of
resonances with the distance. Similarly, in the many-body case we compute (5.4) on the
fully flipped Néel state |n2〉 = | ↑↓ . . . 〉, varying the size L of the chain. We discuss in the
following section how these quantities are obtained numerically.

5.1.2 Transfer matrix implementation of the LOFA

The amplitudes (5.2) and (5.4) are difficult to determine analytically, as they are sums of
a number of correlated random variables that scales exponentially in the single-particle
case (as ∼ dr where r = r(b) = (L − 1)d) and faster than exponential in the many-
body case (as ∼ 2(L/2)!, as the sites n1, n2 are connected by as many paths of length
r = L/2 each). To account for the correlations between the path weights, we compute
the amplitudes numerically by means of a transfer matrix technique. The transfer matrix
method is convenient as it takes only polynomial time in r, as it was realized by Medina
and Kardar[113] in their treatment of the Nguyen, Spivak, and Shklovskii [129, 130]
(NSS) model. 1 The numerical computation is as follows: We fix t = 1 and introduce the
matrix T defined as

T =WAf , (5.7)

where Af is the adjacency matrix of the directed graphs in Fig. 5.1, andW is a diagonal
matrix whose components are in the single particle case:

W = diag
(

1

εa − εk

)
k=1,..,Ld

, (5.8)

and analogously with εk → Ek in the many-body case. For the Anderson case, we
initialize the system in the state |ψ(0)〉 = |a〉 completely localized in the origin a of the
directed cube, and iteratively apply the transfer matrix T . A single iteration gives

|ψ(1)〉 ≡ T |ψ(0)〉 =
1

εa − εl1
|l1〉+

1

εa − εl2
|l2〉+ . . . , (5.9)

where l1, · · · , ld are the forward neighbors of site a. The value of ψα(b) equals ψα(b) =
〈b|ψ(r)〉, where |b〉 is the state completely localized in the site b and r is the lattice distance
between a and b. In the following, we set εa = 0 for simplicity. In the many-body case

1A major difference between the present case and the NSS model is in the statistics of energy denom-
inators: in the NSS model the binary disorder εi = ±W (with probability p or 1 − p) does not allow for
resonances due to a single site. Rather, the resonances arise from contributions of different paths. This led
to a body of work following [113], on the presence of a sign transition, where effects from different paths
accumulate in order to break the sign symmetry. In the LOFA for the Anderson case, the energy denominators
can be arbitrarily small with finite probability, generating path weights that are fat tailed distributed.
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5.1. Computing numerically the probability of resonances

the framework is identical, but the calculation is not: The energies associated to the
different vertices are a linear combination of the independent random fields (and are thus
correlated), and moreover the paths connecting two sites are much strongly correlated
with respect to the Anderson problem, see the following section.

5.1.3 Domination by the optimal path and Dijkstra algorithm

Throughout the previous chapters, analytic estimates are derived under the assumption
that the sums of the type (5.2) are dominated by the largest among the exponentially
many summands. If the different path weights were independent, this would be justified
in the light of the fact that the distribution of the summands is fat-tailed, implying that the
central limit theorem scaling is violated and that rare realizations dominate the averages.
However this assumption neglects the correlations between the different path weights.
In order to test it numerically, we determine for each disorder realization the “optimal
path” p∗ in (5.2) having the largest absolute weight, which we denote with |ω∗p|. The
latter is determined by means of the Dijkstra algorithm [54], a graph-search algorithm
that determines the path minimizing a given cost function. We consider the directed cube
in Figure 5.1(a) with εa = 0, and assign a positive cost χ to each directed edge 〈i, j〉:

χ (i, j) ≡ log |εj | −min
k
{log |εk|} . (5.10)

The total cost of a path p is the sum of the costs of the edges belonging to it, and the path
p∗ with maximal amplitude is the one minimizing the total cost function.

In the Anderson case, the results obtained with the transfer matrix technique are faithfully
reproduced by analyzing the statistics of the dominant path alone (see Sec. 5.2.4). This
allows us to carry out the numerical analysis on much bigger system sizes with respect
to the ones accessible with the transfer matrix technique, since the Dijkstra algorithm
runs in time linear in the number of edges of the underlying graph, and it is not as
memory-demanding as either the transfer matrix of shift-invert exact diagonalization.
The results presented in the following section for the Anderson model in d = 6, 7, as well
as for the higher values of r in d = 3− 5, are obtained with this procedure.

In the many body case this procedure can not be applied, as the sum (5.4) is no longer
dominated by a single path. Instead, most of the paths have comparable amplitude.
It can be however shown that the much stronger correlation between the paths gives
rise to non-negligible interference effects resulting in strong cancellations, see also Sec.
5.3.3. This is the analog, in the present setting, of the cancellation between the graphs
amplitudes discussed in Sec. 2.2.3.
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5.2 Anderson model in high d: numerical results

In the single particle case, the dependence of (5.2) on the disorder amplitude W can be
simplified:

ψα(b) ≡
(
t

W

)r
ψ′α(b) =

(
t

W

)r ∑
p∈spaths∗(a,b)

r∏
i=1

1

ε′a − ε′i
, (5.11)

with ε′i uniformly distributed in [−1/2, 1/2]. We consider the distribution of the random
variable

Zr ≡
log |ψ′r|2

2r
, (5.12)

where ψ′r denotes the maximum among all the rescaled amplitudes ψ′α (5.11) at sites
that are at lattice distance r with respect to the origin of the hypercube a. The probability
of resonances for arbitrary values of t and W , see Eq. (5.6), is easily recovered from the
cumulative distribution function of Zr as:

P

(
log |ψr|2

2r
≥ −ε

)
= P

(
Zr ≥ log

(
W

t

)
− ε
)
, (5.13)

with ε arbitrarily close to zero. According to Eqs. (5.5) and (5.6), if a transition to
delocalization occurs at disorder W = Wc, the density of Zr becomes asymptotically
peaked at log(Wc/t) for r → ∞, with width going to zero with r. Thus, the critical
value of disorder can be estimated inspecting the scaling with r of the probability density
of Zr. We perform the numerical analysis as follows: We fix ε′a = 0 and compute the
rescaled amplitude in (5.11) for all the points b on a shell at the same lattice distance
r = rmax − c from the origin of a hypercube of side L. Here c ∼ O(1) is fixed so as to
have about 20 points per each size of the hypercube. We determine the maximal among
the wave function amplitudes on those sites. We repeat the procedure for hypercubes
of different sizes, with O(105) disorder realizations for most system sizes, decreasing to
O(103) realizations only for the biggest system sizes that we consider (e.g. in d = 3 we
take system sizes r = 10 through 292, with 1.5 · 105 disorder realizations up to r = 202
and 2.5 · 103 realizations up to r = 292). We report the results in the next sections.

5.2.1 Fluctuations of the wave function amplitudes

Fig. 5.1 shows the probability density of (5.12), for different values of r in d = 3. The plot
shows a drift of the position of the peaks with increasing r, together with the shrinking
of the width of the distribution, in agreement with the conditions (5.5), (5.6). Plots of
the r-dependence of the variance σ2

Zr
of (5.12) are given in Fig. 5.2, in log-log scale

for d = 3 − 6. The linear behavior indicates that the fluctuations of Zr decay to zero
as a power law in r, with a coefficient that depends on the dimensionality. The higher
cumulants of the distribution exhibit a similar linear behavior in log-log scale. Moreover,
the numerical computation indicates that for fixed d the probability densities of the
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Figure 5.1: Probability density of the variable Zr defined in Eq. (5.12), for different r
and d = 3. For r → ∞, the curves become peaked around the critical value log(Wc/t).
Inset: cumulative distribution function. Each curve is obtained with 1.5 · 105 disorder
realizations. Very similar results are obtained for higher dimensionality.

Table 5.1: Values of the exponent ωFA(d) governing the decay of the fluctuations of Zr
with r, see Eq. (5.15). A comparison is made with the values of the droplet exponents
ωDP (D) obtained numerically for the directed polymer in dimension 1 + (d − 1). The
numerical values are taken from Appendix A in [123].

d=D+1 ωFA(d) ωDP (D)

3 0.278± 0.005 0.244
4 0.23± 0.01 0.186
5 0.191± 0.007 0.153
6 0.168± 0.006 0.130

variable

Z̃r =
Zr − 〈Zr〉

σZr
(5.14)

collapse to a limiting curve for increasing r, see Fig. 5.3. As shown in the same plot, for
fixed r and varying dimensionality, the distribution of Z̃r does not change significantly,
except for a weak d-dependence of the tails.

These numerical observations are compatible with the following large r scaling form for
Zr:

rZr ∼
r→∞

r log

(
Wc

t

)
+ rω(d)u, (5.15)

where u is a random variable of O(1) with a distribution which depends weakly on the
dimensionality. According to (5.15), for large r the fluctuations σ2

Zr
decay to zero with
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Figure 5.2: Variance σ2
Zr

of Zr in log-log scale. The points corresponding to larger r are
fitted linearly, according to the scaling form Eq. (5.15), and the values of the exponents
ωFA(d) reported in Table 5.1 are extracted from the coefficient of the linear term in the
fit. The number of realizations is 1.5 · 105 for r smaller than 202, 53, 52, 40 for d = 3,
4, 5, and 6, respectively, and 2 · 103 for larger values of r. Inset Mean value of rZr for
d = 3. The fit is linear with a correction ∝ rωFA(3), in agreement with Eq. (5.15), with
the value of ωFA(3) given in Table 5.1. The results of the fit are, with reference to Eq.
(5.17): c1 = −18.2± 0.3, Wc = 27.03± 0.02, c2 = 29.6± 0.8. The same behavior holds
for higher dimensionality and results in the estimates of the critical disorder values in
Table 5.2.
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Figure 5.3: (a) Density of Z̃r for different values r and d = 3. The curves seem to
converge to a unique limiting distribution with increasing r. (b) Density of Z̃r for fixed
r = 52 and different dimensionality. Each curve is obtained with 1.5 · 105 realizations.

the power r2(ω(d)−1). From the linear fit of log
(
σ2
Zr

)
we extract the numerical estimate

of the exponent in (5.15), which we denote with ωFA(d). The results are reported in
Table 5.1.

In order to characterize the limiting distribution in Fig. 5.3, we compute the skewness
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5.2. Anderson model in high d: numerical results

Table 5.2: Comparison between the critical value for localization in the Anderson model
in d dimensions predicted by the forward approximation (WFA

c ) and the numerical results
(W num

c ) of [157]. The relative error decreases faster than d−6, presumably exponentially.
For d = 6 the transition value WFA

c = 77.0± 0.3 can be compared with the result of [66],
W d=6
c = 74.5± 0.7. This number is however an underestimation of the transition due to

the choice of boundary conditions. For 7 dimensions there is no available numerics to
compare with.

d WFA
c W num

c Error
3 27.03± 0.03 16.536± 0.007 39%
4 41.4± 0.1 34.62± 0.03 16%
5 57.8± 0.2 57.30± 0.05 0.9%
6 77.0± 0.3 - -
7 93.8± 0.3 - -

Sk = κ3/κ
3/2
2 and the kurtosis Kur = κ4/κ

2
2 of the density of Z̃r (here κi denotes the i-th

cumulant of the distribution). From (5.15) it follows that these parameters approach
the ones corresponding to the variable u in the limit of large r. We restrict to d = 3, for
which we have the largest statistics available; the asymptotic values are estimated to be
Sk = 0.34± 0.02 and Kur = 3.24± 0.04.

5.2.2 Estimate of the critical disorder

To determine the critical value of disorder for t = 1, we extrapolate the asymptotic limit
of the typical value of Zr. Since the distribution is not fat-tailed, we can equivalently
consider the averages of Zr and set:

〈Z∞〉 ≡ lim
r→∞
〈Zr〉 = log (Wc) . (5.16)

The inset in Fig. 5.2 shows the scaling with r of r〈Zr〉. The average grows linearly in r,
in agreement with Eq. (5.15). We fit the data with the form

〈rZr〉 = c1 + log(Wc) r + c2 r
ω(d), (5.17)

with the numerical values ω(d) = ωFA(d) reported in Table 5.1. The resulting estimates
of the critical disorder, which we denote with WFA

c , are displayed in Table 5.2. For the
smallest dimensions, a comparison is made with the critical values W num

c determined in
Refs. [157, 169] by means of a combination of exact diagonalization and transfer matrix
techniques.

The data in Table 5.2 clearly show that the FA, even in its ‘lowest order’ form, gives an
upper bound to the critical disorder, since the renormalization of the energy denominators
provided by the (modified) self-energy corrections are neglected, and the effects of
resonances are thus enhanced (see the discussion in Sec.1.4.4). However, increasing the
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dimensionality the discrepancy between the numerical estimates of Wc is significantly
reduced.

5.2.3 Divergent length scales and critical exponents

For fixed values of W and for finite r, the probability of resonances (5.13) is determined
by the tails of the distribution of Zr. For increasing r, the asymptotic limit is approached
in a different way at the two sides of the transition. In the approximation in which the
correlations between the paths are neglected, for W > Wc the probability of resonances
goes to zero exponentially with r, while below the transition it converges to one much
faster, with corrections that are only double-exponential in r. We report this calculation
in Appendix 5.A. Following such estimate, to extract a W -dependent length scale l(W )
from the curves in Fig. 5.4(a) we perform an exponential fit for W > Wc,

P

(
log |ψr|2

2r
> 0

)
= a1(W )exp

[
− r

l(W )

]
, (5.18)

while for W < Wc we determine l(W ) by means of the linear fit:

log

∣∣∣∣log

[
1− P

(
log |ψr|2

2r
> 0

)]∣∣∣∣ = a2(W )− r

l(W )
. (5.19)

The length scale l(W ) is plotted in Fig. 5.4(b) for d = 3. We expect it to diverge in the
same way as the localization length/correlation length does in the localized/delocalized
phase, respectively. We find that l(W ) diverges as a power-law at a critical disorder
compatible with the values of WFA

c listed in Table 5.2. A fit of the form log (l(W )) =
log c − ν log |W −WFA

c | results in an exponent that is compatible with ν ≈ 1 for all
dimensions.

5.2.4 Domination by the optimal path

To compare the statistics of the wave function amplitudes in the LOFA with that of the
path with maximal amplitude ω∗r , we compute the ratio between ω∗r and the full sum (5.2)
computed via the transfer matrix technique, for the same given disorder realization. The
distribution of the ratios turns out to be very narrowly peaked around one. Figure 5.5(a)
displays its average as a function of the length of the paths r for d = 3, which is extremely
close to one, uniformly in the path length. As a further check of the agreement between
the values computed with the two methods, we plot in Fig. 5.4(a) the r-dependence of
the probability (5.6) with δ = 0, determined with the substitution |ψr| → ω∗r . The data
are plotted as points, which are almost indistinguishable from the transfer matrix results
(squares). This indicates that the statistics of distant resonances is fully captured by the
optimal path. Thus, in the single particle case the correlation between different paths
does not play a relevant role, in the sense that the sum is dominated by the maximal
term as it would happen for independent random variables with fat-tailed distribution.
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Figure 5.4: (a) Probability of resonances P (Zr > log(W/t)) for Zr defined in (5.14) and
d = 3. The squares are the results of the transfer matrix calculation, the points of the
optimal path (see Sec. 5.2.4) while the continuous lines are the exponential or double
exponential fits. Very similar results are obtained for higher dimensionality. (b) Power
law divergence of the length scale l(W ) defined in Eqs. (5.18) and (5.19) for d = 3; the
power law fit produces a critical exponent ν ' 1 and a critical value Wc compatible with
the ones listed in Table 5.2. In the delocalized phase the distance to observe a resonance
is typically larger (for the same |W −Wc|) than the localization length in the localized
phase.

To characterize the optimal path, we compute the inverse participation ratio (IPR) of the
edge weights contributing to its amplitude, for the case εi ∈ [−1, 1] (i.e. W = 2). We
define

IPR =
(
∑

i log |εi|)2∑
i(log |εi|)2

, (5.20)

where i labels the sites belonging to the optimal path p∗. We find that the disorder-
averaged IPR scales linearly with the length of the path r, indicating that an extensive
(in r) number of edges contributes to the total path weight, and cooperate to produce
the atypically big path weights dominating (5.2). Fig. 5.5(b) shows the distribution of
the absolute value of the energies along the optimal path for W = 2, d = 3, r = 210 and
εa = 0. The fitting function has the form

ρr(ε) = cr + br|ε|ar . (5.21)

The power law behavior is consistent with the considerations in [176]: adapting their
reasoning to the finite dimensional case, one can argue that asymptotically in r (and
under the hypothesis of independent paths) the biased energy distribution along the
optimal path has the form

ρ(ε) =
1− 2x

|ε|2x , (5.22)
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with x solving the d-dependent equation

log

(
d

1− 2x

)
− 2x

1− 2x
= 0. (5.23)

Fitting the r-dependence of the coefficients cr, br, ar one finds that the asymptotic limits
are in agreement with (5.22); for details see the inset of Fig. 5.5(b).
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Figure 5.5: (a) Average ratio between the dominating path weight ω∗r and the sum (5.2)
for d = 3. Each point is averaged over 3 · 104 disorder realizations, and the standard
deviation error bars are within the point size. (b)Probability distribution ρ(ε) of the
energy denominators along the optimal path, see Eq. (5.22), for d = 3 and r = 210. The
dashed red line is the fitting function of Eq. (5.21), with parameters cr = −0.95± 0.04,
br = 1.04 ± 0.03 and ar = 0.472 ± 0.005. Inset. Plot of the exponents ar in the fitting
function of Eq. (5.21), as a function of r. Due to the absence of a theoretical reasoning for
the finite size scaling, we fit the curve considering logarithmic and 1/

√
r corrections. The

green small-dashed curve is a fitting function of the form a+c/ log(r), with fit parameters
a = −0.73 ± 0.05 and c = −1.4 ± 0.3; the red large-dashed curve is a fitting function
of the form a + c/

√
r, with fit parameters a = −0.57 ± 0.02 and c = −1.4 ± 0.3. The

asymptotic value a obtained with the logarithmic fitting function is compatible with the
solution of (5.23) for d = 3.

5.3 Heisenberg model with random fields

For the many-body Hamiltonian (5.3), the dependence on the field strength h can not be
simplified. We thus compute by means of the transfer matrix the h-dependent variable

Zr(h) ≡ log |Ψr|2
2r

, (5.24)

with Ψr given by (5.4). We consider spin chains of size 6−20 with hopping and interaction
constants respectively t = 1 and ∆ = 1, and h = 1− 6. For these parameters, the critical
disorder is estimated [108] to be hc ' 3.72(6) for states in the middle of the energy band.
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Figure 5.1: (a) Probability density of Zr(h) defined in (5.24), for chain of length L = 20
(corresponding to r = 10) and different values of h. Each curve is obtained with 3 · 103

realizations. (b) Linear fit of the average IPR* of the paths, Eq. (5.29), as a function of
the number of paths N∗ = 2(L/2)! for random spin chains of different lengths L.

5.3.1 Distribution of the wave function amplitudes and critical disorder

In Fig. 5.1(a) we show the probability density of Zr(h) for a chain of length L = 20 and
different values of h. The criterion for the transition reads

〈Z∞(hc)〉 = − log t, (5.25)

where 〈Z∞(h)〉 is the extrapolated value of the average of (5.24) for fixed h. Plots of
〈Z∞(h)〉 are given in Fig. 5.2, with 〈Z∞(h)〉 extrapolated from the finite size values using
the fitting function

r 〈Zr(h)〉 = c1 + 〈Z∞(h)〉 r + c2 r
−1, (5.26)

where the corrections ∝ r−1 are consistent with the expectation that the Bethe lattice
exponent ωFA = 0 gives the correct scaling for MBL.

For t = 1, the critical point hc is estimated from the condition 〈Z∞(hc)〉 = 0. The resulting
value is hc = 4.0± 0.3, which is, as expected, larger than the result hc ' 3.72(6) derived
with exact diagonalization, but still very close.

5.3.2 Divergent length scales and critical exponents

Fig. 5.3(a) shows the behavior of the probability of resonances P (Zr(h) > − log t) as
function of the distance between the Néel states. As expected, the r-dependence changes
with the disorder: the probability decays to zero at large h, and increases towards one
for the smaller h. We expect the convergence to be exponential in r on both sides of
the transition. In the localized phase we perform an exponential fit of the curves in
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Figure 5.2: Extrapolated value of the mean 〈Z∞〉 of the variable (5.24). The crossing
with 0 signals the many body localization/delocalization transition for t = 1, see (5.25).
The error bars are obtained from the fitting procedure (see Inset). The resulting transition
value is hc = 4.0± 0.3. Inset. Finite size scaling of 〈r Zr〉 with the distance r between
the Néel states n1 and n2. The plot corresponds to h = 1. The fit is linear with an r−1

correction, see (5.26), with parameters c1 = −7.2 ± 0.4, 〈Z∞(2)〉 = 1.23 ± 0.02 and
c2 = 8.8± 0.7. The finite-r values for the mean are obtained over at least 104 realizations
for r < 7 and at least 2 · 103 realizations for r ≥ 7.

Fig. 5.3(a) of the form:

P (Zr(h) > − log t) = a1(h)exp
(
− r

l(h)

)
. (5.27)

In the delocalized phase, the exponential behavior is not clearly detectable due to the
few accessible system sizes; for h < hc we extract a length scale l(h) by fitting with the
function:

P (Zr(h) > 0) = a2(h) +
r

l(h)
+
b(h)

r
. (5.28)

The length scales l(h) extracted with this procedure are shown in Fig. 5.3(b), together
with the power law fit l(h) = c|h− hc|−ν . The fit is performed separately for h < hc and
h > hc, resulting in an exponent close to 1 in both cases (see Fig. 5.3(b) for details).
Note the asymmetry of the curve with respect to hc, which indicates that at fixed |h− hc|
the typical distance to find a resonance in the delocalized phase is larger than the
localization length at the corresponding value of disorder in the localized phase. A
possible consequence of this phenomenon, which occurs also in the Anderson model (see
Fig. 5.4), could be a large “critical region” in the dynamics in the delocalized phase.
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Figure 5.3: (a) Probability of resonances P (Zr(h) > − log t) as a function of the distance
r between the two Néel states n1 and n2, for t = 1. We average over 104, 5 ·103 and 3 ·103

realizations for r ≤ 8, r = 9 and r = 10, respectively; the plotted values of the disorder h
are: h = 1 (points), h = 2 (squares), h = 3 (diamonds), h = 4 (upward triangle), h = 5
(downward triangle) and h = 6 (circle). Linear and exponential fits in the delocalized
and localized regions respectively are plotted as continuous lines, see Eqs. (5.28) and
(5.27). (b) Divergence of the length scales l(h) extracted from the fits of the probability
of resonances. The vertical dashed line indicates the critical value hc obtained in Fig. 5.2.
The dotted curve is a power law fit of the form c|h−hc|−ν , resulting in a critical exponent
νL = 1.12± 0.06 for h < hc and νR = 1.1± 0.2 for h > hc.

5.3.3 The absence of a dominating path

As previously mentioned, when performing the analysis of the best path weight for the
XXZ chain, we find that the statistics of the sum (5.4) is not well reproduced by the
optimal path alone: The distribution of the ratios between the full sum and the optimal
path is very wide and peaked at values that are far from one, indicating that there is not
a single path dominating, even if the latter are fat-tailed distributed. Instead, we find
that the average IPR* of the paths amplitudes, which we denote with ωp,

IPR* =

(∑
p ωp

)2∑
p ω

2
p

, (5.29)

scales linearly with the total number of paths N∗ = 2(L/2)!, see Fig. 5.1(b). There
are factorially-many (in the length of the chain L) paths having amplitudes that are
comparable in absolute value. This is a signature of the strong correlations between the
paths, which is not surprising in view of the many-body nature of the model. Following
the reasoning in Sec. 2.2.3, one may argue that the strongest correlations are among
those paths associated to processes in which the same spin flips occur, but in different
order: The different orderings of the flips produce different energy denominators in (5.4),
and thus different path amplitudes; however, the resulting terms are correlated, and one
can expect that for those realizations of the random fields producing one particularly
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large path weight, the other ones (related to it by permutation of the order of the spin
flips) will also have a large amplitude in absolute value. However, in the sum (5.4) the
paths contribute with well defined relative signs, leading to the cancellations between
these factorially-many terms.

5.4 Some comments on the results

5.4.1 Connections with directed polymers in random media

In the single particle case, the energy denominators associated to different sites along the
paths are independent variables. Thus, the expression for the wave function amplitude
in the LOFA resembles the expression for the partition function of a directed polymer
(DP) in a random potential [50, 51, 77], see Sec. 6.3.1, with the thermal weights for
the polymer configurations given by the amplitudes of the different paths. This analogy
is not straightforward, as negative contributions occur in (4.17), and moreover the
weight associated to the polymer in the LOFA is not bounded from above (as the energy
denominators in (5.11) are not bounded from below). Nevertheless, the analogy has
been fruitfully exploited both for the single particle problem [160, 144, 159, 122], and
for problems of interacting spins on the Bethe lattice [59, 89, 124, 176].

Motivated by this analogy, the authors of [144] have proposed a scaling form analogous
to (5.15) for the logarithm log g of the conductance of an Anderson model. There, the
conductance in d = 2 is obtained from the Green functions, which are computed numeri-
cally within a modified FA, the modification consisting in taking energy denominators
that are not arbitrarily small but are bounded from below. 2 It is shown that the fluctu-
ations of log g scale with an exponent ω(d = 2) = 1/3, and that the distribution of the
variable u is compatible with a Tracy-Widom distribution. These results are consistent
with the conjecture [114, 113] that in the strongly localized phase, where the expansion
in non-repeating paths is best controlled, the Anderson model in dimension d belongs to
the same universality class of the directed polymer in dimension 1 +D, with D = d− 1.
In particular, the conjecture implies that in the limit of large r the distribution of log g has
the scaling form (5.15), with ω(d) coinciding with the droplet exponent [61] in 1+(d−1)
dimensions (which is exactly known [78] to be equal to 1/3 for D = 1), and u having
the same distribution of the fluctuations of the free energy in the disordered phase of the
polymer (distributed according to the Tracy-Widom distribution [91, 141, 142, 143] in
D = 1).

In higher dimension, the values of the scaling exponents extracted from the LOFA data
do not compare well with the droplet exponents ω(D = d− 1) of the DP, see Table 5.1.
Moreover, the limiting distribution of the rescaled wave functions seems to depend weakly
on the dimensionality. The discrepancies with respect to the directed polymer results
are presumably generated by the fat-tail of the distribution of the paths amplitudes in
(5.11), produced by the arbitrarily small energy denominators. It might be that the

2Note that if this constraint is relaxed and the energy denominators are allowed to be arbitrarily small,
log g is found to be proportional to the quantity rZr that we are considering.
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finite size effect are more pronounced in the case of unbounded denominators; also, it is
quite natural to expect that the models of non-repeating paths with bounded amplitude
considered in [144] exhibit a stronger dependence on the dimensionality, due to the fact
that the domination by one single path is less pronounced in that case 3.

5.4.2 The asymptotic limit of infinite d

The numerical results in Table 5.2 seem to indicate that the LOFA becomes increasingly
accurate when the dimensionality is increased, suggesting that this approximate scheme
could be considered as a candidate for a mean field theory of the Anderson model.
The LOFA in finite d involves two simplifications: only shortest paths are considered,
and the self-energy corrections in the denominators of the locators are neglected. The
second simplification is presumably the more severe. As a matter of fact, on the Bethe
lattice, which is the setting that is expected to be recovered in the high dimensional
limit 4, the self-energy corrections are relevant even in the large-connectivity limit, as
they lead to a correction of the criterion obtained in FA (on the Bethe lattice the FA
and the LOFA coincide) by a factor e/2 [2, 14]. This suggests that the optimal route to
improve the above numerical results consists in incorporating the self-energy corrections
(at the lowest orders) within a transfer matrix scheme involving only shortest paths. This
might significantly affect the critical exponents discussed in the previous section and
mitigate the discrepancy with the DP results. Similarly, in the analytic estimates of the
Bethe-lattice type (such as the one performed in Appendix 5.A), the large deviations of
individual path weights should be estimated accounting for the (anti-)correlations among
the consecutive locators in the paths. On the other hand, neglecting the correlations
among different paths of the same length might be a less subtle approximation in the
high-dimensional limit, as suggested also by the optimal path analysis.

3Indeed, when performing the same analysis as in Sec. 5.2.4 for the modified forward approximation
discussed in [144], i.e. taking the energy denominators uniformly distributed in

[
−1,−W−1

]
∪
[
W−1, 1

]
in

d = 3 with some cutoff W , we find that the ratio between the maximal path and the transfer matrix result
departs from one for increasing r (the numerics is done for two values of the cutoff, W = 25 and W = 35).
This suggests that more than one path dominates the transfer matrix result. It is natural to expect that in this
case the number of dominating paths depends on the geometry of the system, thus introducing a stronger
dependence on the dimensionality.

4It is reasonable to expect that the ’long’ self-avoiding loops around a given site a that involve different
neighboring sites b1, b2 of a (for instance the ones having the structure a→ b1 → · · · → b2 → a) become
less relevant in higher dimension, since when the connectivity is high it is less likely to return to the initial
site. This implies that in the limit of large dimensionality the correlation between the sites b1, b2 becomes
weaker, and the Bethe-lattice framework (1.63) should be recovered.
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Appendix

5.A Analytic estimate of the probability of resonances (Eqs.
5.18 and 5.19)

In this Appendix, we justify the fitting forms (5.18) and (5.19) by means of an ap-
proximate calculation. If the correlations between the different path weights in (5.11)
are neglected, the calculation of the probability density of Zr is analogous to the one
performed in Sec. 1.4.4. In particular, one finds for the cumulative function of Zr the
following expression:

P (Zr < a) = exp

[
Nr log

(
1− 1

(r − 1)!

∫ ∞
r(a−log 2)

tr−1e−tdt

)]
, (5.30)

where Nr ∼ dr is the total number of paths on which the maximum is taken. This implies
the following form for the probability density of Z ′r = Zr − log 2:

pr(z
′) =

Nrr
r

(r − 1)!

e−r(z
′−log z′)

z′ [1− Ir(z′)]
exp

[
Nr log

(
1− Ir(z′)

)]
, (5.31)

where we introduced the monotone decreasing function

Ir(z
′) =

1

(r − 1)!

∫ ∞
rz′

tr−1e−tdt. (5.32)

The typical value of Z ′r, denoted z∗r , is defined by the equation

Nr Ir(z
∗
r ) = Nr

rr−1

(r − 1)!

∫ ∞
z∗r

tr−1e−rtdt = 1. (5.33)

The solutions of (5.33) approach a finite limit z∗ for r → ∞, which is related to the
critical value of disorder by z∗ = log(Wc/(2t)), as previously discussed. The Bethe lattice
critical condition with K → d is recovered using that Nr ∼ dr and computing the integral
in (5.33) with a saddle point calculation (assuming z∗ > 1).

For increasing r the probability density of Z ′r peaks at the typical value, with tails that
approach zero in the limit r → ∞. In particular, for z′ > z∗r the decay of the tail is
exponential in r. Indeed, in this regime the product Nr Ir(z) is itself exponentially
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decreasing with r; thus, the rightmost exponential in (5.31) rapidly converges to one,
and the distribution pr(z′) approaches zero with a tail of the form

pr(z
′) ∼ e−r(z′−log z′−log(de))+o(r). (5.34)

When z′ becomes smaller than the typical value z∗r , the product Nr Ir(z
′) increases

exponentially. Since for large r the integral Ir(z′) is still exponentially small for all z′ >
1 + O(1/r), one can still set log [1− Ir(z′)] ∼ −Ir(z′) ∼ exp (−rz′ + r log(ez′) + o(r)).
Thus, in this regime the probability density of Z ′r decays to zero much faster, double-
exponentially with r

pr(z
′) ∼ exp

(
−dr e−rz′+r log(ez′) +O(r)

)
. (5.35)

Note that (for r large enough) the interval in which 1 < z′ < z∗r does not shrink to
zero for d ≥ 3, given that the value z∗ obtained from the condition (5.33) is always
bigger than one. When z′ approaches one, the probability in (5.32) is no longer a large
deviation probability, i.e. it is no longer exponentially small in r: the term log [1− Ir(z′)]
approaches a constant function of z′, and the main scaling is given by the factor dr.
Finally, exactly at z′ = z∗r , using (5.33) and performing the integral with an integration
by parts, one finds that the probability density can be written as

pr(z
∗
r ) =

r

1− d−r

[
1 +

r−1∑
n=1

(r − 1)!

(r − 1− n)!rn
(z∗r )−n

]−1

exp
(
−1− 1

2dr
− 1

3d2r
+ · · ·

)
,

(5.36)

which diverges like r when r →∞.

Given the tails of the distribution of Zr computed in this approximation, it is immediate
to derive the asymptotic decay of the probability of resonances in the localized phase.
Indeed, for W > Wc, the probability (5.13) is is a large deviation for Zr. Making use of
(5.34) we find

P

(
Zr > log

W

t

)
=

∫ ∞
log(W2t )

e−r(z
′−log z′−log(de))+o(r)dz′ = exp

(
− r

l(W )
+ o(r)

)
(5.37)

with 1/l(W ) = log [W/(2tde log (W/2t))]. Thus, within this approximation for W ap-
proaching Wc from above one finds

l(W ) ∼ Wc

W −Wc
, (5.38)

thus the length scale diverges at the transition with a critical exponent equal to 1.
Similarly, for 2te < W < Wc, making use of (5.30) and of (5.35) we find:

P

(
Zr < log

(
W

t

))
≈ exp

(
−
[

2tde

W
log

(
W

2t

)]r
+O(r)

)
= exp

(
−e−r/l(W ) +O(r)

)
.

(5.39)
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6 On the temperature dependence of effec-
tive mobility edges

Throughout the previous chapters, we analyzed aspects of the localized phase making
almost no reference to temperature: In Chapters 2 and 3, we assumed the full many-body
spectrum to be localized irrespectively of the energy density, while in Chapters 4 and
5 we considered only single-particle states corresponding to infinite temperature1. As
commented in Chapter 1, however, in the many-body case the role of temperature is
not completely settled: on the one hand, approximate perturbative arguments and the
numerical analysis based on exact diagonalization of small systems suggest an extensive
mobility edge associated with a finite T transition; on the other hand, in the presence
of delocalized portions of the many-body spectrum, rare thermal fluctuations within
putative localized states were argued to restore ergodicity in the long time limit.

In this final chapter, we discuss possible effects of thermal fluctuations on the spatial
localization of excitations in interacting many-body states, without taking a definite
stance as to whether T drives a genuine transition or merely a crossover. The discussion
is partly inspired by the theoretical argument given in Ref. [42] in favor of the finite T
transition, which we recall in Sec. 6.1. This argument identified a precise mechanism by
which the mobility of individual excitations must be enhanced by thermal fluctuations
(or, more generally, fluctuations of “environmental” degrees of freedom interacting with
the excitation). We revisit this mechanism and set up a self-consistent scheme to describe
both the delocalized and localized phase. In Sec. 6.1.1, we recast the mechanism into the
self-consistent framework, which we justify phenomenologically in Sec. 6.2 by analyzing
a simple toy model containing all the relevant ingredients. We analyze the mobility of the
excitations within this framework in Sec. 6.1.3, and conclude that, for the class of models
that we consider, the mechanism is ineffective in enhancing mobility. In Sec. 6.3, making
use of the framework introduced in these first sections, we discuss an alternative effect
by which an increase in T does enhance mobility and lowers the (effective) mobility edge
of the excitations. In the light of the considerations in Sec. 1.5.1, this mobility edge is
effective, marking a crossover between a regime of extremely slow (activated) transport
and a regime in which the individual excitations decay fast into the environment.

1In those chapters we considered states at zero energy, lying in the middle of the single-particle spectrum
of the Anderson model, where the density of states has its maximum. These states are typical with respect to
the uniform measure, meaning that they are typically selected when sampling the spectrum according to the
thermal distribution at infinite temperature.

151



Chapter 6. On the temperature dependence of effective mobility edges

6.1 T -induced delocalization: a possible mechanism

We consider the spin Hamiltonian on a Bethe lattice with connectivity k + 1:

H = −W
∑
i

ξiσ
z
i −

∑
〈i,j〉

Jzσ
z
i σ

z
j −

∑
〈i,j〉

Jxy

(
σ+
i σ
−
j + σ−i σ

+
j

)
, (6.1)

with ξi independent random variables of order O(1). The Hamiltonian (6.1) is equivalent
to a model of interacting hard-core bosons in a disordered potential, as it follows from the
isomorphism bi = σ−i , b†i = σ+

i and ni = (σzi + 1)/2. It arises in several contexts ranging
from quantum magnets, strongly disordered superconductors [111], or cold atomic
systems. Together with its finite dimensional counterpart, (6.1) has been extensively
investigated in the Jz → 0 limit as a theoretical model for the quantum phase transition
between a superconducting/superfluid phase at large Jxy/W , and an insulating one at
strong disorder W/Jxy, conventionally referred to as the “Bose glass” [68, 62, 75]. The
mobility of excitations in the Bose glass has been analyzed as well, both in the ground
state [59, 89] and at finite temperature [42, 7]. In Refs. [59, 89], a mapping to the
problem of the directed polymer in random medium has been exploited to address the
localization properties of low-energy excitations of the spin model (6.1) with Jz = 0. The
conclusion reached in those works, namely that an intensive mobility edge exists in the
vicinity of the quantum critical point (vanishing simultaneously with the onset of long
range order) has been criticized in [176], where a revisited (and amended) calculation
was shown to imply the absence of any mobility edge at intensive energies.

At finite temperature, it was argued in [7] that an extensive mobility edge exists in
presence of weak interactions in the Bose glass phase. An analogous statement about
the occurrence of a finite temperature transition was made in [42] for the spin model
(6.1), based on a phase diagram obtained analyzing the statistics of the r parameter
introduced in Sec. 1.2.7. This claim is motivated in [42] with an argument which exploits
the following approximate expression for the level width Γi of a single-spin excitation of
energy ω:

Γi = J2
xy

k∑
l=1

∑
σz
n(l)

e
ξnσzn(l)

/T

Zl

Γl
(ω −W |ξl|+ Jz

∑
n(l) σ

z
n)2 + Γ2

l

. (6.2)

The level width Γi is the imaginary part of a cavity self energy on the subtree rooted at
site i; due to the structure of the lattice, the expression is of the same form as (1.64).
The second sum in (6.2) is over the possible configurations σzn = ±1 of the spins n(l)
on neighboring sites of l (excluding the site i). Each such configuration is weighted
thermally, with normalization Zl =

∑
σz
n(l)

e
ξnσzn(l)

/T . The expression (6.2) is approximate,

as the shifts in the denominators generated by the real parts of the cavity self energies
are neglected. Following the considerations in [176], we consider in the following the
corrected form of (6.2) obtained with the substitution |ξl| → ξl. The Ising interaction in
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6.1. T -induced delocalization: a possible mechanism

(6.1) enters in the energy denominators of (6.2), that contain the local “shifts”:

τl = Jz
∑
n(l)

σzn. (6.3)

At the core of the argument in [42] lies the following consideration: in the strong-disorder
regime W � Jxy, Jz, the statistics of the energy denominators in (6.2) is altered by the
presence of the interactions (and thus by the terms (6.3)) in a way that depends strongly
on T . More precisely, at low temperatures the z-components σzn of the neighboring
spins σzn are essentially frozen in the direction of the local fields ξn; thus, (6.3) acts as
an effective quenched variable that weakly shifts the local field Wξl, without affecting
significantly the statistics of the denominators. In contrast, at higher energy density the
z-components of the surrounding spins σzn are fluctuating degrees of freedom which can
be in various different configurations. Among such configurations, there shall be optimal
ones that are more resonant with the decaying degree of freedom. Thus, by optimizing
over the thermal configuration of the neighboring spins, the probability of occurrence
of resonant denominators in (6.2) increases: in this sense, thermal fluctuations open
more efficient decay channels for the excitation, thus enhancing its mobility. This
scenario suggests a simple mechanism for a finite temperature transition, as it implies
that a non-zero Jz term enhances the mobility of single-spin excitations on top of highly
energetic states more strongly as compared to states of low energy-density, introducing
a temperature dependence of the critical point on single-particle-like excitations. Note
that this effect of temperature is different from the one discussed within the perturbative
framework in Sec. 2.2.6. In that case, the focus is on the decay of an excitation by
means of inelastic scattering processes, and the increase of T results in an increase of the
phase space available for the excitation to undergo scattering processes. Here instead the
focus is on elastic processes, i.e. on the propagation of the excitation to the boundary:
the number of decay paths is fixed by the geometry of the lattice, while the thermal
fluctuations affect the amplitude associated to each path, which explicitly depends on the
thermal configuration of the neighboring degrees of freedom.

The above mechanism can be rephrased in the following terms: the decay rate of single-
spin excitations on a background of surrounding spins appears to depend on whether
the neighboring spins are treated as frozen, quenched variables (which corresponds to
the low T scenario) or as annealed ones (corresponding to higher T ). In particular, a
fluctuating environment of spins appears to favor the decay of the individual excitation,
by increasing the abundance of resonant denominators. This suggests an analytical
approach to describe self-consistently localized and delocalized states, by focusing on the
indirect effect of an ergodic -or frozen- environment on the decay channels for individual
degrees of freedom. A self-consistent scheme of the following sort can be developed: (i)
an assumption is made on the nature of the state and thus on the environmental spins (ii)
the decay rate of the individual degree of freedom is computed treating the surrounding
spins accordingly, as either fluctuating -or frozen- variables (iii) the self-consistency of
the assumption is checked by showing that the decay is indeed possible -or not. Such
a scheme is reasonable whenever the local potentials which determine the efficiency of
the decay channels (i.e., the energy denominators in the expression for the decay rate),
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depend significantly on regions of the sample that are not themselves part of the decay
path under consideration. This occurs in high dimensions, on Bethe lattices with high
connectivity, or in systems with sufficiently long range interactions.

Motivated by these considerations, in the remainder of the section we revisit the above
argument: We set up a formalism for the description of the decay of an excitation in a
fluctuating (henceforth “liquid”) and a frozen environment of spins, respectively. We
investigate the possibility of obtaining two different critical values of λc = (Jxy/W )c
for the delocalization transition (at the same T = ∞ temperature) depending on the
hypothesis made on the environment, in which case one might have self-consistently
localized or delocalized states at the same parameters. However, we will see that this is
not the case. Rather, both approaches give the same λc.

6.1.1 The setup for a self-consistent approach

As discussed in Sec. 1.4.3, the stability of the localized phase can be determined by
linearizing the expression for the level width around Γ = 0 ∀ k and iterating the resulting
expression up to the boundary. The latter is assumed to be at distance L from the bulk
site i, and associated to an infinitesimal level width γL. The iteration results in a sum
over all paths p connecting the site i to any of the sites at the boundary, which we write
in full generality as:

Γi ≈

 ∑
paths: i→∂L

ωp

 γL. (6.4)

In the following, we refer to the typical value of (6.4) as2 the decay rate of the excitation
, and denote it simply by Γ. The localized phase is stable as long as the typical value of
the sum (6.4) decays exponentially in L, the critical point being the one at which the
typical value of Γ becomes of O(1).

Due to the presence of the interactions, the weights ωp in (6.4) depend explicitly on the
configuration of all the (k − 1)L neighboring spins σzn along the path, which we treat as
independent random variables. The distinction between frozen and liquid environment
translates into different weights ωp, the difference being whether the neighboring spins
are averaged over or not. In case of a frozen environment, we consider:

Γ(f) = γL
∑

paths(i;L)

∏
s∈p

(
Jxy

ω −Wξs + τs

)2

= Γ(f) ({ξi, τi}) , (6.5)

where the product is over all sites s along the given path, ξ = (ξ1, · · · , ξL) and τ =
(τ1, · · · , τL) the corresponding fields and shifts (6.3). In this case, the τi are quenched
variables on which the decay rate depends explicitly. Their distribution P ({τi}) is assumed
to be a “thermal” one obtained from the Gibbs distribution of the variables σzn.

2Strictly speaking, the two coincide within the Weisskopf-Wigner approximation, whereby the self-energy
function is substituted with a constant, that is its value at the dominant pole [57].
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In the case of a liquid environment, we set instead:

Γ(l) = γL
∑

paths(i;L)

∑
τ

P (τ) min

{
1,
∏
s∈p

(
Jxy

ω −Wξs + τs

)2
}

= Γ(l)({ξi}). (6.6)

In (6.6), the contribution of each decay path is obtained performing a thermal average
over all possible configurations of the environmental spins (and thus of the local shifts
τs) at fixed quenched disorder. As a result, Γ(l) depends explicitly only on the quenched
fields. The minimum constraint of the product in (6.6) prevents atypical configurations
to contribute with an exponentially large weight. The latter can be generated as a
consequence of the fact that we neglected the real parts of the self energies when
iterating the linearized equations for the level width. By neglecting the renormalization
effect of the self energies, one might get unphysical, exponentially large decay rates that
would dominate the thermal average in (6.6), leading to an erroneous estimate of the
typical value of the sum. A cutoff is thus introduced, that reproduces the renormalization
effect of the self-energy corrections on the rare, large amplitudes.

6.1.2 A potential scenario for fluctuation-induced delocalization

The mechanism that is singled out in [42], namely that the fluctuations of the envi-
ronmental spins enhance the mobility of the individual excitations, can be tested in
the simple framework developed above. In particular, one might consider the decay
of a single-spin excitation on top of an infinite temperature state (meaning that each
neighboring spin has equal probability to be σzn = ±1), and ask at which critical value
of λ = Jxy/W the typical values of (6.5) and (6.6) become of order O(1). If a liquid
environment indeed opens more favorable channels for the propagation of the excitation,
one should find that (6.6) becomes of order O(1) at a smaller value of the hopping, i.e.
λ

(l)
c < λ

(f)
c .

In the self-consistent treatment, this would correspond to a regime of coexistence λ(l)
c <

λ < λ
(f)
c in which both assumptions on the environment are consistent, see Fig. 6.1. Such

a scenario 3 is conceivable, based on the general expectation that the thermal averaging
in (6.6) favors different decay paths than (6.5). In particular, one might expect that
at λ(l)

c , Γ(l) is dominated by some thermal configuration of the environment (i.e., some
configuration of the local shifts) that is too rare to appear in typical instances of Γ(f), but
is present in Γ(l) by virtue of the thermal average. In the following, we however rule out
this scenario, arguing that the typical values of (6.5) and (6.6) become of order O(1) at
the same value of λ(f)

c = λ
(l)
c , irrespectively of how the path weights are averaged.

3This scenario would have several implications; for instance, it would make it possible for a given system
at fixed energy density to end up in states that are very different in nature (either localized or delocalized)
depending on how the system is prepared [150]. We note, however, that arguments along the same lines as
the ones given in Sec. 1.5.1 suggest that what (possibly) appears as a coexistence within a self-consistent
treatment might actually correspond to a regime in which the localized state is long-lived but metastable,
and eventually decays into the diffusive one at very large time scales.
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Figure 6.1: Schematic representation of a coexistence regime in which both assumptions
on the environment (liquid or frozen) are consistent.

6.1.3 Ineffectiveness of rare thermal fluctuations in enhancing delocaliza-
tion

To simplify the notation, we assume that the random fields ξi take values only within a
discrete set ξ = {ξ1, · · · , ξN}. Since the possible values of the shifts τl are also finite, we
may write:

Γ(f) = γL
∑
ξ,τ

N (ξ, τ) Γ(ξ, τ) (6.7)

where the sum is over all possible sequences ξ, τ of length L of shifts and fields, Γ(ξ, τ)
the corresponding weight, and N (ξ, τ) the number of paths (out of the total kL) having
such a sequence of fields and shifts. The quantity N (ξ, τ) is the random variable in (6.7).
Similarly, (6.6) can be written as

Γ(l) = γL
∑
ξ

N (ξ) Γth(ξ), (6.8)

where N (ξ) is the number of paths with fields ξ, and Γth(ξ) is their deterministic weight,
obtained performing the thermal average over all the possible thermal shifts:

Γth(ξ) =
∑
τ

P (τ) min {1,Γ(ξ, τ)} . (6.9)

The probability for a configuration (ξ, τ) to occur equals P (ξ)P (τ) =
∏L
s=1 p(ξs)p(τs),

with p(ξ), p(τ) the distributions of the quenched fields and of the thermal shifts at a given
site. When sampling kL paths independently, there typically are Ntyp(ξ, τ) = kLP (ξ)P (τ)
paths with such a configuration of denominators. Whenever this number is smaller than
one, the configuration is rare. The same holds true for paths with a given sequence of
fields ξ.

In the following we assume that whenever the typical values of the sums (6.7), (6.8) are
of order O(1), they are dominated by one optimal configuration (ξ∗, τ∗). For the two
expressions to give two different critical conditions, it must be that the dominating config-
urations giving a contribution of order O(1) are different in the two cases. In particular,
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the scenario in Sec. 6.1.2 would occur if at λ(l)
c the rate (6.8) is dominated by a configu-

ration (ξ∗, τ∗) such that Ntyp(ξ∗) = kLP (ξ∗) ≥ 1, but Ntyp(ξ∗, τ∗) = kLP (ξ∗)P (τ∗) < 1.
This would make it possible that at λ(l)

c , Γ(l) = O(1) holds, but still Γ(f) < 1, so that
λ

(l)
c < λ

(f)
c . However, this scenario is not possible for the following reasons:

(i) Assume that at λ = λ
(l)
c , the sum (6.8) is dominated by a configuration (ξ∗, τ∗).

Then:

Γ
(l)
typ ∼ Ntyp(ξ∗) [P (τ∗) min {1, Γ(ξ∗, τ∗)}] = 1, (6.10)

which implies Ntyp(ξ∗)P (τ∗) ≥ 1 due to the presence of the constraint on the path
weight. Since Ntyp(ξ∗)P (τ∗) = Ntyp(ξ∗, τ∗), the configuration (ξ∗, τ∗) is not rare,
and it occurs in typical realizations of Γ(f) with multiplicity Ntyp(ξ∗, τ∗), implying
Γ(f) ≥ 1. Thus, λ(f)

c ≤ λ(l)
c .

(ii) On the other hand, assume that at λ = λ
(f)
c , the typical value of the sum (6.7) is

dominated by:

Γ
(f)
typ ∼ Ntyp(ξ∗, τ∗) Γ(ξ∗) = 1. (6.11)

Then it must hold that Ntyp(ξ∗, τ∗) ≥ 1, which implies that Ntyp(ξ∗) ≥ 1, meaning
that typical realizations of Γ(l) receive kLP (ξ∗) path contributions with fields ξ∗.
Then, in the thermal average, for each such path there is a contribution with shifts
τ∗, which produces a total term of order O(1). Thus, Γ(l) ≥ 1, implying λ(l)

c ≤ λ(f)
c .

The argument (i) corresponds to the following physical picture: for Γ(l) to be of order
O(1), at any time the instantaneous decay rate must be of order O(1), meaning that the
typical thermal configurations of the environment give a decay rate of order O(1). Such
typical thermal configuration will also appear in the frozen case, implying that Γ(f) = 1
also. For this argument to hold, the cutoff imposed on the weights in (6.6) is crucial, as
it forbids that Γ(l) = O(1) due to rare instances of time in which the instantaneous decay
rate is extremely large.

The above reasoning implies that λ(l)
c = λ

(f)
c , thus ruling out the scenario of Sec. 6.1.2.

We conclude that a mechanism based on thermally enhanced small denominators does
not work. Moreover, it follows from this reasoning that for this class of models, at the
transition, considering the environment as frozen or considering it as liquid (in the sense
of Eqs. (6.8) and (6.7)) produces the same result for λc; we make use of this observation
when performing the computation in Sec. 6.3. We conclude this section with a few
comments:

– In the case discussed in this section, the local fields appearing in each of the
energy denominators in (6.6) are a sum of uncorrelated contribution from the
environment. The equivalence of the critical conditions given by the two different
formalism is then not too surprising: indeed, the formula (6.6) entails that, while
the excitation decays in a liquid environment, it experiences at any site a local
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field corresponding to a fixed configuration of the neighbors. In this sense, the
environment appears as effectively frozen at any instance of time, although in
a different thermal configuration at any site. However, since the contributions
of different configurations at different sites are independent, the outcome of the
calculation is the same as for the frozen case. This leaves open the possibility that
more complex models, in which correlations are present among the environmental
spins, might indeed display a regime of coexistence when analyzed within the
self-consistent scheme sketched in Sec. 6.1.

– If the constraint in (6.6) is removed, one would erroneously obtain that λ(l)
c <

λ
(f)
c . Indeed, in this case the typical value of (6.10) can reach the value 1 due

to rare configurations having negative entropy (i.e., kLP (ξ∗)P (τ∗) < 1), that as
such do not contribute to typical realizations of the frozen decay rate. For such
rare configurations to give a contribution of order O(1) in the liquid case, their
instantaneous decay rate has to be large enough to compensate for the negative
entropy. This can happen if the instantaneous decay rate is allowed to grow
exponentially with L (which is the case in [42]). As previously discussed, this
situation is however unphysical, as decay rates are physically bounded by quantities
of order O(1).

– The equality Γ
(l)
typ = Γ

(f)
typ holds at the critical value λc, when both the typical values

are of order O(1). Deep in the localized phase however, the constraint in (6.6) is
essentially ineffective due to the fact that the energy denominators are typically
bounded from below. In the absence of the constraint, the inequality Γ(l) ≥ Γ(f)

holds at fixed λ, as it follows from interpreting the two quantities as an annealed
and quenched partition functions, respectively. Then, the calculation of the typical
decay rate indicates that a liquid environment enhances the localization length of
the individual excitation.

6.2 A toy model for the decay in a liquid environment

The framework developed in the previous sections naturally raises the question of when
it is permitted to treat the surrounding spins as frozen or annealed. In particular, it is
important to ask under which circumstances it is justified to consider a decay rate of the
form (6.6), and more generally (6.2).

These two expressions correspond to the following dynamical picture: the excitation
propagates on a background of spins that is not static, but nevertheless, at any site
it experiences the field generated by an environment that is frozen in some thermal
configuration. In this setting, the decay rate is obtained by averaging the individual decay
rates at fixed thermal configurations. On general grounds, we expect this picture to be
meaningful as long as the time scale associated to the fluctuations in the environment,
i.e. the typical time scale of fluctuation of the effective local fields (6.3), is not “too fast”
(with respect to a time scale to be established below). Indeed, very fast oscillations should
result in local effective fields that are themselves averages over all possible configurations
of the environment.
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To make this statement concrete, we consider a simple toy model describing the decay of
a single particle subject to a fluctuating local potential, which mimics the effect of the
neighboring spins. More precisely, we consider a two-site system with Hamiltonian:

H(s)(t) = h1n1 + h2(t)n2 − J(c†1c2 + c1c
†
2), (6.12)

with h2(t) a periodically-modulated field with period Ω−1, of the general form

h2(t) = h+ h̃f (Ωt) . (6.13)

The total Hamiltonian reads H(t) = H(s)(t)⊗1+1⊗H(b) +H(sb), where the Hamiltonian
of the (fermionic) bath reads

H(b) =
∑
α

ωαb
†
αbα, (6.14)

and the coupling is chosen to be

H(sb) =
∑
α

λα

(
b†αc2 + c†2bα

)
. (6.15)

The spectral function of the bath is given by Γ(ω) = π
∑

α λ
2
αδ(ω − ωα). For simplicity,

we consider a uniform coupling of all the modes λα = λ0, and a uniform density of states
γ of the bath, so that Γ(ω)→ πλ2

0γ = Γ.

For h1 = 0, this toy-model contains four different energy scales (J, h, h̃ and Ω). In the
following, we assume that the hopping amplitude J is the smallest scale in the problem.
The constant h̃ can be loosely identified with the coupling Jz setting the size of the
fluctuating local shifts in the model (6.1), while h corresponds to the gap between the
two neighboring local fields along a path of propagation; the situation considered in the
previous sections corresponds to h̃ . h. Within this simplified setting, the analogue of
the formula (6.2) would prescribe a decay rate for the particle that is an average (in this
case over time) of the individual rates associated to a fixed configuration of the local field
h2(t).

To check whether this is indeed correct, we determine the effective field that the particle
experiences at the second site while decaying to the bath. We consider the particle’s
retarded Green function

GRij(t, t
′) = −iθ(t− t′)〈

{
ci(t), c

†
j(t
′)
}
〉, (6.16)

with i, j ∈ {1, 2} labeling the sites in the lattice. The Green function (6.16) is not time-
translation invariant, due to the time-dependence in the system’s Hamiltonian. To lowest
order in the hopping J , the following expansion holds for the component at the first site
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of the lattice:

GR11(t, t′) =
∞∑

n=−∞

∫
dω

2π

ei
Ω
2
n(t+t′)e−iω(t−t′)

ω − Ω
2 n− h1

×

×
[
δn,0 +

J2

ω + Ω
2 n− h1

∑
m

un+mu
∗
m

ω − h0 + iΓ
2 + Ω

2 (n+ 2m)
+ · · ·

]
,

(6.17)

where the un are the Floquet modes associated with the solution of the Schrödinger
equation(i∂t − h2(t))ψ(t) = 0,

ψ(t) = e−ih0tu(t) = e−ih0t
∞∑

k=−∞
eiΩktuk. (6.18)

In (6.18), we assumed the Fourier decomposition h2(t) = h0 +
∑

k 6=0 hk e
ikΩt, with

h0 =
1

T

∫ T

0
dt h2(t) (6.19)

the Floquet quasienergy. The coefficients un are the solutions of the tight-binding problem
in frequency space:∑

k 6=0

hkun−k + Ωnun = 0. (6.20)

Note that the same physical state (6.18) is obtained shifting h0 → h0 + Ωj, u(t) →
eiΩjtu(t) = u(j)(t). The Fourier coefficients of u(j)(t) satisfy the equivalent tight-binding
problem:∑

k 6=0

hku
(j)
n−k + Ω(n− j)u(j)

n = 0. (6.21)

We give the derivation of the expansion (6.17) in Appendix 6.A.

In the limit Ω→∞, the problem (6.21) has solutions u(j)
n = δn,j . Substitution of this (for

j = 0) into (6.17) gives:

G11(t, t′)
Ω→∞→

∫
dω

2π

e−iω(t−t′)

ω − h1

[
1 +

J2

ω − h1

1

ω − h0 + iΓ/2
+ · · ·

]
. (6.22)

Thus, in this limit the correct locator is obtained averaging the local field in the denom-
inator, cfr. (6.19), as expected in the limit of fast fluctuations of the environment. For
a potential of the form (6.13), corrections to the solution un = δn,0 can be obtained
perturbatively in h̃/Ω.

To address the opposite regime of small Ω, we neglect the terms in (6.17) oscillating at
the large scale T ∼ Ω−1 with respect to the variable (t+ t′)/2, focusing on the term with
n = 0.
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For concreteness, we specify to the discontinuous4 potential

h2(t) =

{
h for t ∈

[
0, πΩ

]
h+ h̃ for t ∈

(
π
Ω ,

2π
Ω

] = h+
h̃

2
+
ih̃

π

∑
m

ei(2m+1)Ωt

2m+ 1
, (6.23)

whose jump of amplitude h̃ mimics a fluctuation of the local shifts (6.3) due to the flip of
a neighboring spin. In this case, the solution of the tight binding problem (6.20) is:

un =
iΩh̃

2π

e−iπn+ih̃ π
2Ω − 1

(Ωn+ h̃/2)(Ωn− h̃/2)
. (6.24)

The series needed for (6.17) with n = 0,

SΩ(z) =
∑
m

|um|2
z + Ωm

=

(
Ωh̃

2π

)2∑
m

2− 2 cos
(
πm− h̃ π

2Ω

)
(z + Ωm)

[
Ωm+ h̃/2

]2 [
Ωm− h̃/2

]2 (6.25)

where z = ω − h0 + iΓ/2, can be resummed explicitly, the result being:

SΩ(z) =
z

(z − h̃/2)(z + h̃/2)

[
1 +

Ωh̃2

z(z − h̃/2)(z + h̃/2)
F

]
. (6.26)

In (6.26), F is a linear combination of oscillating terms, of the form:

F = ie−
πΓ
2Ω e

iπ(ω−h)
Ω +

2e−
πΓ
Ω e

2iπ(ω−h−h̃/2)
Ω − e−πΓ

2Ω e
iπ(ω−h−h̃)

Ω − e−πΓ
2Ω e

iπ(ω−h)
Ω

i(1− e−πΓ
Ω e

2iπ(ω−h−h̃/2)
Ω )

. (6.27)

When substituting z → ω − h− h̃/2 + iΓ/2, one recognizes in the first term of (6.26) the
time average of the instantaneous locator, as expected:

1

T

∫ T

0

1

ω + iΓ
2 − h2(t)

=
1/2

ω + iΓ
2 − h

+
1/2

ω + iΓ
2 − h− h̃

=
ω + iΓ/2− h− h̃/2

(ω + iΓ
2 − h− h̃)(ω + iΓ

2 − h)
.

(6.28)

For ω = 0 and neglecting Γ, one finds that the correction to this term is small provided
that

Ω� (h+ h̃/2)h(h+ h̃)

h̃2
. (6.29)

For h̃ . h, the condition (6.29) can be written as Ω� h(h/h̃)2 up to corrections of order
h̃/h. Thus, for h� h̃ the expression (6.28) is a good approximation for a wide range of
frequencies, although in this regime the resulting locator is essentially equivalent to the
time averaged one in (6.22), since the two differ by a term of the order of (h̃/h)2/4� 1.

4The choice of a discontinuous field implies that no Landau-Zener transitions have to be considered in
this discussion.
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The decay rate containing the locator (6.28) is most different from the case (6.22)
whenever the fields satisfy h < h̃/4. In this case it holds

1

h+ h̃/2
=

2

h̃

(
1− 2

h

h̃
+ · · ·

)
<

1

2h

(
1 +

h

h̃
+ · · ·

)
=

h+ h̃/2

(h+ h̃)h
. (6.30)

When (h̃/h)2/4� 1, the condition (6.29) reads Ω . h/2. In this case, an intermediate
regime h . Ω . h̃ occurs in which neither of the approximations considered above is
valid.

In general, we conclude from (6.29) that in this toy-model the expression for the decay
rate exploited in Sec. 6.1.2 is justified when the fluctuating effective field varies at a rate
Ω that is smaller than the timescale for the local precession of the spins, set by the static
local field.

6.3 T -induced delocalization: an effective mechanism

Following the considerations above, we conclude that the annealed average over thermally
distributed configurations is ineffective in enhancing the mobility of the excitations.
However, the effective mobility edge might nevertheless display a dependence on T , if it
arises from a T -dependence of the distribution of the effective local fields (irrespectively
of whether they are treated as frozen or annealed), which was not the case in the simple
case treated above. We discuss this mechanism in this section. We consider the same
setup as above, namely a single-spin-flip excitation of energy ω propagating from the
root to the boundary of a Bethe lattice with connectivity k + 1. We consider the rescaled
hopping λ = Jxy/W to be fixed, and focus on the dependence on temperature of the
mobility edge of such excitations, ωc(λ, k, T ). Assuming a slowly fluctuating environment,
an expression as (6.6) for the decay rate can be exploited. Moreover, it follows from the
discussion in Sec. 6.1.1 that the configuration of the neighboring spins can be considered
as frozen for the purpose of estimating the critical hopping or mobility edge, as the two
averaging procedures result in the same estimate. This allows us to bypass the technical
difficulties that arise in the computation of (6.6) due to the constraint. Instead, the
typical value of the “forward approximation” decay rate (6.5) can be computed exploiting
the formalism of directed polymers in random media, which we recall in the following.

6.3.1 Quenched free energy of directed polymers on Bethe lattices

The directed polymer problem on the Bethe lattice was solved exactly in [51], where a
recipe to compute the typical value of the partition function is given. The latter can be
generically written as

Z(β, α) =
∑
paths

∏
i∈p

[fi(ξ, α)]β , (6.31)
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where the sum is over all kL paths of length L, whose weight is a product over L
independent, positive terms fi(α, ξ) depending on some set of quenched random variables
ξ with distribution p(ξ). Here β is the inverse temperature, and α is a set of parameters
on which the problem might depend. The quenched free energy of the polymer is given
in terms of the convex function:

g(x, α) =
1

x
log

(
k

∫
dξp(ξ) [f(ξ, α)]x

)
(6.32)

as

1

Lβ
E [logZ(β, α)] =

{
g(xc(α), α), if β > xc(α)

g(β, α), if β ≤ xc(α),
(6.33)

where xc(α) is the stationary point of (6.32),

d

dx
g(x, α)

∣∣∣∣
x=xc(α)

= 0. (6.34)

For those parameters α for which xc(α) < β, the polymer is in its frozen phase. The
annealed partition function E [Z] is dominated by rare paths with negative entropy, and
thus one has logE [Z] > E [logZ].

Within the forward approximation, a sum of the form (6.5) is a polymer partition function
at β = 2, since the path weights are products of independent variables. Moreover, due
to the unboundedness of the denominators from below, the integral in (6.32) converges
only for x < 1/β = 1/2, and thus the polymer is always in its frozen phase. This implies
that the sum over all paths contributing to the partition function is dominated by the
path with maximal amplitude, a fact that we have made use of in Sec. 6.1.3. For those
parameters α for which the sum in (6.8) does not decay exponentially with L, the decay
rate is not vanishing in the thermodynamic limit. The critical parameters αl at which
(6.8) becomes of order O(1) are fixed by the coupled set of equations:

d

dx
g(xc(αl), αl) = 0, g(xc(αl), αl) = 0. (6.35)

6.3.2 The dependence on temperature of the mobility edge

Let us denote with PT (h) the distribution of the effective local fields which appear in the
denominators of the locators, at a given temperature T . For interacting models, it is a
very general expectation that the density of soft excitations PT=0(0) is suppressed in the
zero temperature regime. This follows from stability arguments, and it occurs in a variety
of models ranging from the Edward-Anderson and Sherrington-Kirkpatrick models, to the
extreme case of the gapped Mott insulator. As temperature is increased, the suppression
of PT (0) is typically softened. To capture this effect qualitatively, we assume the local
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effective fields to be distributed according to the following simple form:

PT (h) =

∫
dz
|z|
2
e−

z2

2
1√
2πT

e−
(z−h)2

2T2 . (6.36)

Figure 6.1: Temperature dependence of the toy-distribution of effective fields, see Eq.
6.36. The vertical dashed line identifies a point within the pseudo-gapped region, where
the distribution depends weakly on temperature.

Eq. (6.36) is the simplest form of a pseudo-gapped distribution smeared out at the scale
of the temperature T . This is precisely the local-field distribution derived in [167] for
the fully-connected Sherrington-Kirkpatrick model, which is determined self-consistently
by averaging over both disorder and thermal fluctuations. Although the pseudo-gap is
distinctive feature of models with long-range interactions, this specific example optimizes
the generic behavior of realistic PT (h) in a large set of models, having the advantage of
being easily-tractable.

We compute the decay rate of an excitation along paths whose local fields are distributed
according to (6.36), under the assumption that the quantum fluctuations are weak
enough not to spoil the features of the effective field distribution derived in the classical
limit. By inspecting its form, see Fig. 6.1, one realizes that the density of states of
low-energy excitations increases with temperature, as the pseudo-gap gets filled. Again,
this trend is rather generic. For values of λ for which ωc lies in the region where the
density of states is suppressed, an increase in temperature should result in a lowering of
the effective mobility edge, as smaller denominators become more probable. We now
show that this is indeed the case.

Following the recipe for the directed polymer, the typical value of the decay rate of the
spin excitation is obtained by means of the function (6.32), which reads:

g(x; {ω, λ, k}) =
1

x
log [kI1(x, ω)] + 2 log λ, (6.37)
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where x < 1/2 and

I1(x, ω) =

∫
dh

PT (h)

(h− ω)2x
. (6.38)

The critical values xc, ωc are fixed by the conditions (6.35), which are equivalent to:

I2(x, ω) + I1(x, ω)
1

x
log [kI1(x, ω)] = 0,

1

x
log [kI1(x, ω)] + 2 log λ = 0,

(6.39)

where

I2(x, ω) =

∫
dh log

[
(h− ω)2

] PT (h)

(h− ω)2x
, (6.40)

and the condition for the minimum of (6.37) is rewritten as:

0 = (−x2)I1(x, ω)
d

dx
g(x, ω;λ, k)

= I1(x, ω) log [kI1(x, ω)]− x d
dx
I1(x, ω)

= I1(x, ω) log [kI1(x, ω)] + xI2(x, ω).

(6.41)

This system of equations is solved numerically for different values of the parameters k, T .
A frequency-dependent critical value xc(ω) is obtained by solving the first equation in
(6.39). The effective mobility edge ωc(λ, k, T ) is then derived by solving:

F (ω) = −I2(xc(ω), ω)

I1(xc(ω), ω)
= −2 log λ. (6.42)

Fig. 6.2 shows the dependence of ωc(λ(k), k, T ) on T for different values of the connec-
tivity k and of the hopping λ. For any k, the value of the hopping λ(k) is chosen in such
a way that the location of the mobility edge at small temperatures T = 0.05 coincides
for all curves. As temperature is increased, the position of the mobility edge is shown to
decrease for any fixed k. This reflects the effect of thermal fluctuations on the density of
local fields, which increases the density of small denominators producing an effective
temperature-induced delocalization. As illustrated in the inset of Fig. 6.2, the effective
mobility edge ωc(T ) decreases in a way that depends on T 2, which is the fraction of
thermally active degrees of freedom5 in the toy-distribution (6.36).

We conclude the chapter with a comment about the dependence on the connectivity
k. First, the local-field distribution does not depend on k: this choice of energy units
corresponds to the standard scaling of the interaction couplings in the mean-field limit,

5As for the exact mean field distribution derived in [167], the toy distribution (6.36) satisfies the scaling
PT (h) = Tp(h/T ), with p(x) a function increasing linearly for x � 1 (as it follows from the change of
variable z → z/T ).
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Figure 6.2: Temperature-dependence of the effective mobility edge ωc(T, k, λ(k)) for
different values of k. The dimensionless hopping λ = λ(k) is chosen in such a way that
ωc(T = 0.05, k, λ(k)) coincides for all curves. The continuous lines are interpolating
functions. Inset. Linear dependence of the effective mobility edge ωc(T, k, λ(k)) on T 2,
for k = 2, λ = 1 and values of temperature larger than T0 = 0.27.

〈J2
ij〉 ∼ k−1. This description is expected to be accurate for quantum systems on Bethe

lattices with finite but large connectivity. For larger k, the decrease of ωc(T ) with T is
less pronounced, see Fig. 6.2. This is a consequence of the fact the mobility edge on
a Bethe lattice in the large connectivity limit is determined by the distribution of local
fields only, as a solution of

PT (ωc) =
1

4λk log k
, (6.43)

as proved in [14]. Since within the pseudo-gapped region the shape of PT (h) is not
strongly affected by T (see Fig. 6.1), it follows that the T -dependence of the mobility
edge becomes weaker as the connectivity increases, as described by the asymptotic
formula (6.43).
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6.A Green functions expansion (Eq. 6.17)

Let Ĝ(t, t′) denote the 2x2 matrix with components (6.16). The equations of motion are:{
i
−→
∂t − Ĥ(s)(t)

}
Ĝ(t, t′)− iΓ

2
Ĝ(t, t′) = Îδ(t− t′),

Ĝ(t, t′)
{
−i←−∂t′ − Ĥ(s)(t′)

}
− iΓ

2
Ĝ(t, t′) = Îδ(t− t′),

(6.44)

where we used Σ̂ij(t, t
′) = −iΓδ(t− t′)δ1,2δj,2. For J = 0, the matrix Ĝ(0)(t, t′) is diagonal

in the position basis and given by

Ĝ(0)(t, t′) = −iθ(t− t′)
(
e−ih1(t−t′) 0

0 e−
Γ
2

(t−t′)ψ(t)ψ∗(t′)

)
(6.45)

where ψ(t) admits the decomposition (6.18). The second component of (6.45) thus
reads:

G
(0)
22 (t, t′) = −iθ(t− t′)e−i(h0−iΓ

2 )(t−t′)u(t)u∗(t′) = −iθ(tr)
∑
n,m

eiΩntae−iXnmtrun+mu
∗
m,

(6.46)

where ta = (t+ t′)/2 and tr = t− t′, and Xnm = h0 − iΓ
2 − Ω

2 (n+ 2m). The above can
be written as

G
(0)
22 (t, t′) =

∞∑
n=−∞

ei
Ω
2
n(t+t′)

∫
C

dω

2π
e−iω(t−t′)G

(0)
22 (ω, n), (6.47)

where C = {=ω = ε > 0} and

G
(0)
22 (ω, n) = −i

∫ ∞
0

dt ei(ω−h0+iΓ
2

+ Ω
2
n)t

(∑
m

eiΩmtun+mu
∗
m

)

=
∑
m

un+mu
∗
m

ω − h0 + iΓ
2 − Ω

2 (n+ 2m)
,

(6.48)
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where in the last equality we assumed that integral and series expansion commute. We
now determine the lowest order corrections in J , assuming Gij(t, t′) =

∑
n J

nG
(n)
ij . The

equations (6.44) give to first order in J :

{i∂t − h1}G(1)
12 (t, t′) + JG

(0)
22 (t, t′) = 0 {−i∂t′ − h1}G(1)

21 (t, t′) + JG
(0)
22 (t, t′), (6.49)

which are solved in frequency space by:

G
(1)
12 (ω, n) =

−J
ω − Ω

2 n− h1

G
(0)
22 (ω, n),

G
(1)
21 (ω, n) =

−J
ω + Ω

2 n− h1

G
(0)
22 (ω, n).

(6.50)

Using these solutions one finds to second order:

G
(2)
11 (ω, n) =

J2(
ω − Ω

2 n− h1

) (
ω + Ω

2 n− h1

)G(0)
22 (ω, n), (6.51)

thus recovering (6.17) once (6.48) is substituted.
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Conclusive remarks

We have devoted this thesis to the investigation of several aspects of the localized phase
in quantum systems with quenched disorder. Particular focus has been put on the
characterization of the Many-Body Localized phase in terms of its “integrability”. We
have argued that non-trivial conservation laws exist, adapting at the operator level the
theoretical framework developed in the seminal works [10, 2]. Our treatment involves
several approximations, which can, however, be improved upon [86], as we discussed
in Sec. 2.3. Although approximate, this approach has the advantage of making contact
with the diagrammatic formalism in [20, 72]: some of the tools that we have used (for
instance the re-summation of diagrams described in Sec. 2.3) can be exploited in other
contexts in which diagrammatic expansions are considered [73]. Moreover, it has the
advantage of being constructive: the calculation in Chapter 3 illustrates the practical
usefulness of the perturbative recipe, which, being explicit, allows one to obtain analytic
expressions for relevant quantities characterizing the MBL phase, such as the remanent
magnetization after a quench. Our formalism also allowed us to reformulate the debate
on the existence of a finite-temperature transition at the operator level, and to illustrate
why this controversy cannot be settled within the approximations made in our treatment,
as well as in [20, 72].

The theoretical arguments for the existence of integrals of motion and, more generally,
of the localized phase rely on probabilistic estimates of the occurrence of resonances,
generated by rare fluctuations of the randomness. In the analytical computations through-
out the whole thesis, the probability of resonances is argued to decay fast enough with
the distance between the degrees of freedom involved. This is done exploiting a set of
approximations, which we have always referred to as “the forward approximation”. It is
probably worth to comment at this point about the various versions of this approximation.
In its single-particle formulation [10], the approximation consists in restricting the sum
over all processes (or paths) contributing to the propagator to only those processes that
do not contain repetitions of the intermediate states, i.e., to the self-avoiding paths;
this amounts to neglecting the renormalization of the bare energy levels produced by
the self-energy corrections, as pointed out in Sec. 1.4.1. In Chapter 4 and 5, we have
exploited this approximation to its lowest order in the hopping, considering only the
shortest among the self-avoiding paths. The forward approximation performed on the
effective hopping problem in Chapter 2 contains an additional simplification, that is the
fact that some processes (the hopping “within the same generation”) are neglected. Let
us briefly recall the main results obtained within these approximations, and mention
possible directions for improving such results.
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The treatment of the “small bath problem” in Chapter 4 illustrates how the lowest order
forward approximation captures the basic features of the phase diagram, such as the non-
monotonic dependence of localization on the coupling to the finite bath, in agreement
with exact diagonalization results. The “Zeno regime” discussed in this context provides
an example of localization induced by coupling to further degrees of freedom. Although
we focused on the simplified setting of non-interacting particles, it is possible that an
analogous phenomenon occurs in more general frameworks (it was for instance taken
into account in [49] in an interacting setting, with the purpose of ensuring that the
mobility of the bubbles is not hindered once the coupling to configurations without
bubbles is taken into account). Broadly speaking, the problem in Chapter 4 can be related
to the discussion about how “bath-like” regions, having “ergodic” features, affect the
the surrounding localized degrees of freedom. This problem is of central relevance, as
any analytic treatment of the localized phase, and possibly of the transition, requires to
control the effect of such regions (be they the “resonant blocks” in [86], or the “ergodic
grains” in [47], or the “bubbles” in [49]).

Besides being analytically tractable, the lowest order forward approximation can be easily
implemented numerically via transfer matrix techniques, as discussed in Chapter 5. In
general, we expect that restricting to the shortest paths is a good approximation deeply in
the localized phase and, in high dimension d, even up to a relatively close vicinity of the
transition point: as a matter of fact, the criterion (1.66) states that the transition occurs
for a value of the hopping V that is parametrically smaller than the disorder W by a factor
of κ(d), κ being an effective connectivity increasing with d. This approximate approach
may however be improved staying within the transfer matrix scheme, by retaining only
the shortest paths but incorporating the self-energy corrections in their denominators (at
least to the lowest orders). Such corrections may affect substantially the large deviations
of individual path weights, due to the mechanism of compensation of small denominators
discussed in Sec. 1.4.4: it would be interesting to revisit the discussion in Sec. 5.4.1
accounting for the correlations among the locators that the self-energies induce.

For what concerns the treatment in Chapter 2, it is clear that restoring the neglected
processes in the vicinity of the transition is relevant in the light of the discussion on the
delocalizing bubbles in Sec. 1.5.1. Understanding which type of processes leads to the
breakdown of the quasilocality of the conserved operators is undoubtedly a physically
relevant problem.

As already mentioned, in this thesis we focused primarily on the localized phase, touching
the topic of the transition only in Chapter 6. There, we investigated the possibility of
coexistence between the two types of states within a self-consistent scheme, and we
showed that such a coexistence is not realized in the model that we considered. This
allowed us to rule out a possible argument in favor of a finite temperature transition,
based on the expectation that the decay of individual excitations is enhanced by rare
thermal fluctuations of the surrounding spins. The framework developed in this chapter
enabled us to discuss an alternative mechanism by which temperature affects the (effec-
tive) mobility edge of the individual excitations, by filling the pseudogapped region in the
distribution of effective local fields, thus increasing the abundance of small denominators.
The self-consistent approach exploited in Chapter 6 was introduced in a heuristic way, by
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choosing to treat the thermal fluctuations of the environmental spins as either annealed
or quenched variables. It should be possible to frame this into a more rigorous scheme:
intuitively, one might expect that two different expressions for the decay rate of individual
excitations on top of a given many-body eigenstate (involving two different types of
averages over the environmental spins) can be derived exploiting two different parameter-
izations of the eigenstate. In particular, a parametrization of the “ETH form” (a uniform
superposition of classical states within the same energy shell, the classical states being
product states in the basis of the z-components of the local spin operators) is expected
to lead to an “annealed” average over classical states. In contrast, a parametrization of
the MBL form (a “weak deformation” of a classical state) should lead to a decay rate in
which the configurations of the neighboring spins are quenched. Such a formal derivation
would allow to recast our heuristic self-consistent scheme into a well-defined program,
which could be applied to more complex models for which a coexistence is in principle
possible. It is worth to point out that the realization of the coexistence scenario in more
complex models would be interesting even if true coexistence turns out to be absent in
the thermodynamic limit, and the localized state is metastable: in that case, it would
raise the question of how metastable states eventually decay into the liquid phase.

The above remarks concern the content of this thesis. There are certainly many other
issues regarding the localized phase that need to be addressed, among which the role of
dimensionality, the nature of the critical points found within the MBL phase [81, 136],
the possible occurrence of localization in systems with long-range interactions, or in
continuum space, or with an unbounded local spectrum, the detailed characterization
of the dynamics within this phase. Moreover, a field theoretical description of MBL has
only just started to be developed [8]. The possibility that MBL systems might serve as
platforms for quantum information technologies is one of the compelling reasons to
keep investigating this phase, with the aim of clarifying in which setting these systems
can actually be used as quantum memories in which to store quantum information and
preserve its quantum coherence.
Despite plenty of open problems, the recent years have produced a fair amount of
insight into the localized phase. We hope that our work gives a valuable contribution to
this insight. On the other hand, understanding the breakdown of localization and the
dynamical transition to the delocalized, thermal phase is an issue whose resolution is still
in its infancy. This is a tough problem, which requires to deal simultaneously with out-of-
equilibrium quantum physics, interactions, quenched randomness and highly-energetic
states: capturing this physics remains an open theoretical challenge.
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[66] A. M. Garćıa-Garćıa and E. Cuevas. Dimensional dependence of the metal-insulator
transition. Phys. Rev. B, 75:174203, 2007.

[67] S. D. Geraedts, R. N. Bhatt, and R. Nandkishore. Emergent local integrals of
motion without a complete set of localized eigenstates. arXiv:1608.01328 [cond-
mat.stat-mech].

[68] T. Giamarchi and H. J. Schulz. Anderson localization and interactions in one-
dimensional metals. Phys. Rev. B, 37:325–340, Jan 1988.

[69] C. Gogolin and J. Eisert. Equilibration, thermalisation, and the emergence of
statistical mechanics in closed quantum systems. Reports on Progress in Physics,
79(5):056001, 2016.

[70] J. Goold, C. Gogolin, S. R. Clark, J. Eisert, A. Scardicchio, and A. Silva. Total
correlations of the diagonal ensemble herald the many-body localization transition.
Phys. Rev. B, 92:180202, Nov 2015.

[71] S. Gopalakrishnan, K. Agarwal, E. A. Demler, D. A. Huse, and M. Knap. Griffiths
effects and slow dynamics in nearly many-body localized systems. Phys. Rev. B,
93:134206, Apr 2016.

[72] I. Gornyi, A. Mirlin, and D. Polyakov. Interacting electrons in disordered wires:
Anderson localization and low-T transport. Phys. Rev. Lett., 95:206603, 2005.

[73] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov. Many-body delocalization transition
and relaxation in a quantum dot. Phys. Rev. B, 93:125419, 2016.

177



Bibliography

[74] T. Grover. Certain general constraints on the many-body localization transition.
arXiv:1405.1471 [cond-mat.dis-nn].

[75] V. Gurarie, L. Pollet, N. V. Prokof’ev, B. V. Svistunov, and M. Troyer. Phase diagram
of the disordered bose-hubbard model. Phys. Rev. B, 80:214519, Dec 2009.

[76] D. B. Gutman, I. V. Protopopov, A. L. Burin, I. V. Gornyi, R. A. Santos, and A. D.
Mirlin. Energy transport in the anderson insulator. Phys. Rev. B, 93:245427, 2016.

[77] T. Halpin-Healy and Y.-C. Zhang. Kinetic roughening phenomena, stochastic
growth, directed polymers and all that. aspects of multidisciplinary statistical
mechanics. Physics reports, 254(4):215–414, 1995.

[78] D. A. Huse, C. L. Henley, and D. S. Fisher. Huse, henley, and fisher respond. Phys.
Rev. Lett., 55:2924–2924, Dec 1985.

[79] D. A. Huse, R. Nandkishore, and V. Oganesyan. Phenomenology of certain many-
body-localized systems. Physical Review B, 90(17):174202, 2014.

[80] D. A. Huse, R. Nandkishore, and V. Oganesyan. Phenomenology of fully many-
body-localized systems. Phys. Rev. B, 90:174202, Nov 2014.

[81] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. Sondhi. Localization-
protected quantum order. Phys. Rev. B, 88:014206, 2013.

[82] F. Iemini, A. Russomanno, D. Rossini, A. Scardicchio, and R. Fazio. Signa-
tures of many-body localisation in the dynamics of two-sites entanglement.
arXiv:1608.08901 [quant-ph].
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