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Preface

All mathematics is divided into three parts: cryptography (paid for by
CIA, KGB and the like), hydrodynamics (supported by manufacturers of
atomic submarines) and celestial mechanics (financed by military and other
institutions dealing with missiles, such as NASA).

Cryptography has generated number theory, algebraic geometry over
finite fields, algebra, combinatorics and computers.

Hydrodynamics procreated complex analysis, partial differential
equations, Lie groups and algebra theory, cohomology theory and scientific
computing.

Celestial mechanics is the origin of dynamical systems, linear algebra,
topology, variational calculus and symplectic geometry.

From Polymathematics: Is mathematics a single science or a set of arts?
Vladimir Igorevi¢ Arnol’d

What is this dissertation, or more generally my PhD work, about? The simplest
and most straightforward approach is dichotomy. This dissertation is divided
into two parts, one more pure and one more applied. The first part investigates
the notion of twist in higher dimension, generalizing some classical fized point
results. The second part analyses the role and effects on crawling locomotion
of a directionality in friction. This is often the most effective way to briefly
present, from scratch, my research activity, and the structure of this document
reflects this view.

Yet, a dissertation should also be a time to stop, look backwards and reflect
on what has been learned and accomplished in the previous years. Taking
a deeper look at my activity in its entirety, I find this demarcation really
blurred, obviously ruling out some visible, but quite superficial, distinguishing
features. Mathematics is, in a sense, the art of recognising common patterns
in different phenomena: the common thread, that crosses all my current and
past research, is the investigation of processes that evolve in time, disregarding
of the techniques adopted or specific application involved. The two explorations
above are just two, big clusters along this path (hopefully, others will born and
develop in the future).

Such idea is reinforced by looking to that part of my research activity that
has been left out of this dissertation, for the sake of clarity — indeed, three
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parts would have been too many. My PhD research activity began, a few
month after arriving in Trieste, working with prof. Fonda on necessary and
sufficient conditions for permanence of dynamical systems [FG15]. Only after
this first paper was completed, we started to discuss about the theme of my
dissertation and the idea of twist for higher dimensional generalization of the
Poincaré-Birkhoff Theorem. Neither was this an isolated exception: just a
few month earlier I was working again on dynamical systems, writing my
Master’s thesis on evolutionary game dynamics and dealing with fized points
and stability. Then, during the last four years, some quick explorations in
population dynamics took place in the short, spare time between the two main
projects.

As a first attempt to clarify this idea of processes dominated by time, a
natural step is to explain it in the framework of differential equations. Here,
this class is identified with ODEs, as opposite to PDEs, that evolve in space
(or in space and time). Yet, restricting ourself to ODEs wouldn’t be too
representative, since (ordinary) differential equations are, with respect to the
first part of the thesis, mostly a field of application instead of the subject,
whereas the second part deal prevalently with differential inclusion.

A second attempt of explanation comes from the passage by V.I. Arnold
quoted at the beginning of this preface. Without the pretence to fully grasp all
the shades in Arnold’s view, we can try to reformulate this partition in this way:
cryptography s discrete mathematics; hydrodynamics s the mathematics
of systems evolving in space (space and time included); celestial mechanics
is the mathematics of systems evolving in time.! With this terminology,
the subject of this dissertation is definitively “celestial mechanics”; indeed
dynamical systems, topology, variational calculus and symplectic geometry are
all recurrent frameworks in this opus.

Mathematics remains, anyway, a continuum, and this discussion has to be
considered more as a difference in perspectives, than as a true classification.
The perspective of evolution in time is what joins the parts of this dissertation,
and the fascination for the study of dynamics, equilibria and their properties
is what has driven me as a young researcher. I hope that the two explorations
reported in this dissertation might involve the reader in this engaging view.

!The genius of Arnold cannot be contained in just a classification, and his paper is
actually dedicated to the transversal relationships between these branches. Remarkably, a
page later the discussion involves Poincaré’s last geometric Theorem and Arnold’s conjecture,
from which sprouts all the framework of the first part of the dissertation.
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Summary

Part I: Avoiding cones conditions and higher dimen-
sional twist

Twist is one of the most remarkable structures in mathematics. In the planar
case, it is embodied by the Poincaré—Birkhoff fized point Theorem — also
known as Poincaré’s last geometric Theorem — and by the many results that
stems from it. Given the success of the Poincaré—Birkhoff Theorem, it is
natural to ask ourself: what would happen, when we try to extend twist to
higher dimensions? In this first part of the thesis we will explore this scenario.
Our purpose is to introduce a family of boundary twist conditions, called
avoiding cones conditions, that enclose and improve some of the classical
ways to identify twist in higher dimension, but at the same time maintain an
intuitively identifiable and manageable definition of twist.

We begin, in Chapter 1, by reviewing the classical notion of twist, defined
by the Poincaré—Birkhoff Theorem, focusing on the different situations to
which it can be tailored. We will show that this framework finds a natural
counterpart in Bolzano’s Theorem. This puts the basis of the double edge
approach carried on in the following chapters. On one hand we look at
the avoiding cones conditions as a generalization of some classical fixed
point results, such as the Poincaré-Miranda and Poincaré—Bohl Theorems —
themselves nothing but higher dimensional counterparts of Bolzano’s Theorem
— thus providing a useful criterion to compute Brouwer’s degree. On the other
hand, we use the same idea of avoiding cones conditions to define a higher
dimensional twist for a generalized Poincaré-Birkhoff Theorem.

Chapter 1 concludes with an overview of the main issues in approaching
twist in higher dimension in the Poincaré-Birkhoff case, and a review of the
results accomplished in literature.

In Chapter 2 we address the “Bolzano’s” side of the problem. After
recalling some standard results, we introduce and illustrate the main elements
of our approach by proposing a first generalization of the Poincaré-Miranda
Theorem. Then we construct our notion of avoiding cones condition at its full
strength. We show how this condition allows to deal with functions defined
on various types of convex domains, and situations where the topological
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degree may be different from 1. An illustrative application is provided for
the study of functionals having degenerate multi-saddle points.

In Chapter 3 instead we deal with the “Poincaré-Birkhoff”’s side of the
situation. Following the novel approach of Fonda and Urena [FU16b; FU16a]
and keeping in mind the picture of the previous Chapter, we obtain a higher
dimensional version of the Poincaré-Birkhoff Theorem for Poincaré maps of
Hamiltonian systems, unifying and generalizing the twist conditions previously
considered. If Chapter 2 rests on the properties of topological degree, here
variational techniques are crucial; this makes imperative a different, more
variational notion of the avoiding cones conditions, that will be discussed
with example and comparisons throughout the chapter.

With Chapter 4 we look at the different scenarios where the twist, required
by a higher dimensional Poincaré—Birkhoff Theorem, can be sought: locally,
globally and at an intermediate scale. Locally, we consider the survival of
periodic solution under perturbation of completely integrable systems; then,
a similar picture is studied also at a larger scale. In the final part of the
Chapter we consider situations where the twist is defined between zero and
infinity, working in the framework of weakly coupled planar systems and
adopting the pendulum equation as an inspiring example.

Part II: Directional friction in bio-inspired locomo-
tion

The study of locomotion of biological organisms and bio-mimetic engineered
replicas is receiving considerable and increasing attention in the recent litera-
ture [DT12; Men+06; ZZ07|. This approach is central in the new paradigm
of soft robotics, with the purpose of endowing robots with new capabilities in
terms of dexterity or adaptability, by exploiting large deformations typical
of soft materials [KLT13|. Such features are being employed by emerging
applications in medical intervention and, more generally, to situation requiring
motility in an unpredictable and complex environment.

Crawling, the family of motility strategies inspired and adopted, for
instance, by earthworms and snails, provides a suitable situation to address
these issues, presenting a behaviour sufficiently complex, but fit to be studied
with analytical tools. A feature, common in both biological and robotic
crawlers, is the presence of some elements, like hair or bristles, that create
an asymmetry in the friction of the crawler with the surface. The purpose
of this second part of the thesis is to investigate how this directionality in
friction is involved and affects crawling locomotion.

In Chapter 5 we consider a first family of continuous one-dimensional
crawlers, generalizing to the case of directional friction the approach in-
troduced in [DT12; DeS+13; NTD14]. We consider several rheologies and
provide explicit formulae for the displacements attainable with reciprocal



B Summary xiii

extensions and contractions (breathing), or through the propagation of exten-
sion/contraction waves.

In the next chapters, we add to our model the elasticity of the body of
the crawler. In Chapter 6 we consider, as toy model of crawler, a strip of
nematic elastomer, subject to directional frictional interactions with a flat
solid substrate, and cyclically actuated by a spatially uniform, time-periodic
stimulus (e.g., temperature change). We consider both the case of distributed
friction and that of friction only at the ends. We observe that now the shape
of the crawler is no longer determined a priori, but depends also on the history
of the systems.

The case with friction only at the end introduces the content of Chapter
7. Here, after developing the ideas of the previous Chapter in the abstract
framework of rate-independent systems, we explore the motility of a crawler
consisting of two active elastic segments, again resting on a support char-
acterized by directional dry friction. We observe how the directionality in
friction is actually pivotal in the motility of the crawler, since otherwise the
motility would be dominated by inertial effects. We also show that, for a
suitable range of the friction parameters, specific choices of the actuation
strategy can lead to net displacements also in the direction of higher friction.
Some remarks indicate how the case of a N-segment crawler is analogous.
Such discrete situation is quite typical in crawlers, that often show a modular
structure with contact occurring only once for each module (e.g. the rings in
the earthworm).

After having considered directional friction in the previous chapters, with
Chapter 8 we investigate on how this directionality is actually produced. We
propose an explanation of the genesis of directional dry friction, as emergent
property of the oscillations produced in a bristle-like mediating element by
the interaction with microscale fluctuations on the surface. Mathematically,
we extend a convergence result by Mielke, for Prandtl-Tomlinson-like systems,
considering also non-homothetic scalings of a wiggly potential. This allows
us to apply the result to some simple mechanical models, that exemplify the
interaction of a bristle with a surface having small fluctuations. We find
that the resulting friction is the product of two factors: a geometric one,
depending on the bristle angle and on the fluctuation profile, and a energetic
one, proportional to the normal force exchanged between the bristle-like
element and the surface. This result is then applied to discuss the “with the
nap/against the nap asymmetry”, that aroused our interest.
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Chapter 1

On the concept of twist

Illustrated in Figure 1.1, the notion of twist on the plane, or equivalently on
a cylinder, is a common and intuitive structure. Mathematically, a classical
scenario where this structure is embodied is the Poincaré-Birkhoff Theorem,
and the many results that stem from it. Since the purpose of this first part of
the thesis will be to investigate how this concept can be extended to higher
dimension, this Chapter is devoted to give a closer look at this natural idea
of twist, and to construct an analogy with Bolzano’s Theorem, that we will
use as a guide in the following chapters. In the last part of the Chapter,
we review the main issues and accomplishment in this extension to higher
dimension, completing the necessary foundation of the next chapters.

Figure 1.1: The twist condition on the planar annulus in the Poincaré-Birkhoff fixed
point Theorem.
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Figure 1.2: The representation of the twist condition of the Poincaré—Birkhoff fixed
point Theorem, after the lift of the planar annulus to a strip.

1.1 The classical twist result: the Poincaré—Birkhoff
Theorem

The Poincaré-Birkhoff Theorem states that every orientation- and area-
preserving homeomorphism of the planar annulus onto itself, for which the
two components of the boundary are (individually) invariant and rotated in
opposite directions, has at least two fixed points.

This intuitive notion of twist is illustrated in Figure 1.1. A rigorous
definition however relies on the lift of the annulus to the strip. Let us
therefore consider the strip & = R x [a,b] and an area-preserving homeo-
morphism P: & — &. We write the two components of P as P(x,y) =
(Pa(z,y), Py(z,y)) and define 9: & — R as J(z,y) = Pu(z,y) — z, so that
it describes how much a point is translated rightwards or leftwards. We also
assume that the two boundary lines are invariant, that means

Py(R x {a}) =a Py(R x {b})=b (1.1)
and that the map P satisfies, for every (z,y) € &,
Po(x+2m,y) = Po(x,y) + 27 and  Py(z +2m,y) = Py(z,y)  (1.2)

This last assumption assures that the map P can be identified with the lift
of a homeomorphism ®: 2 — 2, where 2 = T x [a, b] denotes the annulus,
so that, denoting with g the canonical projection my: & — 2, we have for
every (z,y) € 6

O(ma(z,y)) = mu(P(z,y))

We notice that every homeomorphism @ satisfying the assumptions of the
Poincaré-Birkhoff Theorem admits a lift P with all the properties above. We
remark that our argument still applies if we identify the planar annulus with
a subset of R? of the form 2 = {z € R? : 0 < a < |2| < b}; indeed the lift
corresponds to the choice of suitable polar coordinates, where the radial one is
rescaled in order to preserve the areas. We also observe that the assumptions
(1.1) and (1.2) guarantee that P is orientation preserving.

Regarding the twist, we notice that the natural notion of rotation is
introduced by the function ¢, which is well-defined also on the annulus since

W+ 2m,y) = Iz, y)
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Thus the twist condition can be defined as

{ﬁ(m,a)<0 o {ﬁ(x,a)>0

for every £ € R 1.3
I(w,b) > 0 9(w,b) < 0 v (13

This definition of twist is illustrated in Figure 1.2. We remark that, by
continuity, all the x € R will satisfy the same condition of the two alternative
ones. We thus have the following “strip-formulation” of the Poincaré—Birkhoff
Theorem.

Theorem 1.1. Let P: & — & be an area-preserving homeomorphism of
annulus, satisfying (1.1), (1.2) and the twist condition (1.3). Then the map
P has at least two geometrically distinct fized points.

We say that two points of the strip are geometrically distinct if their
projections on the annulus are distinct. We emphasize that the fixed points
found satisfy 9 = 0; this means that, when P is the Poincaré map generated
by a given flow on the annulus, the periodic solutions associated to the fixed
point recovered with the Theorem have zero winding number.

A short history of the Theorem Despite the immediacy of its enunciate,
the history of the Poincaré—Birkhoff Theorem is long and full of hardship,
as often happens to clear mathematical statements. The first formulation is
due to Poincaré in 1912, a few months before his death. After many month
of pointless efforts, the French mathematician, concerned by his age and
aware of the impact of such a result, decided with reluctance to publish it
as a conjecture, checking its validity in some special cases. A first proof
was proposed by Birkhoff in 1913, showing the existence of at least one
fixed point. The existence of the second fixed point was only sketched with
a remark based on topological degree; Birkhoff himself later admitted the
inaccuracy of that passage and in 1926 published a proof of the existence of
the second solution, replacing the area-preserving hypothesis with a more
general topological assumption. The main idea is that any proper sub-annulus
(an annulus defined by one of the circles and another closed curve rotating
within the original annulus) cannot be a proper subset or superset of its image.
This approach has been followed also in more modern and shorter proofs, for
instance those of [LW10; Gui97|. Yet, at the beginning, this result was taken
with some skepticism by the mathematicians community, until the expository
paper by Brown an Neumann in 1977.

In the same paper of 1926, Birkhoff addressed also another relevant issue
of the Theorem: the invariance of the boundary, that can be too restrictive
and difficult to prove in applications . Birkhoff assumes the invariance only
on the inner circle, requiring that the outer one is sent in a star-shaped set.
Several generalizations have been proposed in this sense (e.g. [Jac76; Din83;
Car82; Fra88; Reb97|, cf. also the reviews [LeC11; DR02]), yet, as pointed
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out in [LW10; MUO07|, some further steps, that commons sense suggests to
hold, in removing such assumptions are actually false.

In this thesis, when dealing with higher dimensional twist, we will restrict
ourself to an Hamiltonian framework. This will allow to replace this classical
topological approaches to a variational one, avoiding in this way some of the
criticalities and following a more consolidated path.

A Hamiltonian version To conclude this section, let us present an alter-
native version of the Poincaré—Birkhoff Theorem in the case of Hamiltonian
systems.

Let us consider the Hamiltonian systems on the plane, with an Hamiltonian
function H = H (t, z) periodic in time, that is

2= JVH(t,z) (1.4)

where we write z = (z,y), we denote with V the gradient with respect to the
spatial coordinates z, and J is the matrix

7= (4

We assume that the Poincaré map P associated to time 1" is well defined and
we express its first component in the form P,(z,y) = x + ¥(z,y), as we did
above.

Theorem 1.2. Let H(t,z,y) € C*(R x R x R, R) be T-periodic in t and 27-
periodic in x. Suppose that the Poincaré map P is well-defined and that there
exists an interval [a,b] such that the twist condition (1.3) is satisfied. Then
the system (1.4) has at least two geometrically distinct T-periodic solutions.

We remark that, whereas assumption (1.2) is automatically satisfied, the
invariance (1.1) of the boundary of R X [a, b] is no longer required, replaced
by the symplectic structure of the map.

1.2 The minimal twist result: Bolzano’s Theorem
The twist condition (1.3) immediately reminds of Bolzano’s Theorem.

Theorem 1.3 (Bolzano). Let 9: [a,b] — R be a continuous function. If

then ¥ has a zero in [a,b]. Equivalently, the map P: [a,b] — R defined as
P(y) =y + 9(y) has a fized point.
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Indeed, as we will see, Bolzano’s Theorem, its corollaries and higher
dimensional generalizations can provide some guidance to our exploration.
More advanced issues will be considered in the next chapters; for now let
us just consider the following three consequences of Bolzano’s Theorem,
that translate in as many classical strategies to apply the Poincaré-Birkhoff
Theorem.

Theorem 1.4 (Intermediate value Theorem). Let ¥: [a,b] — R be a contin-
uwous function. If

then there exists y € [a, b] such that ¥(y) = c.

The second application we consider regards the stability under perturba-
tion of the result.

Corollary 1.5. Let 9,g: [a,b] — R be two continuous functions, with
satisfying (1.3). We define the function V.(y) = 9(y) +€g(y). Then, for ||
sufficiently small, the function Y. has a zero in |a,b].

The third and last application introduces a local and strong notion of
twist: nondegeneracy.

Corollary 1.6. Let ¥,g: R — R be two continuous functions. Assume that
there is a point yo € R such that ¥(yo) = ¢, 9 is differentiable in yo and

I(yo) # 0 (1.5)

As above, we write V.(y) = H(y) + €g(y). Then, for |e| sufficiently small,
there exists a value y., close to yo, such that ¥.(y:) = c.

Clearly the differentiability is not necessary and condition (1.5) can be
replaced with weaker notions, such as strict monotonicity or local invertibility.
Nor these latter are yet necessary, for instance it suffices that ¢ assumes,
in every neighbourhood of 19, values both greater and smaller than ¢; an
example is J(y) = sin(1/y)/y at yo = 0. Still, a nondegeneracy of the form
1.5 is what one usually proves.

From the segment to the annulus

We now discuss how the variants to Bolzano’s Theorem can be translated to
Poincaré—Birkhoft’s setup. For simplicity we refer to the Hamiltonian version
presented in Theorem 1.2, yet the same ideas apply to the general topological
situation.

The intermediate value Theorem 1.4 suggests us that we can have twist
not only if the two boundary circles rotate in opposite directions, but also
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when one rotates faster than the other one. Clearly we no longer find fixed
points, but points that rotate at a given speed; in other terms, we no longer
find true periodic solutions but running solutions, in the sense that such
solutions are not periodic on the strip but, once the system is projected on
the annulus, they become periodic and rotate around the annulus.

Corollary 1.7. Let H(t,z,y) € C'(R x R x R,R) be T-periodic in t and
2m-periodic in x. Suppose that the Poincaré map P well-defined and that there
exists an interval [a,b] such, for some that the twist condition

is satisfied for some ¢ = 2mwp/q, with p € Z, q € Ng. Then the system (1.4)
has at least two geometrically distinct solutions, that, projected on the annulus,
become T -periodic and make in each period exactly p rotations around the
annulus. If ¢ > 1, such solutions are usually called subharmonic solutions.

The persistence of the solutions under small perturbation of Corollary 1.5
extends quite intuitively to our setup, due to the fact that twist is essentially
a topological property.

Corollary 1.8. Let H be an Hamiltonian function satisfying all the assump-
tion of Theorem 1.2. Let P(t,x,y) € CY(R x R x R,R) be T-periodic in t,
2m-periodic in x and such that |V P| < K for some constant K > 0. Then,
for |e| sufficiently small, the system

2=JV(H(t,z)+eP(t, z))
has at least two geometrically distinct T-periodic solutions.

Regarding nondegeneracy, it is strictly related to the concept of monotone
twist. Let us assume that P is continuously differentiable; this is true for
instance if H € C2. We say that P is a monotone twist map if

wa;;y) #0 for every z,y € R x [a, b] (1.6)
We observe that, by continuity, the derivative must assume the same sign
on all the domain. This assumption clearly represent the analogous of (1.5),
and, as expected, is mostly used when dealing with the survival of periodic
points under local perturbations.

Under the monotone twist assumption, it is possible to provide a simpler
proof of the Poincaré-Birkhoff Theorem, that holds also for the classical
formulation of Theorem 1.1. The main idea is the following. The twist
condition, combined with the monotonicity of ¥(x, -), assures us that, for every
x € R, there exists exactly one point v(z) € (a,b) such that ¥(z,v(z)) = 0.
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By local invertibility we deduce that v is continuous, besides being 27-periodic,
thus identifying a star-shaped curve when projected on the annulus. It can
be shown that the map p(z,y) = Py(x,y) — y on the curve (x,vy(z)) either is
always zero, or it assumes both signs. In the classical formulation, if p is not
null but assumes only one sign, this would mean that the smaller annulus is
sent by P either onto a proper superset (if p is non-negative) or onto a proper
subset (if p is negative) in contradiction with the area preserving assumption.
In the Hamiltonian framework, our claim follows by the symplecticity of
P, that implies that p has zero average on the curve defined by . By the
periodicity, it follows that p has at least two (geometrically distinct) zeros on
the curve (x,v(x)), that correspond with two fixed points of P.

A usual framework where this situation is exploited are the period annuli,
as illustrated in [FSZ12]. A period annulus is an annulus composed of con-
centric periodic orbits. As we will discuss later, such situation is standard in
planar autonomous Hamiltonian systems. In this case the twist is represented
by a change in the period of the orbits, and monotone twist correspond to
a local “strong” monotonicity of the period, in the sense that the “radial”
derivative of the period of the orbits is not zero. Then we can obtain the
analogous of Corollary 1.6, showing that, given a T-periodic orbit inside a
twisted period annulus, after any sufficiently small T-periodic perturbation
of the systems, there are at least two T-periodic solution of the perturbed
systems, close to the original orbit. Such situations have been studied by
many authors, e.g. [Chi87; GGJ10; PZ01|. If, instead, the period of the
perturbation is only commensurable with that of the orbit considered, we can
look for subharmonic solutions, as done in Corollary 1.7. We will discuss the
higher dimensional analogous of this situations in Chapter 4.

1.3 Twist in higher dimensions

Aiming at a generalization of the Poincaré-Birkhoff Theorem to higher di-
mensional systems, some crucial issues have to be addressed.

e What is the higher dimensional version of the planar annulus?
e How is it twisted?
e What properties are required on the map P?

The kern of first question is to decide whether T = S has to be considered
as a torus or as a sphere; this leads to two main interpretations of the higher
dimensional meaning of the annulus:

e the 2N-dimensional annulus is the product T x By of a N-dimensional
torus and a N-dimensional ball;
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e the 2/N-dimensional annulus is the product Son_1 x B of the (2N — 1)-
sphere and a 1-dimensional ball;

There is no right answer; indeed both views can be followed and present
advantages and weeknesses. For instance, as we have seen, to define “rotation’
in the plane we have exploited the canonical lift of a torus T to RY whereas
the rotation of the spheres is more elusive and requires more restrictive
assumptions on the dynamics. On the other end, the boundary of the
Son—1 X B annulus is formed by an inner and an outer sphere, so, once the
meaning of rotation is established, twist can be intuitively introduced as a
difference on the rotation of the two spheres; whereas the boundary of the
TN x By annulus is connected, so in this case the difficulties concerns the
meaning of twist.

In the remaining of the Chapter we discuss in more detail this two
situations. As the attentive reader would have deduced by our choice of
notation, in the following chapters we will focus on the TV x By interpretation
of the annulus. Obviously many other combinations can be proposed as higher
dimensional annuli, however, as we will see, the two situation proposed above
arise quite naturally in applications.

The equivalence T = &; of tori and spheres in the plane highlights
once more the well known fact that dynamics on the plane present many
special properties, compared to higher dimensional spaces. Indeed the various
proofs of the Poincaré-Birkhoff Theorem rely all strongly on the topological
structure of the plain, so we can not even expect to look for an adaptation of
the demonstration techniques used for the case N = 1.

For this reason, it is not surprising that some additional assumptions are
usually required on the map P, in order to compensate the lost of structure
in the passage to higher dimensions. The classical approach is to assume
that the map P is the Poincaré map of a Hamiltonian system. The main
advantage is that the symplectic structure allows a variational formulation of
the problem. As we have seen, the topological approaches to the Poincaré-
Birkhoff Theorem have proved to be hard and often tricky; a variational
formulation provides a safer and beaten track. Nor it is a too restrictive
assumption: Hamiltonian systems are the natural field of applications of the
Theorem, since they guarantee the preservation of the area. Furthermore, the
additional structure provided allows also to completely remove the assumption
(1.1) on invariance of the boundary, that can be quite annoying when dealing
with applications. Thus, from now on, we are interested in the Hamiltonian

)

systems in

i =JVH(t,z) (HS)

where z = (x,7) € RN x RV the matrix J is defined as

(0 Iy
7= %)
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and the Hamiltonian function H (¢, x,y) is T-periodic in the time variable ¢.

If T =&, is a torus: completely integrable systems

A classical approach to the study of the Hamiltonian system (HS) is the search
for constants of motion, since they can be used for suitably transforming the
system into a simpler one. The most remarkable case occurs when (HS) has
N constants of motion which are independent and in involution: in this case,
the system is said to be completely integrable, and one has a foliation of the
space in N-dimensional surfaces, which are invariant for the flow.

The Liouville-Arnold theorem then assures that, when one of these surfaces
is bounded and connected, it has to be an N-dimensional torus. Moreover, for
any such invariant torus T, there exists an open neighbourhood 2 of T and a
canonical transformation z = (x,y) — (¢, ), mapping 2 onto TV x D, where
D is an open subset of RV, so that the Hamiltonian function is reduced to
the simpler form H(p,I) = # (I). The coordinates I = (I1,...,In) € D are
usually known as action variables, whereas the coordinates ¢ = (¢1,...,¢nN) €
TN are called angle variables.

Since for every general Hamiltonian system (HS) a constant of motion is
always given by the Hamiltonian function H, we immediately deduce that
every planar Hamiltonian system is completely integrable. Indeed, this is one
of the reasons of the great success of the Poincaré-Birkhoff Theorem.

In higher dimensions, a classical example of completely integrable system
comes from the Kepler two—body problem, or even from every central force
field [LL92]. On the contrary, if more than two bodies are involved, the system
is not completely integrable any more. However, assuming the masses of the
“planets” to be small compared to the mass of the “Sun”, the system may be seen
as being decomposed in n independent two-body systems, with the addition
of a small perturbative term accounting for the other interactions (cf. [Cell0;
CCO07] and references therein). Such problems of Celestial Mechanics have
probably been the main stimulus in the development of integrability and of
Hamiltonian perturbation theory. More recently, another family of completely
integrable systems, obtained by studying the evolution of N-vortices systems,
is producing a rising interest [Are07; New01; Bla0§].

As a matter of fact, completely integrable Hamiltonian systems are rare,
and most often the Hamiltonian function is their unique constant of mo-
tion [BGG85; Sieb4]. Yet, generic Hamiltonian systems may be considered as
perturbations of completely integrable systems [MM74; Rob70|, usually called
nearly integrable systems. A glance of this scenario was already grasped by
Henri Poincaré [Poi92|, who referred to Hamiltonian perturbation theory as
the Probléeme général de la Dynamique. The efforts made by Poincaré and,
among many others, by G.D. Birkhoff, led to a broad development of the
theory. A detailed introduction to Hamiltonian perturbation theory can be
found in [AKNO6a; Ben05|, while [Dum14] offers a friendly overview.
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It is not surprising that, to extend the result to higher dimensional systems,
a natural starting point could be provided by monotone twist, as shown by
the straighforward approach illustrated in [MZ05]. A local approach to the
problem, when a form of monotone twist is generated by nondegeneracy, has
been proposed by Bernstein and Katok [BK87], who showed the survival
under small perturbations of N + 1 periodic solutions, requiring a convexity
assumption on the Hamiltonian function (see also [ACES87; Eke83; Wil87]), and
profiting from convexity to obtain an estimate on the size of the perturbation
independent from the frequency of the torus. This result has been later refined
by Chen [Che92|, who replaced the convexity by a classical nondegeneracy
assumption. We also mention the work of Blackmore, Champanerkar and
Wang [BCWO05], that obtain a perturbative result.

Outside the restrictive framework of monotone twist, a first, groundbreak-
ing result is due to Conley and Zehnder [CZ83a], that showed the existence of
N +1 periodic solutions for systems whose Hamiltonian function is 27-periodic
in the first N variables, and asymptotically quadratic in the other N ones.
These pioneering results have been generalized in several directions, in a long
series of papers (cf. for instance [Szu90; Szu92]).

In our investigation, we will follow the recent approach by Fonda and
Urena [FU16b; FU16a]| (cf. also the extended version [FU13; FU14|), that,
starting from the results above and exploiting a prolongation technique,
proved a higher dimensional generalization of the Poincaré—Birkhoff Theorem
for sets of the form TV x D, where D C R is a convex body, imposing
a twist condition only on its boundary. Such situation recall closely that
of the planar Poincaré-Birkhoff Theorem, with TV x D playing the role of
a N-dimensional annulus. We postpone the discussion of these results to
Chapter 3, where the framework and the twist conditions will be analysed in
detail.

If T=S; is a sphere: Maslov index

As anticipated, the main issue with the sphere-interpretation of the Poincaré—
Birkhoff Theorem is to define a suitable definition of the rotation. A brilliant
solutions for 2/N-dimensional linear Hamiltonian systems is given by the
Maslov index, known also as Conley-Zehnder index. The theory is advanced
and has been improved in several papers; since it falls outside the main
purposes of this thesis, we will give just a brief overview, suggesting the books
[Abb01; Lon02] for further details.

Let us consider the linear Hamiltonian system
2(t) = TA(t)z(t) (1.7)

where A(t) is a T-periodic symmetric matrix and the dot denotes the derivative
with respect to .
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We consider the fundamental solution Z(t) of the systems, that is the
matrix that solves the associated matricial problem
{Z(t) = JA(1)Z(?) 18)
Z(0)=1

The matrix Z(t) is sympletic for every t. The system (1.7) is said to be non
degenerate if 1 is not an eigenvalue of Z(T"). This corresponds to say that the
systems doesn’t have T-periodic solution with the only exception of the trivial
one z(t) = 0. In such a case it is possible to define an integer, called T-Maslov
index, associated to the path Z(¢) in the space of sympletic matrices Sp(2.V).
Such invariant, that we will denote with i7(A), intuitively defines how much

the solutions of the system rotate around the origin.

This idea of rotation alone is sufficient to recover at least a solution, as
proved by Amann and Zehnder [AZ80|. However we will use this notion to
construct a form of twist. This is traditionally done considering asymptotically
linear systems and assuming that the linearization at the origin has a different
index i7 from the linearization at infinite.

We are thus interested in the existence of solutions for the system

() — TH
{z% :Z(T)a, 2(t)) 19)
where H: R x R?" — R is an Hamiltonian function such that
(H1) H € C*(R x R*NV R) and is T-periodic in the time variable;
(H2) the Hessian matrix H" (¢, z) is bounded;
(H3) there exist a symmetric T-periodic matrix Ag(t) such that
H'(t,z) = Ao(t)z + o(||z]) for ||z|| = 0 (1.10)
(H4) there exist a symmetric T-periodic matrix A (t) such that
H'(t,2) = A (t)z + o(||2]]) for ||z|| = o0 (1.11)

The prime indicates derivation in the z variable, so that H' and H” are
respectively the gradient and the Hessian matrix of H.

In 1980 Amann and Zehnder [AZ80] provided an influential Theorem in
the case of autonomous Ay and A,,. Their result has been generalized by
Conley and Zehnder [CZ84]| in the following theorem.

Theorem 1.9. Let us consider the Hamiltonian system (1.9) and assume
that it satisfies (H1), (H2), (H3) and (H4).

If the linear systems z2 = JAo(t)z and 2 = J A (t)z are non degenerate
and ip(Ag) # ir(Ax), then the system (1.9) admits a nontrivial solution.
Furthermore, if this solution is nondegenerate, then there exists a second
nontrivial solution.
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Several authors have investigated this problem, leading to many significant
improvement; yet, for our purpose, we just notice that the notion of twist
remains dependent of a sort of linear rotation of the systems, as that presented
above, although extended to more general frameworks. The relation between
this Maslov-index formulation in the planar case and the classical Poincaré—
Birkhoff Theorem has been discussed in [MRZ02].



Chapter 2

From twist towards topological
degree

2.1 Bolzano’s Theorem in higher dimensions

The natural and general characterization in higher dimensions of the twist of
Bolzano’s Theorem is Brouwer’s topological degree, so that condition (1.3)
can be interpreted as dp(?, (a,b),0) # 0 and the existence of the zero of
¥ follows immediately by the properties of the degree. Indeed, topological
degree embodies also the properties we discussed for Bolzano’s Theorem, such
as the twist of the intermediate value Theorem, given by dg(1J, (a,b),c) # 0,
and the stability under perturbation.

Topological degree theory, however, does not close the investigation on
the concept of twist. If, on one hand, all twist theorems (in Bolzano’s sense)
can be seen as corollaries of the notion of degree, on the other hand this
encourages the study of twist conditions, that can be used as simple and
effective tools to compute the degree, instead of a burdensome direct approach,
based on a case by case construction of a suitable homotopy.

Before considering concrete results, a remark about the notation adopted
is in order. Topological degree is properly defined on open sets, however
for our purposes the behaviour on the boundary is pivotal and it is often
convenient to work with closed sets. For this reason we denote with deg(¥, D)
the topological degree dp(1J,int D, 0), assuming that D is equal to the closure
of its interior! and that the degree is computed with respect to the value zero.

Some classical results

Probably, the most natural higher dimensional extension of Bolzano’s Theorem
is the Poincaré—Miranda Theorem. To extend the notion of interval, we

"We remark that to assume that D = int D is equivalent to claim that there exists an

open set ) such that D = Q.
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consider a N-dimensional rectangle
R = [a1,b1] X [ag,b2] X -+ X [an, bN]
and we denote its faces as
Fp, ={zeR:az,=ay} F ={xe€R:z,="by}

Theorem 2.1 (Poincaré-Miranda). Let 9 = (91,02,...,9x): R — RN be a

continuous function. If, for every k =1,2,..., N, the component V. satisfies
either
Ip(z) <0  for every x € }E (2.1a)
Up(x) >0  for every x € F,
or
Ip(x) >0 for every x € .7-"{ (2.10)
Up(x) <0 for every x € F,

then ¥ has a zero in R. More precisely, we have that deg(d,R) = (—1)M,
where M is the number of components 9y that satisfy the alternative condition
(2.1b).

The main improvement of the Poincaré-Miranda Theorem is to allow
indefinite twist, in the sense that the field ¥} can be expansive in some direction
and contractive in others; however it is quite restrictive in the shape of the
set considered.

The opposite behaviour is introduced for instance by the Poincaré-Bohl
Theorem, for which we can consider quite general sets, but we have more
restrictions on the kind of twist.

Theorem 2.2 (Poincaré-Bohl). Assume that 2 is an open bounded subset
of RN with 0 € Q, and that 9: Q — RY is a continuous function such that

I(x) & {ax:a >0} for every x € 02 (2.2)
Then, there exists & € Q such that 9(z) = 0. Moreover, dg(¥,Q,0) = (—=1)V.
Proof. Let us consider the homotopy ©: Q x [0,1] — R¥ defined by
Oz, \) = (1 =N (x) — \z

We claim that 0 ¢ ©(992 x [0, 1]). By contradiction, assume that there are

x € 09 and A € [0,1] such that ©(x,\) = 0. Then X # 0, since by the above

assumption O(x) # 0, and A\ # 1, since 0 € Q. Therefore A € (0,1) and,

setting @ = A/(1 — \), we see that a > 0 and ¥(z) = ax, a contradiction.
Thus, we can compute the Brouwer topological degree:

dp(®¥,9,0) = dp(6(-,1),9,0) = dp(0(-,0),Q,0) = dp(-1,Q,0) = (-1)V

The conclusion readily follows. O
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A classical trick to recover a proof of the Poincaré—Miranda is to consider
the map ¥ obtained by changing the sign of the expansive components of
1, and then apply a fixed point Theorem for maps showing a given form of
inwardness, such as Brouwer’s fixed point Theorem, or the Poincaré—Bohl
Theorem, as we now briefly illustrate.

Proof of the Poincaré-Miranda Theorem 2.1. We introduce a new function
9 R — RN whose components are defined as ¥, = —0j, if ¥}, satisfies (2.1a),
and ¥ = 9y if ¥ satisfies (2.1b), so that

V(21,0 Q.o TN) 2021§k(m1,...,bk,...,x1\7)

for every (z1,...,xy) € OR and every k = 1,..., N. It is easily verified that,
for 2 = int R, the assumptions of Theorem 2.2 are satisfied, and the proof is
completed. O

We observe that the condition required on ¢ in the proof above, is actually
weaker then the one required by the Poincaré-Miranda Theorem. Yet, the
fixed-point condition thus obtained would be not completely intuitive to
identify, not invariant under translations (the choice of the reference point is
relevant), and would loose the inward-/outward meaning.

Our approach to improve this situation is to replace the rays of the
Poincaré-Bohl Theorem with normal cones. In this way the directions to be
avoided dependent only on the local structure of the set, so that they are
well preserved for transformations of the set. Moreover this will allow us to
introduce a weak form of inward-/outwardness (cf. [FG16b]).

Let us assume that our set D C RY is a convez body, that means a
compact convex set in RY with non-empty interior. Note that every convex
body coincides with the closure of its interior.

Given a point T € D, we define the normal cone to D in T as

/\/D(i):{veRN:@,xfi") <0, for every z € D} , (2.3)

where, as usual, {-,-) denotes the Euclidean scalar product in R¥, with
associated norm ||-||. Trivially, Np(z) = {0} for every z € int D. On the
other hand, it can be shown that, if x € 9D, then its normal cone contains
at least a halfline. For z € 8D, we write NP () to denote the cone Np(z)
deprived of the origin, i.e., NP (z) = Np(z) \ {0}. Clearly, if the boundary is
smooth at x, then N (z) = {av(x) : @ > 0}, where v : 9D — RY denotes
the unit outer normal vector field.

We denote by 7p: RY — D the projection on the convex set D. Namely,
for every z € RV, 7p(Z) is the only element of D satisfying

dist(z, 7p(z)) < dist(z,x), foreveryz € D.
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(a) Poincaré—Bohl condition (2.2). (b) Avoiding outer cones condition (2.4).

Figure 2.1: Comparison between condition (2.2) of the Poincaré—Bohl theorem and
the avoiding outer cones condition (2.4). The red halflines and cones
(intended as cones in the cotangent space) indicate the regions avoided
by dz) for some = € 9D.

We remark that mp is a continuous function, and
mp(@+v) =2 ifand only if v € Np(Z).

We observe that in dimension N = 1, the notion of convex body coincide
with that of compact interval, and that Bolzano’s condition 1.3 coincide
exactly with requiring that on the boundary the map ¥ avoids the direction
expressed by the normal cone. This suggests us another way to naturally
generalize Bolzano’s Theorem in higher dimension.

Theorem 2.3. Assume that D C RY is a convex body and that 9: D — RN
s a continuous function such that

¥ (z) ¢ Np(z)  for every x € D (2.4)
Then, there is & € D such that 9(Z) = 0 and, more generally,

deg(¥, D) = (-1)V. (2.5)

Proof. We first notice that it is not restrictive to assume that 0 € int D.
Moreover, we may assume that 9(x) # 0 for every x € 9D, since otherwise
the result is trivial
Let B be an open ball, centred at the origin and such that D C B. We
consider the homotopy ©: B x [0,1] — RY defined by
Oz \) = {QA(WD(;U) — )+ (1= 2\)9(np(z)) for 0 < X
21 = N)mp(z) —x for 3 <A

We check that 0 ¢ ©(9B x [0,1]). For A € [0,1/2], we observe that, for
every x € OB, np(z) —x € —NJ(rp(z)) but at the same time J(rp(z)) ¢
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Np(mp(x)). For X € [1/2,1] we notice that, by construction, ||z| > ||7p(x)]|
for every x € 0B. Thus, by the properties of the topological degree,

(-1)N =dg(~1I,B,0) = dg(¥ o np, B,0) = deg(?), D)

where in the last equality we used the excision property, since d(rp(z)) # 0
for every x € B\ int D. O

Notice that, when D is a ball centred at the origin, then v(z) = x/ ||z||
for every x € 0D, so that conditions (2.2) and (2.4) are equivalent. The
differences between these two conditions in a general case are illustrated in
Figure 2.1.

Clearly, the avoiding outer cones condition (2.4) can be replaced by an
avoiding inner cones condition, by just changing the sign of the function 9.
In this case, the degree in (2.5) becomes deg(¥, D) = 1. However, in analogy
with other results in literature, in our exposition we prefer dealing with outer
cones, that also allow a more intuitive visualization.

We remark that the notion of normal cone allows to extend the idea of
inward and outward direction to more sophisticated situations. For general-
izations of Theorem 2.3 in this sense we refer to [BK97; CK06; Kry05].

2.2 A first idea of avoiding cones condition

As we have seen, the two classical approaches to boundary twist condition
present a sort of trade-off: the Poincaré-Miranda twist allows for indefinite
twist (namely the presence of contractive and expansive regions), but requires
to avoid quite large areas; on the other hand, the Poincaré—Bohl twist is
minimal, but applies well only to one kind of twist (contractive vs. expansive).

In this section we construct a first step in that direction, by the use of
the same trick we illustrated in the proof of Theorem 2.1. We observe that,
despite being usually applied with linear transformations, the same idea works
also in the more general case of homeomorphisms of the Euclidean space that
fix the origin.

Theorem 2.4. Let f: RN — RY be a homeomorphism, such that f(0) =0,
and assume that D C RN is a convex body. Let 9: D — RN be a continuous
function such that

W(z) & f(Np(x)), for everyxz € dD.

Then, there exists ¥ € D such that 9(z) = 0. Moreover deg(9, D) = (—1)N 17,
where oy = 0 if f is orientation preserving and oy = 1 if it is not.

Proof. Define g: D — RN as g = f~'o4d. Then g(z) ¢ NP(z), for every
x € 0D, and Theorem 2.3 provides the existence of an £ € D such that
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(a) Poincaré—Miranda condition. (b) Avoiding cones condition.

Figure 2.2: Comparison between condition (2.1) of the Poincaré-Miranda theorem
and the avoiding cones condition (2.6). The red halflines and cones
indicate the regions avoided by f(z) for some x € 9D.

g(Z) = 0, and affirms that deg(d, D) = (—1)". Being h invertible, we have
that 9(z) = 0, as well, while deg(¥, D) can be recovered by the properties of
the degree. O

As a simple and direct consequence of Theorem 2.4, let N7 and N5y be
positive integers such that N1 + No = N, and K; C RNl, Ky C RM2 be two
convex bodies. We define, for every x = (z1,22) € K7 x Ko,

NKl(Qj‘l) X {0} if x € 0K x int Ko
.A($) = {0} X (*NKQ(CUQ)) if z €int K1 x 0Ky
NK1 (:El) X (_NKQ(IL'Q)) if £ € 0K x 0K

and denote A’(z) = A(z) \ {0}.
Corollary 2.5. Let ¥: K; x Ky — RN be a continuous function such that
I(z) ¢ A°(2) for every x € O(K; x K3) (2.6)

Then, there exists T = (T1,%2) € K1 x Ka such that ¥(z) = 0, and deg(?, D) =
(1)

Proof. The proof is a straightforward application of Theorem 2.4, with D =
K x Ko, taking as h the linear transformation defined as the identity I, on
RN and its opposite —In, on RNz, ]

We will refer to the condition (2.6) as the avoiding cones condition. To
compare it with the “classical” condition (2.1) in the Poincaré-Miranda
theorem, we consider the following example.

Example 2.6. Let us set Kj = [a1,b1] and Ko = [ag,be], so that D = R
is a rectangle in R2. We write J(x) = (91(z),92(x)), and, for simplicity,
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we assume that that 0 ¢ f(0D). Let us denote by x; a generic point in
(a1,b1) and with z a generic point in (ag, b2). The comparison between the
directions prohibited by Theorem 2.1 and those by Corollary 2.5 is illustrated
in Figure 2.2 and summarized in the following table:

Poincaré—Miranda Avoiding cones condition
fl(al,xg) <0 f (al,wg) < 0or fg(al,xg) 7é 0
fl(b1,$2)>0 (b1,$2)>00r f2 bl,iﬂg)#o
f2($17@2) >0 fa(x1,a2) >0 or fi 561,@2)%0

fa(x1,b2) < fa(w1,b2) <0 or fi(w1,be
(al,ag < 0 and fo al,ag) (

/\

) (
al,bg) < 0 and fQ(al,bQ) (al,bg) <O0or f2 ai, 2)
fi1(b1,a2) > 0 and fa(b1,a2) > f1(b1,a2) > 0 or fa(b1,a2) >

) (b1,b2) < J1(br, b2) )

(
(
(z1,b2) #
f ai,az) < 0or fao(ar,az) >
(
(
bl,bQ > 0 and fQ b1,bg bl,bQ > 0 or f2(b1,b2 <O

A/\

The same behaviour is observed also in higher dimensions. For a general point
x € OR lying on an (N — M )-dimensional facet of the rectangle, the Poincaré-
Miranda theorem requires M inequalities, each on a different component of
¥(x). For the same point x, our avoiding cones condition requires much less:
only in the case that all the other N — M components of f(x) are null, then
at least one of those M inequalities must be satisfied. This shows that our
Corollary 2.5 also generalizes [IJ05, Theorem 3.4].

Similar considerations also apply to other variants of the Poincaré-Miranda
theorem for sets D which are product of balls instead of intervals, as for
instance in [Maw13, Corollary 2|. For one of these situations, namely the
cylinder, the avoiding cones condition is illustrated in Figure 2.5.

There is a second way to describe the difference between the avoiding
cones condition (2.6) and assumption (2.1) in the Poincaré-Miranda theorem.
Whereas the avoiding cones condition requires that ¥(z) does not lie in A(x),
the Poincaré-Miranda theorem requires that ¥(z) actually lies in the polar
cone of A(z), defined as

A(z) = {v e RN : (v,w) <0 for every w € A(z)}

besides possibly excluding the trivial case ¥(x) = 0.

2.3 Truncated convex bodies

The Poincaré-Miranda Theorem and many of its generalizations consider a
rectangular domain, or at least the product of convex sets. We now want to
replace this structural assumption by introducing a new class of sets, which
will lead us to some topologically different situations.
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Figure 2.3: An example of truncation. The sets C' and D are truncated with respect
to F' and F is a reconstruction for both.

Given a convex body D and a set F' C 0D, we say that D is truncated
in F' if there exists a convex body F and a hyperplane H with the following
properties (see Figure 2.3):

e ['=DnNH, and H is a supporting hyperplane for the set D;

e D= FENHp, where Hp is the closed halfspace bounded by H that
includes D;

e the set C' := F' \ Hp has nonempty interior.

We call E a reconstruction of D with respect to F'. Notice that C' = E'\ D is
a convex body, which is truncated in F', as well.

As possible examples of truncated convex bodies we have rectangles,
polytopes and cylinders. Balls, on the contrary, are not truncated. Neither,
in general, having a (N — 1)-dimensional face is a sufficient condition to be
truncated: just consider a square with smoothed angles.

In order to investigate the properties of a face F suitable for truncation,
let us denote by ON~1F the boundary of F considered as a subset of H.
Moreover, along with normal cones, it is useful to consider also the set-
valued analogue of the unit normal vector v: it is the map vp, from 0D to
SN = {y e RY : |ly| = 1}, defined as

vole) = { e NB (o)}

Denoting with cone[A] the cone generated by a set A, we then have that

Np(z) = cone [vp(z)]
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Since the normal cone Np is a map from D to the set of closed, convex subsets
of RY, having closed graph, we can see that vp is an upper semicontinuous
map from 0D to the set of compact subsets of RY (for an introduction to
set-valued maps, we refer to [AC84]).

We remark that our definition (2.3) of the normal cone for convex sets is
equivalent to setting

Np(z) ={veRY : (v,2 —7) <oz — 7)), z € D} (2.7)

thus underlining the local nature of the normal cone. This definition is
usually adopted to extend the notion of normal cones to non-convex sets (see,
e.g., [RW9g]).

Given a point Z € 9D, to every vector v € NP (Z) we can associate the
supporting hyperplane containing Z,
H,={z+w: (v,w) =0}
and the corresponding halfspace containing D:
H,={z cRY : (v,z — ) <0}

Being D a convex body, it coincides with the intersection of its supporting
halfspaces [GH96, Prop. 2 p. 58|.

Proposition 2.7. If D is a convex body, truncated in F', then
(i) F is closed, convezr, and F = ENH;

(ii) F has a non-empty interior if considered as a subset of H;
(iii) if z € ONLF, then vp(z) is multivalued.

Proof. The proof of (i) is immediate, so we start with the proof of (ii). Since
D and C' are convex bodies, we can find two open balls Bp = B (pp,e) C D
and Bo = BY(pc,e) € C with the same sufficiently small radius €. We
observe that H separates Bp and B¢, and so there is a unique point pg in
H N [pp,pc], denoting the intersection of H with the segment joining pp and
pc. We have

By '(pr.e) =BY(pp,e)NHCENHCF
thus showing that F' has non-empty interior as a subset of H.

Regarding (iii), it suffices to show that, if z € @N~1F, then there exist two
different supporting hyperplanes for D intersecting x, which are associated
with different unit outer normal vectors. Since z € JF, there exists a
supporting hyperplane H for E, with x € H, implying that H is also a
supporting hyperplane for D. On the other hand, we know that H a supporting
hyperplane for D, as well, with x € H, and the set C = E\ Hp has a
nonempty interior, where Hp is the closed halfspace bounded by H that
includes D. We obtain that H # H, thus completing the proof. O
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An immediate consequence is that smooth convex bodies are not truncated.
We can interpret (iii) as the necessity for D to have “edges” on the boundary
of F.

We now consider multiple truncations. Given a convex body D C RY and
a family {F7y,..., Fa} of pairwise disjoint sets, we say that D is truncated
in {F1,...,Fy} if there exists a convex body E and some hyperplanes
Hi, ..., Hy with the following properties:

o for every ¢, F; = DN H;, and H; is a supporting hyperplane for the set
D;

e D=FEnN ’H}) n---N H]‘D/[ , Where ’Hi) is the closed halfspace bounded
by H; that includes D;

e for every i, the set C; := E'\ HiD has nonempty interior.

We call E a reconstruction of D with respect to {Fi,..., Far}. Notice that
each Cj is a convex body, which is truncated in F;. Moreover, the sets C; are
pairwise disjoint, and one has

C’1U~~UCM:E\D

Example 2.8 (Polygons and polyhedra). In R?, a polygon with faces Fjis
truncated in {Fi,..., Fis} if the faces Fi,..., Fjs are not pairwise adjacent.
The simplest way to construct a convex body truncated in M faces is to
consider the 2M-agon as truncated on alternate faces.

For polyhedra in R? we need that the faces where truncations occur do not
share any vertices. Thus, the cube can be truncated in at most two (opposite)
faces, and so the octahedron, while the icosahedron can be truncated in at
most four faces. One way to construct polyhedra truncated in M faces is to
consider the prism with a 2M-agonal base as truncated on alternate lateral
faces.

2.4 Optimal reconstructions

Let us spend a few words about reconstructions. Clearly, for every truncated
convex body D, there are infinitely many possible reconstructions; our plan is
to focus on some special reconstructions which are optimal for our purposes.
They will indeed minimize the cones A(x) to be avoided by the vector field,
and hence provide the best choice for the application of the results to be
stated in Section 2.5. Some preliminary remarks are in order.

Given T € 0D, we can consider the intersection of all those supporting
halfspaces whose boundary contains Z. Using the relationship with the normal
cone, we can write this intersection as

{z eRY: (v,z— ) <0, for every v € Np(Z)} =  + Np(Z) (2.8)
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The polar Np(Z) of the normal cone is the so-called tangent cone [Cla90;
RWO8.

In the following, we denote by conv[A] the convex hull of a given set A,
that is the smallest convex set including A. The following lemma is a first
step towards optimal reconstructions.

Lemma 2.9. Let D C RY be a convex body truncated in F. Then, there
exists a closed convex set Eyay such that Enax N Hp = D, with the property
that, if E is any reconstruction of D with respect to F, then E C FEpax -

Proof. If x € 9D \ F, then, in a sufficiently small neighbourhood, of z, the
set D coincides with any reconstruction E with respect to F', and hence
Np(x) = Ng(z). This means that £ and D have the same supporting
hyperplanes containing = and therefore, by (2.8), we have that E C z+Np(z).
Now, let us set

FEoax = ﬂ [.T + ND (x)}

x€OD\F

By what we have just seen, it follows that E C FEp . for every possible
reconstruction E. Hence, D C FE.x N Hp. Furthermore, F,x is a closed
convex set since it is the intersection of closed convex sets.

We want to prove that Ey.x N Hp = D. First of all, we prove that
0D C J(Emax N Hp). Indeed, each point x of 9D belongs to Emax N Hp,
since D C Enax NHp. If x € 9D \ F, then there is a supporting hyperplane
of Epax containing x; on the other hand, if x € F, then z € Hp. In
any case, there is a supporting hyperplane of F,.x N Hp containing x, so
x € O(Fmax N Hp).

Suppose now by contradiction that there exists y € Eynax N Hp such that
y ¢ D. Let U = B(xg,r) be an open ball contained in D. By convexity, there
exists a unique & € 9D N [xg, y]. It is easy to show that there exists an open
neighbourhood V' of Z such that V' C conv[U U {y}] C Emax N Hp. Then,
Z ¢ O(EmaxNHp), contradicting the fact that z € 9D. Thus, EpaxNHp = D,
and the proof is completed. O

An immediate consequence of the above lemma is that Ey, .y is the smallest
set containing every reconstruction of D with respect to F'. More precisely,
since the intersection of E.x with any arbitrarily large closed ball containing
D is a reconstruction, we deduce that every point of .« is contained in
a reconstruction. So, F.x is the union of all possible reconstructions of D
with respect to F'.

We say that a reconstruction FE is optimal if, for every = € F,

Ne(z) = Ne,,,. (2) where Chax = Fmax \ D
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Figure 2.4: An example of non-optimal reconstruction £ = D U C' (blue), compared
with the optimal reconstruction Fy,.x (red, starred), with emphasis on
their respective normal cones.

Since, for every reconstruction, the inclusion Ng(z) 2 N, (x) holds for
every x € F', an optimal reconstruction minimizes No(x), as illustrated in
Figure 2.4.

In general, F .« is not bounded and therefore it is not a reconstruction;
however it is always possible to build an optimal reconstruction simply taking
E = Enax N K, where K is a convex body such that D C int K. Moreover,
one can find an optimal reconstruction E which is as close to D as desired.
Indeed, given € > 0, it suffices to take F = Fyax N B[D,¢], where

B[D,¢] = {z € RY : dist(z, D) < &}

to have an optimal reconstruction whose distance from D is at most ¢.

Example 2.10 (Cylinders/prisms). Let D = K x[—1, 1], where K is a convex
body in RV~ Then, D is truncated in any of its two bases. For instance,
we can take H = RV~! x {1}, and FF = K x {1}. In this case, we see that
Enax = K x [—1,400), and a possible optimal reconstruction with respect to
the face F' is given by E = DUC, where C' = K x [1,2]. Notice that, if instead
of C we take, for instance, C' = {(z,y + 1) : x € K,0 < y < dist(z,90K)}, it
is true that we have a reconstruction, but it is not optimal.

Example 2.11 (Polytopes). If D is a convex polytope with faces Fy, ..., Fy,,
it is truncated with respect to any of them. Let us focus on a particular one,
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F = F}. Correspondingly, we will have

m
Ejmax = [ | b

i=1

i#]
where ’H}) denotes the halfspace including D bounded by the supporting
hyperplane H; generated by the face F;. If Ej nax is bounded, then it is an
optimal reconstruction. This is the case, for instance, of the regular m-agon
for m > 5 in R?, where the set Cj is the triangle generated by the prolongation

of the adjacent edges. An example of unbounded E; ax is given by regular
simplices, where it is a cone.

In the case of a convex body D truncated at {F1,..., Fas}, we say that a
reconstruction £ = D UCy U ---UC)y is optimal if, for every truncation Fj,
the reconstruction F; = D U C}; is optimal.

2.5 Main results

Let D C RY be a convex body truncated in {F},..., Fy/}, with an optimal
reconstruction & = DU Cy U ---UCys. We define the map A, from 0D to
the closed, convex cones of RV as

_MNg,(z) ifzeF
Alz) = {ND(ar) it o € 9D\ Ui, Fi

We now state the main theorem of this paper.

Theorem 2.12. Let D C RY be a convex body truncated in {Fy,..., Fa},
with M > 2, and let 9: D — RY be a continuous function satisfying

I(z) ¢ A(x) for every x € 0D
Then, there exists & € D such that ¥(z) = 0, and we have
deg(9, D) = (=)™ (1 - M)

The proof of Theorem 2.12 will be given in Section 2.7. We now provide
some examples where it can be applied.

Example 2.13 (Cylinders/prisms). Let D = K x [~1, 1], where K C RV~ is
a convex body. The set D is truncated in F~ = K x {—1} and F; = K x {1},
and we have

Np(z) ifx e 0OKx]—1,1]

) ifxeint K x {—1,1}

X (—00,0] ifx=(y,1), withy € 0K
x [0,400) ifx=(y,—1), withy € 0K

A(z) =
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2

Figure 2.5: Avoiding cones in the case of the cylinder.

These cones are illustrated for the three-dimensional case in Figure 2.5, where
K is a circle in R?. We remark that, in the case of cylinders, Theorem 2.12
coincides with Corollary 2.5.

Example 2.14 (Polytopes). Let the convex polytope D, with faces Fj, be
truncated in {F1,...,Fy}. For every z € 9D, we denote by I(x) ={i:z €
F;} the set of indices of those faces containing x, and by v; the outward unit
vector normal to F;. Furthermore, we denote by (i) the sign of the avoiding
cones condition in Fj, namely

(i) {—1 ifi=1,..., M (avoiding inner normal cones)
1) =

+1 otherwise (avoiding outer normal cones)

Then, A(x) corresponds to the convex cone generated by the set

{o(i)v; :i € I(z))

whose elements are the outer/inner normal cones assigned by .4 to the points
in the interior of the faces containing xz. We illustrate in Figure 2.6 the
particular case of an hexagon truncated in three alternate faces. We observe
that, being in this case N = 2 and M = 3, if ¢ satisfies the avoiding cones
condition of Theorem 2.12, then

deg(¥, D) = (=1)*(1 —3) = —2

We finally notice that Theorem 2.3 can be interpreted as a version of
Theorem 2.12, with M = 0. So, having Theorem 2.4 in mind, we can also
write the following extension of Theorem 2.12.
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Figure 2.6: Avoiding cones in the case of a hexagon.

Theorem 2.15. Let f: RY — RY be a homeomorphism, such that f(0) =0,
and assume that D C RY is a convex body truncated in {F1,...,Fyp}, with
M >2. Let 9: D — R be a continuous function such that

I (z) ¢ f(A(x)) for every x € 0D
Then, there exists & € D such that ¥(z) = 0. Moreover
deg(¥, D) = (-1)N*77 (1 — M)
where oy = 0 if f is orientation preserving and oy =1 if it is not.

Until now, the domain D of our functions has been supposed to be a
convex body. However, all our results can be easily extended to sets D which
are just diffeomorphic to a convex body D. By this we mean that there
are two open sets A, B in R, with D C A, D C B, and a diffeomorphism
¢: A — B, such that

D = (D)

To define the normal cone to D at a boundary point y € 9D, let us set
Y =¢ 11 B— A, so that ¢(y) € 9D, and set

No(y) = (@' ()" Np((y))

We remark that this choice preserves the extended notion of normal cone
recalled in (2.7).
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(a) Poincaré—Bohl condition (2.2). (b) Avoiding outer cones condition (2.9).

Figure 2.7: Comparison between condition (2.2) of the Poincaré-Bohl theorem and
the avoiding outer cones condition (2.9). The red halflines and cones
indicate the regions avoided by f(z) for some x € 9D.

Let us first go back to our variant of the Poincaré—Bohl theorem. Writ-
ing, as usual, N3(y) = Np(y) \ {0}, we have the following extension of
Theorem 2.3.

Theorem 2.16. Assume that D is a subset of RY | diffeomorphic to a convex
body. Let 9: D — RY be a continuous function such that

Iy) € N5(y) for every y € OD (2.9)
Then there exists y € D such that ¥(y) = 0. Moreover
deg(V, D) = (—1)N*7e
where o, = 0 if p is orientation preserving and o, = 1 if it is not.

Proof. Using the above notation, we have D = ¢(D) and we define 9: D —
RY as

I(z) = (¢ (2))T9(p(@))

Then, condition (2.4) holds replacing ¢ by ¥, so Theorem 2.3 applies, and we
easily conclude. O

In Figure 2.7 we illustrate the avoiding cones condition of Theorem 2.16,
in the case when D has a smooth boundary.

Now, in order to extend Theorem 2.12, let us consider a set D which is
diffeomorphic to a convex body D, truncated in {F},..., Fas}. Since D C A,
D C B, and both sets A an B are open, we can choose a reconstruction E
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of D with respect to {Fy,...,Fa}, even an optimal reconstruction, to be
contained in A, as well. Setting

E=w(B), Fi=01), ..., Fu = o(Fu)

we say that £ is a reconstruction of D with respect to {Fi,...,Fu}. We
also say that D is truncated in {F,..., Far}. Then, referring to the notation
introduced in Section 2.3, we have £ = DU C; U --- U C)y, and setting
Ci = ¢(C1),...,Cyx = o(Chr), we can define the cones

Noly) ifyeaD\U, F

Theorem 2.17. Let D C RY, diffeomorphic to a convex body, be truncated
in {F1,...,Fu}, with M > 2, and let 9: D — RN be a continuous function
satisfying

WHy) ¢ A(y) for every y € 9D

Then there exists y € D such that ¥(y) = 0. Moreover
deg(d, D) = (=1)"*72 (1 — M)
where o, = 0 if ¢ is orientation preserving and o, = 1 if it is not.

An example of the avoiding cones condition of Theorem 2.17 is illustrated
in Figure 2.8, where the set D is diffeomorphic to a hexagon D (cf. Figure 2.6).

We end this section with the analogue of Theorem 2.15.

Theorem 2.18. Let f: RN — RN be a homeomorphism, such that f(0) =
0, assume that D C RY, diffeomorphic to a convex body, is truncated in
{Fi,...,Fu}, with M > 2, and let 9: D — RY be a continuous function
satisfying

(y) & f(Ay)) for everyy € OD

Then there exists § € D such that ¥(y) = 0. Moreover
deg(9, D) = (~1)N 7777 (1 - M)
where oy = 0 (resp. o, = 0) if f (resp. @) is orientation preserving and
or =1 (resp. o, = 1) if it is not.
2.6 An application to multiple saddles

In this section we show that our results can be applied to deal with the
gradient of a potential V having degenerate multiple saddle points, where
multiple expansive and contractive directions appear.
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Figure 2.8: Avoiding cones in the case of a non-convex set diffeomorphic to a hexagon.

A detailed exposition for the planar case can be found in [DKV09], where
the authors considered k-fold saddles formed by the alternation, around the
critical point, of k + 1 ascending directions and k + 1 descending directions:
the first ones identified by trajectories of the flow of VV escaping from the
critical point, while the second ones by trajectories converging to the critical
point. (For a similar situation, see also [AO98; FF05; FMO06|.) With this
description, the standard non-degenerate saddle is an example of 1-fold saddle,
whereas the monkey saddle is a 2-fold saddle (cf. Figure 2.9).

In higher dimensions, the criterion of alternation is no longer applicable

Figure 2.9: The monkey saddle V (z1,x2) = 23 — 3z123.
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and more sophisticated situations may arise. Different approaches, mainly
related to the Conley index or some of its generalizations, have been used
to study the degree in the case of higher dimensional multiple saddle points
(cf. [Dan84; Ryb87; Srz85|). We propose here a simpler strategy, based on
our Theorem 2.12, to recover some of those results.

We consider a continuously differentiable function V': B[0, R] — R, and
assume that, near the boundary of the domain, namely for 0 < r < ||z|| < R,
it can be written in the form

V() = p(lal)S (H”) (2.10)

where p: [r, R] = (0,+00) and S: S¥~1 — R are continuously differentiable
functions, and p/(§) > 0, for every £ € [r, R]. This factorization, in a certain
sense, generalizes the idea of positive homogeneity, which corresponds to the
choice p(t) = t, for a certain o > 0.

In this region of the domain, the field VV'(x) can be decomposed in radial
and tangential components as

V(@) = () (Hi”) LAl G g (m) (2.11)

] ] ]

where VsS(z) denotes the tangential gradient of S(x); namely, for every
yeSN-L
VsS(x) =VS(y) = (4, VS () y

We see that VgS corresponds to the surface gradient on the unit sphere of
the function = +— S(x/ ||x||), defined on R \ {0}.

Since in (2.11) the two terms in the sum are orthogonal, their sum vanishes
if and only if they are both zero. Hence, if r < ||z|| < R, we have that

VW(z)=0 & S<$):0and v55<$>:0

] ]

In particular, if we want the degree deg(VV, B[0, R]) to be well defined, we
need to ask that S(z) and VsS(z) do not vanish simultaneously at any
reSN-L

Let us state the main result of this section.
Theorem 2.19. In the above setting, assume that
(i) if v € SN satisfies VsS(x) = 0, then S(x) # 0;

(ii) the set {x € SN=1: S(x) > 0} is the union of M disjoint subsets, which
are diffeomorphic to an (N — 1)-dimensional ball.
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Then, deg(VV, B[0, R]) = (=1)V (1 — M).

Proof. If M = 0, we have that S(z) < 0 for every € S¥~!. Taking
D = BJ0, R], we have that, for every x € D, the cone to avoid is Np(z) =
{Az: XA > 0}. Being V(z) < 0, the radial component of VV(x) is not zero
and points inward, so VV (z) ¢ Np(z). Theorem 2.3 can then be applied to
conclude.

So, from now on, we can assume M > 1. Given a vector y € SV, for
every x € SV1 such that = # +y, we define
y—z—(zy—a)x
ola;y) =
ly =z —(z,y — =) z||

It is the unit vector on the tangent space to SN~1 in z, associated to the
shortest path from z to y. We say that a local maximum point y € SN~ for
S is regular if there exists a neighbourhood U of y, with the property that

(o(z;y),VsS(z)) >0 for every z € UNnSN!

This condition is true, for instance, if y is a non-degenerate local maximum
point. We first prove the theorem when (ii) is replaced by the following
stronger assumption:

(ii*) if y € SV~! satisfies VsS(y) = 0 and S(y) > 0, then y is a regular local
maximum point for S, and S(y) > 0. Moreover, there are exactly M of
such points.

Let s1,...,sap be the regular maximum points of condition (ii*). For any
€ (0,R—r), we set

Hi={zeRY: (z,5) < R—¢}

Let
D:B[O,R}ﬂHlﬂ}lgﬂ-"ﬂfHM

and define H; = 9H,;. If ¢ is sufficiently small, then D is a convex body
truncated in {Fy,...Fy}, with F; = B[0, R] U H;, and E = B0, R] is an
optimal reconstruction. Let us verify that the avoiding cones condition holds,
provided that ¢ is sufficiently small.

For z € 0D\ Ui\il F;, the cone to avoid is A(z) = Np(z) = {\z: A > 0}.
If V(z) < 0, then the radial component of VV(x) is not zero and points
inward, so VV (z) ¢ A(z). If V(z) > 0, since x # Rs; for each i =1,..., M,
the tangential component of VV'(z) is not zero and so VV (x) ¢ A(x).

If z € intpp F; for some i = 1,..., M, then A(z) = {—As;: A > 0}. (Note
that intgp F; is a (N — 1)-dimensional ball of radius y/(2R — €) centred in
(R —¢)s;.) Since VV((R — g)s;) = A;si, for some \; > 0, if € is sufficiently
small, by continuity we deduce VV (z) ¢ A(z).
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If x € ON71F; for some i = 1,..., M, denoting the boundary with
respect to H; then A(z) is the convex cone generated by {—s;,z}. By
definition, we have that (o(x;s;),r) = 0 and, if ||z — Rs;|| < V2R, then also
(0(x;8i), —si) < 0. Thus, if ¢ is sufficiently small, (o(x;s;),v) < 0 for every
v € A(x). On the other hand, since s; is a regular maximum point, taking e
sufficiently small we get

(o(ai5). WV () = (alassn). T8 (2] ) >0

so that VV (z) ¢ A(z).

So, in all cases, we have that VV(z) ¢ A(x). Then, by Theorem 2.12,
deg(VV,D) = (—=1)M(1 — M). Since there are no critical points of V in
B[0, R] \ D, the excision property of the degree leads us to the end of the
proof, in the special case (ii*).

Let us now consider the general case. We write
{reSN1:S@)>0}=21U---UZy

and assume that, for every i = 1,..., M, there exist an open set U; containing
Y.;, an open set V; containing BJ0, 1] and a diffeomorphism 1);: U; — V;, such
that v;(2;) = B|0, 1]; moreover, the sets U; are assumed pairwise disjoint.

Define P;: U; — R as

Py(x) =1~ [[¢i(=)|?

Then, for every z € 0X;, there exists \;(x) > 0 such that VS(z) =
Ai(z)VP;(z). Hence, for 6 > 0 sufficiently small, B[0,1 + 6] C V; and,
writing U? = ;1 (B[0, 1 + §]), we have that ¥; C U? C U;. Furthermore, for
0 sufficiently small, we have also

(VS(x), VPy(x)) >0 for every z € U \ ;

Let p1: R — R be an increasing continuously differentiable function such that

0 ifs<0 ) .
- 0) = 1/(6) =0
u(s) {1 s> 1'(0) = 1'(9)

Define W: S¥=1 x [0,1] — R as follows:

|1 ist(wi(2), B0 1)) | (AP () + (1 = X)S(a))+
Wi(x,\) = +,u<dist(wi(a:), B0, 1]))5(:1;) if z € UY for some i
S(x) otherwise

This function is continuously differentiable and transforms S(x) = W(z,0)
into a function S(z) = W (z, 1), satisfying (ii*). Moreover, the following two
additional properties hold:
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- the sign of W (z, ) does not depend on X;
- the functions W (-, A) have no critical points y with W (y, A\) = 0.

Such a function W induces an admissible homotopy H: B[0, R] x [0,1] — RY,
defined as

1) =9 [pllal) W (25.0)]

which transforms VV(z) = H(z,0) into VV (z), where V(z) satisfies the
assumptions of the theorem, and also the additional condition (ii*). Since the
admissible homotopy preserves the degree, the proof is completed. O

The following symmetrical version of Theorem 2.19 holds.

Theorem 2.20. Let the assumptions of Theorem 2.19 hold, with only (ii)
replaced by

(ii~) the set {x € SN~1: S(z) < 0} is the union of M disjoint subsets, which
are diffeomorphic to an (N — 1)-dimensional ball.

Then, deg(VV,B[0,R]) =1 — M.
Proof. 1t is sufficient to apply Theorem 2.19 to —V instead of V. O

The above result should be compared with [Srz85, Theorem 4.4|, which
is stated in a more general setting. We also notice that, when M = 0,
Theorem 2.20 is related to a result by Krasnosel’skii [Kra68| (see also [Ama82|)
stating that, when V' is coercive, then, for R large enough, deg(VV, B0, R]) =
1.

In the planar case, conditions (ii) and (ii~) can be simplified, as follows.

Corollary 2.21. Let the assumptions of Theorem 2.19 hold, for N = 2, with
only (ii) replaced by

(iiy) the function S changes sign evactly 2M times on S*.
Then, deg(VV,B[0,R]) =1 — M.

Proof. Since the zeros of S are simple, the set {x € S' : S(z) > 0} is the
union of M disjoint arcs, each of which is diffeomorphic to a compact interval
of R. O

We have thus recovered, in the planar case, a variant of the alternation
criterion described in [DKV09|. We now give two simple examples where our
results directly apply. The first one deals with a planar situation.
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Example 2.22. Let us consider, for a positive integer k, the family of
potentials
Sk(s) = cos[(k + 1)s]

where s € [0,2n[ is the angle which determines a point € S'. Taking
pr(t) = t*71 and identifying R? with the complex plane, we get
Vi(2) = pr(|2]) S (arg z) = R(Z*1)

The saddle generated by Sy has k + 1 ascending directions at the points
of maximum for Sj, namely s = 2jn/(k + 1), with j = 0,1,...,k, and
k + 1 descending directions at the points of minimum for Sy, namely s =
(2j + 1)m/(k + 1). We thus see that this choice of S produces a model of
k-fold saddle for every k > 1. In this case, deg(VVy, B[0, R]) = —k, for any
R >0.

As we said above, our main purpose is to study also non-planar situations.
In our second example we show an illustrative application in R3.

Example 2.23. Let v, v2,v3, v4 be the vertices of a tetrahedron centred in
the origin, namely

V6 V3 1 V6
() e

[ VBl V6 (V3 V6
B\ 30

6 27 12
Let us consider the functions V,, V;: R® — R, defined as

2
Va(z) = ||]? min dlst<H I > ]
. uxu‘*
Vo(z) = H(UQ i) — 150
i=1

Both potentials admit the factorization (2.10), since they are positively
homogeneous of degree two and four, respectively. The behaviour of their
spherical components S,(x) and Sp(z) is illustrated in Figure 2.10.

The potential S, has four positive maximum points, placed in correspon-
dence of the vertices of the tetrahedron, four negative minima, in correspon-
dence of the centers of the faces of the tetrahedron, and six negative saddle
points, in correspondence of the midpoints of the edges of the tetrahedron.

The potential S, instead has six positive maximum points, placed in
correspondence of the midpoints of the edges of the tetrahedron, defining in
this way the vertices of an octahedron. It also has eight negative minima,
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) -05 e
00 S, I 00

1.0 1.0

(a) The potential Sq(z). (b) The potential Sy(z).

Figure 2.10: Behaviour of the functions S,(s) and Sy(s) of Example 2.23 on the unit
sphere. The black thick line indicates where they take value zero. The
functions are positive in the red regions and negative in the blue ones.

in correspondence of both the vertices and the centers of the faces of the
tetrahedron (viz. the centers of the faces of the octahedron), and twelve
negative saddle points, corresponding to the midpoints of the edges of the
octahedron.

Moreover, we observe that both V, and Vj satisfy the hypotheses of
Theorem 2.19, with M, = 4 and M, = 6, respectively, so that, for every
R > 0, we have

deg(VVa, B0, R]) = (—=1)*(1 — M,) = 3
deg(VVs, B0, R]) = (=1)*(1 — M) =5

2.7 Proof of Theorem 2.12

In this section, in order to provide a proof for Theorem 2.12, we will need
some basic facts from the theory of set-valued maps, for which we refer to
the book of Aubin and Cellina [AC84].

Let us start showing that if D is a convex body, then, for every x € D,
veNS(z) = —vd¢N(z)
Indeed, if on the contrary both v and —v belong to ./\/'g(ac), then, for every
x € D, it would be
0> v,z —2)=—(—v,2—2) >0

Hence, D would be included in a hyperplane orthogonal to v and so it would
have empty interior, in contradiction with the assumption of being a convex
body.
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The following lemma will be crucial for the proof of Theorem 2.12.

Lemma 2.24. Let D C RY be a convex body truncated in F', and E = DUC
be a reconstruction of D with respect to F. If 9: D — RV is a continuous
map such that ¥9(x) ¢ No(x), for every x € F, then 9 can be extended to a
continuous function V: E — RN such that

(z) ¢ Ne(x)  for every x € dC

Proof. The core of the proof is to show the existence of a map /\Afc from 0C
to the closed, convex cones of RY, with closed graph and such that

(N1) for every z € OC, Ne(z) € Ne(x) and
veNe@\ {0} = —vgfo)

(N2) N admits a continuous selection a: C — RN such that

a(z) € No\ {0} for every x € 9C

(N3) 9(x) ¢ No(), for every z € F.

Step 1. Let us define the set-valued map ® from 9C to RN as
®(x) = conv [ve(z)]

Its values are convex and compact. Let us show that ® is upper semicontinuous.
To do so, we first observe that, for a compact convex set K C RV the e-
neighbourhood B(K| ¢) is convex because of the convexity of the Euclidean
distance. Now, take z € 0C and fix € > 0. Since v¢ is upper semicontinuous
and B(®(x),¢e) is a neighbourhood of v¢(z), there exists a neighbourhood U
of z in OC such that v (U) C B(®(x),e). From the convexity of B(®(x),¢),
it follows that ®(U) C B(®(x),e). The upper semicontinuity of ® is thus
proved.

Since ®(z) C Ng(x), we have that
ved(x)\ {0} = —v¢d(z)

Let us now prove that 0 ¢ ®(9C). Suppose by contradiction that 0 € ®(z)
for some x € OC; then there exist v,...,vx € vo(z) and Aq, ..., A, in (0,1),
with A\ + -+ 4+ A\p = 1, such that

k

k
Aiv;
0= " Avi=Awi+(1-A\)s  witho = ”A € o(z)
i—1 i— — 1
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Let us set p = min{\;/2, (1 — A\1)/2}; then
0Fw =M +pvi+ (11— —p)ve d(x)
0#£we =N —p)vy+ (1 — XA +p)o € ®(x)

and so wy = —wj, in contradiction with the fact that ®(z) does not contain
opposite vectors. Hence, 0 ¢ ®(x) for every x € 9C.

Since ® is upper semicontinuous and thus has a closed graph, we can set

dp := dist(0C x {0}, graph ®) > 0 (2.12)
oC

Furthermore, we note that ®(0C) C B|0, 1], for the convexity of the Euclidean
distance, and so ®(9C) is compact.

Step 2. Since 0 ¢ ¥(F), we can define 91: F — SV~ C RV as

_ (=)
[9(2) ]l
The function 1 is continuous and the hypothesis ¥(x) ¢ N¢(z) is equivalent

to ¥1(x) ¢ v(z), from which it follows that ¥ (x) ¢ ®(x), for every = € F.
Thus we can define

’191(1')

91 := dist(graph 91, graph ®) > 0 (2.13)
F oC

We remark that we are considering the distance in RY x RY between two
compact sets corresponding to the graphs of two functions with different
domains.

By [AC84, Sect. 1.13, Theorem 1] (cf. also [Had81|), there exists a sequence
of upper semicontinuous set-valued maps ®;, from 9C to RY, satisfying

(S1) for every i € N, ®; has a continuous selection « ;
(S2) for every i € N, ®; has closed graph and compact values;

(S3) for every x € 9C, we have

and

O(x) = () Pi(x)

1€N

Moreover, since ®(9C) is compact, the maps ®; can be taken with convex
values.
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Let us introduce the set-valued maps v; from 9C to RY as

o) = { sy e v\ 0}

Note that the maps v; have compact graph. Moreover, for every x € dC,

vit1(z) C vi(z) and ﬂ vi(z) = vo(x)
1€EN
From this and the continuity of the distance, we get that there exists an index
i’ € N such that, for every i > ¢/,

)
dist(graph 9, graph v;) > e (2.14)
F aC 2

where 0 has been defined in (2.13). Similarly, from (2.12) we get that there
exists 7 > 4/ such that 0 ¢ ®;(9C), for every i > 1.

Step 3. We claim that, for any j > 7, the choice
Ne(z) = cone[®;(x)]

satisfies all the requirements (N1), (N2) and (N3). First of all we notice that
the cone generated by a compact, convex set is always closed and convex.
Similarly, since the graph of ®; is compact, it follows that the graph of /{\/'C is
closed. Furthermore, since vo(z) C ®(x) C ®;(x) C Ng(z), it follows that
Ne(z) € No(z).

Now let us suppose by contradiction that, for some z € 9C, there exists
v € Ne(z) \ {0} such that —v € Ng(z). Then there exist v; = aqv and
v = —agv, with a1 > 0, ag > 0, such that both v; € ®;(x) and vp € ®;(x).
Since ®;(x) is convex, it follows that
a2

a
0= c P,
a1+agvl+a1—|—a202 J(m)

in contradiction with j > 7. Hence, (N1) is satisfied.

To satisfy (N2) it is sufficient to take a = «j, where ¢ is a continuous
selection of ®; given by (S1). Since 0 ¢ ®;(x) for every z € 9C, we have that
aj(z) # 0 for every x € 0C.

Let us now define D¢ (z) = vj(x), for a fixed j > 7. Then, from (2.14) we
have the estimate

)
dist(graph 91, graph o¢) > 2
F e, 2

from which (N3) follows straightforwardly.
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Step 4. Now we are ready to construct the sought prolongation J. Let

us pick any 0 < 0 < 01/2. We define F5 = 0C N B(F,J) and introduce the

function ¥9: F5 — SN-1 C RV as

V(mr(x))

Va(z) = D (mp () = o
[0(7r ()]

For every x € Fs5 we have

dist((x,ﬁg(x)),gr%phﬂl) < dist((z, ¥2(2)), (7p(x), P2(x))) <6

Using the triangle inequality, this implies
dist((x, ¥92(z)), graph o¢) >
oC
> dist(graph 1, graph D¢) — dist((x, ¥2(x)), graph )
F oC F

01

>—=—96

Z 5 >0
and so

0
dist(graph 92, graph o¢) > L _5>0
Fs aC 2

from which it follows that J2(z) ¢ D(z), for every z € Fs, and consequently
d(mp(z)) & Ne(z).
Writing A\, = dist(x, F')/d, we now set

Ix) iteeD
(x) = { (1= M) (mp(x)) — Apr(z) ifz € F5\F
—a(r) if x € 0C \ F;

where a: 9C — RY is the continuous selection provided by (N2). We thus
have a continuous function defined on D U dC'. If we prove that U satisfies
the desired property on dC, then the proof is completed, since we can apply
Tietze’s theorem to get a continuous extension U: E — RN, What we are
actually going to show now is that

d(z) ¢ Ne(z)  for every z € C

We already know by (N3) that d(z) ¢ j\Afc(a:), for every x € F. On the other
hand, if z € 0C'\ Fy, it is sufficient to combine (N1) and (N2). Let us now
take 2 € F5\ F and assume by contradiction that J(z) € ./\A/c(x) Then, since
Ne(z) is a convex cone and a(z) € Ne(z),

1 - A, _
Hre(@)) = 100 + 25 a() € Noo)
a contradiction with f(7r(z)) ¢ No(z). The lemma is thus proved. O

We can now proceed to complete the proof of our theorem.
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Let E=DUC]U---UC)s be an optimal reconstruction of the truncated
convex body D. Applying iteratively Lemma 2.24 to each single partial
reconstruction C;, we obtain a continuous extension 9: E — RY such that

O(x) ¢ Ne,(z) for every x € dC;
fori=1,..., M, and hence also
d(z) ¢ Ng(x) for every z € E
Thus, by Theorem 2.3, we have that
deg(9, E) = deg(9,Cy) = - - - = deg(d, Cpy) = (=)

By the additivity property of the topological degree, we have
M
deg(d, D) = deg(d, E) — ) _ deg(¥,Ci) = (-1)N(1 - M).
i=1

Since ¥ coincides with U on D, the theorem is proved.






Chapter 3

The avoiding cones condition
for a higher dimensional
Poincaré-Birkhoftf Theorem

3.1 Twist conditions for a higher dimensional Poincaré-
Birkhoff Theorem

An overview on previous results

Let us introduce in detail the framework we outlined in Chapter 1. We
consider the Hamiltonian system

¢ = JVH(t,2) (3.1)

0 Iy
7= (5 %)
denotes the standard 2N x 2N symplectic matrix, and we assume the Hamil-
tonian function H: R x R?N — R to be C®-smooth, and T-periodic in its
first variable ¢. (Actually, such a regularity assumption can be considerably

weakened, as will be discussed below.) We denote by VH (t, z) the gradient
with respect to the variable z.

where

For every ¢ € R*V, we denote by Z(-,¢) the unique solution of (3.1)
satisfying Z(0,() = ¢. We assume that these solutions can be continued to
the whole time interval [0, 7], so that the Poincaré map P: R?V — RV ig
well defined, by setting

P(§) = 2(T,¢)

and it is a diffeomorphism. The fixed points of P are associated with the
T-periodic solutions of (3.1).
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For z € R?VN | we use the notation z = (x,%), with z = (x1,...,zy) € RV
and y = (y1,...,yn) € RY and we assume that H(t,z,y) is 27-periodic in
each of the variables x1,...,zy. We also write

P(z,y) = (xz +9(z,y),y + p(z,9)) (3.2)

Under this setting, T-periodic solutions of (3.1) appear in equivalence classes
made of those solutions whose components z;(¢) differ by an integer multiple
of 2. We say that two T-periodic solutions are geometrically distinct if they
do not belong to the same equivalence class. The same will be said for two
fixed points of P.

We now recall the main twist condition proposed in literature. Since our
focus is on the twist, to facilitate the comparison we enunciate all in the case
of a strongly convex set D C RY; below we will add some remarks on each
assumption.

The first twist condition, proposed in [FU13| (cf. [FU16a|), generalizes an
assumption first introduced by Conley and Zehnder in [CZ83a].

(T1) There exists a regular symmetric N x N matrix B such that
(I(x,y),Brp(y)) >0 for every (z,y) € RY x D

where vp(y) denotes the unit outward normal vector to D at y.

This condition recalls the twist (2.1) of the Poincaré-Miranda Theorem, that
we discussed in the previous Chapter. As in that case, condition (T1) implies
that the vector ¥(z,y) has to avoid an entire half-space at each point of the
boundary. We remark that this result holds also for every convex body D,
with vp possibly defining a set-valued map.

The second twist condition in literature was introduced in [MZ05], re-
stricted to the case B = Iy and requiring a monotone twist of the map ¥(z, y).
These two assumptions have been dropped in [FU16a).

(T2) There exist an involutory N x N matrix B and some point dy € int D
with

(HNx,y),B(y —dy)) >0 for every (z,y) € RN x 0D

As in the previous case, this condition recalls a twist condition that we
discussed in the previous Chapter, namely the extension of the twist (2.2)
of the Poincaré-Bohl Theorem, that we used in the proof of Theorem 2.1.
Again, the map ¥(z,y) has to avoid an entire half-space at each point of the
boundary, and this result holds also for every convex body D.

The third twist condition we want to recall, named avoiding rays condition,
was introduced in [FU14| (cf. [FU16a]), in the general case of sets D whose
boundaries are diffeomorphic to a sphere.
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(T3) Wz,y) ¢ {pvp(y) : p > 0} for every (z,y) € RN x 0D

In this case the condition recalls the twist presented in Theorem 2.3. The
condition was shown to hold also in the case of sets D whose boundary is
diffeomorphic to a sphere, yet the case of sets D with a non-smooth boundary
had not been studied. In this case, at every point of the boundary the map
1 has to avoid only a halfline, yet situations with indefinite twist are not
included in this condition.

Under each of these twist conditions, and in the general framework pre-
sented above, it has been proved in [FU16a] that the map P has at least
N + 1 geometrically distinct fixed points, all in RN x D. Moreover, if all its
fixed points are non degenerate, then there are at least 2V of them.

Concerning the regularity assumptions, in [FU16a| it is shown that it is
sufficient to assume that the Hamiltonian H is continuous, with a continuous
gradient VH in the z-variables; moreover the continuity in the time variable
can be further weakened, obtaining a Caratheodory-like condition. However,
such a mild regularity requires a lot of technicalities, but the main line of the
proof is the same. Since our focus is on the twist, we prefer here to avoid these
difficulties, and present our result for C>° Hamiltonians; yet the result stated
below can be extended naturally also under such weak regularity conditions.

The avoiding cones condition

As done in the previous Chapter, our plan is to introduce a general but
intuitive condition, including and improving the three kind of twist presented
above. Unfortunately, a different approach is needed: whereas our previous
definition of avoiding cones condition was build for a purely topological
approach, in this case we have to deal with the variational structure required
in the proof of the generalize Poincaré—Birkhoff Theorem. We will therefore
suggest a new definition of the set A, with the aim to characterized the same
abstract object introduced in Chapter 2. Many evidences indicate that the
two definition should be the equivalent, yet the problem is still open. We also
highlight that this new definition would allow also to overcome some of the
restriction encountered in Chapter 2, since it an “edge” is no longer required
to pass from an inward to an outward region; yet the striking intuitiveness of
our previous definition would be partially sacrificed, and this suggested us
the dual approach adopted in this thesis.

Let F: RN — RY be a C*®-smooth gradient function, namely we assume
that there is a function h: RY — R such that F' = Vh. We define, for every
y € RV the set Ar(y) as follows: a vector v € RN belongs to Ap(y) if and
only if there exist a sequence (y, ), of points in RY and a sequence (), of
non-negative real numbers such that

Yn =y, and p,F(y,) = v
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It can be easily seen that Ap(y) is a closed cone in RY.
Our main result is the following (cf. [FG16a]).
Theorem 3.1. Let F = Vh: RY = RN be a C®-smooth function for which

there are two constants K > 0 and C' > 0 and a reqular symmetric N x N
matrix S such that

[F(y) =Syl <C  when |yl = K (3.3)
and set D := F~(0). Suppose that
Iz, y) ¢ Ar(y) for every (z,y) € RY x D (AC)

Then, P has at least N + 1 geometrically distinct fized points, all in RN x D.
Moreover, if all its fized points are non degenerate, then there are at least 2V
of them.

Assumption (AC) is our avoiding cones condition. In other words, for
every (x,7) € RN x 9D, one must have that ¥(z,y) # 0, and that there isn’t
any sequence (y,), in RN \ D with

F(yn) (z,y)
IFl " Gyl

The proof of Theorem 3.1 is provided in Section 3.3. The geometrical
meaning of the avoiding cones condition will be discussed extensively in
Section 3.2, including the study of some substantial cases.

Yyn —y and

3.2 The avoiding cones condition, concretely

We now investigate the nature of our avoiding cones condition. We first
present two particular cases which already include the most relevant features.
Later, we will show how these two special situations actually have a wider
extent. Finally, we prove that the twist conditions (T1), (T2) and (T3) are
included in (AC) and illustrate how the first two are indeed rather more
restrictive.

In the following, we will start from a set D C R™ and construct a suitable
function F': RY — RV satisfying the assumptions of Theorem 3.1, for which
D = F~1(0). Before proceeding in our analysis, a couple of remarks are in
order.

It is useful to introduce, in relation to the cone Ap(y), the set

ar(y) ={ve Ar(y): [vl =1}

so that
Ap(y) ={pv:p>0,veap(y)}u{0}
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Notice that, if y ¢ D, we have

F
Ap(y) = () : 1> 0) ar() = { i |
on the other hand, if y belongs to int D, then
Ar(y) = {0} ar(y) =0

and vice versa. The case when y lies in 0D is less trivial. We know that
arp(y) # 0 for every y € 9D. Indeed, if y € 9D, there exists a sequence of
points ¥, € RV \ D such that 3, — y and, consequently, a sequence of vectors
v, € RV, such that ||v,| = 1 and ar(y,) = {v,}. By compactness, there
exists a subsequence vy, such that v,, — v for some v, with |jv|| = 1, and
therefore v € ap(y). This shows that, for y € 9D, the set ap(y) is non-empty,
but in general it can be multivalued, as displayed below.

In the following, we illustrate three particular situations which present
the key features and provide quite natural tools for applications, minimizing
at the same time the required computations. The same techniques and ideas
can naturally be applied to more general situations.

In many constructions we will need to consider a C*°-smooth function

v: R = R, with
() 0 ifs<0
S) =
7 1 ifs>1
and such that, for some ¢, > 0,
7' (s) >0 for s € (0,1) 7"(s) > 0 for s € (0,e,)

We denote by (-, -) the Euclidean scalar product in RY, with its associated
norm |-||. We write BN (zq,7) for the open ball in RY centred at x with
radius r > 0, and B [z, r] for the closed ball.

The closed ball

We consider a decomposition of the form RY = RN x RN2 where N; or Ny
may possibly be zero, and we introduce the matrix

5= (")) (34

Corollary 3.2. Let D = BN[0,1] and assume that, for every (z,y) € RV x
oD,

{py - p >0} if (By,y) >0
V(w,y) & < {pmy + poBy : p € R, e >0} if (By,y) =0 (3.5)
{—py : pn >0} if (By,y) <0

Then, the same conclusion of Theorem 3.1 holds.
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Proof. We define the function h: RV — R as

h(y) =~(llyll — 1) By, y) (3.6)

and set F' := Vh, decomposed as

F(y) = Ci(y)y + Ca(y)By

with )
7' (lyll = 1)
Iyl

We observe that F~1(0) = D. Indeed, when y ¢ D, one has y(|y|| — 1) >0
and, whenever the two vectors (By,y) y and By are on the same line, then
they have also the same direction. We define, for every y ¢ D, a rescaling of
the coefficients C(y) and Cy(y), namely

Cl( ) 02( )
c(y) = N ETEE ca(y) = NTEEATE

Ci(y) = By, y) Ca(y) = 2v(llyll = 1)

(3.7)

so that, for y ¢ D, we have ap(y) = {c1(y)y + c2(y)By}. We will prove that,
for every y € 0D,

{sen((By, y))y} if (By,y) #0

(3.8)
{Ty+ V1—72By: 7 €1, 1]} , if (By,y) =0

ap(y) =

First, let y € 0D be such that (By,y) # 0. We take a sequence (Y},),, of
vectors Y, € BN(0,1+¢,)\ D, with Y;, — y. For s € (0,¢,), having assumed
~"(s) > 0, it follows that v(s) < s7/(s), hence

Co(Yan)|
C1(Yn)

This implies (3.8) in the case (By,y) # 0.

2Vall (1Yl = 1)~ 20Yall (1Yl - 1)

= lim =0
n—oo v/(||Ya|| — 1) [(BYy, Yn)| = nooe [(BYy, Ya)

lim
n—od

Let us now look at the case when y € 0D and (By,y) = 0. Since Cy > 0,
by the properties of the limit we deduce the C inclusion in (3.8). To check
the D inclusion, let us take a sequence of positive real numbers ,, € (0,¢,),
with [, — 0, and consider the two sequences of points

P,=y+ly Qn =y +1,By

We observe that P, — y and @, — y. We have C(P,) = 0, while

(@) Q1@ -1 | VIFE-1
1 - lim Y- T2 .
W |G (Qu) | e |7 (1Qull — 1) (BQ, Qu) | = e 1, .




% 3.2. The avoiding cones condition, concretely 51

(a) N1:N2:1. (b) N1:2 andN2:0.

Figure 3.1: Visualization of Ap(y) in the framework of Corollary 3.2, for different
choices of the decomposition N = Ny + Ns.

Hence,
c1(Pr) =0 nh_)rgo a1 (Qn) =1
ca(Pp) =1 nh_)rglo c2(Qrn) =0

and so both y and By belong to ar(y). By continuity, for every 7 € (0,1)
and every sufficiently large n, there exists A,, € [0,1] such that, setting
Y, = AnPn + (1 - An)Qm

aYn)=r1 e (Yn) =V1-12
Since Y,, — y, it follows that

Ty +V1—72By € ap(y) for every 7 € (0,1)

We have thus proved that
ap(y) 2 {Ty+ V1I-712By: 71 €0, 1]}

The remaining part of the proof, i.e. the inclusion with 7 € [—1,0], can be
treated similarly, replacing in the construction above @, with

Q, =y— 1By
Hence (3.8) is established, and proof of the corollary is easily completed. [J

The avoiding cones condition of Corollary 3.2 is visualized in Figure 3.1.
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Figure 3.2: Normalized Poincaré map for the Hamiltonian system of Example 3.3.

Example 3.3. We take D = B2[0, 1] and define the Hamiltonian function

H(l’l,f@,?/ly?ﬂ) = y% + y% + 2COS(7Ty1)

The map J(z,y) = (V1(z,y),V2(z,y)) is given by

OH .
h(z,y) = Ta—yl(x, y) = 2Ty — msin(my1)]

Da(,9) = T (2,) = 2Ty
Y2
As illustrated in Figure 3.2, the avoiding cones condition as in (3.5) is verified,
for Ny = 0 and Ny = 2. The same property is inherited by all the sufficiently
small perturbations of H, satisfying the regularity and periodicity assumptions
of Theorem 3.1.

The product of two closed balls

Let us consider, as before, a decomposition of the type RY = RN x RN2,
where N or Ny may possibly be zero. For every y € RVt x RN2| we write
y = i1 + 92, with 1 € RV x {0} and g € {0} x Rz,

Corollary 3.4. Let D = Dy x Dy, with D1 = BN1[0,1] and Dy = BN2[0, 1],
and assume that, for every (x,y) € RN x 0D,

{—ug2 : pp >0} if y € int D1 x Dy
I(w,y) & < {pmgr — pofia : i1 > 0,00 >0} if y € Dy x ODy (3.9)
{pgy - p >0} if y € 0Dy x int Dy

Then, the same conclusion of Theorem 3.1 holds.
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Proof. We define the function h: RN — R as

h(y) = (111 191" = (9211 N1 9211

and set F' := Vh, namely
F(y) = C1(y)in — C2(y)2,
with

Ci(y) =" (lga ) 191l + 2v(llgal) - Ca(y) =+ (I92])) 921l + 27 ([[g]))
We observe that F~1(0) = D. We will prove that, for every y € 9D,

{— V2 } if y € int Dy x 9Dy
A
ar(y) = {7‘ 2{1 —V1—72 %2 ,7‘6[0,1]} if y € 0Dy x OD>
9] A
{ H'qfln } if y € 8Dy x int Dy
\ 1

(3.10)
First of all, we notice that, for every y € Dy x R™?, the RV -component of
F(y) is zero, since C1(y) = 0; hence, if y € int D; x dDs, being Dy x RNz
a neighbourhood y, we deduce that (3.10) is verified in this case. The case
y € D1 x int Dy is analogous.

Finally, let us consider the case y € D1 x dD2. The C inclusion follows
from the fact that the functions c¢; and co, defined by a rescaling of C; and
Cy as in (3.7), take values in [0,1] and the sum of their squares is always
equal to one. To check the D inclusion, let us take any sequence of positive
real numbers /,, — 0 and consider the two sequences of points

We have that P, — vy, @, — y and
Cl(Pn) =1 Cl(Qn) =0
CQ(Pn) =0 CQ(QTL) =1

By continuity, for every 7 € [0, 1] and every sufficiently large n, there exists
A, € [0,1] such that

c1 (AnPn +(1- An)Qn) =7 ca (AnPn +(1-— An)Qn) =+/1—-712
Since A, P, + (1 — Ay,)Qy — vy, it follows that
gl 1 7_2 g?

T~ =
[ 192
So (3.10) is verified, and the proof is easily completed. O

€ ar(y) for every 7 € [0, 1]
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(a) Corollary 3.4. (b) Corollary 3.6.
Figure 3.3: Visualization of Ap(y) in the framework of Corollaries 3.4 and 3.6, for
Ny =Ny =1.

The avoiding cones condition (3.9) of Corollary 3.4 is visualized in Fig-
ure 3.3(a). It can be restated as

{0} X —./\/’D2 (3}2) if y € int D1 x 0D>
9(x,y) ¢ { Np,(51) x —Np,(§2) if y € 9Dy x ID;
NDl (Ql) X {O} ify € 0D x int Doy
Example 3.5. We take D = [—1,1] x [—1,1] and define the Hamiltonian

function H: R2 x R2 -5 R as

H(fl, €2, Y1, 3/2) = y% - y% — Y2 Sil’l(Qﬂ'yl)
The map ¥(z,y) = (91(x,y), J2(x,y)) is such that

OH
H(z,y) = TaTﬂ(x, y) = 2T'[y1 — my2 cos(2my1)]

OH .
Yo(x,y) = T@(% y) = —T'[2y2 + sin(27y1)]

As illustrated in Figure 3.4, we see that the avoiding cones condition (3.9)
is satisfied, for N; = Ny = 1, cf. also Figure 3.3(a). The same property
is inherited by all the sufficiently small perturbations of H, satisfying the
regularity and periodicity assumptions of Theorem 3.1.

With a similar approach, we can also study the following situation.

Corollary 3.6. Let D = Dy x Do, with D1 = BN1[0,1] and Dy = B™2[0,1],
and assume that

Iz, y) ¢ Nply)  for every (z,y) € RY x 9D (3.11)

Then, the same conclusion of Theorem 3.1 holds.
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]

: /
/.
S

Figure 3.4: Normalized Poincaré map for the Hamiltonian system of Example 3.5.
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Proof. We define the function h: RY — R as

h(y) = 3 132l + (1211 119211

The same arguments used in the proof of Corollary 3.4 can be successfully
applied, simply changing the sign in front of the coefficient Cs. O

We notice that, in Corollary 3.6, condition (3.11) can be replaced by
Iz, y) ¢ —Nply) for every (z,y) € RN x dD

by simply changing in the proof the sign of the potential h.

Combining the ideas of the previous two corollaries, let us consider the
decomposition RN = RN" xRV with N* = Nj* +-- -+ N;f and N~ = N +
-+ -+N,,, all summands being non-negative integers. For every y € RY TxRNT ,
we write y = 97 + ¢, with §+ € RY" x {0} and §~ € {0} x RV . We thus
obtain the following more general result.

Corollary 3.7. Let D = D' x D™, with

Dt = f[BN? [0,1] D™ = ﬁBNZ [0,1]
=1

i=1

Assume that, for every (z,y) € RN x 0D,

(0} x —Np-(§7) ify €int DY x 9D~
Ha,y) & S Np+(§7) x =Np-(§7) ify € 9D* x 0D~
Np+(gT) x {0} ify € 0D' x int D~

Then, the same conclusion of Theorem 3.1 holds.
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Sets diffeomorphic to a ball

We now show how to apply our results to sets D which are diffeomorphic to
a ball.

Let D C RY be a compact set, and let D™ be a relatively open subset of
OD. We define D~ = 9D\ D+ and D’ = 9D\ (DT UD").

Definition 3.8. We say that the couple (D, D7) is twist-generating if there
exist two regular symmetric matrices B, B, with B of the form (3.4), and a
C>®-smooth diffeomorphism ¥: RV — RY such that

o U (w) =By for ||w] sufficiently large
e U(D) = BN|0,1]

o U(DT)={y: |yl =1,(y,By) >0}

Note that if (D, DV) is twist-generating, then D has smooth boundary
and therefore, for every w € 9D, the outer normal cone Np(w) is well defined,
and it is the half-line generated by the outer unit normal vp(w). Moreover,
for every point w € D%, we can define the vector

o(w) = [¥'(w)]"BY (w)
We see that o(w) is orthogonal to D° and to vp(w) (therefore tangent to D).

Corollary 3.9. If (D, D") is twist-generating and, for every (z,w) € RV x
0D, we have

Np(w) ifwe Dt
P, w) ¢  {pvp(w) + peo(w) : py € R, g >0} if w e DO
—Np(w) ifwe D™

then the same conclusion of Theorem 3.1 holds.

Proof. We consider the function

ha(y) =~(lyll — 1) By,y)
as introduced in (3.6), and define h: RY — R as
h(w) = ha(¥(w))

All the properties required to F' = Vh are inherited from h 4, and Theorem 3.1
applies. ]

We observe that, in the case DT = 9D, implying B = I, we have recovered
exactly the twist condition (T3).

The same line of reasoning holds if we want to generalize other situations,
such as those considered in this section, by the use of a diffeomorphism. We
omit the details, for briefness.
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Comparison with twist conditions in literature

We now show that the twist conditions (T1), (T2) or (T3) are actually all
included in the notion of avoiding cones condition (AC).

Corollary 3.10 (Fonda Urena). Let D C RY be a C®-smooth strongly
convex body, and assume that at least one of the twist conditions (T1), (T2)
r (T3) holds. Then, the same conclusion of Theorem 3.1 holds.

Proof. We denote by mp: RN~—> RY the projection on the convex set D.
Assume that (T1) holds. Let Fi: RNV \ D — R be the map defined as

Fi(y) = Bup(rp(y))

We define h: RY — R by

hy) = {o ifyeD
YVl = 7)) By — 7o)y — 7o) iy RN\ D

It is clear that h is a C*°-smooth function. The function F' = Vh satisfies (3.3)
with S = 2B and F~1(0) = D, while

<F(y),.7?1(y)> >0 for every y € RN\ D
(For the details, see [FU16a, Sec. 3|.) This implies that
(v,Bup(y)) >0 for every y € D and v € Ap(y)

Combining this with (T1), we have (AC).

Assume now instead that (T2) holds. Without loss of generality, we set
dp = 0 and we define F5: RV \ D — R as

Fa(y) = By
When B is orthogonal, we define h: RN — R by
0 ifyeD
h(y) = . N
Y(lly = moW)|) By,y —7p(y)) ifyeRT\D

The function F = Vh satisfies (3.3) and F~1(0) = D, while
<F(y),./;2(y)> >0  for every y € RN\ D
The conclusion (AC) then follows as above. In the case of a general involutory

matrix B, we can reduce to the above situation by a change of basis, since B
is diagonalizable (see [FU13, Sec. 4]).
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Finally, assume that (T3) holds. We define h: RY — R by

() =(ly = 7o) ly = 7o ()l
The conclusion follows, similarly as above. O

We remark that, in general, assumptions (T1) and (T2) are strictly
stronger than the avoiding cones condition (AC), as shown in the following
example.

Example 3.11. Let us set D = B3[0,1] and B = diag(1,1, —1). We want to
compare the avoiding cones condition (AC) induced by F' = Vh, with h as
in (3.6), with the conditions (T1) and (T2), for dy = 0, which are equivalent,
in this situation. For every y € 9D, if (y,By) > 0 (resp. (y,By) < 0), the
avoiding cones condition (AC) requires that ¥(x,y) is not contained in the
outer (resp. inner) normal cone of D in y, a half-line, whereas (T1) requires
that ¥(x,y) avoids an entire half-space containing this half-line. If instead
(y,By) = 0, then the avoiding cones condition (AC) requires that 9(zx,y)
avoids the half-plane generated by By and +vp(y), whereas (T1) requires
that J(z,y) avoids a half-space that includes that half-plane.

3.3 Proof of Theorem 3.1

The proof follows the one given in [FU16b].

Let us recall that Z: R x RN — R?V is the C*-map associating to each
couple (t, ) the value at time ¢ of the unique solution Z(-, () of (3.1) satisfying
Z(0,¢) = (. For ¢ € RN we write ¢ = (£,n), with € = (&1,...,&v) € RV
and n = (n1,...,mn) € RV,

Since D is a compact set and the Hamiltonian H (t,x,y) is 2m-periodic in
the variables z;, the continuous image by Z of [0,T] x (RY /27ZN) x D is
contained in (RY /27Z") x B,., for some open ball B,.. Thus, after multiplying
H by a smooth cutoff function of y, there is no loss of generality in assuming
that there is some R > r for which

H(t,z,y) =0 if |ly[| > R

Consequently, there is some constant ¢ > 0 such that
OH
Hay(t,az,y)H <c for every (t,z,y) € R x RY x RV

As a consequence, we will have that

19(&,m)|| < T for every &, € RY (3.12)

For any t, we write Z; := Z(t,-): R?N — R2¥. The following properties hold.
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(1) Zo is the identity map in R*V

(i) Z(C+p) = Z(C) +p, ifpe2nZN x {0}

(i) Z(t,€,m) = (& m), if |nll > B

(iv) each Z; is a symplectic C*-diffeomorphism of R*V onto itself
This last property is standard in Hamiltonian dynamics.

By the use of the Ascoli-Arzela Theorem, we can find some constant
e € (0,1) such that

&) E{uF(n):p =0} 0 <[F(n)| <e (3.13)

Recalling that F' = Vh and that (3.3) holds, we can assume without loss
of generality that

1
h(y) = B (Sy,y) when [ly|| > K

Indeed, choosing R large enough and defining

F(z) if |lz|| <R
F(z)={ F@)+(lz] - R)(Sz = F(x)) if R< |z <R+1
Sz if J|zf| > R+ 1

we will have that D € BN (0, R) and F~1(0) = D, while the cones Ap(y) will

not be changed for y € BN (0, R).
We define the function %: R?Y — R as

R(E,n) = —g h(n)
the function R: [0,7] x R?V — R by
R(t,2) == R(Z;'(2))
and the modified Hamiltonian H: [0,7] x R2Y — R as
H(t,z) := H(t,z) + R(t, 2)

It is a C*°-smooth function, and satisfies the following properties:

(I) H(t,z+p) = H(t,2), ifp € 2nZY x {0}

(1I1) ﬁ(t,x,y) = % <§y,y>, if |lyll > R, where S = —(c/e)S

(III) H and H coincide on the set

{(t,2(t,&,m)) : t € [0,T], £ e RN, € D}
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We consider the modified Hamiltonian system
i = JVH(t,z) (HS)

and look for solutions satisfying z(0) = z(7"). These will be obtained as
critical points of a suitably defined functional.

Let us consider the Hilbert space H%/ 2, whose elements are those functions
z € L0, T;R*), extended by T-periodicity (in the a.e. sense), with the
property that, writing the associated Fourier series

+00 '
Z(t)fv Z akeQﬂkzzt/T

k=—oc0
one has that
+oo
Z (14 |k]) |ag]?® < 400
k=—oc0

We refer to [HZ94, Section 3.3| for the main properties of H%/ ®. The functions

in H}/ % are not necessarily continuous, but their restriction to [0, 7] belongs
to LP(0,T; R?N), for every p € [1,400). On the other hand, let H} be the

space of those functions z € Hilp/ ? for which

+oo
D (4 k) |ax* < 400

k=—oc0
These are absolutely continuous T-periodic functions. In particular, they are
such that z(0) = 2(T).

We define an auxiliary function H:R xRN 5 R as follows:

~ ~

H(t,z)=H(T,2) with 7 € [0,T) and ¢t = 7 + kT, for some k € Z

By construction, H (t,z) is T-periodic in ¢, but not necessarily continuous. In

view of (I) and (II) above, it is possible to define the functional ¢: H%/2 —R
as

T
1 . ~
o) = [ |34720,0) + Ht,z00)| a
0
It can be seen that it is continuously differentiable, and its critical points
correspond to the weak T-periodic solutions of
i = JVH(L,2) (3.14)

Let z be a critical point of ¢. Following [Rab86|, we will show that the
restriction of z to the closed interval [0,7] is a classical solution of (HS)
satisfying z(0) = z(T).
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Since z is a critical point of ¢, we have (Vo (z), w) = 0, for every w € Hl/g.

Then, taking w in Hr}, we have

/ )+ (VL 2(1)), w(t))] dr =0 (3.15)
0

In particular, taking as w the constant functions with all zero components
except one of them, we deduce that

T
/vmt,z(t))dt =0
0

Hence, denoting by [] the mean of a function defined on [0, 7], we deduce
[JVH(-, z /jVH (t,2(t))dt =0 (3.16)

It is known that, for every fixed vector v € R*V and every function ¢ €
L2(0,T;R?N), with [g] = 0, there is a unique function v € H} satisfying
[v] = v and © = g in L?(0,T;R?"). Hence, from (3.16) we deduce that
there is a unique function v € H} such that [v] = [2] and © = JVH(, 2())
in L2(0,T;R?N). Therefore, for any w € HL, integrating by parts and
using (3.15),

T T T
/ij /vjw /Vth /zjw
0 0 0

0

We deduce that v = z in H}, and
i(t) = JVH(t, 2(t)) (3.17)

for almost every ¢ € [0, T]. Moreover, since z belongs to H%, it is continuous,
hence % has to be continuous, too, and z satisfies (3.17) for every t € [0,T).
Furthermore, z(0) = z(T). Hence, by continuity, z is a classical solution
of (HS) on [0, T]: when restricted to that interval, it belongs to C*([0, T'], R?V).
A bootstrap argument now shows that z € C*°([0, 7], R?V).

For any z(t) = (z(t),y(t)) in H%/Q, we write z(t) = Z + Z(t), where
T = [r] € RY. We thus have the decomposition H%/Z = RN @ E, where F
is a Hilbert space. By (I) we can identify z € RY with its projection on the
N-torus TV and define the functional : TV x E — R as

@(‘% (SU, y)) = (p(f' +z, y)
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By [Szu90, Theorem 4.2] and [Szu92, Theorem 8.1|, the functional ¢ has of
at least N + 1 critical points, and 2%V of them if all its critical points are
nondegenerate. As we saw above, these critical points correspond to geo-
metrically distinct solutions of (HS) belonging to C>([0, T], R?Y), satisfying
2(0) = 2(T).

As a consequence of (III), the Hamiltonian systems (3.1) and (ﬁé) have
the same solutions z(t) = (z(t), y(t)), with ¢ € [0, T], departing with y(0) € D.
Thus, in order to complete the proof of Theorem 3.1, it will suffice to check
that (HS) does not have solutions z(t) = (z(t), y(t)), satisfying z(0) = z(T),
departing with y(0) ¢ D.

We argue by contradiction, and assume that such a solution z(t) exists.
Let us define the C*°-function ¢: [0, 7] — R2N by

¢(t) = 27 (=(t)
Differentiating in the equality z(t) = Z(t,((t)), we find
£40) = S 0.0) + St )
so that
g?(t, C)C(t) = TVH(t, 2(t)) — TVH(L, 2(t)) = TVR(E 2(t))  (3.18)
By (iv) the map Z; is symplectic, so
0Z . 0Z
aic(mC(t)) jaig

Hence, if we multiply both sides of 3.18 by —J(0Z/0()*J, we get

: 02

C(t) = ~78f<(t, C(8)" VR(t, 2(t)) = TVR((D))
where the last equality comes from the fact that R(¢, Z(t,()) = R(¢). Then,
recalling that ¢(t) = (£(¢),n(t)), we obtain

(t, () =T for every t € R

§0=-ZFm@®) =0

and consequently, by (i), writing z(¢t) = (x(t), y(t)),

n(t) =n(0) =y(0)  &(t) ==(0) — — F(y(0))

for every ¢ € [0, 7], namely
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Being z(t) = Z(t,((t)) and Zr = P, we thus have

(1) = P(2(0) - < Fly(0)),5(0))
and in particular

o(T) = 2(0) ~ T F(y(0) +9(x(0) ~ < Fy(0)),4(0))

In order to obtain the desired contradiction, we shall show that z(T") # z(0),

namely,
9(2(0) ~ T Fu(0),9(0)) # < F(u(0)) (3.19)

We distinguish between two situations, according to the initial point of the
solution. If 0 < [|F(y(0))]| < &, by (3.13) we have

9(2(0) — < F(0)),5(0)) ¢ {aF(u(0)) : a > 0)

implying (3.19). On the other hand, if ||F'(y(0))|| > €, by (3.12) we get

Jo(w00) T ro)

3
implying (3.19), again. The proof is thus completed.

- L r0).40) | <7 <

3

3.4 A variation of Theorem 3.1

With the same strategy adopted for Theorem 3.1, we can prove the following
more general result.

As before, we assume the Hamiltonian function H: R x R?N — R to be
C®-smooth, and T-periodic in its first variable . Let M be an integer such
that 0 < M < N, and assume that H (¢, x,y) is 2n-periodic in x1, ..., xy and
iny,...,yn. We still write as in (3.2) the Poincaré map P associated to the
system (3.1), and we define the projection m: RV — RN=M a5

(Y1, yn) = (YnM41,- -, YN)

Theorem 3.12. Let F = Vh: RN"M _ RN=M pe g C®_smooth function
for which there exist two constants K > 0 and C' > 0 and a reqular symmetric
(N —M) x (N —M) matriz S such that

|F(w) —Sw|| <C when |jw| > K
and set D := F~1(0). If
m((z,y)) ¢ Ar(7(y)) for every (x,y) € RN*TM x 0D

then P has at least N + M + 1 geometrically distinct fized points, all in
RN+M s D. Moreover, if all its fized points are non degenerate, then there
are at least 2NTM of them.
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Proof. The proof is similar to that of Theorem 3.1, with the following changes.
The construction is based on the ypr41,...,yn coordinates, in the sense that
first we assume H(t,x,y) = 0 if ||7(y)|| > R, and later we use the function

R(E,n) = —h(x(n))

to define the modified Hamiltonian.

Then, when looking for the critical points of the functional ¢, we use the
decomposition HZIF/ 2_RNtM g F ., where RVN+M i the subspace associated
to the constant functions with values in RN*M x {Ogn-um}, and E is a
Hilbert space. The projection RNTM — TNTM i]] lead to a functional
o: TNTM E — R, having at least N + M + 1 critical points, or at least
2N+M of them if all critical points are non degenerate. With the same line
of reasoning used for Theorem 3.1, it can be shown that such critical points
correspond to geometrically distinct solutions of (3.1). O

We notice that, if we extend Theorem 3.12 to the case M = N, no avoiding
cones condition is required any longer and we recover a celebrated result on the
existence of fixed points for a symplectic map on the torus, as conjectured by
Arnold and proved by Conley and Zehnder [CZ83a|. Thus Theorem 3.12 covers
the intermediate cases between this result and Theorem 3.1, corresponding to
M = 0. We finally notice that we could have assumed the periodicity along
a different basis than the usual one in RV Similar situations have also
been considered in [Cha89; Fel92; FMO06; Fou+94; Liu89).



Chapter 4

Applications: twist at different
scales

Several application of higher dimensional extensions of the Poincaré—Birkhoff
Theorem have been proposed, regarding, for instance, systems associated
with relativistic or mean-curvature operators [FU16al, systems of differential
equations of Duffing type [BO14], superlinear systems [FS16; FU16al, systems
with singularities in [FS14], and special cases of the N-vortex problem [BTKO07,;

Bla08].
In this Chapter (cf. [FGG16]) we discuss the three main situation in which

the twist can be found:

e locally: this extend the nondegeneracy perspective presented in Chap-
ter 1;

e at an intermediate scale, as direct application of Theorem 3.1;

e globally, considering the twist generated at zero and at infinity.

4.1 Periodic perturbations of completely integrable
systems

Let us consider a completely integrable Hamiltonian system on TV x D,
where we recall that TV is the N-dimensional torus (R/27Z)", and D is an
open subset of RY. The continuously differentiable Hamiltonian function
H: TN x D — R can therefore be written in the form H(p, 1) = ¢ (I).
We recall that I = (I1,...,In) € D are the action variables, while ¢ =
(01,...,0n) € TV are the angle variables.

For every I* € D, the torus 7% = TV x {I*} is invariant for the flow,
and its evolution in time is determined by the associated frequency vector

w' = (w],...,wy) = VH(I")
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When the components wy, ..., w}j are rationally independent, the solutions
are quasiperiodic and each orbit is a dense subset of the N-torus T*. Such tori
are called nonresonant. Otherwise, we have a foliation in M-dimensional tori,
where M < N is the rational rank of the components of w*, and the orbits
will be quasiperiodic with respect to these lower dimensional tori. A special
case occurs when the components of w* are all pairwise commensurable: then,
all the solutions on the torus are periodic with the same period, and the
N-torus T* admits a foliation in invariant 1-tori, each one defined by the
orbit of a solution.

Since complete integrability reveals a lot about the behaviour of the
dynamics, a natural question is: how much of this structure is preserved
under a small perturbation? In particular, one could wonder whether, near
an invariant torus of the unperturbed system, it is possible to find periodic
or quasiperiodic solutions for the perturbed system with the same frequency.

A series of positive results are known for a large family of nonresonant tori,
those with a Diophantine frequency. These results are usually collected under
the name of KAM theory, recalling its main contributors A.N. Kolmogorov,
V.I. Arnold and J. Moser. We remark that, beyond a nondegeneracy assump-
tion on the torus, strong smoothness of the perturbation is always needed,
cf. [AIb07; Her83; Sal04|. While these strongly nonresonant tori survive under
small perturbations, the same is not true for the other tori [Bes00; MP85;
Tre89|, and in particular for those made of periodic solutions. Still, some
traces of these tori can be found.

In the planar case, where each torus T' coincides with a periodic orbit,
the survival of two periodic solutions ca be directly obtained as a consequence
of the Poincaré—Birkhoff theorem. The required twist condition is satisfied,
in this case, under some rather weak nondegeneracy assumptions. A fainter
kind of traces of an invariant torus is provided by the so called Aubry—Mather
theory (cf. [Mos86], and the references therein), showing the existence of
a Cantor set, called cantorus, that preserves, in a generalized sense, the
rotational properties of the original torus.

For higher dimensional Hamiltonian systems, the problem has been solved
by Bernstein and Katok [BK87| and refined by Chen [Che92|), but a strong
nondegeneracy assumption, such as strict convexity, is required. In this
Section we show that actually only a very weak local twist is necessary, so
that the survival of N + 1 solution out of a perturbed N-torus can be assured
also in situations when the Jacobian of JZ is degenerate or even not defined.

We are therefore interested in the case when the dynamics on the torus
T* consists of a family of periodic orbits with minimal period T*. This
happens if and only if there exist N integers aq,...,ay such that

T*w; = 2mwa; foreveryi=1,...,N

and 7™ is the minimum positive real number with such a property. The
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integers a; count the number of rotations made by each periodic solution
around the i-th component of the torus in a period T™; the sign of a; describes
the sense of rotation.

A standard approach to study such a system, defined on TV x D, is to
consider its canonical lift to RY x D. The Hamiltonian system then becomes

{5 = VA (n) (4.1)
n=20

where € = (&1,...,6x) € RNV and n = (n1,...,mn) € D. To be more precise,
denoting by Iy the identity on RY and by Py: RY — TV the standard
projection on the torus, the map (Py,Iy): RY x RY — TV x RV is a local
change of variables which transforms (&, 7) into (¢, ). Each translation of
27 in the &; coordinate for system (4.1) corresponds to a single rotation in
the @; coordinate for the original system.

Let us now consider a general nearly integrable Hamiltonian system on
TN x D, with time-dependent Hamiltonian function .2 : R x TV x D — R,
sufficiently close to J#. The canonical lift then leads to the Hamiltonian
system on RY x D given by

{g = VK (t£,1) 42)
n= _V£K<t7 57 77)

The Hamiltonian function K : RxRN xD — R is assumed to be continuous, 7-
periodic in the first variable, 27-periodic in each variable &;, and continuously
differentiable in ¢ = (£, n).

We now fix an I° € D and introduce some kind of nondegeneracy condition
at 1. Usually, in the literature (see, e.g., [ACE87; BK87; Che92|), it is
assumed that J# is twice continuously differentiable, and that

det (" (I°) #0 (4.3)

Here, we only ask .# to be once continuously differentiable, and that there
exists an invertible symmetric N x N matrix B such that

0ec {p € (0,+00) : IIIE%IHl:p (VoA (I) -V (I°),B(I-1%) > O} (4.4)

where cl A denotes the closure of a set A. Notice that (4.3) implies (4.4),
taking B = #”(I°). On the other hand, the function ¢ (I) = ||I — I°||*
satisfies (4.4), with B = I, but not (4.3), if @ > 2. Moreover, we observe
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that (4.4) does not even require the local invertibility of V.#. An easy
example, with N = 1, is provided by the function J# (I) = fOI f(s)ds, with

1
w? 4 |s| sin <7) if s#0
fs) = s
W? ifs=0
Clearly, this function # is only once continuously differentiable at I® = 0,

and V.# = f is not invertible, but our nondegeneracy condition (4.4) is still
satisfied, with B being the identity on R.

We will show that the nondegeneracy condition (4.4) extends by continuity
to a neighborhood U of I°. As a consequence, we will prove that, for every
I* € U as above, if there exist two positive integers m* and n* satisfying

*T
=" (4.5)

n*

then the perturbed system (4.2) has at least N + 1 geometrically distinct
m*T-periodic solutions. These solutions stay near the corresponding solutions
of the unperturbed problem, and their projections on TV x D will maintain
the same rotational properties of .7*.

Here is our main result.

Theorem 4.1. Suppose that there exists I° € D and an invertible symmetric
N x N matriz B such that (4.4) holds. Then, for every o > 0 there exists
an open neighborhood U C D of I°, with the following property: given any
positive integer i, there exists € > 0 such that, if

IVeK &)l + [V K, &) = VA ()] < e
for every (t,€,m) € [0,T] x [0,27]Y x D (4.6)
then, for every I* € U being associated with an invariant torus of periodic
solutions for (4.1) with frequency vector w* = (w,...,wx) and minimal

period T satisfying (4.5) for suitable positive integers m* < m and n*,
system (4.2) has at least N + 1 geometrically distinct m*T-periodic solutions

(€ @' (X)), - s (€0 ()

with
[HORISORIA

‘ + an(t) —I*

<o (4.7)

for every t € [0,m*T| and k = 1,...,N + 1. Moreover, for each solution
(&*(t),n*(t)), its projection on TV x D makes exactly (w}/2m)m*T rotations
around the i-th component of the torus in a period m*T, for everyi =1,..., N.
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Proof. We can assume, without loss of generality, the function J£ to be
defined on the whole space RY. Indeed, after replacing the set D by a smaller
open set, containing I, where .#  is bounded, we can construct a continuously
differentiable extension of .# on RY. The solutions we are interested in will
nevertheless be contained in the smaller set, where J# has not been modified.
Similarly, for our purposes we can assume without loss of generality that the
Hamiltonian system (4.2) is defined on R x RV x RV,

Let us fix any o > 0 such that B[I°, ] C D. By assumption (4.4), there
are £ > 0 and p; €]0,0/4] such that

ln =1l =p1 = (VA ()~ VHU)B(n—1%) >4

By continuity, there is an open neighbourhood U of I°, contained in B[I°, p1],
such that, for every I € U,

In-Il=p — (V) =VH()Bn—I)) 220  (48)

For any arbitrary I* € U, with frequency vector w* = (w7,...,wy) =
V. (I*), let us define
K*(t,&,m) = K(t,§ +w™t,n) — (w0, n)
and consider the Hamiltonian system
¢ = TVK*(t,0) (4.9)

Claim. For any fized positive real numbers m and ¢, there exists € > 0 such
that, if (4.6) holds, then for every I* € U, every solution ((t) = (£(t),n(t))
of (4.9) with initial point satisfying [|[n(0) — I*|| < p1 will be such that

[€(t) = £(0) = t[V (1(0)) — w*][| + [In(t) = n(O)|| < &
for every t € [0,mT] (4.10)

Proof of the Claim. Arguing by contradiction, assume that there is a se-
quence (I3), € U, with w} = V.# (I), and a sequence (K ), of Hamiltonian
functions as above (in particular, they are T-periodic in ¢), such that, writing

KX(t,&,m) = Kx\(t,§ +w't,n) — (W), n)

one has that

* * * 1
IVeKX( & mll + [IVo KX(E € n) = VA () + will < +

for every (t,£,m) e R x RN x D
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and, correspondingly, a sequence ((1)y, with ¢* = (€}, 1), solving ¢ =
IV K3 (t,¢?), such that ||n*(0) — I5|| < p1, while (4.10) does not hold, i.e.,
for every A there is a t) € [0,7m7] for which

|t = &0) = ta [V (0 (0) — 5]

|+ [ e =) > e @)

Since the Hamiltonians K3 are 27-periodic in the variables &i,...,&{N, we
can assume that £*(0) € [0,27]". Hence, passing to a subsequence, ¢*(0)
converges to some point ¢ i e [0, 27T]N xB[I 0 2p1]. Moreover, for a subsequence,
I converges to some I*, and w} = V¢ (I}) converges to wf = V¢ (I¥).
Finally, for a subsequence, ty will converge to some ! € [0,7T]. By a lemma
of Kamke (cf. [Sel73]), for a further subsequence ((*); we have uniform
convergence on [0,m7] to the solution of

£ =V (n) —w
i=0

given by

On the other hand, passing to the limit in (4.11),

#) = £0) = #[97 0() = || + |nt)) = ()| = e > 0

which is a contradiction, since the left hand side is equal to zero. The Claim
is thus proved. O

We can now conclude the proof of Theorem 4.1. Let m be a fixed positive
integer, and choose ¢ such that

e { TY O'}
¢<min{ ———, —
B p1”~ 4

We now focus our attention on those I* € U/ whose associated invariant torus
is composed of periodic solutions for (4.1) with minimal period 7%, such
that there exist two positive integers m* and n* with m* < m and T =
m*T /n*. We observe that every m*T-periodic solution of (4.9) corresponds
to an m*T-periodic solution (£(t),n(t)) of (4.2), such that every &;(t) makes
exactly (w}/2m)m*T turns around the origin in the time m*7T. We will apply
Corollary 3.10 in the case (T1) (cf. also [FU16al) to system (4.9).
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Let D = B[I*, p1], and let ((t) = (£(t),n(t)) be a solution of (4.9), with
n(0) € 9D, i.e. ||n(0) — I*|| = p1. Then, by (4.8) and (4.10), we get

{€(m™T) = £(0), B(n(0) — )>
= {{(m™T) - £(0) — [ H (1(0)) = VA (I7)],B(n(0) = I)) +

+ (M T[VA (n(0 )) H(I7)],B(n(0) = I"))
T
> — ||BH£ | Bl p1 +2m*T¢ > m*T¢ > 0
We can therefore apply Corollary 3.10 in the case (T1), so to get N + 1
geometrically distinct m*T-periodic solutions of (4.9),

Mty = (€' @)n' ()5 - V) = (V) N (@)
such that n*(0) € D, for every k = 1,..., N + 1. Moreover, by (4.10), we
have that an(t) - I*H < ¢<0/2, for every t € [0,m*T]. On the other hand,
a continuity argument can be used, taking smaller values for ¢ and ¢, to infer
that [|€F(t) — &¥(0) =tV (I*)|| < 0/2, for every ¢ € [0,m*T]. So, (4.7)
holds, as well, and the proof is thus completed. ]

Notice that, taking 7 sufficiently large, it is possible to find an arbitrarily
large number of values I* € U for which the assumptions of Theorem 4.1 are
satisfied, thus assuring the survival of N + 1 subharmonic solutions from each
of the corresponding invariant tori. This scenario may be compared with
Birkhoff-Lewis-type results [BBV04; BL34; CZ83b], showing the existence
of a family of periodic solutions with large period, accumulating towards an
elliptic equilibrium. Such behaviour has been observed also in the framework
of Hamiltonian PDEs [BB05; BD10].

A simple case is given by the choice I* = I°, when I is associated with
an invariant torus 7° of periodic solutions for (4.1) with frequency vector w’
and minimal period 7°.

Corollary 4.2. Suppose that there exists I° € D and an invertible symmetric
N x N matriz B such that (4.4) holds, and that there exist two positive integers
m® and n® satisfying T° = m°T/n®. Then, for every o > 0 there exists € > 0
such that, if

IVeK (8, &, )l + IV K(8,6,m) = VA ()| < e
for every (t,€,n) € [0,T] x [0,27]Y x D

then system (4.2) has at least N + 1 geometrically distinct m°T-periodic
solutions

(@' (@), - s ()T ()

with the same rotational properties of the torus 79 and such that

£(0) ~ €40~ v (1) + ko) - ] < 0

for every t € [0,m°T] and k=1,...,N + 1.
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4.2 Twist conditions for weakly coupled period an-
nuli

In the previous section we have described the local phenomenon of the survival
of some periodic solutions of system (4.1) for the perturbed system (4.2); we
now turn our attention to finding some conditions at a larger scale which
guarantee the existence of multiple periodic solutions.

We still consider system (4.2) as a perturbation of system (4.1), but we
now look for periodic solutions (£(t),n(t)) starting with n(0) in some rectangle

D = oy, B1] X -+ X [an, BN]
contained in D; we denote the faces of this rectangle by
Fr=meD:n=a;} F ={neD:n =0}

Theorem 4.3. Suppose that there exist N couples of real numbers w; < w;r
such that, for everyi=1,..., N, either

ox . > w;_r for every n € .7-"1:r (4.12)
on; <w; foreveryne F;
or
ox <wj; cF
4= wzr for every n l+ (4.12b)
oni >w,"  for everyn € F;
Let w* = (w],...,wx) be the frequency vector associated to a torus T* of

periodic solutions of system (4.1), with minimal period T*. If
w* € Q= (w,w) X X (Wy,wh)

and there are two positive integers m* and n* such that (4.5) holds, then there
exists € > 0 such that every perturbed system (4.2) satisfying (4.6) has at
least N + 1 geometrically distinct m*T -periodic solutions

€@ @), o YD)
preserving the same rotational properties of T*.

Proof. By the Poincaré-Miranda theorem (cf. Theorem 2.1), there exists an
I € D such that w* = V.2 (I*). We consider the Hamiltonian system

{ = TVEK*(t,C) (4.13)

with K*(¢,&,n) = K(t,§ + w*t,n) — (w*, ).
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Let us pick any p > 0 such that
p <dist(D,RV\D) and  p<m*Tdist(w*,RY\ Q)

By the same argument used in the Claim within the proof of Theorem 4.1,
there is €; > 0 such that, if (4.6) holds with € € (0,¢1), then every solution
C(t) = (£(t),n(t)) of (4.13) with initial point 7(0) € D remains in RY x D,
for t € [0, m*T], and satisfies

[€(t) = £(0) — ¢ [V (1(0)) — w*][| + [[n(t) = n(0)]| < p
for every ¢t € [0,m*T]. Assume that 7(0) € dD; we analyse four different
cases.

If 7;(0) = a, for some 7 € {1,..., N}, and condition (4.12a) holds, then

&(M*T) — £(0) > m*T[wh —wf] —p >0

()

The same is true if 7;(0) = §; and (4.12b) holds.
If 7;(0) = «; and condition (4.12b) holds, then

§&(m'T) = &i(0) <m™ T w; —wi]+p <0

and the same is true if n;(0) = §; and (4.12a) holds.

Let us define the N x N diagonal matrix B with, for each i =1,..., N,
B;; = —1 when (4.12a) holds, and B;; = +1 when (4.12b) is true. The
estimates above ensure us that system (4.13) satisfies all the assumptions of
Corollary 3.10 in the case (T1), and the conclusion easily follows. O

Let us now describe a particular situation when Theorem 4.3 can be ap-
plied, generalizing the planar setting studied in [FSZ12]. We start considering
the autonomous Hamiltonian system

i = JVH(2) (4.14)

where H: R?Y — R is a continuously differentiable function of the special
form
H(z,y) = Hi(z1,31) + - + Hy(zn, yn)

with x = (z1,...,2x5) € RN and y = (y1,...,yn) € RY. Here we have used
the notation z = (z,y).

Hence, for every i = 1,..., N, the functions H;: R> — R are planar
Hamiltonians, and we can consider the corresponding Hamiltonian systems

0 0
L N .o . HS:
Ty 8% Hz(xuyz) Yi axin(xwyz) ( Sz)

for each of which we assume the following:
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e the planar system (HS;) has a periodic solution (Z;(t), 9;(t)), which is
non-constant and has minimal period T; > 0

e cach of such solutions has a corresponding planar open tubular neigh-
borhood &7 such that all the solutions of (HS;) with initial point in
are periodic, and their orbits are not contractible in <7

e there are two positive real numbers T}, TZ-JF7 with 7™ < T; < Ti+, such
that the periods of the solutions in 7 cover the interval [T}, 7]

Let us define the set
o = {(z,y) € RN : (z;,y;) € o, for everyi=1,..., N}
and consider the Hamiltonian system
2=JV,H(t, z) (4.15)

where H: R X o/ — R is continuous, T-periodic in its first variable, for some
T > 0, and has a continuous gradient with respect to its second variable

z=(x,y).

For every i = 1,..., N, let us pick T; € (T, ,T.") for which there exist
two positive integers m;, n; such that

m;T
Ti _ %
n;
Denoting by aq,...,ayx the minimal positive integers such that
mq mpy
ali — e .. = aNi
ni nyN
we set
T* :a1T1 = '--:CLNTN
and define the frequency vector
2
w* = F(al, e ,GN)

Moreover, we choose the two least positive integers m*, n* such that

T — m*T

n*

Theorem 4.4. In the above setting, there exists € > 0 such that every
perturbed system (4.15), satisfying

IV H(t,z) — VH(2)| < ¢ for every (t,z) € [0,T] x o/ (4.16)
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has at least N + 1 distinct m*T -periodic solutions
), . 2NN

whose orbits lie in o/. Moreover, for each solution z*(t), the number of
rotations of the i-th component 2¥(t) along the annulus <% in a period m*T
is exactly equal to n*a;, for everyi=1,..., N.

Proof. By standard arguments (cf. [FSZ12]), each of the systems (HS;) admits
a canonical transformation in action-angle coordinates (p;, I;). Without loss
of generality we can assume that ¢;(t) > 0, for every t. The product of all
such transformations is canonical, it reduces system (4.14) to the form (4.1),
and maps the set &7 onto TV x D, where D C RY is a product of open
intervals.

Foreachi=1,..., N, we define ; and j3; as the values of the I;-coordinate
associated with two solutions of (HS;) having periods 7, and T;', in such a
way that a; < §;, and we set

_ 27 L 2
I, I,
Theorem 4.3 then applies, and the proof is readily completed. ]

4.3 Weakly coupled pendulum-like systems

In this section, we consider a weakly coupled system of the type

JZ = A1VH1(Z1) —i—Rl(t, 21y - ,ZN)

Jin = ANVHN(ZN) =+ RN(t, 4 N ZN)

where J is the 2 x 2 standard symplectic matrix, namely

=0 )

and Aq,..., Ay are positive real parameters. For every i = 1,..., N, we
assume that H;: R? — R is continuously differentiable, and R;: RxR?YN — R
is continuous, T-periodic in ¢ and continuously differentiable in (z1,...,zx).

We assume that system (P) can be reduced to a Hamiltonian system
by a linear change of variables. More precisely, there exist N invertible
2 x 2 matrices My, ..., My, having positive determinant, such that the linear
operator £: RV — R2V | defined as

L: (Zl, .. .,ZN) — (Mlzl, R ,MNZN> (4.17)

transforms system (P) into a Hamiltonian system. With such an assumption,
we will say that (P) is a positive transformation of a Hamiltonian system.
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Let us introduce the following notation for a closed cone in R? determined
by two angles 91 < Jq:

O(1,92) = {(pcosV, psindd) : p >0, ¥ <Y < Iy}
We are now ready to state the main theorem of this section.

Theorem 4.5. Let (P) be a positive transformation of a Hamiltonian system.
For everyi=1,...,N, let the following assumptions hold:

(1) there is C; > 0 such that

IVH;(w)| < Ci(||w| + 1) for every w € R?

(ah) there are r; > 0 and m; > 0 such that

(VH;(w),w) > m; Hw||2 for every w € B[0,r;]

(e3) for every o > 0 there are R; > 0 and 9% < 9%, with ¥4 — 9% < 27, such
that

sup {WH(“W cw € 095, 93) \B(O,Ri)} <o —9]) (418)

2
]l

Then, for every fized positive integers vy, ... ,vn, there exist A >0 and & > 0
such that, if A; > A and

IRi(t,wi,...,wn)|| <e  for every t € [0,T) and wy, ..., wy € R?,
(4.19)
for everyi=1,...,N, then system (P) has at least N + 1 distinct T -periodic
solutions

) = (A (2),.... 2 (1)

such that, for every k = 1,...,N 4+ 1, each planar component zf(t), with
1=1,..., N, makes exactly v; clockwise rotations around the origin in the
time interval [0,T).

Some comments on the hypotheses of Theorem 4.5 are in order. Assump-
tion (<) is needed to ensure the global existence of the solutions to the
Cauchy problems associated with (P). Concerning (%), it will guarantee that
the small amplitude planar components of the solutions do rotate around the
origin, clockwise, with a least positive angular speed. Our hypothesis (%),
on the contrary, will ensure a small rotation number for large amplitude com-
ponents. It could be compared with assumption (H. ) in [Bosll, Theorem
4.1].
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We now start the proof of Theorem 4.5. For a solution z(t) of system (P)
with i-th component z;(t) = (z;(t),y:(t)) € R?\ {0}, for every ¢ € [0,T], we
denote by rot(z;(t); [0,T]) the standard clockwise winding number of the path
t — z;(t) around the origin, namely

T
vot(z(£);[0,T]) = o / Wdt
0 1

Our first lemma concerns solutions z(¢) whose i-th component z;(t) is small.
We assume without loss of generality that H;(0) = 0, and consider the level
set

I = {weR?: Hy(w) =h}

By (), if h > 0 is sufficiently small, then T'? is a strictly star-shaped Jordan
curve around the origin. We will denote by Dlh the bounded, closed and
connected region of R? with 8Dzh = th-

Lemma 4.6. For any i = 1,...,N and every positive integer v;, if ()
and (%) hold, there exist three positive constants A;, & and h; such that, if
A; > Ai, h € (O,hi] and

|Ri(t,wi,...,wN)| <& for everyt € [0,T] and wy,...,wy € R? (4.20)

then any solution z(t) to (P) with z;(0) € T satisfies
rot(zi(t); [0,T]) > v
Proof. Let i € {1,...,N} and v; be fixed. We can choose h > 0 and
7 € (0,7;), where r; is as in assumption (@%), in such a way that
B(0,7) ¢ D! ¢ D ¢ D < B(0,r;) (4.21)
We now claim that, if (4.20) holds with a suitable choice of &;, then, for every
solution z(t) of (P), with z;(0) € I'?" one has
h < Hi(zi(t)) < 3h, for every t € [0,T]

Indeed, set

_h

- 20T

and assume by contradiction that z;(0) € T2" and there exists ¢; € [0, 7] such
that h < H;(zi(t)) < 3h for every t € [0,t1), and either H;(z;(t1)) = h, or
Hi(Zi(tl)) = 3h. In view of (4.21),

d
dt

C = max{||VH;(w)|| : w € B[0,r;]} &

HZ(ZZ(t))‘ = ’<JVHZ(ZZ(t)),AlVHZ(ZZ(t)) + Rz‘(t, ARRREE) ZN))’

h
= |<JVHZ(ZZ(t)),Rl(t, AT .,ZN)>| < (Cg; = ﬁ
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for every ¢ € [0,¢1], so that

h
[Hi(zi(t)) — Hi(2:(0))] < 5t < h
a contradiction.
Consequently, if z;(0) € T?", we have that
P <z <7 for every ¢t € [0, T

so that the rotation number of z;(¢) around the origin is well defined. Writing
z;(t) in polar coordinates, namely

zi(t) = (pi(t) cos V;(t), pi(t) sin¥;(t))
using (%) and (4.20) we thus have

Z (101

AN H: (2 . o . =

_ < zv z(zz(t)) + Rz(t7 217 7ZN)7Zz(t)> > Azmz _ ij

Iz @) r

Choosing finally
A — 2nry; + ;T
e mifT

we easily conclude. O

Now we need a control on the rotation number of the large planar compo-
nents of the solutions.

Lemma 4.7. For anyi=1,...,N, let A; and &; be as in Lemma 4.6, and
assume that A; > A; and (4.20) holds. Then, there exists R; > 0 such that
any solution z(t) of (P) with ||2;(0)|| > R; satisfies

rot(z(t);[0,7]) < 1

Proof. Fix o = 1/(24;T) and let R; > 0 and 9% < 9%, with 94 — 9% < 27, be
as in (73). Choose R; > R; such that

~ 2&; T

R
In view of assumption (), there is R; > R; such that, if |lz:(0)]| > R;,
then ||z;(t)|| > Ry, for every t € [0, T]; in particular, the rotation number of

2i(t) is well defined. Let us assume, by contradiction, that |2;(0)|] > R; and
rot(z;(t); [0,7]) > 1; then, writing

zi(t) = (pi(t) cos Vi(t), pi(t) sin U4(t))



B 4.3. Weakly coupled pendulum-like systems 79

as long as ¥;(t) € OV, 0), since p;i(t) > R; > Ry, we can use (4.18)
and (4.20) to obtain

—19/-(?5) _ <AZVHZ(ZZ(t)) + Ri(t, Zlyeeny ZN), Zi(t»
2:(t)]1?
1 . . €i 19@2 — 1911
< A. 9t —_—

Consequently, the time needed to clockwise cross the sector © (9%, 9%) is
greater than T, a contradiction. O

Proof of Theorem 4.5. For any i € {1,...,N}, let A; > 0 and & > 0 be as
in Lemma 4.6, and set

A=max{A;:i=1,...,N} e=min{g:i=1,...,N}

Take A; > A and assume that (4.19) holds. Then, take R; as in Lemma 4.7,
for every i = 1,..., N, and consider the annulus <% = B(0, R;) \Df’ Recall
that, taking h; > 0 sufficiently small, the inner boundary of <7 is star-shaped.
Then, by Lemmas 4.6 and 4.7, for every solution z(¢) of (P), if z;(0) belongs to
the inner boundary of 7, then z;(t) makes more than v; clockwise rotations

around the origin in the time 7', while, if ||z;(0)|| = R;, it makes less than
one clockwise turn in the same time.

We now use the fact that (P) is a positive transformation of a Hamiltonian
system, and consider the linear transformation £ defined in (4.17). Being all
matrices Ml; invertible with positive determinant, the set

o = L(eh X - X )

is thus of the type 42’{; X+ X JZ’{;/V, where each 42’{: is a planar annulus with star-
shaped boundaries with respect to the origin. Since the change of variables
preserves the above described rotational properties of the solutions, we can
apply Corollary 3.10 in the case (T1) (cf. also [FU16a]) to the Hamiltonian
system obtained from (P) by the change of variables given by £. We thus
obtain at least N + 1 distinct T-periodic solutions

gk(t) = (2]1€(t)7 ) ZZkV(t))

such that, forevery k = 1,..., N+1, each component éf(t), withe=1,..., N,
makes exactly v; clockwise rotations around the origin in the time interval
[0,T[. Setting
k ~1zk 1k
2N(t) = (M 21 (1), ..., My 2% (1))

we obtain the solutions of (P) we are looking for, and the proof is thus
completed. O
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Remark 4.8. Theorem 4.5 exploits a gap between the rotation numbers of
the solutions at zero and at infinity. With reference to the assumption at
infinity, another possibility could be to replace (<7) with the requirement
that, for some i € {1,..., N}, the system Jz; = VH;(z;) has a homoclinic
orbit surrounding the origin (in the spirit of [FZ97, Theorem 3.3]). Indeed, by
continuity, small perturbations of trajectories next to the homoclinic would
have small rotation number, since the homoclinic spends an infinite time to
rotate around the origin. In this setting, assuming moreover (%), it would
then be possible to construct the gap which allows to apply Corollary 3.10 in
the case (T1) taking a level curve of H; sufficiently near the homoclinic orbit
as outer boundary of the required annulus in the i-th planar component. The
same line of thought can be also adapted when the homoclinic is replaced
by heteroclinics. One could also combine assumptions at infinity like (.2%)
for some indices i1,...,i € {1,..., N} and existence of homoclinics for the
other indices i € {1,..., N} \ {i1,...,4,}. We omit the details for briefness.

As a particular case, we can deal with a system of scalar second order
equations like

N ow
1 —i—A%fl(ml) =50 (t,z1,...,2N)
1

(4.22)

. ow
mN—i—A%VfN(l'N) = 78 (t,xl,...,l'N)
TN

where the continuous function W: R x RY — R is T-periodic in t, and
continuously differentiable in (x1, ...,z x). Indeed, we can write the equivalent
System

. 1 oW
—yz'IAifi(l“i)—E%(Kﬂfl,-w%) P N

Ty = Ai yi
which is in the form (P), with z; = (z;,v;), taking

1
Hi(xi,y) = 5%2 + Fi(x;)

where F; is a primitive of f;, and

1 <gz\;(t,:z:1, e ,a:n))

Ri(t, 1,91, -, TN, YN) = ——

Notice that (4.22) is a positive transformation of a Hamiltonian system, with
the linear function £ in (4.17) given by

10 ,
Ml—(o AZ) Z—l,...,N

As a consequence, we have the following statement, where, for simplicity,
we only consider the case vy =--- =vy = 1.
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Corollary 4.9. Assume that the continuous functions f;: R — R satisfy

lim inf fils) >0 lim fils)

s—0 S s—+oo 8§

=0

Moreover, for everyi=1,...,N, let K; > 0 be such that

0
a—w(t,xl, coyxn)| < K; for everyt € [0,T) and x1,...,xny € R (4.23)
Zi
Then, there exists A > 0 such that, if A; > A for every i = 1,...,N,
system (4.22) has at least N + 1 distinct periodic solutions

" (t) = (21(t),.... 2k (1)

with minimal period T'. Moreover, for every k =1,..., N+1, each component

ok (t), with i = 1,..., N, has exactly two simple zeros in the interval [0,T).

Proof. First, we notice that (7)) is fulfilled, in view of the growth assumption
on the nonlinearities. Let us now check (2%). We know that there are a; > 0
and (3; > 0 such that

fi(s)

0<|s|<Bi = .

> oy

Then7 if ||(x27yl)|| < Biv

(VHi(zi, yi), (@i, yi))  @ifi(w) +y2

= > min{w;, 1} >0
(i, yi)|I* v} + y?

as desired.
We now verify (&4). Fix o € (0,7), and take ¥} = 0, ¥4 = 0/2. Writing
2 = (4, yi) = (pi cos ¥y, p; sinv;)
we have that, if z; € ©(0,0/2), then

(VH;(2),2z)  (picosV;)fi(picos¥;) + (p; sindd;)?

el r
ey . 2 o '
< sin?g, 1 | filPicos V)| o® | filpicosdi)

pi cos UY; pi cos U;

4
Taking R; > 0 large enough, if z; € ©(0,0/2) \ B(0, R;), then

<VH1(ZZ), Zz> 2 2

<— 4 — =0 -9
Bl 4 4

The proof is thus completed, noticing that it suffices to choose A; large
enough in order to make R;(¢, z1,...,2y) as small as desired. O
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As an example, Corollary 4.9 directly applies to the following system of
N coupled pendulums,

ow

1+ A?sinx; = —(t,z1, ...,
1 1 1 1 (t,z1 N)
. . ow
N + A%\, siney = —(t,z1,...,2N)
oz N
where %(t,xl, ...,xy) is continuous and bounded, for i = 1,..., N, and
the constants A1,..., Ay are large enough. We are thus able to recover the

results obtained in [FZ97], by the use of the Poincaré-Birkhoff theorem, for a
single equation modelling a forced pendulum having a very small length.
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Directional friction in
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Chapter 5

Crawling motility and
directional friction

5.1 Motivation

The study of locomotion of biological organisms and bio-mimetic engineered
replicas is receiving considerable and increasing attention in the recent lit-
erature [Ale03; Arr+12b; AD14; CBHO05; DT12; DeS-+13; Dre+05; FT04;
Lai+10; Tan+12; VTT15|. In several cases, such as motility at the micron
scale accomplished by unicellular organisms, or such as the ability to navi-
gate on rough terrains exhibited by insects, worms, snakes, etc., Nature has
elaborated strategies that surpass those achievable through current engineer-
ing design. The combination of quantitative observations, theoretical and
computational modelling, design and optimization of bio-inspired artefacts
is however leading to fast progress both in the understanding of the options
Nature has selected and optimized through evolution, and on the possibility
of replicating them (or even improving upon them) in man-made devices.
For example, the swimming strategies of unicellular organisms can be
understood, starting from videos of their motion captured with a microscope
and processed with machine-learning techniques [Arr+12b|, by using tools
from geometric control theory [ADLO08; Alo+13a]. In fact, self-propulsion at
low Reynolds numbers [Pur77| arises from non-reciprocal looping in the space
of shape parameters [ADLO08; Arr-+12b], it can be replicated by using actuation
strategies that can induce non-reciprocal shape changes [Dre+05; Alo+13b],
and optimized by solving optimal control problems |[ADLO08; Alo+13al].
Crawling motility on solid substrates of some model organisms (snails,
earthworms, etc.) can be understood using similar techniques. In the case
of crawlers exploiting dry friction, or lubricating fluid layers with complex
rheology (such as the mucus secreted by snails [Den80; CBHO5|), resistance
forces are nonlinear functions of the sliding velocity and locomotion is typically
accomplished through stick-and-slip. Even when resistance forces are linear
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in the sliding velocity, if they also depend on the size of the contact region,
then locomotion is still possible, provided that more elaborate strategies are
employed [DT12; DeS+13; NTD14]. These are very similar to those that are
effective in low Reynolds number swimming, and show that the transition
between crawling and swimming motility is much more blurred than what
was previously thought.

Such results may provide a useful theoretical framework on the way of a
more detailed understanding of crawling motility of metastatic tumor cells,
neuronal growth cones etc., see, e.g., [FT04; Car+11]. In addition, they
may provide valuable new concepts in applications, by helping the practical
design of a new generation of soft bio-inspired robots ranging from crawlers
able to advance on rough terrains, to microscopic devices that may navigate
inside the human body for diagnostic or therapeutic purposes [AD14; Dre+05;
GF09; Zha+09].

In this second part of the thesis, we carry on this line of investigation
by focusing on the role and effect of a directionality in the friction. By this,
we mean a situation in which the resistance force is not odd in the velocity:
this may arise, for instance, when the substrate is hairy or it is shaped as
a ratchet, or else when the interaction with the substrate is mediated by
oblique flexible filaments or bristles (so that, if one reverses the sign of the
velocity and moves against the grain, then the resistance force does not only
change in sign, but may also change in magnitude). Concrete examples
of such biological or bio-inspired directional surfaces are reviewed, e.g., in
[HSD12]. In Nature, such effect is accomplished for instance by the sete of
the earthworm; several mechanism are also exploited by crawling robots to
obtain this kind of asymmetry, cf. [ND14; Vik+15].

Regarding the shape-change strategies adopted by the crawler, our focus
will be on the minimal mechanisms needed to make (efficient) self-propulsion
possible. Thus our starting point will be reciprocal shape changes (i.e., a very
restrictive class of periodic histories of shape change, obtained by tracing
backward and forward an open curve in shape space); these can be easily
accomplished by natural or artificial actuation: the breathing motion of a
balloon (or of a bio-membrane) inflated and deflated by cyclic variations
of (osmotic) pressure, or the motion of a specimen of a stimulus-responsive
material (e.g., a shape-memory alloy) under cyclic actuation (e.g., temperature
change) are all relevant examples. The conditions under which such oscillatory
motions can be rectified to produce non zero net displacements has been the
object of several studies, see, e.g., [MDC04; DT12; GHM13; CD15|. However,
as we will show, in general they do not produce a complete motility (e.g.,
moving both forward and backward), so the next step will be to consider
crawlers made by two of such segment. Such modular structure, with each
single element capable of contractions and elongations, is frequent in crawlers
[Men-+06; Man+14]. In addition, in this Chapter (cf. [GND14]) we study
the motion produced by the propagation of travelling waves of contraction or
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fl,t)

v(z,t)

—7
—H4

Figure 5.1: The general force-velocity law (5.1) for friction used in this chapter.
extension, which is another typical strategy for self-propulsion in biology.

5.2 Crawling with prescribed shape: formulation

Let us denote with f(z,t) the friction force per unit (current) length exerted
by the surface on the crawler. As anticipated, we will focus on directional
friction, meaning that the friction exerted on the crawler at one point depends
(only) on the velocity at that point according to a force-velocity law that is
not odd in the velocity. A relevant example is the following one-dimensional
force-velocity law of Bingham-type

T- — p—v(x,t) if v(z,t) <0
flxe,t) =< 7€ -1, 7] if v(z,t) =0 (5.1)
—74 — pyv(z,t) ifo(z,t) >0

where 7_, 7y, p_, pt are all non-negative material parameters!, see Fig. 5.1.

There are two interesting special cases of (5.1), obtained by setting either
by = p— =0, or 74 =7 = 0. We refer to them as the dry friction and
the Newtonian friction case, respectively, because they are reminiscent of
the tangential forces arising either from dry friction, or from the drag due
to a Newtonian viscous fluid, see Fig. 5.2. In the case of dry friction, the
force depends only on the sign of the velocity (uy = p— = 0), whereas in
the Newtonian case there are no yield forces (74 = 7— = 0), so that friction
depends linearly on speed through a coefficient determined by the direction
of motion.

We study a straight, one-dimensional crawler moving along a straight
line. Let the coordinate X describe the crawler’s body in the reference
configuration. The left end of the body is denoted with X; = 0, while the

1We exclude the trivial case when all the parameters vanish (py = pu— =7+ =7 = 0)
and therefore no frictional interaction with the substrate occurs.
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fp(z,t) fn(z,t)
T_ —
v(x,t) v(z,t)
T —H
(a) Dry friction (b) Newtonian friction

Figure 5.2: Two special cases of the force-velocity law (5.1) of Fig. 5.1.

right end with Xs = L, where L is the reference length. The motion of the
crawler is described by the function

2(X,t) = 21(t) + s(X, t) (5.2)

where z1(t) = 2(X1,t) is the current position of the left end of the crawler
(similarly, we define x2(t) = x(Xa2,t) as the current position of the right end),
while the arc-length s(X,¢), which is the current distance of point X from
the left end, describes its shape in the deformed configuration. By definition
we have s(0,t) = 0, while, denoting with a prime the derivative with respect
to X, we guarantee that the deformation described by (5.2) is one-to-one for
every t by assuming that

§'(X,t) >0 (5.3)

The length [(t) of the crawler at time ¢ is given by

L
I(t) = /s’(X,t) dXxX
0

and the Eulerian velocity v(x,t) at position x of the crawler and time ¢ reads
v(z,t) = (X, t) = 1(t) + $(X4, t) (5.4)

where X, = s~ (z — z1(t),1).

We assume that the crawler is able to control its shape, namely, to freely
prescribe s(X,t) subject only to the constraint (5.3). Moreover, we neglect
inertia and make use of the force balance

I(t)

F(t) = /f(afl(t) +5,t)ds =0 (5.5)
0

to obtain the velocity #1(t) at the left hand side of the crawler.
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5.3 Crawling with two shape parameters

In this section, we restrict our study to the case of a model crawler composed
by two segments, namely, X1 X* and X*Xs, each of which is allowed to
deform only affinely. Therefore, the shape of the crawler can be described
by just two parameters, such as the current lengths of the two segments
I1(t) = x*(t) — x1(¢t) and l2(t) = z2(t) — *(t), where xz*(t) = z(X*,t). We
shall consider in the following two special cases of these systems, particularly
relevant to crawling on directional surfaces.

Crawling with only one shape parameter: breathers

We start by considering a simpler crawler made of a single segment that can
only deform affinely, so that s(X,t) can be expressed as a function of the
current length [(¢) in the following way

(X, 1) = %Z(t) (5.6)

This model can also be obtained as a special case of the two-segment crawler
subject to the additional constraint

I (t)

1(t

o~
~—

a(t
2(t)

By making use of equations (5.4) and (5.6), the velocity is obtained as

(5.7)

o~
o~

~—

v(@1(t) + s,t) = 1 (t) + —I(t) (5.8)

a linear function of the arc-length s € [0,[(¢)] vanishing at one point at most
for [(t) # 0. This implies that the force balance can be satisfied only if the
velocity (and hence the force) assumes different signs along the crawler. More
precisely, we argue from (5.8) that:

e if [(t) > 0 (elongation), then #; < 0 and iy > 0;
e if [(t) < 0 (contraction), then #; > 0 and @3 < 0.

We conclude that the two ends of the crawler always move in opposite
directions, and there exists 5(t) € (0,I(t)) such that v(5(¢),t) = 0. By
equation (5.8) we get

1 (B)I)

I(t)
To justify the interest of one-segment crawlers (breathers) on directional

surfaces, let us briefly consider the case of interactions which are odd function
of the velocity, i.e., interactions such that f(—v) = —f(v). By using the

5(t) = (5.9)
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force balance (5.5) and equation (5.8), it can be easily shown that §(t) =
1(t)/2. From equation (5.9) we get @1 (t) = —I(t)/2, and thereby breathing
deformation modes always lead to zero net displacement, when performed on
homogeneous surfaces which are not directional.

Consider now the directional law of equation (5.1): the frictional force
acting at one point of the crawler depends on whether its distance from z; is
smaller or larger than s. For convenience, we establish that the parameters
(71, 1) describe the forces acting on the left side of 1 + 5, and (72, p2) those
acting on the right side. Explicitly, we set

(r—_,u_)  ifl>0 (=7, puy) if1>0
(r1,11) = e and (72, p2) = i
(=74, py) ifl <0 (r—,u—) ifl<0

(5.10)

so that the total force acting on the crawler reads

r0= [[-m(ans 2 ass [fo-m(ans2)] -

.5l o }
= (u2 —u1)§<:r1 + ;) —u2l<m1 + 2) — (e —11)8§+ 7l (5.11)

Replacing expression (5.9) for 5 and dividing by [, the force balance
F(t) = 0 leads to the following equation for

(11— p2) .o <T2 - >
—_—xy + 0 —
ol ! I H2

I
i1 — ’% Y =0 (5.12)

In the special case of 3 = pa = p, equation (5.12) becomes linear and its
solution reads )
. T + T2 l
=1+ —""—| 2 (5.13)
To—T1—pul) 2
whereas, for 1 # p2, equation (5.12) is quadratic with discriminant
(2 —71)?

A:M1H2+T+ .(Mng —/1,17'2) (514)

~.| DN

The first two terms of the RHS of (5.14) are both nonnegative and, having
excluded the null friction case, at least one of them is positive. The two
parameters 71 and 7o, when non zero, have respectively the same and the
opposite sign of [ , so also the third term is nonnegative and equation (5.12)
has two distinct real solutions

Mz—l—Tli.TQ:t\/Z' '
it = l [=C*i
H1 — H2
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f(z) f(z)
T 1 T2 +
0 + + + X 0 + + + X
z1 1+ S z2 1 r1+ 5 2
To + T1 +
—7H2 M1

B
7

+ + + + X
x;/ler 5 x2 z1 z1 Nz

(a) Case >0 (b) Casel <0

Figure 5.3: The velocity v(z) and the force per unit current length f(x) along a
breather in the extensile and contractive case.

In view of (5.9), however, any admissible solution must satisfy

.+ _
7 5
CcF="L = _Z¢(-1,0)
l l
and we claim that, for any choice of the parameters, this condition is satisfied

only by the solution #;. We start by observing that the following estimate
holds for A

2 2
<min{,u1,,u2} + 4 7 T2> <A< (max{,ul,m} + 1 i TZ) (5.15)

If 41 < pe, then by (5.15) we see that both C~ and C'T are negative, but
C~ > —1 while C* < —1. On the other hand, if p; > uo, applying again
(5.15), we have C~ € (—1,0) while C* > 0.

We can assume, without loss of generality, that

e > pyy if e # gy or that T_>T, it pe = py (5.16)

Indeed, this amount to fixing the orientation of the x axis so that the positive
direction is the one of least frictional resistance, in the sense specfied by
(5.16). The expressions for the velocity 21 (t) as a function of the rate of shape
change are presented in Table 5.1.
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Table 5.1: Expressions of () for the one-segment crawler in the extensile and
contractive case.

P =g = b, T— 2Ty B> pt
. -+ _+74)?
. S M u++%—\/u7u++(f ) + - )
ity>o0: [———™ 5| M
7'7+T++/A’l‘ 2 H— = Bt
. _+ )2
, S M He + *\/u—u++(7 ) + T+ pe)
ity<o: == 44| M
7'7-‘1-7'++u’l‘ 2 K== P+

It is interesting to notice that the velocity #1(t) is invariant if we multiply
the force-velocity law (5.1) by a positive factor. Furthermore, #1(¢) does not
depend explicitly on the length [(¢), but just on its time derivative I(t).

It is also interesting to remark that, for the special cases of dry friction
(41— = p4+ = 0) and Newtonian friction (7— = 74 = 0), #1(¢) becomes linear
in |l |. Hence, in these situations, the displacement produced by any history
of shape changes depends on the path traced in the configuration space, but
not on the speed at which it is executed. In particular, the displacement
produced in a cycle composed of a monotone elongation (resp. contraction)
followed by a monotone return to the initial length is a linear function of
the length increase (resp. decrease), through a coefficient determined by the
force-velocity laws. We now examine these cases in more detail.

Dry friction To analyze the case of dry friction, we introduce the dimen-
sionless parameter o« = 7_/(7— + 74) € (0,1), such that the orientation
assumption 7— > 74 implies a > 1/2 and the formula for the velocity 1 (t)
reads

—(1—a)i(t) <0 ifi(t)>0 (elongation)
Bt =4 | (5.17)
—ad(t) >0 if [(t) < 0 (contraction)

The net displacement of the single-segment crawler, arising from a T-
periodic shape change, can be computed by integration of equation (5.17)
upon definition of I(t) for ¢ € [0, T]. Let us consider the following example.
The length of the crawler first increases (resp. decreases) monotonically from
L to L + 6, and then decreases (resp. increases) from L + ¢ to L, with §
a positive (resp. negative) quantity. An example of such T-periodic shape
function is given by () = L + dsin?(nt/T), and the net advancement after
one stretching cycle simply follows as

Apzi = (2a — 1) 5] (5.18)
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This is proportional to the peak extension (or contraction) § experienced by
the crawler, through the non-negative coeflicient 2 — 1 < 1. This coefficient
approaches 1 when « tends to 1, and this occurs in the case of infinite
contrast between the frictional resistances in the easy and hard directions
(7—/74 — o0). In this idealised case there is no back-sliding, and all the
available extension/contraction of the crawler’s body is converted into “useful”
displacement, as it is commonly assumed in the classical literature (see e.g.,
[Ale03; Qui99]). We finally remark that in the limiting case of 7_ = 7 the
net advancement Apx; vanishes as o = 1/2.

Newtonian friction For the analysis of the Newtonian case, we introduce
the dimensionless parameter 8 = \/pu—/puy € (0,400) (note that we restrict
to 8 > 1 in view of the orientation assumption on the z axis, p— > p4).
Setting 7— = 74 = 0 in Table 5.1 we obtain

_ﬂ—li—ﬁll<t) <0 if l(t) > (0 (elongation)
_ﬁf—ll(t) >0 if l(t) < 0 (contraction)

We now consider the time-periodic shape change previously assumed for
the case of dry friction, that is, a monotone expansion-contraction between
lengths L and L + §. The net displacement after one period reads

1 B -1

AN:E1—< ,3+1+,3+1>|6|_,3+1|6| (5.20)
This is again proportional to the maximum change in length § experienced
by the crawler through the positive coefficient (8 —1)/(8+ 1) € (0,1). The
limiting case of infinite contrast between the frictional resistances in the easy
and hard directions (7_ /74 — oo, and hence 8 — +00) leads to Ayx; — 4.
Furthermore, in the limiting case of y— = p4+ the net advancement Anx;
vanishes, since 8 = 1.

Crawling with only one shape parameter: constant length
crawlers

We turn now our attention to another special case of two-segment crawler,
arising from the additional constraint of constant total length, i.e.,
Lt)+1h(t) =L
In this context, the shape of the crawler can be described by only one
parameter, say, [1(t), and the arc-length s(X,¢) reads as
X

li(t) if X € [0, X%
s(X:8) = L— k()

I (¢
W+ 7T

(X —X*) if X € (X*, L]
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Moreover, we have that @y (t) = @1(t) + I1(t) + l2(t) = 41() and the Eulerian
velocity at point z = x1(t) + s and time ¢ reads

Bt + () ifs e [0,0(t)]
(e1(t) + 5,8) = ) (5.21)
() + LL_;jt)l'l(t) if s € (Iu(t), L]

We notice from equation (5.21) that the velocity equals zero in two points
at most. As already observed for the one-segment crawler, the force balance
can be satisfied only if the velocity assumes both signs along the crawler, so
that there must exist two points 51(t) € (0,11(t)) and 59(t) € (I1(¢), L) where
the velocity vanishes. From equation (5.21) we conclude that

51(t) = —M and 5(t) = L+ @1 (t)(L — (1))

hi(t) L(t)

and we further observe that the following relation holds between §;(t) and
S2(t)

Ll_l(ltl)(t)sl(t) (5.22)

For a two-segment, constant length crawler, the velocity assumes one sign
in the interval (51(t),52(t)), and the other one outside that interval. We
adapt the definition of (71, 1) and (72, p2) given above by replacing [ with Iy
in (5.10). Thus (72, p2) refer to the interval (51(t), 52(t)), while (7, p1) are
the friction parameters in [0, 51(¢)) and (S2(t), L]. With these positions, the
total force acting on the crawler is

52(t) =L —

51 . Iy .
l l
F(t):/|:7'1—,u1<.i’1+sll>:| d8+/|:7'2—u2<i’1+8ll>:| ds +
1 1
A o

S1

 [Tmm(or s Z2Yas [T (o 2220 o

A 52

and, using equation (5.22), the force balance F(t) = 0 can be written as

51 . A .
L—1 l l
1+ ! / T1— M1 $'1+571 d8+/ To— 42 x'l—i-sfl ds, =0
l1 l1 l1
rd J

h (5.23)

Comparing the last equation with (5.11), we notice that the force balance
on the whole crawler is satisfied if and only if it is independently satisfied on
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f(x)

A kA

1 T1 + 51 T1 + 32 2

Figure 5.4: Graphical interpretation of equation (5.23). The two integrals in (5.23)
correspond respectively to A and B, while k = (L —I;)/l;. The force
balance on the whole crawler is (1 + k)(A + B) = 0. It can be satisfied
if and only if A + B = 0, that is exactly the force balance on the first
segment.

each of the two segments, assuming no exchange of force between them (see
also Fig. 5.4). This means that a two-segment crawler with constant length
is equivalent to two adjacent but independent one-segment crawlers that are
“well coordinated” (as a consequence of the constant total length constraint):
they move remaining adjacent, neither pushing nor pulling each other.

It follows that the motion of z; can be obtained by applying the results
for single-segment crawlers to the first segment alone. In particular, the
expressions for #1(¢) of Table 5.1 and equations (5.17) and (5.19) hold for
the two-segment crawler with constant length if we replace [(t) with Iy (t).
Equations (5.18) and (5.20) also hold if we consider a periodic motion where
the first segment experiences a monotone elongation-contraction between
lengths Ly and Ly + 4, being L; the reference length of the first segment.

A composite stride for a two-segment crawler

We notice that the two examples of periodic shape change considered so far,
each of which exploits just one shape parameter, both produce a positive
displacement, namely, a net displacement in the direction of least frictional
resistance. We would like to investigate whether, by suitably composing these
“elementary” shape changes, we can obtain a net displacement in the direction
of maximal frictional resistance, i.e., a negative displacement in view of our
orientation assumption (5.16). We will determine below the conditions under
which this ‘“riding against the largest friction” is indeed possible.

Given any §, A > 0 and h > 1, we define the following points in the (I, [3)



96 % Chapter 5. Crawling motility and directional friction

la
R(\ +8) ¢
hA D
B
A+4
A
A
A A+ hA h(X + ) I

Figure 5.5: An example of periodic shape change for a two-parameters crawler.

shape parameters space

A=(A+3N) B=(\A+96)
C = (hA, h(X +6)) D = (h(A+6),h))

We shall now explore the case of shape changes arising from the closed
polygonal chain with vertices A, B, C' and D, see Fig. 5.5.

Dry Friction In order to compute the net displacement arising from the
closed loop depicted in Fig. 5.5, it is useful to first notice that:

e the two segments A — B and C' — D keep the total length Iy + o of the
crawler constant, so that, in view of equation (5.23), their contributions
to the displacement can be evaluated by means of equation (5.17)
applied to the first segment only;

e the two stride paths B — C and D — A satisfy condition (5.7), so that
their “breathing” contributions to the displacement can be evaluated by
means of equation (5.17) applied to the crawler as a whole.
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Specifically, the four contributions to the displacement read
AR = a6
ABC = _(1—a)(h—1)(2X+9)
AP = —(1—a)hs
ABA = —a(1— h)(2X +0)
and thereby the net displacement Apxq produced after one cycle is
Apzry =a[dA(h—1)+6(Bh—1)] —2X(h —1) = §(2h — 1)

A negative net displacement, Apx; < 0, can therefore be obtained only if
1 1

—l< DINE <3
1) h—1

where the upper bound can be approached when h — 400 and A/d — 0. It

turns out that, in this limit case, a negative displacement is possible only if

a<2/3,ie,onlyif 7_ /7 <2.

2

Newtonian friction To explore the case of Newtonian friction, we proceed
just as in the case of dry friction, but using equation (5.19) instead. The four
contributions to the displacement read now

AP = Bila

ASC = —m(h —1)(2A +9)
AP = —ﬁilhé

ARA = _5ﬁ+1(1 — h)(2A +0)

and thereby the net displacement A yz1 produced after one cycle is

Ay = Bﬁl 2A(h — 1) + 6h] — B1+1 2A(h — 1) + 5(2h — 1)]

We thus obtain a negative net displacement, Anx1 < 0, only if

1
,3—1<ﬁ<1

5 Thod
where the upper bound can be approached for h — +o0o0 and A/d — 0. Thus,
in this limit case, a negative displacement is possible only if 8 < 2, i.e., only
if the ratio of u_/uy < 4.
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5.4 Crawling with square waves

The purpose of this section is to extend our analyses by exploring the case of
shape changes arising from extension (or contraction) travelling waves. In
particular, we consider a square stretching wave of width § < L and amplitude
g, travelling rightwards along the crawler with speed ¢ > 0. The shape s(X, )
is assumed to be (L + ¢)/c periodic in the time variable ¢, and defined as
follows

X(1+¢) forXE[O,ct)} it e0,6/c)
X +ect for X € [ct, L]
X for X € [0,ct —9)
s(X;t)=¢ X +e(X+d—ct) for X €lct—0,ct)p, ifte[d/c,L/c)
X+eé for X € [ct, L]
X for X € [0,ct —9) .
X+e(X+d—ct) for X €[ct—0, L]} ift € [Lfe,(L+0)/e)
(5.24)
so that the current length of the crawler reads
L+cct ift €10,9/c),
l(t) =< L+ed ifteld/c,L/c)

L+eL+d—ct) ifte[L/c,(L+9)/c)

Therefore, by making use of equations (5.4) and (5.24), we obtain the Eulerian
velocity at point x = x1(t) + s as

&1(t) for s € [0, (1 +¢€)ct) )
#1(t)+ec forse[(1+¢)ct,L +ect] ift €[0,0/c)
x1(t) for s € [0,ct — )
v(x,t) =¢ @1(t) —ec for s € [ct —d,ct+¢€0) ifteld/c,L/c)
&1 (t) for se€ [ct+¢ed,L+ed]
Z1(t) for s € [0,ct — 0) .
#1(t) —ec fors€fct—6,L+e(L+d—ct )]} iftelL/e, (L+9)/e)

(5.25)
We focus now our attention on the case of extension waves, such that
¢ > 0. The case of contraction waves, with —1 < ¢ < 0, can be treated
similarly. From equation (5.25) we observe that, at any time ¢, the velocity
along the crawler can assume only two values: a certain velocity v(t) at
the points where no deformation occurs (s'(X,¢) = 1) and a lower velocity
v(t) — e c at the points experiencing elongation (s'(X,t) = 1+ ¢). Obviously,
force balance dictates that v(t) > 0 for extension waves (resp. v(t) < 0 for
contraction waves) and, in principle, two qualitatively different situations are
possible: if v(t) = 0, then a stick-slip behaviour takes place (with “slipping”
occurring in the elongating part, with velocity —e ¢, and “sticking” elsewhere),
whereas for v(t) # 0 sliding occurs throughout the crawler.
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Furthermore, we notice that for extension waves the velocity v(t) is
restricted to v(t) < ec (resp. v(t) > ec for contraction waves), and that the
choice of v(t) = e ¢ is compatible with the force balance only when the part of
crawler being stretched is sufficiently large with respect to its total length. In
fact, let us consider the time interval ¢ € [0,d/c), during which the extension
wave enters the crawler at its left end. For any time ¢ such that

T+t pyeC

ct<L
(I4+e)1- 4+ 74 +piec

the following estimate applies to the total force F'(t) acting on the crawler

and thus the force balance does not hold. In other words, an “inverted”
stick-slip crawler, where sticking occurs along the deformed part and slipping
along the other one, is in general not admissible in the context of our analysis,
where the stride is given by equation (5.24). The only exception is the trivial
case of 74 = puy = 0.

In the following sections we shall assume that, for a given crawler, only
one of the two modes of locomotion can be activated, and we will separately
consider stick-slip crawlers (v(t) = 0) and sliding crawlers (v(t) # 0).

Stick-slip crawlers

We first explore the case of stick-slip crawlers, such that the Ansatz v(t) =0
for every t yields

Ty (t) = (5.26)

—ec forte[0,0/c)
0 for t € [6/c, (L +6)/c)

and time integration of (5.26) in the interval ¢ € [0, (L 4 §)/c) immediately
leads to the expression

Axy = —¢€0 (5.27)

for the net displacement after one period of the square wave.

We just need to check the compatibility of the Ansatz with the force
balance. To this end, we compute the overall force exerted on the crawler,
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which, for an extension wave (¢ > 0), reads
L+ect
(T— + p—ec)(1+e)et + / 7(s,t)ds for t € [0,6/c)

(1+4e€)ct
ct—46 L+eé

F(t) = /T(s,t)ds+(7_—l—,u_ec)(l—|—5)5—|— / 7(s,t)ds fort € [6/c,L/c)

0 ct+ed
ct—§8

T(s,t)ds+ (- + p—ec)(1 +e)(L — ct +9) fort € [L/e,(L+6)/c)

’ (5.28)

and we further notice that the most restrictive condition to F'(t) = 0 is given
by the middle term of (5.28), which specifically requires

T+L

< — max 2
T (ot pec)(lte)+ 1y o+ (5.29)

The case of contraction waves (—1 < & < 0) can be studied similarly and
leads to the following restriction on ¢

_ L
§ < T _ ymax (5.30)
(e —prec)(i 4o+
We notice that 7, = 0 implies ¢1'** = 0 and, likewise, 7_ = 0 implies
0™#x = 0. Therefore, no stick-slip behaviour can occur on a Newtonian

substrate and the largest achievable displacement, at fixed e, is given by
—e 0.

The displacement (5.27) produced by an elongation wave spanning the
crawler’s body once is always negative (opposite to the wave direction),
whereas it is always positive (concordant to the wave direction) for a contrac-
tion wave. Furthermore, we observe that the net advancement Az; — ¢ in
the limit € — —1, and, as we will see, this is a feature in common with sliding
crawlers. This is due to the fact that, as € — —1, the portion of crawler
experiencing deformation collapses to a single point: the force balance is then
trivially satisfied, with no friction being exerted, and the resulting motion is
determined exclusively by geometrical reasons, rather than dynamical ones.

Dry friction The coefficients 4 and p— play only a minor role in stick-slip
crawling. In fact, they only reduce the set of admissible square waves, see
equations (5.29)-(5.30), and hence the maximum achievable displacement.
Thus, dry friction is an ideal environment to study stick-slip behaviour. By
making use of (5.27) and equations (5.29)-(5.30), the maximum achievable
advancement for a traveling wave of fixed ¢ is obtained as
—ML for e > 0 (extension wave)
ADl'l = 1+ea (5.31)

—%L for —1 < e <0 (contraction wave)
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Figure 5.6: Maximum displacement Apx;/L for a stick-slip crawler in the case of
dry friction as a function of € € (—1,1) and for o = {0.25,0.5,0.75}.

The maximum displacement after one stretching cycle is shown in Fig. 5.6 in
dimensionless form as a function of € and for o = {0.25,0.5,0.75}. The net
advancement is always negative (positive) for extension (resp. contraction)
waves, and its magnitude decreases (resp. increases) as « is increased.

Sliding crawlers

We turn now to the case of sliding crawlers, so that no stick-slip behaviour
can occur and v(t) > 0 for t # n(L+9)/c with n integer (at these times no de-
formation takes place and the velocity vanishes everywhere along the crawler).
Specifically, we consider extensional waves (¢ > 0) and study separately the
force balance equation in the following three stages of deformation.

Stage A: t € (0,6/c) During this first time interval the square wave
enters the crawler at its left end. As already discussed in section 5.4, force
balance requires that 0 < v(t) < e ¢ and hence the velocity of the left end of
the crawler is restricted to —e ¢ < #1(t) < 0. Thus, the force balance equation
becomes

[ — pedr (D)L + e)et — [+ s (1) +ec)(L—ct) =0 (5.32)
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from which we get

T_(1+¢e)ct — (74 + pyec)(L — ct)

B = = 0 et + pa(l—ch)

(5.33)

Taking into account the restrictions upon @1 (t), the solution (5.33) is admis-
sible only if

H+EC
7+ =0 and 0 < L 5.34
* pyec+1_(1+4¢) (5:34)
and we notice that this implies p4 # 0, for else § = 0 and no motion occurs.
Hereafter we assume? that (1 +&)u_ # uy, and integration of (5.33) in
the time interval ¢ € (0,6/c) immediately provides the expression of the first
contribution to the displacement, namely,

S[(1+e)7— 4 pyec] | L(1+e)(7— + pec)uq Ly

AT+ — i)+ —psl2 60 e + (L —d)us
(5.35)

a _
Azl =

Stage B: t € [0/¢,L/c). At any instant of this interval, the square wave
of width 4 is entirely contained within the crawler’s body. The restrictions
on #1(t) become 0 < @1(t) < €c and, therefore, the force balance reads

[T = p—(@1(t) —ec)]|(1 +€)0 — [y + pydn (H](L —0) = 0
from which we get

o (4 p—ec)(1+€)d — 74 (L —0)
() = s T (T = ) (5-36)

This solution is admissible under conditions (5.34), and its time integration in
the interval ¢ € [0/c, L/c) yields the second contribution to the displacement

e S(L = 8)(r + pec)(1+e)
Ay = d(1+e)pu—c+ (L —0)uqc (5:37)

2For (1 4+ €)p— = 4, the displacement (5.35) in the first interval must be replaced by

82 2(1+e)r

and the displacement (5.39) in the third interval by
e % 4o N
so that the overall displacement after one period, instead of (5.40), becomes
2 2(1 _ L —8)(r— 4+ p—ec)(1
Aay = —eg4 28y A EET | L —0)(r +pe)l+e) (5.40%)

L Lustc 01+ e)pu—c+ (L —d)ptc
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Stage C: t € [L/c,(L+0)/c). During the last time interval the square
wave leaves the crawler at its right end. The velocity & (¢) is again restricted
to 0 < 41(¢t) < ¢ and the equation for the force balance yields

[ — (@ (8) = 0] (1 + &)L — et +8) — [r4 + s (D] (ct — 5) = 0
from which we get

(T— + p_ec)(l+e)(L —ct+6) — 74 (ct — 0)

B = A (L = et 0) + st =)

(5.38)

Also in this case the solution is admissible under conditions (5.34), and inte-
gration in the time interval ¢ € [L/c, (L +6)/c) leads to the third contribution
of the displacement as

S(1+e) (- +p_ec) L(l+e)(t- + p_ec)uy N Ly
(I +e)u- — py] (I +e)p— — pyl? (L+e)op— + (L —0)pt
(5.39)
In conclusion, the total net advancement Axy, arising from an extensional

wave spanning the crawler’s body once, is computed adding equations (5.35),
(5.37) and (5.39), leading to

c _
Az =

Awr — de[(T+e)p— + py) 26(1 +¢e)7- n 0L —0)(t— + p—ec)(1 +¢)
YTt oue —py (0 teus —py] T 00+ e)uc+ (L—d)uge
2L(1 +€)(7— + p—ec)p+ Ly
0+ en —mP S+ on +(E- 0 (540)

The same reasoning holds also in the context of contraction waves (—1 <
e < 0). In that case, € ¢ < v(t) < 0 and the formulae above can still be applied,
provided that we replace 7— with —7 and p_— with py. In particular, we
remark that the admissibility conditions (5.34) are replaced in the contractive
case by
p_ec

_ =0 d d <
i o p_ec—14(1+¢)

(5.41)

The restrictions on the width ¢ and on the substrate rheology deserve
particular attention and are summarized in Table 5.2. In fact, considering the
case of an extension (contraction) wave, we may observe that sliding crawling
requires a vanishing value of 71 (resp. 7_), whereas stick-slip crawling is
feasible only if 7 # 0 (resp. 7— # 0). In other words, the two modes of
locomotion (“sliding” and “stick-slip” crawling) are mutually exclusive, in the
sense that they are not compatible with the same choice of wave and substrate
parameters.
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Table 5.2: Admissibility restrictions on the width § and on the substrate rheology.

stick-slip crawling sliding crawling
>0 < T+ L £0 0, 6 < Htec L, us #0
: < , T T+ =0, — L pu
(T—+p—ec)(l+e)+ 7+ + + pyec+7—(1+¢) +
<0 §< L #£0 0,8< poce L, p_ #0
€ : , T— T_ =0, —_— L, pu_
St et o)+ poce—ri(1te) " F

Newtonian friction The admissibility conditions (5.34) and (5.41) are
quite strict, see also the right column of Table 5.2. Indeed, sliding crawling
by means of both extension and contraction waves is feasible only for a purely
Newtonian rheology (7— = 7+ = 0), and this is also the only case where ¢ can
freely vary in the interval (0, L). In this context, the net displacement Ax;
for an extension wave becomes

Se[(1+¢)B% + 1] N S(L —6)(1+¢)eB?

Anar = I+e)82 -1 ' §1+e)B2+ (L—9)

2L(1 + £)ep? L
(1+o)B2 — 12 "6 +e)32 + (L —9)

and the formula for contraction waves can be obtained by replacing 5 with
1/p5.

The displacement attained after one stretching cycle is shown in Fig. 5.7
as a function of € for the choice §/L = 0.25 and for 8% = {0.25,0.5,1,2,4}.
A lower friction in the direction of wave propagation (8 > 1) always leads
to a positive displacement, whereas a negative displacement is possible, for
sufficiently small values of €, when friction is lower in the opposite direction
(8 < 1). Furthermore, the displacement always tends to § as e — —1, and
tends to +00 as € — +00. A decrease of 3 enlarges the range of the values of
€ that produce a negative displacement.
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Ale

Figure 5.7: Maximum displacement Ayx1/L for a sliding crawler in the case of
Newtonian friction as a function of € € (—1, 1) for the choice §/L = 0.25
and for 3% = {0.25,0.5,1,2,4}.






Chapter 6

Nematic elastomer strips as
soft crawlers

From this Chapter, we plan to introduce an elastic body as a key element
of our analysis. Recalling our interest in having a minimal mechanism for
locomotion, possibly also suitable to miniaturization, and the importance in
this framework of reciprocal shape change, we discuss as our first model the
behaviour of a strip of nematic elastomer, on which we can induce a periodic
sequence of contractions and elongations (cf [DGN15]).

This situation can be associated to the spontaneous deformation accom-
panying either the nematic-to-isotropic transition (which can be induced
by increasing the temperature past the phase transition temperature, or by
irradiation with UV light in the case of photosensitive elastomers), or the
isotropic-to-nematic transition induced by cooling a specimen initially in the
isotropic state. Alternatively, it can be the spontaneous deformation accompa-
nying a director reorientation in a nematic specimen (say, from perpendicular
to parallel to the crawler axis, that can be induced by the application of a
suitably oriented electric field).

We remark also that our model we are going to develop, based on energy
(6.4), could be applied also to active strips made of other active materials (e.g.,
soft electroactive polymers, but also hard materials such as electrostrictive,
ferroelectric, ferromagnetic, and ferroelastic solids). As we will see in the
sequel, larger spontaneous strains lead to larger achievable displacements and
locomotion is possible only if the spontaneous strains are sufficiently large, in
a sense made precise by inequalities (6.34) and (6.57) below. For this reason,
we suggest, as most natural candidate material, Liquid Crystal Elastomers
(LCE), that provide the key example of a soft active material exhibiting large
spontaneous strain. Indeed, the spontaneous extension accompanying the
isotropic-to-nematic transition can be as large as 300%, cf. [WT03]. In light
of this, we put no restrictions on the magnitude of the spontaneous strain,
which can be arbitrarily large.
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6.1 A first toy model of crawler

We consider the model crawler shown in Fig. 6.1 and denote the position
of its points through a one-to-one function x(X,t) mapping the reference
configuration [X1, Xs| (more concretely, X; = 0 and X9 = L, L being the
reference length of the crawler) onto the deformed configuration [x;(t), x2(t)]
where

z1(t) = x(X1,t) = X1 + u(X1,t) = u(t) 6.1)
2(t) = X(Xa,1) = X5 + u(Xa, 1) = L+ us(t) |
Here u(X,t) is the displacement at point X and time ¢ defined by
uw(X,t) =z - X =x(X,t) - X (6.2)

whereas w3 (t) and uy(t) are the displacements at time ¢ of the two end points.
We will denote with primes and dots the partial derivatives with respect to
space and time, respectively, according to

0 . 0

WX ) = pu(Xo) (X 1) = o

X u(X,t) (6.3)

x=x(X,t) Crawler body
/ T d

b r b bbb b D) y b bbb bbbl X,z
X, =0 Xo=L  21(t) = ui(t) Ty = L+ ua(t)

Figure 6.1: A sketch of the one-dimensional crawler analysed in this study. The
model accounts only for horizontal displacements along the X coordinate,
whereas the system exploits directional frictional interactions with a
solid substrate either at its extremities (case of interactions only at the
extremities) or along its body length (case of distributed interactions,
shown in the figure).

The body of the crawler is elastic and we assume that its configurational
energy is given by

L
/1;( eu(X, 1) — eo(X,1))2dX (6.4)
0
where
eu(X, 1) =/ (X, 1) (6.5)

is the strain, K > 0 is the 1D elastic modulus (with dimension of force since
K = F A, where E is Young’s modulus and A the cross-sectional area), and
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F(v) A D(v)
—_ —F_
1 %};4,
v 1 v
(a) e I (b)

Figure 6.2: Force-velocity law (a) and dissipation (b) in the case of frictional, direc-
tional forces acting only at the extremities of the crawler.

£o(X,t) is the spontaneous, or stress-free strain at X and ¢. We assume that
—1 < g5 < 400 and refer to g, as the active distortion: in analogy with
thermal dilatation, it is the spontaneous strain (i.e., the one in the absence of
stress) associated with a phase transition.

The tension T'(X,t) at any crawler section X and time ¢ is given by

T(X,t) = K (u(X,t) — eo(X, 1)) = Ku/(X,t) + T*(X, t) (6.6)

and is the 1D analogue of the first Piola-Kirchhoff stress. The term 7%(X,t) =
—Keo(X,t) can be regarded as the active part of the internal tension, in
analogy with the active stress used to model biological matter as an active
gel [Mar+13].

Frictional forces arising from directional interactions with a solid substrate
act on the crawler. These are either concentrated at the two ends or distributed
along the crawler body, see the sketch of Fig. 6.1.

In the case of frictional forces acting only at the two ends of the crawler
X; (i =1,2), these are given by

{F_} ifv<0
Fi(t) = F(u;(t)) where F(v) € ¢ [-F,F_] ifv=0 (6.7)
(“F}  ifu>0

and F_ > Fy > 0 are threshold forces to be overcome for sliding to occur
to the left or to the right, respectively, see Fig. 6.2a. The assumption
F_ > Fy simply means that we have chosen to orient the z-axis so that the
positive direction is the one of easy sliding. We remark that the notation
F(v) € {F_} means F(v) = F_, which occurs if v < 0. Likewise, the notation
F(v) € {—F4} means F(v) = —F4, which occurs if v > 0. If instead v = 0,
then F'(v) can take any value in the interval [—F,, F_]. We also notice that
the contribution of the end frictional forces to the rate of energy dissipation
reads

= Do Fit)i(t) = > D(in(t)) (6.8)
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where the dissipation D(v) := Fy (v)T — F_ (v)” has been introduced with
(v)F = 3 (v [v]), such that in the notation of convex analysis we can write

{-F_} ifv<0
D) ={ [-F_,F,] ifv=0 (6.9)
{F}} ifv>0

0

—F(v) € 0

where %D(v) is the sub-differential of D at v, see Fig. 6.2b.

f(v) . d(v)

—— —p—

1 Mﬂ+

v 1 v

(a) A (b)

Figure 6.3: Force-velocity law (a) and dissipation (b) in the case of frictional, direc-
tional forces distributed along the crawler body.

In the case of distributed interactions, the frictional force per unit reference
length is given by

{p-} ifv<0
f(X,t) = f(u(X,t)), where f(v) € § [—pq,pu—] ifv=0 (6.10)
{—p+} ifv>0

and p_ > pg > 0 are threshold forces per unit reference length to be overcome
for sliding to occur, see Fig. 6.3a. As before, f(v) € {u—} means f(v) = u_,
which occurs if v < 0. Likewise, f(v) € {—u4+} means f(v) = —p4, which
occurs if v > 0. If instead v = 0, then f(v) can take any value in the interval
[—pi4, i—]. The contribution of the distributed frictional forces to the rate of
energy dissipation is now

L

L
. / FX, Ou(X, 1) dX = / d(a(X, 1)) dX (6.11)
0

0

where the dissipation per unit reference length d(v) := py (v)* — p_ (v)™ has
been introduced, again with (v)* := 3 (v £ |v]), such that in the notation of
convex analysis we can write

{—p-} ifv<0
—p—,py] ifo=0 (6.12)

J [
{py} ifv>0

—f(v) € %d(?f) =
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where %d(v) is the sub-differential of d at v, see Fig. 6.3b.

We consider a history of active distortions e,(X,7T) varying in time
sufficiently slowly, so that the crawler evolves quasi-statically through a
sequence of equilibrium states. The governing equations are then obtained by
neglecting inertia in the balance of linear momentum, and read

T/(X,t) + f(a(X,t) =0 (6.13)

together with the boundary conditions for the tension at the crawler extremi-
ties
T(0,t) = —Fi(t) = —F(u(2))
(6.14)
T(L,t) = Fy(t) = F(i2(t))

By making use of (6.9) and (6.12), the balance of linear momentum can
be rewritten as

T'(X,t) € E?al(a(X7 ), (6.15)
v
whereas the boundary conditions at the two extremities become

T(0,t) € 2D (i (t))
(6.16)
T(L,t) € —2D (ua(t))

Integrating (6.13), and using the boundary conditions (6.14), we obtain
the global force balance for the crawler, namely

L
Fla(t)) + Flan(t)) + / F(X,8) dX = 0 (6.17)
0

6.2 Formulation of the motility problem

We formulate our motility problem as follows. Given the initial state of
the system through the assignment of the initial position and tension, e.g.,
u(X,0) = 0, and T(X,0) = 0, we look for the history of displacements
t — u(X,t) and tensions ¢t — T'(X,t) corresponding to a given periodic time
history of spatially constant active distortions, t — &o(X,t) = &,(t). In
particular, we are interested in the asymptotic average speed of the crawler

X*
lim 711( 1)
t——+o00 t

(6.18)

where X* is an arbitrarily chosen point. We consider in particular the time
history of active distortions given by the 27-periodic sawtooth graph of
Fig. 6.4, defined on [0, 27] as

go(t) =

{at for t € [0, 7] (6.19)

a2t —t) fort e [r,27]
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and then extended 27-periodically for ¢ > 0. We denote the maximum
distortion encountered as

e = ar (6.20)
€o(t)
e Soooooo oo S ooonneee e |
. 3 3
)z T | T et
0 T 2T 3T 4T 5t

Figure 6.4: Time history of 27-periodic, sawtooth active distortions applied to the
crawler.

Friction only at the ends

Here, since f = 0, we have that the internal tension T'(X,t) is independent
of the coordinate X. It follows from (6.6) that also u/(X,t) is independent of
X, and the expression (6.4) for the energy reduces to

2
£, (un (1), us(t), £) = % <“2(t)£“1(t) _ eo(t)> (6.21)

Furthermore, the evolution equations (6.16) simplify to

T(0,t) = —52-&r(ur (1), ua(t),t) € 25D (i (t))

(6.22)
—T(L,t) = —ga-&r(un(t), ua(t), 1) € 5D (ua(t))
and, at times when sliding occurs, these can be written as equalities

_%gr(ul(t)’ UQ(t), t) == %D (ibl (t)) if le 75 0
(6.23)

— gz &r(ui(t), ua(t), 1) = D (ia(t))  if o # 0

Denoting now by
‘ 0 & : d

Ffzric = 87’11,1 ; D(u] (t)) and ezl = %gT(U1 (t)a u2(t)7 t) (624)

the frictional and elastic forces at the i-th end (i=1,2), we recover the inter-
pretation of the evolution equations (6.23) above as force balances at the two
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ends, on each of which the total force consists of an elastic and of a frictional
contribution, namely

FY+FL.=0 (6.25)

We recall that we are working in the quasi-static regime, hence neglecting
inertial forces. Alternatively, by multiplying each of the equations above by
u; we obtain
0 . i
—8757« U; = Ffﬁ"ic (7 (626)
7

and we can interpret the evolution equations as the statement that the system
evolves in such a way that the energy dissipation rate always match the rate
of release of elastic energy.

Only distributed friction

Here there are no concentrated frictional forces at the two ends, recall the
sketch of Fig. 6.1, so that equations (6.16) simply reduce to

T(0,t) =0,
(6.27)
T(L,t) =0,
and provide the boundary conditions for the tension field
T(X,t) = K(u'(X,t) — eo(t)) (6.28)
which satisfies the evolution equation (6.15), namely,
{—p_} if u(X,t) <0
T'(X,t) € { [~p, py]  ifa(X,t)=0 (6.29)

{1y} if 4(X,t) >0

By substituting (6.28) into (6.29), we see that, in this case, the evolution
equations take the form of a differential inclusion for the displacement field
u(X,t).

6.3 Friction only at the ends

We solve in this section the evolution problem for the case in which frictional
forces act only at the two ends. This can be considered as a warm up for the
more difficult case in which distributed frictional forces act along the crawler
body.
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Evolution equations

We recall that, in this case, the internal tension 7'(X,t) is independent of X
and given by

t) — t
T(t) = K (M - 50(t)) (6.30)
The equations governing the evolution of the system are (6.22), and they
can be conveniently recast as
T(t) € (Fy, Fy)
() =0 ap(t)=0  if {T(t)=F, and () >0 (6.31)
T(t) = —F; and £,(t) <0

corresponding to the case of stationarity of the two crawler extremities,
u1(t) =al u2(t) =0 if T(t) = Fy and £,(t) <0 (6.32)
corresponding to the case of slip for the left hand side of the crawler and
stationarity of the other one, and finally
w1(t) =0 ds(t) = ol if T(t) = —F4 and £,(t) > 0 (6.33)

corresponding to the case of stationarity for the left hand side of the crawler
and slip of the other one.

Solution of the motility problem

We recall that the initial conditions are u;(0) = u2(0) = 0 and 7'(0) = 0, and
we consider the case of sufficiently large distortion, namely we assume that
glax > &
K
We will show that the motion of the crawler is characterized by a prelim-
inary transient phase for ¢ € [0, 7], followed by a 27-periodic behaviour for
t > 7, with a constant forward displacement of the crawler in each period.
An important role in our analysis will be played by the time constant
_2F,
- Ko
and we notice that our assumption (6.34) is equivalent to tg < 7.

(6.34)

tq (6.35)

Interval 0 < ¢ < t4/2. During this time interval &,(t) = a > 0 and
T(t) > —F4, so that we are in case (6.31). The two ends of the crawler are
stationary (u1(t) = u2(t) = 0), such that

ui(t) = ua(t) =0 (6.36)
and the tension in the crawler varies linearly in time as
T(t)=—-Kaot (6.37)

reaching the critical value T'(t;/2) = —F} at the end of the interval.
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Interval ¢;/2 <t < 7. In this time interval we still have £,(t) = o > 0,
but now T'(t) = —F4, so we are in situation (6.33). The first end is stationary
(11 (t) = 0) while the second one moves keeping the tension constant (usg(t) =
al), leading to

td

wt)=0  wu(t) =al <t - 2) (6.38)

At the end of the time interval we have that 7'(7) = —F} and
ui(t) =0 ug(1) = L (T - 2> (6.39)

Interval 7 <t <7+ t;. During this time interval £,(¢) = —a < 0 and
T(t) < Fy, so we are again in situation (6.31). The two ends are stationary
(t1(t) = u2(t) = 0) and therefore at time ¢ = 7+ ¢4 the position of the crawler
is given by (6.39). The tension instead increases linearly according to

T(t) = —Fy + Ka(t—7) (6.40)

reaching at the end of this time interval the other critical value T'(1+t4) = F.

Interval 7+t <t < 27. In this time interval we still have £,(t) =
—a < 0, but now T'(t) = F, so we are in situation (6.32). The second end is
stationary (1z(t) = 0) while the first one moves keeping the tension constant
(1 (t) = aL), leading to

t
uw(t) =aL(t—7—tg)  us(t)=al <T - 2d> (6.41)
At the end of the time interval we have that T'(27) = Fy and

w(27) = aL(r —tg)  us(27) = al (T - t;) (6.42)

Interval 27 < ¢ < 27 + t4. During this time interval £,(¢) = a > 0
and T'(t) > —F, so that we are in case (6.31). The two ends are stationary
(1 (t) = u2(t) = 0) and so at t = 27 + t4 the position of the crawler is still
the one of (6.42). The tension decreases linearly according to

T(t) = Fy — Ka(t — 27) (6.43)

and reaches at the end of the time interval the critical value of T'(27 4 t4) =
—Fy.

In this time interval we observe a behaviour similar to that of the first
interval 0 < ¢t < t4/2, but in this case we have a greater initial tension (F}
instead of 0), so we need twice the time to reach the critical tension —F .
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Interval 27 +t; <t < 37. In this time interval we still have &,(t) =
a > 0, but now T'(t) = —F,, so we are in situation (6.33). The first end
is stationary (u1(t) = 0) while the second one moves keeping the tension
constant (uy(t) = aL), leading to

w(t) = aL(r—tg)  ws(t) = al (T - t;) faL(t—2r—tg)  (6.44)

At the end of the time interval we have that T7'(37) = —F, and

u1(37) = aL(T — tq) u2(37) = aL <27‘ - 32td> (6.45)

Figure 6.5: Position of the crawler extremities x;(t) during a time interval of 37 and
for a maximum distortion €2*** = 1. Two cases are shown to stress the
effect on the displacements of the crawler stiffness, and these correspond
to tq/T = 1/2 (or equivalently to Fy /K = /4, blue solid curves),
and tq/7 = 0 (or equivalently to F.y /K = 0, red dashed curves). Notice
the piecewise linear time history of the displacements, which arises from
the frictional, directional nature of the interactions with the substrate.
At any time, the current length [(¢) of the crawler body (highlighted in
the figure for the case of t4/7 = 1/2) can be inferred from the vertical
distance between the two curves.

The position of the crawler extremities z;(t) is depicted in Fig. 6.5 for

a time interval of 37 and for the case of ¢J*** = 1. Specifically, two cases

are shown to stress the effect on the displacements of the crawler stiffness,
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and these correspond to ty/7 = 1/2 (blue solid curves), and t4/7 = 0 (red
dashed curves). We observe that the state of the crawler at time ¢ = 37
corresponds to that at time ¢ = 7 except for a translation of aL(7 —t4). Since
the dynamics of the crawler is translation-invariant, the solution will repeat
27-periodically the behaviour found in [r,37]. We can thus easily find the
position of the crawler at any positive integer multiple of 7, namely, for any
integer m > 0,

t
ui(2m7) = maL(T — tg) yug(2mT) = maL(T — tg) + aLEd
and

ur((2m+1)7) = maL(t —tg) u2((2m+1)7) = (m—i—l)aL(T—td)—i—aL%d

Thus, the net displacement in one stretching cycle, corresponding to a time
interval At = 27, reads

al(t—tg) =1L <5§1ax — 2F+> (6.46)
K

The equation above shows that, at fixed F; and K, the achievable displace-
ment increases when €2'** increases and no displacement is possible if the
material exhibits spontaneous strains whose maximal magnitude does not
satisfy inequality (6.34).

Finally, we notice that the crawler will be elongated in comparison to the
initial length L, oscillating between a minimum length

F
I(2m7) =L (1 + +> (6.47)
K
and a maximum length
F
(2m+1)r)=L (1 + g% — I;) (6.48)

6.4 Distributed friction

In the previous section, the case of a crawler has been addressed that exploits
frictional, directional interactions at its ends only. We extend now our study
to the case in which distributed frictional forces act along the crawler body.

Evolution equations
We recall from Section 6.2 the evolution equations, namely,
{—p-} if u(X,t) <0

T'(X,t) € { [cp,ps]  ifa(X,t)=0 (6.49)
{1y} if 4(X,t) >0
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where the tension T'(X, ) is given by
T(X,t) = K(u'(X,t) —eo(t)) (6.50)
It follows from equation (6.50) that
T(Xo,t) = —Kéo(t) if 4(X,t) =0 for every X € No(Xo)  (6.51)

i.e., in a neighbourhood Ny of Xy. Additionally, we have the boundary
conditions at the crawler extremities, such that at any time

T(0,¢) =0
(6.52)
T(L,t) =0
Solution of the motility problem

For the solution of the problem, it is expedient to introduce two special points,

namely
M+ M-
X, =—L Xp=——"—"-—-L 6.53
H— t oy p— t oy (6.53)
We first notice that

X+ Xp=1L (6.54)

and set
l‘L(t) :XL—{-UL(t) .TR(t) :XR—{—UR(t) (6.55)

where ur(t) = w(Xr,t) and ugr(t) = u(Xg,t). We further notice that we can
relate the positions at time t of every couple of points X4 and Xp through

Xp

1
w(Xp,t) = u(Xa, )+ | (eolt) + =T(X,t) ] dX (6.56)
J (oo )

which follows from (6.50), by solving for «’ and then integrating with respect
to X.

Similarly to the case of localized interactions, recall condition (6.34), we
assume that the active distortions are sufficiently large, and in fact require
that

gmex %“L (6.57)

For our analysis, it is also useful to introduce two special time values,

namely,
L _ L
e e e s (6.58)

Ko p— + py Ka
and we notice that our assumption of large distortion is equivalent to ¢, < 7.

In what follows, we will seek solutions by using an ansatz on 4(X,1t).
Namely, we assume that the interval [0, L] is partitioned into three, possibly

te
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empty, disjoint sub-intervals I, (t) U Io(t) U Ir(t) = [0, L] (written in order
from left to right) with either

u(X,t) <0 for X € I(t)
WX, t)=0 for X € Iy(t) if £(t) >0 (6.59)
w(X,t) >0 for X € Ir(t)

i.e., for a positive incremental distortion, or

u(X,t) >0 for X € I(t)
W(X,1) =0 for X € Io(t) if &0(£) < 0 (6.60)
W(X,t) <0 for X € Ip(t)

i.e., for a negative incremental distortion. We assume that Iy(¢) is a closed
interval and consequently that I7(¢) and Ir(t) have an open end. The critical
times m7, where £, is not defined, will be studied as extreme points of
prescribed time sub-intervals and thus the partition of the Ansatz will be
be assigned only as (left or right) limit, in accordance with the instance
considered.

Combining the Ansatz with (6.49) and the boundary conditions (6.52) we
deduce that, if £,(¢) > 0, then

IL(t) C[0,X5)  In(t) C (X1, L (6.61)

and the tension satisfies

fHXJ)-jLX if X €1Ip(t)

T(X, t) > —u— if X e I()(t) N [O,XL] (6.62)
ﬂXﬁZM#X L) if X € Iy(t)N[Xg, L]
T(X,t)=pus (X - L) if X clg

In the two middle conditions of (6.62), equality holds only on the boundary
of Iy in accordance with the continuity of 7. On the other hand, for the
interior points of Iy the inequality is always strict, for else there would be
a contradiction with (6.51). In the extreme case Iy(t) = { XL}, the tension
reaches everywhere its minimum admissible value

—u_X fo<X<X
Tmin( ):{ a ' - - L (663)

pr(X —L) if Xp <X<L

and the whole crawler is extending, with each point moving away from the
only stationary point Xj. We remark that, once this tension configuration
is reached, we will have T(X,t) = Tyin(X) as long as £,(t) > 0, with the
crawler elongating according to (6.50). In fact, any change in the tension
would be in contradiction with (6.49).
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A similar reasoning is applicable in the case of a negative incremental
distortion. In fact we argue that, if £,(¢) < 0, then

IL(t) C[0,XR)  In(t) C (Xg, L] (6.64)

and the tension satisfies

T(X,t) = p X if X € Ip(t)

T(X,t) < pr X if X € Io(t) N[0, Xg] (6.65)
T(X,t) < —p_(X — L) if X € Iy(t) N [Xg, L]
T(X,t)=—p_(X —L) if X €I

As in the previous case, the inequalities are strict in the interior of Iy(t),
whereas the equality holds on the boundary of Ip(t). In the limit case
Iy(t) = {XRr}, the tension reaches everywhere its maximum admissible value

(6.66)

X Hfo<xX<X
TmaX(X): e . - ~or
—p-(X—-L) f Xp<X<L

and the whole crawler is contracting around the only stationary point Xg.
The crawler will keep this tension configuration, i.e. T(X,t) = Tax(X), as
long as £,(t) < 0, contracting accordingly.

As in the case of friction only at the ends, we will show that the motion
is characterized by a preliminary transient phase for ¢ € [0, 7], followed by a
27-periodic behaviour for ¢t > 7, with a constant forward displacement of the
crawler in each period.

Interval 0 <t < t!. Werecall the initial conditions, namely u(X,0) = 0
and T(X,0) = 0. For (6.62), at the beginning of the time interval the crawler
is stationary, i.e. In(0) = [0, L], and so at every point X the tension decreases
according to (6.51), until it reaches the critical value of T,in(X), such that
point X starts to move, see Fig. 6.6a. Explicitly, we have that

. ¢ if0< X <t e, if X € Ip(t)
T(X,t) =< —Kat ifeit <X <L—cot e, if X ely(t) (6.67)
/L_;,_(X—L) HfL—ct<X<L ie, ifXE[R(t)

where the two velocities ¢; and ¢y have been introduced as

Cc1 = @, Cy = @ (668)
H— H
At the end of the time interval, we have T(X,t}) = Tiin(X). We also
notice that during the whole interval X, € Iy(t), that means that 47 = 0
and so
ur(t?) =0 (6.69)



% 6.4. Distributed friction 121

Hence, by using equations (6.54) and (6.56), we obtain the expressions for
the displacement of the crawler extremities at time ¢

ul(t*) = —atf XL + 7XL

&
2K (6.70)
Uz(t ) = Oét XR — ﬁXR
and of point X, namely
ur(t}) = ati(Xp — X1) — 22 (Xh - X}) (6.71)

Interval t; < t < 7. At time ¢t = ¢}, the tension has reached its
minimum value (6.63) everywhere along the crawler, and we still have £, (t) > 0
until the end of the interval, so, as we have anticipated, the tension remains
constant, i.e. T(X,t) = Tmin(X), and the crawler elongates until ¢ = 7.
Moreover, the point X, stands still and so

ur () = ur(t) =0 (6.72)

Since the tension is known, see Fig. 6.6b, we can find the displacement of
other points at time ¢t = 7 by comparison with ur(7) and using the condition
(6.56). In this way, we immediately get the displacements of the extremities,
namely

ui (1) = —eg"™ X7y, + £ —X?

MzK (6.73)
ug(1) = g™ Xp — 2—;;X
and also of point Xg
UR(T) :é“f)nax(XR—XL) (XR X%) (6.74)

2K

Interval 7 <t < 7+t%.. During this time interval the crawler is subject
to a negative incremental distortion, i.e. £,(¢) < 0, so we are in the case
(6.65). At the beginning of the interval the crawler is stationary, and so the
tension at each point X increases according to (6.51), until it reaches the
maximum admissible value of Ty ax(X), such that point X begins to move,
see Fig. 6.6¢c. Explicitly, we have now that

X o< X <cs(t—1)
Ko(t—7)—p-X ifeg(t—7) <X <X
Kalt—7)+pup(X—L) X, <X<L-—c3(t—7)
—pu—(X —1L) ifL—c3(t—7)< X <L

T(X,t) = (6.75)
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where the first and the last interval correspond respectively to I (¢) and Ig(t),
whereas the union of the other two is Iy(t), and c3 has been introduced as

Ka

== (6.76)
H— +

C3

At the end of the time interval we have T'(X, 7 4 t.) = Tnax(X). Further-

more, we remark that during the whole interval we also have [ X1, Xg] C Iy(T),

since all the points of this subinterval reach the critical tension Tiax(X) si-

multaneously at ¢t = 7 + t.. It follows that X; and Xp are stationary
(ir, = ur = 0) and thus

ur (T +t.) = ug(7) ur(T +te) = ugr(T) (6.77)

It turns out that the displacements of the two end points can be obtained
from ur (7 +t.) and ur(7 + t.) by using (6.56), namely
wn (7 +10) = —(e5™ — ate) Xy — TEXF
(6.78)
ug(T +te) = ur(T +te) + (5™ — ate) X1 + %X%

Interval 7 +t. <t < 27. At time t = 7 + t., the tension has reached
its maximum value (6.66) everywhere along the crawler, and we still have
£o(t) < 0 until the end of the interval, so the tension remains constant, i.e.
T(X,t) = Thmax(X), and the crawler contracts until time ¢t = 27. Furthermore,
point Xg stands still and so we immediately get

up(2r) = up(r +1;) = ™ (Xp— X1) - S(XF - X})  (6.79)
Since the tension is known, see Fig. 6.6d, we can find the displacement of
other points at ¢ = 27 by comparison with ug(27) and using (6.56). In fact,
the displacements of the extremities read
— H+ -2
ul (27’) = UR(2T) — ﬁXR
B (6.80)
u2(27) = ur(27) + iX%

whereas for point X we get

ur(27) = up(2r) — ;L;{(Xg_xg) = M ( X X)) — %(X,%—X%) (6.81)

Interval 27 <t < 27 4+ t.. During this time interval, the crawler is
again subject to a incremental positive distortion, i.e. £,(t) > 0, and so we are

in the case (6.62). The crawler is stationary at the beginning of the interval,
and consequently the tension at each point X decreases according to (6.51),
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until it reaches the minimum admissible value Ti;, (X)), such that point X
begins to move, see Fig. 6.6e. Explicitly, we have that

—u_X if 0 <X <c3(t—27)
T(X,1) = —Ka(t—27)+ ps X ifes(t—27) < X < Xp

—Ka(t—27)—p_(X—-L) fXp<X<L-—c3(t—27)

pur (X — L) ifL—c3(t—21)< X <L

where the first and the last interval correspond to I (t) and Ir(t), respectively.

At the end of this time interval we have T'(X,27 + t.) = Tin(X). We
further underline that during the whole time interval we have [X1, Xg| C
Iy(T). Specifically, points X and Xp are stationary during this interval
(i, = 4r = 0) and thus

ur (27 +t.) = ur(27), ur(2T +1t.) = ur(27) (6.82)

Again, the displacements of the end points can be conveniently computed by
means of (6.56), namely

w1 (217 +te) = up (21 + t.) — at Xp + %X%

pe
2K

(6.83)
us (21 +to) = up(21 +to) + at X — —— X7

Interval 27 +t. <t < 37. This time interval is qualitatively similar
to the interval ¢ <t < 7, but, since t} < t., it is shorter. We still have
that £,(¢) > 0, and the tension is constant in time and equals its minimum
admissible value, i.e. T(X,t) = Tiin(X), see Fig. 6.6f. Therefore, the crawler
elongates during this interval, with X as a single stationary point, such that

ur(37) = up (27 + to) = e™™(Xp — X1) — %(XI% — X2) (6.84)

As for the previous time intervals, the displacements of the extremities can
be easily computed by making use of (6.56), namely

w1 (37) = ur(31) — M X, + %Xﬁ

— max Ht -2 (6.85)
u2(37) = ur(37) + 5™ Xp — ﬁXR
whereas the displacement of point X at time ¢ = 37 reads
ur(37) = ur(37) + eM(Xg — X1) — L5 (X3 - X3) (6.86)

2K

The position of the crawler extremities z;(¢) is depicted in Fig. 6.7 during

a time interval of 37 for the case of ¢ =1 and for a ratio of py/pu_ =1/5.
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Specifically, two cases are shown to stress the effect on the displacements
of the crawler stiffness, and these correspond to u_L/K = 5/2 (blue solid
curves), and u_L/K = 0 (red dashed curves). We notice that the state of
the crawler at time ¢ = 37 corresponds to that at time ¢ = 7 except for a
translation of ur,(37) — ur(7) = ur(37). Since the dynamic of the crawler is
translation-invariant, the behaviour found in the interval |7, 37] will repeat
27-periodically. Furthermore, the asymptotic displacement produced in a
27-cycle can be reformulated as

max IU’+L>:U'—_M+
w(X,37) —u(X,7) = [ el — L 6.87
(3X,37) = u(X,r) = (g - 1k ) Aot (6.57)

To understand the meaning of the result above, we first recall that we have
required the maximum distortion to satisfy the condition eJ*** > py L/K.
In fact, it can be easily shown that, otherwise, no net displacement can be
extracted on average from periodic shape changes.

The displacement (6.87) produced in a cycle is actually linear with respect
to the body length (and therefore scale invariant) if instead of the distortion
£, we consider the distortion excess over the critical threshold of uyL/K.
The quadratic part of (6.87) is only due to the fact that, keeping constant the
other parameters, the distortion needed to produce some net motion linearly
increases with the crawler length. Finally, we observe that the length of the
crawler oscillates between a minimum value that is reached at times that are
even multiples of 7, namely

ppiy L
2K (p— + p)

and a maximum value that, instead, is reached at times that are odd multiples
of 7,

(2m7) = L+ (6.88)

K@m+Dﬂ:L+($Mﬂ£Jﬁ19>L (6.89)

6.5 Final remarks

Compared to the results of the previous chapter, here we consider, similarly,
the system as subject to a spatially uniform time-history of distortion, but
now we do not assume the shape of the crawler to be known a-priori. Instead,
the configuration of the crawler is an emergent property which arises from the
coupled nonlinear system consisting of the crawler force-generating mechanism,
its passive elasticity and the external frictional forces. This approach has
allowed us, in particular, to determine the axial forces acting along the body
of the crawler: this is a quantity of great mechanical relevance in assessing the
propensity of the system towards buckling, when compressions are generated
during the locomotion process.
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While our analysis has focused mostly on some of the theoretical challenges
that our model crawler raises, it already provides clues that may guide practical
design. For example, (6.46) implies that no net displacement can be achieved
unless the available spontaneous strains are large enough that inequality
(6.34) is satisfied. Using order of magnitude estimates for the geometric
and material parameters involved, namely, F, = 0.45N (as in [ND14]) and
K = 10%N (arising from K = EA, with Young modulus £ = 1 MPa and
area A = 1074 m? for a cross-section of 1 x 1c¢m?) we obtain that the minimal
magnitude of the active strains to produce non-zero displacements is around
1%. In these circumstances, using Euler formula for the buckling of a column,
one would estimate that strips can safely locomote without buckling provided
that their length L is below 10 cm. Smaller scale cross sections (in particular
smaller thicknesses) will presumably require contact interactions with smaller
F,.

Our quasi-static approximation may need to be reconsidered in some
applications, where stick-slick phenomena may lead to oscillations, or even
in the interest of exploring dynamic effects that may lead to additional
locomotion mechanisms. This occurs, for example, in the case liquid drops
moving on a vibrated substrate where the complex shape dynamics of the drop
may lead to reversal of the direction of motion as the frequency and amplitude
of vibration of the substrate are varied [CCD15]|. It has been suggested in
[CD15] that a similar effect can also occur in bristle-legged-robots locomoting
on a rigid substrate when actuated by rotary motors or by a vibrating internal
mass.

Having in mind the key example of LCEs as material for our strip, we
briefly comment our choice, in expression (6.4) to use a quadratic energy
density. This assumption was led by a search for simplicity; more realistic
(Ogden-type) expressions to explore the regime of large induced stresses
are discussed in [DT09; AD11]. In fact, expression (6.4) for the energy is
the 1D, small strain version of the energy proposed by Warner, Terentjev
and collaborators [BTW93; VWT96; WT03|, and thoroughly discussed by
DeSimone and coworkers in a series of papers [DeS99; DD00; DD02; CDD02b;
CDDO02a; AD12|. The emergence of (6.4) as the small strain limit of the
Warner-Terentjev energy has been discussed on the basis of both formal Taylor
expansion and Gamma-convergence arguments in [DT09; CD11; AD11].

Evolution equations through an incremental, variational prin-
ciple

The evolution equations solved in Sections 6.3 and 6.4 can be obtained from
an incremental variational principle, as we show below. For the discrete
case this approach will be discussed in the next Chapter in a more abstract
and general way. Here we propose a direct derivation, that covers also the
continuous case.
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We consider the history of prescribed states of spontaneous distortions
t — &o(t) given in Section 6.2, and assume that the displacement field
X — u(X,t) is known at time ¢. We look for the displacement and tension
at time ¢ 4 dt¢ by seeking solutions of the following incremental minimization
problem. Find X — u(X,t+ dt) as

u(X,t+ dt) = argmin, {E(v, t + dt) + diss(v, u(+,t)) + Diss(v, u(-,t))}
(6.90)
where £ is the elastic energy defined in (6.4) and

L
diss(v, u(-,t)) := / {pg (0(X) —u(X, T — s (v(X) —u(X, t)” }dX
0

whereas

Diss(v,u(-,t)) = Fy (v; —uy (t))T — F_ (v1 —ui(t))” +
+ Fy (v2 = u2(t)" = F (v2 — ua(t))”

Here we have set v; := v(X; = 0) and vy := (X2 = L). Once u(X,t+dt) is
known, we can find T'(X, ¢ + dt) using (6.6), namely

T(X,t) = K (v (X,t) — e5(X, 1))

We consider the case of distributed friction first. We check for solutions
of the form u(X,t+ dt) = u(X,t) + u(X,t) dt and assume that X — (X, 1)
is continuous.

Let us first prove (6.49) for every point xo € (0, L) and for every time ¢
such that @(X,t) > 0 in a neighbourhood N of xy. Using minimality of
w(X,t + dt) against v, (X) = u(X,t) + a(X,t) dt + np(X), with n > 0 an
arbitrary non-negative scalar, and ¢(X) > 0 an arbitrary non-negative C*
function with compact support in N;O, we obtain

E(u(-yt +dt), t + dt) + diss(u(-, t) + u(X, t) dt, u(-,t)) <
<E(u(,t+dt) +ne(-),t + dt) + diss(u(-, t) + w(X, t) dt + ne(-), u(-, t))

and, in turn,

I,(n) = E(u(-, t+dt)+ne(-), t+dt) =€ (u(-, t+dt)t+dt)+n / ptp(x)dX >0

VY
for every n > 0 and ¢ > 0. Moreover, I,(0) = 0 for every ¢. It follows that

Tl = [[FK =) +paledX 20 (691

Nzo
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for every ¢, and since we can take an arbitrarily small neighbourhood N, 51?0’
we obtain that, for every zg € (0, L) with @(X,¢) > 0 in a neighbourhood
N+

xo?

~T'(zo,t +dt) + py >0 (6.92)

If, in particular, @(xg,t) > 0, then there exists a neighbourhood N;) where
u(X,t) > 0 and we can take 7 of unrestricted sign in the argument above.
This leads to strict equality to zero in (6.91) and hence

~T'(xo,t +dt) +py =0 at any x¢ € (0, L) with u(zg,t) >0  (6.93)

Similar arguments at a point xo € (0, L) such that either u(zg,t) < 0,

or u(zo,t) < 0, show that, for every z¢9 € (0,L) with u(X,t) < 0 in a
neighbourhood N,

T (zo,t +dt) —pu_ <0 (6.94)

and that
~T'(xg,t +dt) —u_ =0 at any x¢ € (0, L) with u(zo,t) <0  (6.95)

We exclude from our analysis the points where 4 changes sign. Since
is continuous, those point are at most countably many and thus negligible.
Hence, putting (6.92)-(6.95) together, and using (6.12), we obtain (6.15),
namely,

T'(X,1) € %d(u(X, £) (6.96)

Now we derive the boundary conditions (6.52). Given our solution u(X,t+

dt) = w(X,t) +u(X,t)dt, we define NT = {X € [0,L]: u(X,t) > 0} and

- ={X € [0,L]: u(X,t) < 0}. Let ¢(X) > 0 be a non-negative C*>
function on [0, L] such that ¢(L) > 0 and ¢(0) = 0. For every n we set

{X e NT:a(X,t)dt +np(X) <0} ifn<0
An) =40 ifn=0
{XeN":u(X,t)dt+np(X) >0} ifn>0

We have that |A(n)| — 0 for n — 0. We repeat the minimality argument
used previously and obtain

I(n) == E(u(, t +dt) +np(-), t + dt) — E(u(-,t + db)t + dt)+

+77/M+90(37) dX +n / p—p(x)dX +R(n) >0

+ —
NL NL

where

/u + py) (X, ) dt 4+ ne(X)]dX
A(n)
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We observe that
RO < LA+ 1) g ()
from which it follows that
4
dn
From this condition and the minimality of I,(0) we obtain

d

0= 2 Tolmo = [ [FTCXE+) + (o) dX +

R(n)|p=0 =0

+
NL

+ / [~T(X,t+dt) — p-Jo(z) dX +T(L)p(L) = T(0)¢(0)
Ny
The two integrals are both equal to zero because the integrands vanish in
view of (6.93) and (6.95). Since ¢(L) = 0 and ¢(0) > 0, we get 7'(0) = 0. To
obtain the second boundary condition T'(L) = 0 it suffices to consider instead
test functions ¢(X) > 0 such that ¢(L) > 0 and ¢(0) = 0.
We now consider the case of friction concentrated at the two ends. Since
d = 0 implies that T'(X,t) is now independent of X and, since &, is spatially
uniform, the function X +— u(X,¢) is affine and the incremental minimization
problem (6.90) can be reduced to

u(t + dt) = argmin, {&,(v,t + dt) + Diss(v,u(t))} (6.97)
where u(t) := (u1(t),ua(t)) and v(t) := (v1(t), v2(t)), whereas
1 V2 — U1 2
Er(v,t) == iKL < 7 ao(t)> (6.98)

and
Diss(v,u(t)) = Fy (v1 —u1(8)" = F_ (v1 —ui(t))” +
+ Py (va —uz(t) " — F (02 — ua(t))”

Following similar arguments to those used above for the case of distributed
friction, we obtain (6.22), namely,

T(0,1) = — 5~ E,(u(t),1) € 5D (i (1)
5 5 (6.99)
—T(L,t) = _%&"(u(t)?t) € 87,&22) (u2(t))

We remark in conclusion that the general case in which both distributed
and concentrated frictional forces are present can be obtained by combining
equations (6.96) and (6.99).
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Figure 6.6: Tension T'(X) along the crawler body during distinct time intervals for
the case of distributed, directional friction. Notice that the tension stays
always bounded and oscillates between the maximum and the minimum
admissible values of T ax and Ty, respectively.
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Figure 6.7: Position of the crawler extremities z;(¢) during a time interval of 37 for

a maximum distortion e = 1 and for a ratio of py/u_ = 1/5. Two

cases are shown to stress the effect on the displacements of the crawler
stiffness, and these correspond to p_L/K = 5/2 (blue solid curves), and
p—L/K =0 (red dashed curves). Notice that for the case of distributed
friction, a significant back-sliding of x; takes place irrespective of the
crawler stiffness K. At any time, the current length [(¢) of the crawler
body (highlighted in the figure for the case of y_L/K = 5/2) can be
inferred from the vertical distance between the two curves.



Chapter 7

Stasis domains and slip surfaces

In this Chapter (cf. [GD16b]) we develop the derivation of the equation
of motion proposed at the conclusion of Chapter 6 in the more abstract
and general framework of rate-independent systems. Then, we illustrate
the situation by analysing in detail the motility of a crawler consisting of
two active elastic segments, resting on three supports providing directional
frictional interactions. Such a model is the natural extension of the discrete
model discussed in the previous Chapter, and, compared to that case, we
find that, for a suitable range of the friction parameters, specific choices of
the actuation strategy can lead to net displacements also in the direction of
higher friction.

Moreover, we show that the behaviour of the system is governed by
the tensions arising in the elastic segments, and that the resulting laws of
motion are entirely analogous to the flow rules typical of elasto-plasticity. In
particular, there are convex domains in the plane of the internal tensions
(stasis domains, the analog of elastic domains) corresponding to which no
sliding of the supports can take place. Only when the tensions reach the
boundaries of these domains (slip surfaces, the analog of yield surfaces),
sliding of the supports, and hence motion of the segments can occur.

7.1 An abstract approach to crawling

We consider the quasi-static evolution of a mechanical systems, i.e. our crawler,
characterized as follows. The position of the body of crawler at each time is
described by a vector x = z(t) € X, where X is a n-dimensional real vector
space, that means X =2 R"™. We assume that the space X is the product of
two subspaces X 2 Y X Z, so that we can identify each vector z with the
couple (y,2), where y € Y 2 R% and z € Z = R" % with d € {1,2,...,n}.
We denote with 7y : X — Y and wz: X — Z the projections of a vector
r€e€XonY and Z.

This decomposition has to be interpreted as follows. The value d is the
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dimension of the space where the crawler moves, so d = 1 if it moves along a
line, d = 2 if it moves on a surfaces, etc. The vector y € Y = R? is associated
to a generic description of the position of the crawler, e.g. the position of its
head or of its center of mass. The vector z € Z instead describes the shape
of the crawler. In this way, it is evident how the absolute position = of the
different parts of the body of the crawler is equivalently described by the
absolute position y of a specific point, together with the relative positions z,
with respect to that point, of the other parts of the crawler.

Since we are assuming the quasi-static approximation, the evolution of
the system is governed by the balance of the forces acting on the systems,
that can be grouped in two families: configurational or Eshelby-like forces,
and frictional forces.

In our models the configurational energy £ is invariant for translations
of the crawler, meaning that it depends only on the shape z and on a time-
dependent load exerted by the crawler itself. We assume that the energy
takes the form

E(t,x) = (Az,x) — (x,L(t)) (7.1)

where A: X — X is symmetric positive-semidefinite, with ker A =Y, while
{(t): [0,T) — Z is continuously differentiable.

Moreover, we can define a symmetric linear positive definite operator
A: Z — Z such that A = A|z.

We assume a rate-indepent dissipation, that in our case can be view
as considering Coulomb dry friction, so that the forces are described by a
dissipation potential D: R™ — R, that we assume convex (and so continuous),
coercive and positively homogeneous of degree 1.

Thus the evolution of the system is described by the force balance

0 € aD(i(t)) + DLE (¢, x) (7.2)

where D, denotes the gradient with respect to the x variables, while 0D is
the subdifferential of D. We say that a function z: [0,7] — X, differentiable
for almost all t € (0,7, is a solution of the problem (7.2) with starting point
xo if £(0) = z¢ and z(t) satisfies (7.2) for almost all ¢ € (0,7).

Since D is positively homogeneous of degree 1, we have that 9D(§) C
0D(0), where 9D(0) is convex and compact, by the convexity and coercivity
of D.2 We immediately see that

_D,E(t,x) € ID(i(t)) C 9D(0)

! Actually, as we will show in Section 7.3, it is possible to extend the same argument to
continuous, piecewise continuously differentiable functions /.

2We remark that, strictly speaking, the subdifferential consists of elements of the dual
space (R™)*, but since we are working with finite dimensional spaces we implicitly adopt
the usual identification of the elements of the dual with vectors of the space.
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and in particular that the initial point zy must satisfy
—D,£(0,x9) €C 9D(0) (7.3)

We will call such initial points xg admissible for the problem.

The evolution of systems of this form, frequently referred as rate-independent
systems, is a very well studied problem (see [MT04; Miel5|). Indeed, it is
known that the differential inclusion (7.2) admits always at least a solution for
every admissible initial point. However nothing can be said about its unique-
ness: indeed, as we show below, a additional “symmetry breaking” condition
is required to assure that exists only one solution, whereas counterexamples
with multiple solution can be constructed in the other cases.

Let us proceed by casting system (7.2), in the form of a variational
inequality, a classical way to write rate-independent systems

For a given external load ¢(t), the evolution z(t),y(t) of our system is
obtained as a solution of the variational inequality

(Az(t) = £(t), w = 2(1)) + D(w,v) = D(2(),9(t)) = 0 (VD)

for every (w,v) € R4 x RY, where we write D(w,v) meaning D((w,v)). In
particular this must hold for w = 2(t), for which we get

D(:(t),v) — D(2(t),y(t)) >0 for every v € R? (7.4)
We now make state our symmetry breaking assumption.

(SB) For every w € R there exists a unique vmin = Umin(w) € R such
that
D(w,v) — D(w, Vmin) >0 for every v € RY

We notice that, if (SB) holds, then the displacement () can be recovered
as a function of the shape change 2(t), namely

Y(t) = vmin(£(1)) (7.5)

We also remark that vy, is positively homogeneous of degree 1.
We can use the notion of vy, to reduce the dimension of the problem
associated to the variational inequality (VI), leading to

(Az(t) — £(t),w — 2(t)) + Dn(w) — Den((t)) > 0 for every w € R4
(RVI)
where Dy, is the “shape-restricted” dissipation, i.e. the dissipation after
minimization with respect to translations of the crawler,

Dsh(w) = D(w, vmin(w)) (7.6)

This allows us to study the system for the shape changes alone and then
recover the displacement y(t) of the crawler through the relationship (7.5).
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Before discussing existence and uniqueness of the solutions for our problem,
let us notice that Dy}, is convex (and therefore continuous) and positively
homogeneous of degree 1. To show this, we recall that w — vpin(w) is
positively homogeneous of degree 1. Hence, for A > 0

Dsh(Aw) = D(Aw, viin (Aw)) = D(Aw, Avmin(w)) = AD(w, Umin (w)) = ADgp(w)

Regarding the convexity of Dgy, we observe that for every 0 < A < 1, writing
wy = Aw + (1 — Aw), we have

ADgp(w) + (1 = N)Dgp (@) > AD(w, vmin(w)) + (1 — A)D(0, Vpyin (0))
> D(wyx, Mmin(w) + (1 — A)vpin(w))
> D(wh, Vmin(wy)) = Dsn(wy) (7.7)
Let us recall that the subdifferential of Dy}, in w is defined as
D, (1) = {€ € R?: Dy, (w) > Dy, (@) + (£, w — @) for every w € R"~}
Setting C* = 0D4,(0), we observe that C* is convex and satisfies
Dsn(w) = max (& w) (7.8)

The reduced variational inequality (RVI) can be restated in the subdiffer-
ential formulation of the problem, namely

0 € 0D (3()) + D.E(t, 2(1)) (SF)

where, since the energy £ depends only on the shape z and not on the
displacement y, by a slight abuse of notation we write £(t, z) with the obvious
meaning. Also for the reduced problem, we can identify the admissibility
condition for the initial point, namely

_D,£(0, ) € C* (7.9)

We notice that this condition is actually equivalent to (7.3). We observe
that, decomposing (7.3) in the shape and displacement components, the
displacement part does not depend on the data and sets the constraint
—Dy& = 0, but the intersection of D with the subspace {y = 0} corresponds
exactly to C*.

Compared with the starting problem (7.2), the shape-restricted problem
(SF) has strongly convex energy, and so we can apply the following result,
providing also uniqueness (cf. [Mie05, Theorem 2.1]).

Theorem 7.1. Given £ € C1([0,T],R"™%) and 2o € A1 (¢£(0) — C*), there
exists a unique function z € CHP([0,T],R?), with 2(0) = 29 and such that
the shape-restricted variational inequality (RVI) is satisfied for almost all

te[0,7T].

We remark that once again that the symmetry breaking assumption (SB),
allowing the dimensional reduction, is actually necessary to attain uniqueness,
as shown below by Remark 7.2.



B 7.2. Motility of a two-segment crawler 135

L1+ = (t) Lo+ 29 (t)

Ul (t) L1+ UQ(t) L1+ Ly + U3(t)

Figure 7.1: The model of our crawler. The dotted lines represent the rest lengths of
the two springs.

7.2 Motility of a two-segment crawler

The crawler: formulation of the problem

We now see how the framework presented in the previous section applies
to a model of crawler, such as that represented in Figure 7.1. The crawler
is composed of two adjacent rods, identified in the reference configuration
by the segments [X;, Xs] and [X2, X3]. We assume X; = 0, Xy = L; and
Xo = Ly + Lo, so that L and Ly are the reference lengths of the two rods.
A point X of the crawler is mapped to the point z = x(X,¢) in the deformed
configuration and thus its displacement is u(X,t) = x(X,t) — X. It is useful
to set uq(t) = u(Xy,t), ua(t) = u(Xa,t) and us(t) = u(Xs, t).

We denote the derivatives with respect to space and time with a prime
and a dot, respectively,

u' (X, t) = aaXu(X, t) WX, t) = gtu(X,t) (7.10)

The crawler interacts with the substrate only through three rigid legs
located at X1, X9 and X3. These interactions are described by the (directional)
friction law

{F_} if u;(t) <0
Fi(t) = F(X;,t) e  [-Fy,F-] ifa;(t) =0 (7.11)
{-F;} if w;(t) >0

where i = 1,2,3. We assume that
F_>F_ >0 (7.12)

This means that the absolute value of the friction force is not constant and
depends on the direction of motion; moreover the coordinates are chosen so
that negative velocities generate greater friction.
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The two rods are assumed to be elastic, with stiffnesses k1,ko, and subject
to an active distortion €9(X,t). We assume that the distortion is uniform
along each rod so that

e1(t) if X € (0,Ly)

. (7.13)
Eg(t) if X € (Ll,Ll + Lg)

Eo(X,t) = {

The rest length of the two rods is thus (1 + e1(t))L1 and (1 + e2(t)) Lo,
respectively.

Internal energy and dissipation

We describe the state of the crawler with two parameters z = (21, 22)!
associated with its shape and a parameter y that identifies its position. More
precisely, we set

21(t) = ug(t) — up (t) zo(t) = ug(t) — ua(t) y(t) = ua(t) (7.14)

The stored energy of the crawler is given by

Ly Li+Lo

£ = ";/(u’(x, £) —e1)2dX + % / (W (X, 1) — e2)2dX
0 Ly
2 2
_ k12Ll [UQ(t);ul (t) _ 61(t):| + k22LQ [u;;(t)l?QUQ(t) _ 52(25)]
= & (As(0), 2(0)) — (6(2), 2(0) + () (7.15)

where we have used the fact that minimal energy leads to X +— u/(x,t)
constant along each of the two rods, and we have set

(0 _ (kaa(t)
A= <Lo g) 0= (nexo)
o(t) = k1L1;1(t)2 n k2L2;2(t)2

We thus see that, for a prescribed active distortion (), the internal energy
of the crawler depends only on time and on the shape z(t), allowing us to
write from now on & = £(t, 2(t)).
The dissipation produced by the displacement u; — u; + v; of a single
contact point is
d(v;) =vf Fy —v; F_ (7.16)

where

i > i <
ot =V BVi= 0 and v, = v <0 (7.17)
0 if v; <0 0 if v; >0
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and therefore the dissipation produced by a shape change z — z + w and a
position change y — y + v is

D(w,v) =d(v—wi)+ d(v) + d(v+ws) (7.18)

We observe that D is convex and positively homogeneous of degree 1.

We now want to indentify when the symmetry break condition (SB) is
satisfied. First of all we observe that D(w,-) is differentiable everywhere
except on the finite set {w,0, —wy}. A straightforward computation shows
that (SB) is equivalent to assume

F_+42F, F_+F, °OF_ # F, (7.19)
Indeed, such conditions ensure that
9D (w,v)
v
that, for the convexity of D(w,-) implies the existence of a unique minimum
attained at v = Vpin(w) € {wy,0, —w2}. We remark that, assuming (7.12),
we already excluded the last two conditions in (7.19), so it remains only

F_ # 2F, | that from now on will be assumed true. With simple considerations
on the sign of the derivative we can determine the exact value of vy,. Precisely

(_) max{wl,O, —QDQ} if F_ > 2F,
VUmin(W) =
i middle(@y, 0, —wy) if 2F, > F_ > F,

#0 for every w € R? and every v € R\ {wy,0, —ws} (7.20)

(7.21)

where we have introduced a ‘middle’ function that returns

e if its three arguments have all different values, the one with the middle
value;

e if at least two arguments have the same value, that value.

More pragmatically, we order the triplet (w;, 0, —wy) and pick the middle
element. The behaviour of vy, according to the values of the friction force is
illustrated in Figure 7.2.

Remark 7.2. We now show that, when assumption (7.19) does not hold, it
is possible to find multiple solutions for problem (VI). Let us set F_ = 2F
and assume that, at the initial time ¢ = 0, the state of the crawler is such
that both the springs are in the state of maximum compression, namely

k
*1(21 — Liey) = —F_ — (29 — Logg) = —F4

We consider an external load such that, for ¢t € [0, T], we have £;(¢) > 0 and
€9(t) = 0. Under this conditions, the system has infinite solutions, identified
by the parameter p € [0, 1] and defined by

u(t) = —pliér(t) up(t) = u3(t) = (1 — p)Lig1(t)
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(a) Case F_ > 2F,. (b) Case 2F, > F_ > F.

Figure 7.2: Contour plot (dashed) of the function vy, (w) for different choices of
the friction parameters.

The shape-dependent dissipation

In the previous section we check that the framework of Section 7.1 is satisfied,
so that we can apply Theorem 7.1 and get the existence and uniqueness of
the evolution of the systems, provided admissible initial data. From now on
our plan is to study the nature of such solutions.

Our next step is therefore to study the restricted dissipation Dg, and
express more explicitly its differential. We consider separately the two cases
F_ >2F, and 2F} > F_ > F,, since a different behaviour is observed.

Case F_ > 2F,

We divide the plane into three regions A;, As and As, as shown in Figure 7.3.

(A7) This is the region defined by w; < 0 < ws, that implies vy, (w) = 0
and

Dan(w) = (—wy +w2) F} = (a1, w)  where aq = <_FF+>
+

(A2) Here we have w; > 0 and —ws < wy, 80 Vpyin(w) = wy and

2F
Dsh(w) = (2w1 + wg)F+ = <o¢2,w> where ag = <F+>
+

(A3) Here we have we < 0 and —ws > w1, 80 Umin(w) = —wy and

Dan(w) = (—wy — 2w2) Fy = (ag,w)  where ag = <__2F;:L>
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The subdifferential of Dy}, in the origin is the convex hull generated by
a1, ag, ag (cf. Fig. 7.5), namely

C’y = 0D (0) = conv{ay, ag, as} (7.22)

If w € int A;, then 0Dy, (w) = «;, whereas if w € A; N A; \ {0}, then
0Dgh(w) = @, where the latter denotes the edge of C having endpoints
a; and o, namely @;a; = conv{a;, o }.

Figure 7.3: Case F_ > 2F, . The three regions A, A; and As, the contour lines of
Dqp, (dashed) and its subdifferential at the origin C% (red).

Case 2F, > F_ > F,

In this case we have to divide the plane into six different regions, as shown in
Figure 7.4.

(B1) Here w1 < —wy < 0 and so i (w) = —we. In this region we have

Dan(w) = (mwn—wp) Fyt(wo) o = (fg,w)  where f = <—F:11+F_>

(Bz) Here —wy < w; < 0 holds, s0 vpin(w) = wy. In this region we have

Dsn(w) = (w1tw2) Fi4-(—wi) F = (Bg,w)  where [ = (FJrf‘:JrF_)
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(B3) Here —ws < 0 < wy holds, S0 vpyin(w) = 0. In this region we have
F_
Dgh(w) = (we) Fy + (w1)F- = (B2, w) where 33 = <F+>
(B4) Here 0 < —wg < wy holds, S0 vmin(w) = —ws. In this region we have
Don(w) = (—wo) Fy+(wi+wn)F_ = (B,w)  where fy= ('~
shlW) = (—w2) '+ (W1Tw2)'— = (D5, W wihere Dg = “F, 4+ F_

(Bs) Here 0 < w; < —ws holds, S0 vpyin(w) = wy. In this region we have

Dgp(w) = (w1) Fy+(—w1—w2) F = (B3, w) where 5 = <F+_;7F_>

(Bg) Here wy; < 0 < —ws holds, s0 vyin(w) = 0. In this region we have
—F,
Dsh(w) = (—w1)Fy + (—we)F- = (B1,w) where 35 = F

The subdifferential of Dy, in the origin is

CE == 8,Z)Sh<0) - COI’IV{ﬂl, 527 537 /347 557 56} (723)
If w € int B;, then 0Dg,(w) = B;, whereas if w € B; N B; \ {0}, then
0Dgh(w) = B;3;, using the notation we introduced in the previous case.
Stasis domains and the laws of motion

We observe that the gradient of £ with respect to the z-coordinates corresponds
to the vector composed by the tensions of the two springs, i.e.

_ o [(BEEO-amh)) (1)
D& 1) = A1)~ 10 = (% (zalt) - sz(t)L2)> - (Tz(t)> =T
(7.24)

Thus, from (SF), we have

—T'(t) € 0Dsn(2(t)) (7.25)
We can distinguish between three different situations.
o If 2(t) =0, then —T'(¢) € C*.

o If 2(t) € int A; for some 4, then —T'(t) = o;. Similarly, if 2(¢) € int B;
for some i, then —T'(t) = ;.

o If 2(t) € A; N A; \ {0} for some i # j, then —T'(t) € &;a;. Similarly, if
#(t) € B; N Bj \ {0} for some i # j, then —T'(t) € B;5;.
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w2

Figure 7.4: Case 2F, > F_ > F. The six regions By,... Bg, the contour lines of
Dqp, (dashed) and its subdifferential at the origin C% (red).

This gives us a first description of the behaviour of our system. The
tensions of the springs are allowed to change only within the set —C*, that we
call stasts domain, in analogy with the elastic domains used in elasto-plasticity.
Shape changes, and therefore motion, can occur only if the tensions have
values on the boundary of —C*, to which we refer as slip surface.

The next step is to use the information contained in (7.25), combined
with the definition of T'(t), to recover how variations in the active distortion
produce shape changes. The best way to do that is to work in terms of the
tension state of the crawler T'(¢) instead of the shape state z(t).

First of all we notice that, by differentiating (7.24), we get

Ti(t) = —k1€1(t) + j,illzl () (7.26a)
To(t) = —koéa(t) + Zé@(t) (7.26b)

If —=T'(t) € int C*, from (7.25) we have 2(¢) = 0 and the previous equations

reduce to
Ti(t) = —kic1(t)  To(t) = —kaéa(t) (7.27)
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Figure 7.5: Case F_ > 2F,. The stasis domain —C% = —9Dg,(0).

that describe the evolution of the system. On the other end, when T'(¢) lies
on the boundary of —C*, the behaviour of the system is less trivial. We will

discuss first the simpler case F_ > 2F and then consider the second case
2F, > F_ > Fy.

Case F_ > 2F

First of all let us introduce the unit vectors

w=p(l) =) =0

that are the outer unit normals to () respectively along the edges azas, azaq
and ajop. The constraint —7'(t) € C implies that, if T is differentiable at
time ¢, then

<T(t), V1> =0 it ~T(t) € azaz
<T(t), u2> —0 it ~T(t) € azaq (7.28)
<T(t), y3> =0 it ~T(t) € aas

If one of the scalar products were positive, then the tension should have been
outside the stasis domain C” for the times immediately before, and similarly,
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if one of them were negative, the tension would be outside C for the times
immediately after.
Let us note that condition 7.28 can be expressed in a more concise way as

—T(t) € New, (T(t)) (7.29)

where N¢(T') denotes the normal cone to the convex set C' at the point 7.
This is also a classical way to approach the problem (RVI), usually known as
differential inclusion formulation [MT04; Mie05].

Following this same line of thought, each of the constraints could be
decoupled into two inequalities on the increments of T', one for the past and
one for the future, without requiring the differentiability of T'. However,
for our purposes, we will work under the assumptions of Theorem 7.1, that
guarantees the Lipschitz continuity of the tension 7'(¢), so that the times
when T'(t) is not differentiable can be neglected for the study of the motion.

A consequence of (7.28) is that, when we reach an edge, either the tension
is differentiable, that implies <€(t), 1/2-> = 0 and thus means that £(¢) is in
a certain sense “well calibrated”, or we have a time t of non-differentiability
for T'(t) and z(t), corresponding to an abrupt transition between rest and
motion.

If —T'(t) lies on one on the vertices of C, then two of the constraints of
(7.28) are satisfied simultaneously, leading to

z1(t) = L1&1(t) Zo(t) = Loga(2) (7.30)

We also recall that, by (7.25), we know that 2(¢) € A;; combining this with
(7.30) we see that, to keep that tension configuration, the derivative of the
active distortion must lie in a specific cone. In more detail, we have the
following situation.

o If —T'(t) = au, then by (7.28) we have 21 (t) < 0 < 29(¢t) (i.e. 2(t) € A1),
that implies ©(t) = 0 and

€1(t) <0 <éq(t)
The resulting motion of the crawler is
1(t) = —L1€1(t) > 0 Ug(t) =0 Us(t) = Laéa(t) >0

o If —T'(t) = g, then 21(¢t) > 0 and 21(t) > —22(t), so that v(t) = 21(t)

and I
E1() >0  and  &y(t) > —L—lél(t)
2
The resulting motion of the crawler is
u1(t) =0 Ug(t) = L1€1(t) > 0

us(t) = Lig1(t) + Laga(t) =2 0
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o If —T'(t) = a, then 25(t) < 0 and 21 (t) < —22(t), so that 0(t) = —22(¢)
and

L
() <0 and él(t)g—L—Qég(t)
1

The resulting motion of the crawler is
U1(t) = —L1€1(t) — Laéa(t) > 0 Ug(t) = —Laéa(t) > 0
uz(t) =0
If —T'(t) lies in the interior of one on the edges of C%, then condition
(7.28) gives us only one constraint. However a second constraint is obtained

by (7.25), since we know that, if —T'(¢) € int @z, then 2(t) € A;NA;. In
more detail, we have the following situation.

o If —T(t) € agas then we have v(t) = 0 and
Z21(t) =0 Z9(t) = Laéa(t) > 0
T1(t) = —ki€1(t) Ty(t) = 0
The resulting motion of the crawler is
w1 (t) = a2(t) =0 u3(t) = Laéa(t) > 0
o If —T'(t) € azaq then we have 0(t) = 0 and
Z21(t) = —L1£1(t) > 0 Z2(t) =0
Ti(t) =0 To(t) = —haéal(t)
The resulting motion of the crawler is

uy(t) = —L1€1(t) > 0 Us(t) = us(t) =0

o If —T(t) € azas, differently from the two previous cases, we observe
changes on the tension and length of both segments; however this
happens in a coordinated fashion, namely,

_ Kigi(t) — kada(t)

B 20
Ly Lo

A1(t) = —a(t) = o(1)

that gives the condition £;(¢) > %ég (t) for the admissible active distor-
tion. The tension evolves according to
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Figure 7.6: Case 2Fy > F_ > F,. The stasis domain —C7% = —0Dg,(0).

Case 2F, > F_ > F,

As in the previous case, we want to exploit the constraint —T'(t) € C% to
deduce a condition on T(t) We observe that 1, 5 and v3 are the outer unit
normals respectively to the edges 4085, Bgf1 and P283, but also the inner
unit normals to the edges (182, B384 and B58¢. Thus we have, analogously
to (7.28),

<T(t), y1> =0 if —T'(t) € Bafs U 1B
<T(t), y2> —0 it ~T(t) € BB U BB (7.31)
<T(t), ,,3> =0 if —T(t) € B2B U BsPs

As before, when —7T'(¢) lies in one on the vertices of C}, two of the
constraints of (7.31) are satisfied simultaneously and therefore

4(t) = L1 (1) 2o(t) = Lags(t) (7.32)

Similarly to the previous case, if —T'(¢) € ;, then by (7.25) we have 2(t) € B;,
leading to the following situation.
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o If —T(t) = 1, then by (7.28) we have 2;(t) < —Z2(t) < 0, that implies

0(t) = —22(t) and requires, when T'(t) is differentiable, that

L
éx(t) >0 E1(t) < —72éa(t)
Ly
The resulting motion of the crawler is

u1(t) = —L1é1(t) — Laga(t) > 0 da(t) = —Laéa(t) <0 a3(t) =0

If —=T'(t) = P2, then we have —25(t) < 21(t) < 0, so that 0(t) = 21 (¢)
and

L
é1(t) <0 Ea(t) > —T1éq(t)
Lo
The resulting motion of the crawler is

u1(t) =0 ug(t) = L1€1(t) <0 u3(t) = L1€1(t) + Laéa(t) >0

If —T(t) = B3, then we have 2;(¢t) > 0 and 22(t) > 0, so that o(t) =0
and

£1(t) >0 €2(t) 2 0
The resulting motion of the crawler is

ai(t) = —Lig1(t) <0 ao(t) =0  as(t) = Laéa(t) > 0

If —T(t) = B4, then by (7.28) we have Z1(t) > —22(t) > 0, so that
0(t) = —Z29(t) and

Ea(t) <0 E1(t) > —255(1)

The resulting motion of the crawler is

1 (t) = —L1é1(t) — Laa(t) < 0 ta(t) = —Laa(t) > 0 ws(t) =0

If —T'(t) = B5, then we have —Z9(t) > 21(t) > 0, so that 0(t) = 21 (¢)
and

NOEY Ealt) < — ey ()
Lo

The resulting motion of the crawler is

u1(t) =0 ug(t) = L1&1(t) >0 ug(t) = L1€1(t) + Laga(t) <0
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o If —T'(t) = B¢, then we have 2;(¢t) < 0 and 22(t) < 0, so that o(t) =0
and

£1(t) <0 €2(t) <0
The resulting motion of the crawler is

W) = —Li1(t) >0 as(t) =0  dg(t) = Las(t) <0

As in the previous case, when —T'(¢) lies in the interior of one on the edges
of C%, only one constraint is given by condition (7.31), but a second one is
recovered by (7.25), using the fact that if —7°(t) € int 3;3;, then 2(t) € B;NB;.
The pairs of opposite edges are characterized by the same behaviour of the
crawler, but associated with shape variations of opposite sign. In more detail,
we have the following situation.

o If —T(t) € B2P3 U P58 then we have 9(t) = 0 and
Z1()=0 Z9(t) = Loéa(t)
T1(t) = —ki1(t) Ty(t) = 0

so that it is required that eo(t) > 0 if —T'(¢t) € P23, whereas e3(t) < 0
if —=T'(t) € B5P6. The resulting motion of the crawler is

>0 if —T(t) € B2f3

a(t) = a(t) =0 us(t) = Laa(t) {< i

o If —T'(t) € B354 U Bs1 then we have 0(t) = 0 and

z1(t) = —Li&1(?) Z(t) =0
Ti(t)=0 To(t) = —koéa(t)

so that it is required that e9(¢) > 0 if —T'(t) € Bg/31, whereas ea(t) < 0
if —=T'(t) € B3P4. The resulting motion of the crawler is

e The third case —T'(t) € 182 U P45, is characterized by a coordinated
change in the tension and length of both segments, more precisely

2(t) = —(t) = o(t) = klél(ki) :L lze'g(t)
Ly Lo
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Figure 7.7: Qualitative summary of the motility results of section 7.2. Each triple is

placed in the interior, on an edge or on a vertex of the stasis domain —C*
and describes the admissible directions of displacement for the three
legs while the crawler keeps that tension configuration. A plus denotes
a positive displacement, a minus a negative one and a zero that that
leg must remain steady. For instance the triple (+,0, —) near a vertex
indicates that, for that value of the tension T'(t), we have 4y (t) > 0,
UQ(t) =0 and Ug(t) < 0.

that gives, for the admissible active distortion, the condition &1 (t) >
%éQ(t) if —T(t) € B405 and él(t) < %ég(t) if —T(t) € [162. The

tension configuration evolves according to

7L1&51 (t) + LQéQ(t)
L L
Bip

Ti(t) = Tu(t) =

The resulting motion of the crawler is

. . . ki1é1(t) — kogo(t) | >0 if —T(t) € Bafs

7.3 Motility analysis and crawling strategies

A qualitative description of the results of the previous section is illustrated in
Figure 7.7. The two possibilities considered for the relative magnitude of the
friction forces determine very different motile behaviours of the crawler.

If F_ > 2F,, the legs of the crawler can move only forward. The set —C%

of the admissible tension configurations scales with F',, but it is independent
of the value of F_.

If 2F, > F_ > F, each leg of the crawler can move both forward and

backward. The precise shape of the stasis domain —C% depends on the ratio
F,/F_, although it is always a hexagon with parallel opposite edges oriented
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as in Figure 7.6. If the ratio F; /F_ is fixed, then —C; scales homothetically
with the magnitude of the friction coefficients; if instead we fix the value of
F,, then —C7 shrinks as F_ tends to Fy.

To truly understand the motility of our crawler, we have to consider the
effects of a periodic active distortion £(¢). As a corollary of Theorem 7.1,
we are granted the existence of a unique Lipschitz continuous displacement
u(X,t) for any given continuous and piecewise continuously differentiable
active distortion e: [0, 7] — R2.

We now discuss the main qualitative behaviour of such motility strategies
and then present some illustrative examples. To simplify the computation,
we assume ky = ko =k and L1 = Lo = L.

To produce a non-null translation of the crawler that repeats itself in each
period, sufficiently large excursions in the stasis domain are necessary. More
precisely, during every period the tension T'(¢) has to reach all the three edges
of —C% (if F— > 2F}) or a suitable triple of non adjacent edges of —C% (if
2F; > F_ > F). Since a certain amount of excursion in the active distortion
is spent in crossing —C*, allowing larger fluctuations in €(¢) permits more
performant motility strategies, because in this way a larger amount of the
active distortion is spent moving the legs.

In the case F_ > 2F,, an effective motility strategy can be achieved
even by activating only one of the segments, for instance by setting €2 =0
and assuming a sufficiently large sawtooth oscillation for £;. This strategy
can be compared to a one-segment crawler experiencing the same sawtooth
fluctuations, as that studied in Chapter 6 (cf. [DGN15, Sec. 4]). Indeed,
the one-segment crawler results more efficient: it requires a lower minimal
amplitude Ae of the sawtooth (Ae > 2F, /k instead of Ae > 3F, /k), it
produces a greater displacement after one cycle (Au = (Ae —2F /k)L instead
of Au= (Ae —3F;/k)L ) and it is effective also in the case 2F, > F_ > F.
For such friction ratios a two-segment crawler, performing the sawtooth
strategy above, has a zero net displacement after one cycle.

We remark that in all the situations above, net displacements are possible
only in the direction of lower friction. To achieve a complete motility, i.e. to be
able to move also backwards (against the higher friction) using periodic shape
changes, we need to consider the case 2F, > F_ > F and strategies that
fully exploit two shape parameters. This minimality of two shape parameters
for a complete motility belongs to folklore knowledge for unidimensional
locomotors (cf. for instance [Arr+12a; DT12; GND14; MD15]). The ability
of our two-segment crawler to effectively move in both directions, assuming a
small friction asymmetry, is illustrated by the following strategies.

We consider the periodic change in the active distortion illustrated in
Figure 7.8, recalling that 2Fy > F_ > F,. We set the times so that the
period is T = 37 and divide the evolution of £(¢) into three phases, described
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Figure 7.8: Active distortion strategy (7.33) and associated evolution of the tension.

as follows.
0 ifo<t<r —-n f0<t<T
ity =<¢n ifr<t<2r g2(t)=¢q0 ifr<t<2r (7.33)
—n if2r <t <37 n if2r<t<3r

where 17 > 0 is a given parameter. We require that ntk > F} + F_, to ensure
sufficiently large distortions. Note that, since our system is rate independent,
what really affects the resulting displacement is not n but the increment 77
of the active distortion; actually, any other smooth time reparametrization
of the curve in Figure 7.8 (a) would produce exactly the same displacement
after each period.

The behaviour of the system in the first period depends on the initial state;
however after the first period we always reach the same tension configuration
T(37) = —[32. Since we are interested in the long term behaviour, we assume
T(0) = —f2 and so avoid the initial adjustment period.

We now describe the behaviour in the three phases (see Fig. 7.8).

(71) For0 <t < Fﬂj% the three legs are steady and 75 increases from —F,

to F_. Then, for if‘ < t < 7 the tension are constant but the third
leg moves backwards with us(t) = —nL.

(y2) For 7 <t < % the tension evolves from —f5 to —f4 along the
corresponding edge of —C%. At the same time, the middle leg moves

forward with ug(t) = —%. Once the tension edge —py is reached, for

% < t < 27 the tension is constant, the middle leg is again steady

while the first leg moves backwards with 4 (t) = —nL.
(v3) For 27 <t < 2F+k_ F*, T increases and T decreases at the same rate,

until they reach the edge of —C5. Then, for % <t < %
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the tension evolves along the edge until it reaches the vertex —fs. In
this time interval the third leg advances with #3(t) = Ln. Finally, in the
last interval % < t < 37, the tension is constant, the third leg is

again steady and the middle leg moves backwards with g (t) = —Ln.

The sum of these actions produces in a period the displacement

(7.34)

AF —2F
A u=1L (n’r— 2*)

k

We notice that the strategy we just presented could be slightly improved
by suitably modifying (t), for instance in a way to avoid the temporary
forward movement of two of the legs. However these changes require an a
priori knowledge of all the parameters of the systems, so that the strategy is,
in a certain sense, calibrated to the situation, for instance requiring changes
in £(¢) exactly at the moment when the tension reaches the slip surface,
i.e. the boundary of —C7;. The strategy we presented instead shows the same
behaviour for every choice of the parameters, provided that the assumption
of large distortions is satisfied. Moreover we remark that such improvements
of the strategy decrease only the numerator of the negative term inside the
brackets in (7.34), so the main term is untouched and any improvement
becomes negligible for large distortions n7 or large stiffness k.

The history of active distortion (7.33) was also chosen to show a backward
movement of the crawler, that corresponds to proceeding in the direction
of higher friction. A simple strategy to move forwards is given by the time
reverse of strategy (7.33), namely

i fo<t<r - fo<t<T
e1(t) =9 —n ifr<t<22r g2(t) =<0 ifr<t<2r (7.35)
0 if2r <t <37 n if2r<t<3r

Also in this case, after a preliminary stage, the tension configuration at the
beginning of each period stabilizes to T" = —f5, that will be the starting
condition in our analysis. The evolution of the tension is shown in Figure 7.9.
After a period the displacement produced is

Atu=1L (nT - 5F+2;F‘) (7.36)

We have that
Atu—Au= gL(F_ ~F)>0 (7.37)

and so there is an advantage when moving in the direction of lower friction.
This advantage becomes null as the ratio Fy/F_ tends to one, while it
increases to a constant when we approximate the threshold case F; /F_ = 2.
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We notice that the difference A*u — A~u between the displacement
produced by our twin strategies does not depend on the amplitude 7T of the
distortion. This means that, if the crawler can produce only small distortions,
but slightly greater than the lower threshold (F + F_)/k, then a very large
number of iterations of the first strategy is necessary to obtain a negative
displacement equal to the positive one produced by a cycle of the second
strategy. On the other hand, if the crawler can produce very large distortions
(i.e. n”7T — o0) the outcomes of the two strategies become comparable, in the
sense that the ratio ATu/A™u tends to one.

We remark that reversing the strategy does not always reverse also the
direction of motion, as it happens in the example above. A counterexample
is given by the simple strategy

n fo<t<r 0 ifo<t<r
E1t) =40 ifr<t<2r ga(t)y=qn ifr<t<22r (7.38)
—n if2r<t<3r —n if2r<t<3r

and its time-reverse, for sufficiently large distortions, namely n7 > 3F_k.
Both stategy (7.38) and its reverse produce the same, positive displacement
after a period, equal to

2F_ — F,

k

We notice that in this case the displacement is independent of the distortion
1T, while with the previous strategies we had an asympotically linear growth
in terms of 7. The inefficiency of this strategies with respect to (7.35) can
be seen intuitively also by looking at the behaviour of the crawler during a
cycle. The first and the third legs perform both a forward and a backward
movement, of amplitude growing with 77, that almost cancel each other out,
leaving only the final displacement Au.

Au=L (7.39)

We conclude by remarking that the abstract setup of Section 7.1 can
be applied to analogous crawlers composed by a larger number of segments.
Increasing the number of legs enlarges the range of friction ratios under which
motility in both directions is possible from F; < F_ < 2Fy to Fy < F_ <
NF,. Intuitively, a N-segment crawler can move each leg backwards one
by one, by leaning against the other N — 1 legs, resulting in a strategy that
generalizes (7.33). However also the number of critical friction ratios, to
be avoided in order to satisfy (SB), increases with N, and with it increases
also the number of different scenarios that appear by varying the friction
ratio, and a complete and detailed description of a generic evolution problem
becomes soon burdensome.
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Figure 7.9: Active distortion strategy (7.35) and associated evolution of the tension.






Chapter 8

On the genesis of directional
friction

8.1 Introduction

Modelling frictional interactions is a challenging task, both for the variety of
behaviours experimentally observed, and for the relevance of such phenomena
in the study and control of mechanical devices. The common strategy consists
of a multiscale approach, where the frictional behaviour is an emergent
macroscopic property of mechanical interactions between the asperities of
the two surfaces occurring at microscale [ASO8|. Such interactions are often
described by modelling the asperities with simple mechanical systems, such
as springs and bristles [DB11; Can+95; HF91|.

A classical example of such multiscale approach is the Prandtl-Tomlinson
model, developed to explain the genesis of Coulomb dry friction [Popl0;
PG14]. The model considers the motion of a point mass along a sinusoidal
potential, subject to an external driving force and a viscous damping, showing
convergence to a dry friction behaviour when the sinusoidal oscillations
decrease homothetically. This scenario can be related to the interaction of a
single asperity of the upper surface with a rigid rough lower surface. Such
representation applies also to the interaction of the cantilever with the surface
in a friction force microscope.

In this Chapter we follow this multiscale paradigm to propose an explana-
tion of the genesis of a directional asymmetry in the coefficients of Coulomb
dry friction, in situations where the interaction between the two surfaces is
mediated by bristle-like elements (cf [GD16al).

Our starting point is the paper [Miel2] by Mielke. Here, it is shown that
the quasi-static behaviour of a family of Prandtl-Tomlinson-like systems,
in which the fluctuation in the potential decreases homothetically, converge
to that of a particle subject to dry friction. Moreover, the leftwards and
rightwards friction coefficients coincide with the minimum and maximum of
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the derivative of the oscillating potential. In this way, a directionality in the
friction is produced simply by assuming a suitable asymmetry in the potential.
As we discuss in Section 8.4, a key element in this approach is the change in
the nature of the dissipation, from viscous in the approximating systems to
rate-independent in the limit one.

We apply these ideas to study the limit behaviour of systems characterized
by a mediating, bristle-like element, interacting with a wiggly surface whose
periodic fluctuations scale homothetically to zero. In this way the wiggly
potential is generated by the small oscillations in the mediating element,
induced by the fluctuations of the surface. Moreover an asymmetry in the
wiggly potential can be simply produced by an asymmetry in the mediating
element (e.g. the inclination of a bristle), also in the case of a symmetric
surface.

In order to apply Mielke’s approach to our problem, we need to extend
his framework to more general families of approximating systems, in which
the scaling of the wiggly potential is no longer homothetic, but contains also
a nonlinear term (cf. eq. (8.5)). This is our first result, presented in Section
8.2 (Theorem 8.1), and constitutes the abstract contribution of this Chapter.

From the point of view of applications, our main result is to provide some
physical insight into the origin of directional friction. This is obtained by
constructing some concrete examples of simple mechanical systems producing,
in the limit, directional dry friction, and by interpreting the origin of this
frictional asymmetry in terms of the parameters characterizing each example.

The friction coefficients we obtain are the product of two factors. The
first one is “geometric”: it contains the asymmetry of the system and is
determined only by the roughness of the surface and by the angle of the
mediating bristle-like element. The second factor is instead “energetic”: it
depends on the limit energetic state of the mediating element, but not on
the direction of motion. This last coeflicient is proportional to the normal
force exerted, at the limit, by the mediating element on the surface. In this
way we recover the classical structure of Coulomb friction law, where the
friction force is the product of a coefficient characteristic of the surfaces and
the modulus of the normal forces exchanged between them.

Our results are then used to discuss the with the nap/against the nap
asymmetry. As we will argue better in Section 8.3, our intuition of such
asymmetry actually includes under the same name several distinct phenomena,
producing the same kind of directionality. Despite the complex behaviour
that can be showed by a bristle, our “angular spring” model of Section 8.3
can be used to outline two fundamental effects, corresponding to changes in
the two factors that characterize the friction coefficients. The geometric effect
occurs when the bristle keeps the same configuration during the two phases
(with and against the nap), and the directionality is due to the inclination
of the bristle, that in this way “perceives” a symmetric fluctuation of the
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surface as asymmetric. The energetic effect applies to situations where the
configuration of the bristle flips when the velocity changes sign, so that the
tip of the bristle is always behind its root with respect to the direction of
motion. In this case the geometric component is unchanged, but the bristle
switches between two different energetic states, exerting a different normal
force on the surface.

Finally, we notice that the behaviour of the “angular spring” model of
Section 8.3 has a close resemblance to that observed experimentally for the
robotic crawler developed in [ND14|. There, slanted bristles, interacting with
a groove-textured surface, are used to obtain net displacement, when the body
of the crawler performs a cycle of elongation and contraction. The bristle-
surface interaction produces an oscillatory friction force, and it is shown that
the system can be effectively discussed considering supports moving on a
flat surface and experiencing a constant average friction force. Such result
supports our approach and encourages a future experimental validation of
the predictions of our models.

8.2 Abstract setting

In this section we show that the evolution of a prototype one dimensional rate
independent system, with energy £ and a dissipation potential R positively
homogeneous of degree 1, can be constructed as the limit of the evolutions
of a family of systems (&, R.), where & = &€ + V., with V. an oscillatory
(“wiggly”) small perturbation, and R. is a small viscous dissipation potential.
The system (&, R.) will describe a motion on an undulatory surface with
vanishing small roughness, while the system (£, R) describes motion on a flat
surface with directional dry friction.

Let us therefore consider a mechanical system having internal energy
E(t,z) =®(z) — L(t)z (8.1)

where ¢ € [0,7] represent the time and z € R is a one-dimensional state
variable. We assume that ® € C?(R,R) is a uniformly convex function, while
¢ € CY([0,T],R). The dissipative effects of a change in the state of the system
is described by the dissipation potential

fi >0
R(v) =0 0= (8.2)
p—v forv <0

where p_ < 0 and p4 > 0 are suitable constants. We consider the quasi-static
evolution of the system, described by

0€ 8:R(2) + D.E(L, 2) (8.3)
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where the dot " denotes the derivative with respect to the time variable t, 0;
denotes the subdifferential with respect to 2 and D, denotes the derivative in
the z variable (below also denoted briefly, when not ambiguous, with a prime

/).

Similarly we introduce the following family of perturbed systems depending
on a small parameter €. The energy of these systems is obtained by adding
to £ a small wiggly perturbation. More precisely we have

E(t,2) =®(2) — L(t)z + V(2) (8.4)
with . .
Vo(z) = eW (7) +e2Q (e; 7) (8.5)
€ €
Here W € C?(R,R) is a 1-periodic (non-constant) function; whereas Q: (0,eq)x
R — R, for some g > 0, is 1-periodic and C? in the second variable. Moreover

we assume the existence of two positive constants Cg ¢ and Cg ;1 such that,
for every 0 < € < g and for every y € R we have

Q)| < Cqo Q' (e59)] < Can (8.6)
where the prime ' denotes the derivative with respect to the second variable y.

The systems are subject to a viscous friction, described by the Rayleigh
dissipation potential

Y
ISR

Re(2) = 5% for some v > 0 (8.7)
and their (quasi-static) evolution is described by the equation
0=D;R.(2) + D.E.(t, 2) (8.8)

We are going to show that the behaviour of the system (8.3) is approxi-
mated, for ¢ — 0, by that of the systems (8.8). To do so, a last assumption
is needed, in order to link the two situations. Namely, we require

pr =maxW'(z) >0 p— =min W' (2) <0 (8.9)
We are now ready to state the main result of this section.

Theorem 8.1. In the framework described above, let z.: [0,T] — R be a
family of solutions of (8.8), such that
22(0) = 20 € (@)L ([(0) — ps, £(0) — p_]) (8.10)
Then, the differential inclusion (8.3) has a unique solution z: [0,T] — R for
the initial conditions z(0) = 2. Moreover, for e — 0, this solution satisfies
ze—z inC%[0,T]) (8.11)
to to
/2R€(z‘€(t))dt — /R(z‘(t))dt forevery 0 <t; <te <T  (8.12)

t1 t1
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Theorem 8.1 is proved in Section 8.5, through a convergence strategy
illustrated in Section 8.4. Let us remark that the right term in (8.10) is
well defined since, being ® uniformly convex, it follows that ® is globally
invertible with range equal to R.

For our application, it is useful to study an apparently more general
situation and show that it actually falls in the framework of Theorem 8.1.
Let us consider a function F € C3([—dx, 7], R) defined in a neighbourhood
of zero and such that

F0)=a#0 (8.13)
Let W € C?(R,R) be a 1-periodic (non-constant) function and set
py = max W' (z) >0 p— =min W' (z) <0 (8.14)

We consider also a function Q: (0,£g) X R — R, defined for some g > 0,
and such that it is 1-periodic and C? in the second variable. We assume
that there exist two positive constants CN'Q’O and CN'QJ such that, for every
0 < e < ég and for every y € R, we have

19(s3y)| < Coyo |Q/(e;y)| < Ca, (8.15)

Let e7 be small enough to satisfy e [|W||, +%Co0 < d7. We now
consider, for every positive € < min{er,eg}, the general wiggly potential V.
defined as

Ve(z) =F [EW (g) +£%Q (5; g)} — F(0) (8.16)

Lemma 8.2. In the framework above, for every wiggly potential V. of the
form (8.16) there exist two suitable functions W and @Q, such that V. can
be written in the form (8.5) for sufficiently small ¢ > 0. Moreover we have
W(y) = aW(y) and therefore

Pt = O+ if >0 <resp. P = moH- if a< 0) (8.17)

p— = op— p— = —Opy
Proof. We recall that, expanding F as a Taylor series, we have
F"(0
F(u) — F(0) = au+ 2( )u2 + h(u)u? (8.18)

with 1in% h(u) = 0. Moreover, since F € C3, it can be shown that h € C! and
u—
R (0) = F"(0)/6. Thus, applying this expansion to (8.16), we get

Vo(z) =W (g) +£%Q (5; g)
where we set W(y) = aW(y) and

F"(0)
2

Wiy + 27 D g+

+h (eW(y) +%Qy)) W(y) +£Q(;y))?

Q(e;y) = aQ(g;y) +
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All the desired properties of W follow from their analogous ones for W. To
recover the desired estimates on Q and @', we notice that, for any arbitrary
Cj, > 0, we can find g, such that

|h (eW(y) +€%Q(y))| < Ch

f R and 0
‘h/ (EW(y) —l—EQQ(y))‘ < ’_7_-///(0)‘ +1 or every y € and € € ( ,5h)

Thus, for every for every positive € < min{l,er,eg,ep}, we have

. F0
Q)] < Coo = aloot T W+

F'(0)
2

B0+ 0n (Wl + Coo)’

The twice continuous differentiability of ) follows from those of @ and W,
recalling also that h(u)u? is twice continuously differentiable in u. Moreover
we have the estimate

‘Q/(E; y)| < CQ71 = aégl + .7:”(0) HWH ‘W’HOO + f’l(O)égoéQ,lﬁ-

[e.e] ‘

+ (F"(0) +1) (HWIIOo + (3‘970)2 +
+Ch (Wl + Con) (W] + Con)
O

The form (8.16) of V. is interesting from a physical point of view, since
it highlights the role of two different elements in our applications. Formula
(8.17) shows that the effective friction p+ in the ¢ — 0 limit is the product of
two quantities: pi associated to W and « associated to F. On one hand the
“geometric” coefficients py, p— are related to the (directional) roughness of
the surface, as perceived by the geometry of the system. On the other hand,
the “energetic” coefficient « is associated to a “tension” in the element that
mediates the frictional interaction.

This duality is quite central in our applications. Firstly, this distinction
reinforces the resemblance with Coulomb’s classical formulation of dry friction,
where the friction intensity depends both on a coefficient, related to the
properties of the interacting surfaces, and on the normal force exerted by
each surface on the other one. Remarkably, in our models, the term « is
proportional to the normal force exerted, in the limit case, on the surface by
the mediating element.

Moreover, when discussing the with the nap/ against the nap asymmetry
in Section 8.3, we will see that it can be produced by two distinct effects: a
geometric effect, given by the intrinsic asymmetry of the system, as captured
by the coefficients u+, and a energetic effect, where we observe a change of
the configuration of the system between the two phases (with and against
the nap), producing a change in the value of .
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8.3 Modelling

In this section we discuss three different models to obtain directional dry
friction as the limit of the effects of an interaction with a surface having
vanishingly small roughness, with the mediation of a hair/bristle-like element.
We remind that, as in the previous section, we are assuming quasi-static
evolution.

The limit system We characterize a frictional interaction governed by dry
friction through a system, illustrated in Figure 8.1, consisting of a horizontal
spring, that evolves as follows. The position of one end of the spring is
controlled by the function ¢ € C1([0, T], R); the second end of the spring, with
position u(t), is free to move and interacts with the surface, according to the
force-velocity law

—p+ < 0 ifa>0
fimi) =S p € [=py,—p-] ifi=0 (8.19)
—p_>0 if <0

Thus the limit system has dissipation potential (8.2) and internal energy

E= % (L= — q(t) + u)2 + const. (8.20)
where kj, and L} are respectively the elastic constant and the rest length of
the spring.

The state of the system will be described by a coordinate z of the form
2(t) = u(t) + ¢. The constant ¢, introduced for technical reasons, has different
values in the models and can be thought as a gap between the position u(t)
of the second end of the spring and the position z(¢) at which, in the e — 0
limit, the bristle-like mediating element interacts with the surface, cf. Figure
8.1. Thus the energy £ can be written in the form (8.1) by setting

D(z) = B2 0 =knla(t) - LS (821)

and neglecting a remaining term r(t), depending only on the time ¢, since it
does not affect the dynamics (8.3). We also remark that the change of variable
to z does not alter the dissipative terms, since & = 2. Finally, we mention
[Ale16], where a similar model was used to study discontinuous evolutions.

The approximating systems In the approximating systems, we imagine
that the surface in no longer flat, but has a small, e-periodic perturbation of
the form

we(x) = ew (g) (8.22)
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Figure 8.1: The limit system.

where w € C%(R,R) is a 1-periodic (non-constant) function. Moreover we
define

w4 = maxw' (z) > 0 w_ =minw'(z) <0 (8.23)

The approximating systems are still characterized by a horizontal spring
as in the limit model. However, the interaction with the surface is no longer
subject to dry friction, but mediated by a new element, that ideally plays the
role of a hair or a bristle, attached to the end wu(t) of the horizontal spring.
This element has, up to a constant, an internal energy V. as in (8.16), that
depends only on w and on the magnitude of the perturbation €. Finally, the
only dissipative force acting on the system is a (vanishing) viscous force

vis

Vis (1) = —&V4 (8.24)
so that the Rayleigh dissipation potential of the system is given by (8.7).

In the following we discuss three different models for this mediating
element. In the first model, the mediating element is a vertical spring. The
second model is actually a generalization of the first one, since in this case
the spring forms a constant angle 9 with the vertical axis. In the third model
the mediating element is a straight rigid bar with constant length, but now
the angle with the vertical axis can change and is influenced by an angular
spring.

First model: vertical spring

In our first model the mediating element (bristle) is a vertical spring, with
horizontal position u(t), as illustrated in Figure 8.2. One end of the spring
has fixed height, while the height of the other end follows the fluctuation of
the surface, in such a way that the length of the spring is

L(u) = h —w.(u)
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o~

Figure 8.2: First model: vertical spring

Let £ > 0 and L**' be respectively the elastic constant and the rest length of
the spring. Setting z(t) = u(t), the energy of the vertical spring is

P b twn(2)’ = FEw ) = Va(e) + FO)

where W(y) = w(y) and F(y) = & (Lt — h + y)2, so that we have
a = F'(0) = k(L™ — h) pg = Wy o = w_

We require
Lrest 7& h

so that o # 0 and (8.13) is satisfied. We notice that, for instance, setting
L**' > h means that the spring is always compressed.

In this way all the requirements of Lemma 8.2 are satisfied, and therefore
we can apply Theorem 8.1 to obtain the desired behaviour for the limit system.
In this way, for a compressed spring, we recover a sort of Coulomb law, since
the friction coefficients are proportional to the normal force exerted by the
spring on the surface, that, in the limit, is exactly equal to a. Moreover, if
the profile of the fluctuations is asymmetric, in the sense that w, # w_, then
also the friction is asymmetric.

Second model: slanted spring

Our second model generalizes the first one, since in this case we consider a
slanted spring forming a fixed angle 0 < ¢ < 7/2 with the vertical axis, as
illustrated in Figure 8.3. As before, one end of the spring has fixed height and
horizontal position u(t). In this case, however, the horizontal position of the
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Figure 8.3: Second model: slanted spring

second end will be different from u(t) and denoted with p(¢). We therefore

have
u—p

—— =tan? 8.25
h — we(p) ( )
We can express explicitly u as a function of p as
u— htan¥ = p — we(p) tan ¢ (8.26)
We require
w4 < cot (8.27)

so that w.(p)tan? < witand < 1 and therefore p.(u) is a one-to-one
correspondence. The length of the spring is thus

L=¢W—pﬁ+m~ﬂHMV=ZQ§=hZ£§M

For our purposes, it is convenient to adopt the variable

(8.28)

z=u— htand
to represent the state of the system. Setting
9(p) = p —w(p) tan ¥

we notice, for every choice of € > 0, the function g relates z(t) with p(t)
through the one-to-one correspondences

The bijectivity of g follows from (8.27) since

d(p) =1—w'(p)tand > 0

The inverse function g~! is twice continuously differentiable and such that

g Y z+1) =g 2) +1 for every z € R.
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We set
W(z) =w (97" (2)) Q(e;2) =
and . . )
rest -y
Fl) = 2 (L B cosz?)

so that, up to a constant, the internal energy of the slanted spring is given by

Ve(z) = F(eW(z/¢)) of the form (8.16).

We now want to determine the coeflicients p4. Since

a= i <Lrest - h) (8.29)

cosV cos v

it remains to find gy and p_. Since this involves the derivative of g1,

difficulties may arise trying a direct computation, since g cannot be always
inverted explicitly and thus, in general, YW may not be explicitly determined.
Such is the case, for instance, of a sinusoidal choice of w, for which the inversion
of g leads to the well studied problem of the inverse Kepler equation [AKNO6b.

However, for our purpose, the full knowledge of the fluctuation profile as
perceived by the slanted spring, i.e. the explicit form of W, is not necessary,
since we are only interested in the minimum and maximum of WW. Such
values can be computed without inverting g explicitly. Since the same issue
will arise also in the next model, we summarize the result in the following
lemma.

Lemma 8.3. Let w € C3(R,R), be a 1-periodic function with w, = maxw'(z) >

0 and w_ = minw'(z) < 0 . For some constant a, with w_" < —a < wi', we
consider

g(p) =p+aw(p) >0 W(2) =w (g (2))
Then

— / — CL)+7 = 1 / = 700—
py =max W' (z) = T+ aos p— =min W'(z) T aw. (8.30)
Proof. For any fixed z € R, let us define p = g~1(2). We have
. L s 1 w'(p
WD) = '(p)- (47)(2) = /) 2 (s

J(B) 1+ aw'(p)

Since g is a bijection and the function y — is increasing monotone for

+ ay
Y € [w_,w4], we get
w'(p) W+
i+ I?eaﬂé( (2) r;inleaﬂg 1+aw'(p) 14 awy
w'(p) w—
_ = 1 W, > = 1 =
a TR (2) %lelﬂlg 1+aw'(p) 14 aw—
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Figure 8.4: Behaviour of py and p— in the second model as a function of J. We
are setting wy = —w_ = 0.1, so that by (8.27) the admissible domain is
0 < ¥ < arccot0.1.

Thus, for our second model, we have
W4 w_

= 8.32
H 1 —w_tan?d ( )

e = 1 —wq tan?d

We notice that, for 9 = 0, we recover the situation of the first model, as
expected. The behaviour of the coefficient as function of ¥ is illustrated in
Figure 8.4.

Thus all the requirements of Lemma 8.2 are satisfied, and Theorem 8.1 can
be applied. We also observe from (8.29) that the coefficient « is proportional
to the normal force exerted by the spring on flat surface at € = 0, by a factor
1/ cos? 9.

We notice that, for this model, we have p; > —p_, meaning that the
friction opposing a rightward movement (4 > 0) is greater than the one
corresponding to a leftward movement (u < 0). This is exactly the opposite
of what we usually experience in the with the nap/against the nap asymmetry,
for which, as we will discuss in the last part of this Section, other explanations
can be found.

Remarkably, such a “reversed” with the nap/against the nap asymmetry
has been observed in experiments dealing with friction force microscopy on
molecular monolayers [KS04; Lil+98]|; the resemblance with such situations
suggests a possible connection.

Third model: angular spring

In this model, the mediating element consists of a straight rigid rod with
length L, as illustrated in Figure 8.5. One end of the rod has constant height
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~ We
Figure 8.5: Third model: angular spring, for 9t = (

and horizontal position u(t). The rod can rotate around this end and we
denote with ¢ > 0 the angle formed with the vertical axis. We denote with
p(t) the horizontal coordinate of the second end of the rod and assume that
the systems is oriented so that p < u. Denoting with h the distance between
the first end of the rod and the limit flat surface, we require L > h, so that,
for sufficiently small oscillations wg, the rod can always touch the surface.
We define

. h
9" = arccos 7> 0 (8.33)

as the angle of the rod when it touches the flat surfaces in the limit ¢ — 0.
The rod has an angular spring with rest angle 9. We assume

ghm 5 grest -, —g (8.34)

The internal energy of the spring is

ﬁ (19 - ﬁrest)z

2

Since the surface acts as a constraint on the system and we consider quasi-
static motion, for each value of u, we deduce that the rod assumes the
minimum angle possible ¥ = ¥(u), touching the surface.

We require, for every x € R,
—tan 9™ < w'(x) < cot Y™ (8.35)

For e sufficiently small, the right inequality assures that the rod touches the
wiggly surface only with its second end, whereas the left inequality implies
that, when u(t) changes, then also p(t) changes, but without jumps. Thus,
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since the second end of the rod touches the surface, we can deduce the
following relationships:

L=+/(u—p)2+(h—w:(p)?= Zir_lg _h ;j;j;p) (8.36)

From this, can express explicitly ¥(t) as a function of p(¢), namely

I(t) =
(t) = arccos 7

Let us introduce the new variable
2(t) = u(t) — v/ L? — h? (8.38)

We now want to show that w.(p(t)) can be expressed as a function of z(t) of

the form
wn(p(t) = (2] 4 20 (21

with W and Q as in (8.16); in this way also ¥(¢) can be expressed as a function
of z(t).

From (8.36) we can express z(t) as a function of p(¢), as

2(t) = p(t) + A(w=(p(t))) (8.39)

where
Aw) = VI (b gf -V

We notice that A(0) =0 and A'(y) = \/% Equation (8.39) gives a
—(h—y

one-to-one correspondence between z(t) and p(t), since

d

OT; =1+ A (we(p))w' (g) =1+ (cot 9w (g) >0 (8.40)
for € sufficiently small. The last inequality follows from the fact that, for
e — 0, we have |lwe||, — 0 and ¥ ~ 9. Hence, by (8.35), we can find &y
such that, for € < gy, we always have cot 9 > 0.

Let us denote Z = z/e and P = p/e. From (8.39), we get a twice
continuously differentiable bijection Z = G(g; P), that can be decomposed as

G(g; P) = Go(P) + eGr(s; P)

where

h
——w
VIZ — h2
and Gr(e; P) is 1-periodic and twice continuously differentiable in P; moreover
GRr and its derivative in P are uniformly bounded for ¢ sufficiently small.

Go(P) =P + (P) = P + (cot 9"™)w(P)
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From (8.40) we know that Dp G(e; P) > 0 for every P € R; thus, for each
€ < g€y, the function G(e;-) has a twice continuously differentiable inverse
H(e;-), so that P = H(e, Z). The function H can be written in the form

H(e; Z) = Ho(Z) + eHR(¢; Z)

Here Hy is twice continuously differentiable, 1-periodic in Z and there are
two positive constants C'y and gy such that

|HR (¢;2)| < Cu

for every Z € R and every € € (0,egy
|D2HR (E;Z)’ < Cqg ( )

A straightforward computation shows that Hy = G|, L

Let us notice that, since that, since w is periodic and twice continuously
differentiable, there exists a continuously differentiable function h,,: Rx R —
R, 1-periodic and such that

w(z +¢) = w(x) + chy(e;x)
Moreover there exist two positive constants Cy, and &,, such that

|hy (g52)] < Cy

for every x € R and every € € (0,¢
1Dy (:2)] < Cly Y yee e

Thus we have

We set

W(y) = w(Ho(y))
Q(e;y) = hw(eHr(g;y); Ho(y))Hr(g; y)

2
Fly) = g (arccos h 7 y_ 19“?“>

and observe the energy of the angular spring is, up to a constant, expressed
by a function V.(z) of the form (8.16), with constants Cg ¢ = C\,Cr, Co1 =
CwCr(|H)ll o, +1) and eg = min{ey, e, ew}.

We obtain that

k
NiEe

so that, by (8.34), the assumption (8.13) is satisfied, as are also the other
requirements of Lemma 8.2. Thus Theorem 8.1 gives the desired behaviour
for e = 0.

a=F'(0)= (9t — grest) (8.41)
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Figure 8.6: Behaviour of yy and p_ in the third model as a function of ¥'™. We
are setting w; = —w_ = 0.1, so that by (8.35) the admissible domain is
arctan 0.1 < 9™ < arccot 0.1.

As in the previous model, in general G cannot be inverted explicitly.
However we can apply Lemma 8.3 to recover the coefficients pi4, u—. We have

W4 w

= L mE—_— 8.42
He =17 wy cot Yhim a 1 + w_ cot Ylim (842)
where we recall that cot 9™ = \/ﬁ The behaviour of the coefficient as a

function of Y™ is illustrated in Figure 8.6.

Interpretation of the with the nap/against the nap effect.

A hairy surface is a common denominator of many situations where we
experience a directionality in the friction: stroking a cat, rubbing a brush
with slanted bristles, using climbing skins for backcountry skiing or brushing
napped fabric. Although we intuitively gather all this instances under the
same name of with the nap/against the nap asymmetry, what we are actually
considering is family of different phenomena, all producing the same kind
of directional effect. For instance, in some situations there is no significant
change in the bristle configuration between the two phases (e.g., rubbing
gently a hard brush), while in others large deformations of the bristles occur
and we observe a dramatic change in their configuration passing from one
direction to the other one (e.g., stroking a cat).

Clearly a comprehensive and complete characterization of all these with
the nap/against the nap phenomena would require a sophisticated modelling of
the mechanical behaviour of a bristle. Yet, with the help of the “angular spring”
model, we can easily identify two fundamental effects that are involved. The
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geometric one is a direct application of the angular spring model, and holds
for sufficiently rigid bristles, remaining straight also under small compressions.
The energetic one instead applies to flexible bristles, buckling very easily
when compressed.

Geometric effect From (8.42), we obtain that, for the angular spring
model, we have py > —p_, meaning that the friction opposing a rightward
movement (@ > 0) is smaller than the one corresponding to a leftward
movement (4 < 0). This is exactly what we expect by the with the nap/against
the nap effect.

However, it is not obvious that a bristle should always behave as a rigid
bar with an angular spring. Indeed, especially during strokes against the nap,
the rod is subject to a longitudinal compression, that could produce buckling
in a flexible bar, invalidating the model. An estimate of the axial tension
along the bar, obtained by considering the limit case when the lower end of
the bar moves on a flat surface experiencing dry friction, is

koo .
= 2 (™ — ) cop i + L (8.43)

sin (lim

T

where p+ depends on the direction of motion. We observe that during a stroke
against the nap (so p+ = p— < 0) the bar is always compressed (T < 0),
however this tension is small when the bristle oscillates near its rest position
(9™ ~~ 9rest) and the friction coefficients are small. This situation suits well
to the motion of a hard brush rubbed gently on a smooth surface.

Energetic effect When the critical load for buckling is too low, the above
description is no longer valid, but we can still apply the “angular spring’
model when the bristle is subject to traction. The following interpretation of
the with the nap/against the nap effect is based on such assumption.

)

When moved with the nap, the hair is rotated in the same direction of
its rest angle, as shown in Figure 8.7(a), so that the angular spring is only
slightly stretched. On the other hand, when the hair is moved against the
nap, it is rotated in the opposite direction of its rest position, as shown in
Figure 8.7(b); in this way the angular spring is much more stretched than
in the previous case. Another way to describe this scenario is to notice that
the tip of the hair is always behind its root, with respect to the direction of
motion.

Hence, if we report both situations to the framework of our“angular spring”
model (as done in Figure 8.7), we observe that the two cases share the same
coefficient 4, while we have a change in the coefficient «, since the rest angle
of the hair changes. In case of with the nap motion, the rest angle of the
hair is Jyitn > 0. On the other hand, the case of against the nap motion
corresponds to Yagainst = —Vwith < 0.
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Motion ——» Motion —»
u(t)  q(t) u(t)  q(t)

\
ﬁa‘gainst <0
\

(a) With the nap. (b) Against the nap.

Figure 8.7: Energetic interpretation of the with the nap/against the nap asymmetry.
The dashed line represent the rest angle of the bar.

In this way we can immediately recover the friction coefficients using
(8.41) and (8.42). We get

B+ lim .
Pwith = m(ﬂ — Jwith)
by lim oy M+ lim .
Pagainst = mw — Vagainst) = m(ﬁ + Vwitn)

where we trivially have pagainst > Pwith, in agreement with our common
experience of the phenomenon.

We now analyse the compatibility of this interpretation with the tension
of the bristle during the motion. We notice that, since in both phases we have
p+ = p4, the last term in (8.43) gives always a positive contribution to the
tension. Thus, if the surface is quite rough (p4 large) and the bristle flexible
(k/L small), the rod is subject to traction, so that our model provides a good
approximation.

We remark that this energetic interpretation requires a transitional phase,
where the bristle is strongly deformed, to account for the change of configura-
tion occurring when the direction of motion is inverted. Since we assume a
small critical load and high friction, we expect this transition to be triggered
by buckling when the direction is changed, and that, afterwards, a sufficiently
long motion in same same direction restores the bristle to a stable straight
state, as those we discussed above.

8.4 Convergence structure

The main issue in Section 8.2 is the change in the nature of the dissipation: in
the approximating systems (&, R.) we have a viscous drag (i.e. the dissipation
potential R. is quadratic), whereas in the limit system it is rate independent
(i.e. the dissipation potential R. is positively homogeneous of degree 1). Such
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a situation has been successfully addressed in continuum mechanics, showing
that rate-independent plasticity can be obtained as limit of a chain of viscous
bistable springs [MT12; PT05]. Here we follow the recent approach by Mielke
[Miel2] (cf. also [Miel5]), based on the De Giorgi’s (R, R*) formulation, also
called energy-dissipation principle.

We begin by recalling some known facts about the Legendre transform
(cf. for instance [RW98]).

Legendre transform and De Giorgi’s (R,R*) formulation Let us
consider a function ¥: R — R U {400} that is proper (i.e. not identically
+00), lower semi-continuous and convex . The Legendre transform U*: R —
R U {400} of ¥ is defined as

() = sup [§x — W(2)]

The function ¥* is proper, lower semi-continuous and convex; moreover we
have (¥*)* = 0.

We now briefly recall some well-known properties of the Legendre trans-
form. The Fenchel estimate states that, for every x € R and £ € XR, we
have

V() + ¥ (§) = & (8.44)

The case when the equality holds is characterized by the Legendre-Fenchel
equivalence:

Eed¥(x) <<= €V () <<= Y(x)+T"¢) =% (8.45)
Let us now consider the problem
0 € D:R(2) + D.E(t,2) (8.46)

where £ € C1([0,T] x R,R) and R: R — R is a convex function. A solution of
the problem is a function z: [0,7] — R that satisfies (8.46) for almost every
t € [0,T]. Note that this framework covers both the wiggly systems (8.8) and
the limit system (8.3).

Let us therefore define R*: R — R U {400} as the Legendre transform
of the function R. First of all, let us notice that, by the Legendre-Fenchel
equivalence (8.45), the inclusion (8.46) is equivalent to

(2(0), ~D.£(t, 2(1)) € Caryar = {(2,€): V() + V' (€) =€} (8.47)

De Giorgi’s (R, R*) formulation of the problem consists in the following
sufficient condition for being a solution of (8.46).
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Proposition 8.4. A function z: [0,T] — R is a solution of (8.46) if and
only if it satisfies

T
E(T, 2(T)) +/ {7%(2(3)) +R* (—ch‘f(s,z(s))ﬂ ds <
0

, (8.48)

< £(0, 2(0)) + /até'(s,z(s))ds
0
We now prove a slightly more general proposition, suitable to our purposes.

Let us replace the integral dissipation term in the left-hand side of (8.48)
with a term of the form

T
D(z) = //\;l(é(s),—ng(s,z))ds (8.49)
0
where we require
M(z,€) > €éx  foreveryz € R, £ €R (8.50)
Moreover let us define the set
Ot = { (@,6): M(2,€) = o} (8.51)
Proposition 8.5. A function z: [0,T] — R satisfies
T
E(T, 2(T)) + D(=) < £(0, (0)) + / 0(s,2(s)ds  (8.52)
0
if and only if it satisfies
<z'(t), —-D.E(t, z(t))) € Cpum for almost every t € [0,T] (8.53)

Proof. Using the chain rule, we get that the estimate (8.52) is equivalent to

T
/M(z'(s), —D.E(s,2))ds < — | D.E(s,2(s))2(s)ds
0

S~

Looking at estimate (8.50), we get that (8.52) is true if and only if equality
in (8.50) holds for almost every t € [0, T7. O

We remark that Proposition 8.5 applies to the case M(z, &) = R(x) +
R*(€). Thus Proposition 8.4 follows as an immediate corollary, since, as we
have seen, the Legendre-Fenchel equivalence implies the equivalence between
(8.46) and (8.47).
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Convergence structure Our strategy to prove Theorem 8.1 is to consider
the convergence of the systems only once they have been reformulated in the
form (8.48).

Let us consider a family of energy functions & € C!([0,7] x R, R), and
the corresponding dissipation functionals D, of the form

T
D-(2) = /Mg(é'(s), —D,E(s,2))ds (8.54)
0

where M (z,§) > &x for every x € R, £ € R. We are given a family
of functions z.: [0,7] — R that solve the associated evolution problems,
i.e. each z. satisfies the estimate

T

E.(T, 2(T)) + D.(2) < £.(0, 2(0)) + / 6. (5, 2(s)) ds (8.55)
0

Then, we consider a limit energy function £ € C([0, 7] x R,R), and a limit
dissipation functional D of the form

T
D(z) = /M(z(s), —D.E(s,z))ds (8.56)
0

where M(x, &) > &x for every x € R, £ € R. We define

Crm = {(,8): M(z,§) = o} (8.57)

Proposition 8.6. Let &.,D., z.,E and D be as above. Assume that there
exists a continuous function z: [0,T] — R such that z — z in C([0,T],R).
Suppose that, for every t € [0,T], the following estimates hold

E(t,z(t) < ligélf E(t, 2(t))
0E(t,2(t)) = 811_% 0E:(t, 2:(t))
D(z) < liminf D (z.)

e—0
and moreover
£(0,z(0)) = lim &£.(0, z:(0)) (8.58)
e—0
Then Z is a solution of the problem
(%(t), —-D.E(t, E(t))) €Cym  for almost every t € [0, T (8.59)

Proof. The convergence assumptions, applied to (8.55), lead to the estimate
T
E(T,zZ(T))+D(z) <&(0,2(0)) + /Oté’(s, z(s))ds (8.60)
0

The thesis follows from Proposition 8.5. O
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8.5 Proof of Theorem 8.1

We now implement the convergence strategy of Section 8.4 to the situation
described in Section 8.2, in order to prove Theorem 8.1. From now on the
symbols £,&., R, R., etc. have the same properties and meaning considered
in Section 8.2. In addition, we assume that the hypothesis (8.10) of Theorem
8.1 holds.

Our plan is to apply Proposition 8.6. To begin, we recall the definition
(8.7) of R. and define D. and M. by setting
E’Y’U2 {2

Me(0,6) = Re(0) + REE) = -+ (8:61)

By Proposition 8.4, each function z. satisfies the estimate (8.55).

The reformulation of the limit system requires a little more attention. Let
us first define the set Qo = [p—, p+] and denote, for any set A C R,

40 for £ € A
Xa(§) = {+OO for 6 ¢ A (8.62)

To define the functions D and M, instead of the trivial choice associated to
De Giorgi’s formulation of problem (8.3), we set

M (v, &) = [v] K(&) + Xay(€) (8.63)

where )
K() = / €~ W'(y)|dy (8.64)
0

Since W' is continuous, 1-periodic with zero average and has image €, we
deduce that K (&) > |£] if £ € int Qp, whereas K (§) = |£] if £ ¢ int Q. As
a consequence, we obtain the desired estimate M(x, &) > £x. Moreover we
have

Can = ({0} x Qo) U ((=00,0) x {p-}) U ((0,400) x {p4})  (8.65)

Recalling the definition (8.2) of R, we have R*(§{) = Xq,(§), and so
Cm = Crimr+. This means that, by Proposition 8.4, problem (8.59) is
equivalent to (8.3).

To apply Proposition 8.6 and complete the proof of Theorem 8.1, it is left
to prove

e the existence of a limit function Zz, such that z. — z in C([0, T, R);

e that the estimate D(z) < lim i(I)lf D.(z¢) holds.
e—

These will be the subjects of the next two subsections.
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Convergence of the solutions

Preliminary notation Without loss of generality, we restrict our discussion
to the interval € € (0, €], where ¢ is sufficiently small to satisfy & < min{1,eq}.
We set 8 = min{1,~} and notice that, for the values of € considered, we have
ef = max{e,e7}.

Let us also introduce the following notations for some recurrent constants.
We call Ay the Lipschitz constant of £. By the uniform convexity of ®, we
can find a constant ¢ > 0 such that ®”(z) > ¢ for all z € R. Since W and
its first derivative are bounded, we denote

C’VV,O = ”WHoo erl = HW/HOO

Strip of admissible solutions Let us now define zy: [0,7] — R as

) =(@) U —pr) A= @) —p)  (866)

We recall that this definition is well-posed since, by the uniform convexity of
@, @’ is globally invertible and Im ® = R. Since the image of ¢ is bounded,
by compactness arguments, we also have

G = max{[34 o 5|0} < +oo

We notice that condition (8.10) can be restated by writing 2° € [Z_(0), 24 (0)].
Moreover, looking carefully at the inclusion (8.3), we observe that the solution
Z is bounded between Z_ and Z,, and the current state can possibly change
(i.e. 2(t) # 0) only if z = Z_ (and therefore z(t) > 0) or z = Z; (and therefore
Z(t) <0). The strip [Z_(t), Z4(¢)] gives the evolution of the elastic domains
of the limit system.

Hence, we define the distance at each time ¢ of a solution z. of (8.8) from
this region, by setting

b (t) = dist (=-(1), [5_(£), 21 (1))
Notice that (8.10) implies 6.(0) — 0 for ¢ — 0.

Estimates on z. Let us recall that, by (8.8), the solution z. satisfies

V2. (t) = = (2(t)) — W' (Zag(t)> —eqQ’ <a; Zz(t)> +£(t) (8.67)

The value of 0.(t) is controlled by the following estimate.

Lemma 8.7. There exists a constant Cy > 0 such that, for everyt € [0,T]
and € € (0,€), we have

6:(t) < 6.(0)e~?" 4 £PCy (8.68)

Moreover, if t € [0,T] is such that 6.(t) > e®Cy, we have that 6.(t) < 0.
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Proof. If z.(t) € (2-(t), Z4+(t)), then the estimate follows immediately. Let
us now consider the case z.(t) > Z;(t). We have

€10, =72, — ez,

< _p v (BN o (R e ~
<—D(2)-W (s) eQ <€’5) +@'(Z4) + p- +7Ck
< —@/(25) + CI)/(E_,_) +eCpa1+€7Cy

< —pd. + ECQJ +7Cy

< —pb. + C1e°

where C7 = C1 + Cg,1. The same estimate can be obtained analogously in
the case 2z.(t) > Z1(t). Thus the required estimate for é. follows, by a suitable
application of Gronwall’s Lemma, for with Cy = C1/. ]

Let us notice that, combining Lemma 8.7 with assumption (8.10) and
the Lipschitz continuity of Zi, it can be shown that all the solutions z. are
bounded within an interval [zmin, Zmax). By compactness, in this interval the
function @’ is Lipschitz continuous with Lipschitz constant Ag.

Lemma 8.8. For every Co > 0, there exists C3 > 0 such that, for every
e € (0,) and every solutions z: of (8.8), if

o-(tg) < ePCy for some ty € [0, T (8.69)
then
|2 (t) — 2:(to)] < °Cs  for every t € I? = [to, to +°] N[0, T]

Proof. Let us set
be(z) = —¥'(2) = VI(2)

We plan to find two points (_ and ( such that
ze(to) — 705 < (< 2e(to) < (4 < ze(to) +°Cy
and, for every t € I?,
b-(C—) +£(t) >0 and be(C4) +4(t) <0

This last condition implies that every solution of (8.8) starting at ¢y inside
the interval [(_, (4] cannot cross its boundary in the time interval I2.

We present the proof only for (4, since (_ can be found similarly. Let
y+ € R be any point such that W/(y;.) = py; we will look for {; € yy + €Z,
so that W'(¢;) = py. We know that, for every t € I?,

0(t) < L(to) + Aglt — to) < D (3_(to)) + p4 + Ay
< ' (2:(t0)) + P At Co + py + P Ay
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Thus we have

IA

—®'(¢1) — py +Cq1 + P (2:(t0)) + 7 Colar + pi + €7y
—(&t — 2(t0))p + £°Cy

bs(CJr) + Z(t)

IN

where Cy = Cg1 + Ae:Cy + Ay. Therefore we take the smallest value

(+ € Yy + €Z satisfying (4 > z:(to) + Eﬂ%. This choice gives one part of the
thesis with C3 = 1+ Cy /.

We proceed similarly for (_ and conclude the proof. O

Lemma 8.9. There exists a constant C' > 0 such that, for every s,t € [0,T],
the following estimate holds:

2:(t) — 2:(5)] < C(6-(0) + [t — 5| + £7) (8.70)

Proof. Using Lemma 8.7 we can characterize the possible behaviours of z.

If 6.(0) < 2¢PCy, then 6.(t) < 2°Cy for every t € [0,T]. In this case
the assumptions (8.69) of Lemma 8.8 are satisfied for every ty € [0,7] by
taking Cy = 2Cy. Now, for every s,t € [0,T], we set k € N such that
|t —s|/ef < k < |t—s|/e® +1. We can therefore construct a partition
s=T9< T < <Tp_1 < T =t, such that, for every i = 1,...,k, we have
7; — 7,1 < €. Thus we have

k
2e(t) = 2e(8)| < |2e(m) — 2e(mim1)| < Cske® < Ca([t — 5| +7)  (8.71)
=1

where (5 is given by Lemma 8.8 and does not depend on €.

On the other hand, if §.(0) > 2¢%Cy, Lemma 8.7 shows that the solution
ze monotonically gets closer to the strip [Z_, Z;], and possibly at some time
t. satisfies 0. (t.) = 2e8Cy, so that 6.(t) < 26°Cy for every t € [t., T]. For
s,t € [0,t.] (or in [0, 7] if there is no such t¢.), we have the estimate

2(t) — 2e(s)| < 6.(0) + C |t — 3 (8.72)

If there is a t. € [0,7] as above, since 6.(t) < 2e°Cy for every t € [t., T] we
can proceed as in the first part of the proof and the estimate (8.71) holds for
every s,t € [ts, T).

We set C' = C35 4+ Cx + 1 and the proof is completed by combining (8.71)
and (8.72), possibly splitting the estimate in two parts if s < t. < t. O

Convergence of the solutions z. By Lemma 8.9 we obtain the equicon-
tinuity of the family of functions z.: [0,7] — R, for ¢ € (0,&]. By the
Ascoli-Arzeld Theorem we can find a subsequence (z¢,);cy With g; — 0 for
which there exists a continuous function z: [0,7] — R such that z,, — z
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uniformly in C([0,77]). A second consequence of Lemma 8.9 is that z is Lips-
chitz continuous with constant C, that is |2(¢t) — Z(s)| < C'|t — s| for every
s,t €10,T].

It remains to show that z is a solution of (8.3) and that actually the whole
sequence z. converges to Z, not only a subsequence z.;. We will address these
issues in the last step of the proof.

Estimate on the dissipation functionals

Let us write

ne(t) = =@ (2(t)) + £(t)
ze(t)

wl) =w () 4oy (5240)
Ee(t) = n=(t) — ue(t)

Lemma 8.10. Let 2.,z € W1([0,T)]) and n.,7 € C°([0,T]) be such that, for
e —0,
2e > Z and Ne — 7] in C°([0,T)).

Then

E—0

T T
liminf//\/lg(,ég(t),ﬁg(t)) dt > /M(z'(t),n(t)) dt (8.73)
0 0

Proof. Let us define the interval

Qe =[p- —eCqa, pt +eCq1]
so that u. € Q. and Qg = [p—, p+], as defined above. We recall that & =
Ne — Ue, implying |&| > dist(ne, ().

We therefore obtain the following lower bound for M.:
en?  (1-e2)g  exg?
M5<U7£€) - 2 + 257 + 267 (874)

1 .
> (1—e2) o] |&] + — [dist(ne, Q)]
2e2

X
2

We now derive two separate estimates for the two terms of the right hand
side of (8.74).

For the second term, we observe that

1
lim inf — [dist (7., Q:)]* > Xa, (7) (8.75)
2

e—0 25‘
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(8.76)

so, by Fatou’s Lemma, we obtain
T
> [ xay (o)) a

0

X
2

T
1
lim inf / (dist (. (£), Q)] d
0

e—0 25
To study the integral of the remaining term in (8.74), let us consider the
(8.77)

integral
T
O = [l a
0
We define, for every integer n > (£)~! and j € {1,2,...,n}, the time interval
== p iy (8.78)
J n n '
1
()}
n

to which we associate the value

) = inf { e(s) = W) — 26|, for s € 1.

We remark that A7 is periodic with period 1. We also notice that, by definition,
1) we have [&.(t)| > Y (Zg( )) Thus, for

for every ¢ € I" and every € € (0, -
each ¢ < %,
P > Zn: ey he (20 ar
e = - € j c
J= IJT_L
' T). We have

ATy < 2(iT

Let us now consider the case z(

o
. n [ 2e(t n(?
. > v (2
/|z5(t)|h]< - >dt_ / ! (E)dz
I 2 (52T)
1
=0 |2 (4r) - 2 (27 /h
0

since, due to the periodicity of A7, for £ — 0 the integral of A} (z/¢) on a given
interval tends to the integral of the average value of h7. Arguing similarly for

1
A (8.79)
1) [

(7)) > z(%T), we get
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Let z, be the piecewise affine interpolant such that z,( %T) = z(%T) for
every j+0,1,...,n. We define k,(t) as the average of h'', where j is the one
such that t € IJn, that means

j—1

T<t<lr

1
k,@t)= [ h?(y)d it
0= [Bwiy o /
0

Thus, summing the estimates (8.79) for j + 1,...,n, we get

lim inf DL > zn: ’z (%T) p <%T> ] /lhg(y) dy = /Tkn(t) 50 ()] dt
j=1 0 0

Since we assumed that z € W1([0,7]), we know that Z, — # strongly
in L1([0,T]) for n — oo. Moreover, the uniform convergence (1, z:) — (1, 2)
assures us that ky(t) — K(n(t)) uniformly. Thus we get

T
lim inf D) > / 20) K(n(8)) dt (8.80)
0

The proof is completed combining the estimates (8.76) and (8.80). O

Completion of the proof

At the end of the first subsection of the proof, we have shown that there exist
a subsequence (z,),cy With €; — 0 and a continuous function z: [0,T] — R
such that z., — z uniformly in C([0,T]). Setting 77(t) = —®'(2(t)) + £(t), we
can apply Lemma 8.10 to the subsequence 2., and get that
liminf D, (z,) < D(Z)
71— 00

We can therefore apply Proposition 8.6 to find that Z is a solution of (8.59)
for 2(0) = z¢ and so, as we have seen, of (8.3).

It is however well known in literature that problem (8.3) has only one
solution for each choice of zy (cf. [Mie05; MR15]). This implies that actually
the whole sequence z. converges to zZ. Suppose by contradiction that there
exists a subsequence (z, )ken with £ — 0 such that ||z, — 2|, > 9, for
some § > 0 and every k > 0. Then we can repeat the same reasoning done for
Ze, to find a function 2 € C([0,T,]), and a subsequence of z., that converges
to 2. But, proceeding as above, Z must be a solution of (8.59) with 2(0) = zo,
and so, because of the uniqueness of the solutions, Z = Z, contradicting
22 — 2l > 3.

To complete the proof, it remains only to prove (8.12). Let us first notice
that, since (8.8) gives €72.(t) = &-(t), a straightforward computation shows
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that R:(2:(t)) = R:(&(t)) for almost every ¢ € [0,7]. Moreover, since
Re(2:()) + RE(E(t)) = 2:(t)&(t) for almost every ¢, by the chain rule we
get, for every 0 <ty <to <T,

/2725(?:5(3)) ds = E(t2, z:(t2)) — E:(t1, 2e(t1)) + /@(s)ze(s) ds

On the other hand, for the limit system, since —D,E(t, Z(t)) € Qo, it follows
that R*(—D,E(t,z(t))) = 0 for almost every t € [0,T]. Thus, again by the
chain rule

to to
[ RG) ds = lta, 2(02)) — E(tr,2(00) + [ i(5)2(5)ds

Since, for ¢ — 0, we have z. — z uniformly and &.(¢,2:(t)) — E(t, Z(t)) for
every t € [0,T], it follows that

to t2
/2735(25(5)) ds — /R(Z(s)) ds for every 0 <t1 <ty <T
t1 t1

and the proof is complete.
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