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1 Overview of the thesis

The theory of statistical mechanics provides a powerful conceptual framework within which the

relevant (macroscopic) features of systems at equilibrium can be described. As there is currently no

equivalent capable of encompassing the much richer class of non-equilibrium phenomena, research

in this direction proceeds mainly on an instance-by-instance basis. The aim of this Thesis is to

describe in some detail three such attempts, which involve different dynamical aspects of classical

and quantum systems. As summarised below, each of the last three Chapters of this document

delves into one of these different topics, while Chapter 2 provides a brief introduction on the study

of non-equilibrium dynamics.

In Chapter 3 we investigate the purely relaxational dynamics of classical critical ferromagnetic

systems in the proximity of surfaces, paying particular attention to the effects that the latter induce

on the early stages of the evolution following an abrupt change in the temperature of the sample.

When the latter ends close enough to the critical value which separates the paramagnetic from

the ferromagnetic phase, it effectively introduces a temporal boundary which can be treated as

if it were a surface. Within this picture, we highlight the emergence of novel effects near the

effective edge formed by the intersection of the two spatial and temporal boundaries. Our findings

are apparently in disagreement with previous predictions which were based on the assumption

that the presence of such an edge would not affect the scaling behaviour of observables; in order

to explain this discrepancy, we propose an alternative for the original power-counting argument

which, at least, correctly predicts the emergence of novel field-theoretical divergences in our one-

loop calculations. We show that said singularities are associated with the scaling at the edge.

Moreover, by encoding our findings in a boundary renormalisation group framework, we argue

that the new predicted behaviour represents a universal feature associated to the short-distance

expansion of the order parameter of the transition near the edge; we also calculate explicitly its

anomalous dimension at the first-order in a dimensional expansion. As a qualitative feature, this

anomalous dimension depends on the type of phase transition occurring at the surface. We exploit

this fact in order to provide numerical support to our predictions via Monte Carlo simulations of

the dynamical behaviour of a three-dimensional Ising model. The main results reported in Chap. 3

have appeared in Ref. [1].

In Chapter 4 we revisit the Euclidean mapping to imaginary times which has been recently

proposed [2, 3] as an alternative for approaching the problem of quantum dynamics following a

quench. This is expected to allow one to reformulate the original problem as a static one confined

in a film geometry. We show that this interpretation actually holds only if the initial state of the

dynamics is pure. Statistical mixtures, instead, intertwine the effects due to the two boundaries,

which therefore cannot be regarded as being independent. We emphasize that, although the afore-
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Overview of the thesis

mentioned reinterpretation as a confined static problem fails, one is still able, in principle, to write

down and solve the corresponding equations. We also discuss in some detail the relation between

this approach and the real-time field-theoretical one which makes use of the two-time Keldysh

contour. For this purpose, we study the analytical structure of relevant observables — such as

correlation functions — in the complex plane of times, identifying a subdivision of this domain

into several sectors which depend on the ordering of the imaginary parts of the involved time co-

ordinates. Within each of these subdomains, the analytic continuation to the real axis provides in

principle a different result. This feature allows one to reconstruct from the Euclidean formalism all

possible non-time-ordered functions, which in particular include all those which can be calculated

via the Keldysh two-time formalism. Moreover, we give a prescription on how to retrieve response

functions, discussing some simple examples and rationalising some recent numerical data obtained

for one of these observables in a one-dimensional quantum Ising chain [4]. We also highlight the

emergence of a light-cone effect fairly similar to the one previously found for correlation functions

[2], which therefore provides further confirmation to the fact that information travels across the

system in the form of the entanglement of quasi-particles produced by the quenching procedure.

We have reported part of this analysis in Ref. [5].

Chapter 5 presents part of our recent work on effective relaxation in quantum systems fol-

lowing a quench and on the observed prethermalisation. We analyse the effects caused by the

introduction of a long-range integrability-breaking interaction in the early stages of the dynam-

ics of an otherwise integrable quantum spin chain following a quench in the magnetic field. By

employing a suitable transformation, we redefine the theory in terms of a fully-connected model

of hard-core bosons, which allows us to exploit the (generically) low density of excitations for

rendering our model exactly solvable (in a numerical sense, i.e., by numerically diagonalising an

exact matrix). We verify that, indeed, as long as the parameters of the quench are not too close to

the critical point, the low-density approximation captures the dynamical features of the elementary

operators, highlighting the appearance of marked plateaux in their dynamics, which we reinterpret

as the emergence of a prethermal regime in the original model. As expected, the latter behaviour

is reflected also on extensive observables which can be constructed as appropriate combinations

of the mode populations. For these quantities, the typical approach to the quasi-stationary value is

algebraic with exponent α ≈ 3, independently of the size of the system, the strength of the interac-

tion and the amplitude of the magnetic field (as long as it is kept far from the critical point). The

plateaux mentioned above last until a recurrence time — which can be approximately identified

with tR ≈ N/2 for single modes and t ′R ≈ N/4 for extensive quantities — after which quantum

oscillations due to the finite size of the chain reappear. Our procedure allows us to shed some light

over prethermal features without having to considerably limit the size of the system, which we can

choose to be quite large, as we discuss in Ref. [6].
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2 Introduction to non-equilibrium

dynamics

The description of the physics of many-body systems is unavoidably complicated by the huge num-

ber of degrees of freedom they display. This issue is typically averted by introducing the concept

of statistical ensembles, which leads to encoding the relevant information on macroscopic quan-

tities within a suitable, small set of random variables. This, however, requires that the system be

at equilibrium. Outside of this condition, we generically lack a comprehensive framework for ap-

proaching the problem, as the aforementioned interpretation is no longer valid. As time enters into

the picture, in fact, it may happen that a system becomes unable to probe all equivalent configura-

tions corresponding to a given macroscopic state; consequently, the uniform distribution dictated

by equipartition cannot but fail to capture its physical features. Both from a conceptual and a prac-

tical point of view, a simple and widely-employed method to affect a macroscopic system is to vary

some external control parameter T , such as the temperature or the magnetic field. The effects of

this procedure will then depend upon the interplay between two time scales: the one governing the

aforementioned variation τv ∼ T/Ṫ and the typical relaxation time of the sample τr. For τv ≫ τr

the system is given enough time to adapt to the altered conditions and can be thought to be almost

at equilibrium at every moment; such a reversible transformation, referred to as “adiabatic”, can

be fully studied within a thermodynamical framework. Novel, non-trivial effects appear instead

for τv . τr, i.e., when the changes are happening so fast that the system is unable to cope with

them and lags behind. In the latter case, the dynamics becomes non-trivial and the system is driven

out of equilibrium. If the focus lies in the inherent dynamical features, rather than in the stationary

state emerging as a consequence of the external driving, it may be convenient to employ a variation

limited on a time frame ∆t, after which the system is let evolve freely. In particular, if τv ≪ τr and

∆t ≪ τr, the change may be effectively thought to be instantaneous, since, with good approxima-

tion, the system’s properties are not modified while it is being carried out; a protocol of this kind,

which is conceptually the simplest possible, is named quench. Moreover, in order to actually cap-

ture the dynamics, one must be able to resolve events on time scales τO smaller than τr. Thus, we

can conclude that, quite generally, the observation of non-equilibrium conditions requires either

the ability to modify the external parameters and to observe the system quickly, or the choice of

materials which exhibit a slow relaxation. An outstanding example among the latter is provided

by glasses [7–9], but long relaxation rates are not just a prerogative of random media: a particu-

larly relevant context in which they naturally occur is provided by continuous phase transitions. At

equilibrium, it is a well-known theoretical and experimental fact that, upon approaching a critical

point (e.g., by tuning the temperature to a specific value T → Tc), the correlation length ξ of the
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thermal fluctuations diverges algebraically as ξ ∼ |T −Tc|−ν
with ν > 0 [10–12]. This has some

fundamental implications: from a formal point of view, the system loses the only inherent meso-

scopic length-scale, thereby becoming self-similar under dilatations; of course, for real samples

this represents an approximate statement, as microscopic scales such as the lattice spacing a and

macroscopic ones such as the typical linear dimension L inevitably persist, granting it validity only

within the range a ≪ ξ ≪ L, which can nonetheless encompass several orders of magnitude. Be-

cause of this, the system’s behaviour becomes dominated by collective effects which only depend

on features that can be read off at any scale, such as the range and symmetries of the underlying in-

teraction, the global dimensionality or the presence or absence of disorder. In turn, since in general

many microscopically different systems may be found sharing those properties, this gives rise to

universality. In other words, all quantities which do not explicitly depend on the scale chosen for

the description, such as the well-known critical exponents and scaling functions, are found to be

the same in many different instances, which form the so-called universality class of the transition.

In a dynamical setting, not only length scales, but also time scales must be taken into account;

near criticality (T ≈ Tc), the typical relaxation rate τr of a system scales as τr ∼ ξ z ∼ |T −Tc|−zν
,

where z is called dynamical exponent and measures the anisotropy between spatial and temporal

coordinates under scaling [11, 13]. The divergence of this characteristic time at the critical point,

also known as critical slowing down, reflects the fact that, as collective behaviours take over in the

system, external changes must be able to affect larger and larger domains, each tending to react

as a whole rather than as a collection of parts, which makes them slower and slower at adapting.

Conceptually, this implies that no transformation can be carried out adiabatically across a phase

transition, as there will always be a range of values of the control parameter T for which τr & τv (see

Ref. [14] for some experimental consequences of this fact). Critical systems constitute therefore

a suitable choice for studying non-equilibrium dynamics, be it in an experimental [15], numerical

[16, 17] or analytical [18–22] fashion; furthermore, any transformation which ends up close enough

to the critical point can be conveniently approximated by a quench. As a relevant implication, the

early-time dynamics which follows does not strongly depend upon the details of the protocol, but

just on its starting and ending points; in this time frame, novel universal features emerge [23],

as will be further detailed in Chapter 3, which are related to the initial state’s properties and,

interestingly enough, have been highlighted by treating the quench as if it were a temporal surface.

As a matter of fact, every change which is sufficiently abrupt to preserve, with good approximation,

the system’s configuration can be regarded as being instantaneous. This very instant constitutes a

boundary separating the equilibrium and non-equilibrium regimes, exactly as a surface separates

the inside of a sample from the outside. This identification, which has been proved to hold in

systems subject to stochastic dynamics, allows one to make use of the available knowledge on

critical, static systems with boundaries [24, 25] for describing dynamical features and has led

to understanding that typical observables O(t) display a crossover from an early-time algebraic

behaviour tθO to the usual power-law decay found at equilibrium t−
xO
z , where xO denotes the

scaling dimension of O . The universal exponent θO depends on the gross features of the quench,

which can be encoded in effective boundary (initial) conditions for the order parameter. A typical

example is illustrated by Fig. 2.1, where this initial regime is clearly highlighted.

In the case of quantum many-body systems, an additional, relevant time scale has to be taken

into account, which is the typical decoherence time τD. The latter measures how long pure quan-
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Figure 2.1: Monte Carlo simulation of the order parameter’s early-time dynamics in a two-

dimensional random field Ising model. Here the magnetisation m is reported as a function of time

t in a double-logarithmic scale. The initial, non-algebraic, behaviour is due to microscopic, non-

universal effects. The subsequent algebraic increase corresponds to the early-time universal regime

discussed in the main text. On the right, the beginning of the crossover to the relaxation decay shows

up. The four boxes at the sides represent snapshots of the spin configuration (white corresponding

to spin up, whereas black to spin down) taken at different times. This figure has been adapted from

Ref. [26].

tum effects (e.g., linear superposition of states, unitarity of the evolution, entanglement) can last

before being affected and, more often than not, destroyed, by interaction with the environment. Al-

though the advances in experimental techniques have progressively increased this scale to higher

and higher values (see, e.g., Fig. 3 of Ref. [27]), it still remains much smaller than the typical

relaxation rate τr [28]. Thereby, as it can hardly rely on the intrinsic slowness of systems, the study

of quantum non-equilibrium dynamics generically requires fast changes and quick measurements.

As a matter of fact, only very recently it became possible to experimentally probe the quantum

evolution of many-body systems, mainly thanks to the improved capabilities in manipulating ultra-

cold gases. Cold atoms trapped in optical lattices provide the means to investigate many relevant

aspects of quantum many-body physics [29]: on the one hand, via Feshbach resonances [30], ex-

ternal magnetic fields allow to finely tune the strength of the interaction between particles; on the

other, the substantial control over lasing emission grants great freedom in shaping the optical trap,

opening the path to the realisation of effectively low-dimensional systems, while providing also a

way to tune the interaction range to some extent. As a consequence, in the past years it has be-

come possible to actually realise and study in the laboratory many important models of condensed

matter [31–34]. Seminal works conducted in a dynamical framework have highlighted the pres-

ence of quantum revival effects in Bose-Einstein condensates [27] and of periodic recurrence in

one-dimensional gases of interacting bosons [35], which reflect the unitarity of quantum evolution.

Figure 2.2(a) shows a clear example of resonance effects, as the corresponding system has been

engineered in such a way that its energy levels, which also represent the relevant frequency modes,

are in rational proportion and, thus, a well-defined period can be extracted from the smallest of their
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(a)

(b)

Figure 2.2: Experimental observation of long-lasting quantum dynamics. (a) Collapse and revival of

the density configuration in a three-dimensional Bose-Einstein condensate after quenching the depth

of the optical potential; the different boxes correspond, in alphabetical order, to 0, 100, 150, 250,

350, 400 and 550µs elapsed since the quench. An almost periodic behaviour clearly emerges, as

the original pattern (panel (a)) is approximately recovered at the end of the sequence (panel (g)).

(b) Oscillations of two quasi-one-dimensional clouds of interacting bosons. Despite the scattering

processes happening when they meet, no significant relaxation is highlighted on the time-scales of the

experiment. These figures have been adapted from Refs. [27, 35].

ratios. Another intriguing non-equilibrium feature consists in the fact that, despite the intrinsically

non-local nature of quantum mechanics, the velocity v at which information can travel across a

system is always finite, as theoretically determined 40 years ago by Lieb and Robinson [36] on

systems defined on a lattice. Clearly, any local perturbation will propagate at most at such a maxi-

mal value v and it will thus take some time for it to affect every part of the system. However, this

property emerges also in the case of global, uniform perturbations which do not break translational

invariance, as most quenches are chosen to be. In this case, a light-cone effect may be in principle

highlighted in correlation functions at different points (say, at a distance r), which will be affected

by the quench only after waiting a time t > r/v, whereas for t < r/v their behaviour will remain

substantially unaltered with respect to the initial one. Recently, this feature has been identified in

several analytical studies on integrable systems [2, 3, 37, 38] and a physical interpretation has been

given in terms of quasi-particles [2, 3]: while driving the system out of equilibrium, the quench

is injecting energy into it, which corresponds to the production of excitations; clearly, the latter

will appear uniformly throughout the system. On the other hand, they will turn out to be entangled

(and thus, correlated) only on typical length scales of the order of the initial state’s correlation

length ξ0. After the quench, they will start propagating with a group velocity v effectively dictated
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by the dispersion relation, i.e., by the spectral properties, building up correlations in their paths.

Very recently, these light-cone effects have been observed experimentally in the correlations of a

Bose-Hubbard chain [39], as reported in Fig. 2.3.

Figure 2.3: Light-cone effect in a Bose-Hubbard chain for the parity ŝ j = eiπ n̂ j of the occupancy

n̂ j of the j-th site of the optical lattice. The plot shows the two-point parity correlation Cd(t) as a

function of time for different distances d after a quench in the depth of the optical potential. Blue

symbols represent experimental data, whereas green solid and black dashed lines stand for numerical

and analytical predictions, respectively. In the inset, experimental data for Cd is used in a color map

in order to highlight the light-cone structure. This figure has been adapted from Ref. [39].

The strong constraints posed by the unitarity of the evolution make the problem of quantum

relaxation even more subtle than its classical counterpart, as actual thermalisation cannot really

occur in closed systems [40]: this is readily understood by considering the dynamics of a system

governed by a Hamiltonian H starting from a generic pure state ρi = |ψ〉〈ψ| with average energy

E = 〈ψ|H |ψ〉: clearly, the unitary transformation Ut = e−iHt (with h̄ = 1) — associated with the

quantum evolution — can never turn ρi into a thermal distribution ρ f = e−β (E)H/Z, as the latter is

a statistical mixture with tr{ρ2
f } < 1 (for β−1 6= 0), whereas the identity

1 = tr
{

ρ2
i

}
= tr

{
ρ2

i U†
t Ut

}
= lim

t→+∞
tr
{

Utρ
2
i U†

t

}
= tr

{
ρ2

f

}

always holds. Therefore, one may look for signs of thermalisation only in an effective sense [41],

which involves focusing on a suitable set of macroscopic observables whose expectations, in the
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long-time limit, are equivalently captured by the thermal distribution, its temperature determined

by the energy set by the initial state [41, 42]. On the other hand, this picture is not universally

valid: from the point of view of statistical inference, one can think of the thermal ensemble as

being the best estimate that can be given for a system’s properties by relying only on the knowledge

of the internal energy. However, there are systems displaying non-trivial conservation laws which

increase the amount of information that cannot be lost during the course of the evolution. In

particular, integrable systems are characterised by having an extensive amount of independent

integrals of motion, which are sufficient to completely solve the related models. Accounting for

them, one can construct the corresponding highest entropy state [43], which is usually referred to

as generalised Gibbs ensemble (GGE).

As a matter of fact, evidence has been found of a significant interplay between integrability

and effective relaxation in quantum systems. Figure 2.2(b) represents a recent experimental con-

firmation: the system, which consists of two bosonic clouds with different momenta trapped in

an harmonic potential, shows no clear sign of energy redistribution among the modes even after

many scattering events. This behaviour hints at the presence of conservation laws far more strin-

gent than the ones on total energy and momentum. The current understanding is that effective

(a) (b)

Figure 2.4: Long-time (main plots) and early-time (insets) evolution of the momentum distribution

n(ε, t) in an infinitely-dimensional Fermi-Hubbard model for fixed value of the energy ε = 1.486.

Green lines correspond to analytical calculations in a short-time expansion, blue ones to a numerical,

non-perturbative solution of the quantum Boltzmann equations and red ones to the solution of said

equation in a long-time approximation. The tiny arrows on the right of each plot indicate the final,

thermal values. (a) Strong integrability breaking: prethermalisation is absent, because the system

equilibrates too fast. (b) Weak integrability breaking: a prethermal plateau is clearly highlighted in

the inset, which is subsequently left while the system proceeds towards thermalisation (reached for

t ≈ 1500). This figure has been adapted from Ref. [44].

thermalisation may be observed only in non-integrable systems [45–48], whilst integrable ones are

expected to display a GGE-like behaviour in the long-time limit [41, 48–50]. In the presence of

a weak integrability-breaking interaction, though, a richer structure is bound to appear, as illus-

trated in Fig. 2.4; it is in fact reasonable to assume that the initial phase of the dynamics will still

8
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be dominated by the integrable part of the Hamiltonian; as a consequence, a two-stage relaxation

emerges [51]: first, the system is brought close to the GGE corresponding to the integrable part,

which thus represents an intermediate, metastable state; then, on time scales which depend on

the strength of the interaction, scattering between the quasi-particles becomes relevant enough to

drive it away from its neighbourhood and towards thermalisation. The first half of this process has

been called “prethermalisation” and has very recently been observed in both experimental [52] and

theoretical/numerical [44] studies.
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3 Surface critical dynamics

Our general understanding of the thermodynamic properties of real materials has been primarily

built upon translationally-invariant descriptions of their bulk behaviour, which is effectively de-

scribed by means of infinitely-extended models. As a matter of fact, although any real sample

is necessarily finite, its bulk features can still be captured within such a framework, as long as

the system is large enough and the focus is kept far from the surfaces; the latter introduce indeed

corrections in the picture, which however can typically be neglected: intuitively, in a system with

N constituents (e.g., atoms or molecules), the size of the portion in the proximity of the bound-

aries scales as N
2
3 , and is therefore subdominant with respect to the bulk features (∝ N) in the

thermodynamic limit N ≫ 1. On the other hand, as miniaturisation techniques advance, mak-

ing us capable of crafting increasingly smaller devices, boundary effects become progressively

more and more important. As a consequence, the physics of surfaces and interfaces has attracted

in the past decades an increasing interest, concerning systems at equilibrium [24, 53] as well as

non-equilibrium dynamical processes [23], since applications may generally involve changes in

the external control parameters. Describing these features requires in principle the knowledge of

many microscopic details and specific material properties which vary widely from system to sys-

tem. However, as we have already mentioned in the Introduction, circumstances may be found

in which collective phenomena emerge, making only few coarse-grained, mesoscopic properties

relevant. As a matter of fact, it is now well-established, both theoretically and experimentally, that

the behaviour of statistical systems close to continuous phase transitions can be characterised by

just a limited set of quantities, such as exponents and scaling functions, which depend only on the

range and symmetries of the underlying interaction and on the dimensionality of the space. All the

microscopically different systems sharing these same gross features form the so-called universality
class of the transition. Universality also provides a powerful prescription for investigating contin-

uous phase transitions, since it is sufficient to study just one representative system in order to gain

information on the whole class it belongs to. Moreover, the various thermodynamic and structural

properties are known to show, in the neighbourhood of the critical point, leading algebraic be-

haviours characterised by common exponents, which can be therefore considered the hallmark of

the transition. In turn, upon approaching it and provided it is not of topological nature [54–56], the

relevant contribution to the various thermodynamic quantities is effectively determined by the fluc-

tuations of the so-called order parameter ϕ (e.g., the local magnetisation for an Ising ferromagnet).

The behaviour of the latter highlights a phenomenon known as spontaneous symmetry breaking, as

it typically vanishes in one phase and takes one among multiple, equivalent (non-vanishing) values

in the other [10].
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The emergence of universality is currently understood within the framework of the renormali-

sation group (RG) [10, 11, 57], which stands among the most important theoretical achievements

of the past fifty years. RG transformations effectively act upon the scale at which a system is

described, ideally providing a connection between the interactions among the microscopic con-

stituents and the effective theories based on coarse-grained properties which emerge at a meso-

scopic level. In the proximity of a continuous phase transition, scale invariance ensues due to

the divergence of the correlation length ξ of the fluctuations of the order parameter; not too far

from the critical point, ξ is much larger than the microscopic scales and typically constitutes the

only mesoscopic length-scale present. In such a context the RG reaches a fixed point, since, upon

changing the scale, it cannot but map the original model onto itself. Hence, the behaviour the

system displays at space and time scales larger than the microscopic ones must be dictated by fea-

tures which are not specific to the scale chosen, such as the ones mentioned above. These features

constrain the form of the free-energy

F = F(u1,u2,u3 . . .) ≈V fbulk(u1,u2,u3 . . .), (3.1)

which generically encodes all the relevant thermodynamic information. In the expression above

V stands for the volume of the system, fbulk = lim
V→∞

F/V is the free-energy density and each ui

denotes a control parameter — e.g., the temperature or the magnetic field for a ferromagnet— or,

more commonly, the distance from its critical value. The phase transition corresponds to a point

of non-analyticity for F ; because of the self-similarity discussed above, its singular part Fsing must

display homogeneity under dilatations; therefore, by rescaling the system by a factor b close to a

phase transition, the identity

Fsing(u1,u2,u3 . . .) = b−dFsing(u1by1,u2by2,u3by3 . . .) (3.2)

must hold, where yi ≡ ui is called the scaling dimension of the corresponding parameter (or scaling
field) ui. Among the latter, only those with yi > 0 can cause the breakdown of this picture, as

the transformation above brings them further away from their critical values; for this reason they

are referred to as relevant, whereas those with negative dimension yi < 0 are called irrelevant
and the ones with yi = 0 marginal. This reflects the fact that typically, at mesoscopic scales, the

leading behaviour displayed by observables is determined by the first ones, which are therefore

the only “relevant” ones for the description of the system. The non-analytic behaviour of Fsing is

unavoidably reflected on all the physical observables which can be obtained by deriving it. For

example, ferromagnetic systems, which are generically characterised by having only two relevant

parameters, i.e., the temperature u1 = t ≡ T − Tc and the magnetic field u2 = h, display a well-

known algebraic singularity χ ∼ t−γ in the magnetic susceptibility when the critical temperature is

approached (t → 0). This emerges quite naturally in this picture because χ is defined as

χ =
(
∂ 2

h F(t,h)
)
|h=0 ≈ b−d

(
∂ 2

h Fsing(tb
yt ,hbyh)

)
|h=0 = b−d+2yhF ′′

sing(tb
yt ,0). (3.3)

Now, by fixing b = t−1/yt one finds that indeed χ ∼ t−γ with an exponent

γ =
2yh −d

yt
. (3.4)
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In an analogous fashion, one can extract the algebraic dependence of other relevant observables on

t and h, therefore re-expressing the corresponding critical exponents in terms of yt , yh and of the

dimensionality d. In particular, this means that in this specific case there are only two independent

universal exponents. Typically, in addition to γ , one introduces the set of exponents β , ν , α and δ
which enter the scaling laws [10, 11]

m ∼ tβ , ξ ∼ t−ν , cV ∼ t−α (h = 0, t → 0),

m ∼ h1/δ (h → 0, t = 0),
(3.5)

for the magnetisation m, the correlation length ξ and the specific heat cV as functions of the tem-

perature, and the magnetisation as a function of the magnetic field, respectively. They correspond

to

β =
d − yh

yt
, ν =

1

yt
, α = 2− d

yt
, δ =

yh

d − yh
(3.6)

and one can easily reconstruct (hyper-)scaling relations between them such as

2−α = dν = 2β + γ = β (δ +1) . (3.7)

At mesoscopic scales, the underlying discrete structure of the lattice becomes inconsequential,

and an effective description in terms of fields on a space-time continuum can be adopted; in such

a field-theoretical context, the divergences mentioned above are associated to the short-distance

(ultraviolet, UV) singularities appearing when evaluating expectations at the same point in space

[11], e.g.,

G(x,y) |x→y = 〈ϕ(x)ϕ(y)〉 |x→y ∝ (x− y)−(d−2+η) , (3.8)

where η is called the anomalous dimension of the field — as it measures how much its scaling

dimension deviates from the mean-field (or “naive”) one — and is related to other critical exponents

by scaling laws such as

2
β

ν
= d −2+η , and 2−η =

γ

ν
. (3.9)

In the opposite limit, i.e., for large distances, one finds instead an exponential decay

G(x,y) ∝ e
− |x−y|

ξ (3.10)

which is commonly employed as a definition of the correlation length ξ . When ξ →∞ the algebraic

behaviour in Eq. (3.8) extends to the whole space; thus, one can relate the emerging infrared (IR)

singularities associated to the phase transition to the UV ones introduced above. For this reason,

the field-theoretical approach primarily developed in the context of elementary particle physics can

be conveniently employed for the study of critical phenomena [11].

In the following, in Sec. 3.1 we briefly recall the main concepts behind the extension of the

renormalisation group to systems with boundaries, both of spatial and temporal nature. In Sec. 3.2

we introduce our model, which displays breaking of both space- and time-translational invariance;

we discuss our analytical predictions and our numerical findings. Finally, in Sec. 3.3 we summarise

our main results.

13



Surface critical dynamics

3.1 Critical phenomena at boundaries

Being originally devised for describing the behaviour of unbounded, uniform systems, the renor-

malisation group has been subsequently generalised in order to account for the finiteness any real

sample displays, which enforces an upper bound upon the correlation length [58] and smooths the

typical algebraic singularities one would otherwise encounter. Furthermore, it has been extended

to capture the features which emerge in the proximity of flat surfaces [24, 53]. We wish to remark

that such an approach is conceptually different from the study of finite-size effects: this last case,

in fact, depicts a situation in which the correlation length ξ becomes comparable with the size of

the system L; critical surface effects, instead, are localized in a region of the system which lies

within a distance from one of the boundaries smaller than ξ , which is in turn kept much smaller

than L. In such a context the breaking of translational invariance plays a fundamental role, leading

to the appearance of novel universal features, as we will explain in Sec. 3.1.1. On a different note,

since this choice implies that the effects of the other boundaries are negligible, the system can

be effectively treated as if it were infinitely-extended along all directions running parallel to the

considered surface.

Within the RG approach, a new set of relevant parameters has to be introduced in order to

account for the gross features of the boundary, such as local magnetic fields and variations in the

boundary interaction strength with respect to the bulk. Accordingly, subleading terms depending

on them must be included in the free energy (3.1), which becomes

F = V fbulk(t,h)+S fsur f (t,h,us
1,u

s
2, . . .), (3.11)

where S is the area of the surface and us
i denotes one of the new scaling fields. As a result, novel

singularities might emerge upon approaching the boundary, which split the original universality

class in surface subclasses characterised by a set of boundary exponents and scaling functions

associated, e.g., with the algebraic behaviour of the correlation functions in its proximity [24, 53].

In general, these exponents cannot be inferred from the bulk ones. A number of analytical [59–

61], numerical [62, 63] and experimental (see, e.g., Ref. [64]) studies investigated primarily semi-

infinite and film geometries, whereas wedges, edges [65, 66], as well as curved and irregular

surfaces [25, 53] were studied to a lesser extent. In Sec. 3.1.1 we will briefly summarize the basic

concepts used in the field-theoretical approach to semi-infinite systems. Universal features emerge

also in the dynamic behaviour at equilibrium (both in infinite and finite systems) [67] and out

of equilibrium [23]; in this context the universality class is further split depending on the gross

features of the dynamics, such as the possible global conservation of the order parameter [68, 69].

In Sec. 3.1.2 we shall recall the relationship existing between this dynamical framework and the

static one in the presence of boundaries.

3.1.1 Spatial surfaces

It is a well-known fact that the phase transition belonging to the so-called O(n) universality class,

which effectively describes the collective properties of ferromagnetic materials, is described in the

continuum by a ϕ4 theory with Landau-Ginzburg effective free-energy density [10, 11]

H [ϕ] =
1

2

(
~∇ϕ
)2

+
r

2
ϕ2 +

g

4!

(
ϕ2
)2

, (3.12)
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where ϕ is a vector composed of n scalar fields ϕi, g > 0 and r ∝ T −Tc. Note that, despite its

name, this function does not coincide with the actual free-energy (3.1); the latter can be however

obtained from the former by integrating over the possible configurations of the fields, as depicted

by Eq. (3.13) below. For the ϕ4 model, the upper critical dimension, above which mean-field

theory becomes exact, is d = 4. In its proximity, no terms of higher degree in ϕ are needed

since their scaling dimensions are negative. This is readily proved by taking into account that

the effective action S =
∫

ddxH [ϕ] is scale invariant, which implies that the scaling dimension of

the field is [ϕ] = (d − 2)/2, so that the coupling of a generic term c2nϕ2n has dimension [c2n] =
d −n(d −2), which for d ≈ 4 is positive only for n ≤ 2.

In the case of semi-infinite systems, the partition function in general takes the form

Z ≡ e
− F

kBT =
∫

Dϕ exp

{
−
∫

dd−1x
∫ ∞

0
dx⊥H [ϕ(~r,x⊥)]−

∫
dd−1xH1[ϕ(~r,0)]

}
, (3.13)

where x⊥ is the coordinate orthogonal to the surface and the second addend at the exponent is a

boundary term responsible for the breaking of translational invariance along it. The latter gives

also rise to the surface part fsur f of the free-energy (3.11). Taking the functional derivative of the

total action with respect to the components of the bulk field ϕi(~r,x⊥) and of the boundary one

ϕi(~r,0) one obtains the equations of motion

(
−∇2 + r +

g

6
φ 2
)

ϕi = 0 (3.14)

and

∂x⊥ϕi |x⊥=0 =
δ

δϕi(x⊥ = 0)

∫
dd−1xH1, (3.15)

respectively, the l.h.s. of Eq. (3.15) coming from integration by parts of the Laplacian in Eq. (3.12).

This highlights the fact that the properties of the surface are effectively encoded in the typical be-

haviour the order parameter shows in the proximity of the boundary; within a mean-field descrip-

tion, this is entirely captured by suitable boundary conditions such as Eq. (3.15). By applying the

same arguments used above for H one can show that the only relevant terms compatible with

the Z2 symmetry ϕ →−ϕ which can appear in H1 are c0ϕ2/2 and c1ϕ∂x⊥ϕ; thus, the boundary

conditions become

∂zϕi |x⊥=0 = c0ϕi(x⊥ = 0)+ c1∂x⊥ϕi |x⊥=0 , (3.16)

which can be rewritten as

∂x⊥ϕi |x⊥=0 =
c0

1− c1
ϕi(x⊥ = 0), (3.17)

thereby showing that the effect of the term proportional to c1 amounts just to a suitable renormal-

isation of c0 and can effectively be disregarded. This argument, which is based on a mean-field

description, can be generalised to every order in a standard perturbative expansion by applying it

at the external legs of any given Feynman diagram [59]. Consequently, the boundary term H1 can

be conveniently restricted to the form

H1 [ϕ] =
1

2
c0ϕ2. (3.18)
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Despite its simplicity, non-trivial consequences emerge because of its presence. In a mean-field

approximation, one recovers the phase diagram qualitatively represented in Fig. 3.1, which exhibits

a richer structure than the one found for infinite systems. In addition to the usual phases in which

c0,sp

Tc

c0

T ord
extr

surf

sp

SD�BD

SO�BO

SO�BD

Figure 3.1: Qualitative temperature-surface enhancement phase diagram of the O(1) model. Here S

stands for “surface”, B for “bulk”, O for “ordered” and D for “disordered”. The point c0,sp denotes the

tri-critical special transition. For c0 > c0,sp one identifies only the ordinary transition (ord), whereas

for c0 > c0,sp the surface undergoes ordering at a higher temperature Tcs than the bulk, identified by

the critical line denoted as “surf”, while the bulk still becomes critical at T = Tc (extr). For n > 1

this picture is valid only in dimension d > 3, as continuous symmetries cannot undergo spontaneous

breaking for d ≤ 2, thus no surface transition can occur [70].

the system is ordered (O) or disordered (D) as a whole, a third one appears which displays a

magnetised surface (SO) and a paramagnetic bulk (BD); the latter emerges when the coefficient

c0, often referred to as surface enhancement, as it accounts for the difference of the interaction

between the surface and the bulk, is smaller than a threshold value c0,sp. Four different phase

transitions can thus be encountered by varying the temperature. For c0 > c0,sp the interaction at the

surface is not sufficiently strong to let it acquire an ordered configuration at a higher temperature

than the bulk. Thus, the boundary becomes critical when the bulk does, as long-range correlations

at the surface build up as a consequence of the ones emerging inside the sample; this transition

is referred to as ordinary. Under RG transformations c0 flows to +∞, which, when applied to

Eq. (3.16), produces Dirichlet conditions

ϕ(x⊥ = 0) = 0 (3.19)

for the order parameter. For the ordinary transition, the critical point c0 = +∞ remains the same at

every order in the perturbative expansion; therefore, even when fluctuations are accounted for, the
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boundary condition (3.19) holds. For c0 < c0,sp, instead, the surface becomes critical at a temper-

ature Tcs > Tc; the corresponding surface transition reflects the properties of a bulk transition in a

(d−1)-dimensional system, which can be understood by taking the limit of vanishing interactions

in the bulk, therefore making the boundary a truly independent system. Note that, for the surface

transition to be observed, it is necessary that d > dlc + 1, dlc being the lower critical dimension

below which no transition can occur. In particular, the Mermin-Wagner theorem [70] forbids the

existence of spontaneous breaking of continuous symmetries for d ≤ 2; as a consequence, the sur-

face transition can be present in O(n) models only in d ≥ 4, with the exception of n = 1 (the Ising

universality class, which corresponds to a Z2 discrete symmetry) which admits it also for d = 3.

Lowering the temperature down to Tc, the bulk is then subject to ordering in the presence of an

already magnetised surface, giving rise to the so-called extraordinary transition. The latter has

also been proved to be equivalent [71] to the normal transition which takes place for c0 > c0,sp in

the presence of a strong magnetic field h1 localised at the surface. Finally, the intersection of the

critical lines identifies a tri-critical point c0 = c0,sp and a corresponding special transition. Within

a mean-field description, c0,sp = 0 gives rise to Neumann conditions

∂x⊥ϕ |x⊥=0 = 0. (3.20)

One has however to take care of the fact that this critical point is not known to all orders in pertur-

bation theory, as in the case of the ordinary transition [53]. Still, one can apply Eq. (3.20) to any

regularised (bare) function. In this case c0 flows to a renormalised value cR
sp which generically de-

pends on the chosen regularisation; in particular, within a dimensional regularisation scheme (such

as the one employed in the following Sections) it vanishes at every order. In real systems, in gen-

eral, sharp conditions such as the ones in Eqs. (3.19) and (3.20) above will not be observed, as in

the very proximity of the surface the microscopic structure of the system, such as the configuration

of the lattice, ceases to be inconsequential. On the other hand, since they are associated to mi-

croscopic scales, these effects are typically sufficiently small not to spoil the entire discussion and

their effect can be understood in terms of a shift from the ordinary (c0 = +∞) or special (c0 = 0)

fixed point to λ−1, where λ is usually referred to as extrapolation length [24]. The implications of

imposing an effective condition

∂x⊥ϕ |x⊥=0 =
1

λ
ϕ(x⊥ = 0) (3.21)

may be inferred from Fig. 3.2: the magnetisation profile is slightly modified near the surface, while

it remains substantially the same in the bulk. Its tangent at x⊥ = 0 identifies the extrapolation length

on the horizontal axis. Note that, in the ordinary case, this approximately corresponds to moving

the Dirichlet condition from x⊥ = 0 to an effective distance x⊥ = −λ outside of the sample. We

remark that, according to Eq. (3.21), the extrapolation length also provides a description of the

“distance” of c0 from the actual critical point and can thus constitute a mesoscopic length scale

[24, 53].

The discussion above highlights a typical example of the aforementioned subdivision of a uni-

versality class; as a matter of fact, the critical behaviour of bulk observables is the same in every

subclass, whereas surface quantities, such as the magnetisation m1 at the surface or the associated

susceptibility χ1, show distinctively different algebraic laws depending on the boundary transition
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-Λ
x
¦

m b

m s

m

(a)

Λ
x
¦

m b

m s

m

(b)

Figure 3.2: Qualitative representation of typical magnetisation m profiles as functions of the distance

x⊥ from the surface expected in real materials for (a) the ordinary and (b) the special transition. The

black solid lines exactly obey Dirichlet and Neumann boundary conditions, respectively. The red

ones sketch the deviation from the theoretically-expected profiles. The red, dashed lines highlight the

slope of the solid ones of the same colour at the origin and identify the extrapolation length on the

horizontal axis. Here mb denotes the magnetisation in the bulk and ms the one at the surface.

considered. Moreover, corresponding observables in the bulk and at the surface do not typically

share the same critical exponents: for example, for the Ising (n = 1) ordinary (c0 →+∞) transition

in two dimensions one can find analytically

{
m ∼ (Tc −T )β with β = 1

8

m1 ∼ (Tc −T )β1 with β1 = 1
2
.

(3.22)

This difference is usually understood in terms of a short-distance expansion (SDE) [53, 61] of

the corresponding operator, which is conceptually not too different from the operator product ex-

pansion (OPE) which has been introduced in scale-invariant field theories [72–74]: considering

the whole class of surface operators {Os
i }i, a generic bulk field φ(~r,x⊥) can be rewritten, when

approaching the boundary (i.e., for x⊥ → 0), as a linear combination

φ(~r,x⊥) = ∑
i

Bi(x⊥)Os
i (~r), (3.23)

where the coefficients Bi entirely enclose the asymptotic dependence on x⊥. In particular, since

every term of the series on the r.h.s. must have the same scaling dimension [φ ] as the l.h.s., we find

that

[Bi(x⊥)] = [φ ]− [Os
i ] . (3.24)

At the critical point ξ → ∞; consequently, the only length-scale entering the definitions of the Bis

is the distance x⊥ from the surface, which implies that

Bi(x⊥) = bi x
[Os

i ]−[φ ]
⊥ , (3.25)
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where each bi has now vanishing scaling dimension. For example, in a mean-field approach

Eq. (3.23) corresponds to the Taylor expansion

φ(~r,x⊥) =
∞

∑
i=0

bi xi
⊥ (∂x⊥)iφ(~r,x⊥) |x⊥=0 , (3.26)

where however the constants bi have to be fixed according to the specific boundary conditions,

e.g., b0 = 0 for Dirichlet (ordinary) ones and b1 = 0 for Neumann (special) ones. This expansion

is meant to be valid when performed inside any average and is clearly dominated by the non-

vanishing term corresponding to the surface operator φ1 with the highest scaling dimension. In

the same mean-field setting as above, that would be φ(~r,0) in the special case and its normal

derivative ∂x⊥φ(~r,x⊥) |x⊥=0 in the ordinary one. Once the bulk features are known, one can also

make use of the SDE to retrieve the boundary critical exponents from the asymptotic behaviour of

the corresponding observables. For example, for the magnetisation in Eq. (3.22) one would find

〈ϕ(x⊥)〉 ≈ x
β1−β

ν
⊥ 〈ϕ1〉 (x⊥ → 0); (3.27)

knowing both bulk exponents β and ν one can easily retrieve β1 by studying the power-law be-

haviour of 〈ϕ(x⊥)〉 upon approaching the surface, which is described by the formula above.

In order to understand how new divergences can be generated at the surface, we need to pro-

ceed beyond the mean-field level (see also Ref. [53]). We shall consider for simplicity the first

non-trivial order in a perturbative expansion of the ϕ4 theory (3.12), i.e., the “tadpole” Feynman

diagram in Fig. 3.3, although the following considerations are valid in general. We shall also

~k

~q

~k
x y

z

Figure 3.3: Tadpole diagram, corresponding to a graphical representation of the convolution (3.31).

Each line stands for an unperturbed propagator G(0), each vertex for a set of coordinates.

restrict ourselves to the vicinity of the upper critical dimension d = 4. First of all, we wish to

calculate the 0-th order two-point function, i.e., the free propagator

G(0)(~r1,x;~r2,y) = Ĝ(0)(~r1 −~r2;x,y) = 〈ϕ(~r1,x)ϕ(~r2,y)〉g=0 , (3.28)

where x and y denote the distances from the surface. G(0) obeys the equations of motion (3.14) and

(3.15) with g = 0 and is more conveniently written in a mixed momentum-space representation

(~k,x⊥) which keeps in coordinate space only the direction orthogonal to the surface [53, 59, 60]:

G̃(0)(~k;x,y) =
1

2ωk

[
e−ωk|x−y| +

ωk − c0

ωk + c0
e−ωk(x+y)

]
= G̃

(0)
b (~k;x− y)+

ωk − c0

ωk + c0
G̃

(0)
b (~k;x+ y),

(3.29)
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where we introduced the notation ωk =
√

k2 + r. Note that indeed, for c0 → +∞ and c0 = 0 one

recovers the structure G
(0)
b (x−y)∓G

(0)
b (x+y) dictated by the method of image charges for Dirich-

let and Neumann boundary conditions, respectively, where the “bulk propagator” G
(0)
b reproduces

the two-point function for infinite systems. As we have mentioned above, we are mainly interested

here in the short-distance (ultraviolet) singularities of this function, which emerge for

∣∣∣~k
∣∣∣= k → ∞.

In this limit, the factor (ωk − c0)/(ωk + c0) asymptotically reaches 1 and its dependence on k can

thus be neglected. Thereby, we can rewrite

Ĝ(0)(~r1 −~r2;x,y) ∼ Ĝ
(0)
b (~r1 −~r2;x− y)+ Ĝ

(0)
b (~r1 −~r2;x+ y), (3.30)

separating the “bulk” from the “surface” contribution. Upon integrating over the three-dimensional

vector~k, G
(0)
b (x− y) displays a singularity for every x = y, whereas G

(0)
b (x + y) requires the more

stringent condition x = y = 0, i.e., both points must be located at the boundary. Introducing a

momentum cutoff Λ to such an integral, it is easy to see that both divergences are of order Λ2,

which is consistent with Eq. (3.8) (here η = 0 since at this level we are considering the non-

interacting theory). Now, consider the tadpole contribution to the propagator depicted in Fig. (3.3),

which is proportional to the convolution

Ĝ(1)(~r1 −~r2;x,y) ∝

∫ ∞

0
dz
∫

dd−1r

(2π)d−1
Ĝ(0)(~r1 −~r;x,z) G̃(0)(0;z,z) G̃(0)(~r−~r2;z,y). (3.31)

Separating the central part, i.e., the bubble in Fig. 3.3, into its “bulk” and “surface” contributions,

one can see that the first produces the usual Λ2 divergence which renormalises the parameter r
(often referred to as “mass”, in analogy with a particle physics context). The second, instead, is

regular for any z > 0 and therefore does not receive any divergent contribution from the integration

over this coordinate; as a consequence, its degree of divergence is generally lowered by 1, i.e., it

is of order Λ and can be reabsorbed as a renormalisation of the surface enhancement c0. On the

other hand, if we move one of the external points to the surface (e.g., x = 0), the corresponding

external leg becomes singular too for z = 0 and can in principle contribute an additional singularity.

In order to estimate its degree of divergence, we consider that cutting the corresponding external

leg should recover the one found above, i.e., Λ [53]; this operation corresponds to removing the

intrinsic singularity of the two-point function ∝ 1/k2, which increases it by 2, and removing the

relevant integrations (excluding the one in the orthogonal direction, which does not contribute),

which decreases it by 3. Thus, the degree of divergence is further lowered to 0, i.e., a logarithmic

singularity is found which corresponds to a renormalisation of the boundary field ϕ1 → Z
1
2

1 ϕ1.

Actually, since in general also the bulk field is subject to a renormalisation, the typically-employed

convention corresponds to

ϕ → Z
1
2 ϕ, ϕ1 → Z

1
2 Z

1
2

1 ϕ1, (3.32)

which distinguishes between the two effects. The surface order parameter exponents have been

calculated in a dimensional expansion d = 4− ε around ε = 0 for both the ordinary [60] and the
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special [59] transitions up to the second order, and found out to be

β1,ord = 1− 3

2(n+8)
ε − 3(n+2)(12−n)

8(n+8)3
ε2 +O

(
ε3
)
, (3.33a)

β1,sp =
1

2
− 1

4
ε −n

(n+2)

8(n+8)2
ε2 +O

(
ε3
)
. (3.33b)

It has to be noted that the introduction of boundaries produces another non-trivial consequence:

due to the breaking of translational invariance, the one-particle-irreducible (1PI) formalism is not

sufficient anymore to completely renormalise the theory [53, 59]. Consider in fact, neglecting for

simplicity the directions parallel to the surface, a non-1PI contribution A(x1, . . .xn,y1, . . .ym) to a

(n+m)-point function; by definition, A can be written as

A(x1, . . .xn,y1, . . .ym) = B(x1, . . .xn)∗G(0)(xn,y1)∗C(y1, . . .ym), (3.34)

where ∗ denotes convolution. Equation (3.34) corresponds to the graphical representation in

Fig. 3.4. Clearly, if translational invariance holds, the expression above can be rewritten as

Figure 3.4: Example of a non-1PI diagram, representing expression (3.34) for n = 6, m = 4. Cutting

the line in the middle disconnects the graph.

A = B(x2 − xn, . . .xn−1 − xn)∗G(0)(xn − y1)∗C(y2 − y1, . . .ym − y1), (3.35)

and, upon performing a Fourier transformation, the convolution becomes a product; therefore, as

long as the divergences of the terms B and C are separately cured, A remains regular. In a non-

translationally-invariant framework, instead, this argument does not hold.

3.1.2 Temporal boundaries

A quench of the system’s temperature (or any other control parameter) breaks time-translational

invariance — a characteristic symmetry of stationary states — in the same way as a surface breaks

space-translational invariance; as a matter of fact, as long as the change can be considered instan-

taneous, it effectively introduces a sharp temporal boundary for the evolution [23, 75]. The subse-

quent non-equilibrium dynamics is typically affected by the memory of the initial state and, in cer-

tain circumstances, it is also responsible for the later occurrence of ageing phenomena [20, 23, 75].

Within this framework, the “early-time” dynamics becomes akin to the behaviour of equilibrium
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quantities close to a spatial surface; therefore, it is natural to pose the question whether it is possible

to apply the same RG techniques briefly reviewed in Sec. 3.1.1 to the present case. For simplicity,

also in this Section we shall focus on the ferromagnetic O(n) models, whose thermal stochastic

dynamics can be described by a Langevin formalism [68] such as

∂ϕi

∂ t
= −Ω

δH

δϕi
+ηi, (3.36)

where Ω acts as a diffusion constant, ηi(~r, t) is an n-component white Gaussian noise with zero

mean and variance 〈
ηi(~x, t)η j(~y,s)

〉
= 2δi j ΩkBT δ (~x−~y)δ (t − s) (3.37)

which accounts for the thermal fluctuations induced on the system by an external bath at fixed

temperature T , and H is the Ginzburg-Landau energy density (3.12). For simplicity, below we

will set kBT = 1. Equation (3.36), which corresponds to “model A” according to the classification

of Ref. [68], describes an evolution which does not preserve the order parameter ϕ . Other dy-

namical prescriptions include conserved order parameters (model B), coupling to conserved fields

(model C) and more elaborated ones, such as the description of the universal behaviour of gas-fluid

mixtures (model H), superfluid helium (model F) or Heisenberg antiferromagnets (model G).

It is now well-established that a Langevin equation can be recast in a path-integral formalism

by a suitable transformation [19, 76–78], which we review shortly in App. 3.B. This requires

the introduction of an auxiliary n-component field ϕ̃i and produces for our choice a generating

functional of correlations

Z[J, J̃] =
∫

DϕD ϕ̃ e−S[ϕ,ϕ̃]−J·ϕ−J̃·ϕ̃ Pt0 [ϕ] (3.38)

where Pt0 is the probability distribution of the field ϕ at time t = t0 and J, J̃ are external sources,

while the shorthand notation J ·ϕ stands for

J ·ϕ =
∫ ∞

t0
dt
∫

ddx J(~x, t)ϕ(~x, t). (3.39)

In Eq. (3.38) the effective action S is given by

S [ϕ, ϕ̃] =
∫ ∞

t0
dt
∫

ddx
{

ϕ̃i

[
ϕ̇i +Ω

(
r−∇2

)
ϕi +Ω

g

6
ϕ2ϕi

]
−Ωϕ̃2

}
, (3.40)

where the sum over repeated indices is understood. This expression can be slightly simplified by

rescaling time according to t → t/Ω. Note that, by doing this, we are actually intermingling the

renormalisation of Ω with that of time scales; however, since we are primarily interested in the

behaviour at boundaries, we can safely relinquish the distinction between these two effects. This

rescaling yields

S [ϕ, ϕ̃] =
∫ ∞

t0Ω
dt
∫

ddx
{

ϕ̃i

[
ϕ̇i +

(
r−∇2

)
ϕi +

g

6
ϕ2ϕi

]
− ϕ̃2

}
. (3.41)
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By introducing a source term hiϕi in the free-energy density (3.12), it is not difficult to see that it

is mapped into hiϕ̃i in the action (3.41). This means that obtaining the linear response of a certain

observable
〈
ϕ j1(t1) . . .ϕ jn(tn)

〉
to an external perturbation hi(s) amounts to calculating

δ

δhi(s)

〈
ϕ j1(t1) . . .ϕ jn(tn)

〉
=
〈
ϕ j1(t1) . . .ϕ jn(tn)ϕ̃i(s)

〉
, (3.42)

which justifies the name of response field attributed to ϕ̃ . Moreover, causality requires that no

response be observed before a perturbation is applied; therefore, a generic expectation

〈
ϕ j1(t1) . . .ϕ jn(tn)ϕ̃i1(s1) . . . ϕ̃im(sm)

〉
(3.43)

identically vanishes whenever max
j

{
t j
}

< max
i

{si}. In particular, out of three different two-point

functions which can be constructed with two commuting fields, only two are not identically 0,

namely the correlation function C(~x; t,s) = 〈ϕ(~x, t)ϕ(0,s)〉 and the response function R(~x; t,s) =
〈ϕ(~x, t)ϕ̃(0,s)〉.

If one is interested in the asymptotic stationary state, the limit t0 →−∞ can be taken and Pt0
disregarded, as the relaxational dynamics will erase any memory of the initial state in the long-time

limit. Our interest here is focused instead on the evolution close to the initial point, which in the

following we will conventionally set to t0 = 0. In order to highlight universal features, we shall

consider a quench to the critical temperature Tc, which can be effectively obtained in dimensional

regularisation by setting r = 0 in Eq. (3.41) [11]. From expression (3.41) one realises that the

scaling dimension of time differs from the one of spatial coordinates (typically taken as reference,

i.e., −1); in particular, the mean-field dynamical exponent is z = 2 [23]. Consequently, the naive

dimensions

[ϕ] =
d −2

2
, [ϕ̃] =

d +2

2
(3.44)

for the order parameter and the response field can be derived. The initial distribution Pt0 is in

general a complicated function of its argument, but one can employ RG arguments similar to the

ones used in the previous Section to retain only the relevant part. First of all, we assume that it is

regular enough to be rewritten as

P0 [ϕ] =
1

Z0
e−S0 =

1

Z0
e−

∫
ddxH0[ϕ], (3.45)

where Z0 =
∫

Dϕt=0 e−S0 is a normalisation factor which ensures that P0 describes indeed a

probability, i.e.,
∫

Dϕt=0 P0 = 1 and H0 is a functional which admits a power-series expansion

in terms of ϕ; secondly, we also restrict to initial states which do not explicitly break the O(n)
symmetry. As a consequence, one finds

H′ [ϕ] =
∞

∑
n=1

τn−1

(2n)!
ϕ2n =

τ0

2
ϕ2 +

τ1

4!
ϕ4 + . . . , (3.46)

from which, using Eqs. (3.44), one can determine that [τn] = 2−n(d −2). For d = 4 this implies

[τ0] = 2, [τ1] = 0, [τn] < 0 ∀n > 1, (3.47)
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i.e., the quadratic term is the only relevant one. In principle, one should also take into account

the marginal, quartic one, but, as we wish to keep the discussion as simple as possible, here we

shall follow the example of Ref. [23] and neglect it. From a physical perspective, this amounts to

requiring that at t = 0 the system be far from criticality, which implies that the introduction of the

quartic term is irrelevant for the description, as the quadratic one dictates the behaviour. Therefore,

if the initial state is sufficiently similar to the one described by

H0 =
1

2
τ0ϕ2 (3.48)

we can expect the universal features extracted by the RG to correctly capture the main properties

of the dynamics already in its early stages. Equation (3.48) corresponds to a Gaussian state with

vanishing mean and extremely short-range correlations

〈ϕ(~x,0)ϕ(~y,0)〉 =
∫

Dϕt=0 ϕ(~x,0)ϕ(~y,0)e−S0 =
1

τ0
δ (~x−~y) . (3.49)

effectively represented by a δ distribution at the mesoscopic level. Such features denote a highly-

disordered state; in particular, for large τ0 Eq. (3.49) effectively captures the features of an infinite-

temperature state. Thus, any quench performed as a sudden cooling from very high temperatures

to the critical value Tc is well described within this framework.

Note that S0 defined in Eq. (3.45) can be regarded as a boundary action at t = 0, which makes

the partition function (3.38) substantially analogous to the one (Eq. (3.13)) encountered in the

case of static, semi-infinite systems. The main difference consists in the causal structure of the

dynamical theory: a perturbation in the future cannot affect the past, whereas a perturbation in the

bulk is generally able to reach the surface. On the other hand, this dynamical feature is encoded

in the properties of the response field ϕ̃ , thus the same formalism sketched in the previous Section

can indeed be applied to the present case [20, 23]. In particular, in complete analogy with c0 in

the previous Section, one finds that the only possible fixed points for the renormalisation flow of

τ0 are 0 and ±∞; however, here τ0 is involved in the definition of a probability density, hence we

are forced to exclude those values which make it non-normalisable. Because of this, the only one

left is τ0 = +∞, which corresponds to the ordinary transition and to Dirichlet initial conditions for

the order parameter

ϕ(~x, t = 0) =
1

τ0
ϕ̃(~x, t = 0) → 0. (3.50)

This completely determines the bare propagators of the theory, written here in a momentum-time

representation, which are the previously-introduced correlation

C(~k; t,s) =
〈

ϕ(~k; t)ϕ(−~k;s)
〉

=
1

k2

(
e−k2|t−s|− e−k2(t+s)

)
(3.51)

and response

R(~k; t,s) =
〈

ϕ(~k; t)ϕ̃(−~k;s)
〉

= θ(t − s)e−k2(t−s), (3.52)

in which the causal structure is made apparent by the presence of the unit step function θ(t − s)
with θ(t < 0) = 0 and θ(t > 0) = 1. Furthermore, one has to introduce the boundary fields ϕ0, ϕ̃0
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which enter the SDEs of ϕ and ϕ̃ , respectively, and can be identified with

ϕ0 = ∂tϕ |t=0 and ϕ̃0 = ϕ̃(t = 0) (3.53)

within a mean-field description. The difference in scaling dimension between the temporal “bulk”

and “surface” defines a new critical exponent θ , usually referred to as initial-slip exponent, which

appears in

ϕ(~x, t) ∼ t1−θ ϕ0(~x) and ϕ̃(~x, t) ∼ t−θ ϕ̃0(~x) (3.54)

and governs the early-time dynamics of the system. Its value has been calculated up to the second

order in a dimensional expansion (d = 4− ε , ε → 0+), which gives [23]

θ =
n+2

n+8

ε

4
+

3

2

n+2

(n+8)2

(
n+3

n+8
+ log2

)
ε2 +O

(
ε3
)
. (3.55)

An example of early-time scaling has already been encountered in Fig. 2.1 in the Introduction. The

fact that the two SDEs above share the same exponent (apart from a shift by 1 due to the presence

of a time derivative) is related to the fact that this model, in the long-time limit, reaches thermal

equilibrium at T = Tc, which implies that the fluctuation-dissipation relation [20]

−∂tC(t,s)

R(t,s)
= kBTc (3.56)

is asymptotically satisfied. This can be directly verified — recalling that we have set kBTc = 1 —

from Eqs. (3.51) and (3.52) taking the limits t → ∞, s → ∞ with t − s fixed; as a consequence, the

scaling dimension of ϕ̃ and ∂tϕ must be the same, i.e.,

[ϕ̃(t)] = [∂tϕ(t)] = [ϕ(t)]+ z. (3.57)

On the other hand, by applying the Dirichlet initial condition (3.50) to the equation of motion

(
∂t −∇2 +

g

6
ϕ2
)

ϕi = 2ϕ̃i (3.58)

one finds ∂tϕi |t=0 = 2ϕ̃i(t = 0), which implies [ϕ0] = [ϕ̃0]. Note that, since the last equation does

not depend on any scaling parameter and the Dirichlet condition τ0 = ∞ does not flow under RG

transformations, the identification of the two dimensions goes beyond the mean-field description

and is actually valid at any perturbative order [23].

3.2 A model with both spatial and temporal boundaries

In order to investigate the subtle interplay between the breaking of space- and time-translational

invariance we have studied a semi-infinite O(n) model quenched from a disordered state to its criti-

cal temperature at time t = 0. We have combined analytical and numerical methods for the purpose

of verifying whether effects beyond those resulting from each separate breaking [79] emerge. We

have uncovered, unexpectedly but similarly to the case of a spatial wedge [65], a so-far undetected
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power-law behaviour described by a critical exponent θE which emerges upon approaching the

effective edge formed by the intersection of the spatial and temporal boundaries.

Consider the Langevin equation (3.36) with a Gaussian white noise that we take to be uniform

throughout the system, as the one in Eq. (3.37). In order to account for the presence of a spatial

surface, we introduce a boundary term in the Ginzburg-Landau effective free-energy density

H [ϕ] =
∫

{x⊥≥0}

ddx

[
(~∇ϕ)2

2
+

r

2
ϕ2 +

g

4!
ϕ4 +δ (x⊥)

c0

2
ϕ2

]
. (3.59)

where we have employed the same notation as in Sec. 3.1, i.e., x⊥ represents the coordinate or-

thogonal to the surface, r ∝ T − Tc describes the distance from the critical temperature, g > 0

constitutes a measure of the strength of interactions in the bulk and c0 the relative difference with

their counterparts at the surface. As a starting point for the dynamics, we take for simplicity

the same high-temperature state (3.48) introduced in Sec. 3.1.2, thereby choosing not to explicitly

break space-translational invariance from the very beginning. In the following we shall concentrate

on the special (c0 = 0) and ordinary (c0 → +∞) transitions, since they admit a unified treatment,

as they are both cases in which the bulk becomes critical in the absence of an explicit breaking of

the O(n) symmetry. The average order parameter 〈ϕ(t)〉 has been studied in Ref. [79], where it

has been argued that no new field-theoretical divergences should arise at the spatio-temporal edge

(t = 0, x⊥ = 0). In order to support such a statement, the following argument has been proposed:

on the one hand, the new divergences which appear in an out-of-equilibrium context at the initial

instant are logarithmic in nature (i.e., O
(
Λ0
)
); on the other, as we have seen at the end of Sec. 3.1.1,

moving a point from the bulk to the surface reduces the degree of divergence by 1. Thus, the cor-

responding novel singularity expected to emerge at the edge (t = 0,x⊥ = 0) should be of order

O
(
Λ−1

)
, which represents an effective way to denote its absence. Although seemingly reasonable,

this argument fails to capture the singular behaviour emerging from the calculation of perturba-

tive corrections, as we show in App. 3.C. We think such reasoning not to be entirely correct and

we propose to revisit the issue in the same light as it has been presented for the case of a static

system with boundaries [53]. Focusing our attention for simplicity on the “tadpole” contribution

in d = 4, corresponding to Fig. 3.3, we first have to subtract from its usual degree of divergence

(Λ2) the number of relevant integrations lost at the edge, which include one over x⊥ and one over

time. Recalling that this theory has (naive) dynamic exponent z = 2 and therefore time effectively

counts as a squared spatial coordinate, we get indeed Λ−1 for the general degree of divergence of

this diagram. On the other hand, in order to gain insight on the boundary-specific singularities, we

have to consider the effect of removing an external line fixed at the edge; the intrinsic ultraviolet

behaviour of two-point correlation is, in the dynamical case, ∼ 1/k4 and provides an increase of

order 4. In fact, the Fuorier transform of the equilibrium part of (3.51) with respect to time is

C(~k;ω) =
2

ω2 +(k2)2
. (3.60)

The relevant integration, which is performed along the edge, involves three spatial dimensions and

thus decreases it by 3. The global effect is an increase by 1 which returns a degree of divergence of

O
(
Λ0
)
, thereby identifying a logarithmic divergence, compatibly with the results reported below.
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The response function is slightly more complicated; while it is characterised by an ultraviolet

behaviour ∝ k−2, one has to consider that, because of its causal structure, the integration over time

is irrelevant already in the “bulk”; therefore, one is losing only one spatial integration. The overall

effect is again an increase by 1, analogously to the case of the correlation function.

3.2.1 Field-theoretical approach

In the response function formalism [76–78] (see App. 3.B), the global action is given by STOT =
S + S0 + S1, where the first term corresponds to Eq. (3.41) with t0 = 0, the second describes the

initial state

S0 (ϕ) =
1

2

∫

{x⊥≥0}

ddx τ0 ϕ2(t = 0) (3.61)

and the third is the surface term

S1 (ϕ, ϕ̃) =
∫ ∞

0
dt
∫

dd−1x c0 ϕ̃(x⊥ = 0)ϕ(x⊥ = 0) (3.62)

which comes from the boundary term ∝ δ (x⊥) in Eq. (3.59). S1 gives rise to Dirichlet and Neumann

boundary conditions for both fields at the ordinary and special points, respectively. We carried out

a field-theoretical perturbative calculation aimed at obtaining both two-point functions





C(~k ;x, t; y,s) =
〈

ϕ(~k; x, t)ϕ(−~k; y,s)
〉

,

R(~k ;x, t; y,s) =
〈

ϕ(~k; x, t)ϕ̃(−~k; y,s)
〉 (3.63)

in dimensional regularisation at the first order in ε = 4−d; as in the previous Sections, we employ

here a mixed momentum-coordinate representation, denoting with x and y the distances from the

spatial surface and with t and s the time elapsed from the quench. In order to simplify the notation,

below we will omit the dependence on the momentum whenever this might not cause confusion.

Beyond correctly reproducing the previously-known results concerning separately each of the

two boundaries x⊥ = 0 and t = 0, this approach highlights indeed the emergence of an additional

dimensional pole ∝ ε−1 [11] when the coordinates of the correlation and response functions (3.63)

are fixed at the spatio-temporal edge y = s = 0, analogously to what happens for the static critical

behaviour in a wedge [65]. Adopting the same point of view as the one introduced in Sec. 3.1, these

poles can be associated to new edge operators ϕE and ϕ̃E which appear as the most relevant fields

in the short-distance expansions [53] of the order parameter ϕ and the response field ϕ̃ close to the

edge. In the present case, due to the nature of the boundary conditions imposed, at the mean-field

level we can identify them with

ϕE = ∂tϕ(t,x⊥) |t=x⊥=0 and ϕ̃E = ϕ̃(t = 0,x⊥ = 0) (3.64)

for the special transition and with

ϕE = ∂t∂x⊥ϕ(t,x⊥) |t=x⊥=0 and ϕ̃E = ∂x⊥ϕ̃(t = 0,x⊥) |x⊥=0 (3.65)
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for the ordinary one. The corresponding naive scaling dimensions are given by

[ϕ̃E ]sp = [ϕE ]sp =
d +2

2
= 3− ε

2
and [ϕ̃E ]ord = [ϕE ]ord =

d +4

2
= 4− ε

2
. (3.66)

Note that, in contrast with the previous instances, this implies that the corresponding operators∫
dd−1xhE ϕE(~x) are irrelevant in the RG sense, since [hE ]sp =−ε/2 and [hE ]ord =−1−ε/2. This

is similar to the case of the spatial wedge [65], where the edge operator, which controls the leading

behaviour of the correlation function near the intersection of the two (spatial) surfaces, becomes

irrelevant when the angle is smaller than π . Since, in general, irrelevant operators are known to

increase the degree of divergence when inserted in an expectation [80, 81], this might provide an

explanation to the peculiar behaviour encountered above when fixing the external leg of a Feynman

diagram to the edge. Note that, despite its irrelevance, it stills dictates the leading scaling behaviour

in this regime. In order to write the corresponding SDEs, one has to introduce a generic "radial"

coordinate (Ay)z + s, where A is a non-universal constant which depends on the units chosen to

measure time and space; this coordinate controls the distance from the edge, so that

ϕ(y,s) ∼ ((Ay)z + s)−cE ϕE , ϕ̃(y,s) ∼ ((Ay)z + s)−c̃E ϕ̃E , (3.67)

where we have defined

cE =
[ϕ]− [ϕE ]

z
and c̃E =

[ϕ̃]− [ϕ̃E ]

z
. (3.68)

The same argument which has led us to identify the exponents in Eq. (3.54) allows one to conclude

that cE = c̃E −1. Taking into account all the asymptotic behaviours defined by Eqs. (3.27), (3.54)

and (3.67), the most general scaling forms one can write for the two-point functions (3.63) are

C(x, t;y,s) = AC (∆t)a
(s

t

)1−θ
(

A2xy

(∆t)
2
z

) β1−β
ν (

(Ay)z + s

∆t

)−θE

FC

(
(Ax)z

∆t
,
(Ay)z

∆t
,
s

t

)
, (3.69a)

R(x, t; y,s) =AR (∆t)a−1
(s

t

)−θ
(

A2xy

(∆t)
2
z

) β1−β
ν (

(Ay)z + s

∆t

)−θE

FR

(
(Ax)z

∆t
,
(Ay)z

∆t
,
s

t

)
, (3.69b)

where we have assumed, without loss of generality, t > s and introduced ∆t = t − s. In the expres-

sions above, FC/R are scaling functions (depending, inter alia, on the specific surface transition)

with finite FC/R(0,0,0) 6= 0 and such that the usual equilibrium scaling is recovered when t → s
and x → y; the non-universal constants AR/C are chosen such that

FC/R (0,0,0) = 1. (3.70)

The exponents a and a−1 denote the scaling dimensions of the correlation and response functions,

respectively, once again related by the fluctuation-dissipation theorem (3.56), and can be expressed

in terms of bulk critical exponents as

a = d −1− 2β

ν
= 1−η . (3.71)
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The exponent θE describes the only effect which is specifically due to the edge; to relate it with cE

defined in Eq. (3.67) we rewrite (Ay)z = ucosα and s = usinα and consider the limit u → 0, which

denotes an approach to the edge for any fixed “angle” α . The asymptotic behaviour of Eqs. (3.69a)

and (3.69b) is then given by

C ∼ u−cE 〈ϕ(x, t),ϕE〉 ∼ u1−θ+
β1−β

zν −θE , (3.72a)

R ∼ u−cE+1 〈ϕ(x, t), ϕ̃E〉 ∼ u−θ+
β1−β

zν −θE , (3.72b)

which leads to the identification

cE = −1+θ − β1 −β

zν
+θE , (3.73)

where, according to Eqs. (3.54) and (3.27), z(−1+θ) = [ϕ]− [ϕ0] and −(β1−β )/(ν) = [ϕ]− [ϕ1]
represent the initial-slip and surface contributions that would appear even in the absence of novel

singularities localised at the edge. This clearly shows that θE entirely encodes the edge features.

Up to O(ε), the latter turns out to be [82]

θE,sp =
(√

3−1
) n+2

n+8

ε

4
and θE,ord = −

(
1− 1√

3

)
n+2

n+8

ε

4
(3.74)

for the special and ordinary transitions, respectively. The factor
√

3 in these expressions is specific

to the edge: up to the first order in the perturbative ε-expansion, in fact, it does not appear in any

other static or dynamic, bulk [11] or surface [59, 60] exponent (see, e.g., Eqs. (3.173a), (3.173b),

(3.33a), (3.33b) and (3.55)). Thus, it seems unlikely that θE could be expressed by means of a

scaling relation in terms of these quantities. Furthermore, in the present picture θE is the only

critical exponent associated with an edge operator; since this model lacks conservation laws which

could relate the scaling dimension of ϕE with that of the order parameter ϕ in any other region

(bulk, surface or initial time), the exponent θE appears to be an independent one.

Working with the effective radial coordinate ((Ay)z + s), as we have done above, involves from

a practical point of view varying simultaneously the time and the distance from the surface and

may seem factitious; in order to highlight what novel effects the edge brings forth in a more easily

controllable context, we now introduce what we refer to as the “edge regime”, which is depicted

in Fig. 3.5(a): x, y and t are fixed such that y ≪ x and yz ≪ t − s, while s varies within the range

yz ≪ s ≪ t; correspondingly, Eqs. (3.69a) and (3.69b) yield

C(. . . ,s) ∝ s1−θ−θE and R(. . . ,s) ∝ s−θ−θE , (3.75)

where the proportionality constants depend, inter alia, on t ≫ s, xz/t and yz/t ≪ 1. Conversely, we

name "short-time" (ST) the regime illustrated in Fig. 3.5(b), in which s is much smaller than any

other (mesoscopic) scale, which can be obtained from the edge regime by moving s to the domain

s ≪ yz and in which we find

C(. . . ,s) ∝ s1−θ and R(. . . ,s) ∝ s−θ . (3.76)
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Figure 3.5: Schematic representation of (a) the edge and (b) the short-time regimes in a spacez-time

plot. The two dots indicate the coordinates of the two-point functions (3.63). The dotted and dashed

lines are reported in order to make the comparison between the various scales easier. The red arrows

and text summarise the conditions which identify either of the two regimes.

Note that in the absence of edge effects (i.e., for θE = 0) no alteration in the power-law behaviour

could be observed by passing from one of these two regimes to the other [20, 83]; moreover, since

the initial-slip exponent θ is oblivious of the surface transition, one would not find any differences

between the ordinary and special cases. As we explicitly demonstrate in the next Section, these

considerations can be used to set up an experimental or numerical verification of the presence of

edge corrections to the scaling behaviour of observables; this approach has the significant advan-

tage of not relying on a quantitative comparison with our predictions (3.74) which, coming from a

first-order truncation of the perturbative series, could very well prove not to be accurate enough.

3.2.2 Monte Carlo study of the three-dimensional Ising universality class

While the ordinary transition is always present for d > 2, the special transition can be found in

d < 4 only within the Ising universality class, i.e., for n = 1 [53]. For d ≥ 4 (corresponding to

ε = 0), the mean-field description becomes exact; therefore, since for both transitions the new

exponent θE is of order O(ε), no effects due to the edge are expected to emerge. Hence, we

conclude that the three-dimensional Ising model is the most convenient choice for studying them.

All the other bulk, surface and initial-slip exponents appearing in Eqs. (3.69a) and (3.69b) have

been extensively studied in the past for this universality class; their numerical estimates, taken

from Refs. [12, 25, 84], are approximately

a =
1

z

(
d −1−2

β

ν

)
≃ 0.4725(4), ν ≃ 0.6297(5), β ≃ 0.3274(9), z ≃ 2.04,

β1,ord ≃ 0.80(1), β1,sp ≃ 0.237(5), θ ≃ 0.15.

(3.77)
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By using the standard setup for studying surface criticality [25], we have simulated the Ising

model on a three-dimensional cubic lattice made up of H = 40 consecutive planes with 60× 60

spins per plane. Within each of these planes, periodic conditions are imposed at the boundaries

to mimic the infinite extension of the system along the directions orthogonal to x⊥. In order to

reproduce the two different surface transitions considered above, we have let the coupling constant

between any pair of surface spins Js be in general different from the one defined in the rest of the

lattice Jb; by setting the latter to Jb = 1 the ordinary case is realised for 0 ≤ Js < 1.5, whereas

the special transition is known to occur in three dimensions for Js ≃ 1.5 [85]. The system is

prepared at t = 0 in a completely disordered state corresponding to infinite temperature T and

it subsequently evolves at its bulk critical value Tc = 4.5115Jb/kB with Glauber dynamics. One
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Figure 3.6: Time dependence of the correlation function C(x, t;y,s) of the plane magnetisation of

a three-dimensional Ising model evolving with Glauber dynamics after a quench from a completely

disordered state to the bulk critical temperature. (a) The bulk-surface correlation function C with

x = H/2 = 20 and y = 1 is plotted as a function of s for t = 103 sweeps (corresponding to the "edge

regime" discussed in the main text). Data points result from averaging over 5× 105 and 3× 106

independent runs for the special (red upper dots) and ordinary (blue lower dots) case, respectively.

The black solid lines correspond to power laws with the exponents reported to the right; the parallel

dashed lines, instead, indicate, for comparison, the power law with exponent 0.85 observed within the

short-time regime and predicted by Eq. (3.76). The data points with s < 6 have been disregarded as

they might be affected by microscopic effects. (b) The same plot for various values of the position y.

For the 5 lowermost (uppermost) curves, corresponding to the ordinary (special) transition, y increases

from bottom to top (top to bottom) and takes the sequence of values reported for the ordinary case to

the right. This plot highlights the crossover from the "edge" (yz ≪ s) to the "short-time" behaviour

(yz ≫ s), which is common to the two instances. For the ordinary case and y = 4 this crossover can

be observed as a function of s, as highlighted by the thin solid and dashed lines that meet at s ≃ (Ay)z,

which yields the indicative estimate A ≃ 2.
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time step corresponds to one sweep in which on average every spin of the lattice has been updated

once; this standard definition is conceptually akin to considering mesoscopic time scales. As we

are interested in the behaviour close to the temporal surface, only rather short simulation times

are needed and therefore we can restrict ourselves to rather small system sizes. In order to rule

out the influence of finite-size effects we have also analysed some larger lattices, highlighting no

significant discrepancies with the results we report below. For the purpose of investigating the

edge regime we focused on the two-point correlation function C(x, t;y,s) defined in Eq. (3.63),

since the response is expected to behave in an analogous fashion (see Eqs. (3.75) and (3.76)).

Here, x = 1 corresponds to the surface, whereas x = H/2 to the midplane of the lattice. The

statistical average is taken over a large number of independent runs with different realisations

of the thermal noise and of the initial state. In Fig. 3.6(a) we show the bulk-surface correlator

C(x = H/2, t;y = 1,s) for the ordinary case Js = 1 and the special one Js = 1.5, where we fix

t = 103 and vary s within a range that, under the assumption A ≃ 1, corresponds to the edge regime

(we verified that different instances of the value of t lead to the same slopes). From Fig. 3.6(b)

one can indeed infer that the non-universal constant A is of order unity, thereby justifying our

choice. We observe that C(. . . ,s) ∼ sρ increases algebraically, but with two different exponents

ρsp = 0.71(2) for the special case and ρord = 1.05(2) for the ordinary one. This result ρsp 6= ρord

clearly shows that different surface universality classes display a different behaviour at the spatio-

temporal edge, thus providing a confirmation to the presence of the novel effects discussed in

Sec. 3.2.1. In particular, this picture is not in agreement with the power-counting argument of

Ref. [79], which we have reported at the beginning of Sec. 3.2. The dashed lines, reported for

comparison, denote the slope ρsp = ρord = 1− θ ≃ 0.85 [84] which would be expected for the

correlation function if no novel exponent were to appear at the edge.

Table 3.1 presents the comparison between the numerical estimates of ρ from Fig. 3.6(a) and

the corresponding analytic expressions ρ = 1−θ and ρ = 1−θ −θE which exclude and include the

edge effects, respectively. The latter are calculated according to Eqs. (3.74) and (up to O(ε)) θ =
ε/12 [23], specialised to the three-dimensional Ising case (i.e., n = 1 and ε = 1). Note that, even

Monte Carlo estimates Analytical results (ε = 1)

Figs. 3.6(a) and 3.6(b) ρ = 1−θ ρ = 1−θ −θE

Edge, sp 0.71(2) 0.917 0.856

Edge, ord 1.05(2) 0.917 0.952

Short-time, sp & ord 0.85(2) 0.917 0.917

Table 3.1: Comparison between the numerical and analytical estimates of the exponent ρ which

controls C(. . . ,s)∼ sρ in the edge and the short-time regimes, in the absence (ρ = 1−θ ) and presence

(ρ = 1−θ −θE) of edge contributions, for the special (sp) and ordinary (ord) transitions.

if lacking quantitative accuracy, the factor relative to the edge introduced in Eq. (3.69a) correctly

captures the qualitative behaviour as a function of s of the correlation function C(x, t;y,s) within the

edge regime: in fact, in the case of the ordinary and special transition C(. . . ,s) grows respectively

faster and slower than it does in the short-time regime; correspondingly, the first order correction
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(3.74) is respectively negative and positive.

Figure 3.6(b) presents a study of the crossover between the edge regime of Fig. 3.6(a) and the

short-time regime, which occurs upon increasing y above the scale set by s1/z/A. This crossover

is properly captured by the scaling function in Eq. (3.69a) because the additional multiplicative

factor becomes approximately independent of s for s ≪ t, so that C(. . . ,s) ∼ s1−θ , as predicted for

the short-time regime. Conversely, for a fixed y 6= 1 (i.e., not at the surface), the crossover between

the short-time and the edge regimes occurs upon increasing s above (Ay)z. With the present data,

we could find reasonable evidence of its presence in the ordinary case with y = 4 (see Fig. 3.6(b)).

We emphasize the fact that the edge regime is not the only one affected by the aforementioned

factor; however, we focused on it in order to test a qualitative difference between our predictions

and previous ones which had been based on the assumption that the edge plays no significant role,

thus circumventing the need for a quantitatively accurate analytic determination of θE .

3.3 Conclusions

By studying the non-equilibrium relaxational (model A [68]) dynamics of the O(n) model in the

proximity of a surface within a field-theoretical formalism, we have identified novel singularities

which affect the scaling behaviour of physical observables in the proximity of the spatio-temporal

edge, defined as the intersection between the spatial and temporal boundaries. The asymptotic

power-laws found in this regime can be understood in a boundary renormalisation group framework

in terms of the difference between the scaling dimension of the order parameter ϕ (or the response

field ϕ̃) and the corresponding edge operator ϕE (ϕ̃E). Despite being irrelevant in the RG sense,

the latter non-trivially affects the physics of the system as it represents the first non-vanishing

contribution appearing in the short-distance expansion of the bulk field ϕ .

A power-counting argument had been proposed in the past to exclude the presence of novel

universal effects at the edge [79]. All subsequent studies on systems presenting breaking of both

space- and time-translational invariance assumed the validity of this statement in order to provide

ansatzes for the scaling forms of observables. Since our calculations, which are not based on any

a priori hypothesis, show a discrepancy in this respect, we have devised a suitable method to test

their physical implications: we have identified a regime in which the presence or absence of effects

due to the edge gives rise to qualitative differences in the behaviour of observables. In particular,

in our framework the initial algebraic growth would be affected by the type of surface transition

considered, whereas it would not if the aforementioned argument were correct. This avoids hinging

upon a quantitative comparison which would in principle require an analytical approach to higher

orders in the perturbative expansion. Our Monte Carlo simulations — which mainly focus on

the edge regime and the crossover to the short-time one — provide numerical evidence of the

correctness of our analytical predictions at a qualitative level. The consistency of these approaches,

which concern two completely different systems at the microscopic level, i.e., a discrete spin model

on a lattice and an interacting field theory in the continuum, provides additional support to the

universality of the edge behaviour, which could be expected as a consequence of scale invariance

at the critical point. This actually indicates that the scaling near the edge investigated here depends

only on the gross features (symmetry, dimensionality and short-range interaction) which are shared
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by both models.

It would be desirable to extend the present investigation to different static, dynamic and sur-

face universality classes of experimental relevance. While the first experiments probing the static

surface and equilibrium dynamical bulk properties of materials date back to the 1970s [68, 86],

techniques with the sufficient accuracy to study bulk non-equilibrium behaviours have been avail-

able only since the 1990s [87]. Surface dynamics in condensed matter systems, instead, have not

been observed until recently, though with a different purpose and not in the critical regime [88].

Extending recent investigations of ageing phenomena in liquid crystals [15] to the proximity of

surfaces might provide a viable alternative for the experimental test of the present predictions in

systems undergoing an Ising transition. Moreover, it would be interesting to understand whether

the general framework of boundary renormalisation group could be applied in the early dynam-

ical stages of quantum critical systems, as recent works highlighted the emergence of universal

features in the non-equilibrium dynamics of one-dimensional [89] and higher-dimensional [90]

bosonic systems after a quench. The introduction of initial-slip operators and the corresponding

short-distance expansions in a quantum context would provide a substantial improvement in our

ability to classify the aforementioned universal features, possibly shedding some light on the topi-

cal subject of dynamical phase transitions.
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Appendix 3.A Divergences localised at the surface

In Sec. 3.1.1 we have sketched a procedure which allows one to determine the degree of divergence

of Feynman graphs when one of their external legs is fixed at the boundary. Note that, while the

more commonly used definition would refer to it as superficial degree of divergence, we will drop

the attribute “superficial” in order not to cause confusion with the spatial surface. By focusing

on the tadpole diagram of a ϕ4 theory (although the argument is more generally valid [53]), we

have found that the divergence at the surface is less pronounced than the bulk one. More precisely,

introducing an ultraviolet (UV) momentum cutoff Λ, the latter is ∝ Λ2, whereas the former is ∝ Λ.

In this Appendix we explicitly show that this is indeed the case. Note that the cutoff provides a

regularisation to the integration over momenta, making all the expressions appearing below finite.

In the following, we shall always use the term “divergences” having in mind the removal of the

cutoff Λ → ∞. The tadpole contribution depicted in Fig. 3.3 is proportional to the convolution

G̃(1)(~k;x,y) ∝

∫ ∞

0
dz
∫ Λ d3q

(2π)3
G̃(0)(~k;x,z) G̃(0)(~q;z,z) G̃(0)(~k;z,y). (3.78)

For simplicity, we consider here the special point c0 = 0, for which (see Eq. (3.29))

G̃(0)(~k;x,y) =
1

2ωk

(
e−ωk|x−y| + e−ωk(x+y)

)
. (3.79)

As we have argued in Sec. 3.1.1, as long as one’s interest is focused on the UV behaviour, this

does not represent a restriction, since for any choice of c0 > 0 the large-momentum behaviour of

the propagator is the same. The ordinary case c0 = ∞ actually represents an exception to this rule;

since the two-point function in this case vanishes at the boundary, a more subtle analysis would be

required. However, by studying its normal derivative along the direction x⊥ one could in principle

follow the same steps illustrated below and retrieve analogous results. Note now that, according to

our choice (3.79), the central term in Eq. (3.78) (corresponding to the tadpole “bubble”) is given

by

B(z,z) =
∫ Λ d3q

(2π)3
G̃(0)(~q;z,z) =

∫ Λ d3q

(2π)3

1

2ωq

[
1+ e−2ωqz

]
. (3.80)

Since ωq ∼ q for q → ∞, the first term of this expression diverges as Λ2 and, being independent of

z, constitutes a renormalisation of the parameter r. In the following we shall focus on the second

part, for which the integration over the z coordinate is not inconsequential, as we shall see. Without

loss of generality, we assume x < y. Correspondingly, we divide the integral over z in Eq. (3.78) in

three distinct parts and postpone the integration over ~q:

I1(~q; x,y) =
∫ x

0
dz G̃(0)(~k;x,z)

1

2ωq
e−2ωqz G̃(0)(~k;z,y), (3.81a)

I2(~q; x,y) =
∫ y

x
dz G̃(0)(~k;x,z)

1

2ωq
e−2ωqz G̃(0)(~k;z,y), (3.81b)

I3(~q; x,y) =
∫ ∞

y
dz G̃(0)(~k;x,z)

1

2ωq
e−2ωqz G̃(0)(~k;z,y). (3.81c)
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A direct calculation yields

I1 =
e−ωk(x+y)

4ωq

[
1

ωq −ωk

(
1− e−2(ωq−ωk)x

)
+

2

ωq

(
1− e−2ωqx

)
+

1

ωq +ωk

(
1− e−2(ωq+ωk)x

)]
,

(3.82a)

I2 = cosh(ωkx)
e−ωky−2ωqx

ωq

[
1

2ωq

(
e−2ωqx − e−2ωqy

)
+

1

2(ωq +ωk)

(
e−2(ωq+ωk)x − e−2(ωq+ωk)y

)]
,

(3.82b)

I3 =
cosh(ωkx)cosh(ωky)

ωq(ωk +ωq)
e−2(ωk+ωq)y. (3.82c)

For x > 0 the leading ultraviolet behaviour of the expressions above is given by

I1 =
e−ωk(x+y)

2ω2
q

2ω2
q −ω2

k

ω2
q −ω2

k

+O
(
e−q
)
, I2 = O

(
e−q
)
, I3 = O

(
e−q
)
, (3.83)

where we denote with O(e−q) all the terms which are exponentially decreasing and thus cannot

contribute to the divergence of the integral. Recalling that ωq ∼ q
(
1+O

(
q−2
))

one can see that

I1 behaves asymptotically as

I1 ∼
e−ωk(x+y)

q2

(
1+O

(
q−2
))

(3.84)

which, when integrated over the momenta, produces a divergence ∝ Λ for Λ → ∞. Clearly, adding

a counterterm

C1(~q;x,y) = −e−ωk(x+y)

q2
(3.85)

completely removes the divergence, i.e., it makes the integral convergent in the limit Λ → ∞. If,

instead, we fix one coordinate at the surface, i.e., x = 0, then we have

I1 ≡ 0, I2 =
e−ωky

2ω2
q (ωq +ωk)

(
2ωq +ωk

)
and I3 = O

(
e−q
)
. (3.86)

Therefore, the only term which can give rise to a divergence when integrated over ~q is now I2,

which asymptotically behaves as

I2 ∼ e−ωky

[
1

q2

(
1+O

(
q−2
))

− ωk

2q3

(
1+O

(
q−2
))]

. (3.87)

The first term, which produces a divergence ∝ Λ, is exactly canceled by the counterterm C1(~q;0,y)
introduced in Eq. (3.85). A second term, however, emerges which causes a logarithmic divergence

“Λ0” and requires a new counterterm

C2(~q;y) = +ωk
e−ωky

2q3
(3.88)
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which must act only at the surface x = 0. In the remaining case x = y = 0, one has

I1 = I2 ≡ 0 and I3 =
1

ωq(ωk +ωq)
∼ 1

q2

(
1− ωk

q
+O

(
q−2
))

; (3.89)

the divergence emerging from integrating the last expression can be removed by adding C1 +2C2;

the prefactor 2 accounts for the fact that in this case two points have been fixed at the surface and,

consequently, the surface divergence is doubled. Generically, one would need a surface countert-

erm for every external leg fixed at the surface. Note that, as expected, no additional divergence

appears which cannot be removed by the previously-introduced counterterms (3.85) and (3.88).

Appendix 3.B The response function formalism

In this Appendix we briefly discuss how one can recast a dynamical problem described by a

stochastic equation into a path-integral formalism such as the one we have introduced in Sec. (3.2).

The mapping we report below is usually referred to as response function formalism or MSRDJ or

more briefly MSR transformation, owing its name to the people who first employed it in a physical

context back in the 70s, i.e., Martin, Siggia, Rose [76], Janssen [77] and de Dominicis [78]. Con-

sider a n-component real, classical field ϕ whose dynamics is described by the Langevin equation

∂ϕi

∂ t
= Fi [ϕ]+ηi, (3.90)

with a white Gaussian noise
〈
ηi(~x, t)η j(~y,s)

〉
= 2Ωi j δ (~x−~y)δ (t − s) , (3.91)

where we require Ω to be a positive-definite, symmetric matrix, as we want to avoid negative

self-correlations. As the initial state distribution Pt0[ϕ] does not play any significant role in the

construction, we shall review here for simplicity the stationary case t0 = −∞. Moreover, we shall

omit the space dependence and sum over repeated indices will always be understood. As it is the

case for most path-integral constructions, also this provides an effective formalism which proves

particularly useful for calculating relevant quantities, but has not to be interpreted as a formal

definition from the mathematical point of view. For this reason, in the following we will not

concern ourselves with problems of definition of the measures and distributions we are going to

introduce.

In general, to every possible realisation of the noise η corresponds a well-defined solution ϕη

of Eq. (3.90). Thereby, we can write the mean value of a generic observable O [ϕ] as

〈O [ϕ]〉 =
∫

DηP [η ]O [ϕη ] , (3.92)

where inside the integral the functional O is evaluated on the specific solution associated to the

value of the “integration variable” η . By assumption, the probability distribution P [η ] is Gaussian

and therefore Eq. (3.91) implies

P [η ] = Nη e
− 1

4

∫
dt ηi (Ω−1)i j

η j with N −1
η =

∫
Dη e

− 1
4

∫
dt ηi (Ω−1)i j

η j . (3.93)
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We now introduce an effective “delta” functional on the space of trajectories, such that

∫
Dϕ X [ϕ]δ (ϕ − ϕ̄) = X [ϕ̄] (3.94)

for every functional X . This allows us to recast the average (3.92) in the form

〈O [ϕ]〉 =
∫

Dη P [η ]
∫

Dϕ δ (ϕ −ϕη)O [ϕ] =
∫

Dϕ O [ϕ]
∫

Dη P [η ] δ (ϕ −ϕη), (3.95)

where, in the last step, we have assumed that the integrals can be exchanged. The main advantage

of this is that we can pull O out of the integral over the noise. We now focus on the “delta” term

and define

Si [ϕ,η ] = ∂tϕi −Fi [ϕ]−ηi, (3.96)

which casts the Langevin equation (3.90) in the more compact form Si [ϕ,η ] = 0. Since for any

choice of η only one solution ϕη exists, at least once the conditions at t0 = −∞ are fixed, upon

performing a change of variable one obtains

δ (ϕ −ϕη) = J [ϕ,η ] δ (Si [ϕ,η ]) where J [ϕ,η ] = det
δSi

δϕ j
, (3.97)

J being the corresponding Jacobian. Applying the well-known Fourier relation
∫

dxeikx = 2πδ (k),
the new delta functional can now be exponentiated by means of an auxiliary, “imaginary” field ϕ̃ ,

yielding

δ (Si [ϕ,η ]) =
∫

D (iϕ̃) e−
∫

dt ϕ̃ S [ϕ,η ], (3.98)

where we reabsorb any multiplicative constant in the measure. As a consequence, the average

above can be written as

〈O [ϕ]〉 =
∫

DϕD ϕ̃ O [ϕ] e−
∫

dtϕ̃(∂tϕ−F )
∫

Dη P [η ] J [ϕ,η ] e
∫

dtϕ̃η . (3.99)

By functional deriving Eq. (3.96) with respect to ϕ , one can express the Jacobian J as

J [ϕ,η ] = det

{
∂t

[
δ (t − s)δi j −

δFi [ϕ(s)]

δϕ j(s)
θ(t − s)

]}
, (3.100)

where we have used for the second addend the distributional identity ∂tθ(t − s) = δ (t − s). Note

that, for any choice of the path ϕ and the indices i and j, the argument of the determinant is a

function Mi j(t,s) of time which acts as an integral kernel over a generic space of test functions f ,

i.e., (
Mi, j ∗ f

)
(t) =

∫
dτ Mi, j(t,τ) f (τ). (3.101)

The determinant can be thought as being comprised of two parts: one acting on this infinite-

dimensional space for any choice of (i, j) and one on the remaining n×n matrix structure identified

by the n different vector components. Thus, if one were able to solve the eigenvalue problem

Mi j ∗ f
(α)
j = µα f

(α)
i (3.102)
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the determinant would be simply given by det(M) = ∏α µα . The derivative in Eq. (3.100) is also

an operator acting on test functions (the corresponding two-time kernel being ∂tδ (t − s)), hence

Binet’s theorem det(AB) = detA detB can be applied to separate the determinant in two parts

J [ϕ,η ] = det(∂t) det

{
δ (t − s)δi j −

δFi [ϕ(s)]

δϕ j(s)
θ(t − s)

}
, (3.103)

the first of which does not depend on the fields and thus provides just a multiplicative factor;

actually, the spectrum of the derivative is not bounded, which means we are reabsorbing into the

measure a divergent quantity. However, as mentioned at the beginning of this Appendix, we shall

not focus on the formal aspects, but just on the physically significant fact that it cannot contribute

anything to the picture since it is independent of the fields. The remaining term can be written, in

shorthand notation, as

J̃ [ϕ] = det
{
1+ui j(t,τ)

}
. (3.104)

Now we use the relation detA = etr{lnA} to exponentiate the argument in the expression above,

aiming to make it part of what will look like the action of the fields ϕ and ϕ̃ . The logarithm of an

operator is defined by its Taylor series, which in this case is

[ln(1+u)]i j (t,s) = ui j(t,s)−
1

2

(
uik ∗uk j

)
(t,s)+

1

3

(
uik ∗ukl ∗ul j

)
(t,s)+ . . . . (3.105)

Recalling that the step function θ(t − s) enters in the definition of u, the generic q-th convolution

in this series is of the form

∫ ( q

∏
p=1

dτp

)(
q

∏
p=1

θ(τp − τp−1)

)[
. . .
]
, (3.106)

where we denote t = τq+1 and s = τ0. The product above implies that the integrand identically

vanishes if the variables are not in increasing order, i.e., if there is at least one pair of variables

which obeys τp < τq with p > q. In particular, it does if t < s. Taking the trace means identifying

the ending points and integrating over them. Because of this, the constraint on the q-th convolution

becomes t ≥ τq ≥ . . .≥ τ1 ≥ t, which means that the integrand has at best a support of null measure

and thus its integral vanishes. The only term left, since the condition above becomes trivial (t ≥ t),
is the first one. This implies [11]

tr{ln(1+u)} = ∑
i

∫
dt uii(t, t) = −θ(0)∑

i

∫
dt F ′

i [ϕ(t)] , (3.107)

with

F ′
i [ϕ(t)] =

δFi [ϕ(t)]

δϕ(t)
. (3.108)

Summarising, the Jacobian in Eq. (3.97) can be divided into two parts, a divergent factor indepen-

dent of the fields which is incorporated into the integration measure, and a physically relevant one

which can be written in exponential form. Furthermore, from Eq. (3.100) we see that it does not
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depend on η , as ϕ represents now an independent integration variable. Thus, the integration over

the noise in Eq. (3.99) can be performed according to the Gaussian rule

∫
Dη P [η ]e

∫
dt ϕ̃η =

∫
Dη Nη e

− 1
4

∫
dt
[
ηi(Ω−1)i j

η j−4ϕ̃η
]

= e
∫

dt ϕ̃i Ωi j ϕ̃ j . (3.109)

Grouping together the various results above, one can re-express the average of the observable O as

a path integral with two vector fields ϕ , ϕ̃

〈O [ϕ]〉 =
∫

DϕD ϕ̃ O [ϕ]e−S[ϕ,ϕ̃], (3.110)

where the action is given by

S [ϕ, ϕ̃] =
∫

dt

{
ϕ̃i (∂tϕi −Fi [ϕ])− ϕ̃iΩi jϕ̃ j +θ(0)∑

i

F ′
i [ϕ]

}
(3.111)

which would give back Eq. (3.41) when specialised to the ϕ4 case were it not for the last term.

Note that, in addition, the latter is ill-defined as it contains θ(0), which has no definite meaning:

actually, the step function at the origin can take any real value, due to the fact that, despite its name,

it is a distribution. Hence, on the one hand, the action seems to depend on such an arbitrary choice

while, on the other, the physics requires that all observables be independent of it. In order to cope

with this issue, we shall study how θ(0) enters in the calculation of observables; for this purpose,

we shall assume that Wick’s theorem holds. In general, one would have to require the state of the

system to be Gaussian, such as the one defined by Eq. (3.48) [11]. We also take an effective force

F which can be expanded as a power series of its argument, i.e.,

Fi [ϕ] = D∇2ϕi +C
(1)
i j ϕ j +C

(2)
i jk ϕ jϕk +C

(3)
i jklϕ jϕkϕl . . . , (3.112)

where we restrict for simplicity to cases in which the first, diffusive term is the only one containing

a derivative. Note that the constant term C(0) needs not to be included as it constitutes a drift

velocity which can be accounted for by redefining the field ϕ → ϕ +C(0)t. On the other hand, the

introduction of an effective source h(t) can be used to obtain information on the linear response

of the system to external stimuli. In the action, this field would couple to ϕ̃; this means that any

expectation containing only response fields identically vanishes, since it corresponds to deriving

the identity:

〈ϕ̃i1(t1) . . . ϕ̃im(tm)〉 =
δ

δhi1(t1)
. . .

δ

δhim(tm)
〈1〉 = 0. (3.113)

The higher-order coefficients in Eq. (3.112) are contracted with totally symmetric combinations

of the fields and can be thus chosen to be totally symmetric under the exchange of the involved

indices. Accordingly, the last term in the action (3.111) can be expanded as

F ′
i [ϕ] = D∇2 +C

(1)
ii +2C

(2)
ii j ϕ j +3C

(3)
ii jkϕ jϕk + . . . , (3.114)

where the repeated indices i are not summed over yet. The first two terms can be neglected as

they shift the action by just a constant; the remaining ones will be treated as an interaction, despite
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the fact that they include linear and quadratic terms, which are usually employed to define the

propagator, instead [11]. The reason is that, in the standard perturbative scheme we are going

to employ, the action is expanded as a combined power-series of all the couplings of cubic and

higher-order terms; according to Eq. (3.112), that would mean all coefficients starting from C(2),

since the corresponding operator in the action is ϕ̃ϕ2. Thus, the expansion automatically involves

all the relevant terms of Eq. (3.114).

Disregarding for the aforementioned reason the terms proportional to θ(0), the quadratic part

is given by

1

2

(
ϕ
ϕ̃

)⊺ (
0 −∂t −D∇2 −C(1)

∂t −D∇2 −C(1) −2Ω

) (
ϕ
ϕ̃

)
. (3.115)

The propagator is obtained by calculating the inverse of the matrix above; we are now particularly

interested in the off-diagonal elements, which in Fourier transform~x →~k obey

(
∂t +Dk2 −C(1)

)
i j

〈
ϕ j(~k, t) ϕ̃l(−~k,s)

〉
= δilδ (t − s), (3.116a)

(
−∂t +Dk2 −C(1)

)
i j

〈
ϕ̃ j(~k, t)ϕl(−~k,s)

〉
= δilδ (t − s). (3.116b)

The equations above are solved by

Ri j(~k; t,s) =
〈

ϕi(~k, t) ϕ̃ j(−~k,s)
〉

= θ(t − s)
(

e−(k2
1−C(1))(t−s)

)
i j

, (3.117)

where the exponential in the r.h.s. has to be considered in a matrix sense. We wish to emphasize

the fact that at equal times this function displays the same “troublesome” factor θ(0) as above.

We now group together all we want to treat as an interaction and define

V [ϕ, ϕ̃] =
∫

dτ ∑
i

[
ϕ̃iF

(2)
i [ϕ]−θ(0)F ′

i [ϕ]
]
, (3.118)

where we introduced the notation F (2) = F −
(

D∇2 +C(1)
)

ϕ; accordingly, the m-th perturbative

correction to the expectation of a generic observable O [ϕ, ϕ̃] (including response functions) will

be
1

m!

〈
(V [ϕ, ϕ̃])m O [ϕ, ϕ̃]

〉
0
, (3.119)

where 〈·〉0 denotes the average calculated with just the quadratic part (3.115) of the action. For

reasons that will become clear while proceeding with the discussion, we rewrite it as

∫
dτ1

〈(

∑
i

[
ϕ̃i(τ1)F

(2)
i [ϕ(τ1)]−θ(0)F ′

i [ϕ(τ1)]
])

O ′ [ϕ, ϕ̃]

〉

0

, (3.120)

having reabsorbed m− 1 powers of V into O ′. Now, we decompose every field into average and

fluctuations

ϕ = 〈ϕ〉0 +δϕ ϕ̃ = 〈ϕ̃〉0 +δ ϕ̃ = δ ϕ̃, (3.121)
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recalling that the average of the response field is always 0 (see Eq. (3.113)). Every average can

be extracted from the expectation, while on the fluctuations one can use the standard Wick’s con-

tractions. Consider now the response field ϕ̃(τ1) appearing in Eq. (3.120). By the simple argu-

ment given above, this needs to be contracted with a field δϕ lying either within F (2) [ϕ(τ1)] or

O ′ [ϕ, ϕ̃]. We shall focus on the first case; this contraction will extract a field ϕ from every mono-

mial starting with the second order in the expansion (3.114), thus acting like a derivative. This

produces

〈
ϕ̃i(τ1)F

(2)
i [ϕ(τ1)] O

′ [ϕ, ϕ̃]
〉

0
=

=
〈
ϕ̃i(τ1)ϕ j(τ1)

〉
0

〈
δF

(2)
i

δϕ j
(τ1)O

′ [ϕ, ϕ̃]

〉

0

+
(

contractions with O ′)=

=

〈
δF

(2)
i

δϕ j
(τ1)O

′ [ϕ, ϕ̃]

〉

0

R ji (τ1,τ1)+
(

contractions with O ′) .

(3.122)

On the one hand, since τ1 is an integration variable — see Eq. (3.120) — we can consider all the

contractions with O ′ (which does not depend on it) as being performed at different times. On the

other hand, according to Eq. (3.117), we find Ri j(τ1,τ1) = θ(0)δi j, which yields

〈
ϕ̃i(τ1)F

(2)
i [ϕ(τ1)] O

′ [ϕ, ϕ̃]
〉

0
= θ(0)

〈
F ′

i (τ1)O
′ [ϕ, ϕ̃]

〉
0
+
(

contractions with O ′) . (3.123)

The first term in Eq. (3.123) exactly cancels the second one in Eq. (3.120), thereby showing that

indeed the observables are not affected by the value taken by θ(0) at any order in the perturbative

expansion. The simplest choice would therefore be θ(0) = 0, which renders the action

S [ϕ, ϕ̃] =
∫

dt
{

ϕ̃i (∂tϕi −Fi [ϕ])− ϕ̃i Ωi jϕ̃ j
}

(3.124)

which we have employed for our calculations.

Appendix 3.C One-loop calculations

In this Appendix we report the details of the calculations of the one-loop corrections to the two-

point correlation and response functions





Ci j(~k; x, t; y,s) =
〈

ϕi(~k; x, t)ϕ j(−~k;y,s)
〉

,

Ri j(~k; x, t; y,s) =
〈

ϕi(~k; x, t)ϕ̃ j(−~k;y,s)
〉

,
(3.125)

in our system, defined in Sec. 3.2. Since the problem is translationally invariant in all spatial direc-

tions parallel to the surface x⊥ = 0, we shall mostly adopt the same mixed (~k;x⊥, t) representation

that has been introduced previously in Sec. 3.1.1 (see, e.g., Eq. (3.29)). We start by determining
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these functions for the non-interacting theory (i.e., for g = 0); with this purpose in mind, we note

that Dirichlet and Neumann boundary conditions — corresponding to the ordinary and special tran-

sitions, respectively — can be obtained by applying the method of image charges to the respective

functions in the bulk and at equilibrium [91]. In particular, we can obtain the response function by

specialising Eq. (3.117) to the present case — meaning Ω = 1, D = 1 and C(1) = −r = 0 — which

yields

R
(0)
(bulk,eq),i j (~p;∆t) = θ(∆t) δi j e−k2∆t ≡ δi j R

(0)
(bulk,eq)

(~p;∆t) , (3.126)

where ∆t = t − s and ~p = (~k,k⊥) and we have made use of the fact that with our isotropic prescrip-

tion among all O(n) components, the latter are all equivalent and one can just study a specific one

chosen as a representative. Since this is an equilibrium function, the correlation can be calculated

via the fluctuation-dissipation relation (3.56), which yields

C
(0)
(bulk,eq),i j (~p;∆t) =

∫ ∞

|∆t|
du R

(0)
(bulk,eq),i j (~p,u) ≡ δi j C

(0)
(bulk,eq)

(~p;∆t) . (3.127)

Transforming k⊥ → x− y one gets





R
(0)
(bulk,eq)

(
~k; x− y, t − s

)
= θ (t − s) [4π (t − s)]−

1
2 e

−k2(t−s)− (x−y)2

4(t−s) ,

C
(0)
(bulk,eq)

(
~k; x− y, t − s

)
=
∫+∞
|t−s| du R

(0)
(bulk,eq)

(
x− y,u;~k

)
.

(3.128)

Since the response function is only affected by the spatial surface, because no initial condition is

actually cast on ϕ̃ , one finds

R(0)
(
~k; x, t; y,s

)
= R

(0)
(bulk,eq)

(
~k; x− y, t − s

)
±R

(0)
(bulk,eq)

(
~k; x+ y, t − s

)
=

=
θ(t − s)√

π(t − s)
e
−k2(t−s)− x2+y2

4(t−s) f±

(
xy

2(t − s)

)
,

(3.129)

where the upper and lower signs refer to the special and ordinary phase transitions, respectively,

and 2 f±(α) = eα ±e−α . For the correlation, instead, one has to take into account also the Dirichlet

condition (3.50) at t = 0, which implies

C(0)(~k; x, t; y,s) = C
(0)
(bulk,eq)

(~k; x− y, t − s)−C
(0)
(bulk,eq)

(~k; x− y, t + s)+

±C
(0)
(bulk,eq)

(~k; x+ y, t − s)∓C
(0)
(bulk,eq)

(~k; x+ y, t + s) =
∫ t+s

|t−s|
du (πu)−

1
2 e−k2u− x2+y2

4u f±
( xy

2u

)
.

(3.130)

The structure reported above for the two-point functions had been previously found in a few works

focusing on the same setting and used to calculate the corrections due to the quartic term ∝ gϕ̃ϕ3 to

the long-time behaviour of the correlation function [83], the scaling behaviour of the magnetisation

[79] and the fluctuation-dissipation ratio within the Gaussian approximation g = 0 [20]. However,

the previous attempts to perturbatively include the interaction relied on the expected absence of
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novel effects due to the edge in order to introduce scaling ansatzes; therefore, to our knowledge,

no direct calculation of the corrections has been attempted before the one reported below.

The first-order corrections to the functions in Eq. (3.125) are

C
(1)
i j (~k; x, t; y,s) = −g

6

∫ ∞

0
dzdτ

〈
ϕi(~k; x, t)ϕ j(−~k;y,s)

[
ϕ2ϕ̃ ·ϕ

]
(z,τ)

〉
g=0

,

R
(1)
i j (~k; x, t; y,s) = −g

6

∫ ∞

0
dzdτ

〈
ϕi(~k; x, t) ϕ̃ j(−~k;y,s)

[
ϕ2ϕ̃ ·ϕ

]
(z,τ)

〉
g=0

,

(3.131)

where

[
ϕ2ϕ̃ ·ϕ

]
(z,τ) =

∫
dd−1q1

(2π)d−1

dd−1q2

(2π)d−1

dd−1q3

(2π)d−1
ϕl (~q1;z,τ) ϕl (~q2;z,τ)×

× ϕ̃m (~q3;z,τ) ϕm (−~q1 −~q2 −~q3;z,τ)

(3.132)

represents a short-hand for the usual momentum convolution of the fields. The only connected

contributions coming from Eqs. (3.131) are those arising by contracting each of the external fields

with one of those inside the square brackets. Note also that our convention θ(0) = 0, which implies

R(0) (. . . ;τ,τ) = 0, forces us to contract either of the external legs with the response field coming

from the interaction. The corresponding Feynman graphs are reported in Fig. 3.7, where undirected

~k

~q

~k

y,s x, t
z,τ

(a)

~k

~q

~k

y,s x, t
z,τ

(b)

~k

~q

~k

y,s x, t
z,τ

(c)

Figure 3.7: One-loop corrections to the two-point functions. (a) and (b) contribute to the correlation

function C(1)(~k; x, t; y,s), whereas (c) to the response function R(1)(~k; x, t; y,s). Undirected lines cor-

respond to C(0), whereas those accompanied by arrows stand for R(0); the arrows always point towards

later times according to the causal structure of the response function.

lines represent C(0) propagators, while directed ones denote R(0) functions with the arrow pointing

from earlier to later times. Diagrams 3.7(a) and 3.7(b) contribute to the correlation, whereas 3.7(c)

to the response function. In order to determine the combinatorial factor, we shall for the moment
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omit the coordinates and analyse the Wick contractions in the light of the rules determined above,

which produce

〈
ϕiϕ j

[
ϕ2ϕ̃ ·ϕ

]〉
g=0

= 〈ϕiϕ̃l〉g=0

〈
ϕ jϕm

〉
g=0

〈
δ

δ ϕ̃l

δ

δϕm
ϕ2ϕ̃ ·ϕ

〉

g=0

+

+〈ϕiϕl〉g=0

〈
ϕ jϕ̃m

〉
g=0

〈
δ

δϕl

δ

δ ϕ̃m
ϕ2ϕ̃ ·ϕ

〉

g=0

(3.133)

for the correlation function and

〈
ϕiϕ̃ j

[
ϕ2ϕ̃ ·ϕ

]〉
g=0

= 〈ϕiϕ̃l〉g=0

〈
ϕ̃ jϕm

〉
g=0

〈
δ

δ ϕ̃l

δ

δϕm
ϕ2ϕ̃ ·ϕ

〉

g=0

(3.134)

for the response function. The functional derivatives in the expressions above all yield the same

expression
〈

δ

δ ϕ̃l

δ

δϕm
ϕ2ϕ̃ ·ϕ

〉

g=0

=
〈
δlmϕ2 +2ϕmϕl

〉
g=0

= ∑
i

δlmC
(0)
ii +2C

(0)
lm = (n+2)δlmC(0)

(3.135)

which ensures, as expected, that the matrix structure remains diagonal and proportional to the

identity also at the first perturbative order. Note that the same conclusion can in principle be

reached by accounting for the symmetries of the Feynman graphs. We can thus write

C(1)(~k;x, t;y,s) = −n+2

6
g
∫ ∞

0
dzdτ

[
R(0)(~k; x, t; z,τ)C(0)(~k; z,τ; y,s)+

+C(0)(~k; x, t; z,τ)R(0)(~k; y,s; z,τ)
]

B(z, τ) (3.136a)

R(1)(~k;x, t;y,s) = −n+2

6
g
∫ ∞

0
dzdτ R(0)(~k; x, t; z,τ)R(0)(~k; z,τ; y,s)B(z,τ), (3.136b)

where B(z,τ) represents the “bubble” in the diagrams of Fig. 3.7 and corresponds to

B(z, τ) =
∫

dd−1q

(2π)d−1
C(0) (~q; z,τ; z,τ) . (3.137)

The different contributions coming from the four terms in Eq. (3.130) shall be separately calculated

in order to distinguish the effects of the various boundaries; in the following they will be denoted

by indices 0, 1, 2, 3 respectively; accordingly, we define B(z, τ) = ∑
3
i=0 εi B (Zi, Ti), where

B (Zi, Ti) =
∫

dd−1q

(2π)d−1
C

(0)
(bulk,eq)

(~q; Zi,Ti) =
∫

dd−1q

(2π)d−1

∫ ∞

Ti

du√
4πu

e−q2u− Z2
i

4u (3.138)

and

Z0 = 0, Z1 = 0, Z2 = 2z, Z3 = 2z,

T0 = 0, T1 = 2τ, T2 = 0, T3 = 2τ,

ε0 = 1, ε1 = −1, ε2 = ±1, ε3 = ∓1.

(3.139)
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Again, the upper and lower signs distinguish the special from the ordinary transition. Using di-

mensional regularisation we explicitly find

B0 ≡ B (Z0,T0) = 0, (3.140a)

B1 ≡ B (Z1,T1) = (4π)−
d
2
(2τ)1− d

2

d
2
−1

, (3.140b)

B2 ≡ B (Z2,T2) = (4π)−
d
2 z2−d Γ

(
d

2
−1

)
, (3.140c)

B3 ≡ B (Z3,T3) = (4π)−
d
2 z2−d γ

(
d

2
−1,

z2

2τ

)
, (3.140d)

where γ (α, w) =
∫ w

0 dz zα−1 e−z is the incomplete gamma function. Correspondingly, we divide

the first-order corrections into three parts each resulting from the various B’s:

C(1) = −n+2

6
g

3

∑
i=1

εi Ci and R(1) = −n+2

6
g

3

∑
i=1

εi Ri, (3.141)

the 0-th contribution associated with B0 being neglected due to the fact that, in general, in dimen-

sional regularisation all the divergences which are not logarithmic in d = 4, and in particular the

mass renormalisation term, vanish. In the following, we will analyse the asymptotic behaviour of

the remaining terms in the proximity of the boundaries y = 0 and s = 0, in an attempt to recover

the new universal exponents from the corresponding algebraic laws, as we discussed in Sec. 3.1.1.

Note that the latter will appear here as logarithmic divergences, as can be seen by expanding in

powers of g the exponent in

xα = xα0+gα1+... = xα0 (1+gα1 lnx+ . . .) (3.142)

We shall restrict in the following to the response function, the correlation being similar, but more

involved due to the presence of an additional integral (see its definition (3.130)). Furthermore, we

will set for simplicity ~k = 0 and t > s, so that we can omit the step function. The first term is

particularly simple: exploiting the relation

∫ ∞

0
dz R(0) (x, t; z,τ)R(0) (z,τ; y,s) = R(0) (x, t; y,s) valid ∀ s < τ < t (3.143)

we find

(4π)−
d
2

d
2
−1

∫ ∞

0
dz
∫ t

s
dτ (2τ)1− d

2 R(0) (x, t; z,τ)R(0) (z,τ; y,s) =

=
(4π)−

d
2

d
2
−1

R(0) (x, t; y,s)
∫ t

s
dτ (2τ)1− d

2 =
2(8π)−

d
2

d
2
−1

[
t2− d

2 − s2− d
2

2− d
2

]
R(0) (x, t; y,s)

(3.144)

46



Surface critical dynamics

which, for d = 4, gives

R
(1)
1 (x, t; y,s) =

1

2(4π)2
ln
( t

s

)
R(0) (x, t; y,s) . (3.145)

This function is singular only when s→ 0; thus, it identifies at least part of the temporal divergence,

whilst it does not include any of the others. In particular, as generally stated in Eq. (3.142), this

comes from a power law of the form

R(1)(. . .s) ∼ s−aR(0)(. . .s) = s−a0 (1−ga1 lns)R(0)(. . .s) (s → 0). (3.146)

Substituting Eq. (3.145) in the definition (3.141) yields a0 = 0 and

a1 g =
n+2

12

1

(4π)2
g. (3.147)

At the Wilson-Fisher fixed point g = g∗ = 3
n+8

(4π)2 ε +O
(
ε2
)

[11, 59, 60] the latter becomes

â1ε =
n+2

n+8

ε

4
+O

(
ε2
)
, (3.148)

which corresponds with the first-order of the expansion of the initial-slip exponent θ reported in

Eq. (3.55). Thereby, this term completely encodes the divergence proper of the temporal boundary.

Note that, alternatively, one could expand Eq. (3.144) in powers of ε = 4−d; all terms would then

be regular in the limit ε → 0 except the one inside the square brackets, i.e.,

t
ε
2 − s

ε
2

ε
2

, (3.149)

which would provide a pole ∝ ε−1 in the case s = 0, being regular otherwise. One could then extract

the same result as in Eq. (3.148) by studying the coefficient of such a dimensional divergence. In

particular, the latter can be reabsorbed by standard means, introducing a renormalisation factor Z0

which multiplies the boundary fields ϕ0 and ϕ̃0.

The second term R
(1)
2 is slightly more complicated; its expression is

(4π)
d
2 R

(1)
2 =

∫ ∞

0
dz
∫ t

s
dτ

z2−d Γ
(

d
2
−1
)

√
π2(t − τ)(τ − s)

×

× e
− x2

4(t−τ)
− y2

4(τ−s)−
z2

4

(
t−s

(t−τ)(τ−s)

)

f±

(
xz

2(t − τ)

)
f±

(
yz

2(τ − s)

)
.

(3.150)

Now we employ the changes of variables

z = 2l

√
(t − τ)(τ − s)

t − s
and τ = (t − s)ϑ + s (3.151)
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to rewrite it as

(4π)
d
2 R

(1)
2 = Ad(∆t)

∫ ∞

0
dl
∫ 1

0
dϑe

− 1
4

(
x̃2

1−ϑ + ỹ2

ϑ

)

[ϑ(1−ϑ)]1−
d
2 l2−de−l2×

× f±

(
x̃l

√
ϑ

1−ϑ

)
f±

(
ỹl

√
1−ϑ

ϑ

)
,

(3.152)

with

Ad(∆t) =
2

π
Γ

(
d

2
−1

)
41− d

2 (∆t)
3−d

2 , x̃ =
x√
∆t

, ỹ =
y√
∆t

, ∆t = t − s. (3.153)

Recalling that d = 4− ε and that dimensional regularisation implies [92]

∫ ∞

0
dl l−2+εF(l) =

∫ 1

0
dl l−2+ε

(
F(l)−F(0)− l F ′(0)

)
+
∫ ∞

1
dl l−2+ε (F(l)−F(0))+

F ′(0)

ε
(3.154)

on any function F which decreases sufficiently fast for l → ∞, we find that the integral over l in

Eq. (3.152) has actually to be interpreted as

I ≡
∫ ∞

0
dl l−2+ε

(
e−l2

f±(Al) f±(Bl)− f±(0)2
)

, (3.155)

with A = x̃
√

ϑ
1−ϑ and B = ỹ

√
1−ϑ

ϑ . Due to the fact that there are no explicitly divergent terms in

ε , we can conveniently fix d = 4 in the following. We use the identity

f±(Al) f±(Bl) =
1

2
[cosh((A+B)l) ± cosh((A−B)l)] , (3.156)

noting that f±(0)2 can be rewritten as (1±1)/2, to recast Eq. (3.155) in the form I = H (A+B)±
H (A−B), where

H(w) =
1

2

∫ ∞

0

dl

l2

[(
e−l2 −1

)
+ e−l2

(cosh(wl)−1)
]
. (3.157)

We now expand the hyperbolic cosine f+ ≡ cosh in the r.h.s. as a power series to get

H(w) =
1

2

{∫ ∞

0

dl

l2

(
e−l2 −1

)
+

∞

∑
m=1

w2m

(2m)!

∫ ∞

0
dl l2m−2e−l2

}
=

=
1

4

{
Γ

(
−1

2

)
+

∞

∑
m=1

w2m

(2m)!
Γ

(
m− 1

2

)}
=

1

4

∞

∑
m=0

w2m

(2m)!
Γ

(
m− 1

2

)
,

(3.158)
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where we assume (for now) that we can safely exchange the series with the integral. Thanks to

this, we can re-express Eq. (3.152) as

(4π)2 R
(1)
2 =

A4(∆t)

4
e−

1
4(x̃2+ỹ2)

∞

∑
m=0

Γ
(
m− 1

2

)

(2m)!

∫ 1

0

dϑ

ϑ(1−ϑ)
e−

x̃
4

ϑ
1−ϑ − ỹ

4
1−ϑ

ϑ ×

×



(

x̃

√
ϑ

1−ϑ
+ ỹ

√
1−ϑ

ϑ

)2m

±
(

x̃

√
ϑ

1−ϑ
− ỹ

√
1−ϑ

ϑ

)2m

 .

(3.159)

By performing the additional change of variables

√
1−ϑ

ϑ
=
√

x̃ỹβ with
dϑ

ϑ(1−ϑ)
= −2

dβ

β
, (3.160)

we arrive at

(4π)2 R
(1)
2 =

A4(∆t)

2
e−

1
4(x̃2+ỹ2)

∞

∑
m=0

Γ
(
m− 1

2

)

(2m)!
(x̃ỹ)m

∫ ∞

0

dβ

β
e
− x̃ỹ

4

(
β 2+ 1

β2

)

×

×
[(

β +
1

β

)2m

±
(

β − 1

β

)2m
]

.

. (3.161)

In order to verify that the series in the expression above is convergent for x̃ > 0, ỹ > 0, we introduce

the shorthand notation ω = x̃ỹ and define

S±(ω) =
∞

∑
m=1

Γ
(
m− 1

2

)

(2m)!
ωm

∫ ∞

0

dβ

β
e
−ω

4

(
β 2+ 1

β2

)(
β ± 1

β

)2m

, (3.162)

postponing the discussion of the m = 0 terms. Note now that all addends in these series are positive;

therefore, since for every β > 0 we have (β − 1/β ) ≤ (β + 1/β ), it is sufficient to study S+ for,

if the latter converges, S− must converge too. Exploiting the symmetry of the integrand under the

transformation β → 1/β we can rewrite it as

S+(ω) = 2
∞

∑
m=1

Γ
(
m− 1

2

)

Γ(2m+1)
ωme

ω
2

∫ ∞

1

dβ

β
e
−ω

4

(
β+ 1

β

)2(
β +

1

β

)2m

, (3.163)

where we have also slightly manipulated the integrand to extract a factor eω/2. Now we perform

the change of variable (β +1/β ) = α to get

S+(ω) = 2
∞

∑
m=1

Γ
(
m− 1

2

)

Γ(2m+1)
ωme

ω
2

∫ ∞

2

dα√
α2 −4

e−
ω
4 α2

α2m. (3.164)

We separate the integration domain into two parts, separated by α =
√

5. When α ≤
√

5 we use

the fact that e−α2ω/4 ≤ 1, α2m ≤ 5m and when α >
√

5 we use the property
√

α2 −4 > α/3 to
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provide an upper bound to Eq. (3.164)

∫ ∞

2

dα√
α2 −4

e−
ω
4 α2

α2m ≤ 5m
∫ √

5

2

dα√
α2 −4

+3

∫ ∞

√
5

dα e−
ω
4 α2

α2m−1 ≤

5m
∫ √

5

2

dα√
α2 −4

+3

∫ ∞

0
dαe−

ω
4 α2

α2m−1 = 5m ln

(√
5+1

2

)
+

3

2

(
4

ω

)m

Γ(m) .

(3.165)

Now, using the duplication formula

Γ
(
m+ 1

2

)

Γ(2m+1)
=
√

π
4−m

Γ(m+1)
=
√

π
4−m

m!
(3.166)

and recalling, for the first term, that Γ(m−1/2) ≤ 2Γ(m+1/2) ∀m ≥ 1, we get

S+(ω) ≤ 2
√

πe
ω
2

∞

∑
m=1

[
2

m!

(
5ω

4

)m

ln

(√
5+1

2

)
+

3

2

1

m
(
m− 1

2

)
]

=

4
√

πe
ω
2

[
ln

(√
5+1

2

)(
e

5ω
4 −1

)
+3ln2

]
.

(3.167)

Consequently, S+ converges for every ω ≥ 0 and so does S−. This also ensures that exchanging the

series with the integral above is a formally correct operation. The first term of the series is instead

given by

Γ

(
−1

2

)∫ ∞

0

dβ

β
e
−ω

4

(
β 2+ 1

β2

)

= −2
√

π

∫ ∞

0
dλ e−

ω
2 coshλ = −2

√
πK0

(ω

2

)
, (3.168)

where we have used the transformation β = eλ/2 and K0 is one of the modified (or hyperbolic)

Bessel functions of the second kind, whose asymptotic behaviour for small argument is K0(ω/2)∼
− lnω . For the special transition — i.e., for Neumann boundary conditions — this implies that, in

the limit ω → 0, Eq. (3.161) is dominated by the first term, which diverges logarithmically as

(4π)2 R
(1)
2 |DIV ∼ 2

√
π A4(∆t)e−

1
4(x̃2+ỹ2) ln(x̃ỹ) =

2√
4π∆t

e−
1
4(x̃2+ỹ2) ln(x̃ỹ) . (3.169)

Note that, as we are considering the limit ω → 0, i.e., either x → 0 or y → 0, we can safely multiply

the expression above by any function which goes asymptotically to 1, such as cosh(x̃ỹ/2); the

advantage of doing so is that we recover, according to the definition (3.129) and to the notation

introduced in (3.153),

R
(1)
2 |DIV ∼ 1

(4π)2
ln
(xy

∆t

)
R(0) (x, t;y,s) . (3.170)

As we have done above, we trace back this behaviour to the emergence of a non-trivial power law

R(1)(. . .s) ∼
(xy

∆t

)b
R(0)(. . .) =

(xy

∆t

)b0
[
1+gb1 ln

(xy

∆t

)]
R(0)(. . .) (xy → 0), (3.171)
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which implies b0 = 0 and

b1g = −n+2

6

g

(4π)2
while b̂1ε = −n+2

n+8

ε

2
+O

(
ε2
)
. (3.172)

By considering Eq. (3.33b) along with the bulk critical exponents [60]

β =
1

2
− 3

n+8

ε

2
+

1

2

n+2

(n+8)3
(2n+1)ε2 +O

(
ε3
)
, (3.173a)

ν =
1

2
+

n+2

4(n+8)
ε +

(n+2)(n2 +23n+60)

8(n+8)3
ε2 +O

(
ε3
)
, (3.173b)

one can prove that (β1,sp − β )/ν = b̂1ε + O
(
ε2
)
; therefore, this term correctly and completely

captures the surface divergence in the special case. For the ordinary transition, the two-point

function obeys Dirichlet boundary conditions, which yields b0 = 1; furthermore, the first (i.e.,

m = 0) term of the series in Eq. (3.161) identically vanishes. Therefore, one has to study the

behaviour of the remaining ones for ω → 0. For this purpose, we define

I
(±)
m (ω) =

∫ ∞

0

dβ

β
e
−ω

4

(
β 2+ 1

β2

)(
β ± 1

β

)2m

. (3.174)

In terms of these quantities Eq. (3.161) becomes

(4π)2 R
(1)
2 =

A4(∆t)

2
e−

1
4(x̃2+ỹ2)

∞

∑
m=1

Γ
(
m− 1

2

)

(2m)!
ωm
[
I
(+)
m (ω)− I

(−)
m (ω)

]
. (3.175)

Now, equation (3.174) can be rewritten as

I
(±)
m (ω) = e±

ω
2

∫ ∞

0

dβ

β
e
−ω

4

(
β± 1

β

)2(
β ± 1

β

)2m

=

= e±
ω
2 4m (−∂ω)m

∫ ∞

0

dβ

β
e
−ω

4

(
β± 1

β

)2

= e±
ω
2 4m (−∂ω)m

[
e∓

ω
2 I

(±)
0 (ω)

]
,

(3.176)

and from Eq. (3.168) we can extract I
(±)
0 (ω) = K0(ω/2). Using the additional identity

−∂ω

(
e∓

ω
2 f
)

= e∓
ω
2

(
±1

2
−∂ω

)
f (3.177)

valid for any test function f we find that

I
(+)
m (ω)− I

(−)
m (ω) = 4m

[(
1

2
−∂ω

)m

−
(
−1

2
−∂ω

)m]
K0

(ω

2

)
. (3.178)
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Note that the highest-order derivative ∂ m
ω always cancels out. We now recall a few useful properties

of these Bessel functions:

K0

(ω

2

)
= − lnω − ln4− γE +O

(
ω2 lnω

)
for (ω → 0) , (3.179a)

Km

(ω

2

)
=

1

2

(
4

ω

)m

Γ(m)+o
(
ω−m

)
for (ω → 0) , (m > 0), (3.179b)

−∂ωK0

(ω

2

)
=

1

2
K1

(ω

2

)
, (3.179c)

−∂ωKm

(ω

2

)
=

1

4

[
Km−1

(ω

2

)
+Km+1

(ω

2

)]
for (m > 0), (3.179d)

(3.179e)

Equations (3.179c) and (3.179d) imply that the j-th derivative of K0 can be written as a sum of

other Bessel functions with degree running from j back to 0 or 1, depending on the parity of j, i.e.,

(−∂ω) j K0

(ω

2

)
= c jK j

(ω

2

)
+ c j−2K j−2

(ω

2

)
+ c j−4K j−4

(ω

2

)
+ . . . (3.180)

with suitable coefficients ci. Among these terms, according to Eq. (3.179b), the leading behaviour

for ω → 0 is given by K j ∼ ω− j. As we have mentioned above, the highest non-vanishing order in

the derivatives of Eq. (3.178) is (at most) m−1, which means that

I
(+)
1 (ω)− I

(−)
1 (ω) = 4K0

(ω

2

)
∼−4lnω while I

(+)
m (ω)− I

(−)
m (ω) ∼ ω1−m (m > 1).

(3.181)

As a consequence, all the terms of the series in Eq. (3.175) vanish as ω for ω → 0 except the first

one which instead behaves as ω lnω . Hence, we can safely disregard all terms but the first, which

yields

R
(1)
2 |DIV ∼− 1

(4π)2

1√
4π∆t

e−
1
4(x̃2+ỹ2)ω lnω (3.182)

Again, by noting that sinh(ω/2) ∼ ω/2 in proximity of the spatial surface, we can rewrite the

expression above as

R
(1)
2 |DIV ∼− 1

(4π)2
lnω R(0)(x, t;y → 0,s), (3.183)

which coincides with Eq. (3.170) apart from the sign; on the other hand, this difference is re-

absorbed in the change of sign of the prefactor ε2 between the two transitions, as expressed in

Eq. (3.139). Thus, also in this case we conclude that

b1g = −n+2

6

g

(4π)2
and b̂1ε = −n+2

n+8

ε

2
+O

(
ε2
)
, (3.184)

which correctly reproduces the previously-known results for the ordinary transition at a spatial

surface [60].
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Finally, we consider the third term R
(1)
3 ; its expression is

(4π)
d
2 R

(1)
3 = θ(t − s)

∫ ∞

0
dz
∫ t

s
dτ

z2−d

√
π2(t − τ)(τ − s)

γ

(
d

2
−1,

z2

2τ

)
×

× e
− x2

4(t−τ)
− y2

4(τ−s)−
z2

4

(
t−s

(t−τ)(τ−s)

)

f±

(
xz

2(t − τ)

)
f±

(
yz

2(τ − s)

)
.

(3.185)

Using the change of variables (3.151) we arrive at

(4π)
d
2 R

(1)
3 =

Ad(∆t)

Γ
(

d
2
−1
)
∫ ∞

0
dl
∫ 1

0
dϑ e

− 1
4

(
x̃2

1−ϑ + ỹ2

ϑ

)

[ϑ(1−ϑ)]1−
d
2 l2−d e−l2×

× f±

(
x̃l

√
ϑ

1−ϑ

)
f±

(
ỹl

√
1−ϑ

ϑ

)
γ

(
d

2
−1,

2l2ϑ(1−ϑ)

ϑ + s
∆t

)
,

(3.186)

Since the incomplete Gamma function vanishes as γ (α,w) ∼ wα for vanishing argument w →
0, it constitutes a sufficient regularisation to make the integral above convergent. We can thus

immediately set d = 4, noticing that γ(1,w) = 1− e−w. Thus, the integral over l becomes

Ĩ =
∫ ∞

0
dl e−l2

f±(Al) f±(Bl)
1− e−Cl2

l2
, (3.187)

with A and B such as in Eq. (3.155) and

C =
2ϑ(1−ϑ)

ϑ + s
∆t

. (3.188)

We now divide Ĩ as

Ĩ = Ĩ1+Ĩ2 =
∫ ∞

0
dl e−l2 (

f±(Al) f±(Bl)− f±(0)2
) 1− e−Cl2

l2
+

+
∫ ∞

0
dl e−l2

f±(0)2 1− e−Cl2

l2

(3.189)

and note that Ĩ1 represents a more regular version of I (see Eq. (3.155)); thereby, all the ar-

guments of convergence presented above can be applied also in this case and one needs only to

consider Ĩ2 for the special case and the first term of the series generated by the expansion of the

hyperbolic functions of Ĩ1 in the ordinary one. We consider first the special case and study the

behaviour at the boundaries of

(4π)2 R
(1)
3 |DIV = A4(∆t)

∫ 1

0

dϑ

ϑ(1−ϑ)
e
− 1

4

(
x̃2

1−ϑ + ỹ2

ϑ

)

Ĩ2. (3.190)
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Exploiting the identity

∫ ∞

0
dl e−l2 1− e−Cl2

l2
= −

√
π
(

1−
√

1+C
)

(3.191)

and implementing the transformation

√
1−ϑ

ϑ
= β ′ with

dϑ

ϑ(1−ϑ)
= −2

dβ ′

β ′ , (3.192)

one finds

(4π)2 R
(1)
3 |DIV = −2

√
π A4(∆t) e−

1
4(x̃2+ỹ2)

∫
dβ ′

β ′ e
− 1

4

(
x̃2

β ′2 +ỹ2β ′2
)

×

×
[

1−
√

1+
2β ′2

(β ′2 +1)(1+ s̃(β ′2 +1))

]
,

(3.193)

where, analogously to the shorthands in Eq. (3.153), we have defined s̃ = s/∆t. Denoting with

B(β ′) the argument of the square brackets in the expression above, we have that

B(β ′) = −β ′2 +O
(
β ′4) for (β ′ → 0), (3.194a)

B(β ′) = − 1

s̃β ′2 +O
(
β ′−4

)
for (β ′ → ∞),(s > 0), (3.194b)

B(β ′) = 1−
√

3+O
(
β ′−2

)
for (β ′ → ∞),(s = 0). (3.194c)

Thus, we see that even in the absence of the exponential (i.e., for x = y = 0) the integral is con-

vergent for every s > 0. We also notice that the integral is still finite for s = x = 0, y > 0, as

the exponential regularises the behaviour at β ′ → ∞. Thus, the only divergence is obtained when

y = s = 0, independently of the value taken by x. In the following, we shall employ the “radial”

representation

y2 = ucosα, s = usinα (3.195)

already introduced in Sec. (3.2.1). We now define

Q(u,α) =
∫ ∞

0

dβ ′

β ′ e
− 1

4

(
x̃2

β ′2 +ucosαβ ′2
)[

1−
√

1+
2β ′2

(β ′2 +1)(1+usinα(β ′2 +1))

]
. (3.196)

We expect a logarithmic behaviour to emerge as in the previous cases, i.e.,

Q(u,α) = f (α) lnu+O(1) (u → 0). (3.197)

In order to verify this assumption and calculate the coefficient f (α), we derive this function with

respect to u, which yields

Q′(u,α) = J1(u,α)+ J2(u,α) (3.198)
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with

J1 = −cosα

4

∫ ∞

0
dβ ′β ′e

− 1
4

(
x̃2

β ′2 +ucosαβ ′2
)[

1−
√

1+
2β ′2

(β ′2 +1)(1+usinα(β ′2 +1))

]
(3.199)

and

J2 =sinα

∫ ∞

0
dβ ′β ′e

− 1
4

(
x̃2

β ′2 +ucosαβ ′2
)[

1+
2β ′2

(β ′2 +1)(1+usinα(β ′2 +1))

]− 1
2

×

×
(
1+usinα(β ′2 +1)

)−2
.

(3.200)

We now perform another change β ′ = γ/
√

u which allows us to rewrite the expressions above as

Ji = (1/u)Ĵi with

Ĵ1(u,α) = −cosα

4

∫ ∞

0
dγ γ e

− 1
4

(
u x̃2

γ2 +γ2 cosα
)[

1−
√

1+
2γ2

(γ2 +u) [1+ sinα(γ2 +u)]

]
(3.201)

and

Ĵ2(u,α) = sinα

∫ ∞

0
dγ γ e

− 1
4

(
u x̃2

γ2 +γ2 cosα
)[

1+
2γ2

(γ2 +u) [1+ sinα(γ2 +u)]

]− 1
2

×

×
(
1+ sinα(γ2 +u)

)−2
.

(3.202)

Clearly, f (α) in Eq. (3.197) is given by the sum Ĵ1(0,α)+ Ĵ2(0,α) (provided it is finite), which

we calculate in the following. We start from

Ĵ1(0,α) = −cosα

4

∫ ∞

0
dγ γ e−

1
4 γ2 cosα

[
1−
√

1+
2

1+ γ2 sinα

]
= −1

2
+J (α), (3.203)

where we have defined

J (α) =
cosα

4

∫ ∞

0
dγ γ

√
1+

2

1+ γ2 sinα
e−

1
4 γ2 cosα . (3.204)

We now consider

Ĵ2 (0,α) = sinα

∫ ∞

0
dγ γ e−

1
4 γ2 cosα

[
1+

2

1+ γ2 sinα

]− 1
2 (

1+ γ2 sinα
)−2

=

−
∫ ∞

0
dγ γ e−

1
4 γ2 cosα 1

2γ
∂γ

[
1+

2

1+ γ2 sinα

] 1
2

=

[
−1

2
e−

1
4 γ2 cosα

√
1+

2

1+ γ2 sinα

]∞

0

+

+
1

2

∫ ∞

0
dγ

√
1+

2

1+ γ2 sinα
∂γ e−

1
4 γ2 cosα =

√
3

2
−J (α).

(3.205)
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This confirms that the divergence of Q(u,α) for u → 0 is indeed logarithmic in nature. Moreover,

it proves that the coefficient

f (α) =

√
3−1

2
(3.206)

is actually independent of the choice of α , which means that the divergence is the same when

approaching the edge from any “direction” in the yz− s plane. Thus, the divergent part (3.193) can

be rewritten as

(4π)2 R
(1)
3 |DIV ∼− 1√

4π∆t
e−

1
4 x̃2

(√
3−1

2

)
lnu = −

(√
3−1

2

)
lnu R(0)(x, t;0,0). (3.207)

The corresponding divergence of R(1) is obtained by multiplying it by −(n+2)ε3g/6 = (n+2)g/6.

This contribution is entirely due to the edge behaviour, thereby it is related with the term

(
(Ay)z + s

∆t

)−θE

∼ u−θE (3.208)

appearing in the scaling form (3.69b) (the specific value of the constant A is inconsequential for

the leading asymptotic behaviour). Therefore, at the Wilson-Fisher fixed point g = g∗ = 3/(n +
8)(4π)−2ε +O

(
ε2
)

we have

−θE = −θE,0 −θE,1ε +O
(
ε2
)

= −n+2

n+8

(√
3−1

4

)
ε +O

(
ε2
)
, (3.209)

which gives back the value for the special transition displayed in Eq. (3.74). For the ordinary case,

Ĩ2 ≡ 0 and we have to take the first non-trivial order of the expansion of the hyperbolic functions

in Ĩ1 in Eq. (3.189), i.e.,

Ĩ1 |DIV ∼ x̃ỹ
∫ ∞

0
dl e−l2

(
1− e−Cl2

)
= x̃ỹ

√
π

2

(
1− 1√

1+C

)
. (3.210)

Analogously to the case above (see Eq. (3.193)), we have

(4π)2 R
(1)
3 |DIV =

√
π A4(∆t) e−

1
4(x̃2+ỹ2) x̃ỹ Q̃(u,α), (3.211)

with

Q̃(u,α) =
∫ ∞

0

dβ ′

β ′ e
− 1

4

(
x̃2

β ′2 +ucosαβ ′2
)
1−

(
1+

2β ′2

(β ′2 +1)(1+usinα(β ′2 +1))

)− 1
2


 . (3.212)

We apply again the same procedure employed for the special case, i.e., we derive with respect to u
and define

∂uQ̃(u,α) =
1

u

(
K̂1(u,α)+ K̂2(u,α)

)
, (3.213)
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where

K̂1(u,α) = −cosα

4

∫ ∞

0
dγ γ e

− 1
4

(
u x̃2

γ2 +γ2 cosα
) 
1−

(
1+

2γ2

(γ2 +u) [1+ sinα(γ2 +u)]

)− 1
2




(3.214)

and

K̂2(u,α) = −sinα

∫ ∞

0
dγ γ e

− 1
4

(
u x̃2

γ2 +γ2 cosα
)[

1+
2γ2

(γ2 +u) [1+ sinα(γ2 +u)]

]− 3
2

×

×
(
1+ sinα(γ2 +u)

)−2
.

(3.215)

We now have to calculate the sum of these two expressions for u = 0, which gives

K̂1(0,α) = −cosα

4

∫ ∞

0
dγ γ e−

1
4 γ2 cosα

[
1−
(

1+
2

1+ γ2 sinα

)− 1
2

]
= −1

2
+K (α), (3.216)

with

K (α) =
cosα

4

∫ ∞

0
dγ γ e−

1
4 γ2 cosα

(
1+

2

1+ γ2 sinα

)− 1
2

, (3.217)

and

K̂2(0,α) = −sinα

∫ ∞

0
dγ γ e−

1
4 γ2 cosα

(
1+

2

1+ γ2 sinα

)− 3
2 (

1+ γ2 sinα
)−2

=

=
∫ ∞

0
dγ γ e−

1
4 γ2 cosα 1

2γ
∂γ

(
1+

2

1+ γ2 sinα

)− 1
2

=
1

2

[
e−

1
4 γ2 cosα

(
1+

2

1+ γ2 sinα

)− 1
2

]∞

0

+

− 1

2

∫ ∞

0
dγ

(
1+

2

1+ γ2 sinα

)− 1
2

∂γ e−
1
4 γ2 cosα =

1

2
√

3
−K (α).

(3.218)

As a consequence, in this case

Q̃(uα) ∼ 1

2

(
1√
3
−1

)
lnu+O(1) for (u → 0), (3.219)

which in turn implies

(4π)2 R
(1)
3 |DIV ∼

√
π

2
A4(∆t)e−

1
4(x̃2) x̃ỹ

(
1√
3
−1

)
lnu =

1

2

(
1√
3
−1

)
R(0)(x, t;y → 0,0).

(3.220)
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This expression differs from Eq. (3.207) by the sign and the fact that
√

3 → 1/
√

3; on the other

hand, the sign is reabsorbed by ε3 in Eq. (3.139). Therefore, the value of θE in the ordinary case is

given by

−θE = −θE,0 −θE,1ε +O
(
ε2
)

= −n+2

n+8

(
1√
3
−1

)
ε

4
+O

(
ε2
)
, (3.221)

which again reproduces the result previously reported in Eq. (3.74).

3.C.1 Renormalisation factors

As we have mentioned while discussing the divergence at the initial time, i.e., the case of R
(1)
1 , one

can analogously look for dimensional poles ∝ 1/ε by fixing the functions at the boundaries. These

divergent part can be absorbed by standard multiplicative renormalisation techniques, as we briefly

show here focusing for simplicity on the special case. We therefore introduce [11, 20, 23, 53]

ϕ̃ = Z̃
1
2 ϕ̃(R), [ϕ̃] =

d + z+ η̃

2
, (3.222a)

ϕ̃0 = Z̃
1
2 Z̃

1
2

0 ϕ̃
(R)
0 , [ϕ̃0] =

d + z+ η̃ + η̃0

2
, (3.222b)

ϕ̃S = Z̃
1
2 Z̃

1
2

1 ϕ̃
(R)
S , [ϕ̃1] =

d + z+ η̃ + η̃1

2
, (3.222c)

ϕ̃E = Z̃
1
2 Z̃

1
2

1 Z̃
1
2

0 Z̃
1
2
E ϕ̃

(R)
E , [ϕ̃E ] =

d + z+ η̃ + η̃1 + η̃0 + η̃E

2
, (3.222d)

where ϕ̃(R) generically denotes the renormalised response field. Here, Z̃ is the bulk renormalisation

factor, Z̃0 refers specifically to the temporal boundary, whereas Z̃1 to the spatial one; finally, Z̃E

takes care of the additional renormalisation of the edge fields ϕ̃E , according to the appearance of

novel divergences in this regime. In order to account for the differences in the scaling dimensions,

we have introduced three novel anomalous dimensions η̃0, η̃1 and η̃E [23, 53] in addition to the

usual one η̃ [11] introduced in Eq. (3.8). According to standard RG techniques, these corrections

can be obtained by taking the logarithmic derivatives

η̃i = −ε g∂g log Z̃i. (3.223)

From the three algebraic factors coming from the SDEs of Eq. (3.69b) one finds that the exponents

we have discussed in the previous Sections can be completely rewritten in terms of the bulk ones

and the boundary anomalous dimensions as

η̃1 = 2
β1 −β

ν
, η̃0 = −2θz, η̃E = −2θEz. (3.224)

In the following, the coordinates shall be always thought to be different from 0, unless otherwise

stated. In dimensional regularisation, one can extract from Eqs. (3.144), (3.150) and (3.185) the
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one-loop corrections:

R(x, t; y,s) = R(0) (x, t; y,s)+O
(
g2
)
, (3.225a)

R(x, t; y,s = 0) = R(0) (x, t; y,0)

(
1+

n+2

3!

g

(4π)2 ε

)
+O

(
g2
)
, (3.225b)

R(x, t; y = 0,s) = R(0) (x, t; 0,s)

(
1+

n+2

3!

g

(4π)2 ε

)
+O

(
g2
)
, (3.225c)

R(x, t; y = 0,s = 0) = R(0) (x, t; 0,0)

(
1+

n+2

3!

(√
3+1

)
g

(4π)2 ε

)
+O

(
g2
)
. (3.225d)

Equation (3.225a) implies Z̃ = 1+O
(
g2
)
, which, at the Wilson-Fisher fixed point g∗ = 3

n+8
(4π)2 ε +

O(ε2), becomes Z̃ = 1+O
(
ε2
)

[11]. From Eq. (3.225b) we find instead the less trivial result

Z̃0 = 1− n+2

3

g

ε

1

(4π)2
+O

(
g2
)
. (3.226)

Applying the logarithmic derivative (3.223) yields [23]

η̃0 = − g

(4π)2

n+2

3
. (3.227)

The renormalisation factor associated to the spatial surface for the special transition can be ex-

tracted from Eq. (3.225c) and corresponds to [59]

Z̃1 = 1− n+2

3

g

ε

1

(4π)2
+O

(
g2
)
. (3.228)

Again, by deriving according to Eq. (3.223), one obtains

η̃1 = − g

(4π)2

n+2

3
. (3.229)

Finally, from Eq. (3.225d) one can calculate

Z̃E = 1− n+2

3

g

ε

√
3−1

(4π)2
+O

(
g2
)

(3.230)

and, consequently,

η̃E = −
(√

3−1
) g

(4π)2

n+2

3
. (3.231)

At the fixed point Eqs. (3.227), (3.229) and (3.231) become

η̃0 = −n+2

n+8
ε, η̃1 = −n+2

n+8
ε, η̃E = −

(√
3−1

) n+2

n+8
ε, (3.232)

which, when inserted in Eqs. (3.224) and using the fact that z = 2 + O
(
ε2
)
, render the first-order

corrections to the exponents we have found above (see Eqs. (3.33b), (3.55) and (3.74)).
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4 Quantum quenches: two alternative

approaches

The development of quantum theories in the first half of the 20-th century completely revolu-

tionised our view of the world at the microscopic scale. Actually, there are several macroscopic

features which are affected by quantum effects, such as the photoelectric response of metals to

high-frequency radiation, or the semiconducting behaviour of many metalloids. However, they are

mostly the reflection of a large number of microscopic degrees of freedom independently behaving

according to quantum mechanics. It is much more difficult to highlight quantum many-body ef-

fects, mainly due to the fact that the interaction of these degrees of freedom with the environment

typically destroys the coherence between their constituents on extremely small time-scales. Only

recently, thanks to the advances in cold-atomic techniques [29], it has become possible to engi-

neer macroscopic systems which display non-microscopic coherence times, ranging from some

milliseconds [35] up to a few seconds [27]. This allowed for the first time to undertake the study

of quantum dynamics in an experimental setting, highlighting many intriguing effects, such as the

ones, mentioned in the Introduction, which are illustrated in Figs. 2.2 and 2.3.

Among the various analytical methods which have been devised in order to approach the

physics of quantum many-body systems, field-theoretical ones prove to be particularly useful, es-

pecially in the thermodynamic limit. In fact, they provide a rather general and versatile framework

to investigate a variety of different systems and naturally allow one to address the possible emer-

gence of collective phenomena, which typically defy other approaches. Field theories have been

widely and successfully used in the past for describing the static and dynamic behaviour of many-

body systems in equilibrium [11], greatly contributing in the progress of our understanding of

condensed matter. Within this approach, one typically identifies asymptotic states of the theory

for t → ±∞ — corresponding to the absence of interaction, which is assumed to be switched on

and off adiabatically in these limits — in such a way that the quantum state with no elementary

excitations (vacuum) in the far past t → −∞ and in the far future t → +∞ differ at most by an

overall phase factor (Gell-Mann and Low theorem [93–95]). Non-equilibrium processes, on the

other hand, often involve sudden changes of the control parameters of the system which generically

violate the condition of adiabaticity required above, rendering the identification of the asymptotic

states in the past with those in the future problematic.

However, a strategy to deal with this problem has been known since the 60s [96, 97]: it is based

on an effective time evolution running on the contour sketched in Fig. 4.1, which just requires the

knowledge of the initial state, whilst not needing any kind of inference on the structure of the

asymptotic state in the far future. This approach is usually referred to as Keldysh (or Keldysh-
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Schwinger) formalism [98–103] and, for convenience, we summarize its main features in Sec. 4.1.

Among the different protocols which may be employed to drive an isolated quantum system out

timet
M0

Forward branch

Backward branch

Figure 4.1: Sketch of the "time evolution" within the Keldysh formalism. Without loss of general-

ity, we fix at t = 0 the time at which the initial condition ρ0 is imposed. The rightmost time tM has

no specific physical significance: as long as it is larger than all the values of the time at which the

various quantities are considered, its position along the real axis is inconsequential and can be chosen

arbitrarily, as clarified in Section 4.1. Differently from the dynamics in equilibrium, the difficulty in

identifying the asymptotic states in the future with the ones in the past does not allow the transforma-

tion of the backward branch of the contour into a forward one from tM to +∞ and therefore one has

to deal with a closed-time path integral instead of with an "ordinary" one.

of equilibrium, in the following we focus on the one which is conceptually the simplest, i.e., the

quench: as stated before, in spite of its simplicity, it actually encompasses a rich variety of cases

and is currently under intensive theoretical and experimental study (see, e.g., Ref. [41]). From

a formal point of view, two equivalent formulations may be given: the system is prepared in the

ground state of a Hamiltonian H0; at time t = 0 the Hamiltonian is switched with a new, time-

independent one H, which governs the subsequent (t > 0) evolution. Alternatively, one can think

of having only one Hamiltonian H while the system is prepared at t = 0 in a (pure) state which is

not an energy eigenstate.

An alternative approach for studying the dynamics of an isolated quantum system after a

quench has been recently proposed and successfully applied in Refs. [2, 3]. Instead of relying

on the Keldysh contour, this method represents a generalisation of the usual Wick rotation [94]

to non-equilibrium problems, as it maps the original dynamical system in d spatial dimensions

to a static (d + 1)-dimensional one, where the additional “spatial” direction is provided by the

imaginary axis in the complex plane of times. A fundamental difference which arises with respect

to equilibrium is that the Euclidean framework obtained in this way is actually confined within

a film geometry, i.e., the system is defined in an effectively bounded interval of imaginary times

[−ε,ε], which can be conveniently thought to be centered on the real axis. This mapping makes

it possible to take advantage of the available knowledge about the thermodynamic and structural

properties (e.g., correlation functions) of statistical systems confined within films of finite thickness

[25, 53, 61].

This Chapter provides a critical comparison of the two different approaches mentioned above,

in order to highlight analogies and differences and elucidate them in the simplest possible cases. In

Sec. 4.1 we provide a summary on the main concepts concerning the two-time Keldysh approach.

The following Sec. 4.2 is instead devoted to briefly introducing the mapping to imaginary times for

non-equilibrium quantum dynamical problems. In Sec. 4.3 we discuss how these two formalisms

are related, paying particular attention to the relationship existing between the initial conditions
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of the dynamical problem and the boundary conditions at the edges of the film in the euclidean

one. We show that an interpretation in terms of a static system in a film is not always possible,

but requires the initial state to be pure; on the other hand, we are still able to provide a formal

definition of a theory in the film in the case of statistical mixtures. We also provide a detailed

discussion of the issues one encounters in performing the analytic continuation from imaginary to

real times, providing a prescription to retrieve the various Keldysh functions from the ones defined

on imaginary times, working out explicitly a few simple examples. In Sec. 4.4 we make use of

such an analysis to show that one can employ the euclidean formalism not only for calculating

correlations, but also response functions. Finally, in Sec. 4.5 we summarise our main results.

4.1 The Keldysh formalism

Consider a generic quantum many-body system which can be described in terms of a given set

of fields Ψ, Ψ†, either bosonic or fermionic (e.g., containing information on the density of charge

carriers in a semiconductor), which evolve according to a Hamiltonian H in a d-dimensional space,

starting from an initial condition encoded in a density matrix ρ0. Since we consider below homo-

geneous, and thus space-translationally invariant, systems, the dependence of these fields on the

spatial coordinates will play no significant role for our discussion and shall be implied by the nota-

tion Ψ(t) ≡ Ψ(~x, t) whenever confusion may not arise as a consequence. The typical observables

one is interested in are correlation functions such as

〈Ψ(t1)Ψ(t2) . . .Ψ(tn)〉 ≡ tr{Ψ(t1)Ψ(t2) . . .Ψ(tn)ρ0} , (4.1)

where the fields are expressed in the Heisenberg representation Ψ(t) = eiHt Ψe−iHt . The Keldysh

structure of the evolution reported in Fig. 4.1 emerges already at the level of the one-time function

〈Ψ(t1)〉 =
〈
eiHt1 Ψe−iHt1

〉
: the operator e−iHt1 represents the forward branch, as it evolves the

initial state at t = 0 to its counterpart at the measurement time t = t1, whereas the backward branch

is generated by eiHt1 , which brings the state of the system back at t = 0, where it is projected onto

the initial state ρ0 (by the cyclicity of the trace). Clearly, by introducing the identity in the form

1 = eiH(tM−t1)e−iH(tM−t1) to the immediate right (or left) of the field Ψ, one can indefinitely extend

the contour to any point tM on the right of the original “turning time” t1, the value of the latter

being completely inconsequential. On the other hand, the path has to definitely reach t1, where Ψ

is measured; trying to deform it to the left of t1 enforces a more complicated structure, which we

portray in Fig. 4.2. This explains, in the simplest case, the irrelevance of the precise position of

the rightmost point and the requirement that it be greater than any measurement time. While the

same argument can be repeated for two-time quantities, starting with three-time ones, the Keldysh

structure enforces a constraint on the order in which fields may appear inside the expectation (4.1);

for example, taking 〈Ψ(t1)Ψ(t2)Ψ(t1)〉 with t2 < t1 and trying to apply the same interpretation as

before, one ends up with a contour similar to the one displayed in Fig. 4.2, where however the

central part does not represent the identity anymore, as the second field lies upon it. Thus, in

order to identify those correlations which can be actually described in a Keldysh framework, it is

convenient to define the corresponding time-ordering operator TK , the action of which is to move

all the operators lying on the backward branch to the left of those lying on the forward one, while
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timet
1

0
t
b

t
a

Figure 4.2: Example of the effect of inserting at time tb on the Keldysh contour (black, solid line)

the identity in the form eiH(ta−tb)e−iH(ta−tb) (red, dashed line). This choice is completely equivalent to

the original one as long as no field is positioned along the red, dashed part of the path. The vertical

separation of the lines represents just a visual aid to distinguish them, while they should be collapsed

onto the real axis, which implies that the time variable can be thought to be fourthly degenerate within

the range [ta, tb].

imposing the canonical time-ordering on the latter and the opposite ordering (anti-ordering) on the

former. For the sake of clarity, consider a generic product of operators O at times t1, t2, . . . tm and

s1,s2, . . .sn, which are positioned along the Keldysh contour as shown in Fig. 4.3: TK renders

TK [O(t1) . . .O(tm)O(s1) . . .O(sn)] = (−1)PO(s1) . . .O(sn)O(tm) . . .O(t1), (4.2)

where P corresponds to the parity of the permutation applied to the fermionic operators (e.g.,

it would be mn if they were all fermionic and identically vanish it they were all bosonic). Ac-

cordingly, reading from the left to the right the arguments of the operator, one always obtains an

increasing sequence of times followed by a decreasing one.

Quite naturally, all the correlation functions of the fields which are TK-ordered can be derived

from the generating functional

Z[J, J̄] = tr

{
TK

[
exp

(
i
∫

ddx
∫

K
dt
(

J(t)Ψ(t)+ J̄(t)Ψ†(t)
))]

ρ0

}
, (4.3)

where J and J̄ are suitable source terms defined on the Keldysh contour (we refer to App. 4.A for

the explicit construction of the path integral). Indeed, time-ordered correlations are obtained by

functional differentiation of Z with respect to the sources, e.g.,

〈TK [Ψ(t1)Ψ(t2) . . .Ψ(tn)]〉 = (−i)n δ nZ[J, J̄]

δJ(t1) . . .δJ(tn)

∣∣∣∣
J=J̄≡0

, (4.4)

where we have used the simplified notation 〈·〉 = tr{(·)ρ0}. Naturally, the expectation of an ob-

servable at any given moment must be a well-defined quantity: in this context, this property may

be rephrased as “being single-valued” in time, which means that its expectation at corresponding

points on the forward and backward branches of K must coincide. However, at intermediate stages

of the analysis it is actually convenient to distinguish them as if they were completely unrelated
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timet
M0 s

n
s

1

t
1

t
m

. . . 

. . . 

(a)

time

t
-

t
+

(b)

Figure 4.3: Sketches of a collection of times defined on the two branches of the Keldysh contour.

(a) As specified in the main text, the TK-ordering of a product of operators taken at times {ti,si}
moves to the left quantities lying near the end of the contour (i.e., on the backward branch) and to

the right those lying next to its starting point (i.e., on the forward branch). Within the forward and

backward branches operators are ordered according to the canonical time ordering and anti-ordering,

respectively. Whenever ambiguities might arise, we shall distinguish points belonging to the forward

and backward branches by adding the subscripts "+” and "−”, respectively, to the corresponding

time, as sketched in panel (b).

(see App. 4.A); for this purpose, we introduce the subscripts + and − for the forward and backward

branch, respectively. Equivalently, one might think of the time t as taking two different values t+
and t− on the two branches, as depicted in Fig. 4.3(b). In particular, the source terms in Eq. (4.3)

will be generally considered as double-valued, by distinguishing, e.g., the value J+(t) ≡ J(t+) that

J takes at time t on the forward branch from the value J−(t) ≡ J(t−) it takes at the same time t
on the backward branch. At the end of the analysis these two values have to be identified, i.e.,

J+(t) = J−(t) ≡ J(t). Once this has been done and the ordering has been made explicit (as in

Eq. (4.2)), the subscripts ± may be safely disregarded, and the time coordinates considered single-

valued along the real axis, with no further distinction between the two branches.

Within this formalism, one introduces the two-time correlation functions of the fields as fol-

lows [98, 100]:

iG±±(t,s) = − δ 2Z[J, J̄]

δJ(t±)δ J̄(s±)

∣∣∣∣
J=J̄=0

=
〈

TK

[
Ψ(t±)Ψ†(s±)

]〉
, (4.5)

where t± and s± are defined on the Keldysh contour K and t and s indicate their corresponding

values along the time axis. The four different combinations of subscripts + and − give rise to





iG<(t,s) = iG+−(t,s) = ±
〈
Ψ†(s)Ψ(t)

〉
,

iG>(t,s) = iG−+(t,s) =
〈
Ψ(t)Ψ†(s)

〉
,

iGT (t,s) = iG++(t,s) =
〈
T [Ψ(t)Ψ†(s)]

〉
,

iGT ∗
(t,s) = iG−−(t,s) =

〈
T ∗[Ψ(t)Ψ†(s)]

〉
,

(4.6)

where, having already indicated explicitly on which branch each field lies, we have dropped the

subscripts ± from the times. Here T and T ∗ denote the standard operations of time-ordering and
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anti-ordering. In the case of G<, the sign on the r.h.s. distinguishes the case of bosonic fields (+)

from the case (−) of fermionic ones. These functions are known to satisfy the identity [98, 100]

GT +GT ∗
= G> +G< (4.7)

and therefore at most three of them are actually independent. An often convenient reformulation

is given by the so-called physical representation, which is defined in terms of the "classical” and

"quantum” components of the fields

Ψc(t) = Ψ(t+)+Ψ(t−) and Ψq(t) = Ψ(t+)−Ψ(t−), (4.8)

respectively. The corresponding two-point correlations are usually referred to as classical (or

Keldysh), retarded, advanced and quantum functions:





GK(t,s) = − i
2

〈
TK[Ψc(t)Ψ†

c(s)]
〉

= G>(t,s)+G<(t,s),

Gr(t,s) = − i
2

〈
TK[Ψc(t)Ψ†

q(s)]
〉

= θ(t − s) [G>(t,s)−G<(t,s)] ,

Ga(t,s) = − i
2

〈
TK[Ψq(t)Ψ†

c(s)]
〉

= −θ(s− t) [G>(t,s)−G<(t,s)] ,

Gq(t,s) = − i
2

〈
TK[Ψq(t)Ψ†

q(s)]
〉

= 0,

(4.9)

where the rightmost equalities follow from Eq. (4.7). The physical representation is particularly

useful as it makes the inherent causal structure of a dynamical theory apparent, due to the presence

of the step function θ , with θ(t < 0) = 0 and θ(t > 0) = 1. For example, the retarded function Gr

can be interpreted as the (linear) response of the classical field Ψc at time t to a small perturbation

applied at time s [100], as it will be discussed in more detail in Section 4.4. Accordingly, causality

implies that Gr vanishes for t < s because physical effects cannot propagate in the past. This

feature is analogous to the one encountered in Sec. 3.1.2 when discussing the properties of response

functions in classical system. Actually, one can conceptually think of the classical component Ψc

as being the analogous of the order parameter ϕ of Chap. 3, while the quantum component Ψq

ideally corresponds to the response field ϕ̃ . Moreover, if the quantum system we are presently

interested in is no longer isolated but linearly coupled to an equilibrium thermal bath of quantum

harmonic oscillators, one can show that in the classical limit h̄ → 0 (with Ψq = (Ψ+−Ψ−)/h̄) the

action effectively describes a dynamics governed by a Langevin equation [8, 98]. In such a case,

the noise constitutes an effective description of the degrees of freedom of the bath, which, thanks

to the fact that they are Gaussian by assumption, can be conveniently integrated out.

4.1.1 Path-integral and initial conditions

In the present Section we focus on the case of a single real, scalar field Ψ = Ψ† = Φ, although

the following considerations extend straightforwardly to more general cases. The generating func-

tional (4.3) can be cast in the path-integral formalism (see App. 4.A) as

Z[J] =
∫

Dφ ei(SK [φ ]+J·φ) 〈φ(0+)|ρ0 |φ(0−)〉 , (4.10)
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where J is the source coupled to the only field present. In this effective representation, the inte-

gration variable φ(·) is a classical field whose evolution defines a “path”, SK[φ ] =
∫

K dtL[φ ] is the

action of the system, L[φ ] =
∫

ddxL [φ ] its Lagrangian, which can be obtained from the Hamil-

tonian H via the Legendre transformation L[Φ] =
∫

ddxΠ(~x, t)Φ(~x, t)−H, where Π denotes the

quantum field conjugate to Φ:

[Φ(~x, t),Π(~y, t)] = ih̄δ (~x−~y). (4.11)

In Eq. (4.10) J ·φ ≡ ∫K dt ddx J(~x, t)φ(~x, t) is a shorthand for the source term, and the “functional

measure” is thought to be normalised such that Z[0] = 1. The density matrix ρ0 which characterises

the initial condition of the system plays the role of a "boundary" term for the path integral. In order

to better highlight this fact, it is convenient to adopt a slightly different approach: we introduce

two fields φ±, which are single-valued in time and correspond to the original field φ defined on

either branch of the Keldysh contour, according to the notation introduced before: φ+(t) ≡ φ(t+)
and φ−(t) ≡ φ(t−). The Keldysh action can be rewritten as SK[φ ] = S[φ+]−S[φ−], where S[φ±] =∫ tM

0 dt ddxL [φ±] has the same Lagrangian density as SK , but, while the former is integrated along

the whole contour, the latter runs only on the real axis from 0 to tM; the overall minus sign appearing

in front of S− is due to the fact that the backward branch is actually covered in the reversed direction

(i.e., from tM towards 0, see Fig. 4.1). By performing an analogous redefinition of the source J, we

can rewrite Eq. (4.10) as [100]

Z[J+,J−] =
∫

K
Dφ+Dφ− ei(S[φ+]−S[φ−]+J+·φ+−J−·φ−) 〈φ+(0)|ρ0 |φ−(0)〉 , (4.12)

where the functional integral is performed over the configurations (paths) of the fields that coincide

at t = tM, i.e.,

K = {paths defined on the interval [0, tM] such that φ+(tM) = φ−(tM)} . (4.13)

As we pointed out above, tM can be chosen arbitrarily, as long as it is larger or equal than any other

time involved in the correlation functions one is interested in. In particular, tM can be identified

with the largest time involved in a certain correlation function and therefore the condition φ+(tM) =
φ−(tM) allows one to move the corresponding field from one branch of the contour to the other.

The expectation 〈φ+(0)|ρ0 |φ−(0)〉 is in general a functional F [φ+(0),φ−(0)] of the initial

fields which, rewritten as F = eiS0 , can be incorporated into the action:

Z[J+,J−] =
∫

K
Dφ+Dφ− ei(S[φ+,J+]−S[φ−,J−]+S0[φ+(0),φ−(0)]), (4.14)

with {
S[φ ,J] ≡ S[φ ]+ J ·φ =

∫ tM
0 dt

∫
ddx [L [φ(~x, t)]+ J(~x, t)φ(~x, t)] ,

S0[φ+(0),φ−(0)] =
∫

ddxL0[φ+(~x,0),φ−(~x,0)],
(4.15)

where L is the Lagrangian density which enters in the action SK of Eq. (4.10). The functional

L0 encodes the properties of the initial state and is generally a rather complicated function of

its arguments. In terms of the fields φ+ and φ−, the generating functional in Eq. (4.14) has the

67



Quantum quenches: two alternative approaches

same structure as the partition function that we have encountered in the Chapter 3 when studying

classical systems in the presence of boundaries [53] (see, e.g., Eq. (3.13)). Within this setting,

the term S in Eq. (4.14) plays the role of a "bulk" action of the field, whereas S0 is identified

with a boundary term, which is indeed localized at the surface t = 0 of the semi-infinite system. In

addition, as long as one is interested in emerging collective behaviours of the classical system close

to the surface, one can suitably construct a combined renormalisation-group flow for both S and

S0, a fact which leads to the notion of surface universality and fixed-point surface actions that we

have discussed in Sec. 3.1. In these cases, one can typically assume that not only the most relevant

terms of the bulk action are captured by a series expansion of S in the field and its derivatives, but

that the same idea applies also to the surface term S0 [53]. Analogously to what we have done in

Chapter 3, below we focus on initial states of the quantum evolution for which S0 can be expanded

in a power series of its arguments.

As in the case of classical systems in the presence of a boundary, the effect of the action S0 in

Eq. (4.14) is to generate effective boundary conditions for the fields φ±, as one can readily verify

by determining the configuration of the fields which renders the total action extremal (i.e., solving

the “classical” variational problem, see, e.g., Eq. (3.15)). In fact, assuming for the bulk Lagrangian

L the canonical structure

L [φ ] =
1

2
((∂tφ)2 − (~∇φ)2)−V [φ ], (4.16)

where V is a regular function (e.g., a polynomial) of its argument, the functional derivative with

respect to the fields generates a boundary condition of the form

∂tφ±(x, t) |t=0 = ±δS0[φ+(0),φ−(0)]

δφ±(x,0)
, (4.17)

which holds at the "classical" level, i.e., for the extremal field. The l.h.s. of this expression is

generated by the term (∂tφ)2 which appears in L (see also the discussion following Eq. (3.15)): a

small variation φ → φ +δφ of the field, in fact, yields

∫ tM

0
dt [∂t(φ(t)+δφ(t))]2 =

∫ tM

0
dt
{
(∂tφ(t))2 +2(∂tδφ(t))∂tφ(t)+ . . .

}
, (4.18)

to linear order in δφ ; integrating by parts the linear contribution, one finds

δS[φ ,J] =
∫

ddx
{

δφ(tM)∂tφ(t) |t=tM
−δφ(0)∂tφ(t) |t=0 +bulk terms

}
. (4.19)

Accordingly, the variation of the total action with respect to the boundary field φ−(0) is given by

0 =
δ (S[φ+,J+]−S[φ−,J−]+S0[φ+(0),φ−(0)])

δφ−(0)
= ∂tφ−(t) |t=0 +

δS0[φ+(0),φ−(0)]

δφ−(0)
, (4.20)

which, together with the corresponding expression for φ+, yields Eq. (4.17).

If the system under investigation evolves in the proximity of a critical point, collective be-

haviours are expected to emerge and to affect the resulting non-equilibrium evolution. In this case,

the effects of fluctuations become predominant and simple mean-field-like (or Gaussian) approx-

imations fail. As long as one is interested in the leading scaling behaviour which characterises
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these emerging phenomena, renormalisation-group arguments allow one to simplify significantly

the structure of the total action because terms which are irrelevant by power counting can be dis-

carded, as we have already discussed in Chap. 3. For example, in a theory near four spatial di-

mensions with a potential containing a term ∝ φ 4, the only relevant terms in the initial action S0

which are symmetric under Z2 transformations (i.e., φ → −φ ) are those quadratic in the fields.

Consequently, the initial conditions generated by Eq. (4.17) are linear

{
∂tφ+(t) |t=0 = c++φ+(0)+ c+−φ−(0),
∂tφ−(t) |t=0 = c−−φ−(0)+ c−+φ+(0),

(4.21)

with suitable (generically complex) coefficients c±,±. Constraints of this form are also known as

Robin boundary conditions. In Sec. 4.3.1 we discuss in detail the constraints which the values of

c±,± are subject to due to the general properties of ρ0. Linear boundary conditions (or, equivalently,

a quadratic L0) offer the advantage of producing closed equations for the correlation functions, i.e.,

once inserted into a n-point correlation function, Eq. (4.21) gives rise to an equation which involves

only other n-point correlation functions and their time derivatives. Instead, if higher-order terms

were included in S0 (e.g., φ k with k > 2) this would generate a hierarchy of equations (connecting,

e.g., n-point correlations to (n + k− 2)-point ones). A quadratic S0 actually encompasses a wide

and physically relevant class of initial states, which include — as we show further below in a

simple case — all possible generalised thermal ensembles of an infinite set of harmonic oscillators

[103], i.e.,

ρ0 = N e
−∫ ddk

(2π)d
βk ωk a†

kak
, (4.22)

where a†
k and ak are bosonic creation and annihilation operators corresponding to the momentum

k, ωk is the dispersion law, βk > 0 a mode-dependent temperature-like variable and N a normali-

sation constant which ensures that tr{ρ0} = 1.

4.2 The Euclidean formalism

Here, we briefly discuss the formalism introduced in Refs. [2, 3] in order to describe the dynamics

after a quantum quench, presenting it according to the notations introduced above. In particular,

consider the expectation value on a pure state ρ0 = |ψ0〉〈ψ0| of an observable O at time t:

〈O(t)〉 = 〈ψ0|eiHtOe−iHt |ψ0〉 . (4.23)

As mentioned in the previous Sections, this expectation value can be calculated in a path-integral

formalism which runs on the evolution contour sketched in Fig. 4.4(a). On the other hand, we can

rewrite the expectation above as [3]

〈O(t)〉 = lim
ε→0+

〈O(t)〉ε ≡ lim
ε→0+

Z−1 〈ψ0|eiHt−εH O e−iHt−εH |ψ0〉 , (4.24)

where the two factors e−εH with ε > 0 have been introduced in order to make the correspond-

ing path-integral representation absolutely convergent, while Z = 〈ψ0|e−2εH |ψ0〉 normalises the

expectation of the identity to 1. The regulator e−εH can be effectively regarded as the evolution
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Figure 4.4: Analytic deformation of the Keldysh contour in the plane of complex times: starting

from (a), the initial and final points (which correspond, e.g., to the ground state |ψ0〉 of some Hamilto-

nian, i.e., to a pure initial state ρ0 = |ψ0〉〈ψ0|) of the oriented contour are moved along the imaginary

axis as shown in (b). At the price of relinquishing the direct evaluation of expectation values of oper-

ators taken at times on the real axis, the original Keldysh path can be seen as a representation of the

identity e−iHtM eiHtM and can be therefore shrunk to 0, bringing the whole contour onto the imaginary

axis, as presented in (c).

operator from complex time T to T − iε , leading to a path-integral of the form

〈O(t)〉ε =
∫

Dφ 〈ψ0|φ(−iε)〉〈φ(iε)|ψ0〉 〈φ(t)|O |φ(t)〉 e
i
∫

γ dt L[φ ], (4.25)

where the contour γ is shown in Fig. 4.4(b). Note that our convention is slightly different from the

one adopted in Refs. [2, 3], because we take T = iε as the starting point of our contour, instead

of T = 0. The path displayed in Fig. 4.4(b) constitutes clearly a specific choice which involves a

separation of the evolution with imaginary and real time (e.g., in the upper half-plane of complex

times we take first e−εH and then e−itH). Actually, a different discretisation of the time interval

would result in any path which proceeds from iε on the imaginary axis downwards and rightwards

towards t on the real axis and from there downwards and leftwards towards −iε on the imagi-

nary axis; by introducing the identity operator in the form e−iHt ′eiHt ′ with generic real t ′ one can

relax the constraint about the rightwards and leftwards motion in the upper and lower complex half-

plane, respectively (see Fig. 4.2); by analogy, one could think of doing the same for the downwards

motion by adding a product e−Hτ ′eHτ ′ (with non-vanishing, real τ ′), which is again an acceptable
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rewriting of the identity; however, this expression poses serious problems to the construction of

the path integral whenever the spectrum of H is not bounded from above. For example, for an in-

finitesimal interval τ ′ = δτ > 0 one would find a propagator of the form 〈φ(τ0 +δτ)|eδτ H |φ(τ0)〉,
where τ0 is the point of insertion, which is generally ill-defined, as it can be easily checked in the

example reported in the next Section (see Eq. (4.63)). As a consequence, the path in Fig. 4.4(b)

can be actually deformed in an arbitrary way which keeps the end points ±iε fixed and still passes

through t (i.e., the time at which the observable O is measured), but never proceeds upwards. This

freedom in the choice of the path appears to clash with the fact that Eq. (4.24) is uniquely defined;

thus, Eq. (4.25) must not depend on the choice of the contour γ and, since the latter appears only

in the argument of the exponential, this in turn implies that the Lagrangian L[φ(t)] must be treated

as an analytic function of the time variable. This conclusion allows one to calculate 〈O(t)〉 with a

different approach: in fact, assuming that this quantity is analytic in t, the analysis can be restricted

entirely to the imaginary axis by determining

〈O(iτ)〉ε ≡ Z−1 〈ψ0|e−(ε+τ)H O e−(ε−τ)H |ψ0〉 , (4.26)

on the interval −ε < τ < ε — which ensures that all expressions are well-defined — and by

performing an eventual analytic continuation to real times. The path-integral representation of

Eq. (4.26) becomes equivalent to one describing a static system confined in a film of width 2ε , i.e.,

〈O(iτ)〉ε =
∫

Dφ 〈ψ0|φ(−iε)〉〈φ(iε)|ψ0〉 〈φ(iτ)|O |φ(iτ)〉 e−
∫ ε
−ε dτ LE [φ ], (4.27)

where LE =
∫

ddxLE is the Euclidean Lagrangian which is obtained from −L by substituting ∂t

with i∂τ ; for example, for a Lagrangian of the canonical form (4.16) one has

LE =
1

2
((∂τφ)2 +(~∇φ)2)+V [φ ]. (4.28)

The integration contour associated with Eq. (4.27) is sketched in Fig. 4.4(c). Thereby, the initial dy-

namical problem has been reformulated in terms of an Euclidean field theory with surfaces, where

the initial state |ψ0〉 encodes the boundary conditions. The approach that we have just described

proves to be particularly useful in the case of conformal theories in two dimensions, which —

being exactly solvable — can be rather straightforwardly continued to real times; boundary states

which preserve the conformal invariance, however, are in general not normalisable [73, 104]. In

order to overcome this difficulty it is then preferable to consider an initial state |ψ0〉 which is

slightly different from one of them. In fact, following Refs. [2, 3] one can argue that, as long as

the interest is in the leading scaling behaviour close to quantum critical points, the expectation

value in Eq. (4.24) is not actually determined by |ψ0〉 but by the boundary state
∣∣ψ∗

0

〉
to which

|ψ0〉 flows under renormalisation group (RG) transformations. In this respect, the state |ψ0〉 gives

rise to boundary conditions which are approximately equivalent to the ones generated by
∣∣ψ∗

0

〉
,

the main difference being that they are translated from the actual edges ±ε to effective boundaries

positioned at ±(τ0 + ε). In a sense, τ0 can be regarded as being equivalent to the extrapolation
length [24, 53] that we have introduced in Sec. 3.1.1 and illustrated in Figs. 3.2. In fact, as in

the classical case it provides a measure of the “distance” from the corresponding surface critical

point, in the Euclidean one it encodes the distance from the RG-invariant state. Consequently to
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its introduction, the limit ε → 0 can be safely taken; the width of the resulting film is then twice

the extrapolation length τ0. The considerations above, which hold for a one-time expectation, can

be straightforwardly generalised to the case of n-time correlation functions

〈T ∗ [O(iτ1) . . .O(iτn)]〉ε =
∫

Dφ 〈ψ0|φ(−iε)〉〈φ(iε)|ψ0〉O(iτ1) . . .O(iτn)e−
∫ ε
−ε dτ LE [φ ], (4.29)

where O(iτk) = 〈φ(iτk)|O |φ(iτk)〉. The time anti-ordering T ∗ takes into account the orientation

of the path along the imaginary axis (see Fig. 4.4(c)). The real-time correlation functions one is

actually interested in can be obtained by analytically continuing Eq. (4.29) back to real values and

then by taking the limit ε → 0. Thus, whenever the Euclidean theory is analytically solvable in a

confined geometry, the corresponding non-equilibrium dynamics is also exactly solvable.

4.2.1 Conformal field theories

In critical systems, the emergence of scale invariance, combined with the preexisting translational

and rotational ones, gives rise to conformal symmetry [73]. As a matter of fact, this increases the

constraints imposed on observables to the point that one can completely fix the scaling behaviour

of two- and three-point functions to

〈Φi1(~x1)Φi2(~x2)〉 =
Ci1i2 δ∆i1

∆i2

|~x1 −~x2|2∆i1
,

〈Φi1(~x1)Φi2(~x2)Φi3(~x3)〉 =
Ci1i2i3

x
∆i1

+∆i2
−∆i3

12 x
∆i2

+∆i3
−∆i1

23 x
∆i3

+∆i1
−∆i2

13

,

(4.30)

where ∆i j ≡
[
Φi j

]
denotes the scaling dimension of the j-th field and where we introduced the

shorthand notation xab = |~xa −~xb|. On the other hand, should four or more points be involved,

conformal invariants such as the anharmonic ratio x12x34/(x23x14) can be constructed, making it

impossible to completely determine the corresponding scaling forms. Four-point functions, for

instance, can be generically cast as

〈Φi1(~x1) . . .Φi4(~x4)〉 = F

(
x12 x34

x13 x24
,
x12 x34

x14 x23

)
4

∏
a<b

x
1
3

(
∑

4
j=1 ∆i j

)
−∆ia−∆ib

ab , (4.31)

with F a regular function of its arguments which depends on the specific model.

The case of two-dimensional systems is special in the fact that the conformal symmetry is char-

acterised by an infinite set of generators and therefore provides an extremely stringent constraint

on their physical properties [73, 74, 105]. In particular, a generic conformal transformation

x′ = f1(x, t), t ′ = f2(x, t) (4.32)

must obey the conditions [73]

∂ f1

∂x
=

∂ f2

∂ t

∂ f2

∂x
= −∂ f1

∂ t
(4.33)
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which become completely equivalent to Cauchy-Riemann conditions when rewritten in a complex

formalism z = x + it, f = f1 + i f2. This implies that f must be holomorphic (to be more precise,

also the corresponding antiholomorphic part must be generally included). Fields which transform

according to this extended set of transformations are referred to as primary and completely en-

code the operator content of the theory, i.e., every other one can be derived from them. Under a

conformal map w → z(w), their expectations are reshaped as

〈Φi1(w1) . . .Φin(wn)〉 =

∣∣∣∣
dw

dz

∣∣∣∣
−∆i1

w=w1

. . .

∣∣∣∣
dw

dz

∣∣∣∣
−∆in

w=wn

〈Φi1(z(w1)) . . .Φin(z(wn))〉 . (4.34)

Moreover, the number of independent anharmonic ratios is reduced; for a single field Φ, the four-

point function (4.31) takes the simpler form

〈Φ(z1) . . .Φ(z4)〉 =

(
z14 z23

z12 z13 z34 z24

)2∆

F (η) with η =
z13 z24

z14 z23
. (4.35)

As we have mentioned above, conformal symmetry can still be employed in systems with

surfaces, provided that the boundary conditions do not break it completely [104, 106]. In particular,

for semi-infinite systems one can think of the real axis as a mirror reflecting the holomorphic part

into the upper complex half-plane (UHP) into the antiholomorphic one in the lower half-plane

(LHP). As a consequence, such as in the case of image charges in the presence of a flat surface, the

number of points is effectively doubled and one can write a generic n-point function in the bounded

geometry as a 2n-point function in the bulk depending on the original coordinates z1, . . .zn and their

conjugates z̄1, . . . z̄n. For example, the two-point function in the UHP can be rewritten as the four-

point one in Eq. (4.35) with z3 → z̄1 and z4 → z̄2 [3, 106]

〈Φ(z1)Φ(z2)〉UHP =

(
z12̄ z21̄

z12 z1̄2̄ z11̄ z22̄

)2∆

Fs (η) with η =
z11̄ z22̄

z12̄ z21̄

, (4.36)

where now Fs does not depend just on the model, but also on the boundary conditions chosen. For

example, for the free boson one has Fs ≡ 1, whereas for the critical Ising model ∆ = 1/16 and

Fs(η) =

√
1+η

1
2 ±
√

1−η
1
2

√
2

, (4.37)

where the ± sign distinguishes fixed from free boundary conditions, respectively. The great ad-

vantage of considering conformal-invariant systems is that this particular geometry substantially

encodes every other one which can be reached by a holomorphic transformation. In particular, a

strip of width 2τ0 such as the one defined in the previous Section can be obtained by applying the

map

w(z) =
2τ0

π
lnz− iτ0 ,i.e., z(w) = e

π(w+iτ0)
2τ0 , (4.38)

the effects of which are sketched in Fig. 4.5. Correspondingly, observables in the strip can be
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w

(a)

z

(b)

Figure 4.5: Effect of the conformal transformation (4.38); the strip (a) in the w plane is mapped into

the upper half plane (b) in z coordinates; its boundaries correspond to the positive and negative real

semi-axes and the real axis in the former description becomes the upper imaginary axis in the latter.

The coloured lines are meant to depict how the remaining part of the space is mapped.

calculated from their counterparts in the upper half-plane by means of Eq. (4.34); accounting for

simplicity for observables built with just a single primary operator one obtains

〈Φ(w1) . . .Φ(wn)〉strip =
n

∏
j=1

∣∣∣∣
2τ0

π
exp

{
−π(w j + iτ0)

2τ0

}∣∣∣∣
−∆

×

×
〈

Φ

(
exp

{
π(w1 + iτ0)

2τ0

})
. . .Φ

(
exp

{
π(wn + iτ0)

2τ0

})〉

UHP

.

(4.39)

In the previous Section, we have seen that a dynamical problem can be mapped into an Euclidean

one confined in a film; thus, we now rewrite the complex coordinate as w = r+ iτ , where τ denotes

the imaginary part of complex times, which is forced to satisfy −τ0 < τ < τ0. We now wish to apply

the transformation (4.39) to the two-point function (4.36); for scalar fields, the antiholomorphic

part can be accounted for simply by doubling the dimension of the Jacobians, i.e.,

∣∣∣∣
dw

dz

∣∣∣∣
−∆ ∣∣∣∣

dw̄

dz̄

∣∣∣∣
−∆

→
∣∣∣∣
dw

dz

∣∣∣∣
−2∆

, (4.40)

yielding

〈Φ(r, iτ1)Φ(0, iτ2)〉strip =

∣∣∣∣∣

(
2τ0

π

)2

e−ρ

∣∣∣∣∣

−2∆

×

×
(

coshρ + cos(θ1 +θ2)

2eρ [cos(θ1 −θ2)+ cos(θ1 +θ2)] [coshρ − cos(θ1 −θ2)]

)2∆

Fs(η),

(4.41)

where we have introduced the shorthand notation

ρ =
πr

2τ0
and θ j =

πτ j

2τ0
with θ j ∈

[
−π

2
,
π

2

]
, (4.42)
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which expresses distances and times in units of the strip width — i.e., of the extrapolation length

— and

η =
cos(θ1 −θ2)+ cos(θ1 +θ2)

coshρ + cos(θ1 +θ2)
=

2cosθ1 cosθ2

coshρ + cos(θ1 +θ2)
. (4.43)

We recall that we are considering systems which are translationally-invariant in space, thus our

choice of r and 0 as spatial coordinates of the fields involved in the expectation is completely

general.

The properties of the dynamics in real time are recovered upon performing the analytic contin-

uation τ j →−it j of Eq. (4.41), which however requires the knowledge of the function Fs. Although

the specific form of this function is system-dependent and not many instances are known, as was

pointed out in Refs. [2, 3] its asymptotic features for η → 0 and 1 are universal: in fact, from

Eq. (4.43), one can see that at the boundaries θ j =±π/2 the anharmonic ratio η linearly vanishes,

whilst the argument of the round brackets in Eq. (4.41) diverges as (θ j ∓ π/2)−1. Since in the

proximity of a surface θ j →±π/2, the short-distance expansion

Φ(ρ, iθ j) ∼
(

θ j ∓
π

2

)2(∆b−∆)
Φb(ρ) (4.44)

is expected to hold in terms of the boundary operator Φb corresponding to the field Φ and of its

scaling dimension 2∆b = [Φb], one concludes that [3]

Fs(η) ∼ η2∆b for η → 0. (4.45)

On the other hand, far from the boundaries the two-point function must reproduce the bulk be-

haviour and, in particular, the ultraviolet divergence at coincident points, which is already captured

by the prefactors in Eq. (4.41). Setting ρ = 0 and θ1 = θ2 yields η = 1, which implies that

Fs(1) = 1. Thus, the prescription τ j 7→ −it j allows the determination of the general asymptotic

behaviour of the two-time correlation function after a quench: for fixed times t j it does not depend

on r for r ≪ |t1 − t2| and takes a value ∝ e−∆π|t1−t2|/τ0 . It decays exponentially ∝ e−π∆r/τ0 for

|t1 − t2| ≪ r ≪ t1 + t2, while ∝ e−∆bπr/τ0−∆π(t1+t2)/τ0 for r ≫ t1 + t2.

4.3 Two approaches, the same physics: a detailed comparison

Clearly, physics demands that different approaches to the same problem yield the same conclu-

sions. Therefore, the Keldysh and the Euclidean frameworks for studying non-equilibrium quan-

tum dynamics described in the previous two Sections ought to be equivalent. This Section is

devoted to establishing a relationship between them; in particular, the imaginary-time formalism

employs concepts which are proper of the theory of static systems with boundaries (introduced in

Chapter 3), hence it is important to understand how the initial conditions (4.17) actually affect the

boundary conditions at the edges of the film. Furthermore, note that in the Euclidean scheme the

time coordinate is “single-valued”, i.e., times along the imaginary axis are visited just once by the

integration path in Fig. 4.4(c); as a consequence, choosing n points on the imaginary axis uniquely

defines the expectation (4.29). Conversely, in the Keldysh formalism fixing n times on the real

axis is not sufficient, as one generally needs to distinguish between those lying on the forward
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and backward branches of the contour in Fig. 4.1. This brings forth in principle a 2n degeneracy

for n-point functions, i.e., one can define 2n different ones depending on the ordering. Therefore,

it remains to be determined how to extract 2n functions defined on real times from the analytic

continuation of just a single one defined on the imaginary axis.

In Sec. 4.3.1 we treat in detail these issues in the simplest possible instance, i.e., a 0 + 1-

dimensional system. In Sec. 4.3.2 we generalise the discussion to the case of quantum field theories

and provide a few relevant examples on how to reconstruct Keldysh correlations from the Euclidean

formalism.

4.3.1 Quantum mechanics

In order to better understand the properties of the imaginary-time formalism discussed in Sec. 4.2

we consider it in the simplest possible instance, i.e., the (non-relativistic) quantum mechanics of

a single particle which is initially prepared in a state described by the density matrix ρ0 and then

evolves according to the Hamiltonian

H =
p2

2
+V (x). (4.46)

Here x and p are the canonically conjugate “position” and “momentum” variables, respectively,

with [x,p] = i (we set h̄ = 1), while the mass of the particle has been fixed for simplicity to 1,

and the potential V is assumed to be physical, i.e., such that H has a spectrum bounded from

below. In the Heisenberg picture any observable O evolves according to O(t) = eiHtOe−iHt ; in

what follows, if the time t is not explicitly indicated as an argument, the observable is meant to

be evaluated at time t = 0. Note that the present case is a special zero-dimensional instance of the

dynamics of the field discussed in Sec. 4.1.1: indeed if one identifies the field φ with the position x

and consequently ∂0φ with the momentum p, the Hamiltonian in Eq. (4.46) has the same structure

as L [φ ] in Eq. (4.16), up to the additional spatial degrees of freedom. Accordingly, all the path-

integral formalism discussed in Sec. 4.1.1 applies to the present case and in particular Eq. (4.21)

becomes {
∂tx(t)|t=0+ ≡ ẋ(0+) = c++ x(0+)+ c+− x(0−),
∂tx(t)|t=0− ≡ ẋ(0−) = c−− x(0−)+ c−+ x(0+).

(4.47)

A discussion of the implications deriving from choosing linear boundary conditions will be pro-

vided further below. We emphasize again that the distinction between times lying on the forward

(0+) and backward (0−) branch of the Keldysh contour is relevant for ordering purposes only;

once the order of the operators has been made explicit, the indices can be dropped. In order

to relate Eq. (4.47) to the properties of the density matrix ρ0 which actually defines the initial

state of the quench, consider a generic expectation of a product O ′O of quantities defined over

the Keldysh contour, such that O ′ = O ′(t1, . . . , tm) depends on generic but non-vanishing times

t1, . . . , tn, whereas O is taken at time 0±. Under the ordering TK , O(0−) is moved to the left of such

a product, whereas O(0+) to its right (see Eq. (4.2)):

TK
[
O ′O(0+)

]
= TK

[
O ′]O(0), (4.48)

TK
[
O ′O(0−)

]
= O(0)TK

[
O ′] . (4.49)
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Hence, one can readily verify that the average 〈TK [O ′x(t)]〉 ≡ tr{TK [O ′x(t)]ρ0} obeys, at t = 0+,

the boundary condition

∂t
〈
TK
[
O ′x(t)

]〉
|t=0+ = tr

{
TK
[
O ′ẋ(0+)

]
ρ0

}
=

= c++ tr
{

TK
[
O ′]x(0)ρ0

}
+ c+− tr

{
TK
[
O ′]

ρ0x(0)
}

,
(4.50)

which follows from Eq. (4.47) and in which the cyclic property of the trace has been used in order

to rewrite the last term. On the other hand, ẋ is an observable in its own right and therefore obeys

Eq. (4.48); consequently,

tr
{

TK
[
O ′] ẋ(0)ρ0

}
= c++ tr

{
TK
[
O ′]x(0)ρ0

}
+ c+− tr

{
TK
[
O ′]

ρ0x(0)
}

. (4.51)

Since Eq. (4.50) must hold for every possible choice of O ′, one concludes that

ẋ(0)ρ0 = c++ x(0)ρ0 + c+−ρ0x(0). (4.52)

Repeating the same procedure for the boundary condition at t = 0−, one finds

ρ0ẋ(0) = c−−ρ0x(0)+ c−+ x(0)ρ0 (4.53)

and, because of the form of the Hamiltonian (4.46), one can use the equation of motion ẋ = p in

order to rewrite Eqs. (4.52) and (4.53) as

{
pρ0 = c++ xρ0 + c+−ρ0 x,

ρ0 p = c−−ρ0 x+ c−+ xρ0.
(4.54)

In terms of the "kernel" ρ0(x,y) = 〈x|ρ0 |y〉, with x|x〉= x|x〉 (and p|x〉=−i∂x|x〉), Eq. (4.54) turns

into a system of differential equations

{
(i∂x + c++ x+ c+− y)ρ0(x,y) = 0,

(−i∂y + c−− y+ c−+ x)ρ0(x,y) = 0,
(4.55)

which admits solution only if c+− = −c−+; under this condition one then finds

ρ0(x,y) = N exp

{
i

2
[c++x2 − c−−y2 +2c+−xy]

}
, (4.56)

where N is a normalisation constant. In order for ρ0 to be a bona-fide density matrix, it has

to satisfy the conditions [107] (i) ρ0 = ρ
†
0
, (ii) tr{ρ0} = 1, and (iii) tr

{
ρ

2
0

}
≤ 1 which, in turn,

imply: (i) c++ = c∗−− and c+− = −c∗+−, so that c++ = a + ib, c−− = a− ib and c+− = id, with

real coefficients a, b, and d; (ii) b + d > 0 and N =
√

(b+d)/π; (iii) b > 0 and d ≤ 0. The

expressions for ρ0(x,y) and the corresponding boundary conditions thus become

ρ0(x,y) =

√
b+d

π
exp

{
−1

2

[
b(x2 + y2)+2dxy− ia(x2 − y2)

]}
. (4.57)
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and {
∂t x(t)|t=0+

= (a+ ib)x(0+)+ id x(0−),

∂t x(t)|t=0− = (a− ib)x(0−)− id x(0+),
(4.58)

respectively. By a direct calculation, the square of the density matrix turns out to be

〈x|ρ2
0
|y〉 = ρ0(x,y)

√
1+

d

b
exp

{
d xy+

d2

4b
(x+ y)2

}
, (4.59)

and therefore the initial state is pure, i.e., ρ
2
0

= ρ0 [107], if and only if d = 0. Furthermore, for

a = 0 the resulting density matrix in Eq. (4.57) can be attributed a precise physical meaning for

every allowed choice of b and d: in fact, if we parametrise these coefficients as

b = m0ω0
cosh(β0ω0)

sinh(β0ω0)
and d = −m0ω0

1

sinh(β0ω0)
(4.60)

in terms of the parameters β0ω0 and m0ω0, one may recognise in Eq. (4.56) the Gibbs distribution

of a quantum harmonic oscillator of mass m0, frequency ω0 and inverse temperature β0 = 1/(kBT0).
On the other hand, the pure states |ψa,b〉 obtained for d = 0, with 〈x|ψa,b〉 = N −1/2 exp{−(b−
ia)x2/2}, do not seem to have a clear interpretation for a 6= 0, although they can be obtained as

eiax2/2
∣∣ψ0,b

〉
, where

∣∣ψ0,b

〉
is the ground-state wave function of a harmonic oscillator of frequency

b and unit mass (i.e., with β0 → +∞, ω0 = b and m0 = 1 in Eq. (4.60)).

Summarising, at least in this simple case we have been able to determine the exact form of

the initial state which eventually gives rise to the linear boundary conditions (4.47); moreover, it

turns out that the assumption of their linearity, although representing a rather strong constraint,

nonetheless captures all thermal ensembles of an harmonic oscillator. In addition, we determined

the operatorial identities associated with these states (Eqs. (4.52) and (4.53)), which will prove use-

ful in the following because they remain valid also when the formalism is extended to encompass

complex times.

In order to compare the Keldysh approach briefly reviewed in Secs. 4.1 and 4.1.1 with the one

presented in Sec. 4.2, we discuss below how to construct n-time correlation functions of the system

with Hamiltonian H defined in imaginary time iτ in such a way that they correctly reproduce the

results of the former approach after analytic continuation to the real axis. With this purpose in

mind, we introduce the quantum evolution in imaginary time as a straightforward extension of the

case in real time:

O(iτ) = e−τHOeτH . (4.61)

The corresponding kernel representation is

K(x,y, iτ) = 〈x|eτH |y〉 , (4.62)

which is well-defined for every τ ≤ 0, while this might not be the case for τ > 0 since the spectrum

of the Hamiltonian H is often unbounded from above. In the simple but paradigmatic case of a free

particle of mass m in one spatial dimension

K(x,y, iτ) =
∫ +∞

−∞

dp

2π
eip(x−y) eτ p2/(2m), (4.63)
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which, as expected, describes a diffusion process with diffusion coefficient D = m−1 for τ ≤ 0

while it is not defined for τ > 0. In order to remain within the domain of definition of K, it

is therefore necessary to guarantee that τ ≤ 0. The consequences of this request may be better

understood with an example: consider the average

〈O(iτ1) . . .O(iτn)〉 =
〈

e−τ1HOe−(τ2−τ1)HO . . .e−(τn−τn−1)HOeτnH
〉

; (4.64)

by inserting the resolution of the identity 1 =
∫

dx |x〉〈x| between consecutive operators, one can

see that the resulting kernels depending on τi+1 − τi require a time ordering along the imaginary

axis τi ≤ τi+1 with i = 1 . . .n, as indicated in Fig. 4.6(a), whereas the first and the last one, which

depend on τ1 and τn, impose the additional constraints τn ≤ 0 ≤ τ1. These conditions can be

simultaneously satisfied only if all τi vanish, i.e., τi = 0, ∀i. In order to have a sound imaginary-

time theory we therefore need to introduce some kind of regularisation at the boundaries which

relaxes the last of these constraints. In particular, this can be done at the two extremes of the string

of operators, by introducing terms e−εH with arbitrary ε > 0, such that the resulting conditions

become τn ≤ ε and −ε ≤ τ1. Accordingly, we define

〈O(iτ1) . . .O(iτn)〉ε =

〈
e−εH T ∗ [O(iτ1) . . .O(iτn)] e−εH

〉

〈e−2εH〉 , (4.65)

where T ∗ is analogous to the time anti-ordering operator introduced in Eq. (4.2), the only difference

being that it now orders the imaginary part of the (imaginary) times. The normalisation factor at

the denominator is chosen in such a way that 〈1〉ε = 1. Equation (4.65) is the straightforward

generalisation of Eq. (2) of Ref. [2] to n-point functions. Differently from Eq. (4.64), Eq. (4.65)

admits a well-defined representation for −ε ≤ τi ≤ τ j ≤ ε ∀ i ≤ j, i.e., the resulting theory is

defined on a film of width 2ε symmetric with respect to the real axis, as sketched in Fig. 4.6(b).

(Note that, in principle, one could introduce two different values εR > 0 and εL > 0 at the right

and left extremes of the string of operators and a suitable normalisation factor; however, for our

purposes, this represents an unnecessary complication.) The translation of the boundary conditions

(4.47) from t = 0 to τ = ±iε is more easily understood by considering their formulation (4.54) in

terms of operators: in fact, from Eq. (4.61) one has

∂τx(iτ) = e−τH [x,H]eτH = e−τH ipeτH , (4.66)

which implies, for the operator within 〈x(iτ)〉ε ∝ tr
{

e−εH
ρ0e−εHx(iτ)

}
, the identity

∂τ

(
e−εH

ρ0 e−εHx(iτ)
)
|τ=−ε = e−εH iρ0 pe−εHe−εH [(b+ ia)ρ0 x+d xρ0]e

−εH =

= (b+ ia)e−εH
ρ0 e−εH x(−iε) + d x(iε)e−εH

ρ0 e−εH , (4.67)

and therefore ∂τ 〈x(iτ)〉ε |τ=−ε =(b+ia)〈x(−iε)〉ε +d 〈x(iε)〉ε . Now, indicating by O ′(iτ1, . . . , iτn)
a generic n-time function, it is not difficult to prove that, thanks to the ordering, the same kind of

relation holds for any expectation 〈x(iτ)O ′〉ε , i.e.,

∂τ

〈
x(iτ)O ′〉

ε
|τ=−ε = (b+ ia)

〈
x(−iε)O ′〉

ε
+d
〈
x(iε)O ′〉

ε
, (4.68)
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Figure 4.6: (a) Sketch of the ordering enforced on the times along the imaginary axis by the require-

ment of having a well-defined expectation value in Eq. (4.64). (b) In order to allow for the ordering

and regularise the behaviour at the boundaries, all the times must be within an effective film of width

2ε , delimited and enclosed by the two dotted lines.

as long as none of the times τi lies at the boundaries. This implies that the identity

∂τx(iτ) |τ=−ε = (b+ ia)x(−iε)+d x(iε) (4.69)

is valid when inserted in any time-ordered expectation. An analogous relation can be obtained at

the other boundary:

∂τx(iτ) |τ=ε = (−b+ ia)x(iε)−d x(−iε). (4.70)

For the sake of clarity, we recall that while x(t) is a hermitian operator for any t ∈ R, x(iτ) in

general is not, since x(iτ)† = eτHxe−τH is different from Eq. (4.61) if x is not a conserved quantity.

By inspecting Eqs. (4.69) and (4.70) it is clear that the initial conditions (4.47) for the temporal

evolution in real time — which are induced by an initial density matrix of the form (4.56) —

are translated into proper boundary conditions which involve the values of x and ẋ at the same
boundary of the film if and only if d = 0, i.e., if the initial density matrix describes a pure state

(ρ0 = ρ
2
0
). In addition, the conditions (4.69) and (4.70) at the two edges, reformulated in terms of

(outgoing or ingoing) normal derivatives, are not independent, but complex conjugates. For d 6= 0,

instead, Eqs. (4.69) and (4.70) mix the properties at the two edges. This implies that if we consider

the path-integral formulation of this theory, we cannot interpret ρ0 = eiS0 as a boundary action since

it will not be just a sum of two terms S0,+iε and S0,−iε separately concentrated at each boundary,

but it will also include terms depending on both. While perfectly consistent from a mathematical

point of view, these terms lack a definite reinterpretation in terms of an effective Euclidean theory
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with boundaries. This difficulty — which emerged here in the simple case of ordinary quantum

mechanics — is actually completely general, as shown in Section 4.3.2.

In order to characterise the non-equilibrium evolution, one is interested in determining (time-

ordered) expectation values of operators, which physically correspond to measurable correlations

and response functions (susceptibilities). Accordingly, a relevant issue is to understand whether

and how such expectations in real time can be recovered from the imaginary-time formulation of

the problem discussed above. Assuming that

K(x,y, t) = 〈x|e−itH |y〉 (4.71)

is defined, as a function of x and y, for every t ≥ 0, also K(x,y, t + iτ) is defined for every non-

positive value of τ , since the difference amounts to the introduction of a regularising term. By

direct calculation, one can verify that K satisfies the Cauchy-Riemann conditions

{
∂tReK = ∂τ ImK,
∂tImK = −∂τReK.

(4.72)

Accordingly, K(x,y,T ) is an analytic function of T in the lower half of the complex plane and upon

approaching the real axis it renders the real-time propagator. As an extension of the correlation

function in Eq. (4.65), let us consider a generic multi-"time" correlation function

〈O(T1) . . .O(Tn)〉ε , (4.73)

where τi = ImTi lies within the film, i.e., |τi| < ε and where we assume for simplicity that τ1 ≤
τ2 ≤ . . . ≤ τn. The representation of this expectation value in terms of kernels can be obtained by

introducing the resolution of the identity 1 =
∫

dx |x〉〈x| between subsequent operators:

. . .O(Tj) . . . = . . .eiTjHOe−iTjH . . . =
∫

dx jdy j
[
. . .eiTjH

∣∣y j
〉〈

y j

∣∣O
∣∣x j
〉〈

x j

∣∣e−iTjH . . .
]
. (4.74)

Once the evolution operators associated with adjacent operators are taken into account, this portion

of the expectation becomes

. . .
∫

dx jdy j K(x j−1, y j, Tj−1 −Tj)
〈
y j

∣∣O
∣∣x j
〉

K(x j, y j+1, Tj −Tj+1) . . . ; (4.75)

this expression encompasses also the case of the boundaries if one identifies Tn+1 = iε and T0 =
−iε . We assume in the following that all

〈
y j

∣∣O
∣∣x j
〉

and the kernels ρ0(yn+1,x0) ≡ 〈yn+1|ρ0 |x0〉
are regular functions of the respective coordinates and that the integrals exist and are finite. If

the integrations in Eq. (4.75) commute with the derivatives with respect to the Tj’s, Eq. (4.72)

implies that the expectation (4.73) is an analytic function of the variables Tj as long as the ordering

τ j ≤ τ j+1 of the imaginary parts of Tj is preserved. Figure 4.7 presents a sketch of the required

ordering of the complex times Ti in the case n = 4. This requirement of commutativity translates

into conditions on the possible forms that the potential V can take in the Hamiltonian. While it

is sufficient that both K(x,y, t) and its time derivative ∂tK are continuous functions of x and y,

the determination of the general class of potentials for which this holds true goes far beyond the

scope of our discussion (the interested reader may find a detailed study of the kernel’s continuity in
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Ref. [108]). Note that the real parts t1, . . . , tn, of T1, . . . ,Tn are not necessarily ordered, as sketched

in Fig. 4.7 in the case n = 4. As a consequence, from the analytic continuation to the real axis

obtained by letting τ j → 0, ∀ j, i.e., Tj → t j one recovers

〈
e−εHO(t1) . . .O(tn)e−εH

〉

〈e−2εH〉 (4.76)

which, in the limit ε → 0+, renders the generic n-point function

〈O(t1) . . .O(tn)〉 , (4.77)

with no time ordering. Time-ordered expectations can be quite easily reconstructed from these

non-ordered quantities, as we demonstrate below. Consider for example a three-point function

t

iτ

T
4

T
3

T
1

T
2

iε

-iε

t
2

t
1

t
4

t
3

Figure 4.7: Sketch of the ordering of the complex times T1, . . . ,T4 which allow a proper definition of

correlation functions, where each of these times is indicated by a point Tj = t j + iτ j (with t j = ReTj

and τ j = ImTj) in the complex-time plane. While performing the continuation from the complex

plane to the real axis the ordering of the imaginary parts τ j has to be preserved, whereas no ordering

is required for the real parts t j.

〈
TK [O1(t1,+)O2(t2,+)O3(s−)]

〉
, where for simplicity we restrict to bosonic operators Oi, in order

not to have to account for phases acquired under commutation. This quantity is associated to the

imaginary-time expectation 〈T ∗ [O1(τ1)O2(τ2)O3(σ)]〉 and, according to the definition (4.2) of the

TK-ordering, it can be rewritten in terms of non-ordered functions as

〈
TK [O1(t1,+)O2(t2,+)O3(s−)]

〉
= θ(t1 − t2)〈O3(s)O1(t1)O2(t2)〉+
+θ(t2 − t1)〈O3(s)O2(t2)O1(t1)〉 .

(4.78)

In the r.h.s. of the expression above, the first expectation derives from an analytic continuation

performed for σ ≤ τ1 ≤ τ2, whereas the second for σ ≤ τ2 ≤ τ1. For generic correlations, with n
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points on the forward branch and m on the backward branch, such as the particular case depicted

in Fig. 4.3(a), one has

〈TK [O(t1) . . .O(tn)O(s1) . . .O(sm)]〉 = ∑
P,P′

θ (tP1
. . . tPn) θ̄

(
sP′

1
. . .sP′

m

)
×

×
〈
O
(

sP′
1

)
. . .O

(
sP′

m

)
O (tP1

) . . .O (tPn)
〉

,

(4.79)

where for simplicity we have dropped the indices on the observables (but one can straightforwardly

reintroduce them by considering that they match those of the respective times), P and P′ represent

all the possible permutations of n and m objects, respectively, and the generalised step functions

θ(t1 . . . tn) =
n−1

∏
j=1

θ(t j − t j+1),

θ̄(s1 . . .sm) =
m−1

∏
j=1

θ(t j+1 − t j)

(4.80)

equal 1 if the sequences in their arguments are decreasing or increasing, respectively, whilst they

vanish otherwise. This structure highlights the relevance of the non-analyticity of the imaginary-

time function at coincident imaginary parts τi = τ j: if the results obtained by analytically continu-

ing it to the same points on the real axis but with different imaginary orderings were to be the same,

then the Keldysh ordering would be inconsequential and the Keldysh-ordered functions would ex-

actly coincide with their non-ordered counterparts. This would in turn imply the commutativity

of the quantum fields at all times, which is known not to be the case in general. As a matter of

fact, the domain of the Euclidean n-point functions is split into n! analytic sectors, each identified

by a specific choice of the ordering of the points along the imaginary axis. Within each subdo-

main, the continuation to real values is uniquely defined, as we have discussed above. We can

now solve the apparent paradox of having to extract 2n (in principle) different n-point dynamical

functions from just a single, Euclidean one. The point is that different functions can be obtained

by performing the analytic continuation within different sectors. Note that for n > 1 there are 2n

Keldysh functions and n! sectors, which is compatible with the fact that the Euclidean approach al-

lows to reproduce not only TK-ordered correlations, but more generally non-ordered ones. Explicit

examples involving two-point functions will be given in Sec. 4.3.2.

We focus now on the properties of the initial state. According to the discussion following

Eq. (4.56), an initial density matrix ρ0 with a = 0 can be interpreted as a thermal state of a quantum

harmonic oscillator, where the two remaining parameters b and d are related to those of the thermal

distribution by Eq. (4.60). More generally, one would like to relate the parameters a, b, and d of

the initial density matrix implied by the linear boundary conditions in Eq. (4.47) to expectation

values of relevant observables, in order to understand their actual physical meaning. Taking into

account the expression

ρ0(x,y) =

√
b+d

π
e−

b
2 (x2+y2)+i a

2 (x2−y2)−d xy, (4.81)

83



Quantum quenches: two alternative approaches

which follows from Eq. (4.56) and the requirements (i), (ii), and (iii) discussed after it, one easily

finds 〈
x2
〉
≡
∫

dxx2ρ0(x,x) =
1

2(b+d)
, (4.82)

and, by taking advantage of Eq. (4.54),

〈{x,p}〉 = 〈xp+px〉 =
a

b+d
, (4.83)

〈
p2
〉

=
a2 +b2 −d2

2(b+d)
. (4.84)

Accordingly, the parameters a, b, and d can be expressed as





a =
〈{x,p}〉
2〈x2〉 ,

b =
1− [〈{x,p}〉2 −4

〈
p2
〉〈

x2
〉
]

4〈x2〉 ,

d =
1+[〈{x,p}〉2 −4

〈
p2
〉〈

x2
〉
]

4〈x2〉 .

(4.85)

Note that now the constraint b + d > 0 emerges as a straightforward consequence of Eq. (4.82);

the ones on the signs of b and d can be obtained instead from the Cauchy-Schwarz inequal-

ity
〈
p2
〉〈

x2
〉
≥ |〈px〉|2; in fact, by decomposing the r.h.s. as 4 |〈px〉|2 = |〈[p,x]〉+ 〈{p,x}〉|2 =

|−i+ 〈{p,x}〉|2 = 1 + 〈{p,x}〉2
, where the last equality comes from the fact that the anticommu-

tator is hermitian and thus its expectation real, one finds

1+{p,x}2 −4
〈
p2
〉〈

x2
〉
≤ 0, (4.86)

which is the same expression appearing in some of the numerators in the system (4.85) and implies

d ≤ 0 and, since b+d > 0, also b ≥ 0. Furthermore, since p = ẋ we can rewrite a as

a = ∂t log

√
〈x2(t)〉 |t=0 (4.87)

and therefore conclude that the condition a = 0 is tantamount to requiring that the time derivative of

the root-mean square position
√

〈x2〉 (we recall that our choice for the initial state implies 〈x〉= 0)

vanishes at the initial time. Actually, the analytic structure discussed above allows us to extend this

result to any sufficiently smooth function of the position F(x(t)): in fact, if a = 0 the boundary

conditions (4.69) and (4.70) at the two edges are symmetric, hence the system is symmetric under

reflections of the complex time with respect to the real axis, which implies that 〈F(x(iτ))〉 must be

an even function of τ and therefore its derivative with respect to τ has to vanish in τ = 0. Moreover,

for a function to be analytic in a given point it is required that the derivative be independent of the

direction along which it is calculated and therefore one concludes that a = 0 generically implies

∂t 〈F(x(t))〉 |t=0 = 0. Note, however, that the converse statement is not true because even if a 6= 0

it is always possible to find functions of x(t) with vanishing initial derivative.
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Summarizing, the previous discussion focused on the case of a single quantum particle with

Hamiltonian H = p2/2 +V (x) and assumed that its position x satisfies linear "boundary" con-

ditions at time t = 0 (see Eq. (4.47)), which naturally emerge within the renormalisation-group

framework as a consequence of keeping only the most relevant (symmetry-preserving) terms. A

generalisation of this case is actually discussed further below. Under the additional but natural

assumptions that K(x,y, t) = 〈x|e−itH |y〉 is well-defined ∀x, y, and t ≥ 0 and that in the coordinate

representation the integrals over the spatial coordinates and the derivatives with respect to time

commute (see, e.g., Eq. (4.75)) we argued that: (A) The kernel representation of the initial den-

sity matrix is Gaussian, see Eq. (4.81), with d ≤ 0 and b ≥ −d. (B) An equivalent theory can be

constructed in which time assumes complex values (T = t + iτ) within a film of width 2ε , i.e.,

ReT ≥ 0 and |ImT | ≤ ε . In order to be well-defined, the expectation values of observables of

this theory at complex times T1, . . . ,Tn are required to be time-anti-ordered along the imaginary

direction, such that ImT1 ≤ ImT2 ≤ . . . ≤ ImTn; by explicitly introducing the ordering operator

T ∗ in the definition (4.65) of these quantities, one is actually partitioning their domains into n!

analytic sectors, each corresponding to a specific order of the imaginary parts ImTj, separated by

non-analytic boundaries. Therefore, analytic continuations of a given Euclidean n-point function

performed from different subdomains provide different results: as a matter of fact, once the width

of the film is made to vanish (ε → 0+), one can recover every generic (non-time-ordered) real-time

expectation of the same observables at times ReT1, . . . ,ReTn. (C) If the density matrix ρ0 describ-

ing the initial state corresponds to a pure state ρ0 = |ψ〉〈ψ|, the equivalent theory on the film obeys

Robin boundary conditions at T = ±iε which are similar to the ones realised in real time at t = 0,

the only difference being a multiplication of the coefficients by ±i (compare Eqs. (4.69) and (4.70)

with Eq. (4.58)). If ρ0 is not a pure state, instead, the equivalent theory on the film does not obey

proper boundary conditions at the edges, in the sense that the equation that x has to satisfy at one

of these boundaries also involves the values x takes at the other.

Inspired by the previous discussion, we consider below a more general class of initial condi-

tions for the real-time evolution. However, as we have done in Sec. 4.1.1, we shall account only

for those which can be expanded as power series, i.e., which are of the form

∂tx(t) |t=0± =
∞

∑
n,m=0

c
(±)
n,m xn(0+)xm(0−). (4.88)

Linear conditions such as those in Eq. (4.47) are recovered with a suitable choice of c
(±)
n,m (i.e.,

c
(+)
1,0 = a + ib, c

(+)
0,1 = id, c

(−)
1,0 = −id and c

(−)
0,1 = a − ib, while all the remaining ones vanish).

Analogously to the latter case, by inserting Eq. (4.88) in a generic TK-ordered expectations one

recovers the identities 



pρ0 =
∞

∑
n,m=0

c
(+)
n,m xn

ρ0 xm,

ρ0 p =
∞

∑
n,m=0

c
(−)
n,m xn

ρ0 xm,
(4.89)

from which the kernel of the density matrix ρ0(x,y) = 〈x|ρ0 |y〉 may be reconstructed:

ρ0(x,y) = N exp



i




∞

∑
n=0

(
c
(+)
n0

n+1
xn+1 − c

(−)
0n

n+1
yn+1

)
−

∞

∑
n,m=0

c
(−)
n+1,m

m+1
xn+1ym+1






 . (4.90)
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Note that, in order for the solution (4.90) to exist, it is necessary that c
(+)
nm = −n+1

m c
(−)
n+1,m−1 for all

n ≥ 0 and m > 0. Moreover, the requirement ρ0 = ρ
†
0

implies that c
(−)
n,m = (c

(+)
m,n)

∗. We have in gen-

eral no closed formula to express the normalisation constant N in terms of the coefficients c
(±)
n,m ,

however, in the case of polynomials, which is again a very natural restriction from a renormali-

sation group point of view, it is at least quite clear, by putting x = y in the expression above, that

the condition of existence of the trace is that the highest-order term (i.e., the xn+m+2 with largest

power) shall be even (which implies n + m = 2N, with N an integer) and the corresponding total

coefficient, which is in general given by the sum

CM =
c
(+)
2N+1,0

2N +2
−

c
(−)
0,2N+1

2N +2
−

2N

∑
n=0

c
(−)
n+1,2N−n

2N −n+1
(4.91)

must have positive imaginary part (Im(CM) > 0, which indeed reduces to b+d > 0 in the simpler

case discussed above). The remaining positivity condition 〈ψ|ρ0 |ψ〉 ≥ 0 for all choices of |ψ〉,
instead, is not so easy to implement. One can however notice that the kernel of a pure state would

be separable in x and y; therefore, ρ0 describes a pure state only if the last term in Eq. (4.90)

vanishes, i.e., c
(−)
n,m 6= 0 ⇔ nm = 0.

Equation (4.89) allows one to infer the conditions satisfied by x at the boundaries of the

complex film: in fact, following a procedure analogous to the one employed in order to derive

Eq. (4.67), one can write

∂τ

(
e−εH

ρ0e−εHx(iτ)
)
|τ=−ε = e−εH

ρ0 ip e−εH = ie−εH

(
∞

∑
n,m=0

c
(−)
n,m xn

ρ0 xm

)
e−εH

= i
∞

∑
n,m=0

c
(−)
n,m xn(iε) e−εH

ρ0 e−εH xm(−iε) (4.92)

which, in turn, finally gives




∂τx(iτ) |τ=−ε = i
∞

∑
n,m=0

c
(−)
n,m xm(−iε)xn(iε),

∂τx(iτ) |τ=ε = i
∞

∑
n,m=0

c
(+)
n,m xm(−iε)xn(iε).

(4.93)

As it was the case for Eqs. (4.69) and (4.70), these identities are valid for all time-anti-ordered

(on the imaginary axis) correlation functions. Accordingly, a property analogous to the one men-

tioned above at point (C) holds: equation (4.93) renders proper boundary conditions only if c
(+)
nm =

δm0 c
(+)
n0 , which is tantamount to requiring that ρ0 is a pure state. Hence, we can conclude that the

relation between the initial state being pure and the boundary conditions being proper is a general

feature of dynamical systems when mapped in a complex-time formalism.

4.3.2 Field Theories

Most of the implications of the discussion reported in Section 4.3.1 apply also to the non-equilibrium

quantum field theories introduced in Sections 4.1 and 4.1.1, as we illustrate below. For the sake
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of simplicity, we focus on the case of a real, scalar field Ψ = Ψ† = Φ because the extension to

other cases is rather straightforward, although it generally involves more complicated boundary

conditions. In the present case, linear boundary conditions such as those discussed in the previous

Sections emerge for the fields if the two following conditions are satisfied: (i) All terms containing

time derivatives in the Lagrangian density L of Eq. (4.15) — which generate boundary terms by

integration by parts — are (at most) quadratic in the fields, as happens in the standard case of

Eq. (4.16) with, say, a polynomial V ; (ii) S0 (see, e.g., Eq. (4.14)) is quadratic in the initial fields

with coefficients which may depend on the coordinates. For an isotropic system, for example, a

quite general choice can be written down in momentum space as follows:

S0[φ+,φ−] =
∫

ddk

(2π)d

{
c++(k)

2
φ 2

+− c−−(k)

2
φ 2
− + c+−(k)φ+φ−

}
, (4.94)

where k = |~k|. Conditions (i) and (ii) correspond to Eqs. (4.46) and (4.56). The conditions ρ0 = ρ
†
0

and tr{ρ0}= 1 translate into c++(k) = c∗−−(k), c+−(k) =−c∗+−(k) and Im [c++(k)+c+−(k)]≥ 0,

while Im c+−(k) ≤ 0 is a sufficient condition for tr{ρ2
0
} ≤ 1 to hold. Moreover, if all coefficients

are purely imaginary, in analogy with the discussion which led to Eq. (4.60), one can rewrite them

as

c++(k) = −c−−(k) = im0ω0
cosh(βkω0)

sinh(βkω0)
and c+−(k) = −im0ω0

1

sinh(βkω0)
, (4.95)

where βk is a mode-dependent (inverse) temperature; accordingly, the initial state corresponds to a

set of independent harmonic oscillators each fixed at its own temperature [103].

By following the line of argument illustrated in the previous Section one reaches the same

conclusions, i.e., that it is possible to construct an effective theory with imaginary times, such as

the one introduced at the end of Sec. 4.2,

Z =
∫

I
Dφ e−Sε [φ ]+iS0[φ(iε),φ(−iε)], (4.96)

where

Sε [φ ] =
∫ ε

−ε
dτ

∫
ddx
{
(∂ jφ)(∂ jφ)+V [φ ]

}
(4.97)

is the Euclidean action associated with (4.16) and the domain I of integration includes field con-

figurations which are defined in imaginary time within the film −iε ≤ iτ ≤ iε . The time runs on

the contour depicted in Fig. 4.4(c) and the time derivative has the same sign as the spatial ones,

i.e., (∂ jφ)(∂ jφ) = (∂τφ)2 + |~∇φ |2. Again, S0[φ(iε),φ(−iε)] — which may be easily inferred from

Eq. (4.94) — constitutes a "proper" boundary term (i.e., generates proper boundary conditions)

only if c+− = 0, which in turn implies that ρ0 describes a pure state. Of course, we still have to

demand that the potential term be regular enough for the correlation functions to be analytic in the

upper complex half-plane, as long as the ordering along the imaginary direction is preserved. As

usual, the generating functional of correlation functions is obtained from Z in Eq. (4.96) by adding

a source term J ·φ ≡ ∫ ε
−ε dτ

∫
ddx J(τ,~x)φ(τ,~x) (see also Eq. (4.15)) in the exponent of the inte-

grand. At the conceptual level, via functional derivation with respect to J one can then obtain any
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time anti-ordered (along the imaginary-time axis) expectation and, as explained in Section 4.3.1,

determine the non-time-ordered correlation functions in real time by performing the analytic con-

tinuation of the former to the real axis, followed by the limit ε → 0+, from any analytic sector.

In Section 4.3.1 we have shown that indeed one can retrieve an Euclidean theory starting from

one defined on the Keldysh contour. However, since this construction straightforwardly carries

over to the case of quantum field theories discussed here, one concludes on the basis of the discus-

sion in Sec. 4.2 that also in this case the mapping of a dynamical problem into a static one with

boundaries is possible only if the initial state of the dynamics is pure. If, instead, it is a statistical

mixture, the boundaries at ±iε are inextricably intertwined and the corresponding equations (see,

e.g., Eqs. (4.69), (4.70), and (4.93)) — although formally correct, valid, and in principle solvable

— cannot be interpreted as physical boundary conditions because each of them involves fields

evaluated at the two distinct boundaries of the resulting film.

In order to illustrate the inherent analytic structure of the theory, we discuss below two simple

examples.

The Gaussian theory

First, consider the Gaussian scalar field theory described by the action (4.97) (in imaginary time)

with V [Φ] = m2Φ2/2 and a pure initial condition (i.e., Eq. (4.94) with c+− = 0). Indicating by Φk

the Fourier transform in space of Φ, the two-time correlation function

Gε
k(iτ, iσ) = 〈Φk(iτ)Φ−k(iσ)〉ε , (4.98)

in which we factored out (2π)dδ (d)(~k +~q) due to the conservation of momenta, solves the equa-

tions {
(∂ 2

τ −ω2
k )Gε

k(iτ, iσ) = −δ (τ −σ),

(∂ 2
σ −ω2

k )Gε
k(iτ, iσ) = −δ (τ −σ),

(4.99)

where ωk =
√

k2 +m2 is the free-particle dispersion relation and ε indicates explicitly the width of

the film in imaginary time. Recalling that c−− = c∗++, the boundary conditions which Gε
k satisfies

as a consequence of the assumption on the initial condition are:




∂τGε
k(iτ, iσ) |τ=−ε = ic∗++Gε

k(−iε, iσ),

∂σ Gε
k(iτ, iσ) |σ=−ε = ic∗++Gε

k(iτ, −iε),

∂τGε
k(iτ, iσ) |τ=ε = ic++Gε

k(iε, iσ),

∂σ Gε
k(iτ, iσ) |σ=ε = ic++Gε

k(iτ, iε).

(4.100)

The solution of Eqs. (4.99) and (4.100) is given by [53]

Gε
k(iτ, iσ) =

e−ωk|σ−τ|

2ωk
+Ake−ωk(τ+σ) +2Bk cosh(ωk(σ − τ))+Ckeωk(τ+σ), (4.101)

where

Ak =
1

2ωk

αk

α∗
k

1

αke2ωkε − (α∗
k )−1e−2ωkε

, Bk =
e−2ωkε

αk
Ak,

Ck =
α∗

k

αk
Ak and αk =

ωk − ic++

ωk + ic++
.

(4.102)
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The only term in Eq. (4.101) which explicitly depends on the choice of the sector is the first one,

due to the presence of the absolute value which makes it non-analytic in the neighbourhood of

τ = σ . The continuation to the real axis, which corresponds to the substitutions σ → −is and

τ → −it, must be performed without leaving either of the two sectors τ < σ and σ < τ within

which Eq. (4.101) is separately analytic, which is tantamount to preserving the chosen ordering.

Correspondingly, two different results are rendered, namely

e−iωk(t−s)

2ωk
for τ < σ and

eiωk(t−s)

2ωk
for τ > σ (4.103)

We emphasize that the time anti-ordering which is understood in Eq. (4.98) (see the definition

of 〈·〉ε in Eq. (4.65)) plays a fundamental role: if it were not present, in fact, the first term of

Eq. (4.101) could be exponentially divergent for k → ∞ and therefore would have no Fourier trans-

form, invalidating the previous treatment. The remaining terms, instead, are regularised by the

factors Ak, Bk, Ck, which, in the limit k → +∞, asymptotically behave as

Ak ∼Ck ∼ e−2kε and Bk ∼ e−4kε . (4.104)

Consider also that the ordering of the fields depends on the choice of the analytic sector: for τ <
σ the analytic continuation of Eq. (4.101) renders 〈Φ(t)Φ(s)〉, whereas 〈Φ(s)Φ(t)〉 is recovered

from its continuation within the sector τ > σ . In fact, in this last case, by definition one gets

〈T ∗[Φ(τ)Φ(σ)]〉 = 〈Φ(σ)Φ(τ)〉. Of course, this general statement holds beyond the simple case

we are analyzing here, once the proper phases generated by commuting non-bosonic fields have

been taken into account. These phases are included in the definition of the time-ordering, as is the

case with fermions, i.e., T ∗[Ψ(τ > 0)Ψ(0)] = −Ψ(0)Ψ(τ).
According to Eqs. (4.101) and (4.103), the real-time two-point function for τ < σ is given by

Gε
k(t, s) =

e−iωk(t−s)

2ωk
+Akeiωk(t+s) +2Bk cos(ωk(t − s))+Cke−iωk(t+s). (4.105)

In order to recover the actual correlation function of the fields, one has eventually to take the limit

ε → 0+ of the expression above, which becomes

Gk(t, s) =
e−iωk(t−s)

2ωk
+Akeiωk(t+s) +2Bk cos(ωk(t − s))+Cke−iωk(t+s) (4.106)

where 



αk = (ωk − ic++)/(ωk + ic++),

Ak = 1
2ωk

αk
|αk|2−1

,

Bk = 1
2ωk

1
|αk|2−1

,

Ck = 1
2ωk

α∗
k

|αk|2−1
.

(4.107)

As we argued above, this expression of Gk(t,s) corresponds to the expectation 〈Φ(t)Φ(s)〉 and

hence, by comparing it with the definitions in Eq. (4.6), this correlation function coincides, up to a
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trivial factor, with G>, i.e., Gk(t,s) = iG>
k (t,s): in fact, it can be additionally verified that Gk(t,s)

satisfies the same equations {
(∂ 2

t +ω2
k )G>

k (t, s) = 0,

(∂ 2
s +ω2

k )G>
k (t, s) = 0,

(4.108)

and the same boundary conditions

{
∂tG

>
k (t, s) |t=0 = c∗++G>

k (0, s),

∂sG
>
k (t, s) |s=0 = c++G>

k (t, 0),
(4.109)

as G>
k (t,s), which follow from the equations of motion of a Gaussian theory in real time, when

applied to two-point functions. Moreover, specialising it to the case of a quench in the mass

m0 → m, which corresponds to an initial condition of the form c++ = iω0k ≡ i
√

k2 +m2
0, one finds

αk =
ωk +ω0k

ωk −ω0k
, Ak = Ck =

ω2
k −ω2

0k

8ω2
k ω0k

and Bk =
(ωk −ω0k)

2

8ω2
k ω0k

, (4.110)

which yields

iG>
k (t, s) =

e−iωk(t−s)

2ωk
+

ω2
k −ω2

0k

4ω2
k ω0k

cos(ωk(t + s))+
(ωk −ω0k)

2

4ω2
k ω0k

cos(ωk(t − s)) . (4.111)

This expression coincides with ones previously found for this dynamical problem in Refs. [3, 109].

Analogously, one can verify that the analytic continuation of Eq. (4.101) within the comple-

mentary sector corresponds to the correlation function 〈Φ(s)Φ(t)〉 which, according to Eq. (4.6),

can be identified with G<. In the very simple case of the real scalar field considered here one can

actually recover one from the other by exploiting the additional symmetry

G>
k (t, s) = G<

k (s, t), (4.112)

which can be straightforwardly obtained from Eq. (4.6) after imposing Ψ = Ψ† = Φ and which is

indeed correctly reproduced by Eq. (4.103).

The conformal Ising model

Second, we specialise to the 1 + 1-dimensional case and consider the two-point correlation of the

order parameter of the Ising model at criticality, which is again a scalar field. As we are going

to work in coordinate space, we shall adopt here the same notation of Sec. 4.2.1, i.e., we will

measure distances and times in units of the extrapolation length, as defined by Eqs. (4.42). For

later convenience, we also introduce the corresponding notation in real time t̂ j = πt j/(2τ0). Due to

the conformal symmetry of the model, the correlation function is given by Eqs. (4.41) and (4.37),

from which one finds [2, 3]

〈Φ(r, iτ1)Φ(0, iτ2)〉 = ξ 1/8

[√
1+

√
η

2
±
√

1−√
η

2

]
(4.113)
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with

ξ =

(
π

2τ0

)2
coshρ + cos(θ1 +θ2)

4cosθ1 cosθ2[coshρ − cos(θ1 −θ2)]
, (4.114)

and η given in Eq. (4.43). This case appears to be more subtle than the previous one because

these expressions do not display a clear point of non-analyticity at τ1 = τ2. The naive analytic

continuation τ j →−it j (i.e., θ j →−it̂ j) renders

〈Φ(r, t1)Φ(0, t2)〉 = u1/8

[√
1+

√
n

2
±
√

1−√
n

2

]
, (4.115)

where

u =

(
π

2τ0

)2
coshρ + cosh(t̂1 + t̂2)

4cosh t̂1 cosh t̂2 [coshρ − cosh(t̂1 − t̂2)]
(4.116)

and

n =
cosh(t̂1 − t̂2)+ cosh(t̂1 + t̂2)

coshρ + cosh(t̂1 + t̂2)
. (4.117)

Equation (4.115) is symmetric under the exchange of times t̂1 ↔ t̂2 (i.e., t1 ↔ t2); according to

Eq. (4.112), this would make it impossible to distinguish G< from G>. However, the analytic

continuation has to be performed with care: in fact, different continuations arise as a consequence

of the structure of these functions: indeed, Eq. (4.115) features two branching points of algebraic

order 1/8 for t1 − t2 = ±r, as schematically represented in Fig. 4.8. Moreover, from expression

rr
t1-t2

Τ1-Τ2

e-i Π8ei Π8
Τ1>Τ2

ei Π8e-i Π8
Τ1<Τ2

Figure 4.8: Schematic representation of the analytic structure of the function ξ 1/8 (Eq. (4.114)) in

the complex plane τ1 − τ2. The branch points are positioned at |t1 − t2| = r; our choice for the branch

cuts is indicated by the thick, dashed lines superimposed to the real axis. The lower-half plane (red)

represents the sector associated to G>, whereas the upper half-plane (blue) to G<. One can see that for

|t1 − t2| > r the phase of u1/8 depends on the choice of the sector, as also highlighted by Eqs. (4.118)

and (4.119).

(4.117) one can infer that n = 1 at the same points, which implies that 1−n1/2 changes sign. As a

consequence, an additional branching point has to be considered, which is associated to the second

square root in Eq. (4.115) and is of algebraic order 1/2. Thus, a picture completely similar to the

one sketched in Fig. 4.8 holds for this term, the only difference being that the acquired phases are

in this case e∓i(π/2) = ∓i. Thus, although the distinction is not as neat as in the previous example,
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it is still fundamental to determine whether the real axis is being reached from one sector or the

other; overall, introducing the shorthand notation σ = sign(t1 − t2), one finds indeed

iG<(t1, t2) = |u|
1
8 ×





[√
1+

√
n

2
±
√

1−√
n

2

]
for |t − s| < r

eiσ π
8

[√
1+

√
n

2
∓ iσ

√√
n−1
2

]
for |t − s| > r

(4.118)

for τ1 > τ2 and

iG>(t1, t2) = |u|
1
8 ×





[√
1+

√
n

2
±
√

1−√
n

2

]
for |t − s| < r

e−iσ π
8

[√
1+

√
n

2
± iσ

√√
n−1
2

]
for |t − s| > r

(4.119)

for τ1 < τ2. In the expressions above, the only term which is affected by the exchange t1 ↔ t2 is

σ , which changes sign; thus, it is straightforward to verify that Eqs. (4.118) and (4.119) satisfy the

identity (4.112).

It may be interesting to note that a similar structure arises in the Gaussian case when treated

in coordinate space (~r, t). Focusing for simplicity just on the first term of Eq. (4.101), since it

bears full responsibility for the non-analytic behaviour, and setting m = 0, we find that its Fourier

transform is given by

G0(~r, iτ, iσ) = Kd

(
r2 +(τ −σ)2

)− d−1
2

with Kd =
π− d+1

2

4
Γ

(
d −1

2

)
. (4.120)

Clearly, this is a symmetric function under the exchange τ ↔ σ ; on the other hand, as in the

conformal case, it generically displays two branching points at (τ −σ) = ∓ir. Thus, on the real

axis one finds two different functions

iG<
0 (~r, t,s) = Kd

∣∣∣r2 − (t − s)2
∣∣∣
− d−1

2
exp

{
iπ

(
d −1

2

)
χ(~r, t,s)

}
= iG>

0 (~r,s, t), (4.121)

where

χ(~r, t,s) =

{
sign(t − s) for |t − s| > r
0 for |t − s| < r.

(4.122)

The case of odd spatial dimensions d > 1, which seemingly entails G< ≡ G>, will be discussed

in Sec. 4.4. Although we lack the actual expressions, it is possible to demonstrate that the same

analytic structure carries over to the gapped case m 6= 0.

4.4 Response functions

In the previous Sections, we have shown how an Euclidean formalism can be set up in order to

calculate correlation functions of observables at imaginary times and then perform an analytic

continuation back to the real axis, i.e., to real times. This allows one to exploit the methods
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developed for treating static systems confined in a film geometry in order to calculate dynamical

features following a quench. In this Section we focus on a second but equally relevant class of

quantities of interest which characterise the dynamics of a system, i.e., response functions. Their

definition is analogous to the one we have given in a classical setting (see Eq. (3.42)), i.e., they

describe the linear variation of some quantity at time t (e.g., the average 〈Φ(t)〉 of some field

Φ) due to the action of a small external perturbation h at an earlier time (see also the analogous

discussion in Sec. 3.1.2):

R(t,s) =
δ 〈Φ(t)〉

δh(s)

∣∣∣∣
h≡0

. (4.123)

The perturbation h couples linearly to one of the fields of the Hamiltonian and therefore acts

like a source term; for example, consider a theory defined in terms of a set of fields {Φi}i. The

perturbation of the Hamiltonian would then be ∑i hiΦi with a set of external fields {hi}i in terms

of which one can define generalised responses

Ri1,...,in; j1,... jm(t1, . . . , tn;s1, . . . ,sm) =
δ m 〈Φi1(t1) . . .Φin(tn)〉
δh j1(s1) . . .δh jm(sm)

∣∣∣∣
{hi}i≡0

. (4.124)

Clearly, the causality of the response of any physical system is reflected in the fact that the re-

sponse function (4.124) vanishes identically whenever maxi{ti} < max j{s j}. Within the Keldysh

formalism discussed in Sec. 4.1, response functions can be obtained as follows: in the physi-

cal representation introduced by Eqs. (4.8) and (4.9), the effective action (4.15) is rewritten as

S [φc,φq,Jc,Jq]+S0[φc(0),φq(0)], with





S [φc,φq,Jc,Jq] = S[
φc+φq

2
]−S[

φc−φq

2
]+ 1

2

(
Jc ·φq + Jq ·φc

)
,

S0[φc(0),φq(0)] = S0[
φc(0)+φq(0)

2
,

φc(0)−φq(0)
2

],

(4.125)

where the classical and quantum components Jc/q of the sources J± are defined analogously to

the fields Jc/q = J+ ± J−. As we have mentioned above, the distinction between the two time

branches is a convenient artifice, but all physical observables must be single-valued in time; hence,

actual perturbations (i.e., sources such as h mentioned above) must satisfy J+ = J−, i.e., Jq = 0.

According to the definition in Eqs. (4.123) and (4.124), one has to calculate the variation of a

given correlation function with respect to the turning on of an external perturbation applied at time

s, which is formally obtained by taking its functional derivative with respect to Jc; in turn, this

translates into the appearance of a quantum component φq(s) in the average such that, e.g.,

−2i
δ 〈φc(t)〉
δJc(s)

=
〈
φc(t)φq(s)

〉
= 2iGr(t,s). (4.126)

Hence, the retarded component coincides with the response function except for the sign, i.e., Gr ≡
−R. Consequently, this expression of the retarded function on the l.h.s. as a correlation function on

the r.h.s. with a suitable field is completely analogous to the one we have encountered in Chapter 3

when studying classical systems with dissipative dynamics (see, e.g., Eq. (3.42)) [18, 20, 76]. In the

latter case, the response of the fluctuating order parameter ϕ — which corresponds to the classical
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component of the field within the Keldysh formalism — is encoded in the auxiliary response field

ϕ̃ whose role is here played by the quantum component. We recall now that the contour onto which

the time runs can be deformed arbitrarily in the complex plane but in such a way that it does not

include any part going upwards (see the discussion following Eq. (4.25)). In particular, this implies

that the forward and backward branches of the Keldysh contour can actually be deformed only

within the upper and lower half-plane, respectively. As a consequence, we lack a clear prescription

for the analytical continuation of φc and φq, outside the real axis because this is the only domain

along which φ+ and φ− are simultaneously defined. On the one hand, this limitation does not

imply that the two-time functions in Eq. (4.9) do not admit a local analytic continuation; on the

other, it is related to the fact that Gr and Ga clearly have a point of non-analyticity for t = s due

to their causal structure which makes them vanish identically for t < s and t > s, respectively.

Nonetheless, one may reconstruct them by combining the imaginary time formalism described in

Sec. 4.3.2 with the relations (4.9): starting from any response function (say, involving n times), one

can expand the "classical" and "quantum" fields involved into "forward" (+) and "backward" (−)
components (see Eq. (4.8)); correspondingly, this quantity can be re-expressed in terms of a sum

of 2n Keldysh-ordered correlations which, as we have mentioned in Sec. 3.2, constitute a subset of

all possible non-time-ordered correlations and can therefore be recovered by the imaginary-time

formalism. Reverting to the physical representation, one can reconstruct the desired response.

Below, we illustrate this point with few simple, but relevant examples.

The Gaussian theory

First of all, consider the Gaussian scalar field theory we have discussed near the end of the previous

Section. Substituting Eq. (4.106) into

Gr
k(t, s) = θ(t − s)

[
G>

k (t, s)−G>
k (s, t)

]
, (4.127)

one obtains

Gr
k(t, s) = − 1

ωk
θ(t − s)sin(ωk(t − s)) . (4.128)

This expression for the retarded two-point function is exactly the same as the one that could be

found by solving directly the problem in real time. In coordinate representation, according to

Eq. (4.121), the expression above becomes

Gr(~r, t,s) = 2θ(t − s− r)Kd sin

(
π

1−d

2

)
[(t − s)2 − r2]−

d−1
2 , (4.129)

where Kd is the same constant as in Eq. (4.120). From this expression it would appear that for odd

d 6= 1 the response function identically vanishes, which reflects the fact that the exponent of the

algebraic law in Eqs. (4.120) is an integer, implying that no branching cut emerges in the complex

plane. On the other hand, a system which displays no response to external perturbations is clearly

unphysical, and moreover the null function could not have Eq. (4.128) as a Fourier counterpart.

The point here is that the limit implied by the analytic continuation has to be interpreted in the

sense of distributions. For example, for d = 3 one finds

G0(~r, iτ, iσ) =
(2π)−2

r2 +(τ −σ)2
=

(2π)−2

2r

(
1

r + i(τ −σ)
+

1

r− i(τ −σ)

)
; (4.130)
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its analytic continuation to real values for τ < σ corresponds to the limit

iG>
0 (~r, t,s) = lim

ϑ→0+
G0(~r, t,s+ iϑ) = lim

ϑ→0+

(2π)−2

2r

(
1

r +(t − s)− iϑ
+

1

r− (t − s)+ iϑ

)
=

=
(2π)−2

2r

[
P

1

r +(t − s)
+ iπδ (r + t − s)+P

1

r− (t − s)
− iπδ (r + s− t)

]
=

=
1

4π2
P

1

r2 − (t − s)2
+ i

1

8πr
[δ (r + t − s)−δ (r + s− t)] ,

(4.131)

where P denotes the principal value. On the other hand, for τ > σ one finds that the imaginary part

changes sign, i.e.,

iG<
0 (~r, t,s) =

1

4π2
P

1

r2 − (t − s)2
− i

1

8πr
[δ (r + t − s)−δ (r + s− t)] . (4.132)

This implies that the response function actually exists as a distribution and is equal to

−Gr(~r, t,s) =
1

4πr
δ (r− (t − s)) . (4.133)

Thereby, in three spatial dimensions the response of a system is not absent, but pointwise. This

holds true also in higher, odd dimensions d = 2n+1 (with integer n), since one can rewrite G0 as

G0(~r, iτ, iσ) =
Kd

(r + i(τ −σ))n +(r− i(τ −σ))n

[
1

(r + i(τ −σ))n
+

1

(r− i(τ −σ))n

]
. (4.134)

The argument of the square brackets can be recast in the form

1

(n−1)!
(−∂r)

n−1

[
1

r + i(τ −σ)
+

1

r− i(τ −σ)

]
. (4.135)

Consequently, one can apply these same derivatives in the real-time formulation in a distributional

sense and get

iG>
0 (~r, t,s) = iG<

0 (~r,s, t) = KdP(n−1) 1

(r2 − (t − s)2)
n +

+ i
(−1)n−1πKd

(r +(t − s))n +(r− (t − s))n

[
δ (n−1)(r + t − s)−δ (n−1) (r + s− t)

]
,

(4.136)

where we recall that the (n−1)-th derivative of the principal value P(n−1) 1
(x−y)n acts on test func-

tions f as

P(n−1)
∫

dx
f (x)

(x− y)n
= P

∫
dx

1

(x− y)n

[
f (x)−

n−2

∑
j=0

f ( j)(y)
(x− y) j

j!

]
. (4.137)

Hence, one finds

−Gr(~r, t,s) =
2π(−1)n−1Kd

(r +(t − s))n +(r− (t − s))n δ (n−1) (r− (t − s)) (4.138)
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The conformal Ising model

We now consider the 1 + 1-dimensional conformal case. Although in general the expression of

the response function Gr depends on the specific form of Fs in Eq. (4.36), we can still highlight

a general feature, i.e., the fact that Gr always vanishes for |t − s| < r. In fact, on the one hand

the function u2∆ (with u as in Eq. (4.116)) is single-valued in this range, as can be inferred from

Fig. 4.8. On the other hand, within this domain n in Eq. (4.117) is smaller than 1 and thus lies within

the domain of analyticity of Fs. As a general consequence, G> = G< for all values |t − s|< r, which

yields, correspondingly, Gr = 0. As an example, for the critical Ising model one finds from the

subtraction of Eqs. (4.119) and (4.118)

Gr(r, t,s) = −2θ(t − s− r) |u|
1
8


sin

(π

8

)
√

n
1
2 +1

2
∓ cos

(π

8

)
√

n
1
2 −1

2


 (4.139)

We tested this prediction against numerical data previously obtained in Ref. [4] and found a rea-

sonable agreement, as illustrated in Fig. 4.9, mainly spoiled by the oscillations which unavoidably

appear when considering systems of finite size. The function in Eq. (4.139) is also depicted in
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Figure 4.9: Response function −Gr(r = 0, t,s) = RIC(t,s) of the order parameter of the quantum

Ising chain in a transverse field g, prepared in an initial state corresponding to the ground state of its

Hamiltonian with g = g0 and quenched at time t = 0 to the critical value g = gc = 1. The response

is measured at the same point in which the perturbation is applied, i.e., r = 0, within the regime in

which t, s are large enough for RIC to become stationary. The solid lines represent the numerical data

(courtesy of L. Foini, L. Cugliandolo and A. Gambassi [4]), with g0 = 0.8, 0.5, 0.3, and 0 in order of

decreasing slope at the origin. The data have been rescaled with the values of τ0(g0) determined from

the exponential slope ∝ eπ(t−s)/16τ0 observed for t − s ≫ r. The dashed line, instead, corresponds to

the rescaled theoretical prediction in Eq. (4.139). The inset shows the same curves as in the main plot

but in a logarithmic scale and on a wider range of values of the abscissa.

Fig. 4.10 for different values of the distance r and the “waiting time” s, for both fixed (upper sign

in Eq. (4.139)) and free (lower sign) boundary conditions. This highlights the emergence of a light-
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Figure 4.10: Retarded component Gr(r, t,s) (i.e., minus the response function −R(r, t,s)) for the

Ising model as a function of the difference of times t − s for r = 2 (black), r = 5 (red) and r = 10

(blue). Solid lines correspond to fixed, whereas dashed ones to free boundary conditions. For a given

r, Gr vanishes identically for t − s < r, while it displays an algebraic divergence as t − s → r+. Panel

(a) corresponds to s = 1, while panel (b) to s = 5. As s increases, Gr becomes effectively independent

of the boundary conditions.

cone effect which is very similar to the one discussed in Refs. [2, 3] for correlations. In this case,

however, instead of being related to the value of t + s, it depends on the difference t − s. This can

be explained in terms of the same picture that has been proposed in Ref. [2]: upon performing the

quench, entangled quasiparticles are created which propagate across the system at a finite velocity

v = 1, building up correlations in their wake. Thus, a time t + s = r is required in order to observe

a change in the correlations at distance r due to non-equilibrium effects. Analogously, applying a

local perturbation h(x,s) generates at time s excitations confined in a neighbourhood of the point

x, which move at the same finite speed v = 1. Therefore, in order for the system to respond to the

external perturbation at a distance r, at least a time r has to elapse.

The light-cone structure emerges quite clearly also in the Gaussian case discussed above, as

one can infer from Eqs. (4.129), (4.133) and (4.138). Moreover, in odd spatial dimension d 6= 1 the

response function is non-vanishing only for r = t−s, i.e., exactly on the boundary of the light-cone.

On a side note, the imaginary-time formalism also provides a natural framework within which

one can easily retrieve the expression of the response functions for the limiting cases −ic++ = b →
0 and b→+∞ (with a = d = 0), which give rise to Dirichlet and Neumann boundary conditions for

the field, respectively (see Eq. (4.106)). For example, considering the quantum harmonic oscillator

(with mass m = 1) and adding to its Hamiltonian HQHO a “source term” h(t)x one can explicitly

calculate

Gr(t,s) =

〈
δx(t)

δh(s)
|h≡0

〉
= − 1

ω
θ(t − s)sin(ω(t − s)) , (4.140)
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which can be straightforwardly obtained from the antisymmetric part (see Eq. (4.112)) of

G>(t,s) =− icos(ω(t − s))

[
1

4b
+

b

4ω2

]
− icos(ω(t + s))

[
1

4b
− b

4ω2

]

− 1

2ω
sin(ω(t − s)) . (4.141)

In the limits b → 0, +∞, however, the initial state becomes non-normalisable, being either an

eigenstate of the momentum or of the position (as can be inferred from Eqs. (4.82) and (4.84));

this is reflected in the divergence of the expression above, which therefore must be normalised in a

different way, the simplest one being taking the aforementioned limits after multiplying Eq. (4.141)

by a suitable regularisation factor (i.e., 2b/ω for b → 0 and 2ωb−1 for b → +∞), which yields

G>(t,s) = − i

2ω
[cos(ω(t − s))± cos(ω(t + s))] , (4.142)

where the sign ± refers to b → 0, b → +∞, respectively. Clearly, G> is symmetric under the

exchange t ↔ s, which implies that the response function (4.140) cannot be obtained from it. On

the other hand, from the analytic continuation, before collapsing the film to the real axis one finds

G>
ε (t,s) = − i

2ω

[
e−iω(t−s) +

e−2ωε cos(ω(t − s))± cos(ω(t + s))

sinh(2ωε)

]
(4.143)

and therefore it is possible to derive

Gr(t,s) = θ(t − s) lim
ε→0

[
G>

ε (t,s)−G>
ε (s, t)

]
, (4.144)

which coincides exactly with Eq. (4.140). We emphasize again that this would have been impossi-

ble starting directly from expression (4.142).

4.5 Conclusions

Inspired by previous works which make use of the effective imaginary-time formalism in order to

describe the dynamics of quantum systems after a quench [2, 3], we have investigated the condi-

tions under which such a method can actually be employed. By using quantum mechanics as a

very simple, but paradigmatic framework, we have formulated a constructive proof to show that, in

general, an imaginary-time formalism can indeed be constructed. We have shown that the kernel

representation of the evolution (4.62), which constitutes a necessary step in the introduction of the

path-integral formalism, requires a specific time-ordering, i.e., in any expectation on the imaginary

axis the time coordinates must appear in an increasing sequence. This condition would not be suf-

ficient, however, if not supported by the introduction of a regularisation which may be expressed

as ρ0 → e−εH
ρ0e−εH

〈e−2εH〉 , where ε > 0 is an auxiliary parameter. Consequently, all times must lie within

a film of width 2ε in the complex plane (which is sketched in Fig. 4.6(b)).

In this way, the problem can be reformulated in terms of an Euclidean description (which, from

a practical point of view, is obtained through the substitution t → iτ in the equations of motion),
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while the boundary conditions are moved from t = 0 to the edges ±iε of the film. We provide a

general prescription of such a mapping in Eqs. (4.88) and (4.93). This procedure, however, does

not always return properly-defined boundary conditions on the imaginary axis. In fact, this occurs

only if the initial state is pure; in the case of a statistical mixture (ρ0 6= ρ
2
0
), instead, one identifies

equations which depend on the properties of both edges (e.g., see Eq. (4.69)). While consistent

from the mathematical point of view, this means that an interpretation of the new system as a static

film in d +1 dimensions (since Euclidean time is akin to a spatial coordinate) is no longer possible.

In the Euclidean picture, which features complex times, the various quantities are analytical as

long as one does not change the ordering of the imaginary parts of the involved time variables; no

constraint is imposed instead on the real parts. As a consequence, every sufficiently regular ex-

pectation defined on the imaginary axis and time-anti-ordered according to the prescription above

can be analytically continued to the corresponding non-ordered function on the real-axis. Clearly,

the knowledge of these quantities is sufficient to reconstruct any time-ordered quantity. We em-

phasize here, as done in Section 4.4, that the original ordering of times along the imaginary axis

is not inconsequential: in fact, for each possible choice a different domain of analyticity is defined

and, while performing the analytical continuation towards the real axis, one ideally cannot cross

between them. The effect of this is that the original order of the operators is kept; for example, for

a generic field Ψ define

Gε(t,s) =
〈

Ψ(iτ)Ψ†(iσ)
〉

ε
.

Starting from the domain τ < σ one finds, according to the definitions (4.6), iG>(t,s) in real-time,

whereas ±iG<(t,s) is retrieved if the other domain (σ < τ) is chosen, while the sign distinguishes

between bosonic (+) and fermionic (−) fields.

We have also shown that, although response functions do not admit a global extension to the

complex plane, due to their causal structure, their expressions can be derived from the imaginary

time formalism by defining them in terms of non-ordered functions such as G< and G>, which

instead can be directly reproduced. Rather generically, the response function of one-dimensional

systems quenched to criticality as well as the one of the Gaussian model in generic dimension d > 1

displays sharp light-cone effects which are analogous to those theoretically predicted [2–4, 110]

and experimentally observed [39] for correlation functions: this describes the fact that information

travels across the system at a finite speed (v = 1 in our units), and therefore one must wait for a

local perturbation to propagate up to the considered point before being able to observe any response

there. Finally, we have tested our predictions for the Ising conformal class against numerical data

extracted from a finite one-dimensional Ising chain [4], finding a reasonable agreement.
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Appendix 4.A Keldysh path-integral construction

In this Appendix we describe how the path-integral discussed in Sec. 4.1.1 can be constructed

starting from Eq. (4.3). In doing this, many features mentioned in the previous Sections, such as

the doubling of fields Φ → Φ±, will be made clearer. We wish to remark that the path-integral

is not really a well-defined integral, but rather a quite convenient effective notation to use for the

calculation of relevant quantities. For this reason, as was done in the original work by Feynman

[111] which introduced the concept, we shall not concern ourselves with formal problems regard-

ing the proper definition of the functionals and measures we will introduce below. As we have

done before, we focus here on the case of a single, real scalar field Ψ = Ψ† = Φ and we assume

that its evolution is governed by a Hamiltonian

H =
∫

ddx

[
Π(~x)2

2
+U(Φ(~x))

]
=
∫

ddx

[
Π(~x)2

2
+

(~∇Φ(~x))2

2
+V (Φ(~x))

]
, (4.145)

where Π is the field conjugate to Φ (see Eq. (4.11)) and V is a generic, regular function of its argu-

ment (typically, a polynomial). The first step of the procedure consists in discretising the contour

in Fig. 4.1, i.e., dividing it into 2N equal parts of “small” width ε = tM/N; the corresponding points

are defined by

tn = θ(N −n)nε +θ(n−N)(2N −n)ε with n = 0, . . .2N, (4.146)

where θ indicates the Heaviside step function, with the convention θ(0) = 1/2. Note that, with

this choice, tn = t2N−n ∀n. We also introduce the instantaneous “eigenbasis” of the field {|φ , t〉},

where φ(~x) is supposed to be a real function of the spatial coordinates:

Φ(~x, t) |φ , t〉 = φ(~x) |φ , t〉 . (4.147)

By definition, the identity F(φ1)〈φ1|φ2〉 = 〈φ1|F(Φ) |φ2〉 = F(φ2)〈φ1|φ2〉 holds for any function

F , which implies 〈φ1|φ2〉 = cδ (φ1 −φ2), where c depends on the normalisation of the eigenstates,

which we fix at c = 1, while δ (φ1 −φ2) effectively represents a “delta functional” in the space of

functions. Also note that the vector |φ , t〉 does not evolve according to the Schrödinger representa-

tion, but its adjoint |φ , t〉= eiHt |φ ,0〉: in fact, by taking the equation above at t = 0 and multiplying

it on the left by eiHt , one obtains

φ(~x)eiHt |φ ,0〉 = eiHtΦ(~x,0) |φ ,0〉 = eiHt Φ(~x,0)e−iHt eiHt |φ ,0〉 = Φ(~x, t)eiHt |φ ,0〉 . (4.148)

At every instant tn we introduce in expression (4.3) a representation of the identity

1 =
∫

Dφn |φn, tn〉〈φn, tn| , (4.149)

where Dφ is assumed to be an appropriately normalised measure on the space of functions. By

doing this, the generating functional takes the form

∫
Dφ0 . . .Dφ2N

(
2N−1

∏
n=0

χn

)
〈φ0, t0|ρ0 |φ2N , t2N〉 (4.150)
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in which, by recalling that t0 = t2N = 0, we are already able to recognise the initial term 〈φ(0+)|ρ0 |φ(0−)〉
appearing in Eq. (4.10), whereas

χn = 〈φn+1, tn+1|Tn

[
exp

(
i
∫

ddx
∫ tn+1

tn
dt J(~x, t)Φ(~x, t)

)]
|φn, tn〉 . (4.151)

Here Tn stands for the standard time-ordering operator T for n < N/2, and for the anti-ordering

one T ∗ for n ≥ N/2. Note that for each pair tn, t2N−n of corresponding points, two different

functions φn and φ2N−n have been introduced, which are being integrated upon independently. The

only exception lies at the rightmost point, i.e., tn = tM, where there is only φN . This reflects the

necessity, already encountered in Sec. 4.1.1, of introducing two distinct fields φ+ and φ− which

have to coincide at tM.

Since for N ≫ 1 the time interval ε becomes very short, one can think of the integrand in

formula (4.151) as being almost constant over [tn, tn+1], and hence approximate it with the value it

takes at the lower bound tn. This yields

eiαn ε
∫

ddx J(~x,tn)φn(~x) 〈φn+1, tn+1|φn, tn〉 ≡ eiαn ε J(tn)◦φn 〈φn+1, tn+1|φn, tn〉 , (4.152)

with αn = 1 for n < N and αn = −1 for n ≥ N. Now, in order to re-express the bracket on the right

in a similar way, we recall that

〈φn+1, tn+1| = 〈φn+1, tn|e−iH(tn+1−tn) = 〈φn+1, tn|e−iHεαn. (4.153)

We now expand the exponent in powers of ε up to the first order:

〈φn+1, tn|e−iHεαn |φn, tn〉 ≈ 〈φn+1, tn|1− iHεαn |φn, tn〉 ; (4.154)

in order to proceed, we focus on the calculation of 〈φ2, t|H |φ1, t〉, which, according to Eq. (4.145),

can be readily rewritten as

∫
ddx

[
1

2
〈φ2, t|Π(~x, t)2 |φ1, t〉+U(φ1(~x))〈φ2, t|φ1, t〉

]
(4.155)

In the first addend, the conjugate field Π appears; from the canonical commutation relations (4.11)

one can very easily prove that, for any function F which can be expanded as a power series, the

identity

[F(Φ(~x, t)),Π(~y, t)] = iF ′(Φ(~x, t))δ (~x−~y) (4.156)

holds, and thus conclude that Π acts as a (functional) derivative on the field Φ; more precisely,

Π(~x, t) |φ , t〉 =

(
−i

δ

δφ(~x)

)
|φ , t〉 , (4.157)

which, introducing the instantaneous eigenbasis Π(~x, t) |π, t〉 = π(~x, t) |π, t〉, that is completely

analogous to the one introduced before for Φ, leads to

−i
δ

δφ(~x)
〈π, t|φ , t〉 = 〈π, t|Π(~x, t) |φ , t〉 = π(~x)〈π, t|φ , t〉 , (4.158)
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implying 〈π, t|φ , t〉 = ei
∫

ddx π(~x)φ(~x) ≡ eiπ◦φ , where the multiplying factor that in principle would

appear in front can be chosen to be 1 by appropriately fixing the normalisation of the new eigen-

basis. Introducing the identity 1 =
∫

Dπ |π, t〉〈π, t| in the first addend of Eq. (4.155) one finds

〈φ2, t|Π(~x, t)2 |φ1, t〉 =

=
∫

Dπ 〈φ2, t|π, t〉π(~x)2 〈π, t|φ1, t〉 =
∫

Dπ π(~x)2eiπ◦(φ1−φ2), (4.159)

which can be finally used to rewrite Eq. (4.154) as
∫

Dπn eiπn◦(φn−φn+1)

[
1− iεαn

∫
ddx

(
1

2
πn(~x)

2 +U(φn(~x))

)]
, (4.160)

which, since we are disregarding higher-order (i.e., O
(
ε2
)
) terms, can be conveniently rewritten

as
∫

Dπn e
iπn◦(φn−φn+1)−iεαn

∫
ddx

(
π2

n
2 +U(φn)

)

= Nn e
iεαn

∫
ddx

[
(φn+1−φn)2

2ε2 −U(φn)

]

, (4.161)

where the spatial dependence has been made implicit, the Gaussian integral over πn has been per-

formed with the regularisation ε → ε − i0+ and Nn =
√

2π
iεαn

is a multiplying factor which we shall

reabsorb into the measure Dφn. Now, if we introduce a curve φ(~x, t) which obeys φ(~x, tn) = φn(~x)
for all n, i.e., which reproduces the corresponding functions at every point of the discretisation, we

can make the approximation

(φn+1 −φn)
2

2ε2
=

1

2

(
φ(tn +αnε)−φ(tn)

ε

)2

≈ 1

2
(∂tφ(t))2 |t=tn

. (4.162)

By substituting this expression in Eq. (4.161) we obtain

χn ∝ eiεαn[L[φ(tn)]+J(tn)◦φ(tn)] ≡ eiεαnLJ [φ(tn)], (4.163)

where LJ[φ ] =
∫

ddx
[

1
2
(∂tφ(~x, t))2 −U(φ(~x, t))+ J(~x, t)φ(~x, t)

]
is the Lagrangian corresponding

to H − J(t) ◦ φ . In the limit N → ∞ the discretisation tn fills the contour and the corresponding

integrations over φn can be thought to ideally become an integration over all paths φ(t). As we

have specified above, however, with the exception of tM, there are two independent integration

variables for every point t < tM; therefore, we actually need to introduce two different paths φ+

(for n < N) and φ− (for n ≥ N). By recalling that αn = 1 for n < N and αn = −1 for n ≥ N one

finds (
2N−1

∏
n=0

χn

)
∝ e

i
N−1

∑
n=0

εLJ [φ+(tn)]−i
2N−1

∑
n=N

εLJ [φ−(tn)] ≈ ei
∫ tM

0 dt(LJ [φ+(t)]−LJ [φ−(t)]), (4.164)

eventually recovering Eq. (4.12). Note that the same reasoning applies also in the case of a time-

dependent Hamiltonian (e.g., one with a polynomial V with evolving coefficients), the only differ-

ence being that one has to perform the substitution

e−iεαnH → Tn

[
exp

(
−iαn

∫ tn+1

tn
dt H(t)

)]
, (4.165)

starting from Eq. (4.153) onwards. Moreover, the choice (4.146) we have made of taking intervals

[tn, tn+1] of equal length can be relaxed as well.
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In the past decade, the impressive progress in manipulating cold atomic gases has made it possi-

ble, for the first time, to gain experimental insight on the non-equilibrium dynamics of isolated,

interacting quantum many-body systems, renewing the theoretical interest in the subject. Obser-

vations such as the lack of thermalisation in (almost) integrable one-dimensional Bose gases [35]

(see Fig. 2.2(b)) and the appearance of an intermediate, metastable prethermal regime in a non-

integrable system on time-scales much shorter than those required for its equilibration [51], call for

a better understanding of the mechanisms underlying quantum relaxation. In this Chapter, we fo-

cus on the problem of prethermalisation, the basic features of which we recall below: in integrable

systems, the existence of a maximal set of conserved quantities prevents the occurrence of ther-

malisation; instead, observables show an effective relaxation towards a non-thermal generalised

Gibbs ensemble (GGE) [43, 49, 50], which encodes information on the whole set of constants of

motion. When integrability is weakly broken, a many-body system initially prepared in the ground

state of an integrable Hamiltonian may be trapped in an intermediate, quasi-stationary state, called

prethermal, whose properties are mainly dictated by the GGE of the integrable counterpart, while

being perturbatively corrected by the newly-introduced integrability-breaking term. This regime

has been analytically studied both for closed systems, such as Fermi [112, 113] and Luttinger [114]

liquids, and for open ones [115]. Despite this progress, the description of the breaking of integra-

bility is technically challenging and generally difficult to capture without strong approximations.

The goal of this Chapter is to provide a simple model apt for the study of prethermalisation in a

numerical fashion up to a considerable accuracy; starting from an integrable quantum Ising chain,

whose properties will be briefly summarized in Sec. 5.1.1, we introduce a long-range spin-spin

interaction which breaks many, but not all, of the original conservation laws, as will be detailed

in Sec. 5.1.2. We show in Sec. 5.1.3 that an exact mapping exists to a model of hard-core bosons

on a fully-connected lattice. As long as said quasi-particles’ densities remain sufficiently low,

one can think of the hard-core constraint as being substantially ineffective, and thus treat them

as if they were ordinary bosons. This approximation, which holds for small quenches up to very

large times (see, e.g., Fig. 5.3), renders the theory non-interacting and allows us to reinterpret the

prethermalisation of the original non-integrable system in terms of the relaxation to the GGE of

an approximately equivalent integrable one. We then proceed to solve numerically the latter up to

quite a large size, highlighting, in the dynamics of some physically relevant observables, plateaux

which are typically approached algebraically in time; our main results are reported in Sec. 5.2. For

very long times the hard-core nature of the quasi-particles cannot be ignored anymore and, in fact,

it effectively gives rise to scattering processes which lead the dynamics away from this integrable

scenario and are thus expected to cause the asymptotic thermalisation of the system.
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5.1 The model

Among many integrable models which could constitute a valid starting point, we have chosen

for our analysis the one-dimensional quantum Ising model in transverse magnetic field, as its

inherent simplicity makes it possible to obtain analytical expressions for many different quanti-

ties. The reason behind taking a long-range integrability-breaking term lies instead in the fact

that it considerably simplifies the analytical study of the dynamics both within perturbative and

self-consistent schemes, allowing in principle to gain insight on both prethermalisation and ther-

malisation regimes. Although we are not including in the present discussion any of the preliminary

analytical results we have obtained, we shall demonstrate further below that the interaction term

we introduce proves to be quite a convenient choice also in a numerical setting.

5.1.1 Integrable part: the Ising chain

The one-dimensional Ising model constitutes of a chain with N sites, each accommodating a S =
1/2 quantum spin; these spins are simultaneously subject to a nearest-neighbour interaction with

strength J, which favours configurations in which they are all aligned along a specific direction

(say, x), and an external magnetic field directed orthogonally to it (e.g., towards z), which instead

tends to destroy such an ordering and has an amplitude gJ; its Hamiltonian is

H0(g) = −J

2

N

∑
i=1

(
σ̂ x

i σ̂ x
i+1 +gσ̂ z

i

)
. (5.1)

For simplicity, for the remainder of our discussion we shall set J = 1. The notation σ̂
µ
i (µ = x, y, z)

denotes the standard spin operators acting on the i-th site, i.e., from a technical point of view,

for every i = 1 . . .N they constitute a two-dimensional representation of a SU(2) algebra with

commutation relations [
σ̂

µ
i , σ̂ν

i

]
= 2iεµνρ σ̂

ρ
i , (5.2)

where εµνρ is the completely antisymmetric tensor εxyz = 1, εµµν = 0, which changes sign upon

permuting any pair of indices εµνρ = −εµρν . In the eigenbasis of the z component {|↑〉i , |↓〉i}
these operators correspond to the Pauli matrices σ̂

µ
i → σ µ , with

σ x =

(
0 1

1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0

0 −1

)
. (5.3)

By definition, each σ̂
µ
i leaves unaffected spins at any position j 6= i and therefore these operators

commute at different sites: [
σ̂

µ
i , σ̂ν

j

]
= 0 ∀ i 6= j ∀µ,ν . (5.4)

The Hamiltonian (5.1) is invariant under the Z2 transformation σ̂ x
i → −σ̂ x

i , σ̂ z
i → σ̂ z

i , which

corresponds to the unitary operator UZ2
= ∏i σ̂ z

i . Although being utterly insufficient to integrate

the theory, this symmetry still possesses some physical relevance; in fact, in the thermodynamic

limit N → ∞, due to the competing effects of the two terms in Eq. (5.1), this model undergoes

a prototypical quantum phase transition [13]; for g > gc = 1 the system is paramagnetic and the
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longitudinal magnetisation 〈σ̂ x
i 〉 identically vanishes, whereas for g < 1 a ferromagnetic ordering

ensues which entails a spontaneous breaking of the Z2 symmetry, i.e., 〈σ̂ x
i 〉 6= 0.

Integrability is made apparent after a Jordan-Wigner transformation accompanied by a Bogoli-

ubov rotation [13] (refer to App. 5.A for the details), which allow the Ising chain to be rewritten

as a free model with N independent fermionic modes (or quasi-particles). For simplicity, in the

following we shall always assume that N is an even number. The Hamiltonian (5.1) becomes

H0(g) =
N−1

∑
k=1
odd

εkψ†
k σ zψk , (5.5)

where

ψk =

(
γk

γ†
−k

)
and ψ†

k =

(
γ†

k
γ−k

)⊺

(5.6)

are Nambu spinors (here ⊺ denotes transposition), γ†
k and γk are fermionic creation and annihilation

operators at momentum k, respectively, which depend on the value of g and obey the canonical

anticommutation relations
{

γk,γ
†
q

}
= δkq,

{
γk,γq

}
=
{

γ†
k ,γ†

q

}
= 0, (5.7)

and

εk ≡
√

1+g2 +2gcos
(π

N
k
)

(5.8)

is the dispersion relation of the quasi-particles. Note that here σz is not a quantum spin operator,

but represents instead a Pauli matrix acting on spinor indices. One may note that our conventions

are slightly different from the ones which are most commonly employed in the literature and which

lead, e.g., to a dispersion relation of the form ε2
k = 1+g2 −2gcosk; the latter are exact only in the

paramagnetic phase of the odd Z2 sector, while they constitute a good approximation for the even

one in the thermodynamic limit. Since the typical quenching protocol ends up in the second sector,

in order not to be forced to account for O(1/N) corrections, we have adopted an exact formalism

for the even case. One can prove that the N fermionic populations

n̂k = γ†
k γk (5.9)

are conserved, as they commute with the Hamiltonian (5.5). Thus, their dynamics is trivial, as their

expectations do not evolve, while the GGE is defined by the values they take on the initial state.

Moreover, it becomes evident that these N constraints include and are actually much stronger than

the original Z2 symmetry identified above, once the latter is rewritten in this picture as

UZ2
= ∏

k

(1−2n̂k) = e
iπ ∑

k
n̂k

, (5.10)

which describes, in this new language, the parity of the total number of fermions Np, i.e., it evalu-

ates to 1 if Np is even and to −1 if odd, and where the rightmost equality comes from the fact that

n̂m
k ≡ n̂k for every integer m ≥ 1, due to the anticommutation relations (5.7).
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The typical procedure employed to drive this system out of equilibrium is a quench in the

transverse magnetic field g0 → g; the subsequent dynamics has been thoroughly investigated when

the system is isolated, both in the thermodynamic limit [116–120] and at finite size [121], and when

it is open, either being coupled to an external thermal bath [122], or subject to a classical source

of noise [115]. Although the issue may become more subtle, integrability can be highlighted also

in spin variables; for example, considering the non-equilibrium dynamics of the total transverse

magnetisation Mz = ∑i σ̂ z
i after a quench, it turns out that its connected correlation function (i.e.,

schematically, 〈MzMz〉c = 〈MzMz〉−〈Mz〉〈Mz〉) in the long-time limit

lim
τ→∞

lim
t→∞

〈Mz(t + τ)Mz(t)〉c > 0 (5.11)

violates the cluster property [4, 110]. From a physical point of view, this means that there is a given

amount of information about this observable which is never really lost, as measurements separated

by an arbitrary time τ are still correlated.

5.1.2 Integrability breaking and quench

The peculiar structure of the dynamics following a quench in the magnetic field is generally spoiled

by breaking the integrability of the model, which introduces scattering between the quasi-particle

modes γk; as a consequence, the energy initially injected into the system gets redistributed among

them, and thermalisation eventually ensues. Our attention, however, is focused here on the effects

that the breaking produces on much shorter time-scales, where integrability still plays a role; for

the purpose of providing new insight on prethermalisation it is particularly valuable to have at

hand a simple enough model, amenable to being studied in a controlled and physically transparent

way. As we shall demonstrate in the following, such an instance can be obtained by adding an

interaction term

V =
λ

N

(
Mz −Mz

)2
, (5.12)

to the Ising Hamiltonian (5.1), where Mz is the total transverse magnetisation already introduced

before Eq. (5.11) and Mz represents its long-time average calculated for λ = 0, i.e.,

Mz = lim
T→∞

1

T

∫ T

0
dt
(

eiH0(g) t Mz e−iH0(g) t
)

. (5.13)

This subtraction is meant to cancel the “integrable” part of the operator Mz, i.e., the constants of

motion n̂k which enter its definition (see Eqs. (5.69) and (5.72)) and, indeed, one can prove that the

connected correlation function of the remainder satisfies, in the thermodynamic limit, the cluster

property at long times

lim
τ→∞

lim
t→∞

〈(
Mz(t + τ)−Mz(t + τ)

) (
Mz(t)−Mz(t)

)〉
c
= 0. (5.14)

Since the total magnetisation is a global quantity, V represents a long-range interaction, as we

have already anticipated above and as will be made clearer below; furthermore, being extensive, it

requires that the new term be divided by the dimension N of the system, in order not to spoil the

extensivity of the energy.
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Although turning on the interaction would be in principle sufficient to drive the system out of

equilibrium, it is still preferable to accompany it with a quench g0 → g in the magnetic field, which

has the effect of populating the various modes to an extent; more precisely,

γ(g0)
〈0| n̂k(g) |0〉γ(g0)

=
γ(g0)

〈0|γ†
k (g)γk(g) |0〉γ(g0)

= sin2 (θk(g)−θk(g0)) , (5.15)

where |0〉γ(g0)
denotes the vacuum of the Hamiltonian H0(g0), γ†

k (g) and γk(g) represent the oper-

atorial basis which diagonalises H0(g) (see App. 5.A), θk is the Bogoliubov angle

tan2θk(g) =
sin
(

π
N k
)

g+ cos
(

π
N k
) (5.16)

and n̂k(g) is the number operator introduced in Eq. (5.9). The reason that makes this a convenient

choice is twofold; on the one hand, as we specified above, the GGE is determined by the initial

values of the N fermionic populations n̂k; thus, the analysis is made more comprehensive by in-

cluding different possibilities. From a slightly different point of view, this allows to increase the

amount of energy injected into the system without necessarily increasing the strength of the inter-

action. On the other hand, in the quasi-particle picture we are adopting, V introduces scattering

among different modes; thus, it is very reasonable to account for the possibility of actually having

fermions that scatter from the very beginning.

Recalling that the Z2 transformation UZ2
introduced in the previous Section commutes with H0

and each and every σ̂ z
i (and thereby with their sum Mz), it is not difficult to show, from Eq. (5.13)

that Mz is left invariant too. Consequently, the total, perturbed Hamiltonian H = H0 +V is still Z2-

symmetric, and thus preserves the parity of the number Np of quasi-particles. We now show that,

although the same does not hold for the single populations n̂k, one can still identify an extensive

number of conserved quantities. For this purpose, we recast the interaction V in the fermionic

formalism

V =
λ

N

[N−1

∑
k=1
odd

sin(2θk) ψ†
k σ yψk

]2

, (5.17)

where θk denotes the Bogoliubov angle defined in Eq. (5.16) (see also Eqs. (5.51)). In this ex-

pression the long-range nature of this term becomes apparent, as it connects every possible pair of

momenta k,q. The total Hamiltonian H is thus

H =
N−1

∑
k=1
odd

εk ψ†
k σ zψk +

λ

N




N−1

∑
k=1
odd

sin(2θk)ψ†
k σ yψk




2

. (5.18)
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Exploiting the identity
[
A2,B

]
= A [A,B]+ [A,B]A, one can show that

[H, n̂k] = [V, n̂k] = i
λ

N




(
Mz −Mz

)N−1

∑
k=1
odd

[
sin(2θk)

(
γ†

k γ†
−k + γ−kγk

)]
+

+
N−1

∑
k=1
odd

[
sin(2θk)

(
γ†

k γ†
−k + γ−kγk

)](
Mz −Mz

)




,

(5.19)

which proves that, for any finite N, not even a single population is conserved. In fact, according

to definition (5.51), sin(2θk) > 0 for every odd, positive integer k. Nonetheless, since both the

Bogoliubov angle θk and the two-particle operators γ†
k γ†

−k and γ−kγk appearing above are odd with

respect to the momentum, i.e., γkγ−k = −γ−kγk, the global expression remains the same under the

shift k →−k, which implies [H, n̂k] = [H, n̂−k], and thus every

Ik = n̂k − n̂−k (5.20)

commutes with the Hamiltonian H (the properties of these operators in the Ising models are dis-

cussed in Ref. [121]).

5.1.3 Mapping to hard-core bosons and low-density approximation

Thanks to the presence of the Ik’s, which represent a set of N/2 mutually commuting constants of

motion, the spin chain described by H can be exactly mapped onto a quadratic (yet non-diagonal)

Hamiltonian of hard-core bosons, as we show here. First of all, we analyse the structure of the

Hilbert space in the light of these constraints: each Ik admits only three distinct eigenvalues, 0

and ±1, which correspond to states in which two quasi-particles with momenta ±k are either si-

multaneously present or absent (|k,−k〉 and | /0k〉), and to states in which only one of the two is

present (|k〉 or |−k〉), respectively. We shall refer to the space spanned by these 4 vectors as the

k-th “subsector”. We remark that its vacuum | /0k〉 is in principle different from the global vac-

cum |0〉 =
⊗

k | /0k〉. Every possible choice of the N/2 eigenvalues mentioned above identifies an

eigenspace, which in the following we will call “eigensector”, or “sector”, for short; for exam-

ple, for N = 4 the string {I1 = 1, I3 = 1} corresponds to the vector |k = 1〉⊗ |k = 3〉, whereas the

string {I1 = 0, I3 = −1} is associated to the two-dimensional space generated by | /01〉⊗ |−3〉 and

|1,−1〉⊗ |−3〉. Since the aforementioned strings are N/2-characters long and the “alphabet” in-

cludes only three possibilities, the total number of sectors in which the global configuration space

is split is 3
N
2 . The dimension of each is 2N0 , with N0 the total number of 0s appearing in the cor-

responding string, because there are two possible choices for each 0, the two quasi-particles at

opposite momenta being either both absent or present, whereas every ±1 unambiguously fixes the

related vector, as seen in the example above. The number of ±1s dictates instead the Z2-parity

of the eigensector, as it counts the number of unpaired quasi-particles present. For example, for

N = 8, {0,0,1,−1} identifies an even subspace of dimension 4, whereas {0,1,1,−1} an odd one

of dimension 2. By construction, each sector carries also a definite momentum k× Ik in each sub-

sector. Thereby, the only possible operators which leave all eigensectors invariant are those which,
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in every subsector, preserve both parity and momentum. Among all possible combinations of the

fundamental operators γ±k and γ†
±k, the only (non-trivial) ones satisfying these constraints are the

quadratic operators

n̂±k = γ†
±kγ±k, b†

k = γ†
k γ†

−k, bk = γ−kγk , (5.21)

which represent the populations and the creation and annihilation of pairs with zero net momentum,

respectively, and the quartic one

n̂kn̂−k = b†
kbk. (5.22)

All other possibilities can be re-expressed in terms of these by making use of the canonical anti-

commutation relations (5.7).

Like every operator which commutes with each Ik, the Hamiltonian H clearly constitutes a

combination of the operators above. Less trivial is the fact that it can actually be rewritten entirely

in terms of pair operators (for the derivation, see App. 5.B):





H =
N−1

∑
k=1
odd

[
εk − λ

N sin2(2θk)
](

I2
k −1

)
+H ′,

H ′ =
N−1

∑
k,q=1
odd

[
2βkqb†

kbq −αkq(b
†
kb†

q +bkbq)
]
,

(5.23)

with

αkq =
λ

N
(1−δkq)sin(2θk)sin

(
2θq
)

and βkq = εkδkq +αkq. (5.24)

This implies that the relevant dynamics is described by the interaction of zero-momentum pairs,

rather than single fermionic modes, and that we can therefore reformulate the problem in terms of

these new quasi-particles. In order to do that, we shall first uncover their nature: as they obey

[
b

(†)
k ,b

(†)
q

]
= 0 ∀k 6= q,

{
b†

k ,b
†
k

}
=
{

bk ,bk

}
= 0,

{
bk,b

†
k

}
= 1− I2

k ,

(5.25)

they behave almost, but not exactly, as hard-core bosons, which would require the last anticom-

mutator to be 1. On the other hand, by noticing that, in a sector with Ik = ±1, both bk and b†
k act

as the null operator, we can effectively expunge them from H ′. This operation leaves behind only

those corresponding to momenta q for which Iq = 0, which then satisfy the hard-core constraint.

Thereby, within a sector characterised by having N/2−N0 unpaired quasi-particles, the projected

Hamiltonian effectively describes a fully-connected model of hard-core bosons on a lattice with N0

sites. The corresponding base can be obtained by setting, for every involved k, the correspondence

| /0k〉→ |0k〉, |k,−k〉→ |1k〉, where 0 and 1 stand for the boson being absent or present, respectively.

This reinterpretation efficiently highlights the effect produced by V on the integrability of the

model: as we have seen that there are still N/2 conserved quantities, in fact, we cannot expect the

latter to be completely lost and, indeed, we identify sectors in which the theory is trivially solvable,

which are the ones that are almost completely lacking pairs (i.e., those whose strings display just

a few 0s). For example, the 2
N
2 totally-unpaired sectors collectively represent the zero-energy

109



Relaxation in closed quantum systems

eigenspace of the Hamiltonian H and coincide with the corresponding one of H0; furthermore,

each of the N
2

2
N
2 −1 sectors having a single pair is two-dimensional and the corresponding reduced

Hamiltonian is already cast in diagonal form

(
−εk + λ

N sin2 (2θk) 0

0 εk + λ
N sin2 (2θk)

)
(5.26)

in the basis {|0k〉 , |1k〉} introduced above. This is due to the presence of an additional symmetry

in this model which separates each sector in two halves of equal dimension and involves the parity

of the number of pairs, i.e., [
H,eiπ ∑k b†

kbk

]
= 0. (5.27)

From a physical point of view, this is associated to the fact that the action of H ′ in Eq. (5.23)

either leaves their total number untouched, or it simultaneously creates or destroys two bosons.

Therefore, for any choice of N, there are always 2N/2−2 (N +4) shared eigenvectors between H
and H0. Although the structure becomes progressively more complicated as N0 grows, it is clear

that it cannot really display non-integrable features as long as the dynamics remains confined in

the low-N0 sectors.

The situation is reversed for N0 ≈ N/2 ≫ 1; even though the corresponding eigensectors are

exponentially smaller than the global Hilbert space (whose dimension is 2N), their dimensions are

still exponentially large in the number of sites, as expected for a truly many-body problem. Note

that, even though the Hamiltonian (5.23) is quadratic in the pair operators, it does not define a free

theory, due to the hard-core nature of the bosons; indeed, if one tried to diagonalise it by applying

a generic Bogoliubov rotation

bk = Akqb′k +Bkqb′†k (5.28)

would immediately face the problem that there is no choice for the matrices A and B which can

preserve the mixed commutation/anticommutation relations (5.25) other than the trivial one A ≡ 1,

B ≡ 0. This relates to the fact that hard-core bosons are intrinsically interacting particles, for they

can be thought as ordinary bosons subject to infinite interparticle repulsion.

Within our setting, the dynamics always starts from the totally-paired sector N0 = N/2, inde-

pendently of the values of the quench parameters g0, g and λ . The initial state, in fact, can be

represented as [110, 117]

|0〉γ(g0)
∝ ei∑k tkb†

k |0〉γ(g) , (5.29)

where tk = tan(θk(g)−θk(g0)) (see also Eq. (5.61)) and the effect of the operator in the r.h.s. is to

generate pairs on the vacuum. Thereby, this class of initial states constitutes a suitable choice for

highlighting the effects of V on the dynamics. Still, for N ≫ 1, the interacting problem is hard to

solve; instead of employing the usual perturbative expansion in the interaction strength one can take

in this case a different approach, which makes use of the quadratic structure of the Hamiltonian.

The point is that the hard-core constraint is expected to become effective only when the filling of

a given mode approaches 1; as long as the quasi-particles’ densities remain much lower than that,

they behave approximately as standard bosons. From a formal point of view, the pair operators

bk, b†
k can be expressed in terms of truly bosonic ones ak, a†

k by means of a Holstein-Primakoff
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transformation [123]

bk =

√
1−a†

kak ak and b†
k = a†

k

√
1−a†

kak; (5.30)

one can then think of expanding the square roots as power series of their arguments

bk =

(
1− 1

2
N̂k −

1

8
N̂2

k + . . .

)
ak,

b†
k = a†

k

(
1− 1

2
N̂k −

1

8
N̂2

k + . . .

)
,

(5.31)

where N̂k = a†
kak is the bosonic number operator. Hence, as long as the average and the fluctua-
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Figure 5.1: Initial populations 〈n̂k(t = 0)〉 as functions of the rescaled momentum NK/π for various

choices of the quench parameters. (a) Curves at fixed g0 − g = 3; different colours correspond to

g = 1.5 (black), g = 2 (blue) and g = 3 (red); the filling of the modes increases the closer g is to the

critical value gc = 1. (b) Curves at fixed g = 3; the different colors for the solid lines are associated to

g0 = 104 (black), g0 = 102 (blue) and g0 = 10 (red). Unsurprisingly, the populations increase with the

quench amplitude |g−g0|, however they seem to saturate far from their maximal value 1. The dashed

lines correspond to the ones with the same colours in Fig. 5.1(a); by comparing them with the solid

lines, one can conclude that the initial value of the populations is much more affected by the distance

from the critical point g−1 than by the relative distance of the quench parameters |g0 −g|.

tions of N̂k remain small, one can conveniently truncate the expansions to just a few of the first

terms. Further details on this approximation are provided in App. 5.C. What makes this approach

particularly convenient is that, by expanding at the lowest order b†
k ≈ a†

k and bk ≈ ak, we obtain

in each sector a quadratic, bosonic Hamiltonian which can now be diagonalised by a Bogoliubov

rotation. Calling KS the set of paired momenta present in a given sector S, the expression of this

Hamiltonian is 



HS = − ∑
k∈KS

[
εk − λ

N sin2(2θk)
]
+H ′

S,

H ′
S = ∑

k,q∈KS

[
2βkqa†

kaq −αkq(a
†
ka†

q +akaq)
]
,

(5.32)
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where the absence of terms such as b2
k is still reflected in our definition of the matrix αkq, which

has vanishing diagonal part.

Quenches in the magnetic field such as the ones we consider here typically produce small initial

populations, i.e., 〈n̂k〉 ≪ 1 ∀k — and are thus suitable to be studied within the approximation

introduced above — as long as g is not too close to the critical point gc = 1. On the other hand,

the actual amplitude of the quench |g−g0| is relatively inconsequential, as illustrated in Fig. 5.1.

For t > 0, the time frame of validity of the low-density approximation is determined also by the

strength of the interaction λ : intuitively, the term a†
ka†

q in Eq. (5.32) is the one mainly responsible

for the breakdown of the latter, since it is the only one which can actually populate the system to

higher levels, and its coefficient αkq is proportional to λ . At longer times, the integrable picture

provided by the Hamiltonian (5.32) is spoiled because higher-order terms in the expansion of the

Holstein-Primakoff representation (5.31) introduce novel interactions. The latter are expected to

eventually drive the system away from its GGE towards a thermal distribution.

5.2 Numerical diagonalisation and results

As we have shown in the previous Section, the ground state of H0(g0) lies in the totally-paired

sector of H. This implies that, as long as we focus on invariant quantities (such as the populations

n̂k) it is sufficient to restrict the analysis to this sector, since the dynamics will never leave it. The

main advantage of working with the bosonic Hamiltonian (5.32) is that, being quadratic, it is not

necessary to diagonalise it on the whole eigensector, which would imply an exponential complex-

ity of order 2
N
2 , but it is sufficient to solve the one-particle problem by applying an appropriate

Bogoliubov rotation

ak = Ak,qηq +Bk,qη†
q , a†

k = A∗
k,qη†

q +B∗
k,qηq, (5.33)

(the summation over repeated indices is understood) which casts H ′ in the form

H ′ =
N−1

∑
q=1
odd

Eqη†
q ηq +C, (5.34)

where
{

Eq
}

q
is the single-particle spectrum and C an unimportant constant. This problem amounts

to the diagonalisation of a N ×N matrix, and is thus of polynomial complexity in N. As a con-

sequence, one can conduct a numerical analysis up to quite large system sizes. Details about the

diagonalisation procedure and the numerical computation of the relevant observables are provided

in App. 5.D. For λ = 0, one readily obtains from Eq. (5.24) that βkq = εkδkq and this implies that

the unperturbed bosonic one-particle spectrum is Ek = 2εk, where the factor 2 accounts for the fact

that each boson represents a pair of fermions with equal energies. The unperturbed eigenvalues

are reported in Fig. 5.2(a), which clearly shows that the spectrum is non-degenerate. As a con-

sequence, the first non-trivial corrections due to the interaction are of order O
(
λ 2
)
, as shown in

Fig. 5.2(b) and 5.2(c). Moreover, they scale as 1/N with the system size, as we have also verified

numerically.
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Figure 5.2: (a) Plot of the non-interacting one-particle bosonic spectrum Ek(λ = 0) = 2εk (i.e., twice

expression (5.8)) in increasing order for N = 200 and g = 3.5; the two dashed red lines denote the

two extrema g− 1 and g + 1. (b) Difference Ek(λ )−Ek(0) between the perturbed and unperturbed

eigenvalues for λ = 0.1 (black), 0.2 (blue) and 0.3 (red). (c) As expected for a non-degenerate

spectrum such as the one shown in panel (a), the first non-trivial correction is of order O
(
λ 2
)
; this

plot shows the same curves of panel (b) after being rescaled by 1/λ 2, which makes them collapse on

a single master curve.

In order to gain some insight on the range of validity of the low-density expansion, we have

diagonalised exactly the fermionic Hamiltonian (5.23) in the aforementioned, totally-paired sector

up to N = 20 (this constitutes an exponentially-complex problem, so we had to consequently limit

the system size) and compared the so-obtained dynamics with the one extracted from the bosonic
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Figure 5.3: Temporal evolution of the Ising energy EI(t) = 〈H0(t)〉 for g0 = 8, λ = 0.1 and N = 20

within the time interval t ∈ [10000,10005]. Black lines represent data calculated in the fermionic

formalism, whereas red ones refer to the bosonic one. (a) For g = 3.5 the two curves are indistin-

guishable in this time range. (b) For g = 1.5, which means closer to the critical point than (a), the

red curve still resembles the black one. However, the low-density approximation breaks down much

earlier than in the previous instance.
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formalism. In Fig. 5.3 we report the evolution of the Ising energy

E
(b/ f )
I (t) = 〈H0(g, t)〉 =

N−1

∑
k=1
odd

εk 〈n̂k(t)〉 (5.35)

calculated in the bosonic (b) and fermionic ( f ) formalism for N = 20, g0 = 8, λ = 0.1 and two

different values of g in the time frame
[
104,104 +5

]
which, as we will show in the following,

includes very large times with respect to the typical scales at which prethermalisation emerges. As

panel (a) corresponds to g = 3.5 and panel (b) to g = 1.5, it becomes apparent that the low-density

approximation fails on shorter and shorter time-scales the closer the quench ends to the critical

point gc = 1. This is related to the fact that, as we mentioned at the end of Sec. 5.1.3, the closer g
is to its critical value, the larger are the initial populations 〈n̂k(t = 0)〉. On the other hand, we have

numerically verified that for g = 1.01 and all the other parameters fixed as above, the agreement of

the two curves remains within 2% up to t ≃ 103, which implies that, as long as the interaction λ is

small, the low-density approximation enjoys a very large range of validity. In order to understand

the effect of the interaction, we have also performed the same comparison at different values of λ
and N; the results are shown in Fig. 5.4, where we report the relative error
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Figure 5.4: Plots of the relative error Err(t) defined in Eq. (5.36) as a function of time for N = 20,

g0 = 8, g = 3.5 and various values of the interaction strength λ = 0.1 (black), 0.2 (red), 0.5 (blue) and

0.9 (orange). (a) Both choices λ = 0.1 and 0.2 display very small error up to very long time scales.

(b) This plot highlights the fact that the error grows considerably when increasing λ ; as stated above,

the red line, which here looks almost constant, coincides with the one displayed in panel (a).

Err(t) =
E

( f )
I (t)−E

(b)
I (t)

E
(b)
I (t)

(5.36)

on the Ising energy due to the low-density approximation. From them, we infer that indeed strong

interactions tend to spoil the approximation much before, even though their effect seems to be less

drastic than ending the quench near the critical point. Even if just in the limited range N ≤ 20, we

have also verified that the accuracy improves when increasing the size N.
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By comparing panels (a) and (b) in Fig. 5.3 one can see that the typical frequency of oscillations

depends on the value of g. As a matter of fact, the expectations of operators such as nk, ak and

a†
k can be expressed as sums of terms oscillating in time with frequencies |En −Em| and En + Em,

which we will be referring to as "slow” and "fast”, respectively. Comparing the discrepancy of

the actual spectrum with respect to the unperturbed one in Fig. 5.2(b) with the energy scales of

Fig. 5.2(a), it emerges clearly that for small λ the spectrum of H0 is very weakly perturbed, and thus

Ek ≈ 2εq; this implies that the slow frequencies range approximately from 0 to 4, whereas the fast

ones from 4(g−1) to 4(g+1), which justifies our naming conventions for g > 2. This separation
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Figure 5.5: Population dynamics 〈n̂k(t)〉 for g0 = 8, g = 3 and λ = 1. (a) The black curve represents

the evolution of the central (k = 81) population 〈n̂81(t)〉 for N = 160. The red one is the corresponding

evolution calculated taking into account only the slow modes. This plot clearly highlights the presence

of fast modes which “dress” the curve described by the slow ones. (b) Dynamics for various values

of the system size N: the black solid line denotes the population for k = 81 and N = 160; the red one

k = 61 and N = 120; the blue one k = 41 and N = 80. The dashed lines of the respective colours

keep track of the initial (t = 0) value of each curve. Thus, it emerges clearly that the populations relax

towards a prethermal value which is different from the initial one. The plateaux last until a recurrence

time tR which marks the reappearance of oscillations and corresponds approximately to N/2.

of time scales is highlighted in Fig. 5.5(a) in the dynamics of a single population 〈n̂81(t)〉, which

is representative of the typical behaviour.

As we have mentioned at the end of Sec. 5.1.3, thermalisation cannot occur without scattering

(and thus energy and momentum redistribution) among the modes. This requires the breakdown

of the low-density approximation, since within its scheme the Hamiltonian (5.32) is substantially

free. Therefore, the typical time scales on which it ensues have to be larger than the regime of

validity of the numerical picture we are providing. Actually, as can be read from Fig. 5.4, for a

wide range of the quench parameters they are some orders of magnitude greater than the typical

scales required for prethermalisation. The latter can be gleaned from Fig. 5.5(b), where marked

plateaux arise in the evolution of the bosonic populations (which, at this level, are substantially

equal to the fermionic ones): these quasi-stationary values are typically reached within t ∼ 10,

independently of the system size. As mentioned above, however, the dynamics of observables such

as these is characterised by a finite collection of frequencies; therefore, the destructive interference
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which gives rise to the aforementioned plateaux cannot last indefinitely at finite size and, in fact,

oscillations reappear at a recurrence time tR ≈ N/2.

The same prethermal behaviour is reflected in the evolution of extensive observables such as

the total number of quasi-particles Np(t) = ∑k 〈n̂k(t)〉 and the Ising energy (5.35), which represent

two examples of a wider class of quantities which can be written as linear combinations of the

populations

O(t) =
N−1

∑
k=1
odd

ck 〈n̂k(t)〉 , (5.37)

corresponding to ck = 1 and ck = εk, respectively. Figure 5.6 displays the evolution of said observ-

ables and highlights, as expected, the presence of quasi-stationary values preceded by oscillations

which decay algebraically as t−α , with α ≈ 3; to render apparent the latter, we also provide the

same plots in double-logarithmic scale. The fact that the same exponent α ≈ 3 appears in both
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Figure 5.6: (a) Time evolution of the Ising energy EI(t) for N = 100, g0 = 8, g = 3.5, and λ =

0.1. EI attains a quasi-stationary value Eqs with an oscillating behaviour whose amplitude decays

algebraically as t−α with α ≈ 3. (b) Time evolution of the total number of quasi-particles Np(t) for

the same parameters. The behaviour is substantially the same: Np(t) shows algebraically decreasing

oscillations towards a quasi-stationary value Np,qs. In both cases, the short dashed lines indicate the

starting points of the evolution, i.e., the initial values EI(0) and Np(0). The insets show
∣∣EI(t)−Eqs

∣∣
and |Np(t)−Np,qs| in double logarithmic scale and highlight the algebraic decays ∝ t−α ; the straight

red lines, corresponding to α = 3, have been superimposed for comparison.

quantities is likely to be related to the fact that they belong to the same class defined by expression

(5.37). Therefore, we can reasonably expect this exponent to characterise the whole set, apart from

specific choices of the coefficients ck. In Fig. 5.7 we study the same two quantities for different

values of N and λ , showing that the typical amplitude of the oscillations around the respective

quasi-stationary values scales as λN as long as λ is small enough (i.e., λ . 0.5) and N large

enough (N & 40). Note, however, that the recurrence time t ′R explicitly depends on N, thus curves
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Figure 5.7: Displacement from the stationary value of the Ising energy ∆EI(t) = EI(t)−Eqs and

total number of quasiparticles ∆Np(t) = Np(t)−Np,qs for g0 = 9 and g = 4. (a) and (b) At λ = 0.1,

the different curves correspond to different system sizes N = 60 (black), 80 (red), and 120 (blue). (c)

and (d) For N = 80, different colours stand for λ = 0.1 (black), 0.2 (red), 0.4 (blue). In each inset

the curves of the corresponding main plot are rescaled by 1/(λN), which leads them to collapse to a

single master curve.

at different N can be collapsed one onto the other, as in Fig. 5.7 only until the first recurrence. On

the other hand, this proves that the exponent α of the algebraic decay does not explicitly depend on

N nor on λ . We have also studied the algebraic decay for a slightly different choice of the quench

parameters g0 = 9, g = 4 with respect to our analysis illustrated in Fig. 5.6 and verified that the

exponent does not change.

Figure 5.8 highlights the peculiar fact that, for both the Ising energy EI(t) and the total number

of excitations Np(t), the oscillating behaviour reappears sooner than in the case of the single pop-

ulations (which constitute their building blocks, according to Eq. (5.37)). Moreover, this feature

appears to be entirely due to the fast modes; this means that, while the slow ones are subject to mu-

tual destructive interference up to tR ≈ N/2, the fast ones belonging to different modes k interfere

constructively starting from a different time t ′R which, as we have verified numerically, corresponds

approximately to tR/2 ≈ N/4.
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Figure 5.8: Time evolution of (a) the Ising energy EI(t) and (b) the total number of quasi-particles

Np(t) for N = 60, g0 = 9, g = 4 and λ = 0.1. The red lines illustrate the contribution of the slow modes

to the same quantities. Unexpectedly, oscillations reappear before the recurrence time tR ≈ 30 found

in the case of single populations n̂k; moreover, since this effect does not arise in the slow modes,

it must be entirely due to constructive interference between the fast modes belonging to different

populations (i.e., different ks). In order to better highlight this fact, in the insets we magnify for each

plot the central part.

5.3 Conclusions

In this Chapter we have studied a particular perturbation (Eq. (5.17)) of the quantum Ising chain

which breaks a large number, although not all, of its conservation laws, thereby spoiling its in-

tegrability; in particular, we have focused our attention on the non-equilibrium dynamics after a

composite quench of both the perturbation strength λ and the transverse field g. Opting for a

numerical approach, we benefited from a suitable mapping of this model into the hard-core bo-

son Hamiltonian (5.23), which at the lowest order in the low-density approximation, i.e., for small

quenches and far from the critical point, is exactly solvable. This allows us to describe the approach

towards a quasi-stationary prethermal state of our non-integrable model in terms of the effective

relaxation towards the GGE of an approximately equivalent, integrable one.

The evolution of observables such as the populations n̂k of the fermionic modes display, when

the system size is adequately large, i.e., N & 40, marked plateaux which last up to a recurrence

time tR ≈ N/2. Global, extensive observables such as the total number of excitations Np and the

Ising energy EI show a similar behaviour; their oscillations, however, reappear sooner, at a typical

scale t ′R ≈ N/4. The approach to their quasi-stationary values is, disregarding the superimposed

oscillations, algebraic with exponent α ≈ 3. This value does not explicitly depend on the system

size N nor on the interaction strength λ and seems to be also independent of the values g0 and g
of the transverse magnetic field, as long as they are kept far from the critical point. We argue that

finding the same decay for both quantities reflects the fact that they belong to the same class (5.37)

of observables which can be expressed as linear combinations of the populations 〈n̂k〉.
On the one hand, there is still room for improvement in our numerical approach: as a matter

of fact, it would be interesting to expand our description by accounting for all the other quantities
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which leave the sectors invariant; as we have argued above, this means taking into account every

possible — not necessarily linear — combination of the operators introduced in Eqs. (5.21) and

(5.22). This would allow us to compute some typical quantities related with the spin representa-

tion, such as average and correlations of the transverse magnetisation Mz, and verify whether the

relaxational behaviour shows a different law or a different algebraic exponent. On the other hand,

by construction our numerics is completely based on the pair formalism and cannot thus distin-

guish the features encoded in single fermionic operators. A different, analytical approach would

be in principle required to capture the latter.
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Appendix 5.A The quantum Ising model: from spins to fermions

This Appendix is devoted to providing a brief overview on the diagonalisation procedure of the

Ising Hamiltonian (5.1) and to showing how the main features of the model emerge; for a com-

prehensive discussion of this and the more general case of the XY chain, we refer the reader to

Refs. [124, 125]. In the following, we will consider for simplicity only even values of the number

of sites N and assume periodic boundary conditions at the ends of the chain, i.e., σ̂
µ
N+1 ≡ σ̂

µ
1 ;

note that, as long as one is mainly interested in the bulk behaviour, especially in the thermody-

namic limit, the latter does not constitute a restriction. First of all, we employ a Jordan-Wigner

transformation [126, 127]





σ̂ x
i =

i−1

∏
j=1

(
1−2c†

i ci

)(
c†

i + ci

)
,

σ̂
y
i = i

i−1

∏
j=1

(
1−2c†

i ci

)(
c†

i − ci

)
,

σ̂ z
i = 1−2c†

i ci,

(5.38)

which is defined in terms of fermionic creation (c†
i ) and annihilation (ci) operators. Note that,

thanks to the anticommuting nature of the latter, the relations (5.2) are recovered. The Hamiltonian

thus becomes

H0(g) = −1

2

N−1

∑
i=1

[
c†

i ci+1 + c†
i+1ci + c†

i c†
i+1 + ci+1ci

]
+

+
1

2
UZ2

(
c†

Nc1 + c†
1cN + c†

Nc†
1 + c1cN

)
−g

(
N

2
− N̂

)
,

(5.39)

where N̂ = ∑i c†
i ci denotes the total number operator and UZ2

= eiπN̂ constitutes the parity operator

and coincides with the Z2 transformation already introduced in Sec. 5.1.1 (see, e.g., Eq. (5.10)).

Since [H0(g),UZ2
] = 0, we can conveniently separate the Hilbert space into the two eigensectors

with UZ2
=±1, corresponding to even and odd number of fermions, respectively. Note that the only

part of Eq. (5.39) which is affected by this dichotomy is the boundary term, i.e., the one connecting

the ends of the chain. As a consequence, the choice of the sector translates into different boundary

conditions for the operators; in particular, periodic ones (cN+1 = c1) are obtained in the odd sector,

whereas anti-periodic ones (cN+1 = −c1) appear in the even one [117]. Thus, one can employ a

unified notation

H0(g) =
1+UZ2

2
HE

0 (g)+
1−UZ2

2
HO

0 (g), (5.40)

H
E/O
0 = −1

2

N

∑
i=1

[
c†

i ci+1 + c†
i+1ci + c†

i c†
i+1 + ci+1ci

]
−g

(
N

2
− N̂

)
, (5.41)

120



Relaxation in closed quantum systems

where the appropriate boundary conditions are understood. We focus now on the even sector and

apply an antiperiodic, discrete Fourier transform




c j = 1√
N

N−1

∑
p=0

e−
2πi
N j(p+ 1

2) cp,

c†
j = 1√

N

N−1

∑
p=0

e
2πi
N j(p+ 1

2) c†
p

(5.42)

to HE
0 , which yields

HE
0 = −

N−1

∑
p=0

[
cos

(
2π

N

(
p+

1

2

))
c†

pcp +

− i

2
sin

(
2π

N

(
p+

1

2

))
(c†

pc†
−p−1 − c−p−1cp)

]
−g

(
N

2
− N̂

)
.

(5.43)

As long as one is interested in the behaviour of the system in the thermodynamic limit, it is possible

to define a continuum variable κp = 2π p/N and neglect the addends 1/2 in the expression above.

Since we are interested instead in an exact, numerical approach, we introduce a new momentum

k = N−1−2p, running only over odd integers, from −N +1 to N−1; clearly, the correspondence

between k and p momenta is one to one (modulo N). Correspondingly, we define new operators
{

dk ≡ c N−1−k
2

= cp,

d−k ≡ c N−1+k
2

= c−p−1.
(5.44)

which are obviously still fermionic in nature; the even-sector Hamiltonian is thereby recast in the

form

HE
0 =

N−1

∑
k=1−N

odd

[
cos
(π

N
k
)

d†
k dk +

i

2
sin
(π

N
k
)

(d†
k d†

−k −d−kdk)

]
−g

(
N

2
− N̂

)
, (5.45)

and it is quite easy to show that

N̂ ≡
N

∑
p=1

c†
pcp =

N−1

∑
k=1−N

odd

d†
k dk. (5.46)

We now introduce a Nambu spinor notation

ξk =

(
dk

d†
−k

)
and ξ †

k =

(
d†

k
d−k

)⊺

, (5.47)

where ⊺ denotes transposition. This allows us to halve the momenta, by taking effectively into ac-

count only positive ones, and to give an even more compact expression for the even-sector Hamil-

tonian: in fact, by considering that ξ †
k σ zξk = d†

k dk −d−kd†
−k = d†

k dk +d†
−kd−k −1, where we have

made use of the anticommutation relations, and that ξ †
k σ yξk = −i(d†

k d†
−k +d−kdk), one finds

HE
0 =

N−1

∑
k=1
odd

ξ †
k Mkξk, (5.48)
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where

Mk =
(

g+ cos
(π

N
k
))

σ z −
(

sin
(π

N
k
))

σ y (5.49)

is a collection of 2×2 matrices in spinorial space. The Hamiltonian (5.48) represents a quadratic

theory of fermions; therefore, it can be diagonalised by a suitable Bogoliubov rotation which rede-

fines the operators dk,d
†
k in terms of new ones γk, γ†

k , while preserving the canonical anticommu-

tation relations:

ψk =

(
γk

γ†
−k

)
= eiθkσ x

ξk, ψ†
k =

(
γk

γ†
−k

)⊺

= ξ †
k e−iθkσ x

, (5.50)

where the Bogoliubov angles θk = −θ−k = θk(g) are defined by the relations [13]

cos(2θk) =
g+ cos

(
π
N k
)

εk
and sin(2θk) =

sin
(

π
N k
)

εk
, (5.51)

with ε2
k =

(
g+ cos

(
π
N k
))2

+
(
sin
(

π
N k
))2

the dispersion relation already encountered in Eq. (5.8).

Note that the definition of the new spinors depends on the specific value of g. The result of this

transformation is HE
0 = ∑

k>0

ψ†
k Dkψk, with

Dk = eiθkσ x
Mke−iθkσ x

= eiθkσ x
εkσze

iθkσ x
= εkσ z, (5.52)

where we used for the second equality the fact that, according to definitions (5.51), the matrix in

Eq. (5.49) can be rewritten as

Mk = εk (cos(2θk)σ z − sin(2θk)σ y) = εkσ z (cos(2θk)+ isin(2θk)σ x) = εkσ ze2iθkσ x
, (5.53)

and for the third one the identity σ µeασ x
= e−ασ x

σ µ , which holds for µ = y,z for any value of the

coefficient α . Thus, we obtain

HE
0 (g) =

N−1

∑
k=1
odd

εkψ†
k σ zψk, (5.54)

which is exactly the Hamiltonian in Eq. (5.5). The lowest energy state coincides with the vacuum

|0〉γ , i.e., the state with no particles, the corresponding eigenvalue being EE
0 = −∑k εk. Since the

Bogoliubov rotation in this case is very simple, as it connects only modes at opposite momenta ±k,

it is fairly easy to relate it to the vacuum |0〉d in the basis of the d fermions: it is in fact sufficient

to solve the problem separately in each subsector. Employing the same notation introduced at the

beginning of Sec. 5.1.3 one finds

γk | /0k〉γ =
(

cosθkdk + isinθkd†
−k

)
(a1 | /0k〉d +a2 |k〉d +a3 |−k〉d +a4 |k,−k〉d) =

= a2 cosθk | /0k〉d +(a4 cosθk + ia1 sinθk) |−k〉d + ia2 sinθk |−k,k〉d = 0,
(5.55)

which implies a2 = 0 and a4 = −ia1 tanθk; by applying instead γ−k one obtains a3 = 0, which

completely determines the state. Overall, this yields

|0〉γ =




N−1

∏
q=1
odd

(
1

1+ tan2 θq

) 1
2




N−1

∏
q=1
odd

(
1− i tanθq d†

q d†
−q

)
|0〉d , (5.56)
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where the normalisation inside the square brackets ensures that the vector has unit norm γ 〈0|0〉γ =
1. When considering quenches g0 → g starting from the ground state, it is often convenient to

relate the vacuum of the theory with transverse field g0 with the corresponding state for g; this can

be done by noting that, since
(

d†
qd†

−q

)2

= 0,

(
1− iad†

qd†
−q

)(
1− ibd†

qd†
−q

)
=
(
1− i(a+b)d†

qd†
−q

)
(5.57)

for any choice of the coefficients a and b. Thus, by recalling that the d fermions do not depend on

the specific value of the magnetic field, one can write

|0〉γ(g0)
= N

N−1

∏
q=1
odd

(
1− i

(
tanθ0,q − tanθq

)
d†

q d†
−q

)
|0〉γ(g) , (5.58)

where we have introduced the shorthand notation θq = θq(g), θ0,q = θq(g0); the factor N is fixed

in such a way to preserve the normalisation, i.e.,

N =




N−1

∏
q=1
odd

(
1+ tan2 θq

1+ tan2 θ0,q

) 1
2


 . (5.59)

By re-expressing d†
q d†

−q as

d†
q d†

−q =
(

isinθqγ−q + cosθqγ†
q

) (
−isinθqγq + cosθqγ†

−q

)
, (5.60)

with the shorthand notation γq ≡ γq(g), we obtain

|0〉γ(g0)
= N ′

N−1

∏
q=1
odd

(
1− i tan

(
θ0,q −θq

)
γ†

q γ†
−q

)
|0〉γ(g) , (5.61)

where

N ′ = N
N−1

∏
q=1
odd

1+ tanθ0,q tanθq

1+ tan2 θq
=

N−1

∏
q=1
odd

(
1

1+ tan2
(
θq −θ0,q

)
) 1

2

. (5.62)

Note that this peculiar, factorised structure of the quenched state produces an interesting conse-

quence: any relevant observable O , which is constructed as a combination of products of the

elementary creation and annihilation operators γ
(†)
k can be associated to the set of momenta

K (O) =
{

k | γ
(†)
k or γ

(†)
−k appears in the definition of O

}
(5.63)

which actually appear in its definition. Then, for two generic observables O1 and O2, as long as

K (O1)∩K (O2) = /0, their averages factorise

γ(g0)
〈0|O1O2 |0〉γ(g0)

= γ(g0)
〈0|O1 |0〉γ(g0) γ(g0)

〈0|O2 |0〉γ(g0)
, (5.64)
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independently of the parameters g0, g of the quench.

The Hamiltonian of the odd sector HO
0 can be diagonalised with a similar procedure, which

yields

HO
0 (g) = (g−1)

(
γ†

NγN − 1

2

)
+(g+1)

(
γ†

0 γ0 −
1

2

)
+

N−2

∑
q=2
even

εqψ†
q σ zψq; (5.65)

the main differences with HE
0 are that here the sum runs over even values of the momenta and that

the energy of the N-th elementary excitation is positive only for g > 1; for g < 1 the creation of a

quasi-particle is actually an energetically favourable process. Taking into account that, in the odd

sector, at least one particle must be present, the lowest energy state corresponds to the one in which

only the N-th mode is populated, and the corresponding energy is

EO
0 =

1

2
(g−1)− 1

2
(g+1)−

N−2

∑
q=2
even

εq. (5.66)

It is possible to prove that EE
0 < EO

0 for any choice of g and thus conclude that the true ground state

lies always in the even sector. Nonetheless, in the thermodynamic limit these two energies coincide

for every g ≤ 1, whereas they still differ by g− 1 for g > 1. This feature gives rise to a quantum

phase transition, allowing the longitudinal magnetisation 〈σ̂ x
i 〉 to take non-vanishing values in the

ferromagnetic phase g < 1. In fact, since σ̂ x
i is an odd operator under the Z2 symmetry, it cannot

connect states with the same parity. Only in the case of degeneracy between the even and odd

sectors can it display a non-zero average.

5.A.1 The interaction term

In the following we relate the integrability-breaking term introduced in the spin formalism (5.12)

to its corresponding expression in the fermionic one (5.17). The total transverse magnetisation

explicitly appears in H0, thus one can directly extract its fermionic representation from the last

term of Eq. (5.43):

Mz = N̂ − N

2
=

N−1

∑
k=1
odd

ξ †
k σ zξk. (5.67)

Applying the Bogoliubov rotation (5.50) we readily find Mz =
N−1

∑
k=1
odd

ψ†
k σ̃ z

k ψk, with

σ̃ z
k = cos(2θk)σ

z + sin(2θk)σ
y =

(
cos(2θk) −isin(2θk)
isin(2θk) −cos(2θk)

)
, (5.68)

which yields, once rewritten in “scalar” form,

Mz = −N

2
+

N−1

∑
k=1
odd

[
cos(2θk)(n̂k + n̂−k)− isin(2θk)

(
γ†

k γ†
−k − γ−kγk

)]
, (5.69)
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with n̂k = γ†
k γk the populations introduced via Eq. (5.9). Now, by applying the evolution in the

Heisenberg picture ∂tγk(t) = i
[
HE

0 ,γk(t)
]
= −iεkγk(t) and the identity εk = ε−k, one finds for the

magnetisation at time t after the quench

Mz(t) = −N

2
+

N−1

∑
k=1
odd

[
cos(2θk)(n̂k + n̂−k)− isin(2θk)

(
e2iεkt γ†

k γ†
−k − e−2iεkt γ−kγk

)]
. (5.70)

Since the one-particle spectrum εk does not include null values in the even sector (actually, with the

exception of the critical point g = 1 in the thermodynamic limit), upon performing the long-time

average (5.13) all oscillating terms vanish, leaving behind

Mz = −N

2
+

N−1

∑
k=1
odd

cos(2θk)(n̂k + n̂−k) ≡
N−1

∑
k=1
odd

cos(2θk)ψ†
k σ zψk, (5.71)

which in turn implies

Mz −Mz = −i
N−1

∑
k=1
odd

[
sin(2θk)

(
γ†

k γ†
−k − γ−kγk

)]
≡

N−1

∑
k=1
odd

sin(2θk)ψ†
k σ yψk. (5.72)

The expression above coincides with the one reported in Eq. (5.17) inside the brackets. Now, using

the identity [AB,C] = A [B,C]+ [A,C]B, along with the relations
[
γ†

k , n̂k

]
= −γ†

k ,
[
γk , n̂k

]
= γk, (5.73)

it is not too difficult to prove that, for every fixed k,

[
Mz −Mz, n̂k

]
=− isin(2θk)

([
γ†

k , n̂k

]
γ†
−k − γ−k

[
γk , n̂k

])
= isin(2θk)

(
γ†

k γ†
−k + γ−kγk

)
,

(5.74)

from which one can reconstruct the result in Eq. (5.19).

Appendix 5.B The mapping to hard-core bosons

Here we show in detail how the fermionic Hamiltonian (5.18) can be cast in the bosonic-like

expression of Eq. (5.23). Expanding the spinorial products we find

H =
N−1

∑
k=1
odd

εk (n̂k + n̂−k −1)+
λ

N


i

N−1

∑
k=1
odd

sin(2θk)
(

γ†
k γ†

−k − γ−kγk

)



2

=
N−1

∑
k=1
odd

εk (n̂k + n̂−k −1)+

− λ

N

N−1

∑
k,q=1
odd

[
sin(2θk)sin

(
2θq
)(

b†
kb†

q +bkbq −b†
kbq −bkb†

q

)]
,

(5.75)
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having introduced in the expression above the pair operators defined in Eq. (5.21). Note that it is

possible to exchange k ↔ q in the last term, as the coefficient in front

α̃kq =
λ

N
sin(2θk)sin

(
2θq
)

(5.76)

is symmetric. Using the commutation relations
[
bq,b

†
k

]
= (1− n̂k − n̂−k)δkq, we find

H =
N−1

∑
k=1
odd

(
εk −

λ

N
sin2 (2θk)

)
(n̂k + n̂−k −1)−

N−1

∑
k,q=1
odd

α̃kq

(
b†

kb†
q +bkbq −2b†

kbq

)
. (5.77)

Now we make use of the fermionic nature of the populations n̂k = n̂2
k to rewrite

n̂k + n̂−k = n̂2
k + n̂2

−k = n̂2
k + n̂2

−k −2n̂kn̂−k +2n̂kn̂−k = (n̂k − n̂−k)
2 +2b†

kbk, (5.78)

where we have used the identity in Eq. (5.22) to rewrite the last term; inside the brackets we

recognise the constant of motion Ik = n̂k − n̂−k. Applying the equality above to the first part of the

Hamiltonian yields

H =
N−1

∑
k=1
odd

(
εk −

λ

N
sin2 (2θk)

)(
I2
k −1

)
−

N−1

∑
k,q=1
odd

α̃kq

(
b†

kb†
q +bkbq

)
+

+
N−1

∑
k,q=1
odd

2

(
α̃kq +

(
εk −

λ

N
sin2 (2θk)

)
δkq

)
b†

kbq.

(5.79)

Note that α̃kk = (λ/N)sin2 (2θk); we define now αkq = α̃kq

(
1−δkq

)
, which coincides with the

one appearing in Eq. (5.24) and notice that we can perform the substitution α̃kq → αkq in the

second sum of Eq. (5.79), since for k = q the corresponding operators identically vanish. Thus, the

Hamiltonian becomes

H =
N−1

∑
k=1
odd

(
εk −

λ

N
sin2 (2θk)

)(
I2
k −1

)
−

N−1

∑
k,q=1
odd

αkq

(
b†

kb†
q +bkbq

)
+

N−1

∑
k,q=1
odd

2
(
αkq + εkδkq

)
b†

kbq,

(5.80)

which, once we define βkq = εkδkq +αkq, yields the one reported in Eq. (5.23).

Appendix 5.C The Holstein-Primakoff transformation and its

truncation

Hard-core bosons constitute a typical feature of S = 1/2 spin chains: as a matter of fact, by intro-

ducing the operators

σ̂±
i =

1

2

(
σ x

i ±σ
y
i

)
, (5.81)
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where σ̂
µ
i represent the spin operators already encountered at the beginning of Sec. 5.1.1, the

identification

σ̂+
i ↔ b†

i , σ̂−
i ↔ bi, σ̂ z

i ↔ 2b†
i bi −1, (5.82)

naturally ensues, where b†
i and bi are creation and annihilation operators for hard-core bosons. The

Hilbert space can be reinterpreted accordingly by setting the correspondence |↑i〉 ↔ |1〉, |↓i〉 ↔ |0〉
between the spin and the particle states. The Holstein-Primakoff transformation [123] is meant

to reproduce the hard-core constraint by means of a suitable combination of standard bosonic

operators, therefore providing an alternative picture in which approximations can be based on

considerations on the quasi-particles’ densities and their fluctuations, rather than on the interaction

strength. Here we shall focus, for simplicity, on a single mode b, b†, which is recast in the form

b =

√
1− N̂ a, b† = a†

√
1− N̂, (5.83)

with a, a† bosonic operators and N̂ = a†a. The Hilbert space is enlarged accordingly, from the

two-dimensional space spanned by |0〉 and |1〉, to the infinite-dimensional one generated by the

usual bosonic number basis {|n〉}n∈N. On the other hand, the latter is split into two sectors that

cannot be connected by b and b†, which respectively include all the “physical” states {|n〉}n=0,1
and all the “unphysical” ones {|n〉}n>1. This represents a relevant aspect, as the anticommutation

relations {
b,b†

}
= 1+2N̂ −2N̂2 = 1+2N̂(1− N̂) (5.84)

are not correctly reproduced at the operatorial level; however, on both physical states (and, thus,

in the whole physical subspace) one finds
{

b,b†
}
≡ 1, thereby recovering the hard-core nature.

When expanding the square roots in Eq. (5.83) as power series, and approximating the b operators

by truncation at any finite order, the separation between the physical and unphysical subspaces

becomes weaker. This feature emerges quite clearly when considering the simplest case, i.e.,

b(†) ≈ a(†); within this approximation, we find in fact that b† |1〉= |2〉, which connects the physical

state |1〉 with the unphysical one |2〉. Consequently, the regime of validity of such an approximation

is determined by the overlap of the state under study with the physical basis: the more it resembles

its projection onto the physical space, the more accurate the result is. We shall now briefly discuss

the implications that the truncation casts on the populations n̂ = b†b. First of all, we notice that

n̂ = a†(1− N̂)a = a†a−a†a(N̂ −1) = 2N̂ − N̂2 = 1−
(

N̂ −1
)2

, (5.85)

which implies that, while the constraint 〈n̂〉 ≤ 1 is preserved, the lower bound 〈n̂〉 ≥ 0, which gives

physical sense to the particle interpretation, holds only in the physical sector, whereas one finds

〈n̂〉 < 0 in the unphysical one.

In Sec. 5.2, we extensively used the approximation n̂ ≈ N̂. Once again, this is valid in the

physical sector: in fact, if we restrict the states to just |0〉 and |1〉, we can see that

N̂m |0〉 = 0 and N̂m |1〉 = |1〉 (5.86)

for every (integer) m. Thus, as long as the system is still lying approximately in the physical space,

we can approximate N̂m ≈ N̂, which renders n̂ ≈ N̂. Conversely, it is true that if, for any integer
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m ≥ 2,
〈

N̂m
〉
≈
〈

N̂
〉

, i.e.,
〈

N̂m
〉
−
〈

N̂
〉

〈
N̂
〉 ≪ 1, (5.87)

then the truncation holds, as we prove below. Consider in fact a generic normalised state |ψ〉 =

∑n an |n〉; according to the discussion above, the latter can be considered “approximately physical”

as long as ∑n>1 |an|2 ≪ 1. Calculating the averages in Eq. (5.87) on this state one finds

∞

∑
n=0

|an|2 (nm −n) ≪
∞

∑
n=0

|an|2 n. (5.88)

The first two addends of the sum in the l.h.s. and the first one in the r.h.s. vanish, so that we can

rewrite the expression above as

∞

∑
n=2

|an|2 (nm −n) ≪ |a1|2 +
∞

∑
n=2

|an|2 n, (5.89)

which is equivalent to
∞

∑
n=2

|an|2 (nm −2n) ≪ |a1|2 . (5.90)

Now, we note that if m > 2, then the expression nm −2n is always greater than 1 for n ≥ 2, which

allows us to conclude that

∞

∑
n=2

|an|2 ≤
∞

∑
n=2

|an|2 (nm −2n) ≪ |a1|2 ≤
∞

∑
n=0

|an|2 = 1, (5.91)

proving that the state is indeed an “almost physical” one. For m = 2 we rewrite Eq. (5.89) as

2 |a2|2 +
∞

∑
n=3

|an|2
(
n2 −2n

)
≪ |a1|2 +2 |a2|2 . (5.92)

As the sum appearing in the l.h.s. is positive, this implies in particular 2 |a2|2 ≪ |a1|2 + 2 |a2|2,

which can be true only if |a2|2 ≪|a1|2; consequently, we can effectively expunge a2 from Eq. (5.92)

and the rest of the proof follows as in the case m > 2 treated above.

From the discussion above, we understand that, although the truncation is sometimes referred

to as “low-density approximation”, it does not necessarily require, as that name would suggest,

that
〈

N̂
〉
≪ 1. Furthermore, the latter does not even represent a sufficient condition: take for

instance an = N /(n2 +1), with N = 90/π4 ≈ 0.92 a suitable normalisation factor. This produces〈
N̂
〉
≈ 0.11, which is quite small, but also

〈
N̂2
〉
≈ 0.3, implying 〈n̂〉 ≈ −0.08, which is clearly

outside of the physical range On the other hand,
〈

N̂
〉

> 1 constitutes a clear sign that unphysical

states are populated; therefore, it is still safer to start from initial conditions — which must be

defined entirely within the physical sector — that satisfy
〈

N̂
〉
≪ 1. This condition thus represents

a physically reasonable assumption, though not a mathematically precise one.
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Appendix 5.D Diagonalisation procedure and calculation of the

observables

The Bogoliubov rotation in Eq. (5.33), which is meant to diagonalise H ′, constitutes a change of

basis and can therefore be expressed by a suitable unitary transformation. On the other hand, its

implementation (5.33) is not realised via a unitary matrix. As a matter of fact, for the commutation

relations to be preserved, the N
2
× N

2
matrices A and B must obey the identities

AA† −BB† = 1, AB⊺−BA⊺ = 0, (5.93)

which define a symplectic matrix (see App. 5.D.1)

M =

(
A B
B∗ A∗

)
, (5.94)

acting as M~η =~a on the vectors

~η =
(

η1,η2, . . . ,η N
2
,η†

1 ,η†
2 , . . . ,η†

N
2

)
,

~a =
(

a1,a2, . . . ,a N
2
,a†

1,a
†
2, . . . ,a

†
N
2

)
.

(5.95)

The diagonalisation procedure reported in App. 5.D.1, which makes use of the constructive proof

of Williamson’s theorem [128], is exact in the sense that no approximation is involved other than

the low-density one already employed to write down H ′ in Eq. (5.32). Single-particle eigenvalues

and eigenvectors can therefore be obtained to any desired accuracy (e.g., for the data used to draw

Fig. 5.2, to the 50-th digit). However, this is still not enough for studying the dynamics, which in

general requires also to rewrite the initial state |0〉γ(g0)
in terms of the new Fock basis corresponding

to the operators η†
k , ηk. Note that even though in the a-operators basis the state is a combination

involving, for each mode k, only 0-particle and 1-particle states, this is not generically true in the

new basis. This implies the necessity to approximate it with its projection on a finite subspace,

thereby spoiling the exactness of the diagonalisation. On the other hand, since the system is free,

this obstacle can be conveniently overcome by using the Heisenberg picture for the evolution,

instead of the Schrödinger one: we consider for instance a population n̂k and introduce the inverse

transformation

M−1 =

(
C D
D∗ C∗

)
, (5.96)

which maps the η , η† formalism back to the one built with a, a†: M−1~a = ~η . Note that, being in

a sector with Ik = 0, we are authorised to treat the operators n̂±k as if they were one and the same;

thus, making use of the identity (5.22), we can rewrite

n̂k(t) = n̂2
k(t) = n̂k(t)n̂−k(t) = b†

k(t)bk(t) ≈ a†
k(t)ak(t) (5.97)

for any time t after the quench, as long as the last approximation holds (we recall that the last one

is an equality at t = 0). Using the change of basis (5.33) we find
〈

a†
k(t)ak(t)

〉
= ∑

q1,q2

{
2Re

[
A∗

kq1
Bkq2

〈
η†

q1
(t)η†

q2
(t)
〉]

+
[
A∗

kq1
Akq2

+Bkq1
B∗

kq2

]〈
η†

q1
(t)ηq2

(t)
〉}

.

(5.98)

129



Relaxation in closed quantum systems

We now make use of the fact that the system is free for explicitly determining the temporal evolu-

tion of the operators involved: according to Eq. (5.34) we have

η†
q (t) = eiEqtη†

q and ηq(t) = e−iEqtηq. (5.99)

Consequently, the expectations in Eq. (5.98) oscillate as

〈
η†

q1
(t)η†

q2
(t)
〉

=
(

Z†
1

)
q1q2

ei(Eq1
+Eq2)t ,

〈
η†

q1
(t)ηq2

(t)
〉

= (Z0)q1q2
ei(Eq1

−Eq2)t ,
(5.100)

where we have introduced the matrices encoding all the initial values for operators quadratic in the

bosons Z0,q1q2
=
〈
η†

q1
ηq2

〉
and Z1,q1q2

=
〈
ηq1

ηq2

〉
. This makes apparent the separation between

“fast” and “slow” modes already discussed in Sec. 5.2 and highlighted in Fig. 5.5(a). We also

introduce the corresponding, analytically-known matrices

(W0)k1k2
=
〈

a†
k1

ak2

〉
= δk1k2

sin2 (∆θk1
)+

(
1−δk1k2

4

)
sin(∆θk1

)sin(∆θk2
) ,

(W1)k1k2
=
〈
ak1

ak2

〉
= −

(
1−δk1k2

4

)
sin(∆θk1

)sin(∆θk2
) ,

(5.101)

where ∆θk = θk(g)− θk(g0). In the N ×N block representation introduced in Eq. (5.94) these

matrices can be reorganised as

Z = 〈~η ⊗~η〉 =

(
Z1 1+Z⊺

0

Z0 Z†
1

)
, W = 〈~a⊗~a〉 =

(
W1 1+W0

W0 W1

)
, (5.102)

where we used the properties W0 = W⊺
0 and W1 = W †

1 which can be easily inferred from their

explicit forms (5.101). Exploiting the inverse change of basis (5.96) we finally find

Z =
〈
M−1~a⊗M−1~a

〉
= M−1W

(
M−1

)⊺
, (5.103)

which allows an exact numerical calculation of populations, in the sense described above. Unfor-

tunately, this construction, which relies on the Heisenberg picture has the disadvantage of being

specific to the operator chosen; for example, for a quartic one it would be necessary to calculate

every possible entry of the average 〈~a⊗~a⊗~a⊗~a〉, which denotes a 4-tensor of dimension (N/2)4.

On the other hand, once a specific tensor

W (m) ≡
〈

~a⊗~a⊗ . . .⊗~a︸ ︷︷ ︸
m times

〉
(5.104)

has been obtained, the corresponding dynamical expectation

Ck1...km(t1, . . . tm) ≡
〈
(~a)k1

(t1)⊗ (~a)k2
(t2)⊗ . . .⊗ (~a)km

(tm)
〉

(5.105)
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can be in principle computed for any choice of the times by applying the formula

Ck1...km(t1, . . . tm) =
(
MU (t1)M

−1
)

k1k′1
. . .
(
MU (tm)M−1

)
kmk′m

W
(m)

k′1...k
′
m
. (5.106)

Here U (t) represents the evolution matrix of the diagonal operator η , η† and can be written as

U (t) = e−2iE t , with E =

(
E 0

0 −E

)
(5.107)

and E the diagonal matrix 2E = diag
{

E1,E2, . . .E N
2

}
, where {Ei}i is the one-particle spectrum.

We emphasize that, for any fixed choice of the time coordinates, the only operation left is the con-

traction of the indices k′i in Eq. (5.106), which just involves (N/2)m sums, and is thus of polynomial

complexity.

5.D.1 Williamson’s theorem

The Williamson’s theorem [128] states that a symmetric, positive-definite, 2n× 2n matrix J can

be always brought into diagonal form by a symplectic transformation and that the corresponding

spectrum is positive and doubly-degenerate. The proof is constructive and shows how to translate

the problem into a standard diagonalisation one; since the algorithm we have employed follows

its main steps, we will report it here. We start by recalling that a 2n× 2n matrix S is said to be

symplectic (S ∈ Sp(2n,R)) if

SΩS⊺ = Ω with Ω = −Ω⊺ =

(
0 1n

−1n 0

)
, (5.108)

where 1n is the n×n identity. As we have mentioned at the beginning of App. 5.D, the Bogoliubov

rotation (5.94) defines in general a complex symplectic matrix, whereas the hypothesis here is that

it is real. In order to avoid this issue, we employ the unitary transformation

~r = U~a, ~ρ = U~η , (5.109)

with

U =
1√
2

(
1n 1n

−i1n i1n

)
, (5.110)

which represents (apart from a multiplicative factor) the usual transformation from ladder operators

ak, a†
k to “position” an “momentum” ones

rk =
a†

k +ak√
2

, pk =
i(a†

k −ak)√
2

, ~r = (r1, . . . ,r N
2
, p1, . . . , p N

2
),

ρk =
η†

k +ηk√
2

, πk =
i(η†

k −ηk)√
2

, ~ρ = (ρ1, . . . ,ρ N
2
,π1, . . . ,π N

2
),

(5.111)
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obeying
[
rk, pq

]
=
[
ρk,πq

]
= iδkq. The change of basis

S = UMU† =
1

2

(
A+B+B∗ +A∗ i(A−B+B∗−A∗)

i(B∗ +A∗−A−B) (A−B−B∗ +A∗)

)
=

(
Re(A+B) Im(B−A)
Im(A+B) Re(A−B)

)

(5.112)

which maps~ρ in~r is now evidently real. To see that M is symplectic we simply apply the definition

(5.108) to its form (5.94), which yields

MΩM⊺ =

(
A B
B∗ A∗

)(
0 1n

−1n 0

)(
A⊺ B†

B⊺ A†

)
=

=

(
AB⊺−BA⊺ AA† −BB†

−
(
AA† −BB†

)⊺
(AB⊺−BA⊺)†

)
=

(
0 1n

−1n 0

)
≡ Ω,

(5.113)

where for the second to last equality we have used the identities (5.93). This implies that the

matrix S preserves Ω′ = UΩU⊺ = iΩ, which is tantamount to say that it is symplectic too. We now

proceed to show how this matrix can be determined. Using the canonical commutation relations,

we rewrite the Hamiltonian H ′ in Eq. (5.32) as

H ′ =~a†J′~a− ∑
k1,k2

δk1k2
βk1k2

with J′ =

(
β −α

−α β

)
, (5.114)

where α and β are the n× n matrices defined by (5.24) with n = N/2 (we recall that we have

assumed N to be even). The corresponding form in coordinate space (r, p) is

J = UJ′U† =

(
β −α 0

0 β +α

)
. (5.115)

Note that (β −α)k1k2
= δk1k2

εk1
, so that half of this matrix is diagonal and displays the unperturbed

eigenvalues εk ≥ |g−1|, which makes it positive definite (if not at the critical point). The other

half is given by

(β +α)k1k2
= εk1

δk1k2
+2

λ

N
(1−δk1k2

)sin(2θk1
)sin(2θk2

) (5.116)

and we can safely assume that, as long as g is kept far from gc = 1 and λ is not too large, also this

part is positive definite and thus J satisfies all the requirements of the theorem. This implies that

both the inverse J−1 and its “square root” J−
1
2 exist and are symmetric, positive-definite matrices.

We now define K = J−
1
2 ΩJ−

1
2 , which is skew-symmetric and invertible due to the properties of Ω

(see Eq. (5.108)). Therefore, by the spectral theorem, there exist an orthogonal matrix R∈O(2n,R)
which performs the block diagonalisation

R⊺KR =

(
0 E−1

−E−1 0

)
, (5.117)
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where E−1 is a positive-definite, diagonal n× n matrix (which, as we are going to show, coin-

cides with the one appearing in Eq. (5.107)). Its positivity is guaranteed by the fact that one can

always exchange a negative diagonal entry with its opposite lying in the opposite block −E−1

by exchanging the two vectors identified by the corresponding row and column via an orthogonal

transformation. Being positive-definite, its inverse square root E
1
2 exists and we can use it to define

the diagonal 2n×2n matrices

D =

(
E

1
2 0

0 E
1
2

)
and S = J−

1
2 RD. (5.118)

The last one is exactly the symplectic transformation we were looking for; in fact,

S⊺ΩS =
(

DR⊺J−
1
2

)
Ω

(
J−

1
2 RD

)
= DR⊺KRD = Ω, (5.119)

where we applied the definition in Eq. (5.117) and used the fact that the transposed of a symplectic

matrix is still symplectic, and

S⊺JS =
(

DR⊺J−
1
2

)
J
(

J−
1
2 RD

)
= DR⊺RD = D2, (5.120)

where we used the fact that R is orthogonal, i.e., R⊺ = R−1. Thereby, we see that the Hamiltonian

H ′ in Eq. (5.114) is recast into the form

H ′ =~ρ⊺D2~ρ − tr{β} =~ρ⊺

(
E 0

0 E

)
~ρ −

N−1

∑
q=1
odd

εq (5.121)

which, applying the transformation U†D2U to retrieve the representation in terms of particle cre-

ation and annihilation operators and calling
{

Eq/2
}

q
the spectrum of E, readily yields

H ′ =~η†

(
E 0

0 E

)
~η −

N−1

∑
q=1
odd

εq =
N−1

∑
q=1
odd

Eq

2

(
η†

q ηq +ηqη†
q

)
−

N−1

∑
q=1
odd

εq, (5.122)

which corresponds to Eq. (5.34) with C = ∑q

(
Eq/2− εq

)
.
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