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Preface

In the last decades the theory of spin glasses has been developed within the
framework of statistical physics. The obtained results showed to be novel
not only from the physical point of view, but they have brought also new
mathematical techniques and algorithmic approaches. Indeed, the problem
of finding ground state of a spin glass is (in general) NP-complete.

The methods that were found brought new ideas to the field of Combina-
torial Optimization, and on the other side, the similar methods of Combina-
torial Optimization, were applied in physical systems. As it happened with
the Monte Carlo sampling and the Simulated Annealing, also the novel Cav-
ity Method lead to algorithms that are open to wide use in various fields of
research. The Cavity Method shows to be equivalent to Bethe Approximation
in its most symmetric version, and the derived algorithm is equivalent to the
Belief Propagation, an inference method used widely for example in the field
of Pattern Recognition.

The Cavity Method in a less symmetric situation, when one has to consider
correctly the clustering of the configuration space, lead to a novel message-
passing algorithm—the Survey Propagation.

The class of Message-Passing algorithms, among which both the Belief
Propagation and the Survey Propagation belong, has found its application
as Inference Algorithms in many engineering fields. Among others let us
mention the Low—Density Parity—Check Codes, that are widely used as Error—
Correcting Codes for communication over noisy channels.

In the first part of this work we have compared efficiency of the Survey
Propagation Algorithm and of standard heuristic algorithms in the case of
the random-MAX-K-SAT problem. The results showed that the algorithms
perform similarly in the regions where the clustering of configuration space
does not appear, but that the Survey Propagation finds much better solutions
to the optimization problem in the critical region where one has to consider
existence of many ergodic components explicitly.

The second part of the thesis targets the problem of protein structure and
flexibility. In many proteins the mobility of certain regions and rigidity of
other regions of their structure is crucial for their function or interaction with
other cellular elements. Our simple model tries to point out the flexible re-
gions from the knowledge of native 3D-structure of the protein. The problem
is mapped to a spin glass model which is successfully solved by the Believe
Propagation algorithm.
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Chapter 1

Introduction

We would like to show algorithmic approaches inspired by methods of statis-
tical physics and to show their efficiency when compared with the standard
methods of combinatorial optimization.

In the first part of the thesis we will study satisfiability problem, the first—
to—know NP-complete problem. The latter part will consider the structure
and flexibility of proteins.

Although the two problems, one from the field of combinatorial optimiza-
tion and the other from the field of theoretical biophysics, do not seem to be
related straightforwardly, they share the property of being defined on a dilute
graph and hence being in general solvable by methods of modern statistical
physics in conjuncture with algorithms borrowed from the field of combina-
torial optimization. Furthermore, both of them can be reformulated as con-
strained satisfaction problems.

In our work we apply general algorithms to solve the two problems and
we derive new algorithms specifically adapted for them. We also compare
the acquired results with outcome of well established methods.

In computer science the field of combinatorial optimization [15] deals with
the general issue of classifying the computational complexity (“hardness”) of
decision or optimization problems and of designing search algorithms. Simi-
larly to statistical physics models, a generic combinatorial optimization prob-
lem is composed of many discrete variables—e.g., Boolean variables, finite
sets of colours, or Ising spins and p-state spins—which interact through con-
straints typically involving a small number of variables, that in turn sum up
to give the global cost-energy function.

1.1 The Complexity Theory

Before we start with devising the methods to solve the problems, it will be
useful to summarize the main results of the complexity theory and to state
the difference between the worst-case and the average—case complexity.



To start we will define what we mean by the problem, its instance, solution
and algorithmic complexity.

By a problem we mean any general question to be answered. In the case
of our work the questions will be: Is there any satisfying assignment for the given
logical formula?, What is the smallest number of violated clauses of that formula?,
and in the part where we will speak about proteins it will be the question How
flexible is a given three-dimensional structure?.

Already when asking these questions, we have separated implicitly the
problem and its instance; Instance is the specific realization of the problem
which is defined by a concrete specification of all free parameters of the prob-
lem. Hence we ask: Is there a satisfying assignment for the formula A?, What is
the smallest number of violated clauses in the formula B?, and finally What is the
number of floppy modes in the structure C?. Here A, B, and C define instances of
three different problems.

It is our nature to try to answer any question posed. The answer to a
question we will call a solution. Yet there are various solutions we can give.
To the so called decision problems we answer only yes or no. An example would
be the question Is there a satisfiable assignment?. To other questions we have to
give a more detailed answer. Thus the solution of What is the smallest number of
violated clauses? will be a number. The same is true for the question that asks
for the number of floppy modes of a mechanical structure. The problems that
demand also for some solution are called search problem. The answer to an
optimization problem is then the best answer that one is able to give together
with the appropriate assignment of variables, that is the free parameters of
the model.

For finding the solution of a problem we may use our intuition, but some-
times we prefer to have a stepwise procedure that would give at least some
solution for any instance of the problem—an algorithm solving the problem.

If we know the algorithm solving a problem we are sure that we can, in
some time, find the solution of any instance of the given problem. Still we
do not know how much time we will spend searching for the solution. There
may be faster and more efficient ways and, on the other side, there may be
algorithms that are just too inefficient to be used in practice.

The time demand of the algorithm will certainly depend on a given in-
stance of the problem, so we have to find a measure of the instance difficulty,
its size. We will call instance size the amount of data that defines the instance
uniquely but economically. This we do with a coding of the instance (there
are, certainly good and bad codings, see [34] for a detailed description of the
coding). The size of the instance is then given by the number of letters of a
good coding of the instance.

Once knowing what is the size of the instance, we can measure how scales
the time needed by the algorithm to provide an answer with the instance
size. Still there are many instances of a given size, so we have to specify
which instance we will consider as the example of all instances of that size
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N. The two most wide-spread approaches are to choose either the worst
case instances or the average case instances. The worst—case complexity then
gives the time needed by the algorithm in the worst combination of input
parameters for the given size N of the instance and hence it bounds the time
complexity from above. There are many problems in which the worst case
instances turn out to be atypical and one does not meet them in common
praxis. Then the worst-case complexity looses its meaning of a time estimator
and it is much more convenient to work with the average-case complexity that
states how long it will usually take to obtain the result.

As was conjectured during many years of research, there are generally
two classes of problems. Those problems for which there exists an algo-
rithm which worst-case complexity is bounded polynomially in N, and the
algorithms for which the time—complexity grows faster than any polynomial.
Such heavy-to-deal-with problems are called intractable. Let us remark that
even if there is only a single instance of the problem that cannot be solved in
polynomial time, the problem is still considered as intractable in the means of
worst-case complexity.

The first class of the problems is called P (P for polynomial). The other
class, intractable problems, can be still split into two parts. The problems whose
solution can be guessed and then verified in polynomial time, and the rest.
The first part of the problems actually forms a class called NP (non-determinis-
tic polynomial). A class of equivalence is defined as a set of all problems that
can be mapped to each other through an algorithmic transformation which
complexity is at most polynomial.

1.1.1 The NP-Completeness

Are all the NP-problems equally difficult or is there any subset of that class
that may be considered as the hardest core? Are there any problems that,
once we know algorithms that solve them, can be mapped to other problems
in a fast way in means of some (polynomial) reduction? The answer is yes,
there are NP problems that can be polynomially transformed to each other
and any other NP problem can be reduced to some of them. They are called
NP-complete.

Already from their definition we see that the NP-complete problems form
an equivalency class with respect to a polynomial transformation. The first
problem that was shown to belong to this class was the satisfiability problem
[2].

Before we start with detailed description of the two problems that we want
to examine, let us summarize in brief some basics of the graph theory. It will
show extremely useful when finding reasonable codings for our problems.



a) b)

Figure 1.1: a) A simple graph with four nodes and four links. bf b) A simple
weighted directed graph.

1.2 Basic Definitions of the Graph Theory

In all systems that we are going to talk about, the easiest way how to repre-
sent a given instance of the problem is to map the instance to some graph.
The structure of these graphs depends on the problem we speak about, but
they certainly share some general properties. Let us summarize them in the
following paragraphs.

We start with the definition of a graph. A graph g(V, E) is composed of a
set of nodes (vertices) V and a set of edges E. Each edge connects two vertices,
on the other side, there may be many edges sharing a single vertex.

The edges (links) may or may not be oriented and the graph is then called
directed or not-oriented, respectively. One can also place on each edge a num-
ber, a weight, the graph is then called weighted.

An example of a graph with weighted links would be the graph represent-
ing the road map of Trieste where many roads are one-way. The crossings
would be vertices of the graph and the streets its links. The weights would
correspond to distances between crossroads.

We will call degree of the vertex the number of links connected to the ver-
tex. So for example node # in the Figure 1.1a has degree equal to 3 while the
degree of the node b is 1. It is also reasonable to distinguish the in-degree of
a node, that is the number of oriented links entering it and the out-degree of a
node, that is the number of outgoing links. As an example take node ¢ of the
directed graph in the Figure 1.1b, it has the in-degree equal to 2. Similarly the
out-degree of the node a is 2.

We will call node b to be neighbour of a node a if there is an edge (a,b) € E.
We will use notation b € g(a) for the node b neighbouring the node a in the
graph ¢(V, E). Any given graph is uniquely defined by specifying the set of
neighbours for each node.




There are several properties of graphs that we can measure and use for
characterization of the graphs. For overall description of the graph we use the
connectivity distribution, and also the clustering coefficient which provides
information about the coarse grained structure of the graph, it may point out
existence of hub nodes (nodes with large connectivity and a ‘central’ role in
the graph). The presence of loops and their length may be crucial for conver-
gence of our methods. We will see that existence of short loops may cause
impossibility to find solution. Fortunately enough, the graphs that we will
meet will have either small number of short loops, or we will be able to use a
method that is not critically sensitive to their existence.

In the presented work we will be interested in two kinds of graphs. First,
in the case of random K-SAT model, we will have random graphs with ran-
domly distributed connectivity of the nodes. In a sense structure of this graph
is very similar to the structure of randomly generated graphs of the Frd&s—-
Renyi type.

In the part of the thesis where we will talk about the protein structure and
flexibility, we will use graphs that directly reflect the real three dimensional
structure of the protein.

1.2.1 Erd6s-Renyi Random Graphs

As there are many graphs that come up by coding of various instances of a
combinatorial optimization problem, we may be interested to know typical
properties of the solution of the problem on some typical instance. Many
times we may such a typical case represent by a random graph that main-
tains only the characteristic properties of the problem. Sometimes one may
continue in the abstraction even further and study the problem properties on
a completely random structure. This is very close to a study of typical com-
plexity of the problem, rather than worst-case complexity.

The most straightforward way how to generate a random graph is to take
some number of vertices and to place an edge with some probability p be-
tween any pair of vertices a, b. We may create the complete ensemble of
graphs of that kind and to study its properties. This ensemble takes names of
Erd6s and Renyi [3] and although the graphs of the ensemble have been cre-
ated in a random way, we may still find some general characteristics of this
ensemble.

As was already told, for a real world problem, we can find the connec-
tivity distribution of the graph that codes an instance of the problem. We
may, hence, be interested in the connectivity distribution of the Erdés-Renyi
graphs. If the distribution of the real-world-derived graph is similar to the
one of random graphs, we can use random graphs as a good trial ensemble
for algorithmic studies.

For the Erdés-Renyi random graphs the connectivity distribution follows
the binomial distribution and in the limit of large yet dilute graphs Poisson
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distribution. Indeed the probability to find a node with k neighbours is:
Prob(k) = <N; 1> pr(1 - p)NTIE, (1.1)
which in the limit of large N and fixed pN goes to:

k
Prob(k) = <plzc\']) e PN, (1.2)

1.2.2 Factor Graphs

Special case of graphs that will be used in the following work are factor graphs.
In these graphs the vertices are divided into two different sets, and the edges
are present only between nodes of different kind. A simple factor graph is
shown in the Figure 1.6. This kind of graphs can be conveniently used in con-
straint satisfaction problems: one kind of nodes may represent the constraints
applied to the variables, which are represented as the other type of nodes.

1.3 Spin Models on Diluted Structures

Many problems of combinatorial optimization can be straightforwardly map-
ped to a physical problem defined on a factor graph. It comes from the nature
of combinatorial problems, that each constraint of the problem contains only
relatively small number of variables, but the complete cost function, the en-
ergy in the physical point of view, is a sum of many such constraints.

This immediately implies that the graph that represents the interactions
of the variables is rather dilute, although the total number of vertices may
be huge. The degree of any node will be relatively small and the number of
edges will scale approximately linearly with the number of vertices. Physical
system corresponding to that kind of cost function is the spin glass.

Physical motivation to study similar problems come from studies of mag-
netic alloys. Imagine that one has a sample of dia— or paramagnetic metal
and in this material there is a very small addition of ferromagnetic material.
The atoms of ferromagnetic metal are randomly distributed in the alloy. The
magnetic coupling between the atoms strongly oscillates with the distance so
we can expect the coupling values to be distributed almost randomly in some
range.

For the energy of such a spin system we can write a toy-model Hamilto-
nian:

H= 2 ]i]'SiS]', (13)

contacts
where the actual realization of the couplings {J;;} between atoms i and j
depends on the sample that we have prepared. Mean-field theories for the
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glassy Hamiltonian were studied. In the Sherington-Kirkpatrick model, the
couplings are statistically uncorrelated and their values are distributed ac-
cording to some distribution with zero mean. The actual form of the distri-
bution is believed not to be crucially important, as a reflection of the uni-
versality phenomenon. Two simplest and most studied versions are Gaus-
sian distributed couplings and couplings distributed to be 1 or —1 uniformly.
Mean—field theories for spin glasses defined on a dilute graph are also avail-
able.

Since we are interested in finding any physical properties that will be true
for any sample we make, we have to average over the couplings somehow. It
is a useful abstraction to consider the couplings as another type of variables
and to express the Hamiltonian as a function of the original spins {s;} and the
couplings {Ji;}, H({s:}, {Ji;})-

However, there is a fundamental difference between the two sets of vari-
ables. While for any sample the values of {J;;} are fixed, the spin variables
are free to flip and relax according to the current values {J;;}. The dynamics
of the couplings have to be much slower and we will treat them as some kind
of quenched variables.

In order to calculate average properties of a spin glass we have to calculate
given properties for a single sample and then average this quantities over
ensemble of samples, all possible realizations of the quenched variables.

Jij

where (O) J;;} is the expectation value of the observable O given the config-
uration of couplings {J;; }.

The expectation value (O)/ J,;} s the customary statistical average over
canonical ensemble:

(O) g3 = .é. >, e N0, (15)
{si}
Where Z is the partition function of the glassy Hamiltonian:
z=Y3 e~ BH{Jij}Asi}) (1.6)
{si}

1.3.1 The Replica Method

Certainly we cannot calculate the spin configurations and hence the value of
the observable (O) for each sample. We have to calculate the mean value
& O > directly using some trick. The replica trick.

Having the partition function of the system (1.6), we can introduce a sys-
tem that contains many samples (replicas) of the original alloy, say # of them.
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The complete partition function will be

o 11 {zﬂ} e~ BH{Tij AT (1.7)

The samples a differ only in the realization of spin orientations. If we consider
the limit 1 — oo we expect that the observable O averaged using this parti-
tion function will directly give < O >. Indeed, we do a kind of averaging
over all possible configurations of the spins.
More precisely, for the replicated system we can define averaged partition
function in the form
zW =(Z") (1., (1.8)

and using the following limit equality

x—1=1Inx, x—1, (1.9)
Z"—-1=nnZ, n—0,

we may write for the free energy averaged over realizations of the couplings:

1n—0 n n—0 n

Czn—1 g
(i) = (0Z) ) = lim ( >{L-,~} =timZ —% (1.10)

The free energy obtained within this scheme gives exact solution if we
are able to prove existence of the analytical extension of the function AL
in n € RT. That is something we can do simply for high temperatures by
expanding Z(") in powers of . It will be on the other side nontrivial in the
low temperature regime of the spin glass.

Indeed, in the high temperature regime we expect that the particular as-
signment of the values J;; does not matter that much, thermal energy of spins
s; will be very high.

When decreasing the temperature, the actual configuration of quenched
variables will matter more and more, we will see details of the model. So
we have to expect separation of the configuration space in several (or many)
distinct ergodic components. This is caused by very rough energy landscape
that is observed in the spin glasses as a result of frustration and disorder.

The analogy with a lake where the water level corresponds to energy is
quite illustrative and will help us to understand what is happening at small
temperatures, see Figure 1.2.

The scenario of the level drop depends on the roughness of the energy
landscape. While in the RS (replica symmetric, we will see later what we
mean by that) case the configuration space shrinks, in the RSB (replica sym-
metry broken) systems the configuration space clusters at some energy. This
is illustrated in the Figure 1.2-1RSB. With decreasing temperature, the energy
in our system decreases and so the water level in our illustration goes down.
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RS 1RSB 2RSB

Figure 1.2: The lake illustration of energy landscapes. RS) Replica symmet-
ric landscape: no clustering occurs at any energetic level. 1RSB) First step of
replica symmetry breaking. The configurations already form a simple hier-
archy with states that can be observed at the energy E;. 2RSB) The energy
landscape is more rough and the hierarchy has two levels. The states emerge
at the energy E; and then they are again clustered in new states at energy Es.
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configurations

RS 1RSB 2RSB

Figure 1.3: The trees of similarities of replicas in replica symmetric (RS), one
step replica symmetry broken (1RSB) and two steps replica symmetry broken
system. Compare with the Figure 1.2.

As for the spin glasses the lake bed resemble in its roughness the landscape of
Carso, at some temperature (corresponding to E; in our figure) the configura-
tion space (the water-level) separates in several well distinguished clusters,
states. With decreasing energy the area of the allowed regions shrinks and at
very low energy, eventually, there is no configuration with the given energy.

The replicas of the system are not equivalent, if we sketch a hierarchy of
their similarities—overlaps, it will have a branching. With increasing replica
asymmetry the number of branching levels will increase, see Figure 1.3. Even-
tually, we reach the full-replica-symmetry—broken system in which there are
infinite levels of branching.

There are natural problems leading to hierarchical trees that have two and
more branching levels. The overlaps of configurations hence have three or
more well separated values.

The two case problems that we are going to study are either RS (protein
structure) and RS/1RSB/ fullRSB in the case of satisfiability problem. What
are the reasons of the configuration space clustering?

1.3.2 Disorder & Frustration

In order to understand better the emergence of complex organization of the
configuration space in the spin glasses, we will discuss two phenomena—
disorder at the level of interactions and at the level of topology, and consecu-
tive frustration.

Let us start with the first spin model that one encounters which is usually
the Ising model for the ferromagnet or model of anti-ferromagnet on a regular
lattice. The spins tend to align in the direction parallel (anti-parallel) to the
neighbouring spins. Ferromagnetic system at low temperature shows two
ergodic components—states—that differ by a number of spin flips that is of
order of the size of the system. Indeed at low enough temperature (below
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a Q) b) s

Figure 1.4: Emergence of frustration in system a) with even couplings but
topological disorder and b) with even structure but couplings distributed un-
evenly. The ferromagnetic coupling are shown as full lines, the dashed lines
represent anti-ferromagnetic couplings.

Curie temperature) almost all spins point in the same direction, what in the
Ising representation means that the spins point almost all down or up.

However the existence of multiple states is not the only feature that we can
observe in spin systems, although it has important practical consequences as
we will see in the case of satisfiability problem. The other feature of great
importance, that makes solution of some problems quite a difficult task is
frustration.

Imagine an anti-ferromagnetic system where the spins are placed on some
structure in which loops of an odd length may occur. In Figure 1.4a we
show a triangular loop with three anti-ferromagnetic spins. When trying to
assign values to spins s;, s;, and sy trying to minimize the energy function
Y bonds Osm.sn, We can start with the spin s; and make it s; =7. Then we can
assign s; =| according to the anti-ferromagnetic coupling of the link (ij). The
problem arises when we want to assign the value of the spin s;. Both s =]
and s, =T will increase the energy because of the existence of one neighbour
that is oriented in parallel. Hence the decision of orientation of s; cannot be
based on local information only, we have to use also possible external influ-
ences, i.e., other spins of the system in contact with i, j, k, and hence the non-
local information. We have to consider the system as a whole which definitely
makes computations more complex.

As we have seen, the problem of frustration occurs when there are two
concurrent forcings of the spin that have similar strength. In the example
of anti-ferromagnetic spins the cause of the frustration was topological. We
would not see the situation on a regular rectangular lattice, there must be
some disorder that causes irregularity of the lattice: a vacancy, a doping.

On the other side, we can expect the frustration to occur also on a regular
lattice where disorder is introduced by uneven assignment of couplings, see
Figure 1.4.

Among the tools for numerical investigations of such complex systems at
low temperatures the simulated annealing (SA) algorithm [14] and its vari-
ants have played a major role. Stochastic processes of this kind satisfy de-
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tailed balance and their behaviour can be compared with static and dynam-
ical mean-field calculations. However, in problems in which the interest is
focused on zero temperature ground states and where the proliferation of
metastable states causes an exponential slowdown in the equilibration rate,
the applicability of SA-like algorithms is limited to relatively small system
sizes.

In the last few years there has been a great progress in the study of spin
glasses over random graphs which has shed new light on mean-field theory
and has produced new algorithmic tools for the study of low energy states
in large single problem instances. Quite surprisingly, problems which were
considered to be algorithmically hard for local search algorithms, like for in-
stance random K-SAT close to the phase boundary, turned out to be efficiently
solved by the Survey Propagation algorithm arising from the replica symme-
try broken approach to diluted spin glasses.

1.3.3 The Cavity Method

The replica technique is a great theoretical device and its introduction has lead
to conceptual findings of the configuration space clustering. On the other
side, its application to single instances of problems of statistical physics is
rather tricky and, furthermore, there is lack of mathematical theory behind of
it. ’

On the other side, the current results show, that there is another method
of statistical physics that is equivalent to the replica method and in which we
may state all the assumptions explicitly. The cavity method [26, 24] proceeds in
the following way.

As the topological structure we work on is a diluted graph, we can virtu-
ally remove one spin from the graph together with all the couplings in which
it takes part. Furthermore, because the graph is diluted and its structure is
at least in some sense random, we expect that it contains only very small
number of short loops and hence the spins that are well apart will have un-
correlated values of spin s;, at least in the replica symmetric case when all the
configurations belong to the same pure state.

If we remove a site from such a graph, we know that only its neighbours
will be affected directly, and all the other spins only indirectly, the introduced
change will cause only small changes in the overall energy. It will be illustra-
tive to show what we mean by this on the computation of the energy of the
system. For simplicity, we will work at zero temperature, and only after we
will devise formulae also for finite temperature [26].

We can imagine the graph as a growing structure. Starting from a single
spin, we can add all the other spins one-by-one together with the interaction
links. If we know, how to calculate the energy of n 4 1 spins from the energy
of n spins, we may recursively calculate complete energy of the system. Still,
the graph structure changes dramatically when we start from n = 1 and grow
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b)

Figure 1.5: Removal of the site s; creates cavity in the graph. The rest of
the tree-like graph is separated into three parts that we can deal ‘separately’.
Sites 5, s, and s; may be considered uncorrelated in the graph with cavity b),
since we suppose that there are no short loops in the full graph a).

the graph to its actual size. Hence we can imagine another operation, which
will lead to coupled consistency equations for the energy. The operation will
be removal of a single site, together with its links, and after relaxation, its
reintroduction into the graph. During this operation we create a cavity in the
graph and it is this cavity that has given the name to the method.

Hence our procedure will be the following: We remove a randomly chosen
site s; from the graph, we let the system relax, what at the zero temperature
means that we will minimize the energy, and then we return the spin back to
the system. After relaxation we will be able to express the energy EV of the
complete graph as some function of energy of the graph with the cavity EIN -1
See the Figure 1.5 for illustration.

The necessary condition which allows us to do so, is the separation of the
Hamiltonian in a sum over contacts of the graph. That is possible for our spin
glass. The topological consequence of this property is that the graph may be
redrawn in a form of a bipartite graph, which is called a factor graph, see
Figure 1.6. In our case, the spin Hamiltonian obeys the condition, it is a sum
over link contributions J;;s;s;. The Hamiltonian of the system without the site
i may be written in the form

HN_l = 2 ]mnsmsm (1-11)

m<n; m,ni

After thermal relaxation (at zero temperature) the energy reaches its mini-
mum
ENT=min ¥ Jumsmsn. (1.12)

{sm} i m, ki

When putting back the site 7, we have to include in the Hamiltonian also all
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Figure 1.6: The factor graph representation of the spin glass Hamiltonian (1.3).
The graph contains two sets of nodes. The circles represent the spin variables
s;, while the squares represent the couplings of the Hamiltonian J;.

its interactions
HN = N1+ Y Jisms, (1.13)
met
where by the notation m € i we mean all neighbours of the site 7 in the inter-
action graph. Letting the system relax we get the energy of the N spin system

EN = min HN. (1.14)
{sm}

Under the assumption of the tree-like structure of the graph, we expect that
only a small number of short loops is present in the graph and hence that
the variables s;, s, and s; in the graph with cavity are uncorrelated. The
energy can be rewritten in the form of some constant part that depends on
the configuration of all the other spins and the three spins in some local fields
that are uncorrelated (the abstraction of the fields can be done always, since
the spins are Boolean variables, but the fields are uncorrelated only in the
structures without the loops)

EN_l = Eé + 2 hpsm. (1-15)
mei
After addition of the spin s;, all the couplings are turned on, and they add
to the energy of the system. After thermal relaxation
EN = Elo + z snli:rtll {hmsm + ]1711'517151'} . (1.16)
meimT

As the spin s; has only two possible values, we can write the minimum in the
form of some linear function

miill {hmsm + ]mismsi} = —Wmi — UmiSi- (1.17)

Sm=
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The term w,,; gives some constant energetic contribution and the factor 1,
can be considered as a kind of a field that we will call cavity bias. Note that
the cavity bias has a flavour of direction, it is a field imposed in the cavity of
the variable s; by the graph segment connected to it through the variable s,,.
And it is actually this property that gives idea of using the cavity biases as
messages that we will use in the algorithmic way later on.
Finally we can express the energy of the system with the help of cavity
biases in the form 4
EN = Ep + 2 [~ Wi — UmiSi| (1.18)
met

where the cavity bias u and the constant factor w can be expressed as

Umi = Sgn(hm]mi) min {Umilz ]hml} ’ (1.19)
Wi = Sgn(thm) max {l]ﬂ‘lil/ “1111|} ,

as can be shown by simple enumeration of all possible cases.

This formula may be applied to any site i of the graph, hence we obtain a
set of coupled equations that can be used for evaluation of the energy in the
self-consistent way.

At a finite temperature we cannot evaluate the energy directly, we have
to start rather with the probability distribution of a configuration {s;}. This
probabilistic interpretation will bring us closer to the field of combinatorial
optimization and to the message passing algorithms.

We start again with the cavity on the site of the spin s;, as shown in the
Figure 1.5. Let, for example, the spins s, s;, and s; be the only neighbours
of the spin s; in the graph. As we suppose that the graph representing the
Hamiltonian is diluted and it has a tree-like structure, so the eventual loops
are very long!, we can consider that the spins neighbouring to s; are uncorre-
lated in the graph with cavity. Indeed, either they lie in different subtrees of
the graph, and they are completely uncorrelated, or they have very large dis-
tance so we can consider them uncorrelated. The graph is virtually separated
into three subtrees.

The probability of finding a configuration of the three spins {s;, s, s} is
hence factorized

PN (s, 55, 51) = PN (5)) BV (50 B s). (1.20)

If we return the spin s; to the graph together with all its couplings, we can
calculate probability of any configuration of the quadruplet of the spins.

PN(si/ SjsSks Sl) = H [Plg—l(5771)5—’3]imsism} , (121)

Mel

! As it is true for random graphs, for which it was shown [3] that the shortest loops that
are macroscopically present in the graph have length of order of logarithm of the number of
vertices.
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where we have not forgotten to place the Boltzmann factor corresponding
to the couplings of s; to its neighbours. Once knowing the probability dis-
tributions of spin values in the cavity graph we can calculate the complete
probability distribution in means of some self-consistent procedure.

To make the similarity with the energy calculation at ZElO energy temper-
ature straightforward, we may write the probability PY =1 (s,) in the form of
Boltzmarm factor of the spin s;,; in some effective field

e‘ﬁhmsm
2 cosh(Bhy)’

We will call the field hy, the cavity field. Similarly for the variable s; we may
write

PN (sp) = (1.22)

e~ Bhisi
2 cosh(ph;)’
what we can certainly do, as there are only two states of the spin s;.

Moreover, we can find the probability PN (s;) also by marginalizing the
probability (1.21) over the neighbours of s;,

V) =TT X (BN em)e P (124)

MEL S =

PN(s) = (1.23)

The inner sums may be expressed in the way similar to (1.23)

2 [plg\zf 1(57”)6"[3]1’11151'5171] = C,ePmisi) (1.25)
sp==%1

where the normalization factor C,,;; and the cavity bias 1,,; can be expressed in
a closed form similarly to the equation (1.19). The probability of finding the
spin 7 in the state s; is then

N(s;) =[] Cni e Zmeitmisi, (1.26)
nmei o

Let us imagine that the structure we work with is random, and so the
spin Hamiltonian. That means generally that the couplings J;; are randomly
drawn from some distribution. In this case we may compare the equations
(1.23) and (1.26).

We expect that the cavity fields hy,, that we have defined in (1.22), are
also random variables chosen from some distribution Py, (hy,). In the random
graph and in the thermodynamic limit we expect that all the spins will be
equivalent, and hence that there is some probability distribution P(h) such
that Py (hy) = P(hm) for any m. Moreover, since the spin s; is in nothing
special to other spins, we expect P;(h;) = P(h;) either. Similarly to P (h) we
may define the distribution Q(u) of the cavity biases. Comparing (1.23) and
(1.26) we have

hi = U, (1.27)

mei
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and hence for the probability distributions

P(h;) = ZProb(k) / H[Q(u,,,idu,m)}é(hi - 2 Ui ), (1.28)
k

mei mei

Qlus) = | P(r)8(us; = sgn(h + Jp) min{ ol )

We have introduced the connectivity distribution of the random graph Prob (k),
because although each coupling has only two interacting spins, the degrees
of various spins may differ. For the random graph we know exact form of the
distribution (1.2).

This set of coupled equations will be central for our calculations, it actually
gives replica-symmetric solution to the spin glass problem in the mean-field
approximation. The symmetry is introduced through the assumption that
the probability distributions are equal for all the spins and that the spins of
vertices next to cavity are uncorrelated. This is certainly true only in the case
when the configuration space is not clustered, only if there is a single pure
state. In the problems where the clustering occurs we have to find some more
appropriate way how to describe the probability distributions, [1].

It is worth mentioning that these equations are equivalent to the Belief
Propagation, a message passing algorithm that was devised in the field of the
artificial intelligence—pattern recognition.

Although these equations are valid only if we consider a single cluster
we can device a method that will go beyond this restriction. To deal with a
number of pure states, we will do a “survey’ of probability distribution within
them. The result of a ‘survey’ will be a distribution functional of probability
distributions for & and u. If we expect to find many states we move from a
‘histogram’ to a functional measure on the space of possible probability dis-
tributions P(h) and Q(u). Following this pathway will lead us to the novel
Survey Propagation algorithm which solves the problem on the level of the
one-step replica breaking.

General Belief Propagation

The Belief Propagation (BP) is an algorithm for inference that was repeatedly
invented in the fields of artificial intelligence, pattern recognition, communi-
cation technology, and other fields of computer science. We have seen now,
that also in statistical physics we may use it for solving problems. Actually,
the transfer matrix method is a Belief-Propagation-like algorithm.

One of the prominent applications of the BP is the pattern recognition in
artificial vision. The goal of the recognition is to infer the scene s that we are
observing and we have its image r. Having the image means that we know
some properties r; of the image (that may be properties of single pixels or of
some patches of the pixels). We would like to know if the image properties
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correspond to some scene properties s;. We assume that there is a statisti-
cal dependence of properties s; and r; (some expert advise) that we denote
¢;i(s;, ;). Similarly, we suppose that there is some statistical correlation of
scene properties s; and sj, a compatibility function v;; (si,s ])

The joint probability P({s,} {ri}) of observing some scene s and having
its image 7 is

<{S } {71 - sz] 5i,5 )Hd)k(skzrk)/ (1-29)
(11)

where the first product is done over neighbouring pairs of properties. The
normalization constant Z is actually the partition functlon

We see immediately the similarity with the spin-glass equations; taking s;
to be spin value, 1;;(s;, 5;) = exp{—BJi;sis;} and ¢y (sy, 1) = 1 or de(sp, 1) =
exp — fBhsy in the case of the spin glass in the external field. Butlet us continue
in the derivation of the message passing algorithm in its most general way.

We will define the message 1 (s;) that will have the same dimensionality
as the property s; and it will express how likely the node j thinks that the
node 1 will be in the state s;. The belief at a node 7 then will be the product of
all incoming messages m; and of the local ‘advice’ ¢;(s;, 77):

(s:) = G Hmjz )®i(si,11), (1.30)

]Ez

where C; is a normalization constant that ascertains that the believes sum up
to 1. For simplification, we will suppose that the scene and the image does
not change in time and we will write ¢;(s;) instead of ¢;(s;, ;).

The messages are to be calculated self-consistently through the update

formula
mz] 2 H My (s 11)1] 54, ])sz( 5i), (1.31)

5 kei\j

in which we immediately recognize equivalent of the formula (3.19).

If there are no loops in the graph of interactions of properties, the believes
calculated from the messages after reaching self-consistence are actually the
marginal probabilities for the property i to have value s;:

Pi(si) ~ bi(si)- (1.32)

To demonstrate this, we will show only simple example of Yedidia [57].
First we express the belief at node i in the graph of Figure 1.7 using the defi-
nition of belief (1.30)

bi(si) = Cim;i(si)¢i(s;). (1.33)
Now we apply the message update rule (1.31) and we replace mj; by the mes-
sages entering to the node j,

bi(si) = Cithi(si) ., myj(s)mj(s1)iji(si,s1)bj(s7), (1.34)
5j
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Figure 1.7: A small graph that will help us to understand relation between
believes and marginal probabilities. The dark nodes correspond to variables
r; of the image, we are trying to guess the properties of the scene {s;}.

and writing explicitly the messages m; and m;; we have

bi(si) = Cigi(s ZEll)kz(Sk/ ])(157\(51\) LbI](SlrSj)Cblc(Sl)l/)l]l(Sv )(bj(sj)-

(1.35)
After reorganizing the sums we have

bi(s;) = C Z qum Sim) H Yiun (Sm, Sn), (1.36)

{sjsps1} ™ (mm)

in what we immediately recognize the joint probability (1.29) marginalized
over all properties but i. Hence we have shown that the formula (1.32) is
correct in our example.

For our analysis it will be helpful to define also two-point believes b;;(s;, 5)
that after the convergence of messages to the fixed point, will correspond to
the probability marginalized over all properties but i and ;.

bij(5i15j> l]wl](sllsj)d)l(sl)d)] ]) H myi(s H mk] 5] (1.37)

kei\j kej\i

As the field of pattern recognition does not use idea of energy H({s;}) we
will define it through the Boltzmann distribution for our convenience:

P({s;}) = —e—ﬁH({SIN (1.38)

The Belief Propagation finds the actual probability distribution P({s;})
in an iterative way through the believes b({s;}). It is then helpful to define
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some distance measure that would specify how far we are from the actual
probability distribution. We will use the Kullback-Leibler distance

4 (b({s;}), P({s:}) zb{ Hln ((?;]?) (1.39)

The measure of distance is non-negative and it is zero only if b = P. Substi-
tuting the Boltzmann distribution in distance we get

d(b,P) = {2 b({s;}) Inb({s;}) + B {Z} b({s;DH({si}) +InZ. (1.40)

We know that once we reach the correct probability distribution, the dis-
tance becomes zero and thus we have (after the convergence)

—InZ = Y b({s;})Inb({si}) + B 2 b({s; NH({s:}), (1.41)
{si}
what can be immediately rewritten in the form of the second law of ther-
modynamic F = E — 15 with customary definition of the free energy F =
InZ/B.

F= {E} b({s:HH({si}) — = 2 b({si}) Inb({si}). (142)

Bethe Approximation to the Free Energy

Because of the pair-wise form of the probability (1.29) the believes b; and the
two-point believes b;; are sufficient to determine the average energy

E= Y P({sihH({si}), (1.43)
{si}

which may be rewritten by applying the definition of probability (1.29) and
of believes (1.30, 1.37) in the form

Ebz] SI,S])IIH.}),] 3115]) Zb (5i) In ¢; (s i) (1.44)
(i)

If the graph is tree-like, we can write the joint probability distribution, or
the joint belief, in terms of believes b; and b;; (Bethe approximation)

1] 1](51/5])

P({s)) = [T,

where k; is the number of j's mteractmg with the property i. In the case of the
spin glass it is the number of spins j interacting with the spin i. Using this
formula we obtain Bethe approximation to the entropy

— Y > bij(si,s5) Inbyj(si, s —I—Z (ki —1) Zb (s)Inb;(s;).  (1.46)

(if) 8is8j

(1.45)
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The Bethe approximation to the entropy and hence to the free energy is
exact on any tree-like structure and it is also a pretty good approximation
for the actual entropy on loopy structures [61, 62]. Still, using the standard
methods of statical physics (like cluster variational method) we can further
improve the approximation.

For our analysis it is important to note the similarity of the equations (1.26)
and (1.30) hence of the messages in the Belief Propagation and the cavity bi-
ases for the spin glass (note that for our simple spin glass ¢(s;) = 1). We can
interpret the calculations done for the spin glass within the replica-symmetric
approximation to be equivalent to the Belief Propagation. In the case of the
replica-symmetry broken phase we have to develop another method that
would take into account the existence of several pure states.

General Survey Propagation

As we have mentioned already, the replica symmetric cavity method may be
extended also to problems where the clustering of states occurs. Although we
cannot expect that the correlations of distant spins vanish generally, we know
that they disappear within each pure state. Hence we can do the calculation
similar to the Belief Propagation within each pure state and then summarize
somehow the results in all states—do a survey—and use the results of the sur-
vey for the next iteration. Thus we will move from the probability distribution
of cavity fields and biases to surveys of those probability distributions and,
in the case of existence of many pure states, to some functional distribution
over probability distributions. In the following calculations we will restrict
ourselves to the zero-temperature statistics, only.

If we restrict ourselves to a single cluster we may write for the energy of
the graph with cavity at zero temperature as before (1.15):

N-1 ] :
Ey ' =Eu Y, min, h% s, (1.47)
mei*m=

where we have introduced the cluster index a. For the complete graph we
have (as in (1.16))

EN=E,+Y min, {h%8m + JmiSmsi} (1.48)
mei """

which can be expressed in the terms of cavity biases. The only difference is
that now the biases will depend on the pure state under consideration:

EN =B+ Y [~w? —ulsi). (1.49)

mei

The local field acting on the spin s; can be computed (within the pure state)

as
Wi (si) = Y ul;. (1.50)

mei
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In each state we can evaluate the change of the total energy after filling in

the cavity
AEq(s;) = Ej (si) = EY ™" (1.51)
= > [ = o — i — |
mel
= 2 [~ wv“ni - uioviz'sf - i Z 1"761\’7111]'
mei nem

In contrast to the Belief Propagation equations (1.28), in the clustered phase
we expect that not the probability distributions of k’s but the functional mea-
sure on P(h) is equal for all the sites. Hence we have to use information from
all states in order to find out the functional measure. Still, we have to be
careful, since in various states the change of energy AE* differs.

In order to take this under consideration, we will evaluate the probability
of finding field  at a site i within the ensemble with a given value of energy.
We will consider only final states with some given energy E, yet the number
of clusters at varying energies E — AE, may differ. This we have to consider
in our calculation. Let us define quantity called complexity £ that will count
the number of pure states with some energy E

number of pure states = eNZ(E), (1.52)

o The difference of energetic changes leads to a new term in the equation for
o P(h), which reflects the level crossing.
To show that, we will calculate the probability distribution P (1) of finding
a field & at the cavity site 1 with restriction to configurations with some energy
density e = E/N. We have certainly to count the number of states at a given
energy and to weight the contribution with the number of states (at energy
E — AE%).
Up to a multiplicative constant we can do it by placing the reweighing

term
e_A[z(e)] ~ e"yAE@i (153)

in the formula (1.28). We have introduced pseudo—temperature y, the temperature—
like quantity conjugated to the complexity:

0Z(e
Y= —3%—)-. (1.54)
Now we can express the probability P¢(h) with the help of formulae (1.51,
1.28)
Pl-e (h,) = C / H [Prn (h;n)dhn‘l] 5(}11 - 2 unn') eXp {y 2 [wm,’ + hrn] + y’ 2 u’?Tlil }
mei met mei mei

(1.55)
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As in the case of the Belief Propagation it may be worth splitting the con-
volution into two steps, having distributions of the fields P and the biases

0.
OF (14ym?) / dRP? ()5 (it — ti(], 1)) (1.56)

]’l) = /H ”mr dumz] X

met

exp {y X, (Wi + ] + Y| Y, il 6 (i = thmi).

mei mei mei

There are certainly several possibilities how to distribute the reweighing term
between the two equations. Our choice is convenient for technical reasons.

We have to keep in mind that P* is a probability function randomly drawn
from some functional distribution P (P¢) that we are looking for. The same
is true for the distributions Q°. One could certainly write complicated func-
tional equations for the measures P and @, and that is actually the path fol-
lowed by the replica method. We will, on the other side, prefer to find some
algorithmic way for finding the distributions of h’s and u’s. This is done by
the Population Dynamics.

The Population Dynamics algorithm proceeds as follows:

0) Generate the initial ensemble of probability distributions {Q%, } e for
all sites i.

1) Calculate the probability distributions P¢ (h;) according to (1.56).

2) Evaluate Q’s following (1.56) and hence obtain some new probability
distribution Qg (ty;)-

3) Replace one of the initial distributions by the obtained distribution Qg (1,;)-

We repeat this procedure until we reach a fixed point and the Q-distributions
will not vary virtually. With the fixed—point distributions we can evaluate all
the fields h and finally any quantity of our interest.

Still we have to select the appropriate value of pseudo-temperature some-
how. What we certainly want to do, is to consider as large number of clusters
as possible, and thus to have as representative ensemble as possible. The cor-
responding choice of energy is then the value at which the complexity has its
maximum. As we are looking for the value of the pseudo-temperature y it
will be the point where we obtain the maximum of Legendre transform of the
complexity. Let us call this transform the ‘free energy” ®(y).

To calculate the free energy we will follow the consequences of addition
of a spin variable, together with all corresponding constraints, to the factor
graph. After addition the number of constraint increases by the degree of the
spin k, the number of spins increases by one, and the energy increases by AE,
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see (1.51). Once knowing the probability distributions for the fields we can
from this formula also derive what is the probability distribution P;(AE) of
the energetic change,

P;(AE) = / TT1Pi(h)dn;)6 (AE =N [ wmi — ] = D unm|> . (1.57)

mei mei nem

As we know the distribution of possible energetic changes during addition
of the spin, we can express the number of states at the end of the manipula-
tion,

exp {NZ(%,—E—)} = [Im(aB)d(aE) exp {(N— 1)2:(]\1\/7[:’1(, EN“_AIE)},

(1.58)
which, after expansion of the complexity in & = %’IT and € = —I%, leads to

(o, €) — e%—i— + 2“% = <ln {/[Pi(AE)d(AE)]e'yAE} >gmphs. (1.59)

We have done averaging over all possible values of k, of the degree of the
added node. In the random graph of the Erdgs-Renyi kind it is (k) = 2a.
We see that if we knew the term -g% we could interpret the previous equa-

tion as definition of the Legendre transform of the complexity,
Z(e, ) —ye = —y@(y), (1.60)

withy = %—E.

The derivative of the complexity with respect to the ratio of constraints «
can be calculated by evaluating the change of complexity upon addition of a
new constraint to the graph. The energetic change after the addition of the
link between spins s; and s; is

AE;(hi, hj, Jij) = {I;f}isn}{hz'si +hjsj— Jijsisjt — |l — |hjl, (1.61)
isSj
and hence the induced probability distribution P;(AE) is
P/(AE;) = /[Pi(hi)Pj(hj)d(hi)d(hj)]fS(AEl — AEy(hi, iy, Jij))- (1.62)

Having this distribution we can write for the change of the number of
states

exp Nz, 5y} = [incamaae)]exp { N2 2570 |

(1.63)
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which after expansion of complexity in « on the left-hand side and in € on
the right-hand side, and after averaging over possible placement of the link
(over graph structures) leads to

% = (In { / [PI(AEz)d(AEz)]e‘3/AE’} ) (1.64)

graphs

Finally we can define the free energy ®(y) as the Legendre transform of

the complexity and to expressitas @ (y) = CD{(y) — (2a = 1)®?(y), where the
free energy @ (y) is separated into the parts corresponding to single variables
and single links (factors). The prefactor 2o — 1 comes from the sequential
building of the graph. If we add the factor I to the graph we add also all its
variables. And since the mean connectivity in the random graph is 2a we
have to subtract the variable contribution exactly (2 — 1)—times in order to
have it in the correct proportion. The partial terms then read

I

of () —§< In { / [PZ(AEz)dez)]e'-‘/AEf} ) (1.65)

graphs
D7 (y) = —%< In { / [P,-(AE)d(AE)]e"}/AE} >gmphs.

The optimal value of the pseudo-temperature can be found as the point at
which the value of the free energy is maximized.

It is worth noting that the formulae (1.65) are model-independent and
that they are valid for any spin glass Hamiltonian that can be represented as
a factor graph. Certainly, one has to evaluate the quantities AE and AE; in
accordance with the model in consideration.

Single Instance Analysis

In our previous calculations we were mainly interested in typical properties
of a glassy system. That is, certainly, what we want to do when we are look-
ing for the macroscopical behaviour of a physical system, but in the case of
combinatorial optimization we definitely prefer to find complete available in-
formation about a single instance. To do so, we have to leave description on
the level of statistical ensemble of graphs.

Fortunately enough, the formulae (1.56) may be reconsidered also as for-
mulae applied to a single instance, disregarding the underlying structure av-
eraging. For large enough graphs with a tree-like structure we can still accept
validity of the theory.

1.3.4 Heuristic Algorithms

Both the Belief Propagation and the Survey Propagation are in a sense global
procedures—the messages are evaluated through the set of update formulae
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which includes all the nodes and factor nodes of the graph. On the other side
there have been in use many local search algorithms that solve or approxi-
mately solve the problems that we are going to work with. It is hence worthy
to mention those algorithms which are widely used and with which we will
compare the results of the message-passing algorithms.

Monte Carlo & Simulated Annealing

Having some Hamiltonian function H({s;}) that depends on a set of spin
variables s; we can model path of the system in the configuration space by
a simulation that simply changes values of variables s;, with an appropriate
acceptance ratio. As we suppose that our system is in thermal equilibrium,
we expect that it obeys the detailed balance and that the overall distribution
of energies will be the Boltzmann distribution of the canonical ensemble at
some temperature 3. We have to define acceptance criterion in order to meet
the two conditions. First we observe that the detailed balance may be met
only in the case when the spin flip is reversible. And it is. The acceptance is
then often done in the Simulated Annealing (or Monte Carlo) studies through
the Metropolis algorithm, which goes as follow:

init

1. Initialization: Generate random configuration of the spins s*"* and cal-

culate its energy E = H({anit}).

2. Flip: Choose a spin at random and flip its value. Evaluate the change of
energy AE = E™" — L.

3. Decision: If the new energy is smaller, accept the flip and make E =
E™®_ Otherwise throw a random number d from range between 0 and
1. If exp —BAE > d accept the flip and the new energy. Otherwise reject
the spin flip and return to the configuration and energy before the flip.

The latter two steps of the procedures are then repeated many times in or-
der to sample the configuration space in a representative way. The standard
strategy to find what is the minimal number of accepted moves is to evaluate
autocorrelation functions of some quantity (energy, magnetization), and to
do much more spin flips than what would correspond to the autocorrelation
time. For more details see [4, 5].

For the zero temperature and hence 3 — oo the algorithm will find the
closest local minima of energy and it will get stuck in it. The introduction
of temperature and hence of the moves that may increase the total energy
enables escaping from a local minimum. The energetic barrier that we can
overcome depends on the temperature—the higher temperature we use the
larger part of configuration space we sample. On the other side, high temper-
ature will presumably lead to configurations with higher energy, and hence it
will prevent us of finding the global minima of the energy landscape.
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The technique of Simulated Annealing is used to cross high barriers and
on the other side reach low energies. It is usual to introduce a cooling sched-
ule in the algorithm—the temperature decreases after a number of steps in
a predefined way. The most efficient schedules are just geometrical series of
temperatures where the initial high temperature is decreased by a constant
factor after some number of accepted spin flips. For the systems without con-
figuration space clustering and for the system with full-RSB this procedure is
guaranteed to reach the global minima for long enough schedules (unfortu-
nately, long enough means doing infinitesimal small changes in temperature).
We will see in the case of MAX-K-SAT problem that Simulated Annealing is
really efficient in the case of RS and full-RSB phase.

WalkSat

The success of Monte Carlo algorithm and of Simulated annealing in many
fields of physics and life sciences was striking. And it is allowance of steps
that may increase the total energy, and hence they decrease greediness of the
algorithm, that this heuristics is so efficient.

Still, in non-physical applications we are not that much interested in obey-
ing the constraints of detailed balance and of Boltzmann law, there is just no
need to follow them. Similarly the choice of the flipped spin may be done
in a more specific way when we deal with a problem that has some intrinsic
structure.

The WalkSat algorithm of Selman, Kautz and Cohen [54] is a heuristics
which is strongly influenced by the Monte Carlo heuristic, still it introduces
valuable changes to the algorithm that reflects the problem under considera-
tion, the MAX-K-SAT problem.

The WalkSat algorithm mixtures greedy moves with random walk in the
configuration space. The algorithm proceeds as follows:

1. Initialization. Create random configuration of spins and calculate the
energy of the system.

2. Randomly alternate following steps:

e Greedy step. Among all variables chose the one that after flipping
makes the largest decrease of the energy. Flip it. Update energy.

e Random walk step. Choose one unsatisfied clause at random and
after choose one variable within it. Flip the value of that variable.
Recalculate energy. This step may increase the energy actually.

WalkSat stops if either a satisfactory assignment is found or if the maximum
number of allowed spin flips (the ‘cut-off’) is reached.
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Chapter 2
The Satisfiability Problem

In the first part of my theses the Survey Propagation algorithm was applied to
the combinatorial optimization problem called Max-K-SAT. The collaborative
work with Demian Battaglia and Riccardo Zecchina has been published in

[6, 7].

2.1 Combinatorial-Optimization Problems
and Spin Glasses

In computer science the field of combinatorial optimization [15] deals with
the general issue of classifying the computational difficulty (“hardness”) of
minimization problems and of designing search algorithms. In similarity to
statistical physics models, a generic combinatorial optimization problem is
composed of many discrete variables—e.g., Boolean variables, finite sets of
colours or Ising spins—which interact through constraints typically involving
a small number of variables, that in turn sum up to give the global cost-energy
function. )

As we have mentioned above, among the tools for numerical investiga-
tions of complex systems at low temperatures the simulated annealing (SA)
algorithm [14] and its variants have played the major role. Such stochastic
processes satisfy detailed balance and their behaviour can be compared with
static and dynamical mean-field calculations. However, in problems in which
the interest is focused on zero temperature ground states and where the pro-
liferation of metastable states causes an exponential slowdown in the equi-
libration rate, the applicability of SA-like algorithms is limited to relatively
small system sizes.

When the problem instances are extracted at random from nontrivial en-
sembles (that is ensembles which contains many instances that are hard to
solve), computer science meets physics in a very direct way: many of the
models considered to be of basic interest for Computer Science are nothing
but spin glasses defined over finite connectivity random graphs, the well
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studied diluted spin glasses [16, 17]. Their associated energy function counts
the number of violated constraints in the original combinatorial problem (with
ground states corresponding to optimal solutions). Understanding the on-
set of hardness of such systems is at the same time central to computer sci-
ence and to T = 0 statistical physics with surprisingly concrete engineering
applications. For instance, among the most effective error correcting codes
and data compression methods are the Low Density Parity Check algorithms
[19, 20, 21], which indeed implement an energy minimization of a spin glass
energy defined over a sparse random graph. In such problems, the choice of
the graph ensemble is a part of the designing techniques, a fact that makes
spin glass theory directly applicable.

The above example is however far from representing the general scenario
for combinatorial problems: in many situations the probabilistic set up is not
defined and, consequently, the notion of typical-case analysis does not play
any obvious role. The study of the connection (if any) between worst-case and
typical-case complexity is indeed an open one and very few general results
are known [22]. Still, a precise understanding of non-trivial random problem
instances promises to be important under many aspects. New algorithmic
results as well as many mathematical issues have been put forward by the
statistical physics studies, with examples ranging from phase transitions [23,
24] and out-of-equilibrium analysis of randomized algorithms [25] to new
classes of message-passing algorithms [26, 28].

The physical scenario for the diluted spin glasses version of hard combi-
natorial problems predicts a trapping in metastable states for exponentially
long times of local search dynamic process satisfying detailed balance. De-
pending on the models and on the details of the process—e.g., cooling rate for
SA—the long time dynamics is dominated by different types of metastable
states at different temperatures [29]. A common feature is that at zero tem-
perature and for simulation times which are sub-exponential in the size of the
problem there exists an extensive gap in energy which separates the blocking
states from true ground states.

Such behaviour can be tested on concrete random instances which there-
fore constitute a computational benchmark for more general algorithms. Of
particular interest for computer science are randomized search processes which
do not properly satisfy detailed balance and that are known (numerically) to
be more efficient than SA-like algorithms in the search for ground states [30].
Whether the physical blocking scenario applies also to these artificial pro-
cesses, which are not necessarily characterized by a proper Boltzmann dis-
~tribution at long times, is a difficult open problem. The available numerical
results and some approximate analytical calculations [31, 32] seem to support
the existence of a thermodynamical gap, a fact which is of up-most impor-
tance for optimization. For this reason (and independently from physics),
during the last decade the problem of finding the minimal energy configura-
tions of random combinatorial problems similar to diluted spin-glasses—e.g.,
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random K-Satisfiability (K-SAT) or Graph Coloring—has become a very pop-
ular algorithmic benchmark in computer science [17].

In the last few years there has been a great progress in the study of spin
glasses over random graphs which has shed new light on mean-field theory
and has produced new algorithmic tools for the study of low energy states in
large single problem instances. Quite surprisingly, problems which were con-
sidered to be algorithmically hard for local search algorithms, like for instance
random K-SAT close to a phase boundary, turned out to be efficiently solved
by the Survey Propagation (SP) algorithm arising from the replica symmetry
broken (RSB) cavity approach to diluted spin glasses.

2.1.1 Definition of the Max-K-SAT Problem

K-SAT is a NP-complete problem [34] (for K > 2) which lies at the root of
combinatorial optimization. It is very easy to state: Given N Boolean vari-
ables and M constraints taking the form of clauses, K-SAT consists in asking
whether it exists an assignment of the variables that satisfies all constraints.
Each clause contains exactly K variables, either directed or negated, and its
truth value is given by the OR function. Since the same variable may ap-
pear directed or negated in different clauses, competitive interactions among
clauses may set in.

As mentioned in the introduction, in the last decade there has been a lot
of interest on the random version of K-SAT: for each clause the variables are
chosen uniformly at random (with no repetitions) and negated with proba-
bility 1. The random-MAX-K-SAT problem is then the optimization prob-
lem derived from the random-K-SAT. The task is to find an assignment to
all variables that would minimize the total number of violated clauses in the
formula.

2.1.2 The Phase Diagram of the Random Max-K-SAT Prob-
lem

In the large N limit, random K-SAT displays a very interesting threshold phe-
nomenon. Taking as a control parameter the ratio of number of clauses to
number of variables, « = M/N, there exists a phase transition at a finite
value a.(K) of this ratio. For a < o (K) the generic problem is satisfiable
(SAT), for @ > o;(K) the generic problem is not satisfiable (UNSAT).

This phase transition has been seen numerically [35] and it is of special in-
terest since extensive experiments [17] have shown that the instances, which
are algorithmically hard to solve, are exactly those where « is close to «.
Therefore, the study of the SAT/UNSAT phase transition is considered of
crucial relevance for understanding the onset of computational complexity
in typical instances [16]. A lot of work has been focused on the study of both
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the decision problem (i.e., determining with a YES/NO answer whether a
satisfying assignment exists), and the optimization version in which one is
interested in minimizing the number of violated clauses when the problem is
UNSAT (random MAX-K-SAT problem).

On the analytical side, there exists a proof that the threshold phenomenon
exists at large N [36], although the fact that the corresponding o, has a limit
when N — oo has not yet been established rigourously. Upper bounds
ayp(K) on o, have been found using first moment methods [37] and varia-
tional interpolation methods [38], and lower bounds a5 (K) have been found
using either explicit analysis of some algorithms [39], or some second moment
methods [40]. For random MAX-K-SAT theoretical bounds are also known
[41, 45], as well as rigourous results on the running times of random walk
and approximation algorithms [42, 43, 44].

Recently, the cavity method of statistical physics has been applied to K-
SAT [24, 26, 46, 7] and the thresholds have been computed with high accuracy.
A lot of work is going on in order to provide a rigourous foundation to the
cavity results and we refer to [46] for a more complete discussion of these
aspects.

In what follows we shall concentrate on the K = 3 case and we will be
interested in analyzing the behaviour of different algorithms in the region of
parameter « in which the random formulae are expected to be hard to solve
or to minimize. The energy function which is used in the zero temperature
statistical mechanics studies is taken proportional to the number of violated
clauses in a given problem so that a zero energy ground state corresponds to
a satisfying assignment. The energy of a single clause is positive (equals 2 for
technical reasons) if the clause is violated and zero if it is satisfied. The overall
energy is obtained by summing over clauses and reads

1+ LZ,Z'S? )
2

where s7 is the i-th binary (spin) variable appearing in clause 4 and the cou-
pling J,; takes the value 1 (resp. -1) if the corresponding variable appears
not negated (resp. negated) in clause 4. For instance the clause (x1 V %, V x3)
has an energy contribution -41—(1 +51)(1 —s3)(1 4 s3) where the Boolean vari-
ables x; = {0, 1} are connected to the spin variables by the transformation
si=( —l)xi.

3
E=2) iy ( 2.1)

2.1.3 Ergodicity Breaking in K-SAT

With increasing number of constraints (clauses) the number of solutions de-
creases and on the other hand the number of metastable solutions increases.
The configuration space also breaks in distinct states.

The phase diagram of the random 3-SAT problem as arising from the sta-
tistical physics studies can be very briefly summarized as follows.
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For o« < 3.86, the T = 0 phase is at zero energy (the problem is SAT).
The entropy density is finite and the phase is Replica Symmetric (RS) and un-
frozen. Roughly speaking, this means that there exists one giant cluster of
nearby solutions and that the effective fields vanish linearly with the temper-
ature.

For 3.86 < o < 3.92, there is a full RSB phase. The solution space breaks
in clusters and the order parameter becomes a nested probability measure in
the space of probability distribution describing cluster to cluster fluctuations.
The phase is still SAT and unfrozen [47, 48].

At o >~ 3.92 there is a discontinuous transition toward a phase which is
currently under discussion. Originally it was considered to be a {-RSB frozen
phase [24, 26], but most recent studies are showing that the phase is 1RSB
unstable rather for reasons of instability of cavity formulae than due to the
instability of 1RSB ansatz (similarly to [49]).

Above o = 4.15 the 1-RSB solution of cavity equations becomes stable
again [50]. The complexity, that is the normalized logarithm of the number of
clusters, is finite in this region. ‘At finite energy there exist many metastable
states which act as dynamical traps. The 1-RSB metastable states become un-
stable at some energy density Eg(a) which constitutes a lower bound to the
true dynamical threshold energy (see Sec. 2.2 for details).

At or = 4.2667 the ground state energy becomes positive and therefore the
typical random 3-SAT problem becomes UNSAT. At the same point the zero—
energy complexity vanishes. The phase remains 1-RSB up to o = 4.39 where
an instability toward a zero complexity full RSB phase appears.

In the region 4.15 < & < 4.39, the 1-RSB ansatz for the ground state is sta-
ble against higher orders of RSB, but the 1-RSB predictions become unstable
for energies larger than the Gardner energy. The instability line intersects with
the 1-RSB ground state estimation at the two extremes of the interval, inside
which it provides a lower bound to the true threshold energy (see Ref. [50] for
a comprehensive discussion).

Further (preliminary) f-RSB corrections suggest that the true threshold
states have energies very close to the lower bound and hence the interval
A = [4.15,4.39] should be taken as the region where to take really hard bench-
marks for algorithm testing.

As displayed in Fig. 2.1, the actual value of the energy gap is very small
close to the end points of A. In order to avoid systematic finite size errors,
numerical simulations should be done close to the SAT/UNSAT point, i.e., far
from the end point of A. Consistently with the fact that finite size fluctuations
are relatively big (O(v/N)), even close to «, problem sizes of the order at least
of N = 10° are necessary in order to observe a matching with the analytic
predictions.
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Figure 2.1: The solid line is an estimate for the ground state energy, while the
dashed curve represents the Gardner energy, providing a lower bound for
the threshold states (numerical data adapted from ref. [50]). In the inset we
show that the difference between the Gardner and the ground state energy
is strictly positive in the small 1-RSB stable region around the SAT/UNSAT
transition critical point (indicated by the vertical line): it is expected that it is
hard for heuristics based on local search to find assignments inside the closed
area delimited by the energy gap curve.
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2.2 The Survey Propagation

2.2.1 The Zero Pseudo-Temperature Survey Propagation—K-
SAT

The 1-RSB cavity equations which have been used to study the typical phase
diagram of random K-SAT become the SP equations once reformulated to
run over single problem instance [26]. This is done by avoiding the averaging
process with respect to the underlying random graphs. Thanks to the self-
averaging property of the random K-SAT free energy [53], the SP equations
can be used both to re-derive the phase diagram of the problem and, more
importantly, to access detailed information of algorithmic relevance about
a given problem instance. In particular, the SP equations provide informa-
tion about the statistical behaviour of the single variables in the stable and
metastable states of given energy density.

The 1-RSB cavity equations, see Section 1.3.3, are iterative equations (av-
eraged over the disorder) for the probability distribution functions (pdf) of
effective fields that describe their cluster-to-cluster fluctuations. The order
parameter is a probability measure in the space of pdf’s; it tells the probabil-
ity that a randomly chosen variable has a certain associated pdf in states at a
given energy density.

In SP and more in general in the cavity approach, one assumes to know
pdf’s of the fields of all variables in the temporary absence of one of them.
Then one writes the induced pdf of the local field acting on this “cavity” vari-
able in absence of some other variable interacting with it (i.e., the so called
Bethe lattice approximation for the problem). These relations define a closed
set of equations for the pdf’s that can be solved iteratively. The equations are
exact if the cavity variables acting as inputs are uncorrelated, e.g., over trees,
or are conjectured to be an asymptotically exact approximation over locally
tree-like structures [26] where the typical distance between randomly chosen
variables diverges in the large N limit (as In N for diluted random graphs).
The full list of the cavity fields over the entire underlying graph, in the SP
implementation, constitutes the order parameter. From the cavity fields one
may determine the total field acting on each variable in all metastable states
of given energy density and this information can be used for algorithmic pur-
poses.

A clear formalism for the single sample analysis is given by the factor
graph representation [27] of K-SAT: variables are represented by N circular
“variable nodes” labelled with letters i, j, k, ... whereas the K-body interac-
tions are represented by M square “function nodes” (carrying the clause en-
ergies) labelled by 4, b, c, . .. (see Fig. 2.2)

For random 3-SAT, function nodes have connectivity 3, variable nodes
have a Poisson connectivity of average 3« and the overall graph is bipartite.
The total energy is nothing but the sum of energies of all function nodes as
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Figure 2.2: Factor graph representation. Variables are represented by circles,
and are connected by function nodes, represented by squares; if a variable
appears negated in a clause, the connecting line is dashed.

given by Eq. (2.1).

The Cavity Bias for Random 3-SAT

Here we could repeat the analysis of the RS case of the spin glass done in
the Introduction in the Section 1.3.3. As the changes are minimal, due to the
universality of the formulae for the Believe Propagation, we will summarize
only the differences between the two problems.

The factor graph, see Figure 1.6, of the simple spin glass had function
nodes with connectivity 2, which has reflected the couplings J;;. In the case
of 3-SAT, Figure 2.2, the couplings in the Hamiltonian couple three generally
different spins and that is reflected in the structure of the factor graph by
function nodes of degree 3. This will cause also difference in the formulae for
the cavity biases, as there are two spins neighbouring to a spin i through the
function node a. Still the structure of formulae will remain close to what we
have seen for simple spin glass with the following changes.

The main differences occur in the expressions for the cavity biases u,;
which now has to be indexed by the function node instead of the simple in-
dexing by the neighbouring spin. Similarly, the constants w,; will change in
accordance with the Hamiltonian.

Ugi ({h]—m}) - ][l,l' 1_1\9 (]ﬂ,]h]-—m) 7 (22)
jea\i
Wasi ({Rjmsa}) = X [Hjmal = [T 6 (Jahjma) -
jea\i jea\i

Because the basic cavity element in the 3-SAT problem will be a spin vari-
able together with all function nodes to which it belongs, the energetic changes
after filling in the cavity or after addition of a function node to the graph will
differ. We needed these quantities for finding the formulae for the free energy
and for optimization of the pseudo—temperature y in (1.65). The expressions
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for the energetic changes may be found in a straightforward way in close sim-
ilarity to the analysis of the Section 1.3.3. The resulting formulae are

AE =Y [~ womi+ X, |Mjmal] = | 2 st

n€i jea\i agi

AE, = min {-—Zhj_,a—i-ZH]E”( 7 fa,]S]) -z‘h]‘—-»a”r

{si}.ica jea j€a

/ (2.3)

where the only difference is that we index the change after adding a function
node by index of the node rather than by the link index which in the 3-SAT
case looses meaning. For detailed analysis see [26].

All the other formulae are universal as far as the Hamiltonian can be rep-
resented by a factor graph.

Adopting the message-passing notation and strictly following [26], we call
u-messages the contribution to the cavity fields coming from the different
connected branches of the graph. In SP the messages along the links of the
factor graph have a functional nature carrying information about distribu-
tions of u-messages over the states at a given value of the energy, fixed by
a Lagrange multiplier y: we call these distributions of messages u-surveys.
The SP equations can be written at any “temperature” (the inverse of the La-
grange multiplier y is actually a pseudo-temperature, see [26]). However they
acquire a particularly simple form in the limit 1/y — 0, which is the limit of
interest for optimization purposes, at least in the SAT region.

In K-SAT, the u-surveys are parameterized by two real numbers and SP
can be implemented very efficiently. Each edge a — 1, from a function node
a to a variable node i, carries a u-survey Q,—,;(11). From these u-surveys one
can compute the cavity fields h;_,;, for every b € i, which in turn determine
new output u-surveys (see Fig. 2.3).

Very schematically, the SP equations can be implemented as follows. Given
a random initialization of all the u-surveys Q,_;(u), the function nodes are
selected sequentially at random and the u-surveys are updated according to
a complete set of coupled functional equations (see Fig. 2.3 for the notation):

Pig(hjma) = Cj_m/DQj,a 5<h— Y Mb-+j>

bej\a
X exp (y(IZ Upil = Y, )ub_»j|)), (2.4)
bej\a bej\n
Qoi(1) = | Doy 8 (4= fasi ({ja})) 25)

where the C;_,,’s are normalization constants, and the integration measures
are given by:

DQj,a = H Qb—-»]‘(ub—hf) dub—)jl (26)
bej\a
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Figure 2.3: Cavity fields and u-messages. The u-survey for the u-message
u,—; depends on the pdf’s of the cavity fields hj,_, and h;,_,,. These are on
the other side dependent on the u-surveys for the 1-messages incoming to the
variables j1 and j».

DPﬂli = H P]'_’”(h]"“"“) dh]'_,,,. (27)
jea\i
Parameterizing the u-surveys as

Qui(1) = mp_;6(u) + m7_;6(u— 1) +m;_;6(u + 1) (2.8)

where 0 . =1—n}t . — 7, the above set of equations (2.4, 2.5) defines a
non-linear map over the 17’s.

Once a fixed point is reached, from the list of the u-surveys one may com-
pute the normalized pdf of the local field acting on each variable:

Pi(H) = Ci/D@i 5(H =3 ui) %

bei
exp (¥ ([ il = 3 i), 29)
bei bei
DQi = [ Qomi (i) dup_;. (2.10)
bei

It should be remarked that P;(H) is in general different from the family of
cavity fields pdf’s P;_,;(h) computed by mean of (2.4).

From the knowledge of the cavity and local fields pdf’s, one derives the
(Bethe) free energy at the level of 1-RSB:

M N
o(y) = —11\7 (21 i (y) — 3, OF(y) (T - 1)) : (2.11)

i=1
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where T} is the connectivity of the variable 7 and:

of (y) = _%m{ / [1DPQia (2.12)

i€a

exp | —y min Eg—z Z Up_i| 07+ 2 |14y },
{oyi€a} ica |bei\a bei\a
. 1 SN 1
oY (y) = ——y-ln { / DQ; exp [y(] Zun_,i| - jun_ﬁ})} } = —;111(@‘)-

=) ael

Note that (2.11) differs slightly from our definition of free energy in the Intro-
duction. The change reflects that we are considering a single instance and
hence we build the graph by adding the variable nodes and the function
nodes. When adding the function nodes, I; of them for variable i, we add
also the variable several times. This we have to take into account and sub-
tract this fake contributions from the overall free energy. Hence we have the
term T; — 1 in front of the variable contribution. In the case of ensemble of
random graphs the equivalent operation was to add the multiplicative factor
20c — 1. The E, is the energy contribution of the function node 4. The maxi-
mum value of the free-energy functional provides a lower bound estimation
of the ground state energy of the Hamiltonian (2.1) defined on the sample. In
the SAT region the free-energy functional @ (y) is always non positive and it
is an increasing function of y, the choice ¥ — oo is optimal; in the UNSAT
region, on the contrary, it exhibits a positive maximum for some y = y* (see
[26]).

From the free-energy density of a given instance, it is straightforward to
compute numerically its complexity Z(y) = 0®(y)/0(1/y) and its energy
density e(y) = d(y®(y))/dy, the two quantities are connected through the
Legendre transform (1.60). We remind that the complexity is linked to the
number of pure states (i.e., clusters of configurations) of energy E, by the
defining relation NV (E) = exp (NZ(E)). The energy level represented by the
largest number of configurations is given by:

% (em) = max {Z(E)} . (2.13)

Further RSB corrections may be needed to locate the precise value of ey,
which is in any case lower bounded by the largest energy of 1-RSB stable
states, the so called Gardner energy Eg. It is expected that local search strate-
gies get trapped at energies close, but not necessarily equal, to the thresh-
old energy (see refs. [29] for a thorough discussion on the role of the iso-
complexity states [51]). More elaborated strategies not properly satisfying de-
tailed balance (e.g., WalkSat for the K-SAT problem) could in principle over-
come this type of barriers; however, the available numerical and analytical
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results suggest that also these more sophisticated randomized searches un-
dergo an exponent1a1 slowdown, with different layers of states acting as dy-
namical traps, depending on the details of the heuristics. Although the field

is still very active and the results are not well established, see for example
[52].

2.2.2 The Finite Pseudo-Temperature Survey Propagation—
MAX-K-SAT

In the SAT phase, where the ¥ — oo limit is taken, the convolutions (2.4) filter
out completely any clause-violating truth value assignment. This feature is
extremely useful for satisfiable formulae, but it becomes undesired when our
sample is presumably unsatisfiable.

In the UNSAT region the SP equations require a finite value of the La-
grange multiplier y. The filtering action of the exponential re-weighting term
in (24) is then weakened and the messages computed by the SP equations
can vehicle information pointing to states with a non vanishing number of
violated constraints.

2.2.3 The Finite Pseudo-Temperature Recursive Equations

The SP equations simplify considerably in the ¥ — oo limit and lead to ex-
tremely efficient algorithmic implementations, as discussed in great detail in
[28]. In the case of finite pseudo-temperature 1/y the same simplification can-
not take place because of the presence of a nontrivial re-weighting factor. Still,
arelatively fast recursive procedure can be written. Let us consider a variable
j having TI'; neighbouring function nodes and let us compute the cavity field
pdf P;_.,(h) wherea € j. We start by randomly picking up one function node
b1 € j\ a, and we calculate the following “h-survey”:

]_m(h)—nbl_ﬂ (W) +mif ;6 —1)+m; _; 6(h+1). (2.14)

The function P (h) would correspond to the true local field pdf of the vari-
able j in the case in which b; was the only neighbouring clause (as denoted
by the upper index).

The following steps of the recursive procedure consist in adding the con-
tributions of all the other function nodes b, € j\ 4, clause by clause (Fig. 2.4):

B () = mp, ;P (h) (2.15)
+ i P (= 1) exp [~2y 8(—1)]

+ My ]Hal)(h +1) exp [-2y8(h)] .
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(a) (b) (c)

Figure 2.4: Computing recursively a cavity pdf. (a) In order to find a single
cavity pdf P;_,(h), a single clause by € j\ a is picked up at random and the
u-survey Qp, . is used to compute equation (2.14); (b) The contributions of
all the other function nodes b, € j\ a are then added, clause by clause; (c)
The pdf computed recursively after I'; — 1 iterations coincides with P;_,(h).

Here 13]«(1)61(71) is an unnormalized pdf and 8(h) is a step function equal to 1
for h > 0 and zero otherwise. The recursion ends after y = I'; — 1 steps, when
the influence of every clause b, € j\ a has been taken in account. The final
cavity-field pdf P;_,(h) can be found straightforwardly by computing the pdf
5(F=1)
P j—in

it.

() for all values of the field —T; +1 < k < T; — 1 and by normalizing

As already pointed out in Section 2.2, the knowledge of K — 1 input cavity-
field pdf’s can be used to obtain a single output u-survey. Let us compute for
instance the u-survey Q,—,;(1) (see always Fig. 2.3 for the notation). In order
to do that, we need first the cavity field pdf’s P;_, (k) for every j € a\ i. The

parameters {n0_., .} . 7. .} are then updated according to the formulae:

P < .y ) L
mei= Wiy wli=0 mi=1-n, 019
n=s

where we introduced the weight factors:

-1 -1
Wie= Y Pa(h), Wi,= ¥ Piaa(h). (2.17)
h=1 h==T:+1

]

It should be remarked that Q,,;(u) depends only on one single nontrivial

ni‘ii (from now simply referred to as 71,_,;). We could say that a single kind of

message can be produced, telling the receiver literal to assume the truth value
“TRUE”; this message is transmitted along the edge 2 — i with a probability
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Na—i, corresponding to the probability that the only way of not violating the
constraint 4 is to set appropriately the truth value of 1.

Starting from a full collection of u-surveys at a given time, it is possible to
realize a complete update of all the parameters {1,_,;} by systematical appli-
cation of the recursions (2.14), (2.15) and of the relation (2.16); from the new
set of u-surveys, new cavity field pdf’s can be computed and the procedure
continues until when self-consistence of n’s is reached. This procedure can
be efficiently implemented numerically and allows us to determine the fixed
point of the population-dynamics equations (2.4), (2.5), for a general value of

Y.

2.3 Numerical Results

2.3.1 The SP-Y Algorithm

In the usual SP-inspired decimation [28], the computation of the local field
pdf’s P;(H) is used to decide a truth value assignment for the most biased
variables. Indeed, it is reasonable that a spin tends to align itself with the most
probable direction of the local field. A ranking can be realized by finding all
the probability weights

-1
W= 3 Pi(H), W: = > Pj(H), (2.18)
H=1 H=-T;

and by sorting the variables according to the values of a bias function:
bex (f) = [W;F = W . (2.19)

The local field pdf’s P;(H) can be naturally calculated resorting to the itera-
tions (2.14), (2.15): computation is done simply by sweeping over the whole
set of neighbouring function nodes b € j, including also the contribution of
the skipped edge a2 — j. By fixing in the right direction the spin of the most
biased variable, we actually reduce the original N variable problem to a new
one with N — 1 variables. New u-surveys are then computed. Doing that we
have to take care of fixed variables: if i is fixed, its cavity field pdf’s must be
of the form:

Pioa(h) = 6 (1~ Juisi); (2.20)

regardless of the recursions (2.14), (2.15). The complete polarization reflects
the knowledge of the truth value of the literals depending on the spin s;.

The procedure of decimation continues until when a full truth assignment
has been generated or until when convergence has been lost or a paramag-
netic state has been reached; in the latter cases the original formula is sim-
plified according to the partial truth assignment already generated and the
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simplified formula is passed to a specialized heuristic. Our choice of prefer-
ence is the WalkSat algorithm [54], which is by far more efficient than SA in
the hard region of the 3-SAT problem, as we have checked extensively. Very
briefly, the strategy of WalkSat is the following one: at each time step the cur-
rent assignment is changed by randomly alternating greedy moves (where
the variable which maximizes the number of satisfied clauses if fixed) and
random-walk steps (in which a variable belonging to a randomly chosen un-
satisfied clause is selected and flipped). WalkSat stops if either a satisfying
assignment is found or if the maximum number of allowed spin flips (the
“cutoff”) is reached (see Ref. [55] for another recently analyzed and very effi-
cient heuristics).

When working at finite pseudo-temperature, we have to take in account
the possibility that some non-optimal fixing is done in presence of ‘thermal’
noise. After several updates of the 1-surveys some biases of fixed spins may
become smaller than the value they had at the time when the corresponding
spin was fixed. Certain local fields can even revert their orientation. Small or
positive values of an index function like:

bbacktrack(j) = —5j <W]+ - W]'_> ’ (2.21)

can track the appearance of such dangerous fixed spins and this information
can be used to implement some “error removal” procedure; for instance, a
simple strategy can be devised where both unfixing and fixing moves are
performed at a fixed ratio 0 < r» < 0.5 (see [33] for another backtracking
implementation).

The actual SP-Y simplification procedure will depend not only on the
backtracking fraction 7, but even more on the choice of the pseudo-temperature
y. The simplest possibility is to keep it fixed during the simplification, but one
may choose to dynamically update it, in order to stay as close as possible to
the maximum y* of the free energy functional @ (y).

The equations (2.11, 2.13) can be rewritten in the following form, suitable
for numerical computation:

ol(y) = -5 [mn(1+ =D [T WE)

i€a

~In ( I1 ci_ﬁ,z)] , 2.22)

i€a
©/(y) = ~7In(C). (223)

In Fig. 2.5 we give a summary of the simplification procedure in a standard
pseudo-code notation. The public release of the SP-Y code can be down-
loaded from [56].
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INPUT: a Boolean formula JF in conjunctive normal form;
a backtracking ratio r; optiomally, a fixed inverse
pseudo-temperature Yy

OUTPUT: a simplified Boolean formula F’ in conjunctive
normal form (ideally empty) and a partial truth value
assignment for the variables of F (ideally a complete
one)

0. For each edge a — i of the factor graph, randomly
initialize the 7,_; € {0,1}

1. IF there is a fixed y;, as input, put y* = Vin, ELSE
after a fixed number of steps, determine by bisection
the position of the free-energy maximum y*

2. Compute all the fixed point u-surveys, using equations
(2.14), (2.15), (2.16) and putting y =y*

3. IF the population dynamics equations converge,

3.1 FOR every unfixed variable i, compute the local field
pdf using (2.14), (2.15)

3.2 Extract a random number g in [0,1]

3.3 IF g > r, Sort the variables according to the index
function (2.19), and fix the most biased variable

3.4 ELSE IF g < r, Sort the variables according to the
index function (2.21) and unfix the highest ranked
variable

3.5 IF all the variables are fixed, RETURN the full truth
value assignment and an empty sub-formula, ELSE, go
to 1.

4. ELSE IF the population dynamics equations do not
converge, simplify the formula by imposing the already
assigned truth values, RETURN the partial solution and
the obtained sub-formula

Figure 2.5: The SP-Y simplification algorithm.
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2.4 Optimizing Energy Below the Threshold States

As we have already discussed in Section 2.2, it is expected that, in the ther-
modynamical limit, any local search algorithm gets trapped in the vicinity of
exponentially numerous threshold states with energy ey, and that any local
heuristics is in general unable to find the optimal assignment in the thermo-
dynamical limit. To verify this prediction, we conducted various experiments,
both in the SAT and in the UNSAT phase, focusing on the comparison be-
tween the WalkSat heuristics performance after and before different kinds of
SP-Y simplification. In most of the situations, we decided to analyze carefully
single large-sized samples instead of a larger number of smaller problems: we
verified in fact that the sample-to-sample fluctuations tend to be irrelevant for
size of order 10* and larger.

2.4.1 SAT Region

The aim of the first set of experiments was to check the actual existence of
the threshold effect. We ran WalkSat over different formulae in the hard-
SAT region, with fixed « = 4.24 and sizes varying between N = 10% and
N = 105, reaching a maximum cut-off of 10'° spin flips. The obtained results
are plotted in Fig. 2.6; the Gardner energy is also reported for comparison
with the data. Even if for small-size samples the local search algorithm is
able to find a SAT assignment, for larger formulae (N ~ (O(10*)) WalkSat
does not succeed in reaching the ground state, its relaxation profile suffers of
critical slowdown, and saturates at some well defined level. This is actually
expected, because the Gardner energy becomes O(1) only for N ~ 10% or
larger, and for a smaller number of variables the threshold effect should be
negligible when compared to finite size effects.

We remind that WalkSat cannot be considered as an equilibrium stochas-
tic process and that it is not possible to infer that its saturation level coincides
with the sample threshold energy; we can anyway claim that WalkSat is un-
able to explore the full energy landscape of the problem, and that the enor-
mous number of non optimal valleys is unavoidably hiding the true ground
states. Plateaux in the relaxation profiles of WalkSat have indeed been already
discussed in [31, 32] and ascribed to metastable states acting as dynamical
traps.

For the N = 10* formula a trapping effect becomes clearly visible in our
experiments, but the saturation plateau is below the Gardner lower bound.
The finite-size fluctuations are still of the same order of the energy gap be-
tween the ground and the threshold states and the experimental conditions
are distant from the thermodynamical limit. When the size is increased up to
10° variables, the saturation level moves finally between the full RSB lower
bound and the 1-RSB upper bound for e,.
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Figure 2.6: Threshold energy effect in SAT region. The WalkSat performance

for various samples of different sizes and o = 4.24 is presented. With increas-

ing size, the curves appear to saturate above the Gardner energy. An arrow
indicates that the next data point corresponds to a SAT assignment.
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variables and o = 4.24). After SP-Y simplification, WalkSat is generally able
to find solutions below the Gardner threshold; in some cases, it succeeds even
in finding complete satisfying assignment. An arrow indicates that the next
data point corresponds to a SAT assignment.
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The efficiency of the SP-Y simplification strategy against the glass thresh-
old is discussed in Fig. 2.7. We simplified a single randomly generated for-
mula (N = 10°, « = 4.24) at several fixed values of pseudo-temperature. The
solid line shows for comparison the WalkSat results after a standard SP dec-
imation (i.e., y — o0): the ground state, E = 0, is reached as expected, after
a rather small number of spin flips. The same happens after SP-Y simplifica-
tions performed at a large enough pseudo-temperature (y > 4); one should
remind indeed that in the SAT region the optimal value for y would be in-
finite, and that in that limit the SP-Y recursions reduce to the SP equations.
After simplification with smaller y’s, the WalkSat cooling curves reach again
a saturation level, which is nevertheless below the Gardner energy, unless y
is too small: the threshold states of the original formula have not been able
to trap the local search, even if the ground state becomes inaccessible. As we
have indeed already discussed, working at finite temperature increases the
probability of violating a clause when doing a spin fixing, and this is particu-
larly evident in the SAT region where every assignment that does not satisfy
some constraint should be filtered out.

The procedure is intrinsically error prone, and it will allow in general to
reach only “good states”, but not the true optimal solutions (the smaller the
parameter y, the higher the saturation level will be). As we shall discuss in the
next section, the use of backtracking partially cures the accumulation of errors
at finite y: the saturation level can in fact be significantly lowered by keeping
the same pseudo-temperature and introducing a small fraction of backtrack
moves during the simplification. In Fig. 2.7 the data for y = 1.5 shows the
importance of backtracking. While the run of SP-Y without backtracking has
led to a plateau above Gardner energy, with the introduction of backtrack
moves we find energies well below the threshold.

2.4.2 UNSAT Region

When entering the UNSAT region, the task of looking for the optimal state
becomes harder. The expected presence of violated constraints in the opti-
mal assignments really forces us to run the simplification at a finite pseudo-
temperature. Unfortunately, after many spin fixings, the recursions (2.14),
(2.15) stop to converge for some finite value of y before the maximum of the
free energy is reached, most likely because the sub-problem has entered a full
RSB phase. At this point one should switch to a 2-RSB version of SP which
we did not realize, yet. Alternatively, one could try to run directly the fi-
nal heuristic search (hoping that the full RSB sub-system is not exponentially
hard to optimize) or more simply one may continue the decimation process
by selecting the largest y for which the computation converge. We decided
to implement the latter choice until either convergence is lost independently
from the value of y or a paramagnetic state is reached.

In our experiments we studied several 3-SAT sample problems belonging
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Figure 2.8: SP-Y performance in the UNSAT region (single sample with N =
10° variables and o = 4.29). Several simplification strategies are compared;
the need for backtracking is readily visible, and its introduction allows to
reach energies closer to the ground state than to the Gardner lower bound.

to the 1-RSB stable UNSAT phase. We employed WalkSat as an example of
standard well-performing heuristics. Although WalkSat is not optimized for
unsatisfiable problems, in the 1-RSB stable UNSAT region it performs still
much better than any basic implementation of SA. We observed anyway that,
even after 10'Y spin flips, the WalkSat best assignments were still quite dis-
tant from the Gardner energy, for various samples of different size and a.
In Fig. 2.8 we show the results relative to many different SP-Y simplifications
with various values of y and r for a single sample with N = 10° and « = 4.29.
The simplification produced always an improvement in the WalkSat perfor-
mance, but, in absence of backtracking, we were unable to go below the Gard-
ner lower bound (although we touched it in some cases: in Fig. 2.8 we show
the data for a simplification at fixed y = 2.5; a simplification with runtime
optimization of y reached the same level).
The relative inefficiency of these first attempts of simplification was not
due to the threshold effect alone, but also to an extreme sensitivity to the
choice of y, as pointed out by a second set of experiments making use of back-

53




0.007 T T

o " Without Backtracking ----------
. With backiracking (r = 0.2)
D Paramagnetic subformula
L B . fContradiction ]
Ly oss of convergence - |
0-008 Eg“.‘ Without decimation -~
2 0005 gg-a\gu .
S NG
'QU) D\\m fal
©
o
> 0.004
k]
0
©
m '~
0.003 Foo o B BB BB ]
0.002

0.5 1 1.5 2 2.5
Inverse pseudo-temperature v

Figure 2.9: Backtracking efficiency. Many SP-Y simplifications of a single sam-
ple with N = 10% variables and o = 4.35 have been performed at fixed but
different values of pseudo-temperature; the introduction of a small fraction
of backtracking moves eliminates essentially the need for a time consuming
optimization of the parameter y. The empty points refer to simplifications
without backtracking, the full points to simplifications with a backtracking
ratio r = 0.2. A diamond indicates that the simplification process stopped
because of loss of convergence, a circle because of finding a completely un-
biased paramagnetic state, and the squares indicates that the loss of conver-
gence happened at an advanced stage where some clause-violating assign-
ments have already been introduced by SP-Y.
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tracking. We performed first an extensive analysis of the simultaneous opti-
mization of y and r, using smaller samples in order to produce more experi-
mental points. After some trials, the fraction 7 = 0.2 appeared to be the opti-
mal one, at least for our implementation, and in the small region under inves-
tigation of the K-5AT phase diagram. The data in Fig. 2.9 refers to a formula
with N = 10* variables and o = 4.35. The dashed horizontal line shows the
WalkSat best energy obtained on the original formula after 10° spin flips. The
WalkSat performance was seriously degraded when simplifying at too small
values of y, but the introduction of backtracking cured the problem, identi-
fying and repairing most of the wrong assignments. The WalkSat efficiency
became actually almost independent from the choice of pseude-temperature,
whereas in absence of error correction a time consuming parameter tuning
was required for optimization.

Coming back to the analysis of the sample of Fig. 2.8, the backtracking
simplifications allowed us to access states definitely below the Gardner lower
bound. The combination of runtime y-optimization and of error correction
was even more effective: after a rather small number of spin flips, WalkSat
reached a saturation level strikingly closer to the ground state lower bound
than to the Gardner energy. A further valuable effect of introduction of the
backtracking was the increased efficiency of the formula simplification itself:
in the backtracking experiments, SP-Y was able to determine a truth value
for more than 80% of the variables before losing convergence, while without
backtracking, the algorithm stopped on average after only 40% of fixings.

All the samples analyzed in the previous sections were taken from the 1-
RSB stable region of the 3-SAT problem, where the equations (2.4), (2.5) are
considered to be exact. For o > 4.39, the phase becomes full RSB and SP loses
convergence before the free energy ®(y) reaches its maximum from the very
first step of the decimation procedure. While a full RSB version of SP would
most likely provide very good results, SP-Y still can be used in a sub-optimal
way by selecting the largest value of y for which convergence is reached. Nu-
merical experiment show that indeed the performance of SP-Y are in good
agreement with the analytical expectations. However, it should be noticed
that in this region the use of SP is not necessary. Although the performance
of WalkSat and SA can be improved by the SP simplification, the SA alone is
already able of finding close-to-optimum assignments efficiently (as expected
for a full RSB scenario) and behaves definitely better than WalkSat.

2.5 Conclusions
In this chapter, we have displayed the performance of SP as an optimization
device and shown that configurations well below the threshold states can be

found efficiently. Similar results are expected to hold also for random sat-
isfiable instances very close to the critical point for which the combined use
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of finite pseudo-temperature and backtracking could give access to the SAT
optima.

It would be of some interest to analyze further improvements of the deci-
mation strategies as well as to consider more structured factor graphs within
a variational framework, in which some correlations can be put under control.

A possible application of SP-Y-like algorithms can be found in informa-
tion theory: lossy data compression based on Low Density Parity Check sche-
mes leads to optimization problems which are indeed very similar to the one
discussed in this chapter.
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Chapter 3

Protein as a Flexible Structure

In this chapter we introduce a two-variable coarse grained model in which
we consider the network of contact interactions in the three-dimensional struc-
ture of a protein and describe changes in the flexibility of the protein when we
keep only a certain subset of contact interactions. The model is mapped to a
constraint satisfaction problem and solved via the Belief Propagation iterative
message—passing algorithm.

As a case study, the resulting flexibility profiles are compared with the ex-
perimental temperature factors data, burial profile predictions and Molecular
Dynamics simulations for the HIV Protease. The sets of contacts that drive the
protein to largest flexibility are shown to describe significantly better the ex-
perimental data, confirming the notion of the HIV Protease as a flexible albeit
compactly folded structure. Emphasis is given to the methodological content
of the study.

The collaborative work with Michele Leone, Cristian Micheletti and Ric-
cardo Zecchina is about to be published.

3.1 Introduction—Protein as a Flexible Structure

Although proteins are very dense macromolecules, and their density is com-
parable to that of macro-molecular crystals, it is not unusual that they contain
regions of tens of residues that during the catalytic action can be displaced by
several A in a few nanoseconds in a concerted way. This mechanical flexibil-
ity is often of great importance for the protein catalytic function.

In this chapter we would like to address relationship between the protein
flexibility and its three-dimensional structure. We propose a minimal model
defined by a coarse-grained free energy function (FEF) that consists of two
terms: the first contribution to the FEF comes from the contact energy of the
residues in native-like state and the other term is an entropic drive to the
structures with higher flexibility. This latter term counts the total number of
internal degrees of freedom (DoF). The ultimate question is whether impos-
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ing of flexibility constraints leads to a better agreement between predicted
properties of protein and experimental data available when compared to the
prediction of other coarse-grained models.

The model in its simple form cannot provide complete understanding of
the relation of evolved structure and flexibility, but we hope that the results
provide worthy insights in the problem. There are several ways how to gen-
eralize this approach and make it more detailed. Still, we will remain on a
level as simple as possible, in order to elucidate the most general properties
of the system in a transparent way.

3.1.1 The Rigidity Theory and the Model

Current results of Thorpe’s [59, 64, 65] group have shown that, in their model
of proteins denaturation, the flexibility of protein structures increases during
thermal unfolding. In the full atomic model they have located rigid and flexi-
ble regions of the protein and have followed their evolution during denatura-
tion. We would like to continue in the direction that they have proposed but,
rather then using a full atomic model, to define and solve a proper coarse—
grained one, to focus only on the DoF relevant for large scale flexibility.

To represent the protein, we start from its 3D structure and at the level of
single residues. Each residue is represented by its C, atom. Only after coarse-
graining we create two graphs that reflect the actual spatial structure of the
protein. The first graph is the succession of backbone residues: we call it b
1. The second graph, the contact map g, is created from the 3D structure in
the customary way: two residues are in contact if the geometrical distance of
their C, atoms is smaller than 7.5A. In this chapter we present a case study
on the HIV-protease protein. Its contact map and a graphical representation
is shown in the Figure 3.1.

Similarly with the models of protein folding dynamics [67, 68, 69, 70], its
mechanism [71], and with similarity to the models of helix—coil transition [72,
73] we consider that the residues may be in two different states: either in
the active (native) state, that means interacting with all their neighbours in
the contact map, or in the inactive (disordered) state when they do not interact
with the neighbours on the contact map. On the other hand, the residues will
interact always along the protein backbone, since we will work at moderate
temperatures at which the covalent bonds cannot be broken.

For the calculation of the entropic part of the FEF we consider only the
active contacts in the contact map, that means only the contacts with both
residues in the active state, and the contacts of the backbone. This defines
a subgraph of the graph g that contains only the active and hence interacting

1We prefer to work also with the protein backbone as with a graph, although one could
imagine simpler way how to describe it. In our case it will be useful to maintain the graph
representation, so that we can use similar mathematical techniques for the backbone b and
the contact map g.
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Figure 3.1: a) The graphical model of HIV-1 protease homodimer with an
inhibitor, the secondary structure of the protein is highlighted. The central
cavity in-between of its two monomers is the catalytic region of the protease,
we show the placement of the inhibitor, too. The flaps above the cavity are
highly mobile. b) The corresponding contact matrix at 7 5A. Residues are
labelled according to their position in the protein sequence. Residues 0 — 98
form the first monomer of the protein, residues 99 — 197 the second monomer,
and finally residues 198 — 203 belong to the inhibitor.
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residues. We call the subgraph ¢'™. In order to evaluate the entropic part of
the FEF, we have to calculate the flexibility of the structure represented by the
graph g and the backbone in an efficient way.

It is the Pebble Algorithm of Thorpe and co-workers [65] that allows us to
sample the space of all possible subsets of active/inactive residues of a given
protein in fast and schematic way.

In the following Section, we will present the model Hamiltonian that we
will use to extract those subsets of active residues that lead to the largest flex-
ibility, with the aim of comparing the subsets to structural data.

3.1.2 Free Energy Function of the Flexible Protein

If we denote the active/inactive state of the residue by a spin-like variable
s; = 1(0) for active (inactive) residue, we can write the energetic part of the
FEF as

H =—- ¥ ss;. (3.1)

(ij)eg

Where the superscript stands for native. The topology-based energetic term
resembles the Hamiltonian of the G model which has been proposed for
description of unfolded/native transition in proteins [74]. The term counts
number of active links in the contact map.

The entropic part of the FEF takes form —3H DoF where HPF is number
of floppy modes and v is an appropriately chosen adimensional constant. To
evaluate the entropy term we have to calculate the flexibility of the structure
with the activities of residues assigned by the set of active residues {s;}. The
FEF takes form

H= ™ _ ZHDDF, (3.2)
B

where v > 0 is used to balance the energetic and the entropic term. We have
chosen the value of v from experimental data [75, 76] to be v ~ 0.5.

Finally, as we will be interested in finding various assignments of active
residues {s; } within the 3D structure, we add to the statistical weight external
field term which fixes the residue variables s; to some desired target sequence
{6:}. This will allow us to select the residue contacts that are actually present
in the structure:

, 1
pgoverlap 4(5 _ S—z)(% — Si) = 25(51-,'8_1') —1. (3.3)
The total statistical weight is then:
o= Hnat _ _;_HDOP _ _%Haverlap’ (3_4)

where the parameter A will be chosen large enough in order for residue site
variables to be chosen equal to the desired target sequence ones.
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3.1.3 The Pebble Algorithm for the Calculation of Flexibility

Imagine a 3D structure made of joints and sticks. Our question is if the struc-
ture is rigid, and if not, how much it is flexible, how many internal DoF it
has.

The Pebble Algorithm [65] counts the degrees of freedom in a very direct
and intuitive way. Each joint has in 3D space three DoF and the number of the
DoF can be decreased only by some mechanical constraints. The constraint in
our case is the existence of a stick that connects the joint to some other joint
and hence it fixes distance between them (We will discuss later on why each
stick removes only one DoF).

Such a stick connects two joints so we have to decide somehow, to which
joint we decrease the number of DoF. Our decision can be expressed by plac-
ing an arrow to the stick and making it directed. We can orient all the sticks
in the structure. Given such an orientation, the number of degrees of freedom
of each joint i equals max{0, 3 — n;}, where n; is the number of sticks that
point to it. The maximum ensures that the number of DoF is not negative—if
there are three or more constraints on the joint, it has no DoF left. Still the
orientation of the sticks cannot be done in a random way, we have to choose
the correct orientation among all possible. The criterion of correctness is min-
imization of the overall number of floppy modes. We may write

FDoF _ 1271%1 Y max{0;3 —n;} — 6, (3.5)
1 i

where we subtract the six rototranslational degrees of freedom of the motion
of the protein as a whole.

Going back to the model of protein, we interpret the joints as residues (Cy
atoms) and the sticks as their contacts. Each C, atom and consequently the
residue is represented by a single point with at most three DoF. The contacts of
the protein backbone represent the peptide bonds. In the peptide bond there
are two angles partially free to rotate and hence we consider the backbone
contact to fix only the distance of the residues and to remove one DoF only.
Similarly for the links of the contact map, we consider that the interaction
fixes only one degree of freedom.

To count properly the number of links pointing to each residue we will
place on each link (7, j) an auxiliary link variable x;; with two states that cor-
respond to the direction of the link. We define the value of the link variable
xij = 1 (x;; = 0) if the link is directed towards the residue j (i). Clearly
xjj = 1 — xj;. The formula (3.5) may be rewritten in the means of link vari-
ables as

HPP({x;}) =min [ Y max{0;3 - Y x;}—6], (3.6)
ik \ g (ub(i)
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where we call {x};} = {¥ji({s;})} the configuration of link variables that min-
imizes the HP°F and g(i) (b(i)) is the set of all neighbours of site i in the con-
tact map (backbone). HP°F ({xi;}) is then the actual number of floppy modes
of the protein structure with all residues assigned to be either active or inac-
tive. The complete FEF is then

H=- 3% sisj—Z[Zmax{O;B >, sisixi— i;}—6] —

('/j)eg jeg(i) jeb(i)

_2 2 [ (_, - SZ)} (3.7)

where we have expressed the sum over the graph ¢ by the sum over full
graph g but using the residue variables s;.

3.1.4 Separation of the Calculation in Two Parts

As previously stated, we want to analyze the subsets of active residues that
lead to highly flexible structures. In order to do so, the procedure is naturally
splitted in two steps. To evaluate the free energy, one has to minimize equa-
tion (3.5) first for a given assignment {s; } in order to find the actual flexibility
of the structure. While sampling the set of active residues (fixed in number)
providing the maximal flexibility one has to maximize similar term in (3.7)
over all possible assignments {s; }.

Hence we can separate the problem in two parts. We will study the con-
figuration space with the canonical weight given by the energy:

%HDC’F {z} {s}), (3.8)

where in order to find the configuration {x;;} we will sample an auxiliary
Hamiltonian in the form:

pflexibility — [Zmax{o 3— Y, sjsixji— Y, Xji}— 6] -

Jeg(z) jeb(i)

-—Z[% 5) 2 ,)} 3.9)

H — Hnat({si}) _

with 0 < p < A and p large enough to minimize the flexibility term and to
find the configuration {x;;}.

3.1.5 Random Sampling

Although the complete solution to the two coupled problems is possible, both
using a double Belief Propagation algorithm and/or combined method where
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Monte Carlo is used for the real FEF and the Belief Propagation is used for
the auxiliary Hamiltonian, we are going to sample the configuration space in
a simpler and clearer manner. As we are interested mainly in the influence of
the flexibility on the statistics of subsets of active residues, we work at a fixed
total Go contact energy (number of contacts).

We generate a large enough random ensemble of subsets with equal con-
tact energy and on this ensemble we study the influence of the flexibility on
the statistics of the subsets of active residues. Namely we are going to com-
pare prediction on the number of DoF at an arbitrary residue with experimen-
tal temperature factors (see the formula (3.37) for a definition of temperature
factors).

The number of degrees of freedom is the quantity that in our model is
closest to the amplitude of atomic motions which is estimated by the temper-
ature factors, although we see only the number of DoF left on the residue and
hence the dimensionality of the motion.

3.1.6 The Belief Propagation for the Calculation of Flexibility

As our ensemble contains the subsets of active residues that lead to the same
contact energy, we have only to evaluate the flexibility term. The auxiliary
flexibility Hamiltonian may be expressed as a sum

N
pyflexibility _ Z h, (3.10)
i=1
where }; is defined as
6
h; = %[max{O;?, - Z 58iXji — Z xji} - ‘N—} - (3.11)
jegld) jeb(i)
Ar, 1 1
-3 [(5 "Sl)(i ——si)].

Since the Hamiltonian contains only nearest neighbours interactions we may
write a Belief Propagation procedure that solves it within Bethe approxima-
tion [57] following the cavity approach of Barré et al. [66].

The Belief Propagation is a self-consistent local message passing algorithm
originally devised in the field of pattern recognition, information and coding
theory, and artificial intelligence.

In statistical physics it corresponds to Bethe approximation, i.e., to the as-
sumption that the graph on which BP is performed (Figure 3.2) is a tree. In
the last years it has been widely shown [61, 62] that BP works very well also
in graphs that are only locally tree-like, and even in the presence of more
regular or dense geometrical structure in cases where correlation decay fast
enough with distance. To this regard, we should say that the BP approach
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ok
a)

Figure 3.2: a) The Pebble game representation. The residues i are represented
by balls, active residues are coloured grey. There are two kinds of links: the
backbone links (thick lines) and the contact map links (dashed lines). The
orientations of links are shown as arrows. Orientation of links between in-
active residues is arbitrary (grey). b, ¢) Dual-like transformation of the con-
tact graph: new aggregated Potts variables are placed on original links. The
resulting structure is a factor graph where function nodes are displayed as
squares. Nodes retain the FEF constraint plus a hard core compatibility con-
straint stating that variable s; is common to several #'s and must therefore take
the same value within them. This leads to a selection of allowed values for
macro-variables that insist on the same function node. Compatibility values
can easily be found from inspection of Table 3.1. c) Cavity /BP messages flow
from function nodes to macro-variables. By construction, function nodes are
attached to original residues sites and macro-variables to links, so that their
degree is fixed to 2. The energy term in equation (3.8) has to be split evenly
among all function nodes of the “dual” graph. ‘
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;]0 1 2 3 4 5 6 7
s;10 0 00 1 1 11
5;10 01100 11
xi]-01010101

Table 3.1: The coding of residue and link variables to aggregated variables.

can be generalized through a standard Cluster Variation Method (CVM) pro-
cedure. It might be the case that this approach will be useful in the case of
protein graphs. However, as stated in the chapter introduction, this line of
work goes beyond the aim of the present analysis.

In order to write down the explicit message passing procedure it is useful
to merge the residue variables {s;, s;} and link variables {x;;} into aggregated
Potts like macro variables {t;;}. We will do it in the following way, shown and
explained more in details in Figure 3.2bc: We take a link between residues i, ;.
It connects spins s; and s;, its spin variable is x;;. These three spins will be
considered as one aggregate variable t;; with 8 possﬂJIe states (see Table 3.1).

Starting from the ﬂex1b111ty Hamiltonian (3.10) one would like to efficiently
compute the partition function

Z{lexbiity _ T Jexp { _ ﬁHflexibﬂz‘ty} (3.12)
{tu}

and the equilibrium conﬁgurations Boltzmann probabilities as
{tl]}) fleubllzty exp { - ﬁHflEXibﬂity} (3.13)

where the sum in the partition function runs over all compatible configura-
tions of {t;7}.

From equation (3.13), probability distributions { P;(t;;) }—the link proba-
bility, and {P;({t;;}) }—the joint probability d1str1bu‘uon of all collective vari-
ables sharing the site variable 7 in the original graph—, may be expressed.
These quantities are defined as marginalizations of (3.13) over all other vari-
ables.

Bethe Ansatz amounts to a variational hypothesis where the protein con-
tact graph b U g is treated as if it was a bipartite tree. In this case it is easy to
prove (e.g., by induction) that the following factorization property holds:

P({t}) = LD

o PC .l e (3.14)

where c is the degree of the collective variables and is always equal to 2 in
our case, and local probabilities are trial functionals whose best form has to
be found variationally as the one that minimizes the free energy potential.
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Inserting Ansatz (3.14) in (3.13) and imposing self-consistent marginalization
rules for local probabilities and minimization of the Gibbs free energy poten-
tial, it is possible to write a set of closed equations for messages {n;;(t;;)}
describing a local probability flow on each link of the bipartite graph of Fig-
ure 3.2. Messages are just a functional way to split up probability contribu-
tions over all the network links, such that one can further write, at conver-
gence of the self-consistent equations (n*), beliefs as:

Pyj(tij) o< mi;(ti)mj;(ti;) (3.15)
and
Pi({t;i}) o< TT mji(t;e) exp{—Bh:}. (3.16)
jeg(iyUb(i)

Within the region of validity of Bethe approximation and in the region of
the model phase space where no clustering phenomenon on the organization
of thermodynamic states is present 2, probabilities for each macro-variable
to take any allowed value can therefore be written as the fixed point solu-
tions of an iterative procedure that solves a system of non-linear equations.
Derivation of these equations can be done via an iterative computation of the
partition function of the model, as stated above, but here we will state only
the results. In order to do so, it is useful to separate the terms of exp(—fh;)
that contain only the variables local to the residue i and the rest where also
another quantities may occur,

1 1 6
exp(—ph;) = exp {)\(E — 57)(5 —5i) + WFL} X (3.17)
exp —pmax {0;3 — > sisiXji— ., Xji},
jeg(d) j€b(i)
exp(—Bh;) = T(s;,5) exp{—uhP°F}. (3.18)

The last formula defines quantities T (s;, §;) and hP°F. We will call T(s;, 5;) the
term that depends only on the state of the variable s;. For the belief 7;;(t;;)
that on the link (i, j) the state variable takes value t;; in absence of the sec-
ond constraint connected to t;; through site j, the system of self-consistent
equations (one for each link of the bipartite graph) reads as

mij(tij) = El‘,‘T(SirS_i) > I mi(t) exp{—phPF}. (3.19)

ij {tr;} keg(@Ub(i)\j

Again, we write the prime over the sum because not all configurations
of {t;;} are allowed. Only those where the quantity s; is fixed in all #;’s to

2The interested reader is referred to [26, 24, 60, 58] for discussion and extension of the BP
algorithm to such cases, which however are not expected to apply in the present model.
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the same value. System (3.19) can be implemented algorithmically in what is
known as the message-passing Belief Propagation procedure.

Let us explain all the terms in the (3.19) with the help of Figure 3.2c. The
out-coming belief n;;, is expressed in terms of all incoming believes ;. Their
‘convolution’ is then weighted by the on-site weight of the given configura-
tion exp{— ;,LhiD"F (tki, k # j)} and by a pre-factor T(s;, §;). The belief 1;; is
then normalized by C; s

7
CZ']‘ = Zonij(f). (3.20)
f=

We have devised a fast message passing procedure that leads to self-consist-
ently assigned values of n;(t; 7) (fixed point under the iteration of (3.19)) for
all 7, j. See the Appendix for more details on the scheme.

Once having self-consistent 1*’s we can calculate all thermodynamic prop-
erties of the system. Among them we will be most interested in the flexibility.
As we will keep p very large, the mean value of the flexibility term of the aux-
iliary Hamiltonian will give the actual flexibility for a given sequence {s;}.

First we have to calculate probability of a given site 7 to be in the active
state. To do so, we have to introduce probability of finding configuration
of {t;} around the site i. Similarly to the expression for the belief 1;; this
probability is (after convergence):

Rl =& T[T milt) expl{—p} 321)

T keg(i)ub(i)

where C; is the normalization constant that can be expressed as

Ci= Y Pi({t}). (3.22)
{tki}

Once knowing the probability of the state of a node P;({t;;}), we can cal-
culate the mean flexibility as the ensemble average. If we take the average
number of degrees of freedom on site i, (1P°F), we may write the mean total
flexibility as:

— 1
HPF ({7, {51)) = (S {HPF) —6) 323)

1

The number of degrees of freedom on the residue i is

(hPFy = ¥ 1P({ti}) max {0;3 = Y spsive — >, i) (3.24)
{tii} keg(i) keb(i)

In the case when one is interested in knowing the probability distribution of
a residue site variable, the result can be computed simply via marginalization
of P;({t;7})’s. Indeed, since there are many P;({#;;}) that contain the same site
information, marginalization can be used as an internal consistency check on
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BP results. We show in the Appendix how one can set up a fast algorithmic
way to evaluate the update rule (3.19) in order to find the self-consistent val-
ues n1*. A similar scheme is used for the evaluation of (3.24).

3.2 Results for the HIV-Protease

As a concrete test for our analysis we have chosen the HIV-1 Protease, a very
well studied protein with many available experimental and theoretical re-
sults. Its steric structure is known to a high detail and the experimental values
for the temperature factors are available [63]. It also contains mobile regions,
since during the catalytic reaction some regions change non trivially their con-
formation. On the other hand, other regions are relatively rigid. A graphical
model of the protease is shown in Figure 3.1. The protein is a homodimer, in
between of the two monomers there is the cavity with the active region. Each
monomer has the length of 99 residues. In our calculation we have worked
with the protein in complex with a simple peptide-like inhibitor of 6 amino-
acid residues (shown in the cavity).

Together with experimental data, there is also data obtained from Molec-
‘ular Dynamics analysis [77] and well established coarse-grained model for
protein dynamics—Gaussian Model [80, 78, 79].

The 3D structure of the protease defines in our idealization the two graphs
g and b. The possible subsets of active residues are generated as assignments
of residues to be active or inactive (with close similarity to the HP model). For
any generated sequence we can calculate its flexibility (3.23) and the profile of
DoFE. Our goal will be to show that for the subsets that lead to high flexibility
we find very good correlation with temperature factors.

In our calculation we strictly followed the scheme of the previous section.
First, we generated approximately 28000 ® random subsets of active residues
with an appropriately chosen energy. We have chosen three energies—one
which is specified by a pronounced kink in the flexibility vs. energy curve and
other two energies that correspond to much less (more) connected network,
respectively. The dependence of flexibility on contact energy is shown in the
Figure 3.3a. The selected energy levels correspond to the 165, 245, 485 active
bonds present in the network out of 735 links in total.

Following the method of the previous section, we sampled the flexibility
of all subsets of active residues at a given energy. Then we have created a his-
togram of flexibility values in the ensemble and we have chosen the subsets
that lead to the most flexible and the most rigid structures for comparison

3We have done the analysis also on smaller ensembles of 2000 and 16000 different subsets.
The results did not change when increasing the size of the ensemble, so we consider the
ensemble representative. As the algorithm is quite efficient we have chosen as large ensemble
as possible. Bigger number of sequences would cause problems with the large RAM needed
for calculation of two-point correlation matrix.
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Figure 3.3: a) The dependence of average flexibility of the ensemble of subsets
of active residues with a given energy. Energy is equivalent to the fraction of
active links. b) In the histogram of flexibilities the stripes that are used for the
analysis of similarity to temperature factors are shown. Each of the stripes
corresponds to 800 different subsets, all together there are 28000 subsets in
the ensemble (19200 for energy 165/735). We show data for energy 245/735,
other data are similar yet centred around different mean value of flexibility.
Flexibility decreases with the growing number of bonds.
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with the temperature factors. See Figure 3.3b. From the histogram of flex-
ibility we have taken out three ensembles of subsets. At any given energy
we have created ensemble containing the subsets that induce the most rigid
and the most flexible structures. As a control ensemble we have taken the
complete set of subsets.

For each subset from either ensemble we have counted the number of DoF
of a given residue, using the Belief Propagation scheme shown in the Ap-
pendix. We call the DoF profile a set of the values for all residues. As the DoF
profile gives the mean dimension of the residue fluctuations we can compare
it with the experimental temperature factors that are also a measure of residue
fluctuations.

The comparison was done in the following way. For each subset of active
residues we calculated correlation between the DoF profile and the tempera-
ture factors. Then we plotted the distribution of these correlation coefficients,
see Figure 3.4.

We immediately see that the subsets that drive the more flexible structures
correlate to temperature factors much better and hence they describe better
the actual structure of the protein. The average DoF profile for the three en-
sembles is shown in Figure 3.5, together with the corresponding temperature
factor profile.

What is the level of prediction? How well does this method do when
compared to other currently available methods? To answer these questions
we have compared our results with temperature factors prediction extracted
from information on the burial profile of the protein. The burial profile is a
sequence of numbers that give the connectivity of each residue, the number
of its neighbours within some cut-off distance (7.5 A). It is well know that the
prediction of the temperature factors from the burial profile can be very accu-
rate (with the linear correlation coefficient of 0.6) and may be even improved
within a certain scheme [81].

The burial profile in our scheme corresponds to the contact map g, so we
compare these two properties: first, we show the correlation between the pre-
dicted DoF profile and the burial profile of the protease. Second, we can com-
pare matrices of two-point correlations with the contact matrix.

The correlation with the burial profile (see Figure 3.6) is very high for the
subsets of active residues that induce the most flexible structures. That on
one side means that the prediction of our model is not much richer, but on
the other side it shows that the protein topology is optimized for its function.
The flexibility is closely linked to the 3D structure.

To show that there is more information in the DoF profile than in the burial
profile, we evaluated the two-point correlation functions and compared them
to the results from Molecular Dynamics. If the two-point correlation functions
show only the features of the contact matrix, we cannot expect more informa-
tion to be stored in the DoF profile than in the burial profile. Indeed, correct
pair-correlations may be obtained only by considering the three-dimensional
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orientation of the contacts.

We computed two-point correlations as the linear correlation between the
number of DoF at sites i and j. We have checked that also other correlation
measures (Kendall’s 7) give equivalent results. A reason for use of the lin-
ear correlation coefficient was the partially discrete nature of number of DoF:
we may expect that many subsets of active residues induce similar or equal
values of P°F.

Another possible measure of relationship of two residues would be the
pair-correlation coefficient of the fluctuations of the number of DoF of the
two residues. For completeness we have considered also this quantity, but
we have found no improvement to the direct pair-correlations of the number
of DoF. The number of degrees of freedom is a good measure of the residue
mobility.

We evaluated similarity of the two-point correlation matrices with the
two-point fluctuation correlations obtained from Molecular Dynamics 4. In
order to discard information stored in the burial profile, we have neglected
the correlations between the residues i and j if they are either directly in
contact or in the backbone sequence (i € b(j) U g(j)), or their neighbours
in the backbone sequence (m € b(i)) are in contact with some other residue
(m € b(j) Ug(j)) Therefore we have subtracted trivial correlations that come
only from the burial profile.

The correlations are not very high but still significant. For the smallest
energy (165/735) at which there is smallest number of bonds we have the
correlations of Tsexipre = 0.10 (Trigia = 0.00) for the “flexible’ (‘rigid’) subsets
of active residues. With the increasing number of bonds the difference of
correlation coefficients is less and less pronounced. For energy 245/735 we
have Tfeyip. = 0.07 and 7555 = —0.01, for the highest energy then Tflexible =
—0.01 and 7464 = —0.01. The last results reflects the fact that the mechanical
structures are over-constrained once there is too many bonds present.

The resulting values clearly show good correlation for the subsets that lead
to flexible structures and very poor correlation for the subsets that impose the
most rigid structures. Still, we do not reach the correlation obtained with
the Gaussian Model (7 = 0.43). The data for the best correlating case (flexible
sequences at the energy 165) are compared with the Molecular Dynamics data
in the Figure 3.7.

3.3 Conclusions

In this work we have introduced a coarse-grained model of protein flexibility
in which the corresponding Hamiltonian represents a set of steric and en-

4The correlation from Molecular Dynamics are correlation of fluctuations around the aver-
age position of the atom, so they are related to our two—point correlation functions indirectly.
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tropic constraints that can be efficiently solved via a local message-passing
procedure.

The central idea underlying this approach lies in the current of research
aiming to define a hierarchy of models that goes from the complete micro-
scopic description to successive levels of coarse-graining. In this multi-scale
approach, physical parameters resulted from our level are used as input to
tune the next level of models in a coherent way. The final goal is that of ex-
plaining the emergence of relevant behaviour from first principles not via a
direct and unfeasible brute force approach, but through a successive model-
refinement procedure.

The approach is very general. Indeed, the presented work focused more
on the presentation of the methodology than on direct applications. Never-
theless, a case study of practical importance (the flexibility study of the HIV-
protease) was presented. In this last case, we showed that among all possible
subsets of active residues, those that impose the most flexible structures, de-
scribe much better the properties of the real protein. On the other side, the
‘rigid” subsets describe the structure rather poorly. Unfortunately, our tool is
not powerful enough to predict the sequence of the protein. We believe that
this is caused by simplicity of the model. Indeed there are many ways how
to extend the model, starting from accounting of Cg atoms, calculating the
contact energy with consideration of actual interacting amino-acid residues
or passing to a full atomic model of the protein. All these extensions are fea-
sible, but go beyond the intentions of the authors.

Appendix: Calculation of the Flexibility by the Be-
lief Propagation

In this section we derive an algorithmic way to evaluate the formulae (3.19),
(3.21), and (3.24).

We start with the central equation (3.19) and we show the way how to
reach a self-consistent solution of the coupled equations for the complete set
of {771' }

In]doing so, we have to separate two branches of calculation, indeed the
messages along the protein backbone edges have slightly different nature
than the messages sent along the contact map edges. Hence we evaluate for-
mula (3.19) separately for the two cases.

Let us start with the case when the link (7, j) is in the backbone graph. In
that case we can rewrite (3.19) in the form:

T(Si/ S-’—l)

mij(tij) = —z— > o1 T mi(tee) x (3.25)
oo {tu) keg(i)
IT (ki) exp{—pmax{0;3— Y, sgsixgi — ¥, xi}-
keb(i)\j keg(i) keb(i)
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First we evaluate the formula in the case when t;; = 0. That immediately

implies that s; = s; = 0, x;; = 0, and x; = 1. ‘Hence the formula (3.25)
simplifies to:
1 .
1ij(0) = = T(0,5:) D7 Tkegiiy Milt) X (3.26)
Y {tki}

ke M (Be) exp{—pmax{0;2 ~ > xj}}.
keb(i)\j
We see that depending on the value of xii, where k is the other backbone
neighbour of i than j (if there is any) the maximum in the exponent may take
two values, either 2 or 1. The value is 2 iff x;; = 0 and hence iff t;; € {0,4}.
Similarly, the value is 1 iff t;; € {1,5}. The values of all contact map messages
are limited by s; = 0 only, hence t;; € {0,1,4,5}.
Using this information we may write:
T (0 , §,‘)

Miegtiy [M(0) + mii(1) + mii(4) + M1 (5)] % (3.27)

( Mken(iyj M6(0) +m(@)le™ + TT (1) + nki(5)]€"“>-
keb(i)\j
It will show very useful to define the following products for messages along
backbone graph b:

Biv(si=1) = J] (2 +n3)+mi(6) +mu(7)], (3.28)
keb(i)\V

BZ‘V(S,‘ = O) = H [T]ki(O) + M (4)]/
keb(H\V

Bfy(si=1) = I [m(2)+nu(6)],
keb()\V

By (si=0) = ] gﬂv[ﬂki(l) + 1:(5)],

Biy(si=1) = IT [m(3)+ma(7)],
keb(i)nV

where V denotes any subset of residue sites. We define similar quantities for
the contact-map messages g:

Giv(si=0)= JI [m(0)+ (1) + mei(4) + nki(S)L (3.29)

keg(i)\V
Gv(si=1) = J[ [m(2)+m3)+m(6) +mu(7)],
keg()\V
Ghei=1)= Tl (2 +m3)+m(6)],
keg(i)\V
Gysi=1)= TI m(?).
keg(i)nV
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These products simplify greatly notation in the update formula. Note that
the definition formulae (3.28, 3.29) take correctly care of the possibility that
some subsets of neighbours may be empty. For example in the first term of
(3.27) it may happen that there is no other neighbour of 7 along backbone than
j (i.e., endpoints of sequence). For (3.25) we obtain, after some algebra,

(0) = 2250 | pmng ~2uc 0B+
771](0) - Cz] e “GI(O) megl B1 m(o) +e GI(O)BL](O) ’ (330)

Now we can write explicit formulae for the other components of message
n;j along the backbone. Analogously as before, one finds

i (1) = 1;;(3) = e7#m;;(0),  m;;(2) = n;(0). (3.31)
Similarly,
i (4) = T%ﬁ { GUB, (1) + (> -G VB5L+  (G32)
+(eH— 1)[Gi+(1) > B+
meb(i)\j
+ Z( l"l l 171(1)] ( )iI }’
1:;(6) = 1;j(4).
And finally
nij(5) = T(éf) { Gi(1)B;,j(1) + (e7* = 1)G" (1) B (1) + (3.33)
+ (e -1)|GF1) Y B+
meb(i)\j
+ 2 1711 1)Gl77‘l 1)]B$(1)] +

meg(i)

FEH D] X Gy (DG (WIBFD) +
{m,n}eg(i)

+( Y [6,M65MD0 X B}
meg(i) meb(i)\j
1i;(7) = ni;(5).
It is worth noting that among eight possible n’s only three are indepen-

dent. The same is true also for the messages send along the contact map
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edges. In this case we only summarize the formulae for the components of
the message 1;;:

771](0) = T(Orgl)Gl,](O) [ _SHB_’_(O)'*"E 2 E znz O)Bz—,—m(o)j -+

meb(i)
+e* Y B, 0], (3.34)
{m,n}eb(i)
le](l> = 771](2) = 771](3) = 771](0)
n®) = g { GLOBM + F NGB M 63)
+ (e—2u_1)[ Y (651G (VIBF(1) +
meg(i)\]
+ GH1) T (B, (LB M)]] +

meb(i)
4o(emH 1) [{ }2(.)\ 167 (DG (DIBF (1) +
m,in Egl
+ (Y (G, MG, D0 X (BB, MWD+

meg(i)\j meb(i)

+ G+( ) 2 Bz'wmn (1) ’
{m,n}eb(i) Ay :t}

(6_“—1) 2 [ 1711(1>G1 {m]}< )}Bz_*‘(l)"'—

meg(i)\j

-+ G+( ) 2 [ zm( ) 1771(1)]}}

meb(i)

The normalization constant for the conditional probabilities n; j can be found
by simple summation of the components

7
2 1ij(t). (3.36)

As we compare the mechanical properties of the protein with the predic-
tion of the model through temperature factors, we have to find a quantity cor-
responding to the temperature factors in our model. The temperature factors
(B-factors) measure the influence of dynamics and disorder on x-ray scatter-
ing from crystals. We concentrate on isotropic temperature factors TF that are
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related to the mean-square displacement of the atom (Ar?) through

Are
TF = 87r2<—3’—>. (3.37)
The closest quantity to which we have access in our model is the dimen-
sion of the motion of any given residue. It is closely related to the number
of degrees of freedom left on the residue. The average number of DoF in our

ensemble can be expressed as (3.24) (1 > 1).

hZDOF = Z/Pi({fij}) max {O;3~— D SkSiXk — Y, xki}~ (3.38)

{t;} keg(i) keb(i)

If we use the formula (3.21) to express the configuration probability of the
node s; and its neighbours to be in state given by {t;;}, j € g(i) Ub(i), we
obtain:

T 3 P
h?RIZ’J%iZ H:7WW0mM{@&—§:%%m* Z:%}X
4

{t:;} keg(i)ub(7) keg(i) keb(i)

exp { — umax{O;B =Y sk — Y, xki}}. (3.39)

keg(i) keb(i)

We can proceed in the calculation of the mean number of DoF on a given
residue in the same way as we did for the update formula (3.19). After some
lengthy but simple algebra one finds:

ypor _ 10,51 [ 3¢7#G;(0)B;(0) +2¢7G;(0) Y [B(0)B;(0)] +
1 Ci 1 Koy ik i,k

+eHG0) Y Bl @]+ (3.40)
{m,n}eb(i)

[3e—3“G;r(1)Bf(1)+2e—2“[ 3 (GL(1)GH(1)]BH(1) +
keg(i)
+ ¥ BROBLLIG M) +
¢ keb(i)
[ 16y (DG (VIBF (1) +
{mn}eg(i)
+ 2 [G;k(l)Gz—j;c(l)] 2 [Bijk(l)Bi-;c(l)]'F
keg(i) keb(i)

+ Bty (DIGT (D]
{111,1’%1613(1') Amn} H

T(1,5)

+Ci

where we have calculated products B and G only after reaching self-consistent
set of n*’s. For complete evaluation of the formula (3.40) we have to find
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value of the normalization constant C;. It can be done in the way very similar
to the evaluation of the formula for the update of messages 7, (3.19). We can
separate the calculation of the normalization constant:

C = 2 /Pi({t]'i}), (341)
{tji}.jeg(D)ub(i)
C = CP+cl,

where the two partial terms read:
Cf = > Pi({ti}), a<€{0,1}. (3.42)
{tji},7€g(i)ub(i) si=a
For the two terms we can find these formulae:
CO = T(0, ) [fﬂ@ﬂ» S (B O]+ (3.43)
{mmn}eb(i)

+ e Gi(0) Y, [B;(0 zk(O)] ~3“Gi(O)Bl‘+(O)}’
keb(i)

And finally,
cl=71(1,8) ki@)BAl)—%@“&‘—])Gf(UBf(l)+ (3.44)
+(e% —1) [k%)[cmqk( )IB; (1) +
6, Ezw)[B;;<1>Bl,k<1>]} +

+(€*“ - 1) [ 2 [Gi-j—{m,n} (1)Gz Am, n}( )] +(1) +
{mmn}eg(i)

+ 2 [sz 1)sz )] 2 [BZ](<1)Blk( )]+

keg(i) keb(i)

+Gz+(1) 2 ;{711,71}(1)H'
{m,n}eb(i)

Once knowing the partial contribution of the residues to the total flexi-
bility of the protein we can express the total number of the floppy modes as
(3.23). The overall procedure is summarized in the pseudo-code of the Fig-
ure 3.8.
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e Main routine

— INPUT: The 3D structure of the protein, the cut-off
distance and the number of bonds to be fixed

— Generate the graphs g and b from the 3D structure.

- Generate ensemble of subsets {s;} with a given number of
bonds.

— Evaluate flexibility for each subset in the ensemble
(subroutine Flexibility) and create the histogram of
flexibility. Create ensembles from the subsets that
lead to the most rigid, the most flexible structures,
and some control set (may be the complete set of generated
subsets) .

— OUTPUT: Using the subroutine DoF evaluate the correlation
of the DoF profile and the temperature factors in the
three ensembles. Plot the histograms of correlation
coefficients. Calculate the mean DoF profiles in the
three ensembles and compare them with the temperature
factors.

e Subroutine Flexibility

- Given the configuration {s;} calculate the DoF profile
for the subset. For computation of the DoF profile use
subroutine DoF.

— OUTPUT: calculate and output total flexibility using
(3.24)

e Subroutine DoF

- INPUT sequence {s;}, choose large enough

~ For the given subset of active residunes iterate in the
random order of links (ij) the formulae (3.30, 3.31,
3.32, 3.33, 3.34, 3.35) until self-consistency. Store
the self-consistent messages as n*.

— Calculate the DoF profile using formula (3.40).

Figure 3.8: The pseudo-code of the procedure that we are using in our calcu-
lations.
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Chapter 4

Conclusions

In our work the new methods developed within the spin—glass field of sta-
tistical physics were applied to the study of two case problems: the random
Boolean Satisfiability Problem and the protein flexibility. The methods either
allowed observation of new regions of the phase diagram of the problem as
in the case of SAT and/or thanks to the speed—up allowed us to study the
relation between steric structure of protein and its flexibility.

Results for the SAT Problem

In the complex structure of the phase diagram of the Boolean Satisfiability
Problem, there are also regions where the local search heuristics turn out to be
inefficient. Indeed, in the studied region close to the SAT/UNGSAT transition,
o € [4.15;4.39], their time complexity grows exponentially with the system
size. The local search algorithms are generally trapped at some threshold
energy levels that are algorithm specific but that are approximated by the
Gardner threshold energy. The threshold energies emerge as a consequence
of exponentially many metastable states with energies higher than the ground
state energy what is observed through finite complexity at given energy. In
the studied region the complexity is growing function of energy until some
maximal (threshold) value when it becomes zero.

The difference between the ground state energy and threshold energies
becomes well pronounced only when large enough (N ~ 10%) sizes of formu-
lae are reached. Then, as was shown in our study, we are able to see the gap
in numerical experiments, and measure its properties.

Conversely to the local heuristics, the Survey Propagation algorithm which
explicitly accounts for the clustering of the configuration space is able to ap-
proach the ground state solutions and in many cases to find optimal solution
of the given instance of the problem. Still, for the intrinsic noise introduced
by finite pseudo-temperature, one has to control the procedure with a back-
tracking procedure, though a very simple one.

It is worth to note that our procedure is perfectly suited for randomly gen-
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erated instances of the Satisfiability problem, but it may meet problems when
some nontrivial structure is introduced to the formula as it may happen upon
coding of some other optimization problem to SAT (as the Graph Colouring,
the Scheduling, ...). These problems that are caused by structure-induced
correlation of some variables may be solved by coarse-graining of the under-
lying graph.

Possible extensions of the work lie ready to hand, one can extend the
work for other combinatorial optimization problems, and /or improve the op-
timization algorithm by using variational methods. Another possible appli-
cation of SP-Y-like algorithms can be found in information theory: one could
for example imagine lossy data compression based on Low Density Parity
Check schemes with possibility to address exponential number of states by
selecting suitable external conditions [82].

Results on the Relation of the Protein Structure and Flexibility

The underlying idea of the second part of the thesis is the expectation that the
3D-structure of a protein determines its function and hence itis this structural
properties that are under selective pressure. In many proteins the function is,
if not based, strongly influenced by mechanical properties such as flexibility,
so we have tried to couple the structure and the flexibility of the protein in a
simple physical model.

The coarse grained model is in its simple form described by two terms,
structure and flexibility, in terms of the contact energy and the number of
constraints obeyed by a residue.

The high level of coarse-graining together with application of message-
passing algorithms allows us to study behaviour of the model in a very rep-
resentative way. The results of our model may be used either directly, or as a
method how to estimate model parameters for models with a lower level of
course graining and ultimately for models based on microscopical description
of the physical system.

To test the scheme we have applied it on a model protein, the HIV pro-
tease, and we have obtained prediction for the mobility of single residues
consistent with experimental data and with the simulations done by low-level
methods (Molecular Dynamics). Still the resulting correlation matrices do not
agree very well with Molecular Dynamics. We see the reason for the discrep-
ancy in the simplicity of the model and strength of some approximations that
we have used. '

In this way we immediately see possible extensions of the model: one
could introduce more details to the model, for example by considering also
the Cp atoms, by distinguishing several possible bond types and hence in-
troducing a strength of a bond, and finally by using the primary sequence
information for estimation of a bond strength.
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Physics and Constraint Satisfaction Problems

The two problems that we have discussed in this thesis belong to the group
of constraint satisfaction problems over relatively sparse graphs. In the Satis-
fiability problem the constraint take form of the logical clauses, in the pro-
tein flexibility problem they are spatial constraints implied by neighbour-
ing residues. The separation of the cost function (of the number of violated
clauses or of the total flexibility of the protein) in many local constraint al-
lowed us to apply to the study of the problems message-passing algorithms.

The constraint satisfaction problems are common to statistical physics and
to the field of combinatorial optimization. Naturally the fields reciprocally in-
fluence each other and the detailed knowledge of the configuration space pro-
vided by spin—glass physics influences choice of proper algorithm to solve the
satisfiability problem (the Survey Propagation). On the other side in the latter
problem, the configuration space was found to be un-clustered and hence the
simpler method of the Belief Propagation has been applied.
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