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Abstract

A study of holographic renormalization group (RG) flows is discussed in the frame-
work of supergravity and string theories. Some RG flow solutions are found in N = 4
Chern-Simons gauged supergravity in three dimensions. The resulting solutions de-
scribe vev flows, driven by a vacuum expectation value (vev) of a relevant operator
or a vev of a marginal operator, in a dual two dimensional field theory. In the min-
imal six dimensional supergravity, RG flow solutions, describing two dimensional
vev flows driven by a vev of a marginal operator, in the presence of Yang-Mills
instantons are found. The solutions describe RG flows between N = (4, 0) SCFTs
and have an interpretation in term of transitions between Yang-Mills vacua with
different winding numbers. We also propose an interpretation in term of D1/D5
branes in type I string theory. The flow with a single instanton can be thought of
as an uplifted three dimensional solution. The corresponding reduction ansatz of
the (1,0) six dimensional supergravity on the SU(2) group manifold giving rise to
the N = 4 Yang-Mills gauged supergravity in three dimensions with SU(2) × G
gauge group is given. Additionally, the equivalence between the reduced theory and
N = 4 Chern-Simons (SU(2) n T3)× (G×TdimG) gauged supergravity is explicitly
shown. The solution with multi-instanton back ground is generalized to the case
in which the Yang-Mills instantons are turned on on an asymptotically locally Eu-
clidean (ALE) space. The corresponding solution then involves both Yang-Mills and
gravitational instantons and describes RG flows from N = 2 two dimensional CFT
in the UV to N = 4 CFT in the IR. Furthermore, we extend the analysis to RG
flows in four dimensional field theories by studying flow solutions in the framework
of type IIB and type I′ string theories on the ALE space. In these solutions, the UV
theory is an N = 2 quiver gauge theory. Field theory considerations of Higgsing the
corresponding UV quiver gauge theory in the UV to the IR gauge theory, which can
possibly be another quiver theory or N = 2, 4 SYM, are discussed along with their
geometric interpretation.
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Chapter 1

Introduction

As a promising candidate for a theory of quantum gravity, superstring theory, see
[1, 2, 3, 4] for standard references on string theory, has been explored in various
aspects, and many of its consequences, implications and applications have been re-
alized in several contexts. One important result in string theory is the AdS/CFT
correspondence. Over the past ten years, a lot of researches have shown its validity
as well as its generalization. It has been proposed in [5], and the more refined defi-
nitions have been given in [6] and [7]. There are many good reviews on the subject,
see for example [8] and [9] and references therein. Before proceeding further, we will
give a comment on the terminology. Throughout this thesis, the word string theory
means one of the five supersymmetric string theories according to which theory we
are considering. Although the original AdS/CFT correspondence has been general-
ized to the case of non conformal field theories with non AdS gravity backgrounds
and should be called, as in some references, gauge/gravity or gauge/string corre-
spondences, we still use the terminology “AdS/CFT correspondence” in this thesis.
Furthermore, the number of literatures involved in this research area is so large that
it is impossible to make a complete list here. We will only give some important
ideas along with relevant references to bring the readers to the works presented in
the thesis.

The AdS/CFT correspondence is a duality between string theory on a cer-
tain background and a dual field theory living on the boundary of this background.
One example, which is the most well studied, in the original proposal in [5] is type
IIB string theory on AdS5×S5 with n unit of the 5-form flux. According the corre-
spondence, this is dual to N = 4 supersymmetric Yang-Mills (SYM) gauge theory
with gauge group SU(n) living on the boundary of AdS5. This duality is a kind of
strong-weak duality in which a weakly coupled gravity theory is dual to a strongly
coupled field theory or vice versa. The correspondence has been made quantita-
tive in [6] and [7] in which the description for computing correlation functions of
the dual CFT from a bulk gravity theory in the AdS space has been given. This
correspondence realizes the holographic principle [10] in which the duality links the
information in the bulk and boundary spaces. The mapping between bulk fields and
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operators of the boundary field theory has been studied in [11] for the case of type
IIB on AdS5 × S5 and N = 4 SYM. Most of the results have been studied in the
large n or large ’t Hooft coupling limit in which type IIB supergravity is a good
approximation on the AdS side.

The correspondence then has been generalized and extended to the case of
non conformal field theories. The corresponding gravity backgrounds are of course
no longer anti-de Sister spaces since the isometry of the AdS space gives rise to
conformal symmetry of the boundary field theory. There are also some attempts to
obtain the correspondence in non-supersymmetric field theories. Up to now, many
applications of the AdS/CFT correspondence including the study of condensed mat-
ter systems using holographic methods have been studied. One of the consequences
of the AdS/CFT correspondence which is of interest in this thesis is the study of
holographic renormalization group or RG flows. The backgrounds of interest in this
case are the asymptotically AdS spaces. These approach AdS spaces in some limits.
The interpretation in the dual field theory is that of a perturbed CFT which un-
dergoes a renormalization group flow. In the AdS/CFT correspondence, the radial
coordinate of the AdS space has an interpretation in term of the energy scale in the
dual field theory, therefore a dependence of a bulk field on the radial coordinate rep-
resents a change along the energy scale corresponding to an RG flow. The advantage
of the AdS/CFT correspondence is that it allows us to study perturbations and RG
flows of a strongly coupled field theory using a weakly coupled gravity theory.

On the field theory side, perturbations can be given by adding a source
term to the CFT Lagrangian or giving a vacuum expectation value (vev) to a cer-
tain operator. These two types of perturbations correspond to, on the gravity side,
the non-normalizable and normalizable modes of the bulk fields, respectively. In the
former case, conformal symmetry is explicitly broken while in the latter case, confor-
mal symmetry is spontaneously broken. The corresponding RG flows are sometimes
called operator flows and vev flows, respectively. It can happen that after an RG
flow, the UV CFT approaches another CFT in the IR. This is the case if there exists
a conformal fixed point in the IR. The flow solution in this case can be interpreted
as an RG flow between two conformal fixed points of the dual field theory. These
are the flows we are interested in. The gravity solutions are those approaching AdS
spaces in two limits, sometimes called the boundary of one AdS space and the deep
interior of another AdS space.

In AdS5/CFT4 correspondence, a lot of works have been done to study RG
flow solutions in the dual field theories in four dimensions, see [12, 13, 14] for ex-
ample. These solutions describe perturbations of N = 4 SYM to another CFT
with lower supersymmetries. In general, flow solutions can be obtained by solving
equations of motion of type IIB supergravity or working in the N = 8 gauged su-
pergravity in five dimensions and use consistent reduction ansatz of type IIB on
S5 to obtain ten dimensional solutions. The latter is simpler in many aspects, and
the solutions mentioned above have been found in this way. The procedure is even
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more simpler in the case of supersymmetric RG flows in which we can find flow
solutions by solving first order differential (BPS) equations coming from supersym-
metry transformations of fermions rather than solving second order field equations.
Furthermore, things are more controllable in the supersymmetric solutions in both
gravity and field theory sides.

In this thesis, we are mainly interested in finding holographic RG flow so-
lutions in the dual two dimensional field theories. We also restrict ourselves to the
case of supersymmetric RG flows. Moreover, since working in lower dimensional
spacetime is much simpler than working directly in the ten dimensional string the-
ory, we will follow this route and work with lower dimensional supergravity theories
instead of the ten dimensional supergravities which are low energy effective theories
of string theory. This is similar to the case of AdS5/CFT4 where we can work with
five dimensional gauged supergravity and use the reduction ansatz of type IIB su-
pergravity on S5 to eventually obtain AdS5 × S5 background. In AdS3/CFT2, the
natural bulk gravity theories to begin with are of course three dimensional gauged
supergravity theories. The reason for working with gauged supergravities rather
than the ungauged versions is the possibilities to obtain AdS critical points which
can be identified with RG fixed points in the dual field theory. According to the
AdS/CFT correspondence, each critical point is interpreted as a conformal phase of
the dual field theory.

Unlike in four dimensions, there are only a few literatures discussing holo-
graphic RG flows in dual two dimensional field theories [15], [16]. One reason could
be that two dimensional field theories can be solved exactly in many cases by other
means. Particularly, CFT2 is very well understood in various aspects without using
holographic methods. In this point of view, there does not seem to be necessary to
study gravity dual of these theories since the field theories themselves are solvable
even at strong coupling. On the other hand, gravity in three dimensions is also much
simpler than its analogue in higher dimensions. However, the fact that both sides
of the correspondence are controllable makes it possible to understand AdS3/CFT2

correspondence in much more detail than those in other dimensions. And, hope-
fully, this study will give us some insights to understand how the AdS/CFT really
works. This will eventually help to understand more realistic models in AdS5/CFT4

correspondence. Furthermore, AdS3/CFT2 is also interesting in its own right in the
sense that it is useful in the study of black hole entropies, see [17] and references
therein.

Gravity theory in three dimensions has been studied for a long time [18, 19,
20, 21, 22]. It has been used to study various aspects of quantum gravity and as
a toy model toward quantizing gravity in four dimensional spacetime. In [23], it
has been shown that three dimensional Einstein gravity can be written as a Chern-
Simons theory which makes quantization more traceable. For more detail on three
dimensional gravity, the reader is referred to the book [24]. Pure gravity in three
dimensions is topological since there is no propagating degree of freedom. In a sense,
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there is no local dynamical degree of freedom. This is a result of constraints from
Einstein equations, the mix spatial and time components of Einstein equations, to-
gether with coordinate transformations. However, there are finite number of global
degrees of freedom unless the spacetime is topologically trivial [24].

As stated above, our interest lies in the theory of supergravity in three di-
mensions. Like the non-supersymmetric counterpart, pure supergravity in three
dimensions is also topological and admits arbitrary number of supersymmetries.
Nevertheless, supergravity coupled to matter fields is not a topological theory but is
in the form of non-linear sigma model coupled to supergravity. In three dimensions,
vector fields are dual to scalars, so the bosonic matter fields can be given purely in
terms of scalars. This makes the matter coupled supergravity in the form of non-
linear sigma model coupled to supergravity. It is in the matter coupled theory that
there is an upper bound on the number of supersymmtries namely N ≤ 16 or equiv-
alently 32 supercharges. The N = 16 and N = 8 theories with the corresponding
scalar target spaces

E8(8)

SO(16)
and SO(8,k)

SO(8)×SO(k)
, with k being number of supermultiplets,

have been constructed in [25]. The classification of ungauged supergravity, with all
admissible values of N , 1 ≤ N ≤ 16, in three dimensions has then been carried out in
[26] together with their scalar target spaces, which are symmetric spaces determined
by supersymmetry, for N > 4. For N ≤ 4, supersymmetry is not powerful enough
to determine the scalar manifolds, and target spaces which are not symmetric spaces
are allowed.

The first gauged supergravity in three dimensions has been constructed in
[27] using the notion of embedding tensor which provides a G covariant formulation
of the gauged supergravity theories. G is the global symmetry of the theory which,
in the case of symmetric target spaces, is the same as the global symmetry group,
or isometry group, of the coset space G/H. Various gaugings with both compact
and non-compact gauge groups have been classified in [28]. As in the higher dimen-
sional analogues, there exist gaugings with non-semisimple gauge groups of the form
G0 n Tn, with Tn being abelian translational symmetries in n dimensions, and fur-
thermore, complex gauge groups are possible as well [29]. The similar construction
has been used to construct the half maximal N = 8 gauged supergravity in three
dimensions in [30]. Eventually, three dimensional gauged supergravities with all
possible values of N have been completed in [31]. In this work, the ungauged theo-
ries discovered in [26] have been generalized to implement the local gauge symmetry
coming from promoting some subgroup of the isometries of the target manifold that
can be extended to a symmetry of the full matter coupled Lagrangian.

Using the duality between vectors and scalars in three dimensions, the only
propagating degrees of freedom in the ungauged theories are scalar fields. In this
way, the global symmetry of the theory is realized at the level of the Lagrangian.
Unlike in higher dimensions, it seems not possible to gauge any global symmetries
of the theory since there are no vector fields to act as gauge fields. However, vector
fields can enter the Lagrangian via the Chern-Simons term rather than the usual

10



Yang-Mills kinetic term. The presence of the Chern-Simons term which does not in-
troduce propagating degrees of freedom is in turn required by supersymmetry. The
resulting gauged theory still have equal number of bosonic and fermionic degrees of
freedom. The formulation stated above gives rise to Chern-Simons gauged super-
gravities. Note that in this formulation, there is no restriction on the number of
vector fields or equivalently, on the dimension of the gauge group, therefore, we can
gauge various choices of gauge groups provided that they can be embedded in the
global symmetry group and are allowed by supersymmetry. This is the reason for
the huge amount of possible gauge groups in three dimensional gauged supergravity.

The embedding tensor makes it possible to classify admissible gauge groups,
that can be gauged consistently with supersymmetry, by using a group theoretical
method for the case of symmetric target manifolds. The embedding tensor is also
useful in the construction of higher dimensional gauged supergravities [32, 33, 34,
35, 36], for a good review see [37]. However, apart from the three dimensional ones
which play an important role several parts of the thesis, we will not review these
gauged supergravities in this thesis since we will not explicitly use them here.

In the dimensional reduction scenario, lower dimensional gauged supergrav-
ities can be obtained from dimensional reductions of higher dimensional theories.
The theories obtained form dimensional reduction always have gauge fields with
Yang-Mills kinetic terms. This implies that all of the three dimensional gauged
supergravities mentioned above cannot be obtained from any known dimensional
reductions. Nevertheless, it has been discovered in [38] that a Chern-Simons gauged
supergravity with a non-semisimple gauged group GnTdimG, with TdimG transform-
ing in the adjoint representation of G, is on-shell equivalent to a Yang-Mills gauged
supergravity with a semisimple gauge group G. This equivalence has been applied to
the N = 8 theory with gauge group SO(4)nT∞ in [39] to describe the Kaluza-Klein
spectrum of the (2,0) six-dimensional supergravity on AdS3 × S3. Remarkably, all
massive vector fields arising from the KK modes can be incorporated in this theory
within a single scalar manifold SO(8,∞)

SO(8)×SO(∞)
.

Recall that the background of interest in the AdS3/CFT2 correspondence
is AdS3 which according to the AdS/CFT correspondence, will have a dual two
dimensional CFT living on its boundary. In AdSd+1/CFTd, the conformal group
of the CFTd is identified with the isometry group of AdSd+1, SO(2, d). For d = 2,
the isometry of AdS3 is SO(2, 2) ∼ SO(2, 1) × SO(2, 1) ∼ SL(2,R) × SL(2,R)
which is the global conformal symmetry of the two dimensional CFTs. On the
other hand, the local conformal transformations correspond to an infinite dimen-
sional group generated by the Virasoro algebra. It has been shown long ago before
the AdS/CFT correspondence in [40] that the asymptotic symmetry of AdS3 is the
infinite dimensional conformal group with central charge c = 3L

2G
where L and G

are AdS3 radius and Newton constant, respectively. The extension to the case of
three dimensional supergravity giving rise to the asymptotic symmetry in the form
of the superconformal group on the boundary has been studied in [41] and [42]. The
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dual CFT for pure gravity in three dimensions has been studied in [43] with the
dual CFT identified with the monster theory of Frenkel, Lepowsky and Meurman.
Recently, it has been shown that an asymptotic symmetry of the higher spin AdS
gravity in three dimensions is given by a two dimensional W algebra [44], [45], and
a gravity dual of the two dimensional WN minimal models in the large N limit has
been proposed in [46].

As noted before, to embedding the lower dimensional solutions to string
theory, it is necessary to have a consistent reduction ansatz from ten to three di-
mensions. It can happen that a lower dimensional geometry is singular but the cor-
responding ten dimensional geometry obtained by uplifting the lower dimensional
one, is completely smooth. This is crucially relies on the existence of the consistent
reduction ansatz. Therefore, we have to start with three dimensional gauged su-
pergravity with non-semisimple gauge groups as these are the only ones up to now
we know how to obtain their higher dimensional origin. Currently, there are only a
few explicit reduction ansatze of higher dimensional supergravities reduced to three
dimensions. One example is given in [47] and [48] in which the reduction of the
minimal N = (1, 0) pure supergravity in six dimensions on SU(2) group manifold
has been studied. The resulting theory is the Yang-Mills N = 4 three dimensional
gauged supergravity with SU(2) gauge group coupled to three massive vector fields
coming from the reduction of the self-dual two form field. And more recently, the
embedding of N = 2 three dimensional gauged supergravity in eleven dimensions
has been proposed in [49].

In this thesis, we will give a report on new RG flows in a dual two dimen-
sional field theory in the framework of three dimensional gauged supergravities as
well as in the higher dimensional point of view. Hopefully, this work partially fills
the gap in the literatures on two dimensional holographic RG flows. We also find
a new reduction ansatz of (1,0) six dimensional supergravity on SU(2) group man-
ifold. The resulting theory is the N = 4 gauged supergravity in three dimensions
with a gauge group SU(2)×G without massive vector fields as opposed to previous
works in this direction. Moreover, we explore RG flow solutions in the presence of
a multi-instanton background along with its effects on RG flows and the values of
central charges at the fixed points. The flows can also be interpreted as transitions
between different instanton vacua. We further generalize the solutions by study-
ing flow solutions with Yang-Mills instantons turned on on the ALE background.
We finally extend the study to more interesting RG flows in four dimensional field
theories by considering flow solutions in type IIB and type I′ string theories. We
now discuss the outline of the thesis which is essentially based on the works done in
[50, 51, 52, 53, 54, 55].

In chapter 2, we review the construction of three dimensional gauged su-
pergravities using the SO(N) covariant formulation of [31]. For a good review on
supergravity theories, we refer the reader to [56] and [57] for general discussions. We
will then introduce the notion of the embedding tensor characterizing the embedding
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of the gauge group in the global symmetry group of the ungauged theory. We give a
detailed discussion of the target space geometry in general and then specialize to the
case of symmetric target spaces which can be written as coset spaces G/H. We also
give the full Lagrangian as well as the gauge and supersymmetry transformations
of all fields. Finally, we review the on-shell equivalence between non-semisimple
Chern-Simons gauged supergravity and semisimple Yang-Mills gauged supergravity.
This is a peculia feature of supergravity theories in three dimensions. This chapter
forms the base of many chapters in the thesis since the formulation and many for-
mulae given here will be extensively used in later chapters.

In chapter 3, we review the basic idea of the AdS/CFT correspondence. We
then introduce the notion of holographic renormalization and holographic RG flows.
We will also discuss the holographic c-theorem and review its proof. We then move
to study supersymmetric AdS3 vacua of N = 4 gauged supergravity in three dimen-
sions with various amount of preserved supersymmetries. The scalar target space
is SO(4,4)

SO(4)×SO(4)
× SO(4,4)

SO(4)×SO(4)
. We gauge the SO(4) n T6 non-semisimple subgroup of

the global symmetry SO(4, 4). The motivation for gauging a non-semisimple gauge
group is that, by the equivalence between Chern-Simons and Yang-Mills gauged su-
pergravities as mentioned above, this gauging allows us to relate the resulting theory
to the Yang-Mills gauged supergravity obtained from dimensional reduction of some
higher dimensional theory. This mechanism has been employed, for example, in [39]
for N = 8, where it has been shown that a gauging by SO(4) n T6 indeed repro-
duces, at the N = 8 point in the scalar manifold, the Kaluza-Klein spectrum of the
six-dimensional (2,0) supergravity on AdS3 × S3[58]. The latter is the background
one obtains by taking the near horizon geometry of a D1-D5 system of type IIB
theory on K3 or T 4, corresponding to a SCFT2 with (4,4) supersymmetry. We will
also study the flow between different vacua with different cosmological constants but
the same amount of supersymmetry. Quite remarkably, we will be able to find an
analytic flow solution between vacua with (3,1) supersymmetry involving two active
scalar fields. For the case of a flow between (2,0) vacua which involves three active
scalars, we will discuss a numerical flow solution. The flows turn out to be vev
flows driven by vacuum expectation values of some relevant operators in the UV.
Examples of vev flows are known in four dimensional super-conformal field theories,
in particular in N = 2 SCFT, where they have been studied using Seiberg-Witten
solution in connection with the Argyres-Douglas fixed points[59, 60, 61]. To the best
of our knowledge, the flows given here are the first examples of vev flows between
two AdS vacua in a gauged supergravity context.

Chapter 4 is devoted to the SU(2) reduction of the (1,0) six dimensional
supergravity constructed in [62] and [63]. We will begin with a discussion of a group
manifold reduction and specialize to the reduction on the SU(2) group manifold. We
then review the minimal six dimensional supergravity coupled to an antisymmetric
tensor and Yang-Mills multiplets. The equations of motion for the bosonic fields and
all supersymmetry transformations are given together with a Lagrangian of some
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specific cases. As is well known, there does not exist an invariant Lagrangian without
introducing the auxiliary fields for the case where the number of tensor multiplets is
different from one due to the (anti) self duality of the three-form field strength of the
antisymmetric tensor fields in the tensor and gravity multiplets. On the other hand,
coupled to one tensor multiplet, the theory does admit a Lagrangian formulation in
some cases as we will see in this chapter. We will perform the SU(2) group manifold
reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor
and G Yang-Mills multiplets and obtain SU(2) × G Yang-Mills gauged supergrav-
ity in three dimensions. The resulting theory contains 4(1 + dimG) bosons and
4(1 + dimG) fermions with the scalar manifold being R× SO(3, dimG)

SO(3)×SO(dimG)
. While it

is known that the most general SU(2) reduction, including massive vector fields, is
consistent, the novel feature this chapter is that we make a further truncation by
removing the massive vector fields and show that it is consistent. We then construct
an N = 4 Chern-Simons (SO(3) n T3) × (G × TdimG) gauged supergravity with a
scalar manifold SO(4, 1+dimG)

SO(4)×SO(1+dimG)
and show that it is indeed equivalent to SO(3)×G

Yang-Mills gauged supergravity with scalar manifold R × SO(3,dimG)
SO(3)×SO(dimG)

after re-
moving 3 + dimG scalars corresponding to the translational symmetries. The result
completely agrees with the discovery in [38].

In chapter 5, we will study RG flow solutions in the dual two dimensional
field theories with Yang-Mills instantons in the supergravity background by looking
for supersymmetric solutions of the six dimensional supergravity theory studied in
the previous chapter. We first discuss a six dimensional flow solution which, in fact,
is the uplift to six dimensions of an RG flow of the N = 4 three dimensional gauged
supergravity and preserves half of the supersymmetries. This solution involves an
SU(2) instanton on R×S3, R parametrized by the radial coordinate, with topolog-
ical charge equal to 1, which in the three dimensional setting is seen as a scalar’s
background. The instanton interpolates between the |0〉 Yang-Mills vacuum with
winding number 0 in the IR and |1〉 vacuum with winding number 1 in the UV. We
then move to study solutions involving multi-instanton gauge fields of an arbitrary
semisimple gauge group G. In this case, the solution is genuinely six dimensional in
the sense that it cannot be obtained as an uplifted solution of a three dimensional
theory, roughly, because it involves higher modes on S3. The instanton interpolates
between |N〉 vacuum in the UV and |0〉 vacuum in the IR. The solution has been
studied long ago in [64, 65] but in different contexts. We will look at it from another
point of view by regarding it as an RG flow solution interpolating between the UV
and IR CFT’s corresponding to two AdS3 limits. The central charge at the two fixed
points of course respects the c-theorem and admits an interpretation in terms of the
dynamics of the D1/D5 dual system giving rise to a (4, 0) SCFT in the decoupling
limit[66, 67, 68].

In chapter 6, we study RG flows in both two- and four- dimensional con-
texts. We still work in the framework of (1,0) six dimensional supergravity, but now
we replace the transverse R4 with an ALE manifold of AN−1 type. We will adopt
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on it the well-known Gibbons-Hawking multi-center metric [69]. Furthermore, we
also study a flow solution involving Yang-Mills instantons turned on on the ALE
space, thereby generalizing the solution discussed in chapter 5. Explicit instanton
solutions on an ALE space can be written down for the SU(2) gauge group [70],
[71], [72] and we will then restrict ourselves to these solutions. The resulting su-
pergravity solutions describe RG flows in two dimensional dual field theories and
have asymptotic geometries AdS3×S3/ZN in the UV and AdS3×S3 in the IR. The
former arises from the limit where one goes to the boundary of the ALE, the latter
when one zooms near one of the smooth ALE centers. Notice that in this case the
solution describes the flow from a (2,0) UV CFT to a (4,0) IR CFT, contrary to the
case of chapter 5, where both fixed points were (4,0) CFT’s. Indeed, in the UV we
have ZN projection, due to asymptotic topology of the ALE space.

We will then move to study more interesting and more realistic RG flow
solutions in the dual four dimensional field theory in the context of ten dimensional
type IIB and type I′ theories (by the latter we mean IIB on T 2/(−1)FLΩI2, the dou-
ble T-dual of type I on T 2 [73]) on an ALE background. These solutions describe
RG flows of four dimensional UV CFT’s with N = 2 supersymmetry. In the type
IIB case our solution is a variation on the theme discussed in [74, 75, 76] for the ALE
space of the form C3/Z3 and for the conifold, respectively, which describe flows from
N = 1 to N = 4 CFT’s. Our flows interpolate between N = 2 quiver gauge theories
with product gauge group in the UV and the N = 4 SU(n) supersymmetric Yang-
Mills theory in the IR. The corresponding asymptotic geometries are AdS5×S5/ZN

and AdS5 × S5.
The discussion becomes more interesting in type I′ theory: in this case we

find that the critical points are described by the geometries AdS5 × S5/(ZN × Z2)
in the UV and AdS5 × S5/Z2 in the IR. The Z2 is identified with (−1)FLΩI2. The
UV gauge groups are more complicated than those of type IIB case, and are among
the (unoriented) quiver gauge groups discussed in [77]. The quiver diagrams have
different structures depending on whether N is even or odd, and for N even there
are in addition two possible projections, resulting in two different quiver structures.
This is what will make the discussion of RG flows richer and more interesting. We
will in fact verify the agreement between the geometric picture emerging from the
supergravity solutions and the corresponding field theory description, where the
flows are related to the Higgsing of the gauge group, i.e. they are driven by vacuum
expectation values of scalar fields belonging to the hypermultiplets of the N = 2
theories.

We also consider more general RG flows, in which not all the UV gauge
group is broken to a single diagonal IR subgroup. In other words, the IR theory can
be another, smaller, quiver gauge theory. The associated flows are the flows between
two N = 2 quiver gauge theories, and the corresponding geometries are given by
AdS5 × S5/(ZN × Z2) and AdS5 × S5/(ZM × Z2) with M < N . We will find that
field theory considerations do not allow all possible flows with arbitrary values of
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M and N and some symmetry breaking patterns are forbidden. Actually, we will
see that these features are reproduced by the geometry, having to do with the fact
that the Ω projection does not allow arbitrary ALE geometry since it projects out
or identify the geometric moduli, as was already observed in a different context in
[78]. In fact, we will obtain a very satisfactory agreement between with the field
theory and the supergravity pictures.

Chapter 7 gives a summary of the results presented in this thesis. Some com-
ments on the results and open problems as well as directions for future researches
are discussed.

Additionally, there are two appendices. One of them presents new results,
and the other gives a review on the relevant information used in the main text.
Appendix A presents other vacua of three dimensional gauged supergravities. The
theories considered in this appendix are N = 8, 9, 10 theories. The vacua of N = 4
theory which are not involved in the flows studied in chapter 3 are also given here.
The study of critical points of gauged supergravities is useful in the AdS/CFT cor-
respondence. In the original AdS5/CFT4 correspondence, critical points of N = 8
five dimensional gauged supergravity found in [79] describe various phases of N = 4
SYM. Recently, the interest in the AdS/CFT correspondence has been extended to
AdS4/CFT3 which might give some insight to condensed matter systems, for exam-
ple, superconductors. Some critical points of the corresponding four dimensional
gauged supergravity have been studied in [80, 81] soon after its construction [82],
and recently, some new vacua of this theory have been identified in [83, 84]. In
three dimensions, the analogous study appears in [15, 85, 86, 87] for N = 8 and
N = 16 theories. In this appendix, we will give some results on critical points of
N = 4, 8, 9, 10 three dimensional gauged supergravities with various gauge groups.

The last appendix deals with gravitational and Yang-Mills instantons which
play an important role in several places in the thesis. The aim of this appendix is
to review the relevant formulae used in the main text along with some derivations.
This section is by no means intentionally a complete review on the corresponding
subject.
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Chapter 2

Three Dimensional Gauged
Supergravity

In this chapter, we review the construction of gauged supergravity in three di-

mensions. This chapter is mainly based on [31] and [26]. We begin with a dis-

cussion of ungauged three dimensional supergravity coupled to a non-linear sigma

model describing bosonic matter fields in three dimensions. The Lagrangian and

supersymmetry transformations of this theory along with its symmetries are dis-

cussed. The symmetries consist of the R-symmetry and isometries of the target

space parametrized by scalar fields. We focus our discussion on symmetric target

spaces which can be written in term of a coset space of the form G/H. We then

move to gaugings some of these symmetries by introducing a notion of an embed-

ding tensor along with consistency conditions imposed by supersymmetry. We end

this chapter by reviewing the equivalence between semisimple Yang-Mills and non-

semisimple Chern-Simons gauged supergravities in three dimensions [38].

2.1 Ungauged supergravity in three dimensions

Although pure supergravity in three dimensions is topological and allows any number

N of supersymmetry, the theory coupled to matter fields exists only for N ≤ 16

[26]. In three dimensions, bosonic matter fields are scalars since vector fields can

be dualized to scalars, so the coupled theory is in the form of non-linear sigma

model coupled to N extended supergravity. The existence of the bound N ≤ 16 is

consistent with higher dimensional theories, but at the same time seems surprising.

This is because there is no physical restriction on the number of supercharges in

three dimensions.

In four dimensions, the requirement for the absence of massless particles with

helicity larger than two imposes the condition N ≤ 8. This bound is carried over

to theories in dimension higher than four since compactifications of these theories

that lead to sensible four dimensional theories must respect this bound. So, in
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dimension larger than four, the maximum number of supercharges is also implied
by the physical requirement in four dimensions. This is, however, not the case in
three dimensions because there is no helicity in three dimensions. So, we cannot use
the physical reason to impose a restriction on the number of supercharges. On the
other hand, the reduction of N/2 extended supergravities in four dimensions with
even N gives rise to supergravities with N supersymmetries in three dimensions.
This suggests the bound N ≤ 16 for at least theories obtained from dimensional
reductions. However, there is a constraint on the target space of the non-linear
sigma model as shown in [26]. For a theory with N > 4, the target spaces must be
symmetric, and beyond N = 16, there is no known symmetric space. This is related
to the fact that there is no exceptional group beyond E8 to act as an isometry group
of the scalar target manifolds [26]. So, in three dimensions, the restriction on the
maximum number of supercharges namely 32 is purely mathematical.

The sigma model is parametrized by scalar fields φi whose superpartners
are χi. The coupling to N extended supersymmetries requires the existence of
N − 1 almost complex structures fPij with P = 2 . . . N , i, j = 1 . . . , d, and d is
the dimension of the target space. These fPij are hermitean and generate Clifford
algebra

gijf
Pj
k + gkjf

Pj
i = 0,

fPikf
Qk
j + fQikf

Pk
j = −2δPQδij . (2.1)

We can construct f IJij tensors which generate SO(N) R-symmetry by

f 1P = −fP1 = fP , fPQ = f [PfQ] . (2.2)

These f IJij satisfy the following identities

f IJij = −fJIij = −f IJji ,
f IJfKL = f [IJfKL] − 4δI[KfL]J − 2δI[KδL]J1,

f IJijfKLij = 2dδI[KδL]J − δN,4εIJKLTrJ, (2.3)

where I, J = 1, . . . N . The J ij is relevant only for N = 4 and defined by

J =
1

6
εPQRf

PfQfR =
1

24
εIJKLf IJfKL . (2.4)

It commute with the almost complex structures and satisfy

JfP = fPJ, J2 = 1, Jij = Jji,

fPfQ = −δPQ1− εPQRJfR . (2.5)

J has eigenvalues ±1 and is covariantly constant. The target space for N = 4 is a
product of two Riemannian spaces with dimension d±, d− + d+ = d. It turns out
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that both of the two subspaces are quaternionic manifold, so d± are multiple of 4.

The product structure is due to the fact that there are two inequivalent multiplets

for N = 4. Each subspace corresponds to each multiplet. In fact, inequivalent

multiplets exist for value of N = 4 mod 4, but the requirement that the local

symmetry H containing SO(N) act irreducibly on the target space rules out all but

N = 4 cases. This is because the SO(4) R-symmetry itself factors into two SO(3)’s.

The two SO(3) factors act separately on the two subspaces. So, the N = 4 case is

special, and in particular, we can write (2.3) as

f IJijfKLij = 4(d+PIJKL+ + d−PIJKL− ) (2.6)

by using the projectors

PIJKL± =
1

2
δI[KδL]J ∓ 1

4
εIJKL . (2.7)

We now move to the geometry of the target space and its implications. Since

some results for the case N = 1, 2 are different from N > 2, and in this work, we

are interested in theory with N > 2 mainly N = 4, we will only review the N > 2

case and refer the reader to [31] for the detailed discussion of N = 1, 2. For N > 2,

fP are only almost complex structures. As shown in [26], the Nijenhuis tensors are

given by

Nk
P ij = f lP iD(Γ)[jf

k
P l] − f lP jD[if

k
P l], no sum on P . (2.8)

These satisfy N j
P ji = 0 but vanish only for N = 2 in which fPij is covariantly constant

with respect to the Christoffel connection Γkij according to [26]

Dk(Γ)fPij +QPQf
Q
ij +QQ

k (f[PfQ])ij = 0 . (2.9)

For N = 2, we simply have QPQ = 0, P,Q = 2.

The coupling between supergravity and non-linear sigma model involves the

SO(N) connections QIJ
i , formed by combining QP and QPQ, on the target space.

These connections are non-trivial in the sense that

RIJ
ij = ∂iQ

IJ
j − ∂jQIJ

i + 2Q
K[I
i Q

J ]K
j =

1

2
f IJij . (2.10)

The f IJ tensors are covariantly constant with respect to Christoffel connection Γkij
and QIJ

i

Di(Γ, Q
IJ)f IJjk = ∂if

IJ
jk − 2Γli[kf

IJ
j]l + 2Q

K[I
i f

J ]K
jk = 0 . (2.11)

The integrability condition for (2.11) gives

Rijmkf
IJm

l −Rijmlf
IJm

k = −fK[I
ij f

J ]K
kl (2.12)
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where Rijkl is the target space Riemann tensor. Contracting with fMNkl and gjl

gives, respectively,

Rijklf
IJkl =

1

4
df IJij , (2.13)

Rij = gklRikjl =

(
N − 2 +

1

8
d

)
gij . (2.14)

From these results, the target space is an Einstein space with non-trivial SO(N)
holonomy. For the N = 4 case with the target space being a product of two quater-
nionic spaces, both the two subspaces are Einstein, and equations (2.13) and (2.14)
become

Rijklf
IJkl =

1

2
(d+PIJ,KL+ + d−PIJ,KL− )fKLij , (2.15)

Rij = gklRikjl =

(
2 +

1

8
d

)
gij +

1

8
(d+ − d−)Jij . (2.16)

We can extract the f IJ part of the Riemann tensor by decomposing the
Riemann tensor as

Rijkl = R̂ijkl +
1

8
f IJij f

IJ
kl . (2.17)

We then write the integrability condition (2.12) as

R̂ijmkf
IJm

l − R̂ijmlf
IJm

k = 0 . (2.18)

We now introduce a set of antisymmetric tensors hαij that commute with SO(N)
generators f IJ

hαikf
IJk

j − hαjkf IJki = 0 . (2.19)

hα generate a subgroup H ′ of SO(d) that commutes with SO(N). The algebra of
H ′ is given by

hαhβ − hβhα = fαβγh
γ (2.20)

with structure constants fαβγ. hα are covariantly constant with respect to the

Christoffel and Ωαβ
i connections

D(Γ)ih
α
jk − Ωα

i βh
β
jk = 0 . (2.21)

The Riemann tensor can now be written as

Rijkl =
1

8
(f IJij f

IJ
kl + Cαβh

α
ijh

β
kl) (2.22)

with a symmetric tensor Cαβ. The holonomy group is then contained in SO(N) ×
H ′ ⊂ SO(d) and acts irreducibly on the target space. We can also normalize hα as
in [26] by

hαijh
βij = 2dNδ

αβ (2.23)
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where dN is the number of bosonic states in the supermultiplet of N extended
supersymmetries, see [26] for the value of dN for all values of N . δαβ is an invariant
tensor of H ′ with fαβγ = δδγfαβδ being the totally antisymmetric structure constants.
The H ′ curvature is given by

Rα
βij = 2(∂[iΩ

α
j] β − Ω γ

[i αΩ β
j] γ) =

1

8
fαγβCγδh

δ
ij . (2.24)

We can also restrict Ωαβ
i to the form Ωαβ

i ∝ fαβγQ
γ
i .

There exist only theories with N = 1, . . . , 6, 8, 9, 10, 12 and 16. The
supergravity fields consist of the vielbein eaµ and gravitini ψIµ. Following [31], we will
use the SO(N) covariant formulation in which the almost complex structures will
not appear explicitly. We first define a new basis for the spin 1

2
fields

χiI = (χi, fPijχ
j) (2.25)

with the SO(N) covariant constraint

χiI = PIiJjχjJ =
1

N
(δIJδij − f IJij)χjJ . (2.26)

The total number of fermions is still d as can be seen from the trace of the projector
PIiIi = d. The Lagrangian for the ungauged theory is given by [31]

L0 = −1

2
iεµνρ(eaµRνρa + ψ̄IµDνψ

I
ρ)−

1

2
egij

(
gµν∂µφ

i∂νφ
j +

1

N
χ̄iID/χjI

)
+

1

4
egijχ̄

iIγµγνψIµ(∂νφ
j + ∂̂νφ

j)− 1

24N2
eRijklχ̄

iIγaχ
jI χ̄kJγaχlJ

+
1

48N2
e
[
3(gijχ̄

iIχjI)2 − 2(N − 2)(gijχ̄
iIγaχjJ)2

]
(2.27)

where

Dµψ
I
ν =

(
∂µ +

1

2
ωaµγa

)
ψIν + ∂µφ

iQIJ
i ψ

J
ν ,

Dµχ
iI =

(
∂µ +

1

2
ωaµγa

)
χiI + ∂µφ

j(Γijkχ
kI +QIJ

j χ
iJ). (2.28)

ωaµ is the usual spacetime spin connection contracted with εabc as followed from the
γaγb identity given below, and e is the determinant of eaµ defined by

gµν = eaµe
b
νηab. (2.29)

The Lagrangian is invariant under the following supersymmetry transformations

δeaµ =
1

2
ε̄IγaψIµ,

δψIµ = Dµε
I − 1

8
gijχ̄

iIγνχjJγµνε
J − δφiQIJ

i ψ
J
µ ,

δφi =
1

2
ε̄IχiI ,

δχiI =
1

2
(δIJ1− f IJ)ij ∂̂/φ

jεJ − δφj(ΓijkχkI +QIJ
j χ

iJ), (2.30)
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where the supercovariant derivative and the covariant derivative are defined by

∂̂/µφ
i = ∂φi − 1

2
ψ̄Iµχ

iI ,

Dµε
I =

(
∂µ +

1

2
ωaµγa

)
εI + ∂µφ

iQIJ
i ε

J , (2.31)

respectively. We also use the same conventions as [31] and [26] namely γa are
hermitean and satisfy

γaγb = δab + iεabcγc . (2.32)

We can change to (− + +) metric by multiply conjugate spinors and εabc by i and
εabc by −i. We will do these in the actual computation in later chapters. The field
dependent SO(N) R-symmetry transformations

δψIµ = ΛIJ(φ)ψJµ , δχiI = ΛIJ(φ)χiJ ,

δQIJ
i = −DiΛ

IJ(φ), δf IJ = 2ΛK[I(φ)fJ ]K (2.33)

and target space diffeomorphisms are not, in general, an invariance of the Lagrangian
but are rather reparametrizations within certain equivalence classes. The invariance
of the Lagrangian consists of target space isometries including appropriate SO(N)
R-symmetry rotations. The isometries are generated by Killing vectors X i(φ). Ac-
companied with SO(N) rotations SIJ(X,φ), some of these isometries can be ex-
tended to the invariance of the Lagrangian. The target space metric gij is invariant
under X i as X i is the Killing vectors. We also require the invariance of QIJ

i and
f IJij up to SO(N) transformations. Using (2.33), we can write down the following
conditions for our requirements

LXgij = 0, LXQIJ
i +DiSIJ = 0,

LXf IJij − 2SK[If
J ]K
ij = 0 (2.34)

where LX denotes the Lie derivative along X i. The Lagrangian (2.27) is now invari-
ant under the transformations

δφi = X i, (2.35)

δψIµ = SIJψJµ = VIJψJµ − δφiQIJ
i ψ

J
µ , (2.36)

δχiI = χjI∂jX
i + SIJχi,J = DjX

iχjI + VIJχiJ
−δφj(ΓijkχkI +QIJ

j χ
iJ) (2.37)

where VIJ = XjQIJ
j + SIJ . Equations (2.10) and (2.11) imply that the second

equation of (2.34) can be written as

DiVIJ =
1

2
f IJij X

j (2.38)
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and the third equation of (2.34) becomes the integrability condition for (2.38)

f IJk[iDj]Xk = f
K[I
ij VJ ]K . (2.39)

Contracting with fMNij, we find

f IJijDiXj =

{
1
2
dVIJ , forN 6= 4

(d+PIJ,KL+ + d−PIJ,KL− )VKL, forN = 4
. (2.40)

We then find that

DiDiVIJ =

{
1
4
dVIJ , forN 6= 4

1
2
(d+PIJ,KL+ + d−PIJ,KL− )VKL, forN = 4

. (2.41)

This result shows that there is no restriction to extend an isometry to a symmetry
of the Lagrangian for N > 2. The symmetry of the Lagrangian coming from the
extension of some isometries is generated by an algebra g with generators XM,
M = 1, . . . dimg, satisfying

XMi∂iX
N −XN i∂iXM = fMNKX

K . (2.42)

fMNK are structure constants of this algebra. Closure condition of the algebra
implies the condition for SO(N) transformations[SM,SN ]IJ = SMIKSNKJ − SN IKSMKJ

= −fMNKSKIJ + (XMi∂iSN IJ −XN i∂iSMIJ) . (2.43)

where SMIJ = SIJ(φ,XM). We can also write this equation as[VM,VN ]IJ = −fMNKVKIJ +
1

2
f IJij X

MiXN j (2.44)

where (2.42) and the second equation of (2.34) have been used, and VMIJ =
VIJ(φ,XM). The integrability condition (2.39) implies that DiXj − 1

4
f IJij VIJ com-

mutes with the almost complex structures and can be expanded in terms of hαij

DiXj − 1

4
f IJij VIJ = hαijVMα . (2.45)

Using the notation VMi = XMi and DiDjXk = RijklX
l, the following differential

equations can be derived [31]

DiVMIJ =
1

2
f IJij VMj,

DiVMj =
1

4
f IJij VMIJ + hαijVMα ,

DiVMα =
1

8
Cαβh

β
ijVMj (2.46)
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where the derivatives now contain Γ and SO(N) × H ′ connections. It has been
shown in [31] that these identities and (2.42) can be used to derive

fMNKVKi =
1

4
f IJij (VMIJVN j − VN IJVMj) + hαij(VMα VN j − VNαVMj),

fMNKVKα = fβγαVMβ VNγ +
1

8
Cαβh

β
ijVMiVN j . (2.47)

Equations (2.44) and (2.47) can be used to reveal the algebraic structure of the
target space symmetries. To do this, we define an algebra a which is an image of g

under the homomorphism V

V : g→ a,

V(XM) = VMA =
1

2
VMIJtIJ + VMαtα + VMiti . (2.48)

The algebra a is an extension of so(N) ⊕ h′ and generated by {tA} = {tIJ , tα, ti}
satisfying

[tIJ , tKL] = −4δ[I[KtL]J ], [tIJ , tA] = −1

2
f IJ,ABtB, [tα, tβ] = fαβγt

γ,[
tA, tB

]
=

1

4
fABIJ t

IJ +
1

8
Cαβh

βABtα, [tα, tA] = hα A
B tB . (2.49)

Using the fact that V is a homomorphism

V(
[
XM, XN

]
) =

[V(XM),V(XM)
]

= fMNKV(XK) (2.50)

and (2.48), we readily recover (2.44) and (2.47) after matching the coefficients of
tIJ , tα and ti on both sides of (2.50). In addition, equation (2.38) can be written as

DiV(XM) =
[
gijt

j,V(XM)
]
. (2.51)

One of the results of [26] is that for theory with N > 4, the target space is
a symmetric space of the form G/H. For N ≤ 4, the target space is not necessarily
symmetric. However, in this work, we are interested only in the theories with sym-
metric target spaces, so we restrict ourselves to symmetric target spaces. A detailed
discussion of symmetric spaces can be found in, for example, [57]. We now review
the structure of symmetric spaces and describe the formulation given above in the
case of symmetric target spaces. In this case, the symmetry of the Lagrangian which
consists of some isometries and R-symmetry is given by the action of the group G.
The scalar fields are described by a G value matrix L on which the global G and
the local H symmetries act as multiplications from the left and right, respectively.
The H symmetry can be used to eliminate dim(H) spurious degrees of freedom in L.
After this “gauge fixing”, we are left with a coset representative L. The target space
is then d = dim(G/H) = dim(G) − dim(H) dimensional and hence paremetrized
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by d scalars φi. The isometries act on L(φ) from the left with the compensating H
action on the right to maintain the coset representative in a particular gauge

gL(φi) = L(φ′
i
)h(φi) . (2.52)

Consider infinitesimal transformation φ′i = φi+XMiλM together with g = 1+tMλM
and h = 1 + 1

2
SMIJXIJλM + SMαXαλM, we then find

XMi∂iL = tML− 1

2
SMIJLXIJ − SMαLXα . (2.53)

The index M is now G adjoint indices. In this case, the H = SO(N)×H ′, and G
generators tM decompose into {XIJ , Xα, Y A} where XIJ , Xα and Y A are SO(N),
H ′ and coset generators, respectively. The non-compact generators transform in a
spinor representation of SO(N). The target space metric is given by

gij = eAi e
B
j δAB (2.54)

where the vielbein eAi as well as the H = SO(N) × H ′ composite connections are
obtained from the decomposition

L−1∂iL =
1

2
QIJ
i X

IJ +Qα
i X

α + eAi Y
A . (2.55)

Indices A,B can be thought of as “flat” target space indices, and eAi together with
its inverse eiA can be used to converse indices i, j to A,B and vice versa.

The map V in (2.48) is now an isomorphism and takes the form

L−1tML = VMA =
1

2
VMIJXIJ + VMαXα + VMAY A . (2.56)

The algebra (2.49) is then isomorphic to the G algebra characterized by [26][
XIJ , XKL

]
= −4δ[I[KtL]J ],

[
Xα, Xβ

]
= fαβγX

γ,
[
XIJ , Xα

]
= 0,[

XIJ , Y A
]

= −1

2
ΓIJABY

B,
[
Xα, Y A

]
= −hαABY B,[

Y A, Y B
]

=
1

4
ΓIJABX

IJ +
1

8
Cαβh

α
ABX

β . (2.57)

From this algebra, the f IJ tensors are then identified with ΓIJ constructed from
SO(N) gamma matrices ΓI

AȦ
. The precise relation is given by

f IJij = −1

2
(ΓIΓJ − ΓJΓI)ABe

A
i e

B
j = −ΓIJABe

A
i e

B
j . (2.58)

The H ′ generators hα satisfy

hαACΓI
CḂ

+ hα
ḂĊ

ΓI
AĊ

= 0

hαACh
β
CB − hβAChαCB = fαβγh

γ
AB (2.59)
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and the Cαβ tensor coincides with the one defined previously. The integrability
condition for (2.55) gives rise to [26]

D[ie
A
j] = ∂[ie

A
j] +

(
1

4
QIJ

[i ΓIJAB +Qα
[ih

α
AB

)
eBj] = 0, (2.60)

RIJ
ij = −1

2
eAi e

B
j ΓIJAB, (2.61)

Rα
ij = −1

8
eAi e

B
j Cαβh

β
AB (2.62)

with RIJ
ij defined in (2.10). The Rα

ij are defined as

Rα
ij = ∂iQ

α
j − ∂jQα

i + fα βγQ
β
iQ

γ
j . (2.63)

Recall that Ωαβ
i ∝ fαβγQ

γ
i , we see that this is related to Rα

βij defined in (2.24) by
Rα

βij ∝ fαβγR
γ
ij. The Riemann tensor is then given by

Rijkl = −eAk eBl
(

1

4
RIJ
ij ΓIJAB +Rα

ijh
α
ij

)
or RABCD =

1

8
(ΓIJABΓIJCD + Cαβh

α
ABh

β
CD) . (2.64)

It can be shown that the differential relations (2.38) follow from the above
information [57]. For example, from the second equation in (2.34), the transforma-
tions of QIJ

i and Qα
i under G are given by

∂iX
MjQj +XMj∂jQ

IJ
i + ∂iSM +

[
Qi,SM

]
= 0 (2.65)

where

Qi =
1

2
QIJ
i X

IJ +Qα
i X

α

SM =
1

2
SMIJXIJ + SMαXα . (2.66)

Multiplying (2.53) by L−1 from the left and using (2.55) and (2.56), we find

VM ≡ 1

2
VMIJXIJ + VMαXα = SM +XMiQi . (2.67)

as well as XMi = gijeAj VMA . Introducing R̂ij = 1
2
RIJ
ij X

IJ + Rα
ijX

α and using the
above results, we can write (2.65) as

DiVM = R̂ijX
Mj . (2.68)

By using (2.61) and (2.62), we readily obtain the same result as (2.46).
Finally, the spinor fields χiI are also redefined to

χȦ =
1

N
eAi ΓI

AȦ
χiI (2.69)

which transform in the conjugate spinor representation of SO(N).
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2.2 Gauged supergravity in three dimensions

In this section, we will gauge some symmetry of the ungauged Lagrangian given in

the previous section. As our main interest is in the theory with symmetric target

space, the gauge group G0 is then a subgroup of the symmetry group G. We follow

the covariant formulation by introducing the notion of embedding tensor introduced

in [27]. This has been first applied to the maximal N = 16 gauged supergravity

in three dimensions. This method has also been used in many cases including the

theory in other space-time dimensions with different numbers of supersymmetries.

The embedding tensor ΘMN acts as a projection operator on the group G

to the gauge group G0. The gauge generators are given by

X i = gΘMNΛM(x)XN i (2.70)

where ΛM(x) and g are space-time dependent parameters of gauge transformations

and the gauge coupling, respectively. The dimension of the gauge group is given

by the rank of the embedding tensor. The embedding tensor is gauge invariant and

symmetric in its two indices. In three dimensions, it is an element in the symmetric

tensor product of the two adjoint representations of G as indicated by the indices

M and N . The requirement that gauge generators form close algebra implies the

following constraint on the embedding tensor

ΘMPΘNQf
PQ
R = f̂ P

MN ΘPR (2.71)

with structure constants of the gauge group f̂ P
MN . This can be easily shown by

noting that the generators of the gauge group are given by

JM = ΘMN t
N . (2.72)

The requirement that these generators form an algebra gives

[JM, JN ] = f̂ P
MN JP . (2.73)

Using the G algebra
[
tM, tN

]
= fMNRt

R, we can write (2.73) as

ΘMPΘNQf
PQ
R = f̂ P

MN ΘPR . (2.74)

Gauge invariance of the embedding tensor can be then written as

f̂ Q
MP ΘQN + f̂ Q

NP ΘQM = ΘPL(fKL MΘNK + f̂KL NΘMK) = 0 . (2.75)

This constraint is the so-called quadratic constraint.

In the ungauged theory, all bosonic degrees of freedom are carried by scalars,
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so there seem to be no vector fields to act as gauge fields. However, we can introduce
gauge fields to the Lagrangian via the so-called Chern-Simons term

LCS =
i

4
gεµνρAMµ ΘMN

(
∂νA

N
ρ −

1

3
gf̂ N
PQ APν A

Q
ρ

)
. (2.76)

In this form, vector fields do not carry propagating degrees of freedom. So, the
number of bosonic degrees of freedom remains the same as required by supersym-
metry. This term is also required by supersymmetry as we will see below. We now
introduce the gauge covariant derivatives

Dµφi = ∂µφ
i + gΘMNA

M
µ X

N i,

DµψIν =

(
∂µ +

1

2
ωaµγa

)
ψIν + ∂muφ

iQIJ
i ψ

J
ν + gΘMNA

M
µ VN IJψJν ,

DµχiI =

(
∂µ +

1

2
ωaµγa

)
χiI + ∂µφ

j(Γijkχ
kI +QIJ

j χ
iJ)

gΘMNA
M
µ (δijVN IJ − δIJgikDkVNj χjI). (2.77)

Under gauge transformations, the gauge fields transform as

ΘMN δA
M
µ = ΘMN (−∂µΛM + gf̂ M

PQ APµΛQ). (2.78)

The corresponding filed strength is given by

ΘMNF
M
µν = ΘMN (∂µA

M
ν − ∂νAMµ − gf̂ M

PQ APµA
Q
ν ). (2.79)

The covariant derivative on the supersymmetry transformation parameter is also
modified to

DµεI =

(
∂µ +

1

2
ωaµγa

)
εI + ∂µφ

iQIJ
i ε

J + gΘMNA
M
µ VN IJεJ . (2.80)

It is not unexpected that the introduction of the above covariant derivatives
makes the Lagrangian not invariant under supersymmetry transformations given in
the previous section. It is necessary to modify the Lagrangian with extra terms to
restore supersymmetry. We simply review the main results and refer the reader to
[31] for more detailed discussions. The commutators of two covariant derivatives
give rise to the terms involving gauge field strengths for example,

[Dµ,Dν ]φi = gΘMNF
M
µν X

N i . (2.81)

These supersymmetry violating terms are of the form

−1

2
igΘMNF

N
νρε

µνρ

(
VN IJ ψ̄IµεJ +

1

2
VNiχ̄iIγµεI

)
(2.82)
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which can be canceled by adding LCS to the Lagrangian together with the supersym-
metry transformation of the gauge fields given below. The supersymmetry transfor-
mation of the vector fields in the covariant derivatives leads to the terms at order
g

−egΘMN (2VMIJ ψ̄Iµε
J + VMi χ̄iIγµεI)VNjDµφj . (2.83)

To cancel these terms, we then introduce the fermion mass-like terms to the
Lagrangian together with the modified supersymmetry transformations of fermions
at order g. These extra terms take the form

Lmass-like = ge

(
1

2
AIJ1 ψ̄Iµγ

µνψJν + AIJ2i ψ̄
I
µγ

µχjJ +
1

2
AIJ3ijχ̄

iIχjJ
)

δψI(g)µ = gAIJ1 εJ ,

δχiI(g) = −gNAJIi2 εJ . (2.84)

Before completing the gauged Lagrangian, we define the T-tensor as follows

TAB = VMAΘMNVNB . (2.85)

The T-tensor is the image of the embedding tensor under the map V introduced
before. In components, this can be written

T IJ,KL = VMIJΘMNVNKL, T IJi = VMIJΘMNVN i,
T ij = VMiΘMNVN j, T iα = VMiΘMNVNα,
Tαβ = VMαΘMNVNβ, T IJα = VMIJΘMNVNα . (2.86)

The tensors A1 and A3 are evidently symmetric. Further more, A2 and A3 must
satisfy the projection condition similar to (2.26)

AIJ1 = AJI1 , AIJ3ij = AJI3ji,

PJjIiA
KJ
2j = AKI2i , PJjIiA

JK
3jk = AIK3ik . (2.87)

The cancelation is achieved by various identities for the T-tensor. For the full list of
these identities, we refer to [31]. We emphasize again that we will restrict ourselves
to theories with N > 2. So, only the results relevant to these theories will be given.
The tensors A1, A2 and A3 that satisfy the constraints (2.87) are determined in
terms of the T-tensors as follows

AIJ1 = − 4

N − 2
T IM,JM +

2

(N − 1)(N − 2)
δIJTMN,MN , (2.88)

AIJ2j =
4

N(N − 2)
f
M(Im
j T J)M

m +
2

N(N − 1)(N − 2)
δIJfKL m

j TKLm

+
2

N
T IJj, (2.89)

AIJ3ij =
1

N2

[
− 2D(iDj)A

IJ
1 + gijA

IJ
1 + A

K[I
1 f

J ]K
ij + 2Tijδ

IJ

−4D[iT
IJ
j] − 2Tk[if

IJk
j]

]
. (2.90)
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In order to cancel the extra supersymmetry transformation at order g2, we

need to include the scalar potential to the Lagrangian

V = −4g2

N

(
AIJ1 AIJ1 −

N

2
gijAIJ2i A

IJ
2j

)
. (2.91)

The cancelation of the supersymmetry transformations of the potential requires the

quadratic identities

2AIK1 AKJ1 −NAIKi2 AJK2i =
1

N
δIJ(2AKL1 AKL1 −NAKLi2 AKL2i ),

3AIK1 AKJ2j +NgklAIK2k A
KJ
3lj = PIiJj(3AKL1 AKL2i +NgklALK2k A

KL
3lj ). (2.92)

These conditions arise from the quadratic constraint on the embedding tensor (2.75).

This has been explicitly shown in [28] for N = 16 theory.

All the above results can be summarized in a single statement that consis-

tency of the gaugings implied by supersymmetry is given by a constraint on the

T IJ,KL

T IJ,KL = T [IJ,KL]− 4

N − 2
δ[I|[KTL]M,M |J ]− 2

(N − 1)(N − 2)
δI[KδL]JTMN,MN , (2.93)

or equivalently,

P�T
IJ,KL = 0 . (2.94)

The symbol � denotes the � representation of SO(N). For symmetric target spaces,

this constraint can be lifted to the constraint on ΘMN . The final result is that, see

[31] for details, the embedding tensor must satisfy a projection condition analogous

to (2.94)

PR0ΘMN = 0 . (2.95)

The representation R0 appears in the decomposition of the symmetric tensor prod-

uct of the adjoint representations of G under G and contains the representation � of

SO(N) when decomposed under SO(N). This condition is more useful than (2.94)

because we can work with ΘMN which is a constant tensor rather than the field

dependent T-tensors.

We now collect the full gauged Lagrangian and the corresponding supersym-

metry transformations

L = L0 + ge

(
1

2
AIJ1 ψ̄Iµγ

µνψJν + AIJ2i ψ̄
I
µγ

µχjJ +
1

2
AIJ3ijχ̄

iIχjJ
)

+
4eg2

N

(
AIJ1 AIJ1 −

N

2
gijAIJ2i A

IJ
2j

)
(2.96)
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and

δeaµ =
1

2
ε̄IγaψIµ

δAMµ = 2VMIJ ψ̄Iµε
J + VMi χ̄iIγµεI ,

δφi =
1

2
ε̄IχiI ,

δψIµ = DµεI − 1

8
gijχ̄

iIγνχjJγµνε
J − δφiQIJ

i ψ
J
µ + gAIJ1 εJ ,

δχiI =
1

2
(δIJ1− f IJ)i j/D̂φjεJ − δφj(ΓijkχkI +QIJ

j χ
iJ)− gNAJIi2 εJ (2.97)

with DµεI defined, previously. For completeness, we also give gauge transformations
of various fields

δφi = gΘMNΛMXN i,

δψIµ = gΘMNΛMVN IJψJµ − δφiQIJ
i ψ

J
µ ,

δχiI = gΘMNΛM(χjIDjVN i + VN IJχiJ)− δφj(ΓijkχkI +QIJ
j χ

iJ),

ΘMN δA
M
µ = ΘMN (−∂µΛM + gf̂ M

PQ APµΛQ). (2.98)

We end this section by giving some information about critical points of
the scalar potential. This will be used extensively in later chapters. The critical
(stationary) points are the points satisfying the condition

3AIK1 AKJ2j +NgklAIK2k A
KJ
3lj = 0 . (2.99)

This relation follows from the variation of the scalar potential in (2.91). For super-
symmetric critical points, unbroken supersymmetries are characterized by the two
equivalent conditions

AJI2i ε
J = 0

and AIK1 AKJ1 εJ = −V0

4
εI =

1

N
(AIJ1 AIJ1 −

1

2
NgijAIJ2i A

IJ
2i )εI , (2.100)

where V0 is the value of the potential at the critical point. The equivalence between
these relations follows from the quadratic constraint (2.92). Obviously, AIJ2i are
entirely zero at the maximal supersymmetric points. From (2.100), unbroken super-

symmetries εI are eigenvectors of AIJ1 with the corresponding eigenvalues ±
√
−V0

4g2 .

We will explain this point in more detail in the next chapter.

2.3 Chern-Simons and Yang-Mills gauged super-

gravities

The formulation given in the previous section is referred to as Chern-Simons gauged
supergravity in which the gauge fields appear in the Lagrangian via Chern-Simons
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terms. On the other hand, in three dimensional gauged supergravities obtained
from dimensional reductions of higher dimensional theories, gauge fields normally
come with the usual Yang-Mills kinetic terms. In general, the two formulations
are not equivalent. This fact a priori implies that the theories discussed in the
previous section cannot be obtained from higher dimensional theories via any known
mechanisms. It turns out that there is an exception. It has been shown in [38]
that for a class of gaugings with non-semisimple gauge groups, the Chern-Simons
gauged theories are indeed on-shell equivalent to certain Yang-Mills gauged theories
with semisimple gauge groups. As discussed in the previous section, all propagating
bosonic degrees of freedom are carried by scalars, but with Yang-Mills kinetic terms,
gauge fields do carry propagating degrees of freedom. So, in the process of converting
a Chern-Simons gauged theory to a Yang-Mills one, some scalars must disappear,
and the corresponding degrees of freedom will be shifted to vector fields. We will see
this in this section. The material given here closely follows [38]. We will not include
the coupling to massive vector fields here, because this is not directly relevant to
the works presented in this thesis. Most of the notations are also parallel to those
in [38] except for the (−+ +) metric.

For conveniences, we also repeat the relevant term in the Lagrangian in the
(−+ +) metric

L =
1

4
eR + gLCS − 1

4
PAµ PAµ − V . (2.101)

We can derive the equation of motion for vector fields

ΘMNF
M
µν = εµνρΘMNVNAPρA (2.102)

where the fermionic terms have been omitted because they are not relevant for our
discussion here. In this section, as in [38], we will use the notations Qµ and Pµ
defined by

Qµ + Pµ = L−1(∂µ + gΘMNA
M
µ t
N )L . (2.103)

Notice that in this equation the derivative is a space time derivative obtained by
pulling back ∂iL in (2.55) ∂µL = ∂µφ

i∂iL. Similarly, we can identify

Qµ = ∂µφ
i

(
1

2
QIJ
i X

IJ +Qα
i X

α

)
, Pµ = ∂µφ

ieAi Y
A . (2.104)

We begin with the description of the gauge group and its embedding tensor.
We take the non-semisimple gauge group of the form G0 n Tn with n = dimG0.
Tn contains n commuting translational generators which transform as the adjoint
representation of the semisimple group G0. The corresponding Lie algebras are
denoted by g0 = {Tm} and tn = {Tm}, respectively, with the indices m,m = 1, . . . n.
The G0 n Tn algebra is given by the following commutation relations

[Tm, T n] = fmn pT
p, [Tm, T n] = fmn pT

p, [Tm, T n] = 0, (2.105)
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where fmn p’s are structure constants of G0. A consistent gauging is described by

the embedding tensor with non-zero components

gΘmn = gΘmn = g1ηmn, gΘmn = g2ηmn (2.106)

where ηmn is the g0 Cartan-Killing form. The coupling constants g1 and g2 are not

independent but related to each other by the relation which describes the embedding

of G0 n Tn in G. The gauge fields of G0 and Tn are denoted by Cm
µ ≡ Amµ and

Bm
µ ≡ Amµ , respectively. Under gauge transformations with the above embedding

tensor, these transform as

δBm
µ = ∂µΛm + g1f

m
klB

k
µΛl, fmkl = ηnkf

mn
l,

δCm
µ = ∂µΛm + g1f

m
klC

k
µΛl + fmklB

k
µ(g1Λl + g2Λl). (2.107)

The associated field strengths are given by

Bm
µν = 2∂[µB

m
ν] + g1f

m
klB

k
µB

l
ν ,

Cm
µν = 2∂[µC

m
ν] + 2g1f

m
klC

k
[µB

l
ν] + g2f

m
klB

k
µB

l
ν . (2.108)

We now separate n scalars, φm, corresponding to the translations Tm’s from the coset

representative L(φi) = L(φ, φ̃). The remaining scalars φ̃ parametrize the reduced

coset G′/H ′ which will be identified with the Yang-Mills coset. So, we write

L(φ, φ̃) = eφmT
m

L̃(φ̃) (2.109)

and also define

C̃m
µν = Cm

µν − fmn lφnBl
µν . (2.110)

To derive other results given below, it is useful to note a formula

e−φmT
m

T neφmT
m

= T n + φmf
nm

lT
l . (2.111)

This is easily shown by remembering
[
[T n, Tm] , T l

]
= 0. To describe gauge trans-

formations of these fields, we recall the gauge transformation of the scalars φi given

in the previous section. Using L = L(φi) and the fact that the isometry acts on L

as a left multiplication by G, we can write the gauge transformation of L as

δL = −gΘMNΛMtNL . (2.112)

Together with the gauge transformations of vector fields, we find

δBm
µν = g1f

m
klB

k
µνΛ

l, δφm = −g1ηmnΛn − (g2ηmn + g1f
l
mnφl)Λ

n,

δC̃m
µν = g1f

m
klC̃

k
µνΛ

l, δL̃ = −g1ηmnΛmT nL̃ . (2.113)
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We can use Λm gauge transformations to gauge φm away since φ’s are shifted under
these transformations. We then define the following quantities for the reduced coset
L̃

ṼMAtA = L̃−1tML̃,

Q̃µ + P̃µ = L̃−1(∂µ + g1ηmnB
m
µ T

n)L̃ . (2.114)

Using (2.109) and (2.111), we can show that these quantities are related to those of
L by

ṼmA = VmA, ṼmA = VmA − fmn kφnVk A . (2.115)

With (2.106) and ΘMN being symmetric, it is easily verified that

T̃AB = ΘMN ṼMAṼNB = ΘMNVMAVNB = TAB (2.116)

which is a manifestation of the fact that the T-tensor is gauge invariant. Similarly,
we find the relation

Qµ + Pµ = Q̃µ + P̃µ +DµφmṼmAtA (2.117)

where the covariant derivative is defined by

Dµφm = ∂µφm + ηmn(g1C
n
µ + g2B

n
µ) + g1f

k
mnφk . (2.118)

We then return to the duality equation (2.102) which gives

Bm
µν = eεµνρṼmA(P̃Aρ + ṼnADρφn),

C̃m
µν = eεµνρṼmA(P̃Aρ + ṼnADρφn). (2.119)

Everything is now invariant under Λm. We can eliminate φm from the equations of
motion by solving (2.119)

eεµνρD
ρφm = MmnB

n
µν − eεµνρMmnṼnAP̃Aρ,

C̃m
µν = eεµνρ(ṼmA − ṼmBṼkBMklṼ l A)P̃Aρ + ṼmAṼkAMknB

n
µν .(2.120)

We have defined Mmn ≡ ṼmAṼnA and assumed the existence of its inverse Mmn. As
shown in [38], by using [Dµ, Dν ]φm = ηmn(g1C̃

n
µν + g2B

n
µν), we find the integrability

condition for the first equation in (2.120)

Dν(MmnB
n
µν) = eεµνρD

ν(MmnṼnAP̃Aρ) + g1ηmnṼnA(δAB − ṼkAMklṼ l B)P̃Bµ
+

1

2
eεµνρ(g2ηmn + g1ηmkṼkAṼ l AMln)Bnνρ . (2.121)

which is the Yang-Mills equation for Bn
µν . This equation can be derived from the

Lagrangian

L̃ =
1

4
eR− g2L̃CS(B)− 1

8
eMmnB

mµνBn
µν −

1

4
eGABP̃Aµ P̃Bµ

+
1

4
εµνρMmnṼnABm

µνP̃Aρ − eV (2.122)
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where

GAB = δAB − ṼmAMmnṼnB, Mmn = (ṼmAṼnA)−1,

L̃CS(B) =
1

4
εµνρBm

µ ηmn

(
∂νA

n
ρ +

1

3
g1f

n
klB

k
νB

l
ρ

)
. (2.123)

This is a Yang-Mills gauged supergravity with d− n scalar fields parametrizing the
coset space G′/H ′ with gauge group G0. The corresponding gauge transformations
are given by

δL̃ = −g1ηmnΛmT nL̃, δBm
µ = ∂µΛm + g1f

m
klB

k
µΛl . (2.124)

It is also possible to eliminate φm using (2.120) in the fermionic terms in the La-
grangian and supersymmetry transformations. This equivalence has also been shown
in [31] in reverse direction namely by writing a Yang-Mills Lagrangian in Chern-
Simons form. This has been done by introducing extra gauge fields and compensat-
ing scalars so that we obtain the original Yang-Mills Lagrangian after gauge fixing.
In the next chapter, we will study RG flow solutions by finding supersymmetric
domain wall solutions of N = 4 gauged supergravity in the formulation studied in
this chapter. The theories constructed here will also be used in several parts of this
thesis.
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Chapter 3

RG flows from N = 4 three
dimensional gauged supergravity

In this chapter, we will study holographic RG flow solutions in N = 4 three dimen-

sional gauged supergravity. The RG flow solution is a domain wall of the gauged

supergravity and interpolates between two AdS3 critical or fixed points of the scalar

potential. These critical points correspond to the fixed points of the beta function

in the dual boundary field theory. In the dual field theory, we start with a CFT

in the UV with some perturbations which are source terms in the Lagrangian or

vacuum expectation values of some operators. The theory is then driven by these

perturbations to undergo an RG flow to another fixed point at which the theory

becomes a CFT again. In some cases, it can happen that the UV CFT flows to

non-conformal field theory because there is no IR fixed point. In this work, we are

interested only in the RG flows with drive some UV CFT’s to another CFT’s in

the IR. In term of the gravity dual, this means that we are looking for supergravity

solutions that have asymptotic AdS3 limits at both ends. We start with the notion

of holographic renormalization and RG flows based on the general principle of the

AdS/CFT correspondence. To find the RG flow solutions, we study the scalar po-

tentials of N = 4 gauged supergravity and identify some of their critical points. Our

main interest is supersymmetric RG flows, so we look for supersymmetric domain

wall solutions which approach AdS3 at the end points. This is achieved by studying

the solutions of the BPS equations obtained by setting supersymmetry transforma-

tions of fermionic fields to zero. We end this chapter by identifying the dimension of

the operator that drives the flow and computing the mass spectrum of scalar fields.

3.1 Holographic renormalization and RG flows

According to the AdS/CFT correspondence, a strongly coupled quantum field theory

living on d dimensional space, Md, can be described by a weakly coupled gravity

theory living in a d+1 dimensional bulk space whose boundary is Md. In particular,
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in the case of AdSd+1 bulk space, the dual field theory is a d dimensional conformal

field theory. We are interested in an asymptotically AdS bulk geometry which

approaches an AdS space for a certain limit. If the geometry admits two AdS

regions namely at the boundary and deep interior, this background describes an RG

flow of a disturbed UV CFT to another CFT in the IR. The rest of the discussion

in this section closely follows [88, 89, 90, 9]. For further details, we refer the reader

to these references and also [91, 92, 93, 94]. We mainly focus on relevant results we

will use in this thesis. The full detail of the derivation can be found in the above

mentioned references.

As first introduced in [7], correlation functions of the boundary field theory

can be obtained from the AdS/CFT correspondence via

Zstring[Φ0]|M×M̃ = 〈e−
∫
∂M Φ0O〉QFT . (3.1)

This states that the partition function of string theory on M × M̃ with a com-

pact manifold M̃ can be identified with the generating functional of the correlation

functions of the field theory operator O with the value of the bulk field Φ on the

boundary ∂M , Φ0, being a source of O. In many cases of interest, M is AdS or

asymptotically AdS spaces. Quantization of string theory on a non-trivial back-

ground and, in many cases, with non-trivial Ramon-Ramon fields turns out to be

difficult, and currently, this has not been achieved. However, in some limits, we can

work with its low energy limit rather than the full string theory. For example, in the

original AdS/CFT correspondence, type IIB theory on AdS5 × S5 is dual to N = 4

SU(N) supersymmetric Yang-Mills (SYM) theory. In the large N limit correspond-

ing to strongly coupled gauge theory with large ’t Hooft coupling λ = g2
PYMN , we

can approximate string theory with its low energy effective theory namely type IIB

supergravity. Furthermore, if a consistent truncation to lower dimensions can be

performed, we can work with the lower dimensional supergravity theory. This is the

strategy we follow in this chapter where we will study RG flow solutions in three

dimensional gauged supergravity. After the solutions have been found, we can uplift

them to ten dimensions in the case where the reduction ansatz exists.

The bulk fields of interest to us are the metric gµν , vector fields Aµ and

scalars φ. In the dual field theory, the boundary values of these fields can be iden-

tified with sources coupled to stress tensor Tij, currents Ji and scalar operator O,

respectively. We can then write (3.1) as

ZSUGRA[φ(0), g(0), A(0)] =

∫
{φ,g,A}∼{φ(0),g(0),A(0)}

DφDgDAe−S[φ,g,A]

= 〈e−
∫
d4x
√
g(0)(O(x)φ(0)(x)+Ai(0)J

i+ 1
2
g(0)ijT

ij)〉 . (3.2)

In this equation, φ(0), A(0) and g(0) are the values of the corresponding bulk fields at

the boundary. In the limit where all stringy corrections can be neglected, the bulk
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path integral is dominated by the leading term which is the on-shell supergravity
action ∫

{φ,g,A}∼{φ(0),g(0),A(0)}
DφDgDAe−S[φ,g,A] = e−Son-shell[φ(0),g(0).A(0)] . (3.3)

So, to leading order, we can identify the on-shell bulk action with the QFT gener-
ating functional for connected diagrams.

Son-shell[φ(0), g(0), A(0)] = −WQFT[φ(0), g(0), A(0)]. (3.4)

We can obtain correlation functions of the dual operators by taking functional deriva-
tives on the on-shell action. For example, the one-point functions are given by

〈O(x)〉 =
1√
g(0)(x)

δS

δφ(0)(x)
,

〈Ji(x)〉 =
1√
g(0)(x)

δS

δA(0)i
(x)

,

〈Tij(x)〉 =
1√
g(0)(x)

δS

δg(0)ij
(x)

. (3.5)

The higher point functions can be obtained by further differentiations. It is well
known that the QFT correlation functions need to be renormalized because of their
divergences. In the holographic context, this is also the case for the on-shell classical
action which is also divergent due to the infinite volume of the bulk spacetime. We
need to regularize and subtract the infinities by appropriate counter terms to make
it finite. This process is called holographic renormalization. It is customary to work
with the metric on the asymptotically AdSd+1 space with radial coordinate ρ

ds2 =
dρ2

4ρ2
+

1

ρ
gij(ρ, x)dxidxj, i, j = 1, . . . , d . (3.6)

In this coordinate system, the boundary is at ρ = 0. In the holographic renormal-
ization, the cutoff at ρ = ε > 0 is introduced. Then, the divergent terms is removed
by adding some counter terms. The general procedure is to study the bulk field
equations in the limit near the AdS boundary. We expand the bulk fields in the
series in ρ. For example, gµν and φ can be expanded as

g(ρ, x)ij = g(0)ij(x) + g(2)ij(x)ρ+ . . .

φ(ρ, x) = ρ
d−∆

2 (φ(0)(x) + ρφ(2)(x) + ρ2φ(4)(x) + . . .). (3.7)

For even d, there are logarithmic terms in both expansions. For the metric, this
term arises at order d

2
while for a scalar field, this occurs at order ∆

2
where ∆ is the

conformal dimension of the operator dual to this scalar, see the references for details.
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The necessity for the logarithmic terms is due to the termination of the recurrence

relation for determining g(d) and φ(2n) for n = ∆− d
2
. So, the logarithmic terms are

needed to avoid this problem. After solving the field equations, we substitute the

solution back to the action with the cutoff ρ = ε. We finally subtract the divergent

terms in the limit ε→ 0 and end up with the renormalized on-shell action Sren

Sren = lim
ε→0

(Sreg + Sct) (3.8)

where Sreg and Sct are the regularized action and the corresponding counter terms.

By definition, the variation of Sren give one-point functions

δSren =

∫
d4x
√
g(0)

(
1

2
〈Tij〉δgij(0) + 〈Ji〉δAi(0) + 〈O〉δφ(0)

)
. (3.9)

This directly gives the expectation values 〈Tij〉, 〈Ji〉 and 〈O〉. Since we will not

explicitly compute the correlation functions in this work, we will not carry out the

whole holographic renormalization program. However, we will come back to this

procedure in chapter 5 in order to compute the central charge of the dual CFT as

well as the level of the current algrbras. In what follow, we are interested only in

scalar operator O which is relevant for our discussion of RG flows.

We now move to holographic RG flows. These are backgrounds in the forms

of kinks or domain walls in the corresponding (super) gravity bulk theory. Since the

radial coordinate of the AdS space can be interpreted as an energy scale in the dual

field theory at the boundary, RG flow solutions describing RG flows in the Poincare

invariant field theories will have only a non trivial radial dependence. In this work,

we are interested in the supersymmetric flow solutions, so our starting point is the

supergravity theory. Furthermore, since the dual operators are scalar operators, the

corresponding flow solutions will involve radial dependent scalar fields. Scalar fields

depending non trivially on AdS radial coordinate are called active scalars while for

those which do not are call inert scalars.

The (d+ 1) dimensional metric ansatz is given by

ds2 = e2A(r)γijdx
idxj + dr2, i, j = 1, . . . , d . (3.10)

Throughout this thesis, we always work with (−++ . . .+) metric. The coordinate r

is related to the ρ defined above by ρ = e−2r. This form is manifestly in variant under

d dimensional diffeomorphism. We are particularly interested in the case in which

γij = ηij, so from now on, we restrict ourselves to this case. The d dimensional part of

the metric is obviously Poincare invariant. We require that the solution interpolates

between two AdSd+1 regions, one as r →∞ and the other one as r → −∞. At both

ends, the metric is AdSd+1 in which A(r) = r
L

with AdS radius L. This feature has

a natural interpretation as an RG flow of the perturbed CFT in the UV to another

CFT in the IR. This background is sometime called asymptotically AdS.
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We now present the holographic c-theorem which is one of the important
consequences of holographic RG flows. In a two dimensional field theory, it has
been proved in [95] that in an RG flow, there exist a c-function which decreases
monotonically along the flow from the UV to the IR, and this function has the same
values as the central charges at the fixed points. In higher dimensional field theories,
there is no complete proof of this c-theorem. On the other hand, for holographic RG
flows, there does exist a proof of the “holographic c-theorem” for any d dimensional
dual field theories. One result obtained in [12] is based on Einstein equations and
Weaker energy condition in the bulk. Another result can be found in [96]. The latter
proof is based on the geometric consideration and Raychadhuri theorem. This result
also shows a close relationship between the irreversibility of the RG flow in the dual
field theory and the singularity theorem in the bulk gravity. We will review only
the former result because it is directly related to the works presented here.

We study Einstein equations with the metric (3.10). We find the Ricci tensor
components

Rij = −e2A[A′′ + (D − 1)(A′)2]ηij,

Rrr = −(D − 1)[A′′ + (A′)2] (3.11)

where D = d+ 1. Using Einstein equation Gµν = κ2
DTµν , it is easily shown that

(D − 2)A′′ = κ2
D(T tt − T rr). (3.12)

For our metric ansatz, the corresponding stress tensor is diagonal

T µν = diag(−ρ, p1, p2, . . . , pr). (3.13)

Recall the weaker energy condition Tµνζ
µζν ≥ 0 for an arbitrary null vector ζµ, we

find ρ + pi ≥ 0. If there is no matter fields apart from the cosmological constant,
we will recover the AdSD geometry, and ρ+ pi = 0 for all i = 1, . . . D− 2, r. In this
case, there is no RG flow, and the corresponding field theory is the conformal field
theory. We then conclude that if the matter fields in the bulk satisfy the weaker
energy condition, A′′ ≤ 0 from (3.12). This result implies the monotonicity of A′.
We now follow [12] and define the holographic c-function

C(r) =
C0

A′D−2
. (3.14)

This function has been introduced already in [14] in another but equivalent form.
The constant C0 is universal for a particular supergravity theory in the sense that
its value is the same for all CFTs dual to AdS vacua of this supergravity. At the
fixed points of the scalar potential, C(r) will give values of the corresponding central
charges.

Although this result is based on the weaker energy condition, for RG flow
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solutions involving only the metric and scalars, it is generally true. These are flow

solutions we will consider throughout this thesis. To see this, we consider a gravity

theory coupled to scalar fields with scalar potential V

I =
1

2κ2
D

∫
dDx
√−g

(
R− 1

2
MIJP

IµP J
µ − V

)
. (3.15)

Notice that this is of the same form as the action of three dimensional gauged

supergravity in the previous chapter. In the RG flow solution, the scalars depend

only on r. It can be shown by a straightforward calculation, that

T tt − T rr = −MIJP
I
r P

J
r (3.16)

which is negative for a positive definite MIJ . It has also been shown in [14] that

the c-theorem is a consequence of equations of motion for the flows involving only

scalars and the metric.

Once an RG flow background has been found, the dimension of the operator

driving the flow and the correlation functions of the dual operator can be obtained.

The latter can be found by studying the fluctuations around the background so-

lution and using the procedure described above. We now review how to extract

the dimension of the perturbing operator. Near the UV fixed point which can be

identified with r →∞, the metric becomes AdSd+1, and the scalar behaves as

φ(r) = φ̃+ e
(∆1−d)r

L φ(0) + e
∆1r
L φ(2∆−d) + . . . (3.17)

where φ̃ is the scalar background given by the flow solution. We have included only

the leading terms in the expansion. From this equation, φ(0) and φ(2∆−d) are inter-

preted as the source and the vacuum expectation value (vev) of the dual operator O.

Notice that for ∆1 >
d
2
, the source term dominates while for ∆1 <

d
2

the vev term

dominates. In the first case, the flow is driven by a relevant operator of dimension

∆1. This corresponds to adding an extra term to the UV CFT Lagrangian, and

conformal symmetry is explicitly broken. For the latter case, conformal symmetry

is spontaneously broken by a vev of a relevant operator of dimension ∆1. In some

cases, the flow can be driven by a vev of a marginal operator of dimension d as

we will see in later chapters. The case for ∆ = d
2

is special since the asymptotic

behavior of the scalar field is given by

φ(r) = φ̃+ e−
dr
2L

( r
L
φ(0) + φ(2∆−d)

)
+ . . . . (3.18)

Note that the source term comes with an additional factor of r corresponding to the

log ρ term in the (ρ, xi) coordinates.

Since, we are interested in the case in which the UV CFT flows to another

CFT in the IR, the flow will approach the IR fixed point at the end of the flow.
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The driving operator then becomes irrelevant (∆ > d) at the IR fixed point. The

fluctuation near the IR point is given by

φ(r) = φ̃+ φ̄e
(∆2−d)r

L + . . . , r → −∞, (3.19)

and the corresponding operator has dimension ∆2 in the IR.

We end this section with the relation between mass and conformal dimension

of various bulk fields.

• scalar fields [7]:

∆± =
1

2
(d±

√
d2 + 4m2) or m2L2 = ∆(∆− d)

• spinor fields [97]:

∆ =
1

2
(d+ 2|m|)

• vector fields:

∆± =
1

2
(d±

√
(d− 2)2 + 4m2)

• p-form fields [98]:

∆ =
1

2
(d±

√
(d− 2p)2 + 4m2)

• first order d
2
-form fields (d even):

∆ =
1

2
(d+ 2|m|)

• spin 3
2

fields [99, 100]:

∆ =
1

2
(d+ 2|m|)

• spin 2 fields [101]:

∆ =
1

2
(d+

√
d2 + 4m2)
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3.2 N = 4 three dimensional gauged supergravity

We are now in the position to give our RG flow solutions. These are supersymmetric
solutions of N = 4 gauged supergravity in three dimensions. The scalar fields
parametrize the coset space SO(4,4)

SO(4)×SO(4)
× SO(4,4)

SO(4)×SO(4)
. The gauge group is of semi-

simple type, SO(4)nT6. The choice of the gauge group is motivated by the fact that
three dimensional gauged supergravity with a semi-simple gauge group is equivalent
to a Yang-Mills gauged supergravity as shown in chapter 2. In the present case, the
theory we consider is equivalent to N = 4 SO(4) Yang-Mills gauged supergravity. It
is possible to uplift this theory and its solutions to higher dimensions if the reduction
ansatz exists. We will give some progress in this direction in the next chapter.

We begin with the supersymmetry transformations of fermionic fields given
in chapter 2 with zero fermions

δψIµ = DµεI + AIJ1 γµε
J ,

δχiI =
1

2
(δIJ1− f IJ)i jD/φjεJ −NAJIi2 εJ . (3.20)

We also recall the conditions for supersymmetric vacua (2.100). These con-
ditions mean that the preserved supersymmetries correspond to the eigenvalues of

AIJ1 which equal ±
√
−V0

4
, since in our normalization −V0 = L−2, where L is the

radius of AdS3. More in detail, let us choose AdS3 coordinates r, x0, x1, and metric
ds2 = dr2 + e2r/L(−dx2

0 + dx2
1). From the previous remarks, it follows that for each

eigenvector vI± of AIJ1 , with eigenvalue ±
√
−V0

4
, if we form the spinor εI± = ε± ⊗ vI±,

then the BPS condition for the gravitino variation (3.20) becomes identical to the
Killing spinor equation for ε± on AdS3 i.e. Dµε± = ± 1

2L
γµε±. Using the explicit

expression for the spin connection for the above metric, one can see that one solution
to this equation is an x0, x1-independent spinor obeying γrε± = ±ε±, where γr is
the flat gamma matrix. This corresponds to a left (right) Poincare’ supersymmetry
in the boundary CFT. The other solution gives rise to the superconformal charge
in the boundary CFT, has a non-trivial x0, x1 dependence and is constructed with
a constant spinor obeying the opposite γr projection condition.

Therefore, it is convenient to classify the critical points by presenting their
preserved supersymmetries in the form of (n−, n+) corresponding to the n+ and n−

positive and negative eigenvalues of AIJ1 whose modulus equals
√
−V0

4
. These coin-

cide with the number of left-(right-) moving Poincare’ supersymmetries of the dual
SCFT2. Of course, the total number of supersymmetries is doubled by the inclusion
of the superconformal ones.

To summarize, the procedure of finding supersymmetric vacua is the follow-
ing. From (2.100), we look for the Killing spinors εI which are annihilated by some
of the AJI2i . At the same time, εI must also be the eigenvector of AIJ1 . Clearly,
maximal supersymmetric vacua are annihilated by all of the components of AJI2i ,
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and εI is an eigenvector of AIJ1 for all directions I. The εI characterizing partially
supersymmetric vacua will be an eigenvector of AIJ1 for certain directions labeled
by some values of I, and will be annihilated only by the AJI2i in the corresponding
directions.

3.2.1 Vacua of the N = 4 Theory

The target space in our case is the product of two quaternionic manifolds, that we
take to be SO(4, 4)/SO(4) × SO(4). A convenient (redundant) parametrization of
cosets is given by the following SO(4,4) group element

Li =
1

2

(
Xi + eti Yi + eti
−Xi + eti eti − Yi

)
, (3.21)

where i = 1, 2 refers to the two spaces. ei is a 4×4 matrix inGL(4,R), Xi = Ei+Bie
t
i,

Yi = −Ei + Bie
t
i. Bi is an antisymmetric 4 × 4 matrix, and Ei = e−1

i . The inverse
of Li is

L−1
i =

1

2

(
X t
i + ei X t

i − ei
−Y t

i − ei ei − Y t
i

)
. (3.22)

One can eliminate 6 of the 22 parameters in L by using the right action of the
diagonal SO(4) action, for example by bringing ei into an upper triangular form.
The following Lie algebra elements,

tA =

(
a 0
0 a

)
tB =

(
b b
−b −b

)
(3.23)

where all entries are 4× 4 antisymmetric blocks, together with an identical copy for
the second space, will be gauged. In other words, the semisimple part of the gauge
group will be the diagonal SO(4)D in the (SO(4))4 of the product ( SO(4,4)

SO(4)×SO(4)
)2,

corresponding to generators tA. On the other hand, the nilpotent generators, tB,
generate diagonal shift symmetries B1,2 → B1,2 + 2b. Also, it is clear that the
B-generators transform in the adjoint representation with respect to the diagonal
SO(4). For a and b, we can take a basis of antisymmetric matrices given by J IJ =
εIJ − εJI , with (εIJ)KL = δIKδJL. Similarly, we can use the following basis for the
16 non-compact generators of SO(4, 4):

Y ab =

(
0 εab

(εt)ab 0

)
. (3.24)

Since in the present case both the R symmetry group and the gauge group are SO(4),
it is convenient to split the corresponding Lie algebras generators into self-dual and
anti-self-dual components J+ and J− respectively:

J IJ+ = J IJ +
1

2
εIJKLJKL and J IJ− = J IJ − 1

2
εIJKLJKL (3.25)
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which are SU(2)+ and SU(2)− generators in the SO(4) = SU(2)+ ⊕ SU(2)− Lie

algebra decomposition. We will adopt this decomposition both for A- and B-type

generators. Correspondingly, the two-forms tensors f IJ introduced in the previous

section have, say, self-dual components on the first quaternionic space and anti-self-

dual components on the second. In our formalism and in a flat basis, they can be

expressed as:

f IJ± ab,cd
= Tr((εt)abJ IJ± ε

cd). (3.26)

At this stage, we can proceed to construct the supergravity theory with the gauging

of SO(4)nT6 and in particular, verify its consistency, along the lines reviewed in the

previous section. As explained there, the main ingredients are given by the tensors

A1 and A2, which determine the scalar potential and the supersymmetry variations

of the fermionic fields. They are constructed through the T -tensors, which in turn

are obtained by uplifting the embedding tensor ΘMN into G by using VMP , with P
running over the generators of G corresponding to the R-symmetries P = IJ , and

the non-compact coset directions P = ab in the first and second space.

Gauge invariance restricts the Θ tensors to have components, ΘAB and ΘBB,

which are proportional to the SO(4) Killing form, schematically δAB and δBB, re-

spectively. The proportionality constants are gauge couplings, and, of course, we

should specify here to which of the four SU(2)’s the A, B indices belong. Therefore,

a priori we expect four couplings g1s, g1a, g2s, and g2a. The a and s labels indicate

the self-dual and anti-self-dual SU(2), respectively, and 1 refers to the AB couplings

whereas 2 refers to the BB ones.

We now give all the ingredients to find critical points of the scalar potential.

These include all components of V . Indices referring to each target space coordi-

nates, i, j, k, . . ., will be traded by a pair of indices of the type a, b, c, . . . from 1 to

4. Antisymmetric pairs of capital letters I, J,K, . . . label SO(4) adjoint indices.

VLJ,MK
±a = −1

4
Tr[(et1J

LJ
+ X t

1 +X1J
LJ
+ e1)JMK

± + (et2J
LJ
− X t

2 +X2J
LJ
− e2)JMK

± ],

V±1,2a
MK
ab = Tr[(et1,2εabX

t
1,2 + Y1,2εabe1,2)JMK

± ],

VLJ,MK
±b = −1

4
Tr[(et1J

LJ
+ et1 + et2J

LJ
− et2)JMK

± ],

V±1,2b
MK
ab = Tr(et1,2εabe1,2J

MK
± ). (3.27)

The string of indices ±1, 2a (±1, 2b) indicates A (B)-type gauging in the first (sec-

ond) space with (anti-)self-dual SU(2).
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The T -tensors turn out to be

TLJ,MK = g1s(VLJ,PQ+a VMK,PQ
+b + VLJ,PQ+b VMK,PQ

+a ) + g1a(VLJ,PQ−a VMK,PQ
−b

+VLJ,PQ−b VMK,PQ
−a ) + g2sVLJ,PQ+b VMK,PQ

+b + g2aVLJ,PQ−b VMK,PQ
−b ,

T1
LJ
ab = g1s(VLJ,PQ+a V+1b

PQ
ab + VLJ,PQ+b V+1a

PQ
ab ) + g1a(VLJ,PQ−a V−1b

PQ
ab

+VLJ,PQ−b V−1a
PQ
ab ) + g2sVLJ,PQ+b V+1b

PQ
ab + g2aVLJ,PQ−b V−1b

PQ
ab ,

T2
LJ
ab = g1s(VLJ,PQ+a V+2b

PQ
ab + VLJ,PQ+b V+2a

PQ
ab ) + g1a(VLJ,PQ−a V−2b

PQ
ab

+VLJ,PQ−b V−2a
PQ
ab ) + g2sVLJ,PQ+b V+2b

PQ
ab + g2aVLJ,PQ−b V−2b

PQ
ab . (3.28)

It turns out that the consistency requirement on T IJ,KL, discussed in the

previous section, requires g2a = −g2s. Moreover, we find it is convenient for the

subsequent analysis to redefine the couplings from g1s, g1a to gn, gp as follows:

g1s = gp + gn and g1a = gp − gn. (3.29)

Now, we study various vacua of this theory. We begin by choosing an ansatz

for the coset L. We have two spaces. We set B1 = B2 = 0 and choose diagonal ei’s:

e1 =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 and e2 =


b1 0 0 0
0 b2 0 0
0 0 b3 0
0 0 0 b4

 . (3.30)

Notice that the shift gauge symmetry would allow us to set one of the two B’s

to zero and the left SO(4) gauge symmetry can be used to diagonalize one of the

two e’s, so the ansatz above is indeed a truncation of the full twenty-dimensional

moduli space. We have checked the consistency of this truncation explicitly. That

is, we have verified that the remaining fields appear at least quadratically in the

action, and therefore setting them to zero solves their equations of motion. We then

proceed to analyze the BPS conditions δψIµ = 0 and δχiI = 0 using (3.20), within

this eight-dimensional subspace.

We give below the vacuum expectation values of e1, e2, the AIJ1 eigenvalue

(A1) satisfying |A1|2 = −V0/4 and the corresponding preserved supersymmetries

(n−, n+) for the AdS3 vacuum that are relevant to the flow solutions we will show

in the next subsection. Other vacua are shown in Appendix A. We will use the

notation In for the n× n identity matrix throughout this thesis.
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(1,3) vacua

• I.

e1 =

√
−2(gn + gp)

g2s

I4

e2 =

√
−2(gn + gp)

g2s

(−1, 1, 1, 1)

A1 =
32(gn + gp)

2

g2s

and V0 =
−4096(gn + gp)

4

g2
2s

. (3.31)

• II.

e1 =

√
2(gp − gn)

g2s

(1,−1,−1,−1)

e2 = −
√

2(gp − gn)

g2s

I4

A1 =
−32(gn − gp)2

g2s

and V0 =
−4096(gn − gp)4

g2
2s

. (3.32)

• III.

e1 =

√
gn(g2

p − g2
n)

g2sg2
n

(gn
gp
,−1,−1,−1

)
e2 = −

√
gn(g2

p − g2
n)

g2sg2
n

(gn
gp
, 1, 1, 1

)
A1 =

−8(g2
n − g2

p)
2

g2sgngp
and V0 =

−256(g2
n − g2

p)
4

g2
2sg

2
ng

2
p

. (3.33)

(2,0) vacua

• IV.

e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (3.34)
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a1 = 2

√
g2
p − g2

n

g2s(gp − gn +
√

5g2
n + 2gpgn + g2

p)

a2 = 2

√
g2
p − g2

n

g2s(gn − gp +
√

5g2
p + 2gpgn + g2

n)

b1 = 2

√
g2
p − g2

n

g2s(3gn + gp +
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2
p − g2

n

g2s(
√
g2
n + 2gngp + 5g2

p + gn + 3gp)
(3.35)

A1 =
−32(gn − gp)2

g2s

and V0 = −4096(gn − gp)4

g2
2s

. (3.36)

• V.

e1 = (a1, a2, a3, a3) e2 = (b1, b1, b2, b2)

(3.37)

a1 = − 1 + t

1− t+
√

1 + t2

√
2gp(1− t+

√
1 + t2)

g2st(1 + t)
√

1 + t2
×√

(t− 1)
{
t3 − t2 + t− 1 + (t− t2 − 1)

√
1 + t2

}
a2 =

√
2tgp(t− 1)2(1 + t)

√
1 + t2

g2s(1− t+
√

1 + t2)
×

1√
(t− 1− t2)(t− 1)

√
1 + t2 − t2 + (1− t+ t2)2

a3 =

√
2gp(1− t2)

g2s(t− 1 +
√

1 + t2)

b1 =

√
2gp(1− t2)

g2s(1 + t+
√

1 + t2)

b2 =

√
2gp(1− t2)

g2s(1 + t+
√

1 + t2)

A1 =
−8(g2

n − g2
p)

2

g2sgngp
and V0 = −256(g2

n − g2
p)

4

(g2sgngp)2
, (3.38)

where we have introduced t = gn
gp

.
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Out of all vacua, there are only three possibilities in connecting two vacua. That

means we will have only three RG flows in the dual field theories. All these three

flows are the flows between I and III, II and III, and between IV and V. The last

flow is the only possible flow among V and other (2,0) points. This is because we

cannot find any values of gn, gp and g2s so that both e1 and e2 of the two end points

of the flow are real apart from the IV and V pair. There are three possibilities in

order to make IV and V real at the same time. These are given by

t < −1, gp < 0, g2s < 0

or t < 1, gp > 0, g2s > 0

or t > 1, gp > 0, g2s < 0. (3.39)

For definiteness, we choose the last range and further choose t = 2, gp = 1 and

g2s = −1 in our numerical solution. For all the critical points given above, we have

checked that there exist at least one possible set of gp, gn and g2s such that all the

square roots in any critical points are real, although any two different critical points

may not be made real with the same values of gp, gn and g2s.

There might be more possibilities apart from these three flows. However, we

could not find any interpolating solutions both analytically and numerically apart

from those three mentioned above. Remarkably, we find only the flows between

critical points which have the same supersymmetries. In the next section, we will

give these solutions explicitly.

3.2.2 The Flow Between (1, 3) Vacua

In this subsection, we study a supersymmetric flow between two of the AdS3 vacua

with the same, (1, 3), amount of supersymmetries but with different cosmological

constants, found in the previous subsection. We recall the three dimensional domain

wall metric

ds2 = e2A(r)(−dt2 + dx2) + dr2. (3.40)

This becomes AdS3 of radius L for A(r) = r
L

. This is related to the vacuum energy

V0 as L2 = − 1
V0

, since in our normalization Einstein’s equations read Lµν = −2V0gµν .

We start by giving an ansatz for the scalars with non-trivial r-dependence,

e1 =


b(r) 0 0 0

0 a(r) 0 0
0 0 a(r) 0
0 0 0 a(r)

 , e2 =


−b(r) 0 0 0

0 a(r) 0 0
0 0 a(r) 0
0 0 0 a(r)

 . (3.41)

Since now we are going to allow the scalars to have r dependence, we need to worry

about possible contributions of the intrinsic connection QIJ
µ and the gauge fields

AMµ to the BPS equations (3.20). In addition, of course, the Yang-Mills equations
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of motion may be non-trivial. Indeed, r-dependent scalars may a priori source the
gauge fields in case they give rise to a non-trivial gauge current JMµ . From the scalar
kinetic term given in (2.27), we have

Lkin = −1

2
egijg

µν∂µφ
i∂νφ

j = −1

2
egµνeAµ e

B
ν δAB (3.42)

with eAµ = ∂µφ
ieAi being the pullback of the vielbein on the target space. Using the

formula (2.55), we then find

Lkin =
1

2

√
g[Tr(L−1∂µLL

−1∂µL) + 2ΘMNA
MµTr(L−1tN∂µL)

+ΘMNΘKLA
MµAKµTr(L−1tN tLL)]. (3.43)

From (3.43), we see that the gauge fields couple to the scalar fields via a current

JNµ =
√
gTr(L−1tN∂µL). (3.44)

For diagonal e1 and e2, the current is zero, so we can consistently satisfy the equation
of motion for the gauge fields by setting AMµ = 0. As promised, our flows involve only
scalars and the metric. So, the holographically proved c-theorem mentioned before
is guaranteed in our flow ansatz. Furthermore, all of the composite connections Q’s
are also zero in this diagonal ansatz. The BPS equations can be obtained by using
(3.20). The δχiI = 0 conditions give

db

dr
= 24gnab

2 + 16gpb
3 − 8a3(gn − g2sb

2) (3.45)

da

dr
= 16gpa

3 + 8gna
2b+

8a4(gn + g2sb
2)

b
. (3.46)

This ansatz preserves (1, 3) supersymmetry, so we have (1, 3) supersymmetry through-
out the flow. We proceed by taking one of the scalars as an independent variable.
Changing the variables to b(r) = z and a(r) = a(z), we can write (3.45) and (3.46)
as a single equation

da

dz
=
a2(gnz

2 + 2gpza+ (gn + g2sz
2)a2)

2gpz4 + 3gnz3a+ (g2sz3 − gnz)a3
. (3.47)

We solve this by writing a(z) = zf(z). Then, (3.47) becomes

z
df

dz
= − 2f(gp + gnf)(f 2 − 1)

(gn − g2sz2)f 3 − 2gp − 3gnf
. (3.48)

This equation can be solved for z as a function of f . We find

z = ±
√

gn(f 2 − 1)

g2sf 2 + (g2
nf

3 + gngpf 2)c1

. (3.49)
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We then obtain

b = ±
√

gn(f 2 − 1)

g2sf 2 + (g2
nf

3 + gngpf 2)c1

, (3.50)

a = fb, (3.51)

and (3.45) and (3.46) lead to the same equation for f

df

dr
=

16gn(gp + gnf)(f 2 − 1)2

f(g2s + (gngp + g2
nf)c1)

. (3.52)

We can solve for r in term of f and find

r = c2 +
1

64gn

[
2(−fg2sgn + g2sgp + gn(g2

p − g2
n)c1)

(f 2 − 1)(g2
n − g2

p)
− g2sgn ln(1− f)

(gn + gp)2

+
g2sgn ln(1 + f)

(gn − gp)2
− 4g2sg

2
ngp ln(fgn + gp)

(g2
n − g2

p)
2

]
. (3.53)

The constant c2 is irrelevant and can be set to zero by shifting the coordinate r. So,
from now on, we will use c2 = 0 and choose a definite sign, + sign, for z.

We now move to the gravitino variation δψIµ. The BPS condition gives an
equation for the warp factor A(r):

dA

dr
= − 1

f 2(g2s + (gngp − g2
nf)c1)2

[16gn(f 2 − 1)(3f 2(c1gn(g2
n + g2

p) + g2sgp)

−2gnf
3(2c1gngp + g2s)− 2gnf(2c1gngp + g2s) + c1g

3
nf

4

+gp(c1gngp + g2s))]. (3.54)

Changing the variable from r to f , we find

dA

df
=

1

fgn + gp

[
gp + f(3fgp + gn(3 + f 2))

f(f 2 − 1)
− g2sgn
g2s + gn(fgn + gp)c1

]
. (3.55)

This can be solved and give

A = c3 + ln f − 2 ln(1− f 2) + ln(gp + fgn) + ln(g2s + gn(gp + gnf)c1). (3.56)

The constant c3 can be set to zero by rescaling coordinates x0 and x1. We require
that A1 must not change sign along the flow, so these are the only two possible flows
namely the flow between I and III critical points and between II and III points. We
choose the value of c1 in such a way that the solution goes to one critical point at
one end and to the other critical point at the other end. In order to identify the
UV point with r = ∞ and the IR point with r = −∞, we choose g2s < 0 in the
followings.
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In the flow between I and III critical points, we chose c1 = − g2s

gn(gn+gp)
,

gngp < 0 and obtain

b =

√
−(gn + gp)(1 + f)

g2sf 2

a =

√
−(gn + gp)(1 + f)

g2s

r =
1

64

[
− 2g2s

(1 + f)(g2
n − g2

p)
− g2s ln(1− f)

(gn + gp)2

+
g2s ln(1 + f)

(gn − gp)2
− 4g2sgngp ln(fgn + gp)

(g2
n − g2

p)
2

]
A = ln f − ln(1− f)− 2 ln(1 + f) + ln(gp + fgn) (3.57)

where we have absorbed all the constants in c3 for the last equation. We see that
A → ∞ at f = 1 and A → −∞ at f = − gp

gn
. In the dual CFT, the I point

corresponds to the UV fixed point while the III point corresponds to the IR point.
The ratio of the central charges is given by

cUV
cIR

= −(gn − gp)2

4gngp
. (3.58)

It is easy to show that this is always greater than 1 as it should.
The flow between II and III are given by c1 = g2s

gn(gn−gp)
, and gngp > 0. We

find that

b =

√
(gn − gp)(f − 1)

g2sf 2

a =

√
(gn − gp)(f − 1)

g2s

r =
1

64

[
2g2s

(1− f)(g2
n − g2

p)
− g2s ln(1− f)

(gn + gp)2

+
g2s ln(1 + f)

(gn − gp)2
− 4g2sgngp ln(fgn + gp)

(g2
n − g2

p)
2

]
A = ln f − 2 ln(1− f)− ln(1 + f) + ln(gp + fgn). (3.59)

In this case, we see that A→∞ at f = −1 and A→ −∞ at f = − gp
gn

. In the dual
CFT, the II point corresponds to the UV fixed point while the III point corresponds
to the IR point. The ratio of the central charges is given by

cUV
cIR

=
(gn + gp)

2

4gngp
. (3.60)
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Again,this agrees with the c-theorem.
We next compute the scalar mass spectrum for the eight scalars. We parametrize

the eight scalars as follow:

a1(r) = a10e
s1(r) a2(r) = a20e

s2(r)

a3(r) = a30e
s3(r) a4(r) = a40e

s4(r)

b1(r) = a50e
s5(r) b2(r) = a60e

s6(r)

b3(r) = a70e
s7(r) b4(r) = a80e

s8(r) (3.61)

where all the si, i = 1, . . . 8 are canonically normalized scalars. From the scalar mass
matrix M2, we can find the conformal dimensions (∆) of the operators in the dual
CFT by using the relation

∆(∆− 2) = m2L2. (3.62)

We find the following mass matrices.

• f = 1:

M2 =
2048(gn + gp)

4

g2
2s



0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0


. (3.63)

The eigenvalues of M2L2 are (3, -1, -1, -1, 0, 0, 0, 0) corresponding to ∆ =
(3, 1, 2). All the eight eigenvectors are given by

v1 = (1, 1, 1, 1, 1, 1, 1, 1) v2 = (−1, 0, 0, 1,−1, 0, 0, 1)

v3 = (−1, 0, 1, 0,−1, 0, 1, 0) v4 = (−1, 1, 0, 0,−1, 1, 0, 0)

v5 = (0, 0, 0,−1, 0, 0, 0, 1) v6 = (0, 0,−1, 0, 0, 0, 1, 0)

v7 = (0,−1, 0, 0, 0, 1, 0, 0) v8 = (−1, 0, 0, 0, 1, 0, 0, 0). (3.64)

Our flow corresponds to the combination v2 + v3 + v4 which has eigenvalue -1,
∆ = 1. This is consistent with the fact that the flow is driven by a relevant
operator.

• f = −1:

M2 =
2048(gn − gp)4

g2
2s



0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0


. (3.65)
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The eigenvalues of M2L2 are (3, -1, -1, -1, 0, 0, 0, 0) corresponding to ∆ =

(3, 1, 2). All the eight eigenvectors are given by

u1 = (1, 1, 1, 1, 1, 1, 1, 1) u2 = (−1, 0, 0, 1,−1, 0, 0, 1)

u3 = (−1, 0, 1, 0,−1, 0, 1, 0) u4 = (−1, 1, 0, 0,−1, 1, 0, 0)

u5 = (0, 0, 0,−1, 0, 0, 0, 1) u6 = (0, 0,−1, 0, 0, 0, 1, 0)

u7 = (0,−1, 0, 0, 0, 1, 0, 0) u8 = (−1, 0, 0, 0, 1, 0, 0, 0). (3.66)

As in the previous case, the flow ansatz is the combination u2 + u3 + u4 which

has eigenvalue -1, ∆ = 1 and corresponds to a relevant operator.

• f = − gp
gn

:

M2 =
256(g2

n − g2
p)

4

(g2sgngp)2



3
2

0 0 0 3
2

0 0 0
0 3

2
0 0 0 −1

2
1 1

0 0 3
2

0 0 1 −1
2

1
0 0 0 3

2
0 1 1 −1

2
3
2

0 0 0 3
2

0 0 0
0 −1

2
1 1 0 3

2
0 0

0 1 −1
2

1 0 0 3
2

0
0 1 1 −1

2
0 0 0 3

2


. (3.67)

The eigenvalues of M2L2 are (3, 3, 3, 3, 0, 0, 0, 0) corresponding to ∆ = (3, 2).

All the eight eigenvectors are given by

w1 = (0,
2

3
,
2

3
,−1

3
, 0, 0, 0, 1) w2 = (0,

2

3
,−1

3
,
2

3
, 0, 0, 1, 0)

w3 = (0,−1

3
,
2

3
,
2

3
, 0, 1, 0, 0) w4 = (1, 0, 0, 0, 1, 0, 0, 0)

w5 = (0,−2

3
,−2

3
,
1

3
, 0, 0, 0, 1) w6 = (0,−2

3
,
1

3
,−2

3
, 0, 0, 1, 0)

w7 = (0,
1

3
,−2

3
,−2

3
, 0, 1, 0, 0) w8 = (−1, 0, 0, 0, 1, 0, 0, 0). (3.68)

Our flow corresponds to the combination w1 +w2 +w3− 3w4 which has eigen-

value 3, ∆ = 3. This is consistent with the fact that at the IR, the operator

must be irrelevant.

We also compute the mass spectrum for the full scalar manifold. Using gauge

transformation, we are left with twenty scalars. At the UV points f = ±1, six of

the extra twelve scalars have M2L2 = −1
4
, and the other six are massless. At the

IR point f = − gp
gn

, out of the extra twelve scalars, there are six massless scalars and

six scalars with M2L2 = 3
4
.
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The behavior of the scalars at large r is given by the linearized equations

da

dr
=

8a0

b0

[2a(r)(2a2
0(b2

0g2s + gn) + 3a0b0gp + b2
0gn) + b(r)(a2

0(b2
0g2s − gn) + b2

0gn)

+a2
0b

2
0g2s + a2

0gn + 2a0b0gp + b2
0gn]

db

dr
=

8

b0

[3a(r)(a3
0(b2

0g2s − gn) + a0b
2
0gn) + 2b2

0b(r)(a
3
0g2s + 3a0gn + 3b0gp)

+a3
0b

2
0g2s − a3

0gn + 3a0b
2
0gn + 2b3

0gp] (3.69)

where a0 and b0 are the values of a(r) and b(r) at the critical point. For the UV
(r →∞) point, f = 1 and f = −1, we find

a(r) ∼ e−r/L, b(r) ∼ e−r/L. (3.70)

For the IR point (r → −∞), we find

a(r) ∼ er/L, b(r) ∼ er/L. (3.71)

According to the discussion in the previous section, we find that in our flow, the first
term of the scalar fluctuation given in (3.18) is absent, so there is no source term.
The flow is therefore of the so-called vev flow, corresponding to the deformation
of the UV theory by an expectation value of an operator of dimension one. Near
the IR point, the scalar behaves as e(∆−2)r/L. We then find that, in the IR, the
corresponding operator is irrelevant with dimension 3.

3.2.3 The Flow Between (2, 0) Vacua

Now, we consider the flow between IV and V critical points.
We begin by giving the ansatz for e1 and e2,

e1 =

√
2(gp − gn)

g2s


x(r) 0 0 0

0 q(r) 0 0
0 0 z(r) 0
0 0 0 z(r)



e2 =

√
2(gp − gn)

g2s


y(r) 0 0 0

0 y(r) 0 0
0 0 w(r) 0
0 0 0 w(r)

 . (3.72)

Consistency condition for the BPS equations requires

x = − (gn + gp)y
2

q(gn + gp − 2gny2)
(3.73)

w =

√
gn + gp

gn + gp + 2gpz2
z. (3.74)
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The δχiI equations give

dz

dr
=

1

g2s(gn + gp)q2y2(gn + gp − 2gny2)
{8(gn + gp)z

3(2q2y2(2(g3
n − gng2

p)y
4

+(2g3
p + 6gng

2
p − 4g3

n)y2 + (gn − 2gp)(gn + gp)
2) + gnq

4(gn + gp − 2gny
2)2

+gn(gn + gp)
2y4)} (3.75)

dy

dr
=

8y(gn + gp − 2gny
2)

g2s(gn + gp)

{
− 2(gn + gp)y

2

gn + gp

(
(gn − gp)2z2 − 2g2

n + 3gngp − g2
p

+
(gn − gp)2(gn + gp)z

2

gn + gp + 2gpz2

)
+
gp(gp − gn)(gn + gp)

2y4

q2(gn + gp − 2gny2)2
+ gp(gp − gn)q2

}
(3.76)

dq

dr
= −8(gn − gp)q(gn + gp − 2gny

2)

g2s(gn + gp)y2

{
(gn + gp)

2y4

q2(gn + gp − 2gny2)

(
gnz

2 − gpy2

+
gn(gn + gp)z

2

gn + gp + 2gpz2

)
+ q2

(
2(gn + gp)

2y4(gp − 2gn + (gn − gp)z2)

q2(gn + gp − 2gny2)2

+
(gn + gp)z

2

gn + gp + 2gpz2

(2(gn − gp)(gn + gp)
2y4

q2(gn + gp − 2gny2)
− gn

)− gnz2 + gpy
2

)
+

2gp(gn + gp)q
2y2

gn + gp − 2gny2

}
. (3.77)

This flow ansatz preserves (2,0) supersymmetry along the entire flow. We now

change the variables to z1, h, and p

y =

√
gn + gp

2gn(1 + z1)
(3.78)

z =

√
gn + gp

2gph
(3.79)

q =

√
− (gn + gp)

√
p2 − 4

gnz1(p2 − 4 + p
√
p2 − 4)

(3.80)

and rescale r to r
8(g2

n−g2
p)

g2sgngp
. The final forms of (3.75), (3.76), and (3.77) are

dz1

dr
=

(g2
n − g2

p − h(g2
pp− 2gn(gn − 2gp) + gph(4gn − 2gp + gpp)))

h(h+ 1)
(3.81)

dh

dr
=

g2
n − g2

p + z1(g2
np(1 + z1)− 2(gp(gp − 2gn) + gn(gn − 2gp)z1))

z1(1 + z1)
(3.82)

dp

dr
= −(p2 − 4)

[
g2
n

(
1

h
+

1

1 + h

)
− g2

p

z1

− g2
p

1 + z1

]
. (3.83)
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We proceed by taking p as an independent variable and obtain

dz1

dp
=

(g2
p − g2

n + (g2
pp+ 4gngp − 2g2

n)h+ gp(4gn + gp(p− 2))h2)z1(1 + z1)

(p2 − 4)(g2
n(1 + 2h)z1(1 + z1)− g2

ph(1 + h)(1 + 2z1))
(3.84)

dh

dp
=

h(1 + h)(g2
p − g2

n + 2gp(gp − 2gn)z1 + 2gn(gn − 2gp)z
2
1 − g2

npz1(1 + z1))

(p2 − 4)(g2
n(1 + 2h)z1(1 + z1)− g2

ph(1 + h)(1 + 2z1))

. (3.85)

Recall that gn = tgp, we find that the two critical points are given by

• IV:

p = −2, h =
1

4
(t− 1 +

√
5 + 2t+ t2),

and z1 =
1− t+

√
1 + 2t+ 5t2

4t
, (3.86)

and

• V:

p = 2− 2

t
− 2t, h =

1

2
(t− 1 +

√
1 + t2),

and z1 =
1− t+

√
1 + t2

2t
. (3.87)

We now give the numerical solution. Choosing t = 2, we find the numerical values
for the critical points

IV : p = −2.000, h = 1.151, z1 = 0.500

V : p = −3.000, h = 1.618, z1 = 0.309. (3.88)

The numerical solutions for the flow are given in Fig.3.1 and Fig.3.2.
The gravitino variation gives an equation for A(p), with t = 2,

dA

dp
= −8g2

p[(p
2 − 2)

√
p2 − 4 + p3 − 4p]√

p2 − 4(p
√
p2 − 4 + p2 − 4)2

×

[(p+ 6)h(p)2(2z1(p) + 1) + ph(p)(1− 2z1(p)(4z1(p) + 3))

−2z1(p)(2pz1(p) + 2p+ 3)− 3]/[−4(2h(p) + 1)z1(p)2

+2((h(p)− 3)h(p)− 2)z1(p) + h(p)(h(p) + 1)]. (3.89)

Choosing g2s = −1 and gp = 1, we find the numerical solution for A as
shown in Fig.3.3.
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Figure 3.1: h(p) solution.

In this flow, the point IV is the UV fixed point, and V is the IR. The ratio

of the central charges is
cUV
cIR

=
(gn + gp)

2

4gngp
. (3.90)

This ratio is greater than 1 in consistent with the c-theorem. We also compute

the scalar mass matrices at both critical points, but the form of the matrices is too

complicated to be written here. We give only the numerical values of the eigenvalues

in our choice of gp = 1, gn = 2 and g2s = −1.

• IV: Eigenvalues of M2L2 are (3.70,−1.00,−1.00,−0.97, 0.36, 0.36, 0.00, 0.00)

with eigenvectors

U1 = (−0.47,−0.47,−0.44,−0.44,−0.16,−0.16,−0.24,−0.24)

U2 = (0.33,−0.33, 0.44,−0.44, 0.00, 0.00, 0.44,−0.44)

U3 = (0.63,−0.63,−0.23, 0.23, 0.00, 0.00,−0.23, 0.23)

U4 = (0.47, 0.47,−0.44,−0.44, 0.16, 0.16,−0.24,−0.24)

U5 = (0.00, 0.00,−0.49, 0.49,−0.14, 0.14, 0.49,−0.49)

U6 = (0.00, 0.00,−0.10, 0.10, 0.69,−0.69, 0.10,−0.10)

U7 = (0.22, 0.22,−0.06,−0.06,−0.66,−0.66, 0.11, 0.11)

U8 = (−0.04,−0.04,−0.33,−0.33, 0.12, 0.12, 0.61, 0.61). (3.91)

Our flow ansatz corresponds to U4 with ∆ = 1.168 which is dual to a relevant

operator. Note also that, our ansatz does not correspond to the one which
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Figure 3.2: z1(p) solution.

saturates the bound M2L2 = −1. This means the dual operator is not the
most relevant one.

• V: Eigenvalues of M2L2 are (4.17, 3.33, 3.33, 3.33, 0.84, 0.84, 0.84, 0.00)
with eigenvectors

V1 = (−0.211,−0.894,−0.211,−0.211,−0.130,−0.130,−0.130,−0.130)

V2 = (0.201,−0.031, 0.063,−0.159,−0.609, 0.001, 0.090, 0.742)

V3 = (0.390,−0.398, 0.523, 0.432, 0.400, 0.011,−0.103, 0.241)

V4 = (−0.293, 0.159, 0.015,−0.258, 0.359,−0.004,−0.801, 0.227)

V5 = (0.255, 0.002,−0.712, 0.572,−0.039, 0.086,−0.300, 0.046)

V6 = (−0.146, 0.011, 0.387, 0.287,−0.526, 0.391,−0.384,−0.411)

V7 = (0.757, 0.004,−0.047,−0.499, 0.007, 0.156,−0.207,−0.328)

V8 = (0.130, 0.130, 0.130, 0.130,−0.211,−0.893,−0.211,−0.211). (3.92)

Our flow ansatz corresponds to V1 with ∆ = 3.275 which is dual to an irrelevant
operator.

The behavior near r → ∞ can be obtained as in the previous case. With gp = 1,
gn = 2, and g2s = −1, we find that

p(r) ∼ e−2r/L, z1(r), h(r) ∼ e−1.168r/L. (3.93)

At the IR point, we find

z1(r), h(r), p(r) ∼ e1.275r/L. (3.94)
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Figure 3.3: A(p) solution.

From the dominant term near the UV fixed point, we see that the flow solution
describes the deformation of the UV theory by a vacuum expectation value of an
operator of dimension 1.168. We find that this flow is also a vev flow. The corre-
sponding operator in the IR theory is an irrelevant operator of dimension 3.275.

In this chapter, we have studied N = 4 three dimensional gauged super-
gravities and their AdS3 supersymmetric vacua. We have found analytic solutions
interpolating between two (1, 3) vacua. These solutions describe Renormalization
Group flows between two fixed points of the dual boundary field theory. We have
checked that the flows agree with the c-theorem, in particular the central charges of
UV fixed points are strictly greater than those of the IR ones. We have also found a
numerical solution describing the flow between (2,0) vacua with similar qualitative
features. In both cases, we found vev flows, i.e. flows driven by vacuum expectation
values of relevant operators with dimensions ∆ = 1 and ∆ = 1.168, respectively, as
opposed to the most common case where the flow is driven by a perturbing relevant
operator. It is possible to uplift the solutions given here to higher dimensions. All
that remains is to find a consistent reduction ansatz. In the next chapter, we will
give a first step to proceed in this direction. As we will see, a class of N = 4 Chern-
Simons gauged supergravity with target space SO(4,n)

SO(4)×SO(n)
can be obtained from the

SU(2) group manifold reduction of (1,0) six dimensional supergravity.
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Chapter 4

N = 4 three dimensional gauged
supergravity from SU(2) reduction

In this chapter, we will perform a dimensional reduction of (1,0) six dimensional

supergravity on the SU(2) group manifold. This results in the N = 4 gauged super-

gravity in three dimensions whose flows solutions have been studied in the previous

chapter. However, the theory obtained in this chapter is not exactly the same as

the one studied in chapter 3. The reduced theory has SU(2) × SU(2) ∼ SO(4)

gauge group but only one quaternionic target space as opposed to the product of

two quaternionic spaces in chapter 3. However, this result is a good starting point

toward the full theory with two quaternionic target spaces. The resulting theory is

also interesting in the sense that we can successfully decouple massive vector fields

usually arise from the reduction of two-form fields in six dimensions. So, our theory

is described by pure N = 4 gauged supergravity in three dimensions.

We begin with a notion of group manifold reduction particularly on SU(2)

group manifold. Then, we introduce our starting point, the (1,0) six dimensional

supergravity coupled to an antisymmetric tensor multiplet as well as Yang-Mills

multiplets of an arbitrary gauge group G. Since this theory will be used extensively

in the next two chapters, we review it in sufficient detail. We will proceed by per-

forming the SU(2) reduction, writing down the three dimensional action and giving

diagonalized fermion kinetic terms in three dimensions. We end this chapter by con-

structing N = 4 Chern-Simons gauged supergravity whose construction has been

reviewed in chapter 2 and finally show that the theory obtained from dimensional

reduction is indeed equivalent to the Chern-Simons theory as mentioned at the end

of chapter 2.
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4.1 SU(2) reduction and (1,0) six dimensional su-

pergravity

In dimensional reductions, the higher dimensional spacetime is decomposed into a
product of the lower dimensional spacetime and an internal space. Our main aim is
to obtain N = 4 gauged supergravity in three dimensions from higher dimensional
theories. Recall that the relevant gauge group in our case is SO(4) not the Chern-
Simons gauge group SO(4) n T6 since the theory obtained from a dimensional
reduction is always in the form of Yang-Mills gauged theory. Accordingly, we would
expect to obtain this theory by a dimensional reduction in which the internal space
contains an S3 factor since we can identify the gauge group SO(4) as the isometry
of the S3. The simplest possibility of the internal space is the S3 itself. This leads
us to consider the reduction of the minimal six dimensional supergravity on S3.
Minimal supersymmetry, N = (1, 0), in six dimensions has eight supercharges which
precisely gives N = 4 supersymmetry in three dimensions. For the case in which
the gauge group SO(4) is identified with the isometry of the S3, all six gauge fields
of SO(4) are kept in the reduction process. In the language of [102], this is called
consistent sphere reduction. However, it has been argued in [47] that the consistent
sphere reduction of the minimal supergravity in six dimensions is not possible to
obtain a reduced theory admitting AdS3 vacua. The resulting three dimensional
theory is clearly not what we need since AdS3 vacua are the important ingredient
in our study. The resolution to this problem is to perform instead the reduction
on an SU(2) group manifold which is topologically S3. We will call this reduction
SU(2) reduction from now on. The consistent reduction can be obtained by keeping
only fields which are singlet under left action of SU(2). This means that we can
consistently keep only SU(2) gauge fields not the full SO(4) gauge fields. To obtain
SO(4) gauged supergravity, our strategy is to begin with a supergravity theory
coupled to SU(2) gauge fields in six dimensions. The resulting three dimensional
theory will become SU(2)× SU(2) ∼ SO(4) gauged supergravity.

We now review the two main ingredients we need in this chapter, the group
manifold reduction and the minimal six dimensional supergravity coupled to an
antisymmetric tensor and Yang-Mills gauge fields of an arbitrary gauge group G.
It turns out that it is possible to obtain a larger class of three dimensional gauged
supergravities with gauge group SU(2) × G. So, we consider (1,0) six dimensional
supergravity coupled to G Yang-Mills multiplets and then set G = SU(2) to obtain
the SU(2)× SU(2) gauged supergravity mentioned above.

4.1.1 Group manifold reductions

In the usual Kaluza-Klein dimensional reduction, the fields do not depend on the
coordinates of the internal space. There is a generalization of this reduction in
which we allow the fields to depend on the internal coordinates in such a way that
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these dependencies cancel in the lower dimensional field equations as well as in the
lower dimensional action. This is sometimes called generalized dimensional reduc-
tion [103]. One of the new features in this generalized dimensional reduction of
higher dimensional supergravities is that we obtain gauged supergravity theories in
lower dimensions. The group structure arises from the coordinate transformations
in the internal space. The internal space is then in the form of a group manifold,
and the reduction is called group manifold reduction or Sherk Schwarz reduction or
DeWitt reduction.

We now briefly review the reduction studied in [103]. We also refer the
reader to [103, 104, 105] for more details. The D dimensional coordinates zM are
decomposed into (xµ, yα) describing the lower dimensional spacetime and the inter-
nal space. We choose the D dimensional diffeomorphism parameters ξM to be

ξµ(x, y) = ξµ(x), ξα(x, y) = (U−1(y))αβξ
β(x) . (4.1)

In the usual reductions, the matrix U becomes an identity matrix. The y dependence
is encoded entirely in the this matrix. We now show how the group structure of
the internal manifold arises from the internal diffeomorphism. A commutator of
two transformations with parameters ξ1 and ξ2 gives a new transformation with
parameter

ξM = ξN2 ∂Nξ
M
1 − ξN1 ∂NξM2 . (4.2)

The commutator of the transformations with parameters ξµ and ξν will give the lower
dimensional diffeomorphism as usual while the commutator of ξµ and ξα transforma-
tions gives another internal transformation. The new feature arises in considering
the commutator of ξα and ξβ transformations. We find

ξα = ξM2 (x, y)∂Mξ
α
1 (x, y)− ξM1 (x, y)∂Mξ

α
2 (x, y)

= (U−1)α
′

β (U−1)β
′

γ (∂β′U
α
α′ − ∂α′Uα

β′)ξ
β
1 (x)ξγ2 (x)

= fαβγξ
β
1 (x)ξγ2 (x) . (4.3)

The consistency of the reduction requires that the y dependence of the matrix U
cancel to give the constants fαβγ. These constants will be identified with the group
structure constants. The group generators can be constructed by

Lα = (U−1)βα∂β (4.4)

which satisfy the algebra
[Lα, Lβ] = fγαβLγ . (4.5)

All the fields carrying internal indices will get a y dependence through U .
For example, the metric gMN is decomposed into gµν , gµα ∼ Aαµ and gαβ ∼ Hαβ.
We now have a reduction ansatz

gµν(x, y) = gµν(x),

Aαµ(x, y) = (U−1)αβA
β
µ(x),

gαβ(x, y) = Uα′

α U
β′

β Hα′β′(x) . (4.6)
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This prescription is extended to other fields as well, see [103]. The whole process can

be further generalized by introducing the y dependence through the tangent space

transformations of internal space, internal tangent space rotations. All fields with

internal tangent space indices for example the vielbein will pick up a y dependence.

We will not proceed in this direction further since the above discussion is sufficient

for our proposes, see [105] for more detail.

On a G group manifold of dimension dimG, the isometries on the manifold

are given by the left and right actions of the group G. These actions correspond to

right and left translations, respectively. The full isometry can be written as GL×GR.

We can also define left (L) and right (R) invariant one-forms given by

L = σαTα = g−1dg, R = ραTα = dgg−1 (4.7)

where g ∈ G, α = 1, . . . , dimG, and Tα are generators of G. In what follow, we

will focus our attention on the left invariant one-form. The left invariant one-forms

satisfy

dσα = −1

2
fαβγσ

β ∧ σγ (4.8)

where fαβγ are G structure constants. In the group manifold reduction, it is consis-

tent to keep only fields which are invariant under GL. This consistency is due to the

fact that the GL singlet fields cannot form non singlet representations of G, so they

cannot act as sources for the non singlet fields. The equations of motion for the non

singlet fields are then automatically satisfied with non singlet fields being zero. In

the next section, we will make a group manifold reduction with G = SU(2) ∼ S3.

Notice that if we work with the right invariant one-form, equation (4.8) will be

replaced by

dρα =
1

2
fαβγρ

β ∧ ργ . (4.9)

We can also express the σα in the coordinate basis as σα = Uα
β dy

β.

4.1.2 Minimal (1,0) six dimensional supergravity

Six dimensional gauged supergravity coupled to an antisymmetric tensor and Yang-

Mills multiplets has been constructed in [62]. The theory has been generalized, to

coupled to nT tensor multiplets, nV vector multiplets and nH hypermultiplets in

[63], see also [106, 107]. The complete minimal supergravity in six dimensions in-

cluding all possible couplings to all (1,0) supermultiplets has been worked out in

[108] including quartic fermion couplings. The theory of interest to us is a trunca-

tion of this theory namely the ungauged (1,0) six dimensional supergravity coupled

to an antisymmetric tensor multiplet and Yang-Mills multiplets of gauge group G.

We then choose nT = 1, nV = dimG and nH = 0. In this case, the theory can

admit a Lagrangian formulation. For nT 6= 1, it is not possible to have a covariant
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Lagrangian without including auxiliary fields since the two form field in the super-
gravity multiplet has selfdual field strength while the antisymmetric tensor field in
the tensor multiplet comes with anti-selfdual field strength. Only for nT = 1, we
can write down an invariant kinetic term for the two form field. The (1,0) six di-
mensional supergravity is also interesting in the study of string theory and has been
obtained from various compactifications of string and M theories see for example
[109], [110]. These compactifications have been used to study many aspects of string
dualities in six dimensions [111], [112].

We follow the notation of [63] with the metric signature (−+ + + ++). The
theory considered here contains N = 1 supergravity multiplet, one antisymmetric
tensor multiplet and dimG Yang-Mills multiplets of an arbitrary gauge group G.
We also assume that the group G commutes with the SU(2) ∼ Sp(1) R-symmetry
group. The field content in this case is given by the graviton eM̂M , gravitino ψAM , third
rank anti-symmetric tensor G3MNP which is the field strength of the 2-form field
bMN , scalar θ, spin 1

2
fermion χ, G gauge fields AIM with I = 1, 2, . . . , dimG and

the G gauginos λI . The six dimensional spacetime indices are M,N = 0, . . . 5 with
the tangent space indices M̂, N̂ = 0, . . . 5 while A,B = 1, 2 are Sp(1) R-symmetry
indices. The scalar θ parametrizes the coset space SO(1, 1) which is a special case
of SO(nT ,1)

SO(nT )
for nT tensor multiplets. In the presence of gauge fields, anomaly can-

celation requires the modifications of the Bianchi identity for G3 as well as the G3

equation of motion. These modifications are characterized by two types of parame-
ters vz and ṽz. The index z label various components of the gauge group which can
be a product of simple groups. In this thesis, we need only bosonic field equations
and all supersymmetry transformations. The bosonic field equations are given by
[63]

RMN − 1

2
gMNR− 1

3
e2θ

(
3G3MPQG3

PQ
N − 1

2
gMNG3PQRG3

PQR

)
− ∂Mθ∂

Mθ

+
1

2
gMN∂P θ∂

P θ − CzTrz

(
2F P

MFNP −
1

2
gMNFPQF

PQ

)
= 0, (4.10)

e−1∂M(egMN∂Nθ)− 1

2
(vzeθ − ṽze−θ)Trz(FMNF

MN)

−1

3
e2θG3MNPG3

MNP = 0, (4.11)

DN(eeθF IMN) + e(vze2θGMNPF I
NP − ṽz(∗G3)MNPFNP ) = 0, (4.12)

DM(ee2θG3
MNP ) +

1

4
ṽzεNPQRMLTrz(FQRFML) = 0 (4.13)

where Cz = vzeθ + ṽze−θ. We have set hypermultiplet scalars to zero, and by our
assumption on the gauge group G, the term CAB disappears as it should for the
ungauged theory. The modified Bianchi identity is given by

DG3 = vzTrz(F ∧ F ). (4.14)
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We can also write (4.13) as

D(e2θ ∗G3) = −ṽzTrz(F ∧ F ). (4.15)

In these equations, the role of vz and ṽz looks more symmetric. Supersymmetry
transformations, to leading order in fermionic fields, are given by

δeM̂M = ε̄ΓM̂ψM ,

δψM = DMε+
1

24
eθΓNPQΓMG3NPQε−

1

16
ΓMχε̄χ− 3

16
ΓNχε̄ΓMNχ

+
1

32
ΓMNPχε̄Γ

NPχ− 1

16
CzTrz(18λε̄ΓMλ− 2ΓMNλε̄Γ

Nλ

+ΓNPλε̄Γ
NP

M λ),

δbMN = 2vzTrz(A[MδAN ])− e−θ ε̄Γ[MψN ] +
1

2
e−θ ε̄ΓMNχ,

δθ = ε̄χ,

δχ =
1

2
ΓM∂Mθε− 1

12
eθΓMNPG3MNP ε+

1

2
(vzeθ − ṽze−θ)Trz[Γ

Mλ(ε̄ΓMλ)],

δAM = −ε̄ΓMλ,
δλA =

1

4
ΓMNFMNεA − C−1

z (vzeθ − ṽze−θ)χ̄(AλB)ε
B. (4.16)

For both vz and ṽz non zero, there is no invariant action which can be written down
only for vzṽz = 0. We choose to work with a special case vz = 1 and ṽz = 0 in
performing the SU(2) reduction. In this case, the Lagrangian is given by [63]

e−1L =
1

4
R− 1

12
e2θG3MNPG3

MNP − 1

4
∂Mθ∂

Mθ − 1

2
ψ̄MΓMNPDNψP

−1

2
χ̄ΓMDMχ− 1

4
eθF I

MNF
IMN − eθλ̄IΓMDMλ

I

+
1

2
eθχ̄ΓMNλIF I

MN +
1

2
ψ̄MΓNΓMχ∂Nθ − 1

2
eθψ̄MΓNPΓMλIF I

NP

− 1

24
eθG3MNP

[
ψ̄LΓ[LΓMNPΓQ]ψ

Q − 2ψ̄LΓMNPΓLχ− χ̄ΓMNPχ

+2eθλ̄IΓMNPλI
]

(4.17)

where e =
√−g. We have also used the normalization of the G gauge generators

T I such that Tr(T IT J) = δIJ , and AM = AIMT
I , λ = λIT I . The three form field

strength in differential form language can be written as

G3 = db+ F I ∧ AI − 1

6
g2fIJKA

I ∧ AJ ∧ AK (4.18)

where g2 and fIJK are coupling and structure constants of the gauge group G,
respectively. The equations of motion for various fermions can be found in [63]. We
will not repeat them here because they will not be needed in our discussion. In the
next section, we will give the reduction ansatz and perform the SU(2) reduction of
this (1,0) six dimensional supergravity.
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4.1.3 Reduction ansatz on SU(2) group manifold

We now give our reduction ansatz. We will put a hat on all the six dimensional
fields from now on to distinguish them from the three dimensional fields. We use
the following reduction ansatz:

dŝ2 = e2fds2 + e2ghαβν
ανβ ,

ÂI = AI + AIαν
α, να = σα − g1A

α ,

F̂ I = dÂI +
1

2
g2fIJKÂ

J ∧ ÂK

= F I − g1A
I
αF

α +DAIα ∧ να +
1

2
(g2A

J
αA

K
β fIJK − εαβγAIγ)να ∧ νβ (4.19)

where the SU(2)×G covariant derivative is given by

DAIα = dAIα + g1εαβγA
βAIγ + g2fIJKA

JAKα . (4.20)

The three dimensional field strength F I = dAI + 1
2
g2fIJKA

J ∧AK . From the metric,
we can read off the vielbein components

êa = efea, êi = egLiαν
α with hαβ = LiαL

i
β. (4.21)

The left-invariant SU(2) 1-forms σα satisfy

dσα = −1

2
εαβγσ

β ∧ σγ . (4.22)

The εαβγ and fIJK are the SU(2) and G structure constants, respectively. We can
also write down the σα in terms of the Euler angles (ψ, θ, φ) on S3

σ1 = cosψdθ + sin θ sinψdφ,

σ2 = cosψ sin θdψ − sinψdθ,

σ3 = dψ + cos θdφ . (4.23)

The metric hαβ and a (3× 3) matrix Liα are unimodular. The spin connections are
given by [47]

ω̂ab = ωab + e−f (∂bfηac − ∂afηbc)êc +
1

2
g1e

g−2fF i
abê

i,

ω̂ai = −e−fPaij êj − e−f∂agêi + eg−2fF i
abê

b,

ω̂ij = e−fQaij ê
a +

1

2
e−g(T klεijl + T jlεikl − T ilεjkl)êk (4.24)

where

Paij =
1

2

[
(L−1)αi DaL

j
α + (L−1)αjDaL

i
α

]
=

1

2
(L−1)αi (L−1)βjDahαβ,

Qaij =
1

2

[
(L−1)αi DaL

j
α − (L−1)αjDaL

i
α

]
,

F i = LiαF
α, T ij = LiαL

j
α, DLiα = dLiα − g1εαβγA

γLiβ. (4.25)
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We use the same conventions as in [47] namely

Fα = dAα +
1

2
g1εαβγA

β ∧ Aγ,
DFα = dFα + g1εαβγA

β ∧ Aγ = 0,

Dνα = dνα + g1εαβγA
β ∧ νγ = −g1F

α − 1

2
εαβγν

β ∧ νγ. (4.26)

The indices (M, M̂) reduce to (µ, a) in three dimensions while the S3 part is de-

scribed by indices (α, i). The ansatz for Ĝ3 is

Ĝ3 = hε3 + aεαβγν
α ∧ νβ ∧ νγ + εαβγC

α ∧ νβ ∧ νγ +Hα ∧ να

+F̂ I ∧ ÂI − 1

6
g2fIJKÂ

I ∧ ÂJ ∧ ÂK . (4.27)

The first line in (4.27) is the db̂ which must be closed. This requires that

Hα = 2DBα − 6ag1F
α. (4.28)

We also choose the one form Cα = 1
2
AIαA

I to further simplify the ansatz and truncate

the vector field Cα out. Putting all together, we end up with the following Ĝ3 ansatz

Ĝ3 = h̃ε3 + F̄α ∧ να +
1

2
Kαβ ∧ να ∧ νβ

+
1

6
ãεαβγν

α ∧ νβ ∧ νγ (4.29)

where h̃ = hε3 + F̃ I ∧ AI − 1
6
g2A

I ∧ AJ ∧ AKfIJK . We have defined the following

quantities

F̄α = AIα(F̃ I + F I)− 6ag1F
α, F̃ I = F I − g1A

I
αF

α,

Kαβ = AIβDAIα − AIαDAIβ,
ã = 6a− AIαAIα +

1

3
g2A

3, A3 ≡ AIαA
J
βA

K
γ fIJKεαβγ, (4.30)

and a is a constant. The ansatz for the Yang-Mills fields can be rewritten as

F̂ I = F̃ I +DAIα ∧ να +
1

2
F Iαβνα ∧ νβ (4.31)

where F Iαβ = g2A
J
αA

K
β fIJK − AIγεαβγ.

The volume form in three dimensions is defined by

ε3 =
1

6
e3fεabce

a ∧ eb ∧ ec ≡ e3fω3 . (4.32)
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The six dimensional gamma matrices decompose as [47]

ΓÂ = (Γa,Γi), Γa = γa ⊗ I2 ⊗ σ1,

Γi = I2 ⊗ γi ⊗ σ2, Γ7 = I2 ⊗ I2 ⊗ σ3

γabc = εabc, γijk = iεijk, {γa, γb} = 2ηab, {γi, γj} = 2δij. (4.33)

The conventions are ηAB = (− + + + ++), ηab = (− + +) and ε012 = ε345 = 1. We
further choose

γ0 = iσ̃2, γ1 = σ̃1, γ2 = σ̃3, γi = τ i (4.34)

where σ̃i, τ i, i = 1, 2, 3 are the usual Pauli matrices. Also the chirality condition
Γ7ε

A = εA becomes I2 ⊗ I2 ⊗ σ3ε
A = εA.

Before proceeding further, let us count the number of degrees of freedom.
Table I shows all three dimensional fields arising from the six dimensional ones.

6D fields 3D fields 3D number of degrees of freedom
ĝMN gµν non propagating

Aαµ 3
hαβ 5
g 1

b̂MN bµν non propagating
bµα 3
bαβ 3

θ̂ θ 1

ÂIM AIµ dimG
AIα 3 dimG

ψ̂M ψµ non propagating
ψi 12

λ̂I λI 4 dimG
χ̂ χ 4

Table I: Three dimensional fields and the associated number of degrees of freedom.
From table I, there are 16+4dimG bosonic and 16+4dimG fermionic degrees

of freedom in the full reduced theory. In this counting, each six dimensional fermion
gives rise to 4 three dimensional fermions. In the reduction of the six dimensional
theory, the component b̂µα will give rise to massive vector fields in three dimensions.
Our goal is to truncate this theory to obtain a three dimensional N = 4 gauged
supergravity involving only gravity, scalars and gauge fields without massive vector
fields. The resulting theory will have 4(1+dimG) bosonic and 4(1+dimG) fermionic
propagating degrees of freedom. To achieve this, we need to truncate 12 degrees of
freedom out. From the Ĝ3 ansatz expressed entirely in terms of gauge fields, scalars
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coming from the gauge fields in six dimensions and constants, we see that all the

fields coming from b̂MN have been truncated out. This accounts for 6 degrees of

freedom. We will see below that hαβ and θ, comprising 6 degrees of freedom, will

be truncated, too.

In the fermionic sector, we find that the truncation is given by

ψ̂i − 1

2
Γiχ̂− 2eθ−gAIα(L−1)αi λ̂

I = 0. (4.35)

Indeed, this removes 12 fermionic degrees of freedom. In order to check that this

truncation is compatible with supersymmetry to leading order in fermions, we start

by putting our ansatz to the δψ̂i, δχ̂ and δλ̂I given in (4.16). The result is

δψ̂i =
1

8
g1e

g−2fF/i(I2 ⊗ I2 ⊗ I2)ε− i

2
e−f (P/ij − ∂/ gδij)(I2 ⊗ γj ⊗ σ3)ε

+
i

2
e−g
(
Tij − 1

2
Tδij

)
(I2 ⊗ γj ⊗ I2)ε+ eθ

[
1

8
e−2f−g(L−1)αj F̄/

α
(I2 ⊗ γj ⊗ σ2)

+
1

4
h̃(1I2 ⊗ I2 ⊗ σ1) +

i

4
e−f−2g(L−1)βl (L−1)γj εljkA

I
γD/AIβ(I2 ⊗ γk ⊗ σ1)

+
i

4
ãe−3g(I2 ⊗ I2 ⊗ σ2)

]
(I2 ⊗ γi ⊗ σ2)ε (4.36)

δχ̂ =
1

2
∂/ θε− eθ

[
1

2
h̃(I2 ⊗ I2 ⊗ σ1) +

1

4
e−2f−g(L−1)αi F̄/

α
(I2 ⊗ γi ⊗ σ2)

+
i

2
e−f−2g(L−1)βi (L−1)γj εijkA

I
γD/AIβ(I2 ⊗ γk ⊗ σ1)

+
i

2
ãe−3g(I2 ⊗ I2 ⊗ σ2)

]
ε (4.37)

δλ̂I =
1

4
[e−2f F̃/

I
(I2 ⊗ I2 ⊗ I2) + 2ie−f−g(L−1)αi D/AIα(I2 ⊗ γi ⊗ σ3)

+ie−2g(L−1)αi (L−1)βj εijkF Iαβ(I2 ⊗ γk ⊗ I2)]ε (4.38)

We have used the notations F̂/
I

= F̂ I
MNΓMN etc. From these equations and I2⊗ I2⊗

σ3ε
A = εA, we find, to leading order in fermions, that

δψ̂i − 1

2
Γiδχ̂− 2eθ−gAIα(L−1)αi δλ̂

I = 0 (4.39)

provided that

hαβ = eθ−2g(12aδαβ − 2AIαA
I
β) ≡ eθ−2gNαβ. (4.40)

This is the truncation in the bosonic sector. From (4.40), it follows that

θ = 2g − 1

3
lnN (4.41)
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where N ≡ det(Nαβ). In proving the above result, the following relations are useful

LiαL
j
βTij = e2θ−4gNαγNβγ

T = Tii = eθ−2gNαα

LiαL
j
βPaij =

1

2
Da(e

θ−2gNαβ). (4.42)

Furthermore, from (4.40), it can be easily checked that

δ[hαβ − eθ−2g(12aδαβ − 2AIαA
I
β)] = 0 (4.43)

to leading order in fermions by using (4.35). To check (4.43), we start by noting

that

ĝαβ = e2ghαβ = eθ(12aδαβ − 2AIαA
I
β). (4.44)

It follows that, with ĝαβ = 1
2
(ΓαΓβ + ΓβΓα),

δĝαβ = δθĝαβ − 2eθ(AIαδA
I
β + δAIαA

I
β), or

ε̄(Γαψβ + Γβψα) = δθĝαβ − 2eθ(AIαδA
I
β + AIβδA

I
α)

= ε̄
1

2
(ΓαΓβ + ΓβΓα)χ+ 2eθ ε̄(Γβλ

IAIα + Γαλ
IAIβ),

or ε̄Γα

(
ψβ − 1

2
Γβχ− 2eθAIβλ

I

)
+ (α↔ β) = 0 (4.45)

where we have temporarily dropped the hats on the fermions in order to simplify the

expressions. So, the relation (4.40) is compatible with supersymmetry. Equations

(4.40) and (4.41) give another truncation in the bosonic sector and remove 6 degrees

of freedom. The bosonic degree of freedoms are then given by 1 + 3 dim(G) scalars,

g and AIα, and 3 + dim(G) vectors, Aα and AI . So, the reduced theory contains

4(1 + dimG) propagating degrees of freedom and involves only gravity, scalars and

vector gauge fields.

We now check the consistency of the six dimensional field equations. It is

convenient to rewrite equations (4.11), (4.12) and (4.13) in differential forms. We

find that these equations can be written as

D̂(e2θ̂∗̂Ĝ3) = 0, (4.46)

D̂(eθ̂∗̂F̂ I)− 2e2θ̂∗̂Ĝ3 ∧ F̂ I = 0, (4.47)

d̂∗̂d̂θ̂ + eθ̂∗̂F̂ I ∧ F̂ I + 2e2θ̂∗̂Ĝ3 ∧ Ĝ3 = 0 . (4.48)

In order to obtain the canonical Einstein-Hilbert term in three dimensions, we choose

f = −3g from now on. Before giving equations of motion, we give here the Hodge
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dual of F̂ I and Ĝ3

∗̂F̂ I =
1

3!
e6g ∗ F̃ Iεαβγν

α ∧ νβ ∧ νγ +
1

2
e−2ghαδεβγδ ∗ DAIα ∧ νβ ∧ νγ

+
1

2
e−10gF Iαβhγδεαβδω3 ∧ νγ, (4.49)

∗̂Ĝ3 = − 1

3!
e3gh̃εαβγν

α ∧ νβ ∧ νγ +
1

2
e4ghαδεβγδ ∗ F̄α ∧ νβ ∧ νγ

−1

2
e−4gεαβγhγδ ∗Kαβ ∧ νδ + ãe−12gω3 . (4.50)

The ∗̂ and ∗ are Hodge dualities in six and three dimensions, respectively. After

using our ansatz in (4.46), (4.47) and (4.48), we find the following set of equations

D(e2θ+3gh̃) = 0 , (4.51)

D(eθ+6gNαβ ∗ F̄ β) + g1c1F
α +

1

2
εαβγN

α′βNβ′γ ∗Kα′β′ = 0 , (4.52)

D(NαγNβδ ∗Kαβ)− g1e
θ+6g(Nαγ ∗ F̄α ∧ F δ −Nαδ ∗ F̄α ∧ F γ) = 0 , (4.53)

D(eθ+6g ∗ F̃ I) + 2c1F̃
I − 2eθ+6gNαα′ ∗ F̄α′ ∧ DAIα

+Nαα′Nββ′F Iαβ ∗Kα′β′ + g2N
αδfIJKA

J
δ ∗ DAKα = 0 , (4.54)

D(Nαβ ∗ DAIβ) + g1e
θ+6g ∗ F̃ I ∧ Fα − 2eθ+6gNαβ ∗ F̄ β ∧ F̃ I

+2Nαα′Nββ′ ∗Kα′β′ ∧ DAIβ +
1

2
e−θ−6gNα′βNβ′γF Iα′β′εαβγω3

−ãe2θ−12gεαβγF Iβγω3 + g2fIJKe
−θ−6gAJβFKα′β′Nα′βNαβ′ω3 = 0 , (4.55)

2d ∗ dg − 1

3
d lnN + eθ+6g ∗ F̃ I ∧ F̃ I +Nαα′ ∗ DAIα′ ∧ DAIα

+
1

2
eθ+6gNαα′ ∗ F̄α′ ∧ F̄α +

1

2
Nαα′Nββ′ ∗Kα′β′ ∧Kαβ + c2

1e
−2θ−12gω3

+
1

2
e−θ−6gNαα′Nββ′F IαβF Iα′β′ω3 + ã2e−12gω3 = 0 , (4.56)

where we have used the summation convention on α, β, . . . regardless their upper or

lower positions, and Nαβ ≡ (N−1)αβ. We have also used the solution for equation

(4.51) namely

h̃e2θ+3g = c1 (4.57)

with a constant c1 in other equations. Equation (4.53) can be obtained by multiply-

ing (4.55) by AIβ′N
ββ′ and antisymmetrizing in α and β. By using the explicit forms

of the Ricci tensors given in [47], the scalar equation (4.55), after multiplied by

e8g−θNββ′AIβ′ and symmetrized in α and β, is the same as component ij of the Ein-

stein equation with the trace part of Einstein equation taking care of equation (4.56).

Component ab the Einstein equation will give three dimensional Einstein equation

which we will not give the explicit form here. Equation (4.52) gives Yang-Mills
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equations for Aα. The combination [(4.54) +2AIα(4.52)] gives Yang-Mills equations

for AI

D[eθ+6g[(δIJ + 4AIαA
J
βN

αβ)F J − 24g1aA
I
αN

αβF β]] + 2c1F
I

+g2fIJKN
αβAJβ ∗ DAKα + g2fIJKN

αα′Nββ′AJαA
K
β ∗Kα′β′ = 0 . (4.58)

We have checked that the equation for Fα is the same as component ai of the Einstein

equation. So, there are two Yang-Mills equations for Fα and F I , one equation for

g and one equation for AIα. All six dimensional field equations are satisfied by our

ansatz.

4.1.4 Three dimensional gauged supergravity Lagrangian

All three dimensional equations of motion obtained in the previous subsection can

be obtained from the following Lagrangian, with ê = ee3f+3g = ee−6g,

L =
1

4
R ∗ 1− 1

2
N−

1
3 e8g

[
(δIJ + 4AIαA

J
βN

αβ) ∗ F I ∧ F J − 48ag1N
αβAIβ ∗ Fα ∧ F I

+6ag2
1(24aNαβ − δαβ) ∗ Fα ∧ F β

]− ∗d(2g − 1

12
lnN

) ∧ d(2g − 1

12
lnN

)
−1

2
Nαβ ∗ DAIα ∧ DAIβ −Nαα′Nββ′AIβA

J
β′ ∗ DAIα ∧ DAJα′ − V ∗ 1 + LCS(4.59)

which is the same as the dimensional reduction of the Lagrangian

LB =
1

4
R̂∗̂1− 1

4
∗̂d̂θ̂ ∧ d̂θ̂ − 1

2
e2θ̂∗̂Ĝ3 ∧ Ĝ3 − 1

2
eθ̂∗̂F̂ I ∧ F̂ I (4.60)

together with the Chern-Simons terms. The scalar potential and the Chern-Simons

Lagrangian are given by

V =
1

4

[
N−

2
3 (NαβNαβ − 1

2
NααNββ) + 2N−

2
3 e−8gã2

+N
1
3 e−8gNαα′Nββ′F IαβF Iα′β′ − 2c2

1N
2
3 e−16g

]
, (4.61)

LCS = 2c1

(
F I ∧ AI − 1

6
g2fIJKA

I ∧ AJ ∧ AK)
−12ag2

1c1

(
Fα ∧ Aα − 1

6
g1εαβγA

α ∧ Aβ ∧ Aγ) . (4.62)

In order to make formulae simpler and the symmetries of the scalar manifold more

transparent, we make the following rescalings. We first restore the coupling g1 in

the appropriate places by setting

a =
ā

g2
1

. (4.63)
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We can then remove the constant a by setting

c1 =
c̄1

6ā
, eg =

eḡ

g
1
4
1

, AIα =

√
6ā

g1

ĀIα,

g2 =
ḡ2√
6ā
, Nαβ =

6ā

g2
1

N̄αβ, eθ =
g

3
2
1

6ā
eθ̄

and AI =
√

6āĀI . (4.64)

After removing all the bars, we obtain the Lagrangian

L =
1

4
R ∗ 1− 1

2
e2
√

2Φ[(δIJ + 4NαβAIαA
J
β) ∗ F I ∧ F J − 8NαβAIβ ∗ Fα ∧ F I

+(4Nαβ − δαβ) ∗ Fα ∧ F β]− 1

2
∗ dΦ ∧ dΦ− 1

2
Nαβ ∗ DAIα ∧ DAIβ

−Nαα′Nββ′AIβA
J
β′ ∗ DAIα ∧ DAJα′ − V + LCS (4.65)

where we have introduced the canonically normalized scalar for the gauge singlet
combination

Φ = 2
√

2g −
√

2

12
lnN . (4.66)

The scalar potential and Chern-Simons terms are now

V =
1

4

[
g2

1N
−1e−2

√
2Φ(NαβNαβ − 1

2
NααNββ) + 2N−1e−2

√
2Φã2 − 2c2

1e
−4
√

2Φ

+e−2
√

2ΦNαα′Nββ′F IαβF Iα′β′
]
, (4.67)

LCS = 2c1

[
F I ∧ AI − 1

6
g2fIJKA

I ∧ AJ ∧ AK

−(Fα ∧ Aα ∧ −1

6
g1εαβγA

α ∧ Aβ ∧ Aγ)] (4.68)

with

ã = g1(1− AIαAIα) +
1

3
g2A

3 ,

F Iαβ = g2A
JAKfIJK − g1εαβγA

I
γ . (4.69)

We first look at the scalar matrix appearing in the gauge kinetic terms

M =

( Mαβ MαJ

MIβ MIJ

)
= e2

√
2Φ

(
4Nαβ − δαβ −4NαβAJβ
−4NαβAIα δIJ + 4NαβAIαA

J
β

)
. (4.70)

Introducing the matrix notation for AIα ≡ A which is an n× 3, n = dimG, we find

Nαβ ≡ N = 2

(
I3 −AtA

)
, Nαβ ≡ N−1 =

1

2

(
I3 −AtA

) , (4.71)

M = e2
√

2Φ

(
I3+AtA
I3−AtA

−2 1
I3−AtA

At

−2 1
In−AAtA

In+AtA
In−AtA

)
. (4.72)
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It follows that

M−1 = e−2
√

2Φ

(
I3+AtA
I3−AtA

2 1
I3−AtA

At

2 1
In−AAtA

In+AtA
In−AtA

)
. (4.73)

The scalars form the coset space R × SO(3,n)
SO(3)×SO(n)

with the factor R corresponding

to Φ. The scalar kinetic terms give rise to the metric on R× SO(3,n)
SO(3)×SO(n)

−1

2
∗ dΦ ∧ dΦ− 1

2
Nαβ ∗ DAIα ∧ DAIβ −Nαα′Nββ′AIβA

J
β′ ∗ DAIα ∧ DAJα′

= −1

2
∗ dΦ ∧ dΦ− 1

4
Tr

(
1

I3 −AtA
∗ DAt ∧ 1

In −AAt
DA

)
. (4.74)

With all these results, the Lagrangian can be simply written as

L =
1

4
R ∗ 1− 1

2
∗ dΦ ∧ dΦ− 1

4
Tr

(
1

I3 −AtA
∗ DAt ∧ 1

In −AAt
DA

)
−1

2
e2
√

2ΦMAB ∗ FA ∧ FB − V + LCS (4.75)

where A,B = (α, I).
We now come to supersymmetries of our truncated theory. We will show that

this truncation is indeed compatible with supersymmetry namely supersymmetry
transformations of various components of b̂MN must be consistent with our specific
choices of Cα = 1

2
AIαA

I . This ensures that all the truncated fields will not be

generated via supersymmetry. For the filed b̂µν , we have eliminated it by using the
equation of motion for Ĝ3 in (4.51). Because of its non propagating nature, we
do not need to worry about it. We now check the supersymmetry transformations
δĜ3µαβ and δĜ3µνα. It is more convenient to work with the transformation of the
filed strength Ĝ3. With equation (4.35), the component δb̂αβ vanishes identically.
The δĜ3µαβ gives the condition

δb̂µα = δ(AIαA
I
µ − 6ag1A

α
µ) . (4.76)

Using AIµ = ÂIµ + g1A
I
αA

α
µ and δb̂µα from (4.16), we find that

δb̂µα − δ(AIαAIµ − 6ag1A
α
µ) = 2AIαε̄Γµλ̂

I − e−θ ε̄Γµψ̂α +
1

2
e−θ ε̄(Γµα + ĝµα)χ̂

= −e−θ ε̄Γµ
(
ψ̂α − 1

2
Γαχ̂− 2eθAIαλ̂

I
)

= 0 (4.77)

where we have used

ĝµα = êiµê
i
α = −g1hαβe

2gAβµ = −g1e
θNαβA

β
µ . (4.78)

Note that

ψ̂i − 1

2
Γiχ̂− 2eθ−gAIα(L−1)αi λ̂

I = e−g(L−1)αi
(
ψ̂α − 1

2
Γαχ̂− 2eθAIαλ̂

I
)
. (4.79)
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δĜ3µνα is simply the derivative of the previous result namely

δĜ3µνα = 2∂[µδb̂ν]α = 2∂[µδ(A
I
ν]A

I
α − 6ag1A

α
ν]). (4.80)

We have then verified that our truncated theory is a supersymmetric theory. We will

also give a confirmation to this claim in the next section in which we will show that

this theory is on-shell equivalent to a manifestly supersymmetric (SO(3) n R3) ×
(Gn Rn) Chern-Simons gauged supergravity.

The final issue we should add here is the diagonalization of the fermion ki-

netic terms. Applying the result of [113], we find that our fermion kinetic Lagrangian

can be written as

e−1LFkinetic = −1

2
ψ̄µΓµνρDνψρ− 1

2
χ̄ΓµDµχ− 1

2
(δIJ + 4NαβAIαA

I
β)λ̄IΓµDµλI (4.81)

where the three dimensional fields are given by

ψa = e−
3g
2 (ψ̂a + ΓaΓ

iψ̂i),

ψi = e−
3g
2

(
ψ̂i − 1

2
Γiχ̂

)
= 2e−

3g
2

+θAIi λ̂
I , AIi = AIαe

−g(L−1)αi ,

χ = e−
3g
2

(
Γiψ̂i +

1

2
χ̂

)
,

λI = e
θ
2
− 3g

2 λ̂I . (4.82)

4.2 Chern-Simons and Yang-Mills gaugings in three

dimensions

In this section, we show the on-shell equivalence between non-semisimple Chern-

Simons and semisimple Yang-Mills gaugings in three dimensions [38]. We will con-

struct Chern-Simons gauged supergravity with gauge groups (SO(3)nT3)×(GnTn),

n = dimG, and show that the gauging is consistent according to the criterion given

in [31]. We then show that this theory is on-shell equivalent to the SU(2)×G gauged

supergravity obtained from SU(2) reduction in the previous section.

For conveniences, we recall some necessary equations, we will use through-

out this section, from chapter 2 with appropriate changes for our present case. The

Yang-Mills Lagrangian is given by

e−1L̃ =
1

4
R + e−1h1L̃CS − 1

8
MmnF

mµνF n
µν −

1

4
GABP̃Aµ P̃Bµ

+
1

4
e−1εµνρMmnṼnAFm

µνP̃Aρ − V . (4.83)
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We also repeat here the quantities appearing in (4.83)

GAB = δAB − ṼmAMmnṼnB, Mmn = (ṼmAṼnA)−1,

L̃CS =
1

4
εµνρAm1µηmn

(
∂νA

n
1ρ +

1

3
g1f

n
klA

k
1νA

l
1ρ

)
+

1

4
εµνρAm2µηmn

(
∂νA

n
2ρ +

1

3
g2f

n
klA

k
2νA

l
2ρ

)
,

ṼMAtA = L̃−1tML̃,

Q̃µ + P̃µ = L̃−1(∂µ + g1η1mnA
m
1µt

n
1 + g2η2mnA

m
2µt

n
2 )L̃ . (4.84)

The field strengths of A1 and A2, F1 and F2, are included in the Fmµν . A1 and A2

are gauge fields of SO(3) and G, respectively.
We are now in a position to construct a consistent Chern-Simons gauged

supergravity with gauge groups (SO(3) n T3) × (G n Tn). We proceed as in [50]
using the formulation of [31].

The 4(1 + n) scalar fields are described by a coset space SO(4,1+n)
SO(4)×SO(n+1)

. We
parametrize the coset by

L =

(
A B
Bt C

)
(4.85)

where A is a symmetric 4×4 matrix, B is a 4×(n+1) matrix, and C is a symmetric
(n+ 1)× (n+ 1) matrix. These matrices satisfy the relations

A2 −BBt = I4,

AB −BC = 0,

C2 −BtB = In+1 . (4.86)

The gauging is characterized by the embedding tensor

ΘMN = g1δa1b1 + g2δa2b2 + h1δb1b1 + h2δb2b2 . (4.87)

The ranges of the indices are a1, b1 = 1, 2, 3 and a2, b2 = 1, . . . , n. We denote the
(5 + n)× (5 + n) matrix in the block form(

4× 4 4× (n+ 1)
(n+ 1)× 4 (n+ 1)× (n+ 1)

)
. (4.88)

With this form, the generators of SO(4, 1 + n) can be shown as(
JSO(4) Y
Y t JSO(n+1)

)
(4.89)

with Y being non-compact and given by eaÎ + eÎa. We further divide each block by
separating its last row and last column from the rest and use the following ranges
of indices:

α, β = 1, 2, 3, I, J = 1, . . . , n, Î = 5, . . . , n+ 5, and a, b = 1, . . . , 4.
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Various gauge groups are described by the following generators:

SO(3) : Jαa1
= εαβγeβγ,

G : J Ia2
= f IJKeJK ,

T3 : Jαb1 = eα,n+5 + en+5,α + e4α − eα4,

Tn : J Ib2 = e4,I+4 + eI+4,4 + en+5,I+4 − eI+4,n+5

with (eab)cd = δacδbd, etc . (4.90)

Schematically, these gauge generators are embedded in the (5 + n)× (5 + n) matrix
as 

Ja1(3× 3) −b1 b1

(3× 1) (3× 1)
bt1(1× 3) bt2(1× n)

b2 Ja2 −b2

(n× 1) (n× n) (n× 1)

bt1(1× 3) bt2(1× n)


(4.91)

where each b1 and b2 correspond to various e’s factors in Jb1 and Jb2 in (4.90). Notice
that the shift generators have components in both SO(4)×SO(n+ 1) and Y parts.
Furthermore, Jb1 and Jb2 transform as adjoint representations of the gauge groups
SO(3) and G, respectively.

From this information, we can construct T-tensors and check the consistency
of the gauging according to the criterion P�T

IJ,KL = 0. The consistency requires
that

h2 = −h1 . (4.92)

The 4(1 + n) scalars correspond to the non-compact generators Y . After using the
shift symmetries to remove some of the shifted scalars and gauge fields, we are left
with 1 + 3n scalars embedded in (5 + n)× (5 + n) matrix as

L̃ =



1√
I3−AtA

1√
I3−AtA

At

cosh
√

2Φ sinh
√

2Φ

1√
In−AAtA

1√
In−AAt

sinh
√

2Φ cosh
√

2Φ


. (4.93)

Note that in (4.93), we have chosen a specific form of A, B and C. A is an n × 3
matrix to be identified with AIα in the previous section. The resulting coset space is
readily recognized as R × SO(3,n)

SO(3)×SO(n)
in which Φ corresponds to the R ∼ SO(1, 1)
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part.
We now use equations (2.55) and (2.56) together with the definition of A1

and A2 tensors given in chapter 2 to compute all the V ’s, various components of
the T-tensor as well as A1 and A2 tensors. To avoid confusion with the G adjoint
indices I, J,K, . . ., we temporarily label R-symmetry indices with Ī , J̄ , K̄, . . .. The
coordinate index on the target space i will be denoted by a pair of indices specifying
the entries of the L. In order to simplify the equations, we introduce a symbolic
notation R for the R-symmetry generators including their indices. We start by
giving all the VM

ĪJ̄
’s.

VRaα =
1

4
εαβγ(ARA)γβ, aα = εαβγeβγ,

VRaI = −1

4
f IJK(BtRB)JK , VRbα =

1

2
H(AR)α4, H = A44 −B4,n+1,

VRbI =
1

2
H(BtR)I4 . (4.94)

The VMi ’s are given by

VaαδL = εαβγBγL, VaIδM = −fIJKBδJCKM , Vbαδ,n+1 = HAδα,
Vbα4L = HBαL, VbI4L = HCIL, VbIδ,n+1 = HBδI . (4.95)

The T-tensors are given by

TRR
′

=
1

16

[
−8g1Rα4R

′
α4detA+ 8g2HB

3

6
+ 4h1H2Rγ4R

′
γ4

]
,

TRδ,n+1 =
1

4

[
−2g1HdetARδ4 + 2g2HB

3

6
Rδ4 + 2h1H2Rδ4

]
,

TR4L =
1

4

[− g1HεαβγBαL(ARA)βγ + g2Hf IJKCIL(BtRB)JK
]
,

TRδL =
1

4

[
2g1HεαβγAδβBγL(AR)α4 − 2g2HfIJKBδJCKL(BtR)I4

]
(4.96)

where B3 = εαβγfIJKBαIBβJBγK . Before moving on, we note the useful relations

Rαβ = εαβγRγ4, (RK̄(ĪRJ̄)K̄)a4 = 3δĪJ̄δa4,

R
K̄(Ī
i4 R

J̄)K̄
j4 = −δiαδjαδĪJ̄ , R

K̄(Ī
[i|l| R

J̄)K̄
j]4 = δαlεαijδ

ĪJ̄ ,

R
K̄(Ī
α4 R

J̄)K̄
β4 = −δαβδĪJ̄ . (4.97)

The following combination is useful in computing AĪJ̄2i

f
K̄(Ī j

4,n+1T
J̄)K̄
j =

3

2
δĪJ̄
(
− g1HdetA+

1

6
g2HB3 + h1H2

)
,

f
K̄(Ī j
δL T

J̄)K̄
j = −3

4
δĪJ̄H(g1εαβγεδβ′γ′Aββ′Aγγ′BαL

−g2fIJKBβJBγKεδβγCIL). (4.98)

79



We then find A1 and A2 tensors

AĪJ̄1 = −2TδĪJ̄ ,

AĪJ̄2i =
1

2
T ĪJ̄i +

1

6
Xiδ

ĪJ̄ (4.99)

where we have defined the following quantities

T = 2
(
− g1HdetA+

1

6
g2HB3 +

1

2
h1H2

)
,

X4,n+1 =
3

2

(
− g1HdetA+

1

6
g2HB3 + h1H2

)
,

XδL = −3

4
H(g1εαβγεδβ′γ′Aββ′Aγγ′BαL

−g2fIJKBβJBγKεδβγCIL). (4.100)

By using V ’s given above and computing P̃A from (4.84), we find that

ṼnAP̃Aµ = 0 (4.101)

So, there is no coupling term between scalars and gauge field strength in (4.83).

Another consequence of this is that the scalar metric GAB in (4.83) is effectively

δAB. We can also compute the scalar manifold metric which is given by the general

expression

ds2 =
1

8
Tr(L̃−1dL̃|Y L̃−1dL̃|Y ) (4.102)

where |Y means that we take the coset component of the corresponding one-form.

Using the relation At 1√
In−AAt = 1√

I3−AtA
At, we find, after a straightforward calcu-

lation,

L̃−1dL̃|Y =



0 1√
I3−AtA

dAt 1√
In−AAt

0
√

2dΦ

1√
In−AAtdA

1√
I3−AtA

0

√
2dΦ 0


(4.103)

where we have given only the coset components to simplify the equation. The scalar

metric is then given by

ds2 =
1

2
dΦdΦ +

1

4
Tr

(
1

I3 −AtA
dAt 1

In −AAt
dA

)
. (4.104)
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This is exactly the same scalar metric appearing in the scalar kinetic terms in (4.74).
The scalar matrix appearing in the gauge field kinetic terms can be computed as
follows. From (4.83) and (4.84), we can write

Mmn = M̄−1
mn where M̄mn = ṼmAṼnA . (4.105)

In our case, the indices m,n = b1, b2, and m,n = a1, a2. With properly normalized
coset generators Y A, we find that

M̄ =

(
M̄a1a1 M̄a1a2

M̄a2a1 M̄a2a2

)
, M̄aîaĵ

= ṼbîAṼ
bĵ
A

where î, ĵ = 1, 2 and ṼbîA = Tr(L̃−1JbîL̃Y
A). (4.106)

After some algebra, we find that the matrix Maîaĵ
is the same as MAB in (4.75).

So, the reduced scalar coset from the Chern-Simons gauged theory is the same as
that in the Yang-Mills gauged theory obtained form the SU(2) reduction.

Finally, we have to check the scalar potential. From the embedding tensor,
we can compute the potential by using the formula

V = AĪJ̄1 AĪJ̄1 − 2gijAĪJ̄2i A
ĪJ̄
2j . (4.107)

Using (4.107) and the above expressions, we can compute the potential

V = 16T 2 − 2
(1

4
T ĪJ̄i T ĪJ̄i +

1

9
XiXi

)
. (4.108)

After some manipulations, we can show that the resulting potential is the same as
(4.68) with the following identifications

H → N
1
6 e−4g = e−

√
2Φ, A→

( 1√
I3−AtA

0

0 cosh
√

2Φ

)
,

B →
( 1√

I3−AtA
At 0

0 sinh
√

2Φ

)
, C →

( 1√
In−AAt 0

0 cosh
√

2Φ

)
. (4.109)

We have now completely shown that the Chern-Simons gauged theory con-
structed in this section is the same as the Yang-Mills gauged theory obtained from
the SU(2) reduction in the previous section.

In the case where G = SU(2), the SU(2)×SU(2) Yang-Mills gauged theory
is the same as (SU(2) n T3)2 Chern-Simons gauged theory with scalar manifold

SO(4, 4)
SO(4)×SO(4)

. Such quaternionic space has been already considered in the previous

chapter, however the (SU(2) n T3)2 gauging appearing there is different from the
one in this chapter. The two gauged SU(2)’s in that case are the diagonal subgroups
of the two SU(2)L and the two SU(2)R respectively of the SO(4)× SO(4). We can
again construct the N = 4 theory using the parametrization of the target space in
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terms of e and B matrices as in the previous chapter. For completeness, we give the
necessary ingredients here. All notations are the same as in chapter 3 except that
there is only one target space. The V ’s are given by

VLJ,MK
±a = −1

4
Tr[(etJLJ+ X t +XJLJ+ e)JMK

± ],

V±a
MK
ab = Tr[(etεabX

t + Y εabe)J
MK
± ],

VLJ,MK
±b = −1

4
Tr[etJLJ+ etJMK

± ],

V±b
MK
ab = Tr(etεabeJ

MK
± ). (4.110)

It is then straightforward to compute the T-sensors with the embedding tensor as
in the previous chapter. These are given by

TLJ,MK = g1s(VLJ,PQ+a VMK,PQ
+b + VLJ,PQ+b VMK,PQ

+a ) + g1a(VLJ,PQ−a VMK,PQ
−b

+VLJ,PQ−b VMK,PQ
−a ) + h1sVLJ,PQ+b VMK,PQ

+b + h1aVLJ,PQ−b VMK,PQ
−b ,

TLJab = g1s(VLJ,PQ+a V+b
PQ
ab + VLJ,PQ+b V+a

PQ
ab ) + g1a(VLJ,PQ−a V−b

PQ
ab

+VLJ,PQ−b V−a
PQ
ab ) + h1sVLJ,PQ+b V+b

PQ
ab + h1aVLJ,PQ−b V−b

PQ
ab . (4.111)

The consistency condition from supersymmetry requires that

h1a = −h1s. (4.112)

Together with the f IJ in chapter 3, we can compute A1 and A2 tensors as well as
the scalar potential. The action of shift symmetry generators is to shift B. We can
simply set B = 0 in this parametrization to obtain the Yang-Mills coset. Although
the identification of (AIα,Φ) and e is more complicated than the previous case, with
the help of Mathematica, it can be shown that the two theories are indeed equiva-
lent.

In this chapter, we have obtained Yang-Mills SU(2)×G gauged supergravity
in three dimensions from SU(2) group manifold reduction of six dimensional (1,0)
supergravity coupled to an anti-symmetric tensor and G Yang-Mills multiplets. We
have also given consistent truncations in both bosonic and fermionic fields from
which the resulting consistent reduction ansatz followed. The truncation, which
removes three dimensional massive vector fields, results in an N = 4 supergravity
theory describing 4(1 + dimG) bosonic propagating degrees of freedom, 1 + 3dimG

scalars and 3 + dimG gauge fields, together with 4(1 + dimG) fermions. The scalar
fields are coordinates in the coset space R× SO(3, dimG)

SO(3)×SO(dimG)
.

Furthermore, we have explicitly constructed theN = 4 Chern-Simons (SO(3)n
T3) × (G n TdimG) gauged supergravity in three dimensions, following the gen-
eral procedure detailed in [31]. The scalar manifold SO(4, 1+dimG)

SO(4)×SO(1+dimG)
becomes R×

SO(3, dimG)
SO(3)×SO(dimG)

after removing the scalars corresponding to the translations or shift

82



symmetries. We have shown the agreement between the resulting Lagrangian and
the Lagrangian obtained from dimensional reduction i.e. the gauge field kinetic
terms, the scalar manifold metrics and scalar potentials.

We have not given the supersymmetry transformations of the three dimen-
sional fields here. These can, in principle, be obtained by direct computations or
using the results in [113] with our truncations. Although supersymmetry transfor-
mations of fermions are essential, for example for finding BPS solutions, it is more
convenient to work with the equivalent Chern-Simons gauged theory as the latter
turns out to be simpler than the equivalent Yang-Mills theory, see [38] for a discus-
sion. In particular, the consistency of the Chern-Simons gauging is encoded in a
single algebraic condition on the embedding tensor [27, 28, 29, 31].
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Chapter 5

Two dimensional RG flows and
Yang-Mills instantons

In this chapter, we will study RG flow solutions in (1,0) six dimensional supergravity

coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a

semisimple group G. We turn on G instanton gauge fields, with instanton number

N , in the conformally flat part of the 6D metric. The solution interpolates between

two (4,0) supersymmetric AdS3 × S3 backgrounds and describes an RG flow in the

dual two dimensional SCFT. For the single instanton case and G = SU(2), there

exist a consistent reduction ansatz to three dimensions as shown in the previous

chapter, and the solution in this case can be interpreted as an uplifted three di-

mensional solution. Correspondingly, we present the solution in the framework of

N = 4 (SU(2) n T3)2 three dimensional gauged supergravity. We will also give an

interpretation of the supergravity solution in terms of the D1/D5 system in type I

string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT

in the infrared.

5.1 An RG flow solution from six dimensional su-

pergravity on SU(2) group manifold

In the ansatz for the flow solution, we set AIµ = Aαµ = 0, AIα = δIαA and Liα = δiα in

the reduction ansatz of the previous chapter. After various scalings together with
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the standard domain wall ansatz for the metric in three dimensions, we end up with

ds2 = e2w(r)(−dx2
0 + dx2

1) + dr2 +
e2q(r)

4g2
1

δαβσ
ασβ,

ÂI = AIασ
α = AδIασ

α = AσI ,

F̂ I =
1

g1

dA ∧ σI +
1

2g2
1

(g2A
2 − g1A)εIJKσ

J ∧ σK ,

Ĝ3 = hε3 +
1

6g3
1

(
g1 + 2g2A

3 − 3g1A
2

)
εIJKσ

I ∧ σJ ∧ σK . (5.1)

The scalings have been performed to restore the g1 and g2 in the appropriate posi-

tions in the solution. This makes the comparison with the three dimensional solution

given in section 5.2 more evident. Notice the particular ansatz for AIα which gives

Kαβ = 0. This is the reason for the consistency of the truncation of the three di-

mensional gauge fields, AIµ = 0 and Aαµ = 0. It can be easily checked that all the

three dimensional field equations given in chapter 4 are satisfied by our ansatz. The

S3 part of the metric and that in the previous chapter are related by

e2q

4g2
1

δαβ = e2ghαβ = 2eθ(1− A2)δαβ (5.2)

where we have used the bosonic truncation relation (4.40) after scalings. We will

see later that our solution satisfies this relation and is indeed a solution of the

theory obtained in the previous chapter. The supersymmetric flow solution can be

found by considering the Killing spinor equations coming from the supersymmetry

transformation of fermions. From the metric, we can read off the vielbeins

êa = ewdxµ, êr̂ = dr, and êi =
eq

2g1

σi (5.3)

We can compute the following spin connections

ω̂ar̂ = w′êa,

ω̂r̂i = −q′êi,
ω̂ij = −g1e

−qεijkê
k . (5.4)

The index a is the tangent space index for µ = 0, 1, and ′ means d
dr

. For conveniences,

we also repeat here the decompositions of the six dimensional gamma matrices from

[47]

ΓÂ = (Γa,Γi), Γa = γa ⊗ I2 ⊗ σ1,

Γi = I2 ⊗ γi ⊗ σ2, Γ7 = I2 ⊗ I2 ⊗ σ3,

γabc = εabc, γijk = iεijk, {γa, γb} = 2ηab, {γi, γj} = 2δij (5.5)
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with the same conventions given in [47]. We further specify the three dimensional
gamma matrices by the following choice

γ0 = iσ̃2, γ1 = σ̃1, γ2 = σ̃3 . (5.6)

Using (4.36), (4.37) and (4.38), we find

δλI = 0 : A′ = −2(g2A
2 − g1A)e−q,

δχ = 0 : θ′ = eθ
[
h− 8e−3q

(
g1 + 2g2A

3 − 3g1A
2
)]
,

δψi = 0 : q′ = −g1e
−q +

1

2

[
eθ
[
h+ 8e−3q

(
g1 + 2g2A

3 − 3g1A
2
)]]

,

δψa = 0 : w′ = −1

2
eθ[h+ 8e−3q(g1 + 2g2A

3 − 3g1A
2)] (5.7)

where we have used σ̃3 ⊗ I2 ⊗ I2ε = ε. So, the solution preserves half of the (1,0)
supersymmetry in six dimensions. We fix h by using the equation of motion for Ĝ3

D̂(e2θ̂∗̂Ĝ3) = 0 . (5.8)

This gives he3q+2θ = c1 with a constant c1. Using this result and changing the
coordinate r to r̃ given by dr̃

dr
= e−q, we find that the above equations can be

rewritten as

θ′ = eθ−2q(c1e
−2θ − 8ã) , (5.9)

q′ = −g1 +
1

2
eθ−2q(e−2θc1 + 8ã) , (5.10)

w′ = −1

2
eθ−2q(c1e

−2θ + 8ã) , (5.11)

A′ = −2(g2A
2 − g1A), (5.12)

where ã = g1 + 2g2A
3 − 3g1A

2. The ′ is now d
dr̃

. Before solving these equations, let
us look at the fixed points given by the conditions θ′ = q′ = A′ = 0. There are two
fixed points:

• I:

A = 0, θ =
1

2
ln

c1

8g1

,

q =
1

4
ln

8c1

g1

, (5.13)

• II:

A =
g1

g2

, θ =
1

2
ln

c1g
2
2

8g1(g2
2 − g2

1)
,

q =
1

4
ln

8c1(g2
2 − g2

1)

g1g2
2

. (5.14)
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Equation (5.12) can be solved and gives

A =
g1

g2 − eg1C2−2g1r̃
. (5.15)

Taking the combination (5.9)+ 2 (5.10), we find

z′ = 2e−zc1 − 2g1 (5.16)

where z = θ + 2q. From (5.16), we find the solution for z is

z = ln
c1 − e−2g1r̃+C3

g1

. (5.17)

From (5.15), we see that the fixed point I is at r̃ → −∞ while the II point is at
r̃ → ∞. Regularity of A requires that −eg1C2 must have the same sign as g2. For
convenience, we choose

C2 =
1

g1

ln(−g2).

From (5.17), z blows up as r̃ → −∞, so the solution breaks down at the I point.
To overcome this problem, we choose z to be constant in such a way that (5.16) is
satisfied identically. This can be achieved by setting

z = ln
c1

g1

. (5.18)

This means θ = ln c1
g1
− 2q. We can see that this condition is satisfied at both fixed

points, and equations (5.10) and (5.9) collapse to a single equation namely

q′ = 4e−4q c1

g1

(
g1 − e4g1r̃(3 + e2g1r̃)g3

1

g2
2(1 + e2g1r̃)3

)
− g1

2
. (5.19)

This equation can be solved, and we find

q =
1

4
ln

[
8e−2g1r̃

(
c1e

2g1r̃

(
1

g1

− g1

g2
2

)
− c1g1(2 + 3e2g1r̃)

g2
2(1 + e2g1r̃)2

+
54C4

g2
2

)]
. (5.20)

In order to make the solution for q interpolates between the two values at both fixed
points, we need to choose

C4 =
c1g1

27
. (5.21)

We finally find

A =
g1

g2(1 + e−2g1r̃)
(5.22)

q =
1

4
ln

8c1(g2
2 + 2g2

2e
2g1r̃ + (g2

2 − g2
1)e4g1r̃)

g1g2
2(1 + e2g1r̃)2

(5.23)

w = −q − g1r̃ (5.24)
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We neglect all additive constants to w because they can be absorbed in the rescaling
of x0 and x1. The solution for q approaches the fixed point I and II as r̃ → ∓∞,
respectively.

At the fixed points, the six dimensional metric is given by

ds2 = e−2q0−2g1r̃dx2
1,1 + e2q0dr̃2 +

e2q0

4g2
1

δαβσ
ασβ (5.25)

where q0 is the value of q at the fixed points. By rescaling the xµ and r̃ by a factor
of e−q0 and −eq0 , respectively, we can write (5.25) as

ds2 = e
2r̄
L dx2

1,1 + dr̄2 +
R2

4
δαβσ

ασβ (5.26)

which is the AdS3 × S3 metric. The radii of AdS3 and S3 are given by L = eq0
g1

and

R = eq0
g1

, respectively. The central charge in the dual CFT is given by [40]

c =
3L

2G
(3)
N

∼ e4q0

where we have used the relation between Newton constants in three and six dimen-

sions G
(3)
N =

G
(6)
N

Vol(S3)
. We find the ratio of the central charges

cI

cII

=
e4q0 |I
e4q0|II =

1

1− g2
1

g2
2

> 1. (5.27)

From this equation, we find that the flow respects the c-theorem as it should, and
point I is the UV point while point II is the IR point. Note that dr̄ = −eqdr̃, so
the UV and IR points correspond to r̄ → ±∞. We can interpret r̄ as an RG scale
in the dual two dimensional field theory. From the solutions for q, θ and A, we can
check that the relation (5.2) is satisfied. So, the solution is indeed a solution of the
theory considered in chapter 4 and can be obtained from three dimensional gauged
supergravity. We will give this solution in the three dimensional framework in the
next section.

We briefly look at the behavior of the scalar fields near the UV point I. From
(5.22) and (5.23), we find that

A ∼ e2g1r̃ ∼ e−
2r̄
L and eq ∼ e−

2r̄
L . (5.28)

We can see that the flow is driven by a vacuum expectation value of a marginal
operator of dimension two. Although this is not expected, we will confirm this fact
in section 5.2 in which we will reobtain this solution in the three dimensional gauged
supergravity. So, this flow is a vev flow driven by a vacuum expectation value of a
marginal operator. Notice that gauge-field background of (5.1) that we have found
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corresponds to a single SU(2) instanton on the four-space (r, S3), interpolating
between winding number 0 for r̄ → −∞ and winding number 1 for r̄ → +∞. In
the next section we will generalize this result to a multi-instanton configuration
for semisimple G gauge fields, which therefore will not admit a three dimensional
interpretation.

Throughout this section, we have mainly studied the flow solution in the
context of the SU(2) reduction to three dimensions. This leads to the form of the
solution given above. Before discussing the multi-instanton case, we would like to
change the form of the solution to make contact with what we will find in the next
section. First of all, we can change the coordinates in (5.1) to R given by

dR

dr
= −g1Re

−q . (5.29)

We have put a minus sign in order to identify the UV point with R → ∞ and the
IR with R→ 0. We then find that the metric is given by

ds2 = e2w(−dx2
0 + dx2

1) +
e2q

g1R2
dyidyi (5.30)

where dyidyi = dR2 + R2

4
σασα is the flat metric of the four dimensional space. This

is the form of the metric we will see in section 5.3 in which the 4-dimensional part
is conformally flat. The second point is the solution for A in (5.15). Recall that the
relation between R and r̃ is dR

dr̃
= −g1R, we can write

A =
λ2

g2R(λ2 +R2)
(5.31)

where we have chosen C2 = 1
g1

ln
(− g2

λ2

)
. This is a single instanton solution at the

origin R = 0 in the polar coordinates. Notice that this is the instanton solution in
the singular gauge in which the winding number come from the contribution near
R = 0. In section 5.3, we will study a flow solution with N instantons but in the
regular gauge.

5.2 Flow solution from N = 4 three dimensional

gauged supergravity

In this section, we study a flow solution in N = 4 three dimensional (SO(3)nT3)×
(GnTdimG) Chern-Simons gauged supergravity. As shown in chapter 4, this theory
is equivalent to SO(3)×G Yang-Mills gauged theory obtained from SU(2) reduction
of six dimensional supergravity whose flow solution has been studied in the previous
section. We are interested in the case G = SO(3). We will see that the solution we
are going to find is the same as that in section 5.1 but now in another framework.
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5.2.1 (SO(3) n T3)× (SO(3) n T3) gauged supergravity

We now construct three dimensional gauged supergravity with gauge groups (SO(3)n
R3)× (SO(3) n R3). This can be obtained from the theory constructed in chapter
4 by setting G = SO(3). In the following, we will focus on this spacial case. The
scalar fields are described by SO(4,4)

SO(4)×SO(4)
coset manifold. We parametrize the coset

by

L =


1

1−A(r)2 I3×3 0 A(r)
1−A(r)2 I3×3 0

0 coshh(r) 0 sinhh(r)
A(r)

1−A(r)2 I3×3 0 1
1−A(r)2 I3×3 0

0 sinhh(r) 0 coshh(r)

 . (5.32)

The SO(3) generators are given by

JAa1
= εABCeBC , JAa2

= εABCeB+4,C+4, A,B,C = 1, 2, 3 (5.33)

where (eAB)CD = δACδBD are 8 × 8 matrices. The translational symmetries are
generated by

JAb1 = −eA4 + eA8 + e4A + e8A

JAb2 = −e4,4+A + eA+4,4 − eA+4,8 + e8,A+4, A = 1, 2, 3. (5.34)

SO(4) R-symmetry generators are given by

J IJ± = J IJ ± 1

2
εIJKLJ

KL, J IJ = eIJ − eJI , I, J, . . . = 1, . . . 4. (5.35)

In the N = 4 theory, the SO(4) R-symmetry decomposes to SO(3)+ and SO(3)−,
and each factors acts separately on the two scalar target spaces. In our case called
the degenerate case, there is only one target space, so we have only one SO(3) which
we will denote by SO(3)+. Non compact generators of SO(4, 4) are

Yab = ea,b+4 + eb+4,a, a, b = 1, 2, 3. (5.36)

We now proceed by computing the T-tensors which are given by

T IJ,KL = g1(VAIJa1
VAKLb1

+ VAIJb1
VAKLa1

) + g2(VAIJa2
VAKLb2

+ VAIJb2
VAKLa2

)

+h1VAIJb1
VAKLb1

+ h2VAIJb2
VAKLb2

, (5.37)

T IJab = g1(VAIJa1
Vb1

A
ab + VAIJb1

Va1

A
ab) + g2(VAIJa2

Vb2

A
ab + VAIJb2

Va2

A
ab)

+h1VAIJb1
Vb1

A
ab + h2VAIJb2

Vb2

A
ab. (5.38)

With the coset representative L, we can compute all the needed quantities using

L−1DµL =
1

2
QIJ
µ X

IJ +Qα
µX

α + eAµY
A ,

L−1tML =
1

2
VMIJXIJ + VMαXα + VMAY A . (5.39)
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The first equation is simply equation (2.55) pulled back to the spacetime, and the
second equation is repeated for reader’s convenience. The consistency condition
from supersymmetry, P�T

IJ,KL = 0, requires that h2 = −h1. The resulting VMA are
given by

VAKLa1,2
= −1

2
Tr[L−1JAa1,2

LJKL+ ],

VAKLb1,2
= −1

2
Tr[L−1JAb1,2

LJKL+ ],

VAaba1,2
=

1

2
Tr[L−1JAa1,2

L(ea,b+4 + eb+4,a)],

VAabb1,2
=

1

2
Tr[L−1JAb1,2

L(ea,b+4 + eb+4,a)] (5.40)

where A,B, . . . = 1, 2, 3 label SO(3) gauge generators, and a pair of indices a, b, . . . =
1, 2, 3 labels target space coordinates. With an appropriate normalization, the tensor
f IJ is given by

f IJab,cd = 2Tr(ebaJ
IJ
+ ecd). (5.41)

With all these ingredients, we can now compute A1 and A2 tensors which give the
scalar potential via equations (2.88), (2.89) and (2.91). The potential for these two
scalars is given by

V = e−4h

[
h2

1 +
2e2h

(A2 − 1)3
(g2

1 + A2(g2A(4g1 + g2A(A2 − 3))− 3g2
1))

]
. (5.42)

This simple looking potential admits five different critical points. We can identify
supersymmetric critical points by using the procedures explained in chapter 3. All
non trivial critical points are given in table II.

Critical points A0 h0 V0 Preserved supersymmetries

I 0 ln
(− h1

g1

) − g4
1

h2
1

non supersymmetric

II 0 ln
(
h1

g1

) − g4
1

h2
1

(4,0)

III g1

g2
ln

(√
−h2

1(g2
1−g2

2)

g1g2

)
− g4

1g
4
2

(g2
1−g2

2)2h2
1

(4,0)

IV g1

g2
ln

(
−
√
−h2

1(g2
1−g2

2)

g1g2

)
− g4

1g
4
2

(g2
1−g2

2)2h2
1

non supersymmetric

V g2

g1
ln

h1

√
g2
1−g2

2√
g4
1−g2

1g
2
2+g4

2

−g4
1−g2

1g
2
2+g4

2

(g2
1−g2

2)2h2
1

non supersymmetric

Table II: Critical points of the potential (5.42). A0 and h0 are vacuum expectation
values at the critical point of A and h, respectively.
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5.2.2 An RG flow solution

Supersymmetric flow equations can be obtained from supersymmetry transforma-
tions of fermions, δψIµ = 0 and δχiI = 0. The metric ansatz is chosen to be

ds2 = e2fdx2
1,1 + dr2 . (5.43)

Recall equation (3.20) together with the definition of A1 and A2 tensors, we find,
from δχIi,

dA

dr
=

2e−hA(g2A− g1)√
1− A2

(5.44)

dh

dr
=

2e−2h

(1− A2)
3
2

[eh(g1 − g2A
3) + h1(A2 − 1)

√
1− A2]. (5.45)

We can easily check that (5.44) and (5.45) have two critical points which are exactly
the same as II and III points in table II. With a new function g and new coordinate
r̃ given by

g = h+ ln
√

1− A2 and dr̃ = e−gdr, (5.46)

we can write (5.44) as

A′ =
dA

dr̃
= 2A(g2A− g1). (5.47)

The solution for A is
A = − g1

e2g1r̃+g1C1 − g2

. (5.48)

As in section 5.1, we choose C1 = 1
g1

ln (−g2) and end up with

A =
g1

(e2g1r̃ + 1)g2

. (5.49)

With (5.46) and (5.49), equation (5.45) can be rewritten as

g′ =
dg

dr̃
= −2

[
g1

(
− g1h1e

−g

g2
2(e2g1r̃ + 1)2

+
g1 + g2

g2e2g1r̃ + g1 + g2

+
1

g2e2g1r̃

g2−g1
+ 1
− 2

)
+h1e

−g + g1 tanh(g1r̃)

]
. (5.50)

This can be solved, and the solution is

g = ln

[
(h1 + 16C2g1e

2g1r̃)(g2
2e

4g1r̃ + 2g2
2e

2g1r̃ − g2
1 + g2

2)

g1g2
2(1 + eg1r̃)2

]
. (5.51)

This solution interpolates between II and III fixed points provided that we choose
C2 = 0. We now move to δψIµ. With the solutions for A and g, the gravitino
variation gives

df

dr
= −g

2
1g

2
2(e2g1r + 1)(g2

1(e2g1r − 1) + g2
2(e2g1r + 1)3)

h1(g2e2g1r − g1 + g2)2(g2e2g1r + g1 + g2)2
. (5.52)
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After going to r̃ coordinate, we find the solution

f = g1r̃ − ln[2(1 + e2g1r̃)] +
1

2
ln[2(g2

1 − g2
2(1 + e2g1r̃)2)] (5.53)

where, as usual, we have ignored all additive constants because they can be absorbed
by rescaling x0 and x1. The AdS3 radius is given by

L =
eg0

g1

=
1√
V0

. (5.54)

We can compute the ratio of the central charges between the two fixed points

cII

cIII

=
1

1− g2
1

g2
2

> 1. (5.55)

By the c-theorem, we see that point II and III correspond to the UV and IR CFTs,
respectively. This is in agreement with the solution found in section 5.1. So, the
solutions from both theories are the same. This is the result, at the level of solutions,
of the fact that the two theories are equivalent as shown in chapter 4. Near the UV
point, the scalars behave as

δA ∼ e−2r/L, δh ∼ e−4r/L, L =
h1

g2
1

. (5.56)

We see that the flow is driven by a marginal operator dual to A of dimension 2. h is
dual to an irrelevant operator of dimension 4. Up to quadratic order in the scalars,
the potential (5.42) at the UV point is given by

V = −g
4
1

h2
1

+
4g4

1

h2
1

h2 . (5.57)

We find that the scalar A is massless at this point and dual to a marginal operator.
The scalar kinetic terms are

Lscalar kinetic =
1

2

(
3A′2

(A2 − 1)2
+ h′2

)
. (5.58)

At the UV point, A = 0, all the kinetic terms are canonically normalized, and we
can read off the values of mass squared directly from the potential. In the unit of
1
L2 , h has m2L2 = 8 which gives exactly ∆ = 4 in agreement with the asymptotic
behavior. At the IR point, A becomes massive with positive mass squared as can
be seen from the expansion of the potential

V = − g4
1

h2
1

(
1− g2

1

g2
2

) +
12g4

1g
8
2

(g2
1 − g2

2)4h2
1

A2 +
4g4

1g
4
2

(g2
1 − g2

2)2h2
1

h2 . (5.59)

93



The positive mass squared means that the potential has a minimum at the IR point,
and the dual operator is irrelevant as it should. To compute the mass squared at
the IR point, we redefine A to A = tanhφ. Then, (5.58) becomes

1

2
(3φ′2 + h′2). (5.60)

The potential near the IR point is, to quadratic terms in scalars, given by

V

V0IR

= 1− 4h2 − 12g4
2

(g2
1 − g2

2)2
φ2. (5.61)

At this fixed point, h and φ have m2L2 = 8 and m2L2 = 24

1−
g21
g22

, respectively. We find

that

∆h = 4 and ∆φ = 1 +

√
1 +

24g4
2

(g2
1 − g2

2)2
> 2 . (5.62)

As expected, the operator dual to φ is irrelevant with dimension greater than 2.

5.3 RG flow solutions and multi-instantons

In this section, we generalize the solution obtained in section 5.1 by considering the
gauge field configuration describing N instantons. We will further make an extension
to gauge fields of an arbitrary gauge group G. The solution we will study is very
similar to the solution given in [64] and further studied in [65]. In this paper, we
give an interpretation of this solution in the context of an RG flow in the dual two
dimensional field theory. We start by reobtaining this solution and then discuss its
implication in term of the RG flow.

5.3.1 Flow solutions

Since we are going to use the full six-dimensional theory, we will now turn on both vz

and ṽz . Throughout this section, we also assume that both vz and ṽz are positive. If
this is not the case, the phase transition discussed in [64] is unavoidable. To leading
order in fermionic fields, the supersymmetry transformations of fermions are the
same as the ones previously used in section 5.1. On the other hand, the bosonic
field equations are

D̂(e2θ̂∗̂Ĝ3) + ṽzF̂ I ∧ F̂ I = 0, (5.63)

D̂[(vzeθ̂ + ṽze−θ̂)∗̂F̂ I ]− 2vze2θ̂∗̂Ĝ3 ∧ F̂ I + 2ṽz∗̂Ĝ3 ∧ F̂ I = 0, (5.64)

d̂∗̂d̂θ̂ + (vzeθ̂ + ṽze−θ̂)∗̂F̂ I ∧ F̂ I + 2e2θ̂∗̂Ĝ3 ∧ Ĝ3 = 0 . (5.65)

It is easy to see that if we set vz = 1, ṽz = 0 and take a spherically symmetric single
instanton configuration (i.e. an instanton at the origin of R4) for the gauge field AI ,
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then the above equations reduce to the ones discussed in section 5.1. The Bianchi
identity is

D̂Ĝ3 = vzF̂ I ∧ F̂ I . (5.66)

We take an ansatz for the metric as

ds2
6 = e2f (−dx2

0 + dx2
1) + ds2

4 (5.67)

where f only depends on the coordinates zα, α = 2, . . . 5 of the four dimensional
metric ds2

4 = gαβdz
αdzβ. We first look at the δλI = 0 equation. We can satisfy

this condition by choosing F I
αβ to be self dual because of the anti-self duality of the

Γαβ, α, β = 2, . . . 5. The anti-self duality of Γαβ is implied by the condition Γ7ε = ε
and the two-dimensional chirality Γ01ε = ε chosen in δψµ = 0 below. The indices
I, J . . . = 1, 2, . . . , dimG are now G adjoint indices. The gauge fields and three form
field strength are

ÂI = AI , F̂ I = F I ,

Ĝ3 = G+ dx0 ∧ dx1 ∧ dΛ . (5.68)

The hatted fields are six dimensional ones while the unhatted fields represented
by differential forms without indices have only components along ds2

4. The x0 and
x1 components will be shown explicitly. The three form field satisfies the Bianchi
identity (5.66) which gives DG = vzF I ∧ F I . The dual of Ĝ3 is

∗̂Ĝ3 = e−2f ∗ dΛ− e2fdx0 ∧ dx1 ∧ ∗G (5.69)

where ∗̂ and ∗ are Hodge duals in six and four dimensions, respectively. We have
used the same convention as [63] namely ε012345 = 1. Using equation (5.63), we find

D(e2θ−2f ∗ dΛ) = ṽzF I ∧ F I , (5.70)

D(e2θ+2f ∗G) = 0⇒ ∗G = e−2θ−2fdΛ̃ . (5.71)

We take F I to be self dual with respect to the four dimensional ∗. This corresponds
to an instanton configuration. The dual of F̂ I is given by

∗̂F̂ I = −e2fdx0 ∧ dx1 ∧ ∗F I . (5.72)

We now come to supersymmetry transformations. Using our ansatz and the results
given above, we find the Killing spinor equations

δχ =
1

2
∂/ θε− 1

12
eθĜ/3ε

=
1

2
∂/ θ +

1

2
eθ−2f∂/Λ− 1

2
e−θ−2f∂/Λ̃ = 0 (5.73)

δψµ = Dµε+
1

24
eθĜ/3Γµε, µ = 0, 1

=
1

2
Γµ∂/ f − 1

4
eθ−2fΓµ∂/Λ− 1

4
e−θ−2fΓµ∂/Λ̃ = 0 . (5.74)
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We have used the notation Ĝ/3 ≡ ΓMNP Ĝ3MNP and a projector Γ2345ε = ε which is
also equivalent to Γ01ε = ε. This implies that the solution preserves half of the six
dimensional supersymmetry. Taking the combination [(5.73)− 2(5.74)], we find

2dΛ = −e−θ+2fd(θ − 2f). (5.75)

The solution is easily found to be

Λ =
1

2
e−θ+2f + C1 (5.76)

with a constant C1. Similarly, the combination [(5.73) + 2(5.74)] gives

deθ+2f − 2dΛ̃ = 0⇒ Λ̃ =
1

2
eθ+2f + C2 (5.77)

with a constant C2. The equation from δψα = 0 gives

Dαε− 1

2
∂/ fΓαε = 0 . (5.78)

We now make the following ansatz for the 4-dimensional metric

ds2
4 = e2gdyidyi. (5.79)

With the supersymmetry transformation parameter of the form ε = e
f
2 ε̃, we can

write equation (5.78) as

∂iε̃− 1

2
Γji∂

j(f + g)ε̃ = 0 . (5.80)

To satisfy this equation, we simply choose g = −f and find that ε̃ is a constant
spinor. So, we have solved all the Killing spinor equations.

We can easily check that equation (5.64) is identically satisfied with our
explicit forms of Λ and Λ̃. We now solve equations (5.70) and the Bianchi identity
(5.66). We start with the SU(2) instanton configuration from [114]

Ai =
i

2
σ̄ij∂j ln ρ, ρ = 1 +

n∑
a=1

λ2
a

(y − ya)2
. (5.81)

Notice that, we have rescaled the Ai form [114] by a factor of 1
2
. This can be done

without loosing generalities, see for example, [115] for a discussion. The σ̄ij matrices
are anti-self dual and can be written in terms of Pauli matrices σx as [114]

σ̄xy =
1

4i
[σx, σy], σ̄x4 = −1

2
σx, x, y = 1, 2, 3 . (5.82)

This solution can be generalized to any semi-simple group G to obtain the solution
given in [116]. We can write the above σ̄ij = η̄Iijt

I where η̄Iij and tI are ’t Hooft’s
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tensor generating SU(2) subgroup of SO(4) and SU(2) generators, respectively. For

any group G, the solution is [116]

AIi = GI
aη̄

a
ij∂j ln ρ, a = 1, 2, 3 . (5.83)

For G = SU(2), we simply have GI
a = δIa. The solution for any group G can be

obtained by embedding SU(2) in G [116]. In order to solve (5.70) and (5.66), we

need to compute F I
ijF

Iij. For SU(2) instanton, we have [114]

F I
ijF

Iij = −�� ln ρ . (5.84)

For G instanton, the result is the same up to some numerical factors, from [116],

F I
ijF

Iij = −2

3
c(G)d(G)�� ln ρ . (5.85)

We now come to the Bianchi identity for G, DG = vzF I ∧ F I , which gives

�e−(θ+2f) = −vzF I
ijF

Iij = vz
2

3
c(G)d(G)�� ln ρ (5.86)

where we have used [114]

∗(F I ∧ F I) = ∗(∗F I ∧ F I) =
1

2
F I
ijF

Iij = −1

3
c(G)d(G)�� ln ρ . (5.87)

We can solve (5.86) and obtain

e−(θ+2f) =
d

r2
+ vz

(
2

3
c(G)d(G)� ln ρ+

n∑
a=1

4

(y − ya)2

)
≡ d

r2
+ vz

2

3
c(G)d(G)� ln ρ̃ . (5.88)

We have removed the singularities in the solution by defining ρ̃ = ρ
∏n

a=1(y − ya)2.

Inserting Λ from (5.76) in (5.70), with ∗dΛ replaced by e−2f ∗ dΛ, gives

�eθ−2f = −ṽzF I
ijF

Iij = ṽz
2

3
c(G)d(G)�� ln ρ . (5.89)

The solution is similar to the previous equation

eθ−2f =
c

r2
+ ṽz

2

3
c(G)d(G)� ln ρ̃ (5.90)

where c is an integration constant. The two integration constants c and d are

proportional, respectively, to the fluxes of ∗̂Ĝ3 and Ĝ3 through the S3. Therefore,
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they represent, respectively, the number of D1 and D5 branes. We can directly see
this by considering for example, the Ĝ3 flux near r = 0

Q1 =
1

8π2

∫
S3

e2θ∗̂Ĝ3 =
c

4
(5.91)

Q5 =
1

8π2

∫
S3

Ĝ3 =
d

4
. (5.92)

We have used the same normalization of Q1 and Q5 as in [65]. Indeed, we can regard
our six dimensional theory as a subsector of type I theory compactified on K3. In
this solution, we have D5 branes wrapped on K3 and D1 branes transverse to it.
The solution we give here is the same as the gauge dyonic string studied in [112]
and [65].

The behaviors of e−4f near r →∞ and r → 0 are given by

r →∞ : e−4f ∼ (c+ 4ṽzN)(d+ 4vzN)

r4
=

16(Q1 + ṽzN)(Q5 + vzN)

r4
,(5.93)

r → 0 : e−4f ∼ cd

r4
=

16Q1Q5

r4
. (5.94)

We have introduced the instanton number N given by

N =
1

32π2

∫
d4y(∗F )ijF

ij = − 1

48π2
c(G)d(G)

∫
d4y�� ln ρ̃ . (5.95)

At the fixed points, the metric is given by

ds2
6 =

r2

L2
(−dx2

0 + dx2
1) +

L2

r2
dr2 + L2ds2(S3). (5.96)

where we have rewritten the four dimensional flat metric in the polar coordinates

dyidyi = dr2 + r2ds2(S3). (5.97)

The metric (5.96) is readily seen to be AdS3 × S3 metric with the AdS3 and S3

having the same radius L. The AdS radii at the fixed points near r ∼ ∞ and r ∼ 0
are L = [(c + 4ṽzN)(d + 4vzN)]

1
4 and L = (cd)

1
4 , respectively. In the dual two

dimensional conformal field theory, this solutions describes an RG flow from the
CFT UV to the CFT IR with the ratio of the central charges

c|0
c|∞ =

e−4f |0
e−4f |∞ =

cd

(c+ 4ṽzN)(d+ 4vzN)
< 1 (5.98)

where we have used the relation between the central charge and AdS radius c ∼
L

G
(3)
N

∼ LVol(S3)

G
(6)
N

∼ e−4f . The UV point corresponds to r = ∞ while the IR point is

at r = 0.
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To extract the dimension of the operator driving the flow, we need to consider
the behavior of the fluctuation of the metric around AdS3 × S3 near the UV point.
To simplify the manipulation, we first consider here a single instanton at the origin
yia = 0. With this simplification, the solution, up to group theory factors which are
not relevant for this discussion, is given by

e−4f =

(
c

r2
+ ṽz� ln(r2 + λ2)

)(
d

r2
+ vz� ln(r2 + λ2)

)
. (5.99)

As r →∞, the solution behaves

e−4f ∼ (c+ 4ṽz)(d+ 4vz)

r4

(
1 +

8λ2[c+ d+ 4(ṽz + vz)]

r2(c+ 4ṽz)(d+ 4vz)
+ . . .

)
or e2g = e−2f

∼
√

(c+ 4ṽz)(d+ 4vz)

r2

(
1 +

4λ2[c+ d+ 4(ṽz + vz)]

r2(c+ 4ṽz)(d+ 4vz)
+ . . .

)
.(5.100)

From this equation, we find the fluctuation

δeg ∼ 2λ2[c+ d+ 4(ṽz + vz)]

r2(c+ 4ṽz)(d+ 4vz)
(5.101)

which give ∆ = 2 in agreement with the result of the previous section. We can also
see this in the coordinate r̃ = [(c+ 4ṽz)(d+ 4vz)]

1
4 ln r in which

ds2
6 = e

2r̃
L (−dx2

0 + dx2
1) + dr̃2 +R2ds(S3)2 (5.102)

and δeg ∼ e
−2r̃
L . We have identified the AdS3 and S3 radii L = R = [(c + 4ṽz)(d +

4vz)]
1
4 . In the general case with N instantons, it can be checked through a more

complicated algebra that the fluctuation of the metric behaves as ∼ r−2 near the
UV point. This can be seen as follows. ρ̃ have an expansion in powers of r2n + r2n−2

with r2 = yiyi. From this, we find that � ln ρ̃ ∼ 1
r4n (r2 + r4 + . . . r4n−2) from which

we see that r−2 is the leading term we have found in (5.93) while the subleading r−4

gives ∆ = 2 as in the single instanton case. So, our flow is a vev flow driven by a
vacuum expectation value of a marginal operator.

We end this subsection by giving a comment on the anti-instanton gauge
field configuration. We need to choose the three dimensional chirality Γ01ε = −ε
which implies the self dual Γαβ from Γ7ε = −Γ2345ε = ε. So, the condition δλI = 0
is still satisfied. The BPS equations (5.73) and (5.74) are modified by some sign
changes. We find the following equations

1

2
∂/ θ − 1

2
eθ−2f∂/Λ +

1

2
e−θ−2f∂/Λ̃ = 0 (5.103)

1

2
∂/ f +

1

4
eθ−2f∂/Λ +

1

4
e−θ−2f∂/Λ̃ = 0 . (5.104)
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This change results in an extra minus sign in Λ = −1
2
e−θ+2f +C1. The field strength

∗F I = −F I gives an extra minus sign in equation DG = vzF I ∧F I . The final result
is

e−(θ+2f) =
d

r2
− vz 2

3
c(G)d(G)� ln ρ̃ (5.105)

eθ−2f =
c

r2
− ṽz 2

3
c(G)d(G)� ln ρ̃ (5.106)

with the behavior near the fixed points

r →∞ : e−4f ∼ (c− 4ṽzN)(d− 4vzN)

r4
, (5.107)

r → 0 : e−4f ∼ cd

r4
. (5.108)

In this case, N is now negative.

5.3.2 Central charges of the dual CFT

We now give some comments on the central charge of the dual (4,0) CFT. We have
mentioned that solutions to the six-dimensional supergravity given in the previous
sections can be interpreted as a D1/D5 brane system in type I string theory on K3.
As type I and heterotic theories are S-dual to each other [117], this D1/D5 system is
dual to the F1/NS5 brane system in the heterotic theory. We choose to work with
heterotic string theory on K3 with the string frame effective action given by [118]

I6 =
(2π)3

α′2

∫
d6x
√−ge2θ

[
R6 + 4∂Mθ∂

Mθ − 1

12
GMNPG

MNP
]

+

∫
M6

1

4(2π)3α′
B ∧

∑
α

ṽαtrFα ∧ Fα (5.109)

where we have given only the relevant terms for our discussion. All the notations
are the same as those in [118] including the modified three-form field strength

G = dB − α′

4

∑
α

vαΩ(Fα) (5.110)

where Ω(Fα) is the Chern-Simons term of the gauge field Aα.
To compute the central charge, we need to know the coefficient of the

Einstein-Hilbert term. The central charge is then given by [40]

c =
3`

2G
(3)
N

(5.111)

where ` is the AdS3 radius. Note that the central charge can be written as c = 24πα
with α being the coefficient of the Einstein-Hilbert term.
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This result has been computed in many references with different approaches,
see for example [119, 120]. However, we will give a derivation of this result by using
the computation of chiral correlators involving Tzz (T̄z̄z̄) in the spirit of [7]. This,
to the best of our knowledge, has not appeared in the literatures. The two point
function will directly give the value of the central charge. We first start with the
gravitational action in three dimensions of the form

I = α

[∫
M

d3x(
√
GRG + 2Λ)−

∫
∂M

d2x
√
g2K

]
. (5.112)

The second term is the Gibbons-Hawking term with the induce metric g and extrin-
sic curvature of the boundary ∂M , K. The coefficient α is dimensionless provided
that we use the unit AdS3 in the measure d3x

√
g.

We now carry out some calculation in the holographic renormalization re-
viewed in chapter 3. We adopt Euclidean signature and take the metric [93]

ds2 = Gµνdx
µdxν = `2

(
dρ2

4ρ2
+
gij(x, ρ)

ρ
dxidxj

)
. (5.113)

In these coordinates, the extrinsic curvature is given by Kij = −2ρ
`
∂ρgij, and the

boundary is at ρ = 0. We look for the solution of gij of the form

g(x, ρ) = g(0) + ρg(2) + h(2)ρ ln ρ+ . . . . (5.114)

The Einstein equations give [93]

ρ[2g′′ − 2g′g−1g′ + Tr(g−1g′)g′] +Rg − Tr(g−1g′)g = 0 (5.115)

∇iTr(g−1g′)−∇jg′ij = 0 (5.116)

Tr(g−1g′′)− 1

2
Tr(g−1g′g−1g′) = 0 . (5.117)

Using the expansion (5.114), we find the relevant equations

∇jg
(2)
ij =

1

2
∇iRg (5.118)

Trg(2) = =
1

2
Rg . (5.119)

We now expand the background metric g(0) about the flat metric. We use the
complex coordinates with the convention of [2] and write the metric g(0) as

g(0) =

(
hzz

1
2

+ hzz̄
1
2

+ hzz̄ hz̄z̄

)
. (5.120)

To simplify the equations, we will keep only the hz̄z̄ component non zero. This is
enough to find the TzzTzz correlation functions. In the complex coordinates, equation
(5.118) takes the form

∇zg
(2)
z̄z +∇z̄g

(2)
zz − 2hz̄z̄∇zg

(2)
zz =

1

4
∂zRg . (5.121)
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Equation (5.119) gives

g
(2)
zz̄ − hz̄z̄g(2)

zz =
1

8
Rg . (5.122)

This can be used to eliminate g
(2)
zz̄ in (5.121). We finally find

∂z̄g
(2)
zz − hz̄z̄∂zg(2)

zz − 2∂zhz̄z̄g
(2)
zz =

1

8
∂zRg . (5.123)

This equation has precisely the structure of Virasoro’s Ward identity for the gener-

ating function of connected correlators of Tzz. A different holographic derivation of

it has been discussed in [121].

The Ricci scalar Rg is given by

Rg = 2gzz̄(0)Rzz̄ = 4∂2
zhz̄z̄ . (5.124)

We can now solve (5.123) for g(2) order by order. The first order equation is simply

given by

∂z̄g
(2)
zz =

1

2
∂3
zhz̄z̄ . (5.125)

This is easily solved by recalling ∂z̄
1
z

= 2πδ(z) and taking

g(2)
zz = − 3

2π

∫
d2w

1

(z − w)4
hw̄w̄(w) . (5.126)

Back to our action (5.112), we can evaluate this action on the solution (5.113) with

the expansion (5.114). This gives [120]

δI = α

∫
d2x
√
g(g(2)ij − gkl(0)g

(2)
kl g

(0)ij)δg
(0)
i,j . (5.127)

Although, in our coordinates, the boundary is at the lower limit of the ρ integration,

ρ = 0, in contrast to [120] in which the boundary is at the upper limit of the η

integration, η =∞, we find δI with the same sign as that in [120]. This is because

of the extra minus sign in the extrinsic curvature Kij.

In the complex coordinates and with only hz̄z̄ 6= 0, we find

δI = 2αi

∫
d2zg(2)

zz δg
(0)
z̄z̄ . (5.128)

This gives the one point function for the stress-energy tensor. Using the solution

(5.126), we can find the two point function by differentiate one more. The result is

〈T (z)T (w)〉 = (−2π)2 δ2

δhz̄z̄(z)δhw̄w̄(w)
eiS|hz̄z̄=0 =

12πα

(z − w)4
. (5.129)
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We have used our normalization factor of −2π in the definition of the stress-energy

tensor. This normalization has been determined by computing the three point func-

tion 〈T (z1)T (z2)T (z3)〉 which in turn can be obtained by solving (5.123) to the sec-

ond order. After matching this three point function with the CFT 〈T (z1)T (z2)T (z3)〉,
we find the normalization factor. We then compare (5.129) with the OPE T (z)T (w) ∼

cL
2(z−w)4 + . . ., we obtain

cL = 24πα . (5.130)

A similar analysis can be done for the 〈T̄ T̄ 〉 with non zero hzz. The right moving

central charge is then given by

cR = 24πα . (5.131)

In principle, we can use (5.123) to find any n point function of the CFT’s

stress-energy tensor. However, the above analysis only involves ether hz̄z̄ or hzz.

With all hzz, hzz̄ and hz̄z̄ non zero, we have also checked, to leading order, that

there is no T T̄ correlation function, but there is a coupling between hzz̄ and hzz and

between hzz̄ and hz̄z̄. These couplings can be removed by adding some local counter

terms to the two dimensional action. Beyond leading order, it is not clear what we

can learn from a very complicated equation coming from (5.123).

We end this section by briefly discussing the contribution to the Kac-Moody

level from the gauge Chern-Simons term. Following [122], the gauge field can be

expanded as

A = A(0) + ρA(1) + . . . . (5.132)

The Lagrangian for the gauge field including the Chern-Simons term is

I = −1

2

∫
∗F a ∧ F a − β

2

∫ (
Aa ∧ dAa +

2

3
fabcA

a ∧ Ab ∧ Ac
)
. (5.133)

We will suppress the gauge group index on A from now on to make the expression

compact. From this action, it is straightforward to find the equation of motion and

find, in the Aρ = 0 gauge,

∂iA
(0)
j − ∂jA(0)

i = 0 . (5.134)

As discussed in [122], it is necessary to add a boundary term in order to obtain only

the left moving current. This boundary term is given by

Ib =
β

2

∫
d2x
√
ggijA

(0)
i A

(0)
j . (5.135)

Notice the sign change as oppose to the result in [122]. We can solve (5.134) in

complex coordinates by taking

Az(z) = − 1

2π

∫
d2w

1

(z − w)2
Aw̄(w) . (5.136)
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Inserting this into Ib, we obtain

Ib = −i β
2π

∫
d2zd2wAw̄(w)

1

(z − w)2
Az̄(z) . (5.137)

We can now find

〈J(z)J(w)〉 = (−2π)2 δ2

δAz̄(z)δAw̄(w)
eiIb|Az̄=0 =

4πβ

(z − w)2
(5.138)

which gives k = 8πβ by using the OPE J(z)J(w) ∼ k
2(z−w)2 + . . .. The factor −2π is

again due to our normalization of the current. The central charge is c = 6k = 48πβ.

We now come back to the action (5.109) and take the metric ansatz to be

ds2
6 = `2

(
dρ2

4ρ2
+

1

ρ
dx2

1,1

)
+ `2ds2(S3). (5.139)

We have used the AdS3 metric in the (ρ, x0, x1) coordinates. The three-form field is

G = `2hε3 + `2aω3 (5.140)

where ε3 and ω3 are the volume form on the unit AdS3 and S3, respectively. The

radii of AdS3 and S3 are the same by the equation of motion for θ with constant

θ. The G equations of motion and Bianchi identity require h and a to be constant.

Einstein equation determines the value of h = a = 2. The fluxes of G and ∗G are

given by

Q1 =
(2π)3

α′2

∫
S3

e2θ ∗G =
(2π)5`2e2θ

α′2
, (5.141)

Q5 =
(2π)3

α′2

∫
S3

G =
(2π)5`2

α′2
. (5.142)

In order to relate Q1 and Q5 to the number of F1 strings and NS5 branes, N1 and

N5, we match our ansatz to the F1/NS5 solution in six dimensions given in [123].

The three-form field strength is

G = 2α′N5(VolAdS3 + VolS3) . (5.143)

We find that, after matching the flux of this solution with that of our ansatz,

N1 = 2πα′Q1, N5 =
α′Q5

(2π)5
. (5.144)
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We make a reduction of (5.109) on S3 and obtain

I3 =
α′2Q1Q5

2(2π)5

∫
d3x
√
gR +

α′Q1

4

∫
M3

vΩ(Fα) +
α′Q5

4(2π)6

∫
M3

ṽΩ(Fα)

−α
′Q1Q5

8(2π)5

∫
M3

Ω(F I)

=
N1N5

4π

∫
d3x
√
gR +

N1

8π

∫
M3

vΩ(Fα) +
N5

8π

∫
M3

ṽΩ(Fα)

−N1N5

2(8π)

∫
M3

Ω(F I) (5.145)

where we have given only the Einstein-Hilbert and Chern-Simons terms which are
relevant for the present discussion. The SU(2) Chern-Simons term Ω(F I) cannot be
determined by the dimensional reduction of the action (5.109). As in the previous
chapter, its presence in the effective action is implied by the equation of motion for
F I .

We finally find the central charges

cL = 6N1N5, cR = 6N1N5. (5.146)

The Kac-Moody levels of the SU(2) and gauge group Gα can be computed from the
Chern-Simons terms of the SU(2) and Gα gauge fields. The result is given by

SU(2) level : kSU(2) = 8πβ = N1N5, (5.147)

Gα level : kα = 2(vαN1 + ṽαN5). (5.148)

We now summarize what we have studied in this chapter. We have found
three analytic RG flow solutions in six and three dimensional supergravities. In six
dimensional supergravity, we have found the solution in which the internal compo-
nents, outside the AdS3 part, of the gauge fields, describe a configuration with N
instantons. We have discussed separately the case N = 1. This is interesting in the
sense that the solution can be obtained from uplifting the three dimensional solu-
tion. We have also given the corresponding solution in the Chern-Simons gauged
supergravity. With the reduction given in chapter 4, the solution can be lifted to six
dimensions and easily seen that it is indeed the same as the six dimensional solution.

The flows describe a deformation of the UV CFT by a vacuum expectation
value of a marginal operator. Interestingly, these RG flows have an interpretation
in terms of Yang-Mills instantons tunnelling between |N〉 Yang-Mills vacuum in the
UV and |0〉 in the IR, and this fact is in turn related to the different values of the
central charge at the two fixed points. In the general N instanton solution, there is
a subtlety of phase transitions occurring whenever v and ṽ change sign. We have
avoided this issue by assuming the positivity of both v and ṽ. We do not have a clear
interpretation of this phase transition in the dual CFT, so it would be interesting
to study this issue in more detail.
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Chapter 6

Gravitational and Yang-Mills
instantons in holographic RG flows

In this chapter, we continue our study of RG flow solutions. We will generalize the

solutions by including a gravitational instanton background in the form of asymp-

totically locally Euclidean (ALE) spaces of AN−1 type. A two-dimensional RG flow

from a UV (2,0) CFT to a (4,0) CFT in the IR is found in the context of (1,0) six

dimensional supergravity as in the previous chapter. The solution interpolates be-

tween AdS3×S3/ZN and AdS3×S3 geometries. We will also find solutions involving

non trivial gauge fields in the form of SU(2) Yang-Mills instantons on ALE spaces.

Both flows are vev flows driven by the vacuum expectation value of a marginal op-

erator.

We then move on to study RG flows in four dimensional field theories in type

IIB and type I′ string theories. In type IIB theory, we will find the flow interpolating

between AdS5 × S5/ZN and AdS5 × S5 geometries. The field theory interpretation

is that of an N = 2, SU(n)N quiver gauge theory flowing to N = 4, SU(n) gauge

theory. In type I′ theory, the solution describes an RG flow from N = 2 quiver

gauge theory with a product gauge group to N = 2 gauge theory in the IR, with

gauge group USp(n). The corresponding geometries are AdS5 × S5/(ZN × Z2) and

AdS5 × S5/Z2, respectively. We also explore more general RG flows, in which both

the UV and IR CFTs are N = 2 quiver gauge theories and the corresponding ge-

ometries are AdS5 × S5/(ZN × Z2) and AdS5 × S5/(ZM × Z2). Finally, we discuss

the matching between the geometric and field theoretic pictures of the flows.

6.1 RG flows in six dimensional supergravity

In this section, we will find flows solution in (1,0) six dimensional supergravity as

in the previous chapter. We begin with a review of relevant formulae we will use

throughout this section. We proceed by studying an RG flow solution on the ALE

background and compute the ratio of the central charges of the UV and IR fixed
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points. We then include SU(2) instantons on the ALE background. This is also

a generalization of the solution studied in the previous chapter in which the flow

involves only Yang-Mills instantons. We will see that the result is a combined effect

of gravitational instantons studied here and SU(2) instantons studied in the previous

chapter. Finally, we will discuss the left and right central charges with a subleading

correction including curvature squared terms on the gravity side.

6.1.1 An RG flow with graviational instantons

We now study a supersymmetric RG flow solution in (1,0) six dimensional super-

gravity. Most of the formulae used here are the same as those in section 5.3. The

difference is the flat R4 part of the metric being replaced by the ALE space. The

metric ansatz, in this case, is then given by

ds2
6 = e2f (−dx2

0 + dx2
1) + e2gds2

4 . (6.1)

The four dimensional metric ds2
4 will be chosen to be the gravitational multi-instantons

of [69]. This is an asymptotically locally Euclidean space (ALE) with the metric

ds2
4 = V −1(dτ + ~ω.d~x)2 + V d~x.d~x. (6.2)

The function V is given by

V =
N∑
i=1

1

|~x− ~xi| . (6.3)

The function ~ω is related to V via

~∇× ~ω = ~∇V, (6.4)

and the τ has period 4π. We also choose the gauge

~ω.d~x =
N∑
i=1

cos θidφi (6.5)

as in [124]. The point ~xi is the origin of the spherical coordinates (ri, θi, φi) with

ri = |~x− ~xi|. The ansatz for three-form field Ĝ3 and gauge field F̂ I are the same as

in section 5.3. Although ÂI = 0 in the present case, it is more convenient to work

with non-zero ÂI since equations with non-zero ÂI will be used later in the next

subsection.

We now recall the result from the previous chapter with some differences

emphasized. Solving BPS equations and equations of motion gives

Λ =
1

2
e−θ+2f + C1, Λ̃ =

1

2
eθ+2f + C2 (6.6)
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with constants of integration C1 and C2. Defining ε = e
f
2 ε̃ and taking g = −f , we

find the Killing spinor equation on the ALE space, from equation (5.80) with ∂α
replaced by Dα,

Dαε̃ = 0 (6.7)

which requires that ε̃ is a Killing spinor on the ALE space. Dα is a covariant
derivative on the ALE space. The ALE space has SU(2) holonomy and admits two
Killing spinors out of the four spinors. Therefore, the flow solution entirely preserves
1
4

of the eight supercharges, or N = 2 in two dimensional langauge, along the flow.
In this subsection, we study only the effect of gravitational instantons, so

we choose AI = 0 from now on. Using (6.6), we can write (5.66) and (5.70) as

� e−θ−2f = 0 and � eθ−2f = 0 . (6.8)

The � in these equations is the covariant scalar Laplacian on the ALE space

� =
1

V
[V 2∂2

τ + (~∇− ~ω∂τ ).(~∇− ~ω∂τ )]. (6.9)

Our flow is described by a simple ansatz as follows. We first choose θ = 0. It is
straightforward to check that all equations of motion as well as BPS equations are
satisfied. We then have only a single equation to be solved

� e−2f = 0 . (6.10)

We now choose f to be τ independent of the form

e−2f =
c

|~x− ~x1| (6.11)

where c is a constant. This is clearly a solution of (6.10) since for τ independent
functions, the � reduce to the standard three dimensional Laplacian ~∇.~∇. We will
now show that this solution describes an RG flow between two fixed points given by
|~x| → ∞ and ~x→ ~x1. We emphasize that the point ~x1 is purely conventional since
any point xi with i = 1 . . . N will work in the same way. Notice that for general
τ dependent solution, the solution to the harmonic function will be given by the
Green function on ALE spaces. The explicit form of this Green function will be
given in the next subsection. Furthermore, with τ dependent solution, the IR fixed
point of the flow can also be given by ~x→ ~y where ~y is a regular point on the ALE
space rather than one of the ALE canter ~xi. The crucial point in our discussion
is the behavior of the Green function near the fixed points such that the geometry
contains AdS3. However, for the present case, we restrict ourselves to the ansatz
(6.11).

When |~x| → ∞, we have

e−2f =
c

|~x− ~x1| →
c

ζ
, ζ ≡ |~x|,

V =
N∑
i=1

1

|~x− ~xi| →
N

ζ
. (6.12)
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In this limit, the ALE metric becomes

ds2
4 =

ζ

N
(dτ +N cos θdφ)2 +

N

ζ
(dζ2 + ζ2dΩ2

2) (6.13)

where we have written the flat three dimensional metric d~x.d~x in spherical coordi-
nates with the S2 metric dΩ2

2. The factor N cos θdφ arises from
∑N

i=1 cos θidφi since
in the limit |~x| → ∞ all (θi, φi) are the same to leading order. By changing the
coordinate ζ to r defined by ζ = r2

4N
, we obtain

ds2
4 = dr2 +

r2

4

[(
dτ

N
+ cos θdφ

)2

+ dΩ2
2

]
. (6.14)

The full six-dimensional metric is then given by

ds2
6 =

r2

4Nc
dx2

1,1 +
4Nc

r2
dr2 + 4Nc

[(
dτ

N
+ cos θdφ

)2

+ dΩ2
2

]
. (6.15)

The expression in the bracket is the metric on S3/ZN . So, the six dimensional
geometry is AdS3 × S3/ZN with the radii of AdS3 and S3/ZN being L∞ = 2

√
Nc.

When ~x→ ~x1, we find

e−2f =
c

ξ
, ξ ≡ |~x− ~x1|,

V =
N∑
i=1

1

|~x− ~xi| =
1

ξ
. (6.16)

The ALE metric becomes

ds2
4 = ξ(dτ + cos θ1dφ1)2 +

1

ξ
(dξ2 + ξ2dΩ2

2). (6.17)

In this limit,
∑N

i=1 cos θidφi ∼ cos θ1dφ1 to leading order. Writing ξ = r2

4
, we obtain

ds2
4 = dr2 +

r2

4
[(dτ − cos θ1dφ1)2 + dΩ2

2] (6.18)

which is the metric on R4. The six-dimensional metric now takes the form

ds2
6 =

r2

4c
dx2

1,1 +
4c

r2
dr2 + 4cdΩ2

3 (6.19)

where dΩ2
3 is the metric on S3. This geometry is AdS3×S3 with AdS3 and S3 having

the same radius 2
√
c. With the central charge of the dual CFT given by

c =
3L

2G
(3)
N

, (6.20)
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we find the ratio of the central charges

c1

c∞
=

L1G
(3)
N∞

L∞G
(3)
N1

=
L1Vol(S3)

L∞Vol(S3/ZN)

= N

(
L1

L∞

)4

=
1

N
(6.21)

where we have used G
(3)
N =

G
(6)
N

Vol(M)
for six-dimensional theory compactified on a com-

pact space M . The flow interpolates between AdS3×S3/ZN in the UV to AdS3×S3

in the IR. The UV CFT has (2,0) supersymmetry because of the ZN projection, so

our flow describes an RG flow from the (2,0) CFT in the UV to the (4,0) CFT in

the IR.

We now consider the central charge on the gravity side including the curva-

ture squared terms. The bulk gravity is three dimensional, and the Riemann tensor

can be written in terms of the Ricci tensor and Ricci scalar. To study the effect of

higher derivative terms, we add the RµνρσR
µνρσ term to the (1,0) six dimensional

action. The supersymmetrization of this term has been studied in [125]. We tem-

porarily drop the hat to simplify the expressions. The Lagrangian with the auxiliary

fields integrated out is given by [126]

L =
√−ge−2θ

[
R + 4∂µθ∂

µθ − 1

12
Gµνρ

3 G3µνρ

]
+

1

4
α
√−gR̃µνρσR̃µνρσ

+
1

16
βεµνρστλR̃αβ

µνR̃αβρσbτλ (6.22)

where R̃µνρσ is computed with the modified connection Γ̃ρµν = Γρµν − 1
2
Gρ

3µν . The

bλτ is the two-form field whose field strength is G3. Reducing (6.22) on S3 with

G3 = 2Sε3 + 2mω3 where ε3 and ω3 are volume forms on ds2
3 and S3, respectively

gives [126]

e−1L = e−2θ(R + 4∂µθ∂
µθ + 4m2 + 2S2) + 4mS

−2βm

[
RS + 2S3 − 1

4
εµνρ

(
Rab

µνωρab +
2

3
ω a
µ bω

b
ν cω

c
ρ a

)]
+

1

4
α(4RµνRµν −R2 − 8∂µS∂

µS + 12S4 + 4RS2). (6.23)

As shown in [126], S = −m on the AdS3 background, and m is related to the AdS

radius via m = 1
L

. The left and right moving central charges can be computed as in

[120, 127]. The result is [126]

cL =
3L

2G
(3)
N

(
1 +

4β

L2

)
, cR =

3L

2G
(3)
N

. (6.24)
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We find that

UV : cL =
48π2c2N

G
(6)
N

(
1 +

β

cN

)
, cR =

48π2c2N

G
(6)
N

, (6.25)

IR : cL =
48π2c2

G
(6)
N

(
1 +

β

c

)
, cR =

48π2c2

G
(6)
N

. (6.26)

We end this subsection by finding the dimension of the dual operator driving

the flow. This is achieved by expanding the metric around the UV fixed point,

|~x| → ∞ in our solution. e−2f and V can be expanded as

e−2f =
c

|~x− ~x1| ∼
1

ζ

(
1 +

a1 cosϕ1

ζ
− a2

1

2ζ2

)
+ . . . ,

V =
N∑
i=1

1

|~x− ~xi| ∼
N

ζ
+

N∑
i=1

(
ai cosϕi
ζ2

− a2
i

2ζ3

)
+ . . . (6.27)

where ϕi are angles between ~x and ~xi. We have also defined ζ ≡ |~x| and ai ≡ |~xi|.
By substituting (6.27) in (6.1), it is then straightforward to obtain the behavior of

the metric fluctuation which is of order O(r−2). This gives ∆ = 2 indicating that

the flow is driven by a vacuum expectation value of a marginal operator.

6.1.2 An RG flow with gravitational and SU(2) Yang-Mills
instantons

We now add Yang-Mills instantons to the solution given in the previous subsection.

This involves constructing instantons on ALE spaces. Some explicit instantons

solutions on an ALE space are given in [70]. We are interested in SU(2) instantons

whose explicit solutions can be written down. The solution can be expressed in the

form [70]

AIαdx
α = −ηIabeaEb lnH . (6.28)

The vielbein eaα and its inverse Eα
a for the metric (6.2) are given by

e0 = V −
1
2 (dτ + ~ω.d~x), el = V

1
2dxl, (6.29)

E0 = V
1
2
∂

∂τ
, El = V −

1
2

(
∂

∂xl
− ωl ∂

∂τ

)
. (6.30)

The ηIab’s are the usual ’t Hooft tensors and l = 1, 2, 3. This form resembles the

SU(2) instantons on the flat space R4. Self duality of F I requires that H satisfies

the harmonic equation on the ALE space

∇a∇aH = 0 . (6.31)

111



The solution is given by

H = H0 +
n∑
j=1

λjG(x, yj) (6.32)

where H0 and λj are constants, and G(x, yj) is the Green’s function on the ALE
space given in [124] with x = (τ, ~x). Its explicit form is

G(x, x′) =
sinhU

16π2|~x− ~x′|(coshU − cosT )
(6.33)

where

U(x, x′) =
1

2

N∑
i=1

ln

(
ri + r′i + |~x− ~x′|
ri + r′i − |~x− ~x′|

)
, ri = |~x− ~xi|,

T (x, x′) =
1

2
(τ − τ ′) +

N∑
i=1

tan−1

[
tan

[
φi − φ′i

2

]
cos

θi+θ
′
i

2

cos
θi−θ′i

2

]
. (6.34)

This solution is obviously τ dependent and can be thought of as a generalization of
the τ independent solution of [71]. The latter is subject to the constraint n ≤ N since
the finite action requires that the instantons must be put at the ALE centers. We
emphasize here that the ~yj inside the yj in (6.32) needs not necessarily coincide with
the ALE center ~xi. Therefore, ~yj could be any point, ALE center or regular point,
on the ALE space. However, in our flow solution given below, we will choose one of
the ~yj’s to coincide with one of the ALE centers ~xi’s which is, by our convention,
chosen to be ~x1.

As in the flat space case, we can write

F I
abF

Iab = −4�� lnH (6.35)

which can be shown by using the properties of ηIab given in [115] and the fact that
H is a harmonic function on the ALE space as well as the Ricci flatness of the ALE
space. Using this relation, we obtain

∗(F I ∧ F I) = ∗(∗F I ∧ F I) =
1

2
F I
ijF

Iij = −2�� lnH . (6.36)

Equations (5.66) and (5.70) become

� e−θ−2f = 4v�� lnH, (6.37)

� eθ−2f = 4ṽ�� lnH . (6.38)

The solutions to these equations are of the form

e−θ−2f = f1 + 4v� lnH,

eθ−2f = f2 + 4ṽ� lnH (6.39)
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where f1 and f2 are solutions to the homogeneous equations. The Green function
G(x, x′) in (6.33) is singular when x ∼ x′. The behavior of G(x, x′) in this limit is
[124]

G(x, x′) =
1

4π2|x− x′|2 (6.40)

where
|x− x′|2 = V |~x− ~x′|2 + V −1[τ − τ ′ + ~ω.(~x− ~x′)]2. (6.41)

We remove this singularity, in our case x′ ∼ yj, from our solution by adding G(x, yj),
with appropriate coefficients, to (6.39). We also choose f1 and f2 to be c

|~x−~x1| and
d

|~x−~x1| , respectively. This choice is analogous to the solution in the previous subsec-
tion with c and d being constants. Collecting all these, we find

e−θ−2f =
c

|~x− ~x1|

+4v

[
� ln

(
H0 +

n∑
j=1

λjG(x, yj)

)
+ 16π2

n∑
j=1

G(x, yj)

]
, (6.42)

eθ−2f =
d

|~x− ~x1|

+4ṽ

[
� ln

(
H0 +

n∑
j=1

λjG(x, yj)

)
+ 16π2

n∑
j=1

G(x, yj)

]
. (6.43)

The metric warp factor e−2f can be obtained by multiplying (6.42) and (6.43). We
now study the behavior of this function in the limits ~x→ ~x1 and |~x| → ∞.

As ~x→ ~x1, the terms involving G(x, x1) in the square bracket in (6.42) and
(6.43) do not contribute since the poles of the two terms cancel each other. The
other terms involving G(x, yj), ~yj 6= ~x1, are subleading compared to f1 and f2. We
find

e−θ−2f =
d

|~x− ~x1| , eθ−2f =
c

|~x− ~x1| (6.44)

or

e−2f =

√
cd

|~x− ~x1| . (6.45)

By using the coordinate changing as in the previous subsection |~x− ~x1| = r2

4
, it can

be shown that the metric is of the form of AdS3 × S3

ds2
6 =

r2

4
√
cd
dx2

1,1 +
4
√
cd

r2
dr2 + 4

√
cddΩ2

3 . (6.46)

As |~x| → ∞, the Green function (6.33) becomes

G(x, x′) =
1

16π2|~x− ~x′| (6.47)
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because U defined in (6.34) becomes infinite. We find

e−θ−2f =
c

|~x− ~x1| + 4v
n∑
i=1

1

|~x− ~yi| ∼
c+ 4vn

|~x| ,

eθ−2f =
d

|~x− ~x1| + 4ṽ
n∑
i=1

1

|~x− ~yi| ∼
d+ 4ṽn

|~x| . (6.48)

The warp factor is now given by

e−2f =

√
(c+ 4nv)(d+ 4nṽ)

|~x| . (6.49)

The six-dimensional metric becomes AdS3 × S3/ZN , with |~x| = r2

4N
,

ds2
6 =

r2

`2
dx2

1,1 +
`2

r2
dr2 + `2

[(
dτ

N
+ cos θdφ

)2

+ dΩ2
2

]
(6.50)

where the AdS3 radius is given by

` = 2
√
N [(c+ 4nv)(d+ 4nṽ)]

1
4 . (6.51)

The ratio of the central charges can be found in the same way as that in the previous

subsection and is given by

c1

c∞
= N

(
L1

L∞

)4

=
cd

N(c+ 4nv)(d+ 4nṽ)
. (6.52)

For N = 1, the ALE space becomes a flat R4, and we obtain the result of the

previous chapter. As in the previous subsection, the solution describes an RG flow

from a (2,0) CFT to a (4,0) CFT in the IR. The central charges to curvature squared

terms are given by

UV : cL =
48π2(c+ 4nv)(d+ 4nṽ)N

G
(6)
N

(
1 +

β

N
√

(c+ 4nv)(d+ 4nṽ)

)
,

cR =
48π2(c+ 4nv)(d+ 4nṽ)N

G
(6)
N

, (6.53)

IR : cL =
48π2cd

G
(6)
N

(
1 +

β

cd

)
, cR =

48π2cd

G
(6)
N

. (6.54)

As in the previous subsection, it can be shown that this is also a vev flow

driven by a vev of a marginal operator of dimension two.
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6.2 RG flows in type IIB and type I′ theories

In this section, we study an RG flow solution in type IIB theory on an ALE back-
ground. Since there is no gauge field in type IIB theory, the corresponding flow
solution only involves gravitational instantons. We also consider a solution in type
I′ theory which is a T-dual of the usual type I theory on T 2 and can also be obtained
from type IIB theory on T 2/(−1)FLΩI2. As we will see, in type I′ theory, there are
more possibilities of the gauge groups for the quiver gauge theory in the UV and,
as a result, more possible RG flows.

6.2.1 RG flows in type IIB theory

We now study a supersymmetric flow solution in type IIB theory. We begin with
supersymmetry transformations of the gravitino ψM and the dilatino χ. These can
be found in various places, see for example [128, 129], and are given by

δχ = iPMΓMε∗ − i

24
FM1M2M3ΓM1M2M3ε,

δψM = ∇Mε− i

1920
F

(5)
M1M2M3M4M5

ΓM1M2M3M4M5ΓMε

+
1

96
FM1M2M3(Γ M1M2M3

M − 9δM1
M ΓM2M3)ε (6.55)

where

PM =
1

2
(∂Mφ+ ieφ∂MC0),

FM1M2M3 = e−
φ
2HM1M2M3 + ie

φ
2FM1M2M3 . (6.56)

In our ansatz, we choose φ = 0, C0 = 0 and FM1M2M3 = 0, so δχ = 0 is
automatically satisfied. The ten dimensional metric is given by

ds2 = e2fdx2
1,3 + e2gds2

4 + e2h(dr2 + r2dθ2). (6.57)

The metric ds2
4 is the ALE metric in (6.2), and the functions f , g and h depend only

on ALE coordinates ya and r. We will use indices µ, ν = 0, . . . , 3, a, b = 4, . . . , 8.
The ansatz for the self-dual five-form field strength is

F (5) = F̃ + ∗̂F̃ (6.58)

where ∗̂ is the ten dimensional Hodge duality. We choose F̃ to be

F̃ = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ (U (1) +Kdr) + rG(3) ∧ dr ∧ dθ + rG̃(4) ∧ dθ,
∗̂F̃ = e−4f (e2(g+h) ∗ U (1) + e4g ∗Krdθ) + e4f−2(g+h)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ ∗G(3)

+e4(f−g) ∗ G̃(4)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr (6.59)
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with all functions depending only on ya and r. We have used the convention
ε01234567rθ = 1. The notation X(n) means the n-form X on the four dimensional
space whose metric is ds2

4. The Bianchi identity DF (5) = 0 and self duality condi-
tion impose the conditions

dU (1) = 0, dK = ∂rU
(1) ⇒ U (1) = dΛ, K = ∂rΛ + c1,

∗G(3) = e−4f+2(g+h)dΛ, ∗G̃(4) = e−4(f−g)K . (6.60)

The ∗ and d are the Hodge dual and exterior derivative on ds2
4, and c1 is a constant.

From (6.57), we can read off the vielbein components

eµ̂ = efdxµ, eâ = egēâ, er̂ = ehdr, eθ̂ = ehrdθ . (6.61)

The ēâ is the vielbein on the ALE space. The spin connections are given by

ωθ̂r̂ = e−h
(

1

r
+ h′

)
eθ̂, ωθ̂â = e−g∂ahe

θ̂, ωr̂â = e−g∂ahe
r̂ − e−hg′eâ,

ωâ
b̂

= e−g(∂bgδ
a
c − ∂agδbc)eĉ + e−gω̄â

b̂
, ωµ̂â = e−g∂afe

µ̂,

ωµ̂r̂ = e−hf ′eµ̂ (6.62)

where ω̄â
b̂

are spin connections on the ALE space. We also use the following ten
dimensional gamma matrices

Γµ̂ = γµ̂ ⊗ I4 ⊗ I2, Γâ = γ̃5 ⊗ γâ ⊗ I2,

Γr̂ = γ̃5 ⊗ γ̂5 ⊗ σ1, Γθ̂ = γ̃5 ⊗ γ̂5 ⊗ σ2 . (6.63)

The chirality condition on ε is Γ11ε = γ̃5 ⊗ γ̂5 ⊗ σ3ε = ε. γ̃5 = iγ0γ1γ2γ3 and
γ̂5 = γ4γ5γ6γ7 are chirality matrices in xµ and ya spaces, respectively. With only
5-form turned on, the relevant BPS equations come from

δψM = ∇Mε− i

1920
F/(5)ΓMε (6.64)

where F/(5) = F
(5)
M1M2M3M4M5

ΓM1M2M3M4M5 . It is now straightforward to show that all
the BPS equations are satisfied provided that we choose

h = g = −f, Λ = 2e4f , ε = e
1
2
f+ i

2
σ3θ ε̂ (6.65)

with ε̂ being the Killing spinor on the ALE space and satisfying the condition

∇̄aε̂ = 0 . (6.66)

Furthermore, ε̂ satisfies a projection condition γ5ε̂ = ε̂. So, the solution is again 1
4

supersymmetric along the flow. With these conditions inserted in (6.58), we obtain
the 5-form field

F (5) = 2dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ d̂Λ + 2e−8f ∗̂d̂Λ (6.67)
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where now ∗̂ and d̂ are those on the six dimensional space ALE×R2 with coordinates
(ya, r, θ). Equation DF (5) = 0 then gives

d̂(e−8f ∗̂d̂Λ) = d̂∗̂d̂e−4f = 0 . (6.68)

So, the function e−4f satisfies a harmonic equation on ALE×R2.
It turns out to be difficult to find the explicit form of this harmonic function.

This function can be constructed from the Green’s function whose existence has been
shown in [130], see also [131]. We now consider the behavior of this funciton at the
two fixed points. The six dimensional metric is given by

ds̃2 = V −1(dτ + ~ω.d~x)2 + V d~x.d~x+ dr2 + r2dθ2 . (6.69)

As |~x| → ∞, with the coordinate changing given in the previous section, the ALE
metric become R4/ZN . So, the metric of the whole six dimensional space can be
written as

ds̃2 = dR2 +R2ds2(S5/ZN) (6.70)

where R2 = 4N |~x|+ r2.
Similarly, we can show that as ~x→ ~x1, the metric becomes the flat R6 metric

ds̃2 = dR̃2 + R̃2dΩ2
5 (6.71)

where R̃2 = 4|~x− ~x1|+ r2.
So, in order to interpolate between two conformal fixed points, this function

must satisfy the boundary condition

e−4f ∼ 1

R4
. (6.72)

at both ends. There is also a relative factor of N between the two end points. This is
due to the fact that the integral of the harmonic equation (6.68) on ds̃2 must vanish,
and this integral is in turn reduced to the integral of the gradient of the Green’s
function over S5 and S5/ZN at the two end points. So, with all these requirements,
the required harmonic function has boundary conditions

~x→ ~x1 : e−4f =
C

R4
,

|~x| → ∞ : e−4f =
CN

R4
. (6.73)

The full metrics at both end points take the form

~x→ ~x1 : ds2
10 =

R2

√
C
dx2

1,3 +

√
C

R2
dR2 +

√
CdΩ2

5

|~x| → ∞ : ds2
10 =

R̃2

√
NC

dx2
1,3 +

√
NC

R̃2
dR̃2 +

√
NCds2(S5/ZN). (6.74)
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We obtain the two AdS5 radii L1 = C
1
4 and L∞ = (CN)

1
4 . The central charge is

given by [132]

a = c =
πL3

8G
(5)
N

. (6.75)

The ratio of the central charges is given by

a1

a∞
=

c1

c∞
=

L8
1Vol(S5)

L8
∞Vol(S5/ZN)

= N

(
L1

L∞

)8

=
1

N
. (6.76)

The flow describes the deformation of N = 2 quiver SU(n)N gauge theory in the

UV to N = 4 SU(n) SYM in the IR in which the gauge group SU(n) is the diagonal

subgroup of SU(n)N .

We now compute the central charges to curvature squared terms. Higher

derivative corrections to the central charges in four dimensional CFTs have been

considered in many references, see for example [132, 133, 134]. The five dimensional

gravity Lagrangian with higher derivative terms can be written as

L =

√−g
2κ2

5

(R + Λ + αR2 + βRµνR
µν + γRµνρσR

µνρσ). (6.77)

Λ is the cosmological constant. The central charges a and c appear in the trace

anomaly

〈T µµ〉 =
c

16π2

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2

)
− a

16π2
(RµνρσR

µνρσ − 4RµνR
µν +R2). (6.78)

Compare this with the holographic Weyl anomaly gives

a =
πL3

8G
(5)
N

[
1− 4

L4
(10α̂ + 2β̂ + γ̂)

]
,

c =
πL3

8G
(5)
N

[
1− 4

L4
(10α̂ + 2β̂ − γ̂)

]
(6.79)

where we have separated the AdS5 radius out of α = α̂
L2 , β = β̂

L2 and γ = γ̂
L2 .

Only γ can be determined from string theory calculation. Furthermore, there is an

ambiguity in α and β due to field redefinitions.

For N = 4 SYM with gauge group SU(n) in the IR, there is no correction

from RµνρσRµνρσ term. To this order, the central charges are then given by

aIR = cIR =
π4L8

8G
(10)
N

=
π4C2

8G
(10)
N

. (6.80)
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On the other hand, in the UV, we have N = 2, SU(n)N quiver gauge theory.

The central charges are

aUV =
π4NC2

8G
(10)
N

[
1− 4

NC
(10α̂ + 2β̂ + γ̂)

]
,

cUV =
π4NC2

8G
(10)
N

[
1− 4

NC
(10α̂ + 2β̂ − γ̂)

]
. (6.81)

The constant C in our solution is related to the number of D3-branes, N3. The

leading term in a and c is of order C2 while the subleading one is of order C as

expected. The analysis of the metric fluctuation can be carried out as in the six

dimensional case and gives ∆ = 2. The flow is a vev flow driven by a vacuum

expectation value of a relevant operator of dimension two.

Before discussing the RG flow on the dual field theory, let us recall that

ALE gravitational instantons admit a hyperkahler quotient construction, which can

be understood nicely in terms of the moduli space of a transverse (regular) D-

brane probe moving off the orbifold fixed point in R4/ZN [77], [78]. Starting with

U(N) valued fields X, X̄ on which one performs the ZN projection, one denotes

the invariant (one-dimensional) components by Xi,i+1, X̄i+1,i, for i = 0, . . . , N − 2,

XN−1,0, X̄0,N−1, which are the links of the quiver diagram corresponding to the AN−1

extended Dynkin diagram. The resulting gauge group is U(1)N , with a trivially

acting center of mass U(1). It is convenient to introduce the doublet fields Φr

Φr =

(
Xr−1,r

X̄†r,r−1

)
(6.82)

for r = 1, . . . , N − 1, and

Φ0 =

(
XN−1,0

X̄†0,N−1

)
(6.83)

After removing the trivial center of mass U(1), the gauge group is U(1)N−1, and

the Φ’s have definite charges with respect to it. After introducing Fayet-Iliopoulos

(FI) terms ~Dr, r = 0, . . . , N − 1, with
∑

r
~Dr = 0, corresponding to closed string,

blowing-up mouduli, one gets the following potential:

U =
N−1∑
r=0

(
Φ†r~σΦr − Φ†r+1~σΦr+1 + ~Dr

)2

. (6.84)

and the N − 1 independent D-flatness conditions, are then given by:

Φ†r+1~σΦr+1 − Φ†r~σΦr = ~Dr . (6.85)
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The ALE metric (6.2) can be obtained after defining the ALE coordinate and centers

~x = Φ†0~σΦ0, ~xi =
i−1∑
r=0

~Dr, (6.86)

respectively, and computing the gauge invariant kinetic term on the Φ’s, subject to

the D-terms constraints [78].

This procedure can be generalized to the case of n regular D3-branes trans-

verse to the ALE space. Starting with U(nN) valued Chan-Paton factors, the

resulting theory after projection, is the N = 2 SU(n)N gauge theory, with hyper-

multiplets formed by the fields Xij and X̄ij related to the links of the quiver diagram

as above, but now in the (n, n̄), (n̄, n) representations of the SU(n)’s at the vertices

of the quiver diagram. In addition, there are adjoint scalars Wi in the adjoint of

SU(n), belonging to the vector multiplets. The theory is conformally invariant and

describes the dual N = 2 SCFT at the UV point.

In order to match with the RG flow from the UV to IR described previously

on the gravity side, which gives an N = 4 theory in the IR, we consider the Higgs

branch of the N = 2 UV theory discussed above. Therefore, we set 〈Wi〉 = 0 and

give vev’s to the hypermultiplets Xij, X̄ij. The equations governing the vacua of the

theory are then the obvious matrix generalization of (6.85), with N−1 independent

triplets of FI terms for the N − 1 U(1)’s, in an SU(2)R invariant formulation or can

be written in and N = 1 fashion directly in terms of Xij, X̄ij and their hermitean

conjugates. In any case, it is clear that by giving digonal vev’s to X ’s (X̄’s)

〈Xij〉 = xijIn, for all i, j (6.87)

compatible with the D-flatness conditions, we can break SU(n)N down to the diag-

onal SU(n), with a massless spectrum coinciding with that of N = 4 SYM theory

for SU(n) gauge group. A similar flow, from N = 1 to N = 4, has been studied in

[74] and [76] in the case of the ALE space C3/Z3.

Notice that we can have intermediate possibilities for the IR point. In terms

of the geometry, this can happen when some of the ALE centers xi coincide with

each other. Recalling the ALE metric, we have already seen that in the UV

V ∼ N

|~x| , |~x| → ∞ .

In the IR, if we let M centers, M < N to coincide with ~x1 say, and zoom near ~x1,

we have

V ∼ M

|~x− ~x1| , ~x→ ~x1 . (6.88)

The ALE geometry then develops a ZM singularity in the IR. Therefore, all possi-

bilities with any values of N and M should be allowed as long as M < N . We can
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also compute the ratio of the central charges by repeating the same procedure as in
the previous section and end up with the result

aIR
aUV

=
cIR
cUV

=
M

N
< 1 . (6.89)

On the other hand, on the field theory side, we can partially Higgs the gauge group
SU(n)N down to SU(n)M , for any M < N . That is we have flows between the
corresponding quiver diagrams.

6.2.2 RG flows in Type I′ string theory

As we mentioned, type I′ is obtained from type I theory by two T-duality transforma-
tions along the two cycles of T 2. In this process, D9-branes will become D7-branes
and the SO(32) gauge group is broken to SO(8)4, corresponding to the four fixed
points of T 2. It has been shown in [73], that the resulting theory is dual to type
IIB theory on T 2/(−1)FLΩI2. One then considers a stack of D3-branes near one of
the fixed points and in the near horizon geometry one gets AdS5 × S5/Z2. This
corresponds to a dual N = 2 CFT, with USp(2n) gauge group and SO(8) global
flavor symmetry [135, 136], with matter hypermultiplets in the antisymmetric rep-
resentation of USp(2n) and also in the (real) (2n, 8) of USp(2n) × SO(8). In our
case, we are replacing R4 with ALE space, or in the orbifold limit, with R4/ZN .
Similar to the type IIB case, the UV field theory will be obtained by performing the
orbifold ZN projection of the above field content, which in turn will be recovered at
the IR point after Higgsing.

On the supergravity side, we will restrict our analysis to the two-derivative
terms in the affective action. Therefore, the ansatz of the previous subsection can
be carried over to this case. In particular, the Bianchi identity for the 5-form will
be unchanged. Otherwise, one would have to switch on also D7-brane instantons
on the ALE space in order to compensate for the R ∧ R term present on the right-
hand side of the Bianchi identity at order O(α′). The analysis in this case is closely
similar to the previous case apart from the facts that we start with 16 supercharges
in ten dimensions rather than 32, and the final equation for e−4f is the same as
before. Following similar analysis as in the previous subsection, we can show that
the solution interpolates between AdS5×S5/(ZN×Z2) in the UV and AdS5×S5/Z2

in the IR, with Z2 being the orientation reversal operator Ω.
As mentioned above, the field theory interpretation will involve flows be-

tween N = 2 quiver gauge theories with different gauge groups. The gauge group
in the UV will be obtained by considering orbifolding/orientifolding a system of
D3/D7 branes, whereas the IR group will be obtained by Higgsing, like in type IIB
case. According to [77], the choice of gauge groups depends on the values of N as
well as on the choice of a ZN phase relating Ω and ZN projections. In our case,
the D3-brane worldvolume gauge theory descends from the theory on D5-brane for
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which γ(Ω)t = −γ(Ω). In what follows, we will use the notations of [77] and also

refer the reader to this reference for more detail on the quiver gauge theory. We

first review the consistency conditions for the ZN × Z2 actions [77]

Ω2 = 1 : γ(Ω) = χ(Ω)γ(Ω)t,

Ωg = gΩ : γ(g)γ(Ω)γ(g)t = χ(g,Ω)γ(Ω),

gN = 1 : γ(g)N = χ(g)1 (6.90)

where g ∈ ZN and χ(Ω), χ(g) and χ(g,Ω) are phases. As shown in [77], we can set

χ(g) = 1. Furthermore, we are interested in the case of χ(Ω) = −1 on the D3-branes

and χ(Ω) = +1 on the D7’s. In type I theory, there are five cases to consider, but

only three of them are relevant for us. These are N odd, χ(g,Ω) = 1, N even,

χ(g,Ω) = 1 and N even, χ(g,Ω) = ξ with ξ = e
2πi
N . We now consider RG flows in

these cases.

χ(g,Ω) = 1, N odd

In this case, the gauge group is given by

G1 = USp(v0)× [U(v1)× U(v2)× . . .× U(vN−1
2

)]

= {U0, U1, . . . , UN−1|UiU t
N−i = 1, 1 ≤ i ≤ N − 1}. (6.91)

Our convention is that USp(2n) has rank n. The full configuration involves also

the quiver theory on D9-branes which give rise to D7-branes in our case. Our main

aim here is to study the symmetry breaking of the gauge group on D3-branes. The

presence of D7-branes is necessary to make the whole system conformal. For the UV

quiver gauge theory to be conformal, we choose v0 = v1 = . . . = vN−1
2

= n with an

appropriate number of D7-branes such that the field theory beta function vanishes.

Using the notation of [77], we denote the vector spaces associated to the nodes of

the inner quiver, the D3-branes, by Vi and those of the outer quiver on D7-branes by

Wi. There is also an identification of the nodes Vi = VN−i and similarly for Wi’s, see

[77]. This condition gives rise to the relation between the gauge groups of different

nodes as shown in (6.91).

The gauge theory on the D7-branes is described by similar gauge group

structure but with USp(2n) replaced by O(2n) due to the opposite sign of χ(Ω).

In addition to the vector multiplets, there are hypermultiplets, X, X̄, associated to

the links connecting the Vi’s and I, J related to the links connecting Vi’s and Wi’s,

in bifundamental representations of the respective gauge groups. The vanishing of

the beta function can be achieved by setting w0 = 4, wN−1
2

= wN+1
2

= 2 and the

other wi’s zero. Notice that the non trivial gauge groups on the outer quiver are

associated with two types of the nodes of the inner quiver. The first type consists of
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the nodes with USp gauge groups while the second type contains nodes connected

to each other by antisymmetric scalars. The corresponding outer gauge groups for

these two types are SO(4) and U(2), respectively.

It is easy to see the reason for this pattern of inner/outer gauge groups: the

point is that for the inner nodes with U(2n) gauge groups and connected by U(2n)

bifundamental scalars, the corresponding part of the quiver diagram is essentially

the same as the quiver diagram arising from type IIB theory in which all the gauge

groups are unitary. It is well-known that this quiver gauge theory is supeconformal

without any extra field contents.

As observed in [77, 137], the above construction matches with the ADHM

construction of SO(n) instantons on ALE spaces: for example, the assignement of

D7-brane gauge group given above means that, at the boundary of the ALE space,

which has fundamental group π1 = ZN , the SO(8) flat connection has holonomy

which breaks SO(8) down to SO(4) × U(2) ∼ SO(4) × SU(2) × U(1). On the

other hand, G1 is the ADHM gauge group, related to the number of instantons

(D3-branes).

We now consider a Higgsing of this theory, and we need to be more precise

about the representations of the matter fields. The nodes are connected to each

other by the bifundamental scalars X and X̄. These scalars are subject to some

constraints given by

X01 = −(XN−1,0ω2n)t, XN−1
2
,N+1

2
= −(XN−1

2
,N+1

2
)t,

Xi,i+1 = (XN−i−1,N−i)
t, 1 ≤ i ≤ N − 3

2
,

X̄10 = (ω2nX̄0,N−1)t, X̄N+1
2
,N−1

2
= −(X̄N+1

2
,N−1

2
)t,

X̄i+1,i = (X̄N−i,N−i−1)t, 1 ≤ i ≤ N − 3

2
(6.92)

where ω2n represents the symplectic form of dimension 2n. We will show that

after the RG flow, the theory will flow to USp(2n), N = 2 gauge theory in which

the gauge group USp(2n) is the diagonal subgroup of the USp(2n) and USp(2n)

subgroups of all the U(2n)’s. We first illustrate this with the simple case of N = 5.

The corresponding quiver diagram is shown in Figure 6.1. In the figure, the outer

quiver and the inner one are connected to each other by scalar fields Ii, Ji (we have

omitted the X̄’s on the diagram). Notice that the gauge groups in the outer quiver

are orthogonal and unitary groups due to the opposite sign of χ(Ω). We will be

interested in the Higgs branch, i.e. we set the vev’s of the scalars in the vector

multiplets to zero. Furthermore, we will also set 〈I〉 = 〈J〉 = 0 in all the cases

we will discuss in the following. The D-flatness conditions are then obtained from

those of the type IIB case by suitable projections/identifications on the X’s and

X̄’s. The main difference, compared to the type IIB case, comes from the gauge

group, which involve an USp(2n) factor at the 0-th vertex and has U(2n) factors
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which are related in the way indicated in Figure 6.1: as a result, the corresponding

FI terms obey ~D0 = 0, ~D1 = − ~D4, ~D2 = − ~D3, with similar relations for higher odd

N .

X01

X12
X23 X34

X40

I0

I2

I3

J0

O(4)

U(2)
U(2)t,−1

J2

J3

USp(2n)

U(2n)t,−1U(2n) U(2n)

U(2n)t,−1

Figure 6.1: Quiver diagram for χ(Ω) = −1, χ(g,Ω) = 1 and N = 5.

We will give only the flows in which X and X̄ acquire vev’s. The above

conditions then give

X01 = −X t
40, X12 = X t

34, X23 = −X t
23 (6.93)

and similarly for X̄. We choose the vev’s as follows

〈X01〉 = aI2n, 〈X12〉 = bI2n, 〈X23〉 = cω2n (6.94)

where a, b and c are constants. The vev’s for X̄ are similar but with different

parameters ā, b̄ and c̄. Notice also that we only need to give vev’s to the independent

fields since the vev’s of other fields can be obtained from (6.93). From now on, we

will explicitly analyze only the X’s. The analysis for X̄’s follows immediately.

The field Xij transforms as giXijg
−1
j where gi and gj are elements of the

two gauge groups, Gi and Gj, connected by Xij. The unbroken gauge group is the

subgroup of USp(2n)×U(2n)× . . .×U(2n) that leaves all these vev’s invariant. The

invariance of X01 requires that g1 is a symplectic subgroup of U(2n) and g1 = g0.

The invariance of X12 imposes the condition g1 = g2 = g0 and so on. In the end,

we find that the gauge group in the IR is USp(2n)diag. For any odd N , the whole

process works in the same way apart from the fact that there are more nodes similar
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to X12. These nodes can be given vev’s proportional to the identity. Taking this

into account, we end up with scalar vev’s

〈X01〉 = a01I2n, 〈XN−1
2
,N+1

2
〉 = aN−1

2
,N+1

2
ω2n,

〈Xi,i+1〉 = ai,i+1I2n, 1 ≤ i ≤ N − 3

2
, (6.95)

and the unbroken gauge group is USp(2n)diag. In addition, one can verify that

the masless spectrum is precisely that of the superconformal USp(2n) theory with

SO(8) global symmetry described at the beginning of this section.

χ(g,Ω) = 1, N even

In this case, we have the gauge group

G2 = USp(v0)× [U(v1)× . . .× U(vN
2
−1)]× USp(vN

2
)

=

{
U0, . . . , UN−1|UiU t

N−i = 1, 1 ≤ i ≤ N − 1, i 6= N

2

}
. (6.96)

Compared to the previous case, there is an additional USp(vN
2

) gauge group at the

N
2

th
node. As before, we choose v0 = v1 = . . . = vN

2
= 2n and w0 = wN

2
= 4 with

other wi’s being zero, corresponding to the breaking of the D7-brane gauge group

from SO(8) down to SO(4)× SO(4). The scalars are subject to the constraints

X01 = ω2n(XN−1,o)
t, XN

2
,N+2

2
= −ω2n(XN−2

2
,N

2
)t,

Xi,i+1 = (XN−i−1,N−i)
t, 1 ≤ i <

N − 2

2
. (6.97)

The corresponding quiver diagram for N = 4 is shown in Figure 6.2.

As for the FI terms in this case, clearly ~D0 = ~D2 = 0 and ~D1 = − ~D3, with

the obvious generalization for higher even N . We can choose the following vev’s to

Higgs the theory

〈X01〉 = x01I2n, 〈XN−2
2
,N

2
〉 = xN−2

2
,N

2
I2n,

〈Xi,i+1〉 = xi,i+1I2n, 1 ≤ i <
N − 2

2
. (6.98)

The symmetry breaking is the same as in the previous case. These vev’s are invariant

under the unbroken gauge group USp(2n)diag, and one can verify that massless

hypermultiplets fill the spectrum of the N = 2 theory discussed in the previous

case.
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I0

I2

X01

X12 X23

X30

O(4)

O(4)

USp(2n)

USp(2n)

J0

J2

U(2n)t,−1U(2n)

Figure 6.2: Quiver diagram for χ(Ω) = −1, χ(g,Ω) = 1 and N = 4.

χ(g,Ω) = ξ, N even

It is possible to choose χ(g,Ω) = ξ for N even as shown in [77], and this is our last

case. We adopt the range of the index i from 1 to N in this case. The relevant

gauge group is given by

G3 = U(v1)× U(v2)× . . .× U(vN
2

)

= {U1, . . . , UN |UiU t
N−i+1 = 1, 1 ≤ i ≤ N}. (6.99)

We are interested in the case v1 = v2 = . . . = vN
2

= 2n and w1 = wN
2

= 2 with other

wi’s being zero, i.e. the D7 gauge group is now broken down to U(2) × U(2). The

conditions on the scalar fields are

XN1 = −X t
N1, XN

2
,N+2

2
= −(XN

2
,N+2

2
)t,

Xi,i+1 = (XN−i,N−i+1)t, 1 ≤ i ≤ N − 2

2
. (6.100)

The quiver diagram for N = 4 and ξ = i is shown in Figure 6.3. Notice the relations
~D1 = − ~D4, ~D2 = − ~D3 and so on for higher even N . There are two possibilities for

Higgsing this theory. The first one involves only the vev’s

〈Xi,i+1〉 = bi,i+1I2n, 1 ≤ i ≤ N − 2

2
. (6.101)
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The unbroken gauge group is the diagonal subgroup of U(v1)×. . .×U(vN
2

), U(2n)diag.
The second possibility is to give vev’s to all scalars including the antisymmetric ones

〈Xi,i+1〉 = bi,i+1I2n, 1 ≤ i ≤ N − 2

2
,

〈XN1〉 = bN1ω2n, 〈XN
2
,N+2

2
〉 = bN

2
,N+2

2
ω2n . (6.102)

In this case, the resulting gauge group is further broken down to USp(2n)diag.

U(2n)

U(2n)

U(2n)t,−1

U(2n)t,−1

U(2)t,−1

X12

X23

X34

X41

U(2)

U(2)

I1

I2

I3

I4

U(2)t,−1

J2

J1

J4

J3

Figure 6.3: Quiver diagram for χ(Ω) = −1, χ(g,Ω) = i and N = 4.

6.3 Symmetry breaking and geometric interpre-

tations

In this section, like in the type IIB case, we consider more general symmetry break-
ing patterns in the field theory and match them with the possible flows emerging
from the supergravity solution. This involves the cases in which the gauge groups
in the quiver gauge theory are not completely broken down to a single diagonal sub-
group. After symmetry breaking, the IR CFT is again a quiver gauge theory with
a reduced number of gauge groups, and of course, the number of nodes is smaller.
We will show that some symmetry breaking patterns are not possible on the field
theory side, at least by giving simple vev’s to scalar fields.

We now consider the possibility of RG flows from a UV CFT which is a
quiver gauge theory with the corresponding geometry AdS5 × S5/(ZN × Z2) to an
IR CFT which is associated to the geometry AdS5 × S5/(ZM × Z2) and M < N .
We saw that in the type IIB case this was always possible, and geometrically it was
related to geometries developing a ZM orbifold singularity obtained by bringing M
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centers together in the smooth ALE metric.
Let us start from the field theory side. It is easy to see that it is not always

possible to have a flow from one quiver diagram to the other. For example, we
consider a flow from the diagram in Figure 6.1, N = 5, to Figure 6.2, N = 4. This
can be done by giving a vev to X23 and X̄32 which transform in the antisymmetric
tensor representation of U(2n). The gauge group U(2n) at the node v2 and v3 will be
broken to USp(2n). The resulting IR theory is then described by the quiver diagram
in Figure 6.2. Continuing the process by Higgsing Figure 6.2 to the diagram with
N = 3, we find that it is not possible to completely break the USp(2n) gauge group
at v2 with the remaining scalars transforming in the antisymmetric tensor represen-
tation of U(2n). It might be achieved by giving a vev to complicated composite
operators, but we have not found any of these operators. Note also that this is the
case only for reducing the value of N by one unit. If we Higgs the N = 6 to N = 4
or in general N to N − 2, this flow can always be achieved by giving vev’s to X12

and X̄21. The gauge groups U(2n) at v1 and v2 as well as at their images vN−1 and
vN−2 will be broken to U(2n)diag. The resulting quiver diagram is the same type as
the original one with two nodes lower. What we are interested in is the problematic
cases in which the flow connects two types of diagrams and lowers N by one unit.

We now begin with a diagram of the type shown in Figure 6.3. As mentioned
in the previous section, this type is only possible for even N . It is easily seen that
giving a vev to the U(2n) antisymmetric scalars X1N and X̄N1 reduces the diagram
to the N −1 diagram of the type shown in Figure 6.1. Furthermore, a diagram with
N − 2 nodes of the type in Figure 6.2 can be obtained by giving an additional vev
to XN

2
,N+2

2
and X̄N+2

2
,N

2
. Now, the problem arises in deriving this diagram from the

odd N diagram. As before, the USp(2n) gauge groups at v0 must be completely
broken leaving only scalars in the U(2n) antisymmetric tensor. Actually, it seems to
be impossible to obtain this type of quiver diagrams from any of the other two types
by Higgsing in a single or multiple steps since the process involves the disappearance
of the USp gauge group.

We now discuss how the above field theory facts match with the geometry on
the supergravity side. We will follow the approach in [78], where some peculiarities
of type I string theory on ZN orientifolds where clarified. The idea is to use a reg-
ular D1-brane (in type I theory), to probe the background geometry, following the
same logic explained for the type IIB case in the previous subsection. In that case,
we saw that one could reproduce the full smooth ALE geometry by switching on
FI terms, which are background values of closed string moduli. The ZN projection
has generically the effect of reducing unitary groups down to SO/USp subgroups
and/or of identifying pairs of unitary groups, in a way which depends on the details
of the projection. We can indeed consider a probe D1-brane in the present orien-
tifold context and derive its effective field theory for the three cases discussed in the
previous section by assuming an orthogonal projection χ(Ω) = 1. In the following,
the diagrams in Figures 6.1, 6.2 and 6.3 will be referred to as type I, II and III
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quivers, respectively.

For the case 1, χ(g,Ω) = 1, N = 2m + 1 odd, we will have m pairs of

conjugate U(1)’s as gauge groups, (with an O(1) “gauge group” at the 0-th vertex

of the inner quiver diagram of Figure 6.1), with appropriate identifications of the

scalars X, X̄. For example for N = 3, we have X01 = X20 plus X12, similarly for

X̄ fields. Consequently, for the FI terms, we will have D0 = 0 and Di = −DN−i,

i = 1, . . . ,m. Translating these data to the ALE centers ~xi via (6.86) as in the

previous subsection, we see that for N = 2m+ 1 there are m Z2 singularities. There

is in addition a simple pole in the function V , which is however a smooth point in

the geometry as long as it is kept distinct from the other poles. The function V in

the ALE metric (6.2) is then given by

V =
1

|~x− ~x1| +
m+1∑
i=2

2

|~x− ~xi| . (6.103)

If we choose the IR point by setting ~x→ ~x1, we end up with the flow from

N = 2 quiver gauge theory of type I to the N = 2, USp(2n)diag gauge theory. The

flow from type I quiver with N = 2m+ 1 to type I quiver with N = 2m− 1 can be

obtained by choosing ~x→ ~x1 with ~xi = ~x1 for i = 2, . . . ,m− 1. Finally, the flow to

type II quiver in the case 2 can be achieved by setting ~xi = ~x2 for i = 3, . . . ,m− 1

and ~x→ ~x2.

For the case 2, χ(g,Ω) = 1, N = 2m even, we will have O(1) at the nodes

0 and m, and the remaining U(1)’s are pairwise conjugate, and there are obvious

identifications for the X and X̄ fields. Consequently, ~D0 = ~Dm = 0 and ~Di =

− ~DN−i, i = 1, . . . ,m − 1. In terms of the ALE metric, we see that there are m Z2

singularities. The corresponding V function is

V =
m∑
i=1

2

|~x− ~xi| . (6.104)

The possible flows are the following. First of all, to obtain the N = 2,

USp(2n)diag gauge theory in the IR, we choose ~x→ ~x′ where ~x′ is any regular point.

The full Green function G(x, x′) will behave in the same way as ~x ∼ ~xi. In this case,

the IR geometry is a smooth space. Another possible flows are given by Higgsing

type II diagram with N = 2m to the same type with N = 2m− 2. This is achieved

by setting ~xi = ~x1 for i = 2, . . . ,m− 1 and ~x→ ~x1.

Finally, for the case 3, χ(g,Ω) = ξ, therefore N = 2m even, we have m pairs

of conjugate U(1) factors and consequently ~Di = − ~DN−1−i, i = 0, . . . ,m, which

implies m−1 Z2 singularities plus two smooth points in the geometry. The function

V is given by

V =
1

|~x− ~x1| +
1

|~x− ~x2m| +
m∑
i=2

2

|~x− ~xi| . (6.105)

129



The flow from type III quiver to N = 2, USp(2n)diag gauge theory is given
by ~x→ ~x1 or ~x→ ~x2m. If we choose ~x→ ~x1 and ~xi = ~x1 for i = 2, . . . , 2m− 1, we
obtain the flow from type III quiver with N = 2m to type I quiver with N = 2m−1.
On the other hand, if we choose ~x→ ~x2 and ~xi = ~x2 for i = 3, . . . , 2m− 1, we find
a flow from type III quiver with N = 2m to type II quiver with N = 2m− 2. The
flow from type III quiver with N = 2m to type III quiver with N = 2m− 2 is given
by setting ~x→ ~x1 and ~xi = ~x2m = ~x1 for i = 2, . . . , 2m− 2.

Notice that the V in (6.105) cannot be obtained from either (6.103) or (6.104)
since both of them have none or only one single singularities while V in (6.105) has
two. Furthermore, the flow from type II quiver to type I quiver is not allowed be-
cause there is no single singularity in (6.104), but there is one in (6.103). All the
flows given above exactly agree with those obtained from the field theory side. So,
we see that the effect of the Ω projection is to remove some of the blowing up,
closed string, moduli and therefore the geometry cannot be completely smoothed
out. Generically there remain Z2 singularities. Of course higher singularities can be
obtained by bringing together the centers surviving the Ω projection. We summa-
rize all possible flows in table III. The UV geometry is always AdS5×S5/(ZN ×Z2)
with ~xUV → ∞. The VUV is given by that of (6.2) while VIR’s can be obtained by
the ~xIR given in the table via (6.103), (6.104) and (6.105). In the Flow column, the
notation I(2m+ 1)→ II(2m) means the flow from type I quiver with N = 2m+ 1 to
type II quiver with N = 2m etc. The N = 2, USp(2n)diag gauge theory is denoted
by I(1). The ALE centers are labeled in the same ordering as in equations (6.103),
(6.104) and (6.105). Finally, ~xIR’s are the IR points with the notation ~x′ denoting
any regular point away from the ALE center ~xi’s.

Flow ~xIR

I(2m+ 1) → I(1) ~x1

II(2m) → I(1) ~x′

III(2m) → I(1) ~x1

I(2m+ 1) → I(2n+ 1, n < m) ~xi = ~x1, i = 2, . . . , n
I(2m+ 1) → II(2n, n ≤ m) ~xi = ~x2, i = 3, . . . , n+ 1

II(2m) → II(2n, n < m) ~xi = ~x1, i = 2, . . . , n
III(2m) → III(2n, n < m) ~xi = ~x1 = ~x2m, i = 2, . . . , n

III(2m) → II(2n, n ≤ m− 1) ~xi = ~x2, i = 2, . . . , n
III(2m) → I(2n+ 1, n ≤ m− 1) ~xi = ~x1, i = 2, . . . , n

Table III: All possible RG flows of the N = 2 quiver gauge theories arising in type
I′ theory.

We now summarize what we have studied in this chapter. We have studied
RG flow solutions in the four and two dimensional field theories on the background
of the AN ALE space. The flows in two dimensions are similar to the solution given
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in chapter 5 with the flat four dimensional space replaced by the ALE space. The
flows are vev flows driven by a vacuum expectation value of a marginal operator.
The dual field theory description is that of the (2,0) UV CFT flows to the (4,0)
theory in the IR. The corresponding geometries are AdS3 × S3/ZN and AdS3 × S3.
We have computed the central charges in both the UV and IR to curvature squared
terms in the bulk. The ratio of the central charges to the leading order contains a
factor of N as expected from the ratio of the volumes of the S3 and S3/ZN on which
the six dimensional supergravity is reduced.

In type IIB theory, we have studied a flow solution describing an RG flow
in four dimensional field theory. It involves the Green’s function on ALE × R2,
which we were unable to find explicitely, but whose existence is guaranteed. The
solution interpolates between AdS5 × S5/ZN and AdS5 × S5. The flow is again a
vev flow driven by a vacuum expectation value of a relevant operator of dimension
two. The flow drives the N = 2 quiver gauge theory with the gauge group SU(n)N

in the UV to the N = 4 SU(n)diag supersymmetric Yang-Mills theory in the IR.
The hypermultiplets acquire vacuum expectation values proportional to the identity
matrix and break SU(n)N to its diagonal subgroup SU(n)diag in the IR. The central
charges a and c have also been computed to the curvature squared terms.

Moreover, we have studied a flow solution in type I′ theory. The flow solu-
tion interpolates between AdS5 × S5/(ZN × Z2) and AdS5 × S5/Z2 where the Z2

is (−1)FLΩI2. The flow is again driven by a vacuum expectation value of a rele-
vant operator of dimension two. In contrast to the type IIB case, the field theory
description is more complicated and more interesting. There are three cases to be
considered. For N odd and χ(g,Ω) = 1, the flow drives the N = 2 quiver gauge the-
ory with the gauge group USp(2n)×U(2n)× . . .×U(2n) to the N = 2, USp(2n)diag

gauge theory. For N even and χ(g,Ω) = 1, the flow describes an RG flow from
N = 2 quiver USp(2n) × U(2n) × . . . × U(2n) × USp(2n) gauge theory to N = 2,
USp(2n)diag gauge theory. Finally, for N even and χ(g,Ω) = e

2πi
N , we find the flow

from N = 2 quiver U(2n) × . . . × U(2n) gauge theory to N = 2, U(2n)diag gauge
theory for vanishing expectation values of the antisymmetric bifundamental scalars.
With non-zero antisymmetric scalar expectation values, the gauge group in the IR
is reduced to USp(2n)diag.

We have also generalized the previous discussion to RG flows between two
N = 2 quiver gauge theories in both type IIB and type I′ theories. The gravity solu-
tion interpolates between AdS5×S5/(ZN×Z2) and AdS5×S5/(ZM×Z2) geometries.
In type IIB theory, the flows work properly as expected from the field theory side
in a strightforward way. In type I′ theory, field theory considerations forbid some
symmetry breaking patterns. However, this is in agreement with the geometrical
picture, after one takes into account the restrictions put on the geometry by the
orientifolding procedure.
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Chapter 7

Conclusions

Throughout this thesis, we have studied a number of holographic RG flow solutions
in the framework of supergravity theories. All solutions found in this thesis are vev
flows driven by vacuum expectation values of relevant or marginal operators. In
some cases, we have given an interpretation of the resulting solution in term of some
D-branes configurations in string theory. A reduction ansatz for (1,0) supergravity
coupled to an antisymmetric tensor and Yang-Mills multiplets in six dimensions on
SU(2) group manifold giving rise to N = 4 SU(2)×G Yang-Mills gauged supergrav-
ity in three dimensions has been found. Furthermore, the reduced theory has been
shown to be on-shell equivalent to the N = 4 Chern-Simons gauged supergravity
with the corresponding gauge group (SU(2) n T3) × (G n TdimG) as discovered in
[38]. The role of Yang-Mills and gravitational instantons in RG flows has been em-
phasized, and their effects on the value of the central charge at the fixed points has
been worked out. The corresponding RG flows with Yang-Mills instantons turned
on on R4 can be interpreted as transitions between different Yang-Mills vacua. We
have also studied RG flows in N = 2 quiver gauge theories in four dimensions in
the framework of type IIB and type I′ string theories. We have given a geometric
interpretation of various symmetry breaking patterns. This completely agrees with
the field theory consideration. We now end the thesis with some comments on the
results together with the remaining open problems which will give us some directions
for future works.

The gaugings considered in chapter 3 are of non semi-simple Chern-Simons
type, giving rise to semi-simple Yang-Mills theories upon integrating out scalar fields
corresponding to translational symmetries. In the N = 8 theory, the (4, 4) point is
related to the Kaluza-Klein reduction of type IIB theory on AdS3 × S3 × S3 × S1,
and it would be interesting to identify the marginal deformations which take the
theory to other less supersymmetric vacua, i.e. to generalize the discussion of [138],
where the marginal deformation from (4, 4) to (3, 3) vacua has been worked out in
detail, to the (k, k) vacua with k < 3. From the higher dimensional perspective,
the N = 8 case is related to the brane configuration in type IIB theory whose near
horizon geometry is AdS3×S3×S3×S1 [139], dual to a SCFT2 with “large” (4, 4)
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superconformal algebra[138, 140]. The N = 4 case seems to be related, via a Z2

projection, to the N = 8 theory, and it would be interesting to see how this is acting

on the corresponding type IIB theory background. This would presumably help us

in understanding the nature of the dual SCFT2.

For the reduction ansatz given in chapter 4, a natural open problem is how

to obtain three dimensional N = 4 gauged supergravity with two quaternionic scalar

manifolds, for example to recover the theory studied in chapter 3. Presumably we

would need to add hypermultiplets to the six dimensional theory, whose scalars

themselves live on a quaternionic manifold, or perhaps, we may even need to start

with extended supersymmetry in six dimensions. As discussed in [31], N = 4 gauged

supergravity in three dimensions is related to N = 2 supergravity in four dimen-

sions. The two quaternionic target spaces correspond to scalar fields in the vector

and hyper multiplets, respectively. It could be that the reductions giving rise to four

dimensional N = 2 supergravity including both vector and hyper multiplets scalars

will give some hints to obtain N = 4 gauged supergravity in three dimensions with

two scalar target manifolds. This issue needs further investigations.

In chapter 5, we have found RG flow solutions in the presence of Yang-

Mills instantons. The flows describe a deformation of the UV CFT by a vacuum

expectation value of a marginal operator. Interestingly, these RG flows have an

interpretation in terms of Yang-Mills instantons tunnelling between |N〉 Yang-Mills

vacuum in the UV and |0〉 in the IR, and this fact is in turn related to the different

values of the central charge at the two fixed points. In the general N instanton

solution, there is a subtlety of phase transitions occurring whenever v and ṽ change

sign. We have avoided this issue by assuming the positivity of both v and ṽ. We do

not have a clear interpretation of this phase transition in the dual CFT, so it would

be interesting to study this issue in more detail.

In chapter 6, we have studied many RG flows in both two and four dimen-

sional field theories. Two dimensional RG flows have been found in the framework

of (1,0) six dimensional supergravity while the four dimensional solutions have been

studied in type IIB and type I′ string theories. Here, we will give a few comments

regarding the type I′ case. If we include higher order terms in the effective action,

we need, among other things, to switch on the F ∧F to ensure the Bianchi identity

for the 5-form

dF̃ (5) =
α′

4
(TrR ∧R− TrF ∧ F )δ(2)(~z) (7.1)

F being the field strength of the SO(8) gauge group and ~z a coordinate on the

transverse R2. In particular, we need to include SO(8) instantons on the ALE

spaces (with the standard metric, the warp factor being irrelevant due to conformal

invariance). It would be interesting to relate ALE’s instanton configurations to the

pattern of symmetry breaking of the global SO(8) group involved in the various

flows discussed in chapter 6. As already mentioned, the UV group is determined by

the holonomy of the flat connection at the ALE’s boundary, which is in turn part
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of the ADHM data. It would be interesting to understand the IR group in a similar
way.

It is certainly true that a lot of works remain to be done in order to un-
derstand RG flows in both two and four dimensional field theories although many
works have already appeared. As we have seen, holography and the AdS/CFT cor-
respondence provide a very useful tool to explore various aspects of strongly coupled
field theories. Hopefully, future investigations will clarify and give some insights to
the questions mentioned above as well as other open problems stated elsewhere.
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Appendix A

Vacua of three dimensional gauged
supergravities

In this appendix, we give some vacua of three dimensional gauged supergravities.
The strategy to find critical points of the scalar potential has already been discussed
in the main text chapter 3. The theories studied here are N = 4, 8, 9, 10 gauged
supergravity theories whose vacua are given below.

A.1 Vacua of N = 4 theory

The vacua of N = 4 theory that do not involve in the flow solutions are given by:

A.1.1 (0,4) vacuum

• VI.

e1 =

√
−2(gn + gp)

g2s

I4, e2 =

√
2(gp − gn)

g2s

I4,

A1 =
32gngp
g2s

, and V0 = −4096g2
ng

2
p

g2
2s

. (A.1)

A.1.2 (3,0) vacua

• VII.

e1 = a
(

1,− gm + gp
gn + gp + g2sa2

, 1, 1
)
, e2 =

√
(g2
p − g2

n)

g2
p − g2

n + g2sgpa
aI4,

a =

√
g3
n − g2

ngp − gng2
p + g3

p +
√
g6
n − g4

ng
2
p − g2

ng
4
p + g6

p

gngpg2s

A1 = −8(g2
n − g2

p)
2

g2sgngp
, and V0 =

−256(g2
n − g2

p)
4

(g2
2sgngp)

2
(A.2)
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• VIII.

e1 = a
(

1,− gm + gp
gn + gp + g2sa2

, 1, 1
)
, e2 =

√
(g2
p − g2

n)

g2
p − g2

n + g2sgpa
aI4,

a =

√
g3
n − g2

ngp − gng2
p + g3

p −
√
g6
n − g4

ng
2
p − g2

ng
4
p + g6

p

gngpg2s

A1 = −8(g2
n − g2

p)
2

g2sgngp
, and V0 =

−256(g2
n − g2

p)
4

(g2
2sgngp)

2
(A.3)

A.1.3 (2,0) vacua

• IX.
e1 = −(a1, a1, b1, b2) e2 = (b1, b1, b2, b2) (A.4)

a1 = 2

√
g2
n − g2

p

g2s(gn − gp +
√

5g2
n + 2gngp + g2

p)

a2 = 2

√
g2
n − g2

p

g2s(gp − gn +
√

5g2
p + 2gngp + g2

n)

b1 = 2

√
g2
p − g2

n

g2s(3gn + gp −
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2
n − g2

p

g2s(
√
g2
n + 2gngp + 5g2

p − gn − 3gp)
(A.5)

A1 =
−32(gn − gp)2

g2s

and V0 = −4096(gn − gp)4

g2
2s

. (A.6)

• X.
e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (A.7)

a1 = 2

√
g2
p − g2

n

g2s(gp − gn +
√

5g2
n + 2gpgn + g2

p)

a2 = 2

√
g2
p − g2

n

g2s(gn − gp −
√

5g2
p + 2gpgn + g2

n)

b1 = 2

√
g2
p − g2

n

g2s(3gn + gp +
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2
n − g2

p

g2s(
√
g2
n + 2gngp + 5g2

p − gn − 3gp)
(A.8)
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A1 =
−32(gn − gp)2

g2s

and V0 = −4096(gn − gp)4

g2
2s

. (A.9)

• XI.
e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (A.10)

a1 = 2

√
g2
p − g2

n

g2s(gp − gn −
√

5g2
n + 2gpgn + g2

p)

a2 = 2

√
g2
p − g2

n

g2s(gn − gp +
√

5g2
p + 2gpgn + g2

n)

b1 = 2

√
g2
p − g2

n

g2s(3gn + gp −
√

5g2
n + 2gpgn + g2

p)

b2 = 2

√
g2
p − g2

n

g2s(
√
g2
n + 2gngp + 5g2

p + gn + 3gp)
(A.11)

A1 =
−32(gn − gp)2

g2s

and V0 = −4096(gn − gp)4

g2
2s

. (A.12)

• XII.
e1 = (−a1, a1, a2, a2) e2 = (b1, b1, b2, b2) (A.13)

a1 =

√
gp − gn
g2s

√
gn − gp +

√
5g2

n + 2gngp + g2
p

gn

a2 =

√
gp − gn
g2s

√
−gn − gp +

√
g2
n + 2gngp + 5g2

p

gp

b1 =

√
gp − gn
g2s

√
3gn + gp −

√
5g2

n + 2gngp + g2
p

gn

b2 =

√
g2
p − g2

n

g2sgp

√
−gn − gp +

√
g2
n + 2gngp + 5g2

p

2gp −
√
g2
n + 2gngp + 5g2

p

(A.14)

A1 =
−32(gn − gp)2

g2s

and V0 = −4096(gn − gp)4

g2
2s

. (A.15)

A.2 Vacua of N = 8 theory

In this section, we study some vacua of (SO(4)nT6)× (SO(4)nT6), N = 8 gauged
supergravity in three dimensions. We restrict our discussion to the target space

SO(8,8)
SO(8)×SO(8)

.
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A.2.1 N = 8 three dimensional gauged supergravity

We parametrize the coset elements L as in the N = 4 case, but now obviously e is

an element of GL(8,R) and B is an antisymmetric 8 × 8 matrix. The resulting L

depends on 92 parameters, but, again using the right action of a diagonal SO(8), one

can bring e to an upper triangular form, thereby reducing the number of parameters

to 64. As for the non compact generators, the Y ab introduced before carry over in

the obvious way to the present case, with a, b = 1, . . . , 8.

We are going to gauge the subgroup (SO(4) n T6)2. Accordingly, we intro-

duce gauge group generators:

tA =


a1 0 0 0
0 a2 0 0
0 0 a1 0
0 0 0 a2

 , tB =


b1 0 b1 0
0 b2 0 b2

−b1 0 −b1 0
0 −b2 0 −b2

 . (A.16)

Here all entries are 4×4 matrices, a1 (a2) are generators of the first (second) SO(4),

b1 and b2 are antisymmetric and correspond to independent shifts of B. More

precisely, the upper and lower 4× 4 diagonal blocks of B will be shifted by 2b1 and

2b2, respectively, and therefore could be set to zero. Generators carrying index 1

commute with those carrying index 2, and one checks the structure of the gauge

group stated above. The f -tensors are constructed as follows: we choose a basis of

symmetric, real SO(8) gamma matrices with 8× 8 off-diagonal blocks ΓI , so that:

f IJab,cd = −1

2
Tr(εba[ΓI ,ΓJ ]εcd). (A.17)

As for the embedding tensor Θ, the structure discussed in the N = 4 case extends

naturally to the present case, and now we expect a priori 8 couplings corresponding

to the 8 SU(2)’s (including the B generators). We then proceed by first computing

the V ’s which are given by

V±a
LJ,MK =

1

4
√

2
Tr[ΓJL(eJMK

± X +X tJMK
± et)],

V±b
LJ,MK =

1

2
√

2
Tr[JJL± eΓMKet],

V±a
MK
ab =

1√
2

Tr[εab(X
tJMK
± et + eJMK

± Y )],

V± b
MK
ab =

2√
2

Tr[εabeJ
MK
± et]. (A.18)

Here ΓJL = −[ΓJ ,ΓL]/2 and all indices run from 1 to 8 and JMK
± are the (anti-)

self-dual SU(2) generators in SO(4) × SO(4) ⊂ SO(8), corresponding to the first
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(second) SO(4) for M,K = 1, . . . , 4 (M,K = 5, . . . , 8), respectively.

The T tensors are

TLJ,MK = g1s(VLJ,PQ+a VMK,PQ
+b + VLJ,PQ+b VMK,PQ

+a ) + g1a(VLJ,PQ−a VMK,PQ
−b

+VLJ,PQ−b VMK,PQ
−a ) + g2s(VLJ,P ′Q′+a VMK,P ′Q′

+b + VLJ,P ′Q′+b VMK,P ′Q′

+a )

+g2a(VLJ,P ′Q′−a VMK,P ′Q′

−b + VLJ,P ′Q′−b VMK,P ′Q′

−a ) + h1sVLJ,PQ+b VMK,PQ
+b

+h1aVLJ,PQ−b VMK,PQ
−b + h2sVLJ,P ′Q′+b VMK,P ′Q′

+b + h2aVLJ,P ′Q′−b VMK,P ′Q′

−b ,

TLJab = g1s(VLJ,PQ+a V+b
PQ
ab + VLJ,PQ+b V+a

PQ
ab ) + g1a(VLJ,PQ−a V−b

PQ
ab

+VLJ,PQ−b V−a
PQ
ab ) + g2s(VLJ,P ′Q′+a V+b

P ′Q′

ab + VLJ,P ′Q′+b V+a
P ′Q′

ab )

+g2a(VLJ,P ′Q′−a V−b
P ′Q′

ab + VLJ,P ′Q′−b V−a
P ′Q′

ab ) + h1sVLJ,PQ+b V+b
PQ
ab

+h1aVLJ,PQ−b V−b
PQ
ab + h2sVLJ,P ′Q′+b V+b

P ′Q′

ab + h2aVLJ,P ′Q′−b V−b
P ′Q′

ab , (A.19)

where P,Q, . . . = 1, . . . , 4 and P ′, Q′, . . . = 5, . . . , 8. Here L, J,M,K are SO(8)

R-symmetry indices, and a, b = 1, . . . , 8 label the 64 non-compact generators in

SO(8, 8). P,Q = 1, . . . , 4 and P ′, Q′ = 5, . . . , 8 label the first and second SO(4), re-

spectively. We have included also the 8 coupling constants, but actually, consistency

imposes relations among them:

g1a = −g1s, g2a = −g2s

h1a = −h1s, and h2a = −h2s. (A.20)

Notice that if we set the type-2 couplings to zero i.e. g2s = g2a = h2s = h2a = 0, we

decouple the second SO(4) and therefore we recover a truncation of the single SO(4)

gauging studied in [39] as the supergravity dual of the D1-D5 system in IIB theory

on K3 or T 4. It can be obtained by reducing (2,0) six-dimensional supergravity on

AdS3 × S3.

A.2.2 Vacua of N = 8 gauged supergravity

A simple class of supersymmetric AdS vacua can be obtained as follows. We pa-

rameterize e and B as:

e =



a1 0 0 0 e15 e16 e17 e18

0 a2 0 0 e25 e26 e27 e28

0 0 a3 0 e35 e36 e37 e38

0 0 0 a4 e45 e46 e47 e48

0 0 0 0 a5 0 0 0
0 0 0 0 0 a6 0 0
0 0 0 0 0 0 a7 0
0 0 0 0 0 0 0 a8


, (A.21)
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B =



0 0 0 0 b15 b16 b17 b18

0 0 0 0 b25 b26 b27 b28

0 0 0 0 b35 b36 b37 b38

0 0 0 0 b45 b46 b47 b48

−b15 −b25 −b35 −b45 0 0 0 0
−b16 −b26 −b36 −b46 0 0 0 0
−b17 −b27 −b37 −b47 0 0 0 0
−b18 −b28 −b38 −b48 0 0 0 0


. (A.22)

We have used the shift symmetry to set to zero the diagonal 4× 4 blocks of B and

the SO(4)× SO(4) left action to diagonalize the diagonal blocks of e. For diagonal

e = (a1, a2, a3, a4, a5, a6, a7, a8) and B = 0, we cannot find any interesting solutions

apart from the trivial one with (4,4) supersymmetry. All the truncations below

have been checked to be consistent, in the sense that there are no tadpoles for the

remaining scalars.

We find a class of solutions by setting:

a2 = a3 = a4 = a1, a6 = a7 = a8 = a5,

b15 =
1

4
(c15 − c26 − c37 + c48), b16 =

1

4
(−c16 − c25 − c38 − c47),

b17 =
1

4
(c18 + c27 − c36 − c45), b18 =

1

4
(c17 − c28 + c35 − c46),

b25 =
1

4
(−c16 − c25 + c38 + c47), b26 =

1

4
(−c15 + c26 − c37 + c48),

b27 =
1

4
(c17 − c28 − c35 + c46), b28 =

1

4
(−c18 − c27 − c36 − c45),

b35 =
1

4
(c18 − c27 + c36 − c45), b36 =

1

4
(−c17 − c28 + c35 + c46),

b37 =
1

4
(−c15 − c26 − c37 − c48), b38 =

1

4
(−c16 + c25 + c38 − c47),

b45 =
1

4
(−c17 − c28 − c35 − c46), b46 =

1

4
(−c18 + c27 + c36 − c45),

b47 =
1

4
(−c16 + c25 − c38 + c47), b48 =

1

4
(c15 + c26 − c37 − c48), (A.23)

and all other parameters are zero. We can choose

c16 = c17 = c18 = c25 = c27 = c28 = 0,

c35 = c36 = c38 = c45 = c46 = c47 = 0. (A.24)

Supersymmetric vacua require

g1s = −a2
1h1s, g2s = −a2

5h2s, h2s =
a4

1

a4
5

h1s. (A.25)
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• (1,1) critical point

This point is given by c15 = 0,

A1 = (−16g2
1s

h1s

,
16g2

1s

h1s

,−8g2
1s

h1s

√
4 + a2

1a
2
5c

2
26,

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
26,

−8g2
1s

h1s

√
4 + a2

1a
2
5c

2
37,

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
37,−

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
48,

8g2
1s

h1s

√
4 + a2

1a
2
5c

2
48) (A.26)

and V0 = −1024g4
1s

h2
1s

.

• (2,2) critical point

This point is given by c15 = 0 and c26 = 0.

• (3,3) critical point

This point is given by c15 = 0,c26 = 0 and c37 = 0.

• (4,4) critical point

This point is given by c15 = 0, c26 = 0, c37 = 0 and c48 = 0.

All of them have the same cosmological constant. A1 for the last three points is

given by setting some of the appropriate values of c’s to zero in (A.26).

We also find other solutions with non zero parameters

a2 = a3 = a4 = a1, a6 = a7 = a8 = a5,

e15 = e26 = e37 = e48 = e,

b16 = −b25, b38 = −b47 (A.27)

subject to these relations a2
5 + e2 = − g2s

h2s
, a2

1 = − g1s

h1s
and

g2
1s

h1s
=

g2
2s

h2s
. Note that in

this case, we also turn on some off-diagonal elements of e. The solutions are given

by:

• (2,2) critical point

This solution has A1 =
16g2

1s

h1s
giving the same cosmological constant as in the

previous case.

• (2,3) critical point

This can be obtained from the previous case by setting b25 = b47 or b25 = −b47.

There is no possible flow solution between all these critical points since all critical

points have the same value of the cosmological constant.
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A.3 Vacua of N = 9 theory

In this section, we study some vacua of N = 9 theory. The construction of the

theory is the same as N = 4 and N = 8 theories studied previously. For N > 8, the

scalar target space is unique because there is only one supermultiplet in these cases.

In the present case, the scalar manifold is given by the exceptional coset
F4(−20)

SO(9)
.

We will study some vacua of this theory with gauge groups SO(p)× SO(9− p) for

p = 0, 1, 2, 3, 4, G2(−14) × SL(2) and Sp(1, 2)× SU(2). All these gauge groups have

been shown to be consistent gaugings in [31].

A.3.1 N = 9 three dimensional gauged supergravity

We begin with the
F4(−20)

SO(9)
coset. The 52 generators of the compact F4 have been

explicitly constructed by realizing F4 as an automorphism group of the Jordan al-

gebra J3 in [141]. There are 16 non-compact and 36 compact generators in F4(−20).

Under SO(9), the 52 generators decompose as

52→ 36 + 16

where 36 and 16 are adjoint and spinor representations of SO(9), respectively. The

non-compact F4(−20) can be obtained from the compact F4 by using “Weyl unitarity

trick”, see [142] for an example with G2. This is achieved by introducing a factor

of i to each generator corresponding to the non-compact generators. From [141],

the compact subgroup SO(9) is generated by, in the notation of [141], c1, . . . , c21,

c30, . . . , c36, c45, . . . , c52. We have chosen the same SO(9) subgroup as in [141] among

the three possibilities, see [141] for a discussion. The remaining 16 generators are

our non-compact ones which we will define by

Y A =

{
icA+21 for A = 1, . . . , 8
icA+28 for A = 9, . . . , 16

. (A.28)

Note that the SO(9) generators ci in [141] are labeled by the F4 adjoint index. In

order to apply the SO(9) covariant formulation of N = 9 theory, we need to relabel

them by using the SO(9) antisymmetric tensor indices i.e. XIJ . To do this, we first

repeat the relevant algebra given in chapter 2, for conveniences,

[tIJ , tKL] = −4δ[I[KtL]J ], [tIJ , tA] = −1

2
f IJ,ABtB, [tA, tB] =

1

4
fABIJ t

IJ

(A.29)

where we have used the flat target space indices in f IJAB and the non-compact gener-

ators, tA. Using the first commutator in (A.29), we can map all ci’s forming SO(9)
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to the desired form XIJ . We find the following mapping between ci and XIJ

X12 = c1, X
13 = −c2, X

23 = c3, X
34 = c6, X

14 = c4, X
24 = −c5,

X15 = c7, X
25 = −c8, X

35 = c9, X
45 = −c10, X

56 = −c15, X
16 = c11,

X26 = −c12, X
46 = −c14, X

36 = c13, X
17 = c16, X

27 = −c17, X
47 = −c19,

X37 = c18, X
67 = −c21, X

57 = −c20, X
78 = −c36, X

18 = c30, X
28 = −c31,

X48 = −c33, X
38 = c32, X

68 = −c35, X
58 = −c34, X

29 = −c46, X
19 = c45,

X49 = −c48, X
39 = c47, X

69 = −c50, X
59 = −c49,

X89 = −c52, X
79 = −c51 . (A.30)

The next step is to find the f IJ . In order to be compatible with the F4 algebra
given in [141], we need to use the second and the third commutators in (A.29) to
extract the component of f IJAB. There are eight independent f IJ from which all
other components follow. On the other hand, the components of f IJ are essentially
the structure constants of the F4 algebra given in [141]. From both methods, it is
not difficult to obtain these f IJAB by using the Mathematica program given in [141].
However, we will not give them here due to their complicated form.

We now come to various gaugings characterized by the embedding tensors
Θ. The embedding tensors for the compact gaugings with gauge groups SO(p) ×
SO(9− p), p = 0, . . . , 4 are given by [31]

ΘIJ,KL = θδKLIJ + δ[I[KΞL]J ] (A.31)

where

ΞIJ =

{
2
(
1− p

9

)
δIJ for I ≤ p

−2p
9
δIJ for I > p

, θ =
2p− 9

9
. (A.32)

There is only one independent coupling constant, g. The gauge generators can be
easily obtained from SO(9) generators XIJ by choosing appropriate values for the
indices I, J . For example, in the case of SO(2) × SO(7) gauging, we have the
following gauge generators

SO(7) : T ab1 = Xab, a, b = 1, . . . 7,

SO(2) : T2 = X89 . (A.33)

We then move to non-compact gaugings with gauge groups G2(−14)× SL(2)
and Sp(1, 2)× SU(2). We find the following embedding tensors

G2(−14) × SL(2) : ΘMN = ηG2
MN −

1

6
η
SL(2)
MN , (A.34)

Sp(1, 2)× SU(2) : ΘMN = η
Sp(1,2)
MN − 12η

SU(2)
MN (A.35)

where ηG0 is the Cartan Killing form of the gauge group G0. We now identify the
gauge generators in these two gaugings. In G2(−14) × SL(2) gauging, we can find
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the corresponding generators as follows. The generators of G2(−14) are obtained by

using the embedding of G2(−14) in SO(7) generated by XIJ , I, J = 1, . . . , 7. The

adjoint representation of SO(7) decomposes under G2(−14) as

21→ 14 + 7 . (A.36)

The generators of G2(−14) can be explicitly found by combinations of SO(7) gener-

ators [143]

T1 =
1√
2

(X36 +X41), T2 =
1√
2

(X31 −X46),

T3 =
1√
2

(X43 −X16), T4 =
1√
2

(X73 −X24),

T5 = − 1√
2

(X23 +X47), T6 = − 1√
2

(X26 +X71),

T7 =
1√
2

(X76 −X21), T8 =
1√
6

(X16 +X43 − 2X72),

T9 = − 1√
6

(X41 −X36 + 2X25), T10 = − 1√
6

(X31 +X46 − 2X57),

T11 =
1√
6

(X73 +X24 + 2X15), T12 = − 1√
6

(X74 −X23 + 2X65),

T13 =
1√
6

(X26 −X71 + 2X35), T14 =
1√
6

(X21 +X76 − 2X45). (A.37)

We have verified that these generators satisfy G2 algebra given in [144]. The SL(2)

generators are

J1 = i
√

2(c22 + c27), J2 = i
√

2(c37 + c42), J3 = 2c52 (A.38)

which can be easily checked that they commute with all T ’s and form SL(2) algebra.

The generators of non-compact Sp(1, 2) can be constructed by first finding

its compact subgroup generators Sp(1) × Sp(2) ∼ SO(3) × SO(5). The latter

can be obtained by taking SO(8) with generators XIJ , I, J = 1, . . . , 8. We then

identify the SO(3) generators with XIJ for I, J = 1, . . . , 3 and SO(5) with XIJ for

I, J = 4, . . . , 8. The eight non-compact generators of Sp(1, 2) can be obtained by

taking combinations of Y A’s which commute with the SU(2) gauge group. The latter

has three generators obtained by looking for the combinations of SO(9) generators

that commute with SO(3) × SO(5) mentioned above. We find the following gauge

generators:
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• Sp(1,2):

Q1 =
√

2c1, Q2 = −
√

2c2, Q3 =
√

2c3, Q4 =
√

2c4, Q5 = −
√

2c5,

Q6 =
√

2c6, Q7 =
√

2c7, Q8 = −
√

2c8, Q9 =
√

2c9, Q10 = −
√

2c10,

Q11 = −c21 − c52, Q12 = c51 − c35, Q13 = c50 + c36,

Q14 = Y1 + Y10, Q15 = Y2 − Y9, Q16 = Y3 + Y13,

Q17 = Y4 + Y16, Q18 = Y5 − Y11, Q19 = Y6 − Y15,

Q20 = Y7 + Y14, Q21 = Y8 − Y12 . (A.39)

• SU(2):

K1 =
1

2
(c52 − c21), K2 = −1

2
(c35 + c51), K3 =

1

2
(c36 − c50). (A.40)

Using the above embedding tensors and equation (2.56), we can find all the V ’s and
T-tensors. The generators are normalized by

Tr(cicj) = −6δij. (A.41)

With this normalization, we find that

VαIJ = −1

6
Tr(L−1TαGLX

IJ) (A.42)

VαA =
1

6
Tr(L−1TαGLY

A) (A.43)

where we have introduced the symbol TαG for gauge group generators. TαG will be
replaced by some appropriate generators of the gauge group being considered in each
gauging.

With the above generators together with (A.42) and (A.43), we can compute
the T-tensors

T IJ,KL = VIJ,αVKL,βδSO(p)
αβ − VIJ,αVKL,βδSO(9−p)

αβ , (A.44)

T IJ,A = VIJ,αVA,βδSO(p)
αβ − VIJ,αVA,βδSO(9−p)

αβ (A.45)

for compact gaugings and

T IJ,KL = VIJ,αVKL,βηG1
αβ −KVIJ,αVKL,βηG2

αβ , (A.46)

T IJ,A = VIJ,αVA,βηG1
αβ −KVIJ,αVA,βηG2

αβ (A.47)

for non-compact gaugings with K being 1
6

and 12 for G1 × G2 = G2(−14) × SL(2)
and Sp(1, 2)×SU(2), respectively. We have used summation convention over gauge
indices α, β with the notation δG0 and ηG0 meaning that the summation is restricted
to the G0 generators.

It is now straightforward to compute the A1, A2 tensors and the scalar
potential in each gauging. In the next subsection, we will give the scalar potentials
for all gaugings mentioned above along with some of their critical points.
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A.3.2 Vacua of N = 9 gauged supergravity

In this subsection, we give some vacua of the N = 9 gauged theory with the gaug-

ings mentioned in the previous subsection. We will discuss the isometry groups of

the background with maximal supersymmetries at L = I. This is a supersymmet-

ric extension of the SO(2, 2) ∼ SO(1, 2) × SO(1, 2) isometry group of AdS3. The

superconformal group can be identified by finding its bosonic subgroup and repre-

sentations of supercharges under this group. A similar study has been done in [86]

for models with N = 16 supersymmetry. The full list of superconformal groups in

two dimensions can be found in [145]. We first start with compact gaugings.

Vacua of compact gaugings

Since the scalar manifold involves 16 scalars and the coset representative L is a

26× 26 matrix, it is extremely difficult to compute the scalar potential for the full

scalar manifold. However, we can study the scalar potential on some part of the full

scalar manifold. It has been shown in [80] that the critical points obtained from the

potential restricted on a scalar manifold which is invariant under some subgroups of

the gauge group are critical points of the full potential. This invariant manifold is

parametrized by all scalars which are singlets under the chosen symmetry. To make

things more manageable, we will not study the scalar potential with more than four

scalars. We choose to parametrize the scalars by using the coset representative

L = ea1Y1ea2Y2ea3Y15ea4Y16 . (A.48)

For any invariant manifold with a certain residual symmetry, our choice for L in

(A.48) certainly does not cover the whole invariant manifold. Therefore, the critical

points on this submanifold may not be critical points of the potential on the whole

scalar manifold. Nevertheless, we can use the argument of [80] as a guideline to

find critical points. After identifying the critical points, we then use the stationarity

condition (2.99) to check whether our critical points are truly critical points of the

scalar potential.

Let us identify some residual symmetries of (A.48). In SO(9) gauging, with

only a1 6= 0, L has SO(7) symmetry. For a1, a2 6= 0, L preserves SO(6) symmetry.

With a1, a2, a3 6= 0 and a1, a2, a3, a4 6= 0, L preserves SU(3) and SU(2), respectively.

In other gauge groups, L will have different residual symmetry. We will discuss the

residual symmetry of each critical point, separately. We find that in all cases, non

trivial supersymmetric critical points arise with at most two non zero scalars. With

all four scalar fields turned on, the conditions AJI2i ε
J = 0 are satisfied if and only if

two of the scalars vanish. So, we give below only potentials with two scalars.

In (A.48), we have used the basis elements of Y ’s to parametrize each scalar

field. We also find that, in this parametrization, all the sixteen scalars are on

equal footing in the sense that any four of the Y ’s among sixteen of them give the
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same structure of the potential. As a consequence, any two non zero scalars in

(A.48) give rise to the same critical points with the same location and cosmological

constant. Notice that this is not the case if we use different parametrization of L.

For example, by using linear combinations of Yi’s as basis for the four scalars in

(A.48), different choices of Yi’s in each basis may give rise to different structures of

the scalar potential.

We recall our notation namely V0 is the cosmological constant and (n−, n+)

refers to the number of supersymmetries in the dual two dimensional filed theory.

As usual, the n+ (n−) corresponds to the number of positive (negative) eigenvalues

of AIJ1 . For definiteness, we will keep a1 and a2 non zero. Furthermore, we give the

values of scalar fields up to a trivial sign change.

• SO(9) gauging:

The scalar potential is

V =
1

32
g2(−1390− 232 cosh(2a1) + 6 cosh(4a1) + 4 cosh[2(a1 − 2a2)]

+4 cosh(4a1 − 2a2)− 112 cosh[2(a1 − a2)] + cosh[4(a1 − a2)]

−232 cosh(2a2) + cosh[4(a1 + a2)]− 112 cosh[2(a1 + a2)]

+6 cosh(4a2) + 4 cosh[2(2a1 + a2)] + 4 cosh[2(a1 + 2a2)]). (A.49)

This is the case in which the full R-symmetry group SO(9) is gauged. There is

no non trivial critical point with two scalars. For a2 = 0, there are two critical

points, but only the L = I solution has any supersymmetry.

Critical points a1 V0 Preserved supersymmetry
1 0 −64g2 (9,0)

2 cosh−1 2 −100g2 -

The corresponding A1 tensor at the supersymmetric point is

A
(1)
1 = diag(−4,−4,−4,−4,−4,−4,−4,−4,−4) . (A.50)

The notation A
(1)
1 means that this is the value of the A1 tensor evaluated at

the critical point number 1 in the table. For L = I, the background isometry

is given by Osp(9|2,R) × SO(1, 2). The non-supersymmetric critical point

has unbroken SO(7) gauge symmetry. This point is closely related to the

non-supersymmetric SO(7) × SO(7) point found in N = 16 SO(8) × SO(8)

gauged supergravity [86]. Both the location and the value of the cosmological

constants compared to the L = I point are very similar to that in [86].
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• SO(8) gauging:

The potential is

V = − 1

16
g2[(26 + 2 cosh(2a1) + cosh[2(a1 − a2)] + 2 cosh(2a2)

+ cosh[2(a1 + a2)])2 − 32(cosh2 a2 sinh2(2a1)

+ cosh4 a1 sinh2(2a2))]. (A.51)

This case is very similar to the SO(9) gauging. There are two critical points

with a single scalar.

Critical points a1 V0 Preserved supersymmetry
1 0 −64g2 (8,1)

2 cosh−1 2 −100g2 -

The A1 tensor is

A
(1)
1 = diag(−4,−4,−4,−4,−4,−4,−4,−4, 4) . (A.52)

For L = I, the background isometry is given by Osp(8|2,R) × Osp(1|2,R).

The critical point 2 is invariant under G2 subgroup of SO(8). Apart from the

splitting of supercharges and residual gauge symmetry, the critical points in

this gauging are the same as the SO(9) gauging.

• SO(7)× SO(2) gauging:

In this gauging, the potential is

V = − 1

36864
g2[9(342 + 40 cosh a1 + 18 cosh(2a1)− 4 cosh(a1 − 2a2)

+16 cosh(a1 − a2) + 3 cosh[2(a1 − a2)] + 12 cosh(2a1 − a2)

+8 cosh a2 + 50 cosh(2a2) + 16 cosh(a1 + a2) + 3 cosh[2(a1 + a2)]

+12 cosh(2a1 + a2)− 4 cosh(a1 + 2a2))2 + 8(−576 cosh2 a2

2
(−3

+ cosh a2 − 3 cosh a1(1 + cosh a2))2 sinh2 a1 − 9(−1

−8 cosh a1(−1 + cosh a2) + 47 cosh a2 + 3 cosh(2a1)(1 + cosh a2)

+6 cosh2 a1(1 + cosh a2))2 sinh2 a2)]. (A.53)

We find one supersymmetric critical point with

V0 = −144g2, a1 = cosh−1 5

3
, a2 = cosh−1 2 (A.54)
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with the value of the A1 tensor

A1 =



−10 0 0 0 0 0 0 0 0
0 −10 0 0 0 0 0 0 0

0 0 −14
3

0 0 0 0 0 −8
√

2
3

0 0 0 −10 0 0 0 0 0
0 0 0 0 −10 0 0 0 0
0 0 0 0 0 −10 0 0 0
0 0 0 0 0 0 −10 0 0
0 0 0 0 0 0 0 6 0

0 0 −8
√

2
3

0 0 0 0 0 14
3


. (A.55)

After diagonalization, we find

A1 = diag(−10,−10,−6,−10,−10,−10,−10, 6, 6). (A.56)

This is a (1,2) point with SU(2) symmetry. With a2 = 0, we find the following
critical points

Critical points a1 V0 Preserved supersymmetry
1 0 −64g2 (7,2)

2 cosh−1 7
3
−1024

9
g2 (0,1)

.

The corresponding values of the A1 tensor are

A
(1)
1 = diag (−4,−4,−4,−4,−4,−4,−4, 4, 4)

and A
(2)
1 = diag

(
−4,−4,−4,−4,−4,−4,−4,

16

3
, 8

)
. (A.57)

For L = I, the background isometry is given by Osp(7|2,R) × Osp(2|2,R).
The critical point 2 preserves SU(3) symmetry. The location and value of the
cosmological constant relative to the L = I point are similar to the G2 × G2

point in SO(8)×SO(8) gauged N = 16 supergravity. In our result, the residual
gauge symmetry is the SU(3) subgroup of G2 which is in turn a subgroup of
SO(7).

• SO(6)× SO(3) gauging:
We find the potential

V =
1

128
g2(−3886− 424 cosh(2a1) + 6 cosh(4a1) + 4 cosh[2(a1 − 2a2)]

+4 cosh(4a1 − 2a2)− 1536 cosh(a1 − a2)− 208 cosh[2(a1 − a2)]

+ cosh[4(a1 − a2)]− 424 cosh(2a2) + 6 cosh(4a2)

−1536 cosh(a1 + a2)− 208 cosh[2(a1 + a2)] + cosh[4(a1 + a2)]

+4 cosh[2(2a1 + a2)] + 4 cosh[2(a1 + 2a2)]). (A.58)
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One supersymmetric critical point is

V0 = −256g2, a1 = cosh−1 2, a2 = cosh−1 3 . (A.59)

with the value of the A1 tensor

A1 =



−16 0 0 0 0 0 0 0 0
0 −16 0 0 0 0 0 0 0

0 0 −4 0 0 0 0 0 −4
√

3
0 0 0 −16 0 0 0 0 0
0 0 0 0 −16 0 0 0 0
0 0 0 0 0 −16 0 0 0
0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 8 0

0 0 −4
√

3 0 0 0 0 0 4


. (A.60)

This can be diagonalized to

A1 = diag (−16,−16,−8,−16,−16,−16, 8, 8, 8) . (A.61)

This is a (1,3) point and has SO(3) ⊂ SO(6) symmetry. With a2 = 0, we find
the following critical points

Critical points a1 V0 Preserved supersymmetry
1 0 −64g2 (6,3)

2 cosh−1 3 −144g2 (0,2)
.

The corresponding values of the A1 tensor are

A
(1)
1 = diag (−4,−4,−4,−4,−4,−4, 4, 4, 4)

and A
(2)
1 = diag (−10,−10,−10,−10,−10,−10, 6, 6, 10) . (A.62)

For L = I, the background isometry is given by Osp(6|2,R) × Osp(3|2,R).
The critical point 2 is also invariant under SO(3) subgroup of SO(6).

• SO(5)× SO(4) gauging:
The potential for this gauging is

V =
1

32
g2(3 + cosh a1 cosh a2)2(−86 + 2 cosh(2a1)− 24 cosh(a1 − a2)

+ cosh[2(a1 − a2)] + 2 cosh(2a2)− 24 cosh(a1 + a2)

+ cosh[2(a1 + a2)]). (A.63)

There is no critical point with two non zero scalars. With a2 = 0, we find the
following critical points:
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Critical points a1 V0 Preserved supersymmetry
1 0 −64g2 (5,4)

2 cosh−1 5 −256g2 (0,3)
.

The corresponding values of the A1 tensor are

A
(1)
1 = diag (−4,−4,−4,−4,−4, 4, 4, 4, 4)

and A
(2)
1 = diag (−16,−16,−16,−16,−16, 8, 8, 8, 16) . (A.64)

For L = I, the background isometry is given by Osp(5|2,R)×Osp(4|2,R). The
critical point 2 preserves SO(4)diag symmetry which is the diagonal subgroup
of SO(4)× SO(4) with the first SO(4) being a subgroup of SO(5).

Vacua of non-compact gaugings

We now give some critical points of the non-compact gaugings. The isometry group
of the background with L = I consists of the maximal compact subgroup of the
gauge group and SO(2, 2) as the bosonic subgroup. Using the generators given in the
appendix, we can compute the scalar potentials for these two gaugings. Notice that
in the non-compact gaugings, all sixteen scalars are not equivalent. At the maximally
symmetric vacua, the gauge group is broken down to its maximal compact subgroup,
and some of the scalars become Goldstone bosons making some of the vector fields
massive. This “Higgs-mechanism” results in the propagating nng massive vector
fields where nng denotes the number of non compact generators which are broken at
the critical point. The total number of degrees of freedom remains the same because
of the disappearance of the nng scalars, Goldstone bosons. For further detail, see
[86] in the context of N = 16 models.

• G2(−14) × SL(2) gauging:
The coset representative is chosen to be

L = ea1Y3ea2Y13 . (A.65)

This parametrization has residual gauge symmetry SU(2) which is a subgroup
of G2(−14). With one of the scalars vanishing, L has SU(3) symmetry. The
potential with two scalars is given by

V =
1

4608
g2[−23406− 2520 cosh(2a1) + 70 cosh(4a1) + 8 cosh(4a1 − 3a2)

+28 cosh[2(a1 − 2a2)] + 28 cosh(4a1 − 2a2)− 560 cosh[2(a1 − a2)]

+ cosh[4(a1 − a2)]− 1792 cosh(2a1 − a2) + 56 cosh(4a1 − a2)

+3472 cosh(a2)− 6104 cosh(2a2)− 16 cosh(3a2) + 198 cosh(4a2)

−560 cosh[2(a1 + a2)] + cosh[4(a1 + a2)]− 1792 cosh(2a1 + a2)

+28 cosh[2(2a1 + a2)] + 56 cosh(4a1 + a2) + 28 cosh[2(a1 + 2a2)]

+8 cosh(4a1 + 3a2)]. (A.66)
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We find the following critical points:

critical point a1 a2 V0 preserved
supersymmetries

1 0 0 −64
9
g2 (7,2)

2 0 cosh−1 1
2

√
11+
√

57
2

−551+21
√

57
72

g2 -

3 cosh−1 2 0 −100
9
g2 (0,1)

4 cosh−1 3
2

cosh−1 2√
3

−1024
81
g2 (1,2)

The corresponding values of the A1 tensor are

A
(1)
1 = diag

(
−4

3
,−4

3
,−4

3
,−4

3
,−4

3
,−4

3
,−4

3
,
4

3
,
4

3

)
,

A
(3)
1 =



−7
3

0 0 0 0 0 0 0 0
0 −3 0 0 0 0 2

3
0 0

0 0 −7
3

0 0 0 0 0 0
0 0 0 −7

3
0 0 0 0 0

0 0 0 0 −7
3

0 0 0 0
0 0 0 0 0 −7

3
0 0 0

0 2
3

0 0 0 0 −3 0 0
0 0 0 0 0 0 0 5

3
0

0 0 0 0 0 0 0 0 7
3


(A.67)

and

A
(4)
1 =



−28
9

0 0 0 0 −4
9

0 0 0
0 −28

9
0 0 0 0 4

9
0 0

0 0 −8
3

0 0 0 0 0 0

0 0 0 −14
9

0 0 0 0 −2
3

√
5
3

0 0 0 0 −8
3

0 0 0 0
−4

9
0 0 0 0 −28

9
0 0 0

0 4
9

0 0 0 0 −28
9

0 0
0 0 0 0 0 0 0 16

9
0

0 0 0 −2
3

√
5
3

0 0 0 0 14
9


. (A.68)

A
(3)
1 and A

(4)
1 can be diagonalized to

A
(3)
1 = diag

(
−7

3
,−11

3
,−7

3
,−7

3
,−7

3
,−7

3
,−7

3
,
5

3
,
7

3

)
,

A
(4)
1 = diag

(
−32

9
,−32

9
,−8

3
,−16

9
,−8

3
,−8

3
,−8

3
,
16

9
,
16

9

)
. (A.69)

For L = I, the gauge group is broken down to its compact subgroup G2 ×
SO(2). The background isometry is given by G(3) × Osp(2|2,R). There are
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two SU(3) points with completely broken supersymmetry (point 2) and (0,1)
supersymmetry (point 3). Point 4 has SU(2) symmetry.

• Sp(1, 2)× SU(2) gauging:
We choose the coset representative

L = ea1(Y1−Y10)ea2(Y2+Y9) . (A.70)

This has symmetry SO(3) × SO(3) if any one of the scalars vanishes. This
is the case in which our critical points lie. This symmetry is a subgroup of
the SO(5) × SO(3) compact subgroup of Sp(1, 2) with the first SO(3) being
a subgroup of SO(5). We find the potential

V =
1

32
g2[−1390− 232 cosh(2

√
2a1) + 6 cosh(4

√
2a1)

+4 cosh[2
√

2(a1 − 2a2)]− 112 cosh[2
√

2(a1 − a2)]

+ cosh[4
√

2(a1 − a2)] + 4 cosh[2
√

2(2a1 − a2)]− 232 cosh(2
√

2a2)

+6 cosh(4
√

2a2)− 112 cosh[2
√

2(a1 + a2)] + cosh[4
√

2(a1 + a2)]

+4 cosh[2
√

2(2a1 + a2)] + 4 cosh[2
√

2(a1 + 2a2)]]. (A.71)

Some of the critical points are given by

critical point a1 a2 V0 preserved supersymmetries
1 0 0 −64g2 (5,4)

2 0 cosh−1 2√
2

−100g2 -

3 ln(2−
√

3)√
2

0 −100g2 -

4 ln(2+
√

3)√
2

0 −100g2 -

with the corresponding A1 tensor

A
(1)
1 = diag (−4,−4,−4,−4,−4, 4, 4, 4, 4) (A.72)

for the critical point 1. For L = I, the gauge group is broken down to its
compact subgroup Sp(1) × Sp(2) × SU(2) ∼ SU(2) × SO(5) × SU(2). The
two SU(2)’s factors combine to SO(4) under which the right handed super-
charges transform as 4. So, the background isometry is given by Osp(5|2,R)×
Osp(4|2,R). Point 2, 3, and 4 are SO(3)×SO(3) points with completely bro-
ken supersymmetry.

We have checked that all critical points given above are truely critical points of the
corresponding potential. There exist many supersymmetric flow solutions interpo-
lating between some of the supersymmetric vacua. However, we will not give them
here since they are not directly related to the thesis mainline. We refer the reader
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to [54] for the discussions on these solutions. We end this section by summarizing
all critical points found in the N = 9 gauged supergravity in table IV.

Critical Gauge group V0 Unbroken Unbroken
point SUSY gauge symmetry

1 SO(9) −64g2 (9, 0) SO(9)
2 SO(9) −100g2 - SO(7)
3 SO(8) −64g2 (8, 1) SO(8)
4 SO(8) −100g2 - G2

5 SO(7)× SO(2) −64g2 (7, 2) SO(7)× SO(2)
6 SO(7)× SO(2) −1024

9
g2 (0, 1) SU(3)

7 SO(7)× SO(2) −144g2 (1, 2) SU(2)
8 SO(6)× SO(3) −64g2 (6, 3) SO(6)× SO(3)
9 SO(6)× SO(3) −144g2 (0, 2) SO(3)
10 SO(6)× SO(3) −256g2 (1, 3) SO(3)
11 SO(5)× SO(4) −64g2 (5, 4) SO(5)× SO(4)
12 SO(5)× SO(4) −256g2 (0, 3) SO(4)diag

13 G2(−14) × SL(2) −64
9
g2 (7, 2) G2(−14) × SO(2)

14 G2(−14) × SL(2) −551+21
√

57
72

g2 − SU(3)
15 G2(−14) × SL(2) −100

9
g2 (0, 1) SU(3)

16 G2(−14) × SL(2) −1024
81
g2 (1, 2) SU(2)

17 Sp(1, 2)× SU(2) −64g2 (5, 4) SO(5)× SO(4)
18 Sp(1, 2)× SU(2) −100g2 − SO(3)× SO(3)

Table IV: Some critical points of N = 9 gauged supergravity in three dimensions.

A.4 Vacua of N = 10 theory

In this section, we continue with identifying critical points of gauged supergravity
in three dimensions. This section deals with N = 10 gauged supergravity which
contains 32 scalar fields parametrizing the exceptional coset space

E6(−14)

SO(10)×U(1)
. The

procedure is much similar to that of the previous section. Particularly, the gen-
erators of E6 are obtained by extending the F4 generators used in the previous
section. The admissible gauge groups considered here involve both compact and
non-compact gauge groups which are maximal subgroups of SO(10) × U(1) and
E6(−14), respectively. They are given by SO(p)×SO(10−p)×U(1) for p = 6, . . . 10,
SO(5) × SO(5), SU(4, 2) × SU(2), G2(−14) × SU(2, 1) and F4(−20). We employ the
technique introduced in [80] to find critical points of the scalar potentials.

A.4.1 N = 10 three dimensional gauged supergravity

In this subsection, we review the structure of N = 10 three dimensional gauged su-
pergravity. We start by describing the scalar target space manifold and the necessary
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ingredients. The scalar manifold of N = 10 theory is a 32 dimensional symmetric
space

E6(−14)

SO(10)×U(1)
. We will use the E6 generators constructed in [146]. Notice that

there is an additional factor H ′ = U(1), in the compact subgroup H = SO(N)×H ′,
in this theory in contrast to N = 9 and N = 16 theories studied in the previous
section and [86]. The 78 generators of E6 are given in [141] for the first 52 generators
and in [146] for the remaining 26. We can construct the non-compact form E6(−14)

by making 32 generators non-compact using “Weyl unitarity”. These transform as
a spinor representation of SO(10) and are given by

Y A =

{ icA+21 for A = 1, . . . , 8
icA+28 for A = 9, . . . , 16
icA+37 for A = 17, . . . , 32

. (A.73)

The 46 compact generators are the generators of SO(10)× U(1) and are given by

X1,10 = −c71, X
2,10 = c72, X

3,10 = −c73, X
4,10 = c74, X

5,10 = c75,

X6,10 = c76, X
7,10 = c77, X

8,10 = c78, X
9,10 = c̃53 (A.74)

together with the SO(9) generators given in the previous section. The U(1) subgroup
is generated by X = 2c̃70. The c̃53 and c̃70 are defined by [146]

c̃53 =
1

2
c53 +

√
3

2
c70 and c̃70 = −

√
3

2
c53 +

1

2
c70 . (A.75)

All the f IJ ’s components can be obtained from the structure constants of the
[XIJ , Y A] given in [141] and [146].

The embedding tensors for the compact gaugings with gauge groups SO(p)×
SO(10− p)× U(1), p = 6, . . . , 10 and SO(5)× SO(5) are given by [31]

ΘIJ,KL = θδKLIJ + δ[I[KΞL]J ] +
1

3
(5− p)ΘU(1) (A.76)

where

ΞIJ =

{
2
(
1− p

10

)
δIJ for I ≤ p

−p
5
δIJ for I > p

, θ =
p− 5

5
. (A.77)

For p = 5, the gauge group is SO(5) × SO(5) which lies entirely in SO(10). This
is the case in which the U(1) is not gauged. The generators for these gauge groups
can be obtained by choosing appropriate generators of SO(10)

T IJ1 = XIJ , I, J = 1, . . . p,

T IJ2 = XIJ , I, J = p+ 1, . . . 10 (A.78)

and U(1) generator 2c̃70.
Non-compact gaugings considered in this work are those given in [31]. The
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gauge groups are SU(4, 2) × SU(2), G2(−14) × SU(2, 1) and F4(−20). We find the
following embedding tensors

G2(−14) × SU(2, 1) : ΘMN = ηG2
MN −

2

3
η
SU(2,1)
MN (A.79)

SU(4, 2)× SU(2) : ΘMN = η
SU(4,2)
MN − 6η

SU(2)
MN (A.80)

F4(−20) : ΘMN = η
F4(−20)

MN (A.81)

where ηG0 is the Cartan Killing form of the gauge group G0. The corresponding
gauge generators of these three gaugings are given as follows. The G2(−14) generators
are the same as those given in the previous section. The SU(2, 1) generators are
given by

J1 = −c52, J2 = −c̃53, J3 = −c78, J4 = c̃70,

J5 =
1√
2

(Y1 + Y6), J6 =
1√
2

(Y9 + Y14),

J7 =
1√
2

(Y21 + Y24), J8 =
1√
2

(Y25 + Y30) . (A.82)

We have normalized these generators according to the embedding tensor given above.
In SU(4, 2)× SU(2) gauging, the relevant generators are given by

• SU(4, 2):

Qi = ci, i = 1, . . . , 15,

Q16 =
1√
2

(c52 + c77), Q17 =
1√
2

(c51 − c78), Q18 =
1√
2

(c̃53 − c36),

Q19 = c̃70, Q20 =
1√
2

(Y1 + Y23), Q21 =
1√
2

(Y2 − Y22),

Q22 =
1√
2

(Y3 + Y24), Q23 =
1√
2

(Y4 − Y21), Q24 =
1√
2

(Y5 + Y20),

Q25 =
1√
2

(Y6 + Y18), Q26 =
1√
2

(Y7 − Y17), Q27 =
1√
2

(Y8 − Y19),

Q28 =
1√
2

(Y9 + Y27), Q29 =
1√
2

(Y10 − Y29), Q30 =
1√
2

(Y11 − Y25),

Q31 =
1√
2

(Y12 + Y30), Q32 =
1√
2

(Y13 + Y26), Q33 =
1√
2

(Y14 − Y28),

Q34 =
1√
2

(Y15 − Y32), Q35 =
1√
2

(Y16 + Y31) . (A.83)

• SU(2):

K1 =
1

2
(c51 + c78), K2 = −1

2
(c52 − c77), K3 =

1

2
(c36 + c̃53). (A.84)
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To find the above generators, we first look at the generators of the compact sub-
group SU(4) × SU(2) × U(1) of the SU(4, 2). Using the fact that SU(4) ∼ SO(6)
and SU(2)×SU(2) ∼ SO(4), we can identify SU(4)×SU(2)×SU(2) with SO(6)×
SO(4) ⊂ SO(10). The U(1) generator is simply c̃70. The final non-compact gauge
group is F4(−20) whose generators can be easily identified by c1, . . . , c52 in the con-
struction of the E6 given in [146].

With the same conventions as in the previous section, various components
of V ’s are given by

VαIJ = −1

6
Tr(L−1TαGLX

IJ) (A.85)

VαA =
1

6
Tr(L−1TαGLY

A) (A.86)

VIJU(1) = −1

6
Tr(L−1XLXIJ) (A.87)

VAU(1) =
1

6
Tr(L−1XLY A) (A.88)

with gauge generators TG. Using the above embedding tensor, we find the following
T-tensors

T IJ,KL = VIJ,αVKL,βδSO(p)
αβ − VIJ,αVKL,βδSO(10−p)

αβ +
1

3
(5− p)VIJU(1)VKLU(1),(A.89)

T IJ,A = VIJ,αVA,βδSO(p)
αβ − VIJ,αVA,βδSO(10−p)

αβ +
1

3
(5− p)VIJU(1)VAU(1) (A.90)

for compact gaugings and

T IJ,KL = VIJ,αVKL,βηG1
αβ −KVIJ,αVKL,βηG2

αβ , (A.91)

T IJ,A = VIJ,αVA,βηG1
αβ −KVIJ,αVA,βηG2

αβ (A.92)

for non-compact gaugings with K being 2
3

and 6 for G1×G2 being G2(−14)×SU(2, 1)
and SU(4, 2) × SU(2), respectively. For F4(−20) gauging, we have the simpler ex-
pressions for the T-tensors namely

T IJ,KL = VIJ,αVKL,βηF4(−20)

αβ ,

T IJ,A = VIJ,αVA,βηF4(−20)

αβ . (A.93)

We are now in a position to compute the scalar potential for all the gauge groups
mentioned above. The potentials and some of their critical points will be given in
the next subsection.

A.4.2 Vacua of N = 10 gauged supergravity

In this subsection, we give some vacua of the N = 10 gauged theory with the
gaugings described in the previous section. We will also discuss the isometry groups
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of the background with maximal supersymmetry at L = I. This is a supersymmetric

extension of the SO(2, 2) ∼ SO(1, 2)×SO(1, 2) isometry group of AdS3. As a general

strategy, we give the trivial critical point in which all scalars are zero, L = I, as the

first critical point. It is also useful to compare the cosmological constants of other

critical points with the trivial one. According to the AdS/CFT correspondence,

the cosmological constant V0 is related to the central charge in the dual CFT as

c ∼ 1√
−V0

, so we will give the ratio of the central charges for each non trivial critical

point with respect to the trivial critical point at L = I.

A.4.3 Vacua of compact gaugings

The compact gauging includes gauge groups SO(p) × SO(10 − p) × U(1) for p =

6, . . . , 10 and SO(5) × SO(5). We give the scalar potential in SO(p) × SO(10 −
p)× U(1) for p = 7, . . . , 10 gaugings in the G2 invariant scalar sector. For SO(6)×
SO(4) × U(1) gauging, we study the potential in SO(4)diag and SU(3) sectors.

Finally, for SO(5)× SO(5) gauging, we study the potential in SO(5)diag, SO(4)diag

and SO(3)diag sectors.

SO(10)× U(1) gauging

We will study the potential in the G2 invariant scalar manifold. From 32 scalars,

there are four singlets under G2 ⊂ SO(p), p = 7, . . . , 10. These four scalars cor-

respond to non-compact directions of SU(2, 1). We use the same parametrization

as in [86], namely using three compact generators of the SU(2) subgroup and one

non-compact generator. With this parametrization, the coset representative takes

the form

L = ea1c78ea2c̃53ea3c52eb1(Y1+Y6)e−a3c52e−a2c̃53e−a1c78 . (A.94)

This choice of L will also be used in the next three gauge groups. In this SO(10)×
U(1) gauging, the potential is given by

V =
1

2
g2[−101− 28 cosh(2

√
2b1) + cosh(4

√
2b1)]. (A.95)

The potential does not depend on a1, a2 and a3.

The first critical point is the trivial one in which all scalars are zero. We

find

V0 = −64g2, A1 = −4I10 . (A.96)

This is the critical point with (10,0) supersymmetry according to our convention.

The corresponding background isometry is Osp(10|2,R)× SO(2, 1).

The second critical point is at b1 = cosh−1 2√
2

with cosmological constant V0 =
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−100g2. This is a non-supersymmetric point. The ratio of the central charges

between this point and the maximally supersymmetric point is

c(0)

c(1)

=

√√√√V
(1)

0

V
(0)

0

=
5

4
. (A.97)

Here and from now on, the notations c(0) and c(i) mean the central charges of the

trivial and ith non trivial critical points, respectively.

For a1 = a3 = 0, the coset representative (A.94) has a larger symmetry

SO(7). This SO(7) is embedded in SO(8) in such a way that it stabilizes one com-

ponent of the SO(8) spinor. In [86], this SO(7) has been called SO(7)± according

to a component of 8s or 8c is stabilized. Our critical point is parametrized only

by b1, so has SO(7) symmetry. Notice that this point is very similar to the non-

supersymmetric SO(7)×SO(7) critical point of the SO(8)×SO(8) gauged N = 16

theory given in [86] and the SO(7) point in SO(9) gauged N = 9 theory studied

in [54]. The similarity mentioned here and in the following means that the location

and the value of the cosmological constant relative to the trivial point are similar for

these points. We do not know whether this is only an accident or there is a precise

relation (to be specified if exists) between these critical points.

SO(9)× U(1) gauging

The potential in this gauging is much more complicated than the previous gauge

group and depends on all four scalars. We will use the local H = SO(10) × U(1)

symmetry to remove the e−a3c52e−a2c̃53e−a1c78 factor in (A.94) to simplify the com-
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putation and reduce the calculation time. The potential is given by

V = − 1

327680
g2

[
−2

(
64 cos(2a1)(1 + 3 cos(2a3)) cosh

(
b1√

2

)
sinh3

(
b1√

2

)
+16

(
−4 cosh

(
b1√

2

)(
cos(2a3)− 4 cos2 a1 cos(2a2) sin2 a3

+4 sin(2a1) sin a2 sin(2a3)) sinh3

(
b1√

2

)
+
(

3 + 29 cosh
(√

2b1

))
×

sinh
(√

2b1

)))2

+ 5120
(
4 cos2 a2 cos(2a3) + 2 cos(2a1)

(−2 cos2 a2

+(−3 + cos(2a2)) cos(2a3)) + 8 sin(2a1) sin a2 sin(2a3))2 sinh8

(
b1√

2

)
−2621440 cos2 a1 cos2 a2(cos a3 sin a1 + cos a1 sin a2 sin a3)2 sinh6

(
b1√

2

)
−384

(
64 sinh6

(
b1√

2

))
(4 cos(2a3) sin(2a1) sin a2 + (−1 + 3 cos(2a1)

−2 cos2 a1 cos(2a2)
)

sin(2a3)
)2 − 96

(
32

(
cosh

(
b1√

2

)(
4 cos2 a1 cos2 a3

+
(
3 + cos(2a2)− 2 cos(2a1) sin2 a2

)
sin2 a3 − 2 sin(2a1) sin a2 sin(2a3)

)×
sinh3

(
b1√

2

)
+
(

1 + 3 cosh
(√

2b1

))
sinh

(√
2b1

)))2

− 4

(
4

(
8 cosh

(
b1√

2

)
× (cos(2a2)− 2 cos2 a2 cos(2a3) + cos(2a1)

(
2 cos2 a2 − (−3 + cos(2a2))

× cos(2a3))− 4 sin(2a1) sin a2 sin(2a3)) sinh3

(
b1√

2

)
+ 6 sinh

(√
2b1

)
+29 sinh

(
2
√

2b1

)))2

− 1024 sinh6

(
b1√

2

)
(12 cos(2a1) sin(2a3)

+16 cos(2a3) sin(2a1) sin(a2)− 4
(
1 + 2 cos2 a1 cos(2a2)

)
sin(2a3)

)2

−
(
−8

(
8 cosh

(
b1√

2

)(− cos(2a3) + cos(2a1)(1 + 3 cos(2a3)) + 4 cos2 a1×

cos(2a2) sin2 a3 − 4 sin(2a1) sin a2 sin(2a3)
)

sinh3

(
b1√

2

)
+ 6 sinh

(√
2b1

)
+29 sinh

(
2
√

2b1

)))2
]

(A.98)

Although we do not have a systematic way of finding critical points of this compli-
cated potential, we find some critical points, numerically.

The first critical point is the maximally supersymmetric (9,1) point

a1 = a2 = a3 = b1 = 0, V0 = −64g2,

A1 = diag (−4,−4,−4,−4,−4,−4,−4,−4,−4, 4) . (A.99)
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The background isometry is given by Osp(9|2,R)×Osp(1|2,R).
The second critical point is given by

b1 =
1√
2

cosh−1 7

3
, a1 = π, a2 =

3π

2
, a3 =

π

2
, V0 = −1024

9
g2,

A1 = diag

(
−8,−8,−8,−8,−8,−8,−8,

16

3
,−16

3
,−16

3

)
. (A.100)

This G2 critical point has (2,1) supersymmetry with

c(0)

c(1)

=
4

3
. (A.101)

This critical point should be compared with the (1,1) G2×G2 point in the SO(8)×
SO(8) gauged N = 16 theory. The two points have similar locations and values of
the cosmological constant relative to the trivial point.

The third critical point in this gauging is given by

b1 =
1√
2

cosh−1 2, a1 = a3 =
π

2
, a2 = arbitrary, V0 = −100g2,

A1 = diag (−7,−7,−7,−7,−7,−7,−7,−7, 7,−5) . (A.102)

This is a (1,0) point with G2 symmetry and

c(0)

c(2)

=
5

4
. (A.103)

SO(8)× SO(2)× U(1) gauging

The potential in the G2 sector is given by

V =
1

2048
g2
[
−88549− 21112 cosh(

√
2b1)− 22148 cosh(2

√
2b1) + 56 cosh(3

√
2b1)

+681 cosh(4
√

2b1) + 256
[
4 cos2 a1 cos(2a3)[43 + 13 cosh(

√
2b1)] + cos(2a1)×

[85 + 27 cosh(
√

2b1)]
]

sinh6

(
b1√

2

)
+ 128 [3 cos(4a1)

+16 cos2 a1 cos(2a1) cos(2a3) + 8 cos4 a1 cos(4a3)
]

sinh8

(
b1√

2

)]
. (A.104)

The potential does not depend on a2. We find the following critical points.
First of all, when a1 = a2 = a3 = b1 = 0, we find the maximally supersym-

metric critical points. At this point, we find

V0 = −64g2,

A1 = diag (−4,−4,−4,−4,−4,−4,−4,−4, 4, 4) . (A.105)
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This point has (8,2) supersymmetry and Osp(8|2,R)×Osp(2|2,R) as the background
isometry group.

The next point is given by

b1 = cosh−1 2, a1 = a3 = 0, V0 = −100g2 . (A.106)

This is an SO(7) non-supersymmetric point with

c(0)

c(1)

=
5

4
. (A.107)

This point is very similar to the non-supersymmetric SO(7) × SO(7) point of the
SO(8)× SO(8) gauged N = 16 theory studied in [86].

The third critical point is given by

b1 =
1√
2

cosh−1 7

3
, a1 = 0, a3 =

π

2
, V0 = −1024

9
g2,

A1 =



−8 0 0 0 0 0 0 0 0 0
0 −8 0 0 0 0 0 0 0 0
0 0 −8 0 0 0 0 0 0 0
0 0 0 −8 0 0 0 0 0 0
0 0 0 0 −8 0 0 0 0 0
0 0 0 0 0 −8 0 0 0 0
0 0 0 0 0 0 −8 0 0 0
0 0 0 0 0 0 0 −16

3
0 0

0 0 0 0 0 0 0 0 x1 x2

0 0 0 0 0 0 0 0 x2 x3


(A.108)

where

x1 = −4

3
[−5 + cos(2a2)], x2 =

4

3
sin(2a2),

x3 =
4

3
[5 + cos(2a2)]. (A.109)

We find that this is the (1,1) point with G2 symmetry, and the diagonalized A1

tensor is given by

A1 = diag

(
−8,−8,−8,−8,−8,−8,−8, 8,−16

3
,
16

3

)
. (A.110)

The ratio of the central charges is

c(0)

c(2)

=
4

3
. (A.111)

This point is similar to the G2×G2 point with (1,1) supersymmetry in SO(8)×SO(8)
gauged N = 16 theory.
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SO(7)× SO(3)× U(1) gauging

In this gauging, we still work with the G2 invariant scalar sector. The potential is

given by

V = − 1

32
g2[1301 + 448 cosh(

√
2b1) + 308 cosh(2

√
2b1)− 9 cosh(4

√
2b1)]. (A.112)

This case is very similar to the SO(10)×U(1) gauging in the sense that the potential

dose not depend on a1, a2 and a3 and admits two critical points.

The first critical point is as usual at L = I. This point is a (7,3) point with

V0 = −64g2

A1 = diag(−4,−4,−4,−4,−4,−4,−4, 4, 4, 4). (A.113)

The background isometry is Osp(7|2,R)×Osp(3|2,R).

The second critical point is given by

b1 =
1√
2

cosh−1 7

3
, V0 = −1024

9
g2 . (A.114)

The A1 tensor is very complicated, so we refer the reader to [55] for its explicit form.

Remarkably, a complicated A1 can be diagonalized to

A1 = diag

(
−8,−8,−8,−8,−8,−8,−8, 8, 8,

16

3

)
. (A.115)

So, this critical point has (0,1) supersymmetry with

c(0)

c(1)

=
4

3
. (A.116)

Notice that this point has G2 symmetry although it is characterized only by b1. This

is because the SO(7) in the gauge group is not the same as SO(7)±, and b1 is not

invariant under this SO(7). The SO(7) in the gauge group is embedded in SO(8)

as 8v → 7 + 1. This point is similar to the (1,1) G2 ×G2 point in [86].

SO(6)× SO(4)× U(1) gauging

We first study the potential in the SO(4)diag scalar sector. There are four singlets

in this sector corresponding the non-compact directions of SO(2, 2) ∼ SO(2, 1) ×
SO(2, 1). We parametrize the coset representative by

L = ea1[V1,V2]eb1V1e−a1[V1,V2]ea2[V3,V4]eb2V1e−a2[V3,V4], (A.117)
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where

V1 = j1 + j2,

V2 = j3 − j4,

V3 = j3 + j4,

V4 = j1 − j2, (A.118)

and

j1 = Y1 + Y5 − Y9 + Y13 − Y17 − Y21 + Y30 + Y32,

j2 = Y2 + Y10 − Y11 + Y18 + Y19 − Y28 + Y31 + Y3,

j3 = Y4 + Y7 + Y12 − Y15 + Y20 + Y23 + Y26 − Y27,

j4 = Y6 − Y8 + Y14 + Y16 − Y22 + Y24 + Y25 − Y29 . (A.119)

We find the potential

V = −4g2[6 + 4 cosh(4
√

2b1) + cosh[4
√

2(b1 − b2)] + 4 cosh(4
√

2b2)

+ cosh[4
√

2(b1 + b2)]] . (A.120)

There is no non-trivial critical point in this potential. So, there is no critical point
with SO(4)diag symmetry.

Next, we will consider the SU(3) invariant sector. The SU(3) is a subgroup
of SO(6) ∼ SU(4). There are eight singlets in this sector. The coset representative
is parametrized by

L = ea1c36ea2c51ea3c52ea4c̃53ea5c77ea6c78eb1Y1eb2Y3 (A.121)

in which the eight scalars correspond to non-compact directions of SU(2, 2). As
usual, we have used the local H symmetry to simplify the parametrization of L.
The potential has a very complicated form, so we will not repeat it here. Its explicit
form is given in [55]. We find two critical points.

The trivial (6,4) critical point at L = I is given by

V0 = −64g2,

A1 = diag (−4,−4,−4,−4,−4,−4, 4, 4, 4, 4) . (A.122)

The background isometry is Osp(6|2,R)×Osp(4|2,R).
The non trivial critical point is given by

ai =
π

2
, i = 1, . . . , 6,

b1 = b2 = cosh−1
√

3, V0 = −144g2,

A1 = diag (−10,−10,−10,−10,−10,−10, 6, 6, 10, 10) . (A.123)

This point preserves (0,2) supersymmetry and SU(3) symmetry. The ratio of the
central charges is

c(0)

c(1)

=
3

2
. (A.124)
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SO(5)× SO(5) gauging

We start with the potential in the SO(5)diag scalar sector. There are two singlets in
this sector corresponding to the non-compact directions of SL(2). We parametrize
the coset representative by

L = ea1V eb1Ue−a1V (A.125)

where the compact and non-compact generators of SL(2) are given by

V =
1√
2

(
c11 − c17 + c32 − c48 + c75 +

√
3

2
c̃70

)
, (A.126)

U = Y3 − Y5 − Y12 + Y16 + Y17 − Y18 + Y27 + Y29 . (A.127)

The potential is given by

V = −8g2(5 + 3 cosh(4b1)) (A.128)

which does not have any non-trivial critical points.
We then move to smaller unbroken gauge symmetry namely SO(4)diag. The

parametrization of L is the same as in (A.117). The potential turns out to be the
same as that of SO(6) × SO(4) × U(1) gauging, and, of course, does not have any
non trivial critical points.

To proceed further, we need to reduce the residual symmetry to a smaller
group. The next sector we will consider is SO(3)diag. There are eight singlets in this
sector. These are non-compact directions of SO(4, 2) ∼ SU(2, 2). We parametrize
the coset representative in this sector by

L = ea1c10ea2c14ea3c15ea4c19ea5c20ea6c21eb1Z1eb2Z2 (A.129)

where

Z1 = Y1 + Y11 − Y20 − Y29, Z2 = Y2 + Y13 − Y24 + Y27 . (A.130)

The potential depends on all eight scalars. Its explicit form is given in [55].
The trivial (5,5) critical point at L = I is characterized by

V0 = −64g2, A1 = diag (−4,−4,−4,−4,−4, 4, 4, 4, 4, 4) . (A.131)

The corresponding background isometry group is Osp(5|2,R)×Osp(5|2,R).
We find a non trivial critical point given by

ai =
π

2
, i = 1, . . . , 6, b2 = 0,

b1 =
cosh−1 5

2
, V0 = −256g2,

A1 = diag (−8,−8,−8, 16, 16,−16,−16, 16, 16, 16) . (A.132)

This critical point has (3,0) supersymmetry with the ratio of the central charges

c(0)

c(1)

= 2 . (A.133)
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A.4.4 Vacua of non-compact gaugings

We now consider non-compact gaugings with gauge groups SU(4, 2)×SU(2), G2(−14)×
SU(2, 1) and F4(−20). At L = I, the gauge group is broken down to its maximal
compact subgroup, and the bosonic part of the background isometry is formed by
this subgroup and SO(2, 2). These three gauge groups contain SU(3) subgroup, so
we study the potential in the SU(3) scalar sector in all non-compact gaugings. For
G2(−14) × SU(2, 1) and F4(−20) gaugings, the SU(3) ⊂ G2 sector consists of eight
scalars which is twice the number of scalars in the G2 sector. The SU(3) is embed-
ded in G2 as 7→ 3+ 3̄+1. The eight scalars correspond to non-compact directions
of the SO(4, 2) ∼ SU(2, 2) ⊂ E6(−14). For SU(4, 2) × SU(2) gauging, the SU(3)
is embedded in SU(4) ⊂ SU(4, 2) as 4 → 3 + 1. Similarly, the eight scalars are
described by non-compact directions of SU(2, 2). This sector is essentially the same
as that used in SO(6)× SO(4)× U(1) gauging.

Fortunately, we do not need to deal with all eight scalars. In these three
gaugings, four of the eight SU(3) singlets lie along the gauge group, so only four
directions orthogonal to the gauge group are relevant. This is because the singlets
which are parts of the gauge group will drop out from the potential and correspond
to flat directions of the potential. The relevant four singlets are contained in the
SU(2, 1) sub group of SU(2, 2). We also study the potentials in other sectors specific
to each gauging. The details of these sectors will be explained below.

G2(−14) × SU(2, 1) gauging

If we study the potential in the G2 sector in this gauging, we will find the constant
potential. This is because all scalars in the G2 sector are parts of the gauge group
and will drop out from the potential. We then start with SU(3) ⊂ G2 sector. As
discussed above, this sector contains four relevant scalars parametrized by

L = ea1c52ea2c78ea3c̃53eb1(Y1−Y6)e−a3c̃53e−a2c78e−a1c52 . (A.134)

The potential is given by

V =
1

18
g2[−101− 28 cosh(2

√
2b1) + cosh(4

√
2b1)]. (A.135)

There are two critical points. The first one is the trivial critical point given by L = I
and

V0 = −64

9
g2,

A1 = diag

(
−4

3
,−4

3
,−4

3
,−4

3
,−4

3
,−4

3
,−4

3
,
4

3
,
4

3
,
4

3

)
. (A.136)

We find that this point has (7,3) supersymmetry. The symmetry of this point is given
by the maximal compact subgroup G2×SU(2)×U(1) of G2(−14)×SU(2, 1). The left
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handed supercharges transform as 7 under G2 while the right handed supercharges
transform as 3 under the SU(2) ∼ SO(3). So, the background isometry is given by
G(3)×Osp(3|2,R).

The second critical point is characterized by

b1 =
cosh−1 2√

2
, V0 = −100

9
g2,

A1 =



−7
3

0 0 0 0 0 0 0 0 0
0 −7

3
0 0 0 0 0 0 0 0

0 0 −7
3

0 0 0 0 0 0 0
0 0 0 −7

3
0 0 0 0 0 0

0 0 0 0 −11
3

0 0 0 0 0
0 0 0 0 0 −7

3
0 0 0 0

0 0 0 0 0 0 −7
3

0 0 0
0 0 0 0 0 0 0 y1 y4 y5

0 0 0 0 0 0 0 y4 y2 y6

0 0 0 0 0 0 0 y5 y6 y3


(A.137)

where

y1 =
1

6
[13− cos(2a1)− 2 cos2 a1 cos(2a2)],

y2 =
1

6
[13 + cos(2a1)− 2 cos(2a2) sin2 a1],

y3 =
1

3
(6 + cos(2a2)), y4 =

1

3
cos2 a2 sin(2a1),

y5 = −1

3
cos a1 sin(2a2), y6 =

1

3
sin a1 sin(2a2) . (A.138)

We can diagonalize A1 to

A1 = diag

(
−11

3
,−7

3
,−7

3
,−7

3
,−7

3
,−7

3
,−7

3
,
7

3
,
7

3
,
5

3

)
(A.139)

from which we find that this is a (0,1) supersymmetric critical point. The ratio of
the central charges relative to the L = I point is

c(0)

c(1)

=
5

4
. (A.140)

This SU(3) point is similar to the (0,1) SU(3) point in G2(−14) × SL(2) gauged
N = 9 theory.

We now study the potential in different sector, SU(2)diag sector. From the
SU(3) sector discussed above, the next symmetry to consider could be the SU(2) ⊂
SU(3). In general, we expect more scalars than those appearing in the SU(3) sector.
This will make the calculation takes much longer time. We then consider SU(2)diag
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sector in which SU(2)diag ⊂ SU(2) × SU(2). The first and second SU(2)’s are
subgroups of SU(3) ⊂ G2(−14) and SU(2, 1), respectively. There are four singlets in
this sector corresponding to the non-compact directions of SO(4, 1) ∼ Sp(1, 1). We
choose to parametrize the coset representative by applying three SO(3) ⊂ SO(4) ∼
SO(3)× SO(3) rotations as follow

L = ea1c8ea2c17ea3c20eb1(Y2−Y16+Y19+Y29)e−a3c20e−a2c17e−a1c8 . (A.141)

The potential is

V =
1

72
g2[−269− 192 cosh(2b1)− 52 cosh(4b1) + cosh(8b1)] . (A.142)

There is one non trivial critical points given by

b1 = cosh−1
√

2, V0 = −16g2 . (A.143)

This is a supersymmetric point with the associated A1 tensor given in [55]. After
diagonalization, we find

A1 = diag

(
−4,−4,−4,−4,−10

3
,−2,−2, 2, 2, 2

)
(A.144)

which gives (2,3) supersymmetry. The ratio of the central charges is

c(0)

c(2)

=
3

2
. (A.145)

This critical point has SU(2)diag × U(1) symmetry.

F4(−20) gauging

In this gauging with simple gauge group, we study the potential in the G2 and SU(3)
scalar sectors. We start with the G2 sector. Two of the four scalars are parts of the
gauge group, so we only need to parametrize the coset representative with the other
two scalars. These two scalars correspond to the non-compact directions of SL(2).
The L is then parametrized by

L = ea1c52eb1(Y25+Y30)e−a1c52 . (A.146)

The potential is

V =
g2

8
[−101− 28 cosh(2

√
2b1) + cosh(4

√
2b1)]. (A.147)

There are two critical points. The first one is trivial and given by

L = I, V0 = −16g2,

A1 = diag (−2,−2,−2,−2,−2,−2,−2,−2,−2, 2) . (A.148)
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This is the maximally supersymmetric point with (9,1) supersymmetry. The gauge
symmetry is broken down to its maximal compact subgroup SO(9), and the back-
ground isometry is Osp(9|2,R)×Osp(1|2,R).

The second critical point is given by

b1 =
cosh−1 2√

2
, V0 = −25g2,

A1 =



−7
2

0 0 0 0 0 0 0 0 0
0 −7

2
0 0 0 0 0 0 0 0

0 0 −7
2

0 0 0 0 0 0 0
0 0 0 −7

2
0 0 0 0 0 0

0 0 0 0 −7
2

0 0 0 0 0
0 0 0 0 0 −7

2
0 0 0 0

0 0 0 0 0 0 −7
2

0 0 0
0 0 0 0 0 0 0 w1 w3 0
0 0 0 0 0 0 0 w3 w2 0
0 0 0 0 0 0 0 0 0 11

2


(A.149)

where

w1 = −3− 1

2
cos(2a1), w2 =

1

2
[−6 + cos(2a1)], w3 = cos a1 sin a1 . (A.150)

The A1 tensor can be diagonalized to

A1 = diag

(
11

2
,−7

2
,−7

2
,−7

2
,−7

2
,−7

2
,−7

2
,−7

2
,−7

2
,−5

2

)
. (A.151)

This critical point is a (1,0) point with

c(0)

c(1)

=
5

4
(A.152)

and preserves SO(7) ⊂ SO(9) ⊂ F4(−20) symmetry.
In the SU(3) sector, there are eight singlets, but four of them are parts of

the F4(−20). So, there are four singlets orthogonal to the gauge group. These are
non-compact directions of SU(2, 1), and L can be parametrized by

L = ea1c34ea2c49ea3c52eb1Y21e−a3c52e−a2c49e−a1c34 . (A.153)

The potential is given by

V =
g2

8
[−101− 28 cosh(2

√
2b1) + cosh(4

√
2b1)] (A.154)

which is the same as the potential in the G2 sector. The non-trivial critical point
is at the same position and cosmological constant, b1 = cosh−1 2, V0 = −25g2. The
residual symmetry is SO(7) as in the previous critical point. Although the A1 tensor
in this case is more complicated, it is the same as (A.151) after diagonalization. The
explicit form of A1 can be found in [55].
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SU(4, 2)× SU(2) gauging

This gauging is the most difficult one to find a suitable scalar sector in order to
reveal non trivial critical points and still have a manageable number of scalars.
We start with the SO(4)diag scalar sector. The SO(4)diag is formed by taking the
subgroup SU(2)×SU(2)×SU(2)×SU(2) of SU(4, 2)×SU(2). The first two SU(2)’s
are subgroups of SU(4) ⊂ SU(4, 2), the third SU(2) is the SU(2) ⊂ SU(4, 2).
Our SO(4)diag is the diagonal subgroup of (SU(2) × SU(2)) × (SU(2) × SU(2)) ∼
SO(4) × SO(4). There are two singlets in this sector. These are non-compact
directions of SL(2), and L can be parametrized by

L = ea1c15eb1Ỹ e−a1c15 ,

Ỹ = Y1 + Y2 − Y6 − Y7 − Y9 + Y10 − Y14 + Y15

+Y17 − Y18 − Y22 + Y23 − Y27 + Y28 − Y29 − Y32 (A.155)

which, unfortunately, gives a constant potential V = −16g2. So, we move to a
smaller residual symmetry to obtain a non trivial structure of the potential.

We now study the potential in the scalar sector parametrizing the SU(3)
invariant manifold. This SU(3) is a subgroup of SU(4) ⊂ SU(4, 2). The eight singlet
scalars in this sector are the non-compact directions of SO(4, 2) ∼ SU(2, 2). The
four directions which are orthogonal to the gauge group are non-compact directions
of SU(2, 1) ⊂ SU(2, 2). The coset representative is given by

L = ea1(c51+c78)ea2(c36+c̃53)ea3(c77−c52)eb1(Y1−Y23)

e−a3(c77−c52)e−a2(c36+c̃53)e−a1(c51+c78) . (A.156)

We find the potential
V = −2g2(5 + 3 cosh(2b1)) (A.157)

which, again, does not admit any non trivial critical points.
The next sector we will study is SU(2)diag. This symmetry is a diagonal

subgroup of SU(2) × SU(2) in which the first SU(2) is a subgroup of SU(4) ⊂
SU(4, 2), and the second SU(2) is the SU(2) factor in the gauge group. There are
four scalars in this sector. These scalars are non-compact directions of SU(2, 1),
and L can be parametrized by

L = ea1c10ea2c14ea3c15eb1Y e−a3c15e−a2c14e−a1c10 (A.158)

where
Y = Y7 − Y6 − Y12 − Y16 + Y17 + Y18 + Y30 + Y31 . (A.159)

The corresponding potential is

V =
g2

8
[−101− 28 cosh(4

√
2b1) + cosh(8

√
2b1)] . (A.160)
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We now discuss its trivial critical point at L = I. This point is characterized

by

V0 = −16g2, A1 = diag (−2,−2,−2,−2,−2,−2, 2, 2, 2, 2) . (A.161)

The critical point has (6,4) supersymmetry. The gauge group is broken down to its

maximal compact subgroup SU(4)×SU(2)×U(1)×SU(2). The left handed super-

charges transform as 6 under SU(4) ∼ SO(6) while the right handed supercharges

transform as 4 under SU(2) × SU(2) ∼ SO(4). So, the background isometry is

given by Osp(6|2,R)×Osp(4|2,R).

The non trivial critical point with SU(2)diag × SU(2)× SU(2)× U(1) sym-

metry is given by

b1 =
1√
2

cosh−1

√
3

2
, V0 = −25g2 . (A.162)

The associated A1 tensor can be found in [55]. It can be diagonalized to

A1 = diag

(
11

2
,
11

2
,
11

2
,
11

2
,−7

2
,−7

2
,−5

2
,−5

2
,−5

2
,−5

2

)
. (A.163)

So, this is a (4,0) point with

c(0)

c(1)

=
5

4
. (A.164)

In this section, we have studied critical points of N = 10 three dimensional

gauged supergravity with both compact and non-compact gauge groups. Remark-

ably, all critical points found in this paper are AdS critical points. This is in contrast

to the results of [86] in which some Minkowski and dS vacua have been found. All

critical points identified in this section together with the value of the cosmological

constant, unbroken gauge symmetry and residual supersymmetry are listed in Table

V.
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Critical Gauge group V0 Unbroken Unbroken
point SUSY gauge symmetry

1 SO(10)× U(1) −64g2 (10, 0) SO(10)× U(1)
2 SO(10)× U(1) −100g2 - SO(7)
3 SO(9)× U(1) −64g2 (9, 1) SO(9)× U(1)
4 SO(9)× U(1) −1024

9
g2 (2, 1) G2

5 SO(9)× U(1) −100g2 (1, 0) G2

6 SO(8)× SO(2) −64g2 (8, 2) SO(8)× SO(2)
×U(1) ×U(1)

7 SO(8)× SO(2) −100g2 - SO(7)
×U(1)

8 SO(8)× SO(2) −1024
9
g2 (1, 1) G2

×U(1)
9 SO(7)× SO(3) −64g2 (7, 3) SO(7)× SO(3)

×U(1) ×U(1)
10 SO(7)× SO(3) −1024

9
g2 (0, 1) G2

×U(1)
11 SO(6)× SO(4) −64g2 (6, 4) SO(6)× SO(4)

×U(1) ×U(1)
12 SO(6)× SO(4) −144g2 (0, 2) SU(3)

×U(1)
13 SO(5)× SO(5) −64g2 (5, 5) SO(5)× SO(5)
14 SO(5)× SO(5) −256g2 (3, 0) SO(3)diag

15 G2(−14) × SU(2, 1) −64
9
g2 (7, 3) G2(−14) × SU(2)

×U(1)
16 G2(−14) × SU(2, 1) −100

9
g2 (0, 1) SU(3)

17 G2(−14) × SU(2, 1) −16g2 (2, 3) SU(2)diag × U(1)
18 F4(−20) −16g2 (9, 1) SO(9)
19 F4(−20) −25g2 (1, 0) SO(7)
20 SU(4, 2)× SU(2) −16g2 (6, 4) SU(4)× SU(2)

×SU(2)× U(1)
21 SU(4, 2)× SU(2) −25g2 (4, 0) SU(2)diag × SU(2)

×SU(2)× U(1)

Table V: Some critical points of N = 10 gauged supergravity in three dimensions.
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Appendix B

On instantons

In this appendix, we review some relevant information about Yang-Mills and grav-

itational instantons which play an important role in various places throughout this

thesis. This chapter follows the discussions given in [115], [114] and [116]. We will

not aim to give a complete review on this vast subject but only provide the results

which are useful for finding RG flow solutions discussed in the main text and make

the thesis sufficiently self-contained. The main propose of this appendix is solely to

focus on the explicit solutions and useful formulae. The full detail can be found in

the literatures.

B.1 Yang-Mills instantons

Instantons are solutions of field equations in Euclidean space with finite action. We

restrict ourselves to the case of instantons on a four dimensional Euclidean space

although instantons can be defined on higher dimensional spaces [147]. These solu-

tions are described by a self-dual or antiself-dual field strength. The real instanton

solutions are possible only in Euclidean spaces since the squared of the Hodge du-

ality is minus one, ∗2 = −1, in Minkowski spaces rather than plus one as in the

Euclidean cases. Since we only need the explicit instanton solutions in this thesis,

we will not review the ADHM formalism [148] which is very useful in constructing

multi-instanton solutions. The interested reader should consult [149] and [150] for

good reviews.

We begin with the Euclidean Yang-Mills action with gauge group G in four

dimensions

I =
1

4g2

∫
d4xF a

µνF
aµν , a = 1, . . . , dimG . (B.1)

The G generators T a satisfy the algebra
[
T a, T b

]
= fabcT

c with structure constants

fabc. The field strength is defined by

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcA

b
µA

c
ν . (B.2)
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We will restrict ourselves to semisimple gauge groups so that we can work with the

totally antisymmetric structure constants fabc. Since the Cartan-Killing metric is

non degenerate in this case, we can work with fabc or fabc. The Yang-Mills equation

is straightforwardly obtained from (B.1)

DµF
aµν = 0 (B.3)

where the covariant derivative is defined by

DµF
a
νρ = ∂µF

a
νρ + fabcA

b
µF

c
νρ . (B.4)

The requirement for finite action imposes the condition that the field strength is

asymptotically zero faster than 1
r2 , r2 = |x|2 where xµ, µ = 1, . . . , 4, are coordinates

on R4. This implies that the gauge fields are pure gauge asymptotically

Aaµ = U−1∂µU, r →∞ and U ∈ G . (B.5)

The gauge field subject to this boundary condition can be classified by the winding

number, or topological charge, defined by

N =
1

32π2

∫
d4xF a

µν(∗F a)µν =
1

32π2

∫
d4xF a

µνF
aµν (B.6)

where the Hodge duality is given by (∗F a)µν = 1
2
εµνρσF

aρσ with ε1234 = 1. The

winding number is clearly gauge invariant. Instantons are described by self-dual or

antiself-dual field configurations

F a
µν = ±(∗F a)µν = ±1

2
εµνρσF

aρσ . (B.7)

The field equation is trivially satisfied due to the Bianchi identity D[µF
a
νρ] = 0. The

action is minimized by these configurations as can be seen by

I =
1

4g2

∫
d4xF 2 =

1

8g2

∫
d4x(F ∓ ∗F )2 ∓ 1

4g2

∫
d4xF ∗ F ≥ ±8π2

g2
N (B.8)

where we have used the definition of the winding number and omitted explicit con-

tractions of indices.

We begin with the SU(2) instantons. The ansatz is given by

Aµ = ασµν∂
ν ln ρ, Aµ = AaµT

a . (B.9)

At this point, we discuss all the notations involved throughout this section. The σµν

are defined by

σµν =
1

2
(σµσ̄ν − σν σ̄µ) (B.10)
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where
σµ = (σa, iI), σ̄µ = (σa,−iI). (B.11)

The σa, a = 1, 2, 3 are the usual Pauli matrices. We similarly define

σ̄µν =
1

2
(σ̄µσν − σ̄νσµ). (B.12)

The Euclidean Lorentz generators on the two spinor representations are given by

Mµν =
1

2
σµν and Mµν =

1

2
σ̄µν (B.13)

which satisfy

[Mµν ,Mρσ] = δνρMµσ − δνσMµρ − δµρMνσ − δµσMνρ . (B.14)

Furthermore, the σµν and σ̄µν matrices are antiself-dual and self-dual, respectively,

σµν = −1

2
εµνρσσ

ρσ, σ̄µν =
1

2
εµνρσσ̄

ρσ . (B.15)

We can also expand these matrices in terms of Pauli matrices using the ’t Hooft
tensors ηaµν and η̄aµν as

σµν = iη̄aµνσ
a, σ̄µν = iηaµνσ

a . (B.16)

We immediately deduce that ηaµν and η̄aµν are, respectively, self-dual and antiself-dual.
In components, ηaµν and η̄aµν are given by

ηaij = εaij, ηai4 = −ηa4i = δai ,

η̄aij = εaij, η̄ai4 = −η̄a4i = −δai (B.17)

for i = 1, 2, 3. Before solving for the instanton solution, we note the following
identities

[σµν , σρσ] = 2δνρσµσ − 2δνσσµρ − 2δµρσνσ − 2δµσσνρ,

{σµν , σρσ} = 2(δµσδνρ − δµρδνσ) + 2εµνρσ,

[σ̄µν , σ̄ρσ] = 2δνρσ̄µσ − 2δνσσ̄µρ − 2δµρσ̄νσ − 2δµσσ̄νρ,

{σ̄µν , σ̄ρσ} = 2(δµσδνρ − δµρδνσ)− 2εµνρσ,

εµνρσσστ = δµτσνρ − δντσµρ + δρτσµν ,

εµνρσσ̄στ = −δµτ σ̄νρ + δντ σ̄µρ − δρτ σ̄µν . (B.18)

Using (B.9) and the identities (B.18), we can directly compute the field strength

Fµν = [ασνσ∂µ∂σ ln ρ+ 2α2σµσ∂ν ln ρ∂σ ln ρ− (µ↔ ν)]

−2α2σµν∂σ ln ρ∂σ ln ρ . (B.19)
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Since we work with the flat Euclidean space, we will not be careful with the upper
or lower indices. The dual of Fµν is given by, with the help of (B.18),

(∗F )µν = σνσ(α∂σ∂µ ln ρ− 2α2∂σ ln ρ∂µ ln ρ)− (µ↔ ν)

+σµνα∂σ ln ρ∂σ ln ρ . (B.20)

The self-duality condition yields

∂µ∂
µ ln ρ+ 2α∂µ ln ρ∂µ ln ρ = 0 . (B.21)

We can rescale the ρ to ρ
1

2α , which is effectively the same as setting α = 1
2
, to obtain

�ρ
ρ

=
∂µ∂

µρ

ρ
= 0 . (B.22)

A solution for ρ is given by

ρ = 1 +
n∑
i=1

λi
(x− xi)2

(B.23)

which gives

Aµ =
1

2
σµν∂

ν ln

[
1 +

n∑
i=1

λi
(x− xi)2

]
. (B.24)

This solution describes the field configuration with n instantons. The parameters λi
and xi can be identified with the scale and position of the instantons. Notice that
this solution is singular at x = xi. The solution is called the instanton solution in a
singular gauge. We can make a singular gauge transformation to obtain a solution
which is regular at x = xi. The latter solution is in the so-called regular gauge.
Although it is regular at x = xi, it is indeed singular at x = ∞. We now discuss
one simple example namely a single instanton solution at x = a

Aµ =
1

2
σµν∂

ν ln

[
1 +

λ

(x− a)2

]
=

σµνλ
2(x− a)ν

(x− a)2((x− a)2 + λ2)
. (B.25)

With a gauge transformation U = iσ̄µxµ√
x2

, we find a regular gauge instanton solution

Ãµ = − σ̄µν(x− a)ν

(x− a)2 + λ2
. (B.26)

As discussed in [114], we can also remove the singularities at x = xi by adding a
harmonic function � ln(x − xi) to the ρ solution for each i. This is precisely what
we have done in chapter 5. The antiself-dual instanton solution can be found by
repeating the above procedure and replacing σµν by σ̄µν . We will not go through
the detail here, see [115].
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Instantons are characterized by the scales λi and positions xi as well as
gauge gauge orientations. For SU(2) instantons, there are three gauge parameters
corresponding three SU(2) transformations. These transformations are global sym-
metries which are left after fixing gauge symmetries. The actions of these symmetries
are given by

Aµ → U−1(SU(2))AµU(SU(2)). (B.27)

We can embed the SU(2) in a larger gauge group to obtain instantons of the
new gauge group. We begin with SU(N), N > 2. We can embed SU(2) in the 2×2
submatrix of the N × N defining representation of SU(N). This is clearly not the
only possible embedding. Instead of embedding the 2×2 fundamental representation
of SU(2) in the fundamental representation of SU(N), we can embed a spin j
representation of SU(2) inside SU(N) provided that 2j+ 1 ≤ N . After embedding,
we can act on the resulting solution with an SU(N) transformation as in (B.27),
with U(SU(2)) being replaced by U(SU(N)), and find a new solution. Of course,
not all transformations give a new solution. To embed SU(2), we break SU(N)
down to SU(N − 2)×U(1)×SU(2), so there is a stability group SU(N − 2)×U(1)
commuting with the embedded SU(2). We must then remove this redundancies.
So, the SU(N) instanton is described by 4N − 5 + 5 = 4N parameters which are
sometimes called collective coordinates. The 4N − 5 is the dimension of the coset
space SU(N)

SU(N−2)×U(1)
, and we have added the scale and position of the instanton which

constitute 5 parameters.
Recall that

Aµ =
1

2
σµν∂

ν ln ρ = η̄aµν

(
iσa
2

)
∂ν ln ρ, (B.28)

we can recognize the appearance of SU(2) generators iσa

2
. The SU(N) solution is

readily given by
Aµ = η̄aµνTa∂

ν ln ρ (B.29)

where Ta are generators of SU(2) embedded in SU(N) with a certain SU(2) repre-
sentation.

For SO(N) instantons, we can embed SU(2) instanton in one of the two
SU(2)’s inside the SO(4) ∼ SU(2) × SU(2) ⊂ SO(N) with the same procedure
as described above. The solution is characterized by 4N − 8 parameters since the
stability group in this case is SO(N − 4) × SU(2) with the SU(2) being another
SU(2) factor in SO(4). Note also that the two SU(2)’s are generated by ηaµν and
η̄aµν .

For gauge group USp(2N), we can embed USp(2) ∼ SU(2) instanton in
USp(2N). The stability group is USp(2N − 2), so the number of collective coordi-
nates is given by 4(N + 1). For the n instantons solution, the number of collective
coordinates is given by the above mentioned result multiplied by n.

We now review an instanton solution obtained in [116] and extensively used
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in chapter 5. The solution describes instantons of an arbitrary semisimple gauge

group G. The solution we will rederive covers all the cases mentioned above. We

begin with Yang-Mills equation

DµF
aµν = 0 or ∂µF

aµν = −fabcAbµF cµν . (B.30)

Choosing the Fock-Schwinger gauge

xµA
aµ = 0, (B.31)

we can write the gauge potential as

Aaµ = −
∫ 1

0

dααF a
µν(αx)xν . (B.32)

The field strength computed from (B.32) must be the same as F aµν , so we impose

the condition

F a
µν [A(F )] = F a

µν . (B.33)

The Yang-Mills equation becomes

∂µF
aµν = fabcF cµν

∫ 1

0

dααF b
µλ(αx)xλ . (B.34)

Follow [116], we take an ansatz for F a
µν to be

F a
µν = Ga

µνψ(x2) . (B.35)

Ga
µν is a constant antisymmetric in µ and ν. It is also self-dual or antiself-dual and

can be expanded in terms of the ’t Hooft tensors as

Ga
µν = Ga

Iη
I
µν + Ḡa

I η̄
I
µν . (B.36)

We now note the important information and identities of the ’t Hooft tensors

before proceed further. As mentioned above, they generate SU(2)×SU(2) ∼ SO(4)

which is the Euclidean Lorentz group in four dimensions. We can write

η̄a =
1

2
(Ja +Ka), ηa =

1

2
(Ja −Ka) (B.37)

where Ja and Ka correspond to rotation and boost generators, respectively. These

generators can be identified with the Lorentz generators Lµν as Ja = 1
2
εabcLbc and

Ka = La4, a, b, c = 1, 2, 3 . Furthermore, they satisfy

[Ja, Jb] = −εabcJc, [Ka, Kb] = −εabcJc, [Ja, Kb] = −εabcKc . (B.38)
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Apart from being self-dual and antiself-dual, the ηaµν and η̄aµν also satisfy a number
of identities which are useful for our discussion later. These identities are given by

ηaµν η̄
bµν = 0, [ηa, ηb] = −εabcηc, [η̄a, η̄b] = −εabcη̄c,

{ηa, ηb} = −2δab, {η̄a, η̄b} = −2δab, [ηa, η̄b] = 0 . (B.39)

The identities involving various contractions of ηa and η̄a are given by

εabcηbµνηcρσ = δµρηaνσ + δνσηaµρ − δµσηaνρ − δνρηaµσ,
ηaµνηaρσ = δµρδνσ − δµσδνρ + εµνρσ,

ηaµρη
µ
bσ = δabδρσ + εabcηcρσ,

εµνρτη
τ

aσ = δσµηaνρ + δσρηaµν − δσνηaµρ,
ηaµνη

µν
a = 12, ηaµνη

µν
b = 4δab, ηaµρη

µ
aσ = 3δρσ, (B.40)

together with another copy for η̄a except the ones involving εµνρσ

η̄aµν η̄bρσ = δµρδνσ − δµσδνρ − εµνρσ,
εµνρση̄

σ
aτ = −δσµη̄aνρ − δσρη̄aµν + δσν η̄aµρ . (B.41)

We now come back to the instanton solution. Inserting the ansatz (B.35)
into the gauge field (B.32), we find

Aaµ = −Ga
µνx

νΦ(x2) (B.42)

where Φ(x2) ≡ 1
2x2

∫ x2

0
duψ(u). In the last step, we have changed the integration

variable from α to u ≡ α2x2. The Yang-Mills equation becomes

fabcGc
µνG

b
νσx

σΦ(x2)ψ(x2)− 2Ga
µνx

νψ′(x2) = 0 (B.43)

where ′ denotes the derivative with respect to x2. As shown in [116], the above
equation is satisfied provided that we choose

fabcGc
µλG

bλ
ν = 2Ga

µν , (B.44)

ψ′(x2) = Φ(x2)ψ(x2) . (B.45)

The constraint (B.33) can be written as

Ga
µνψ(x2) = 2Φ′(x2)(Ga

µλxν −Ga
νλxµ)xλ + 2Ga

µνΦ(x2)

+fabcGb
µλG

c
νρx

λxρΦ(x2)2 . (B.46)

Using the identities for ηa, we can rewrite equation (B.44) as

Ga
I =

1

2
εIJKf

abcGb
JG

c
K (B.47)
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where we have specified to the case of self-dual instantons by setting Ḡa
I = 0. We

then separate equation (B.46) into self-dual and antiself-dual parts

Ga
I(2Φ + x2Φ′) +

1

4
εIJKf

abcGb
JG

c
Kx

2Φ2 = Ga
Iψ, (B.48)

xνxλη̄Iνµη
K
µλ

(
Ga
KΦ′ − 1

4
εKMLf

abcGb
MG

c
LΦ2

)
= 0 . (B.49)

With the help of (B.47), these two equations can be reduced to

x2Φ2 + 2Φ +
1

2
x2Φ2 = ψ, (B.50)

Φ′ − 1

2
Φ2 = 0 . (B.51)

The corresponding solutions are given by

Φ = − 2

x2 + λ2
, (B.52)

ψ = − 4λ2

(x2 + λ2)2
(B.53)

with a constant λ. Introducing GI defined by GI = Ga
IT

a and using
[
T a, T b

]
=

fabcT c, we can write (B.47) as

[GI , GJ ] = εIJKGK (B.54)

which is the SU(2) algebra. Collecting everything together, we find

Aaµ = Ga
µν

2xν

x2 + λ2
, F a

µν = −Ga
µν

4λ

(x2 + λ2)2
. (B.55)

Notice that Aaµ can be written as Aaµ = Ga
µν∂

ν ln(x2 +λ2). This is precisely the form
of a single instanton at the origin in the regular gauge. From the SU(2) instanton
solution discussed before, we learn that the corresponding solution in the singular
gauge is given by

Aaµ = Ga
µν∂

ν ln

(
1 +

λ2

x2

)
. (B.56)

We can generalize this solution by replacing the the harmonic function by the multi-
center function. The multi-instanton solution in the singular gauge is then given
by

Aaµ = Ga
µν∂

ν ln

[
1 +

n∑
i=1

λ2
i

(x− xi)2

]
. (B.57)

It is now straightforward to compute the field strength and the winding number.
One useful relation is given by [114]

F a
µνF

aµν = −�� ln ρ (B.58)

180



for SU(2) instantons with Aaµ = 1
2
ηaµν∂

ν ln ρ, ρ = 1 +
∑n

i=1
λi

(x−xi)2 . We will derive
this relation in the next section in the case of instantons on ALE spaces. In order
to avoid the repeatition, we simply state the result, which is a special case for
instantons on flat spaces, and give the derivation only once in the next section. The
winding number for the SU(2) instantons is given by [114]

N = − 1

16π2

∫
d4x�� ln ρ = n . (B.59)

For the present G instanton solution, there is an additional group theory factor
coming from Ga

I . The winding number in this case is given by [116]

N =
1

2
Ga
IG

a
In =

2

3
c(G)d(G)n . (B.60)

c(G) is the value of the SU(2) quadratic Casimir operator of GI which generate
SU(2) as shown above. As the representation of SU(2) is characterized by the value
of “spin”, j, we find that c(G) = j(j + 1) if GI generate the SU(2) algebra in
the spin j representation, and d(G) is the trace of the unit matrix in the spin j
representation of SU(2). We briefly comment on the value of d(G) for one example
in which G = SU(N). We can have instantons provided that 2j + 1 ≤ N , but the
d(G) does not need to be the same as N . If d(G) = N , the instanton is called the
maximal spin instanton. The corresponding winding number is 1

6
N(N2 − 1)n. We

end this section by giving the relation analogous to (B.58) for G instanton

F a
µνF

aµν = −2

3
c(G)d(G)�� ln ρ . (B.61)

B.2 Gravitational instantons

Gravitational instantons play an important role in the path integral approach to
quantum gravity [151]. This is similar to the Yang-Mills instantons in gauge theo-
ries in the sense that they are classical non singular solutions of Einstein equations
with finite action, and some of them have self-dual curvature tensors which is the
analogue of self-dual gauge field strengthes. There are a number of gravitational
instantons discovered until now. However, we will not discuss all of them since not
all of these solutions are used or have direct contact with the works presented in this
thesis. The review in this appendix is not aimed to be complete. For more detailed
information, the reader is referred to [152, 69, 153] on which this appendix is based.
We begin with a discussion of the ALE spaces of type Ak and then move to the
Yang-Mills instanton solutions on ALE spaces. The metric of the Ak ALE space has
been discovered long ago in [69]. For the D and E types, it is more difficult to find
the explicit form of the corresponding metric. Nevertheless, recently, the metric of
type Dk gravitational instantons has been found in [154].
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Gravitational instantons are complete non-singular positive definite Einstein
manifolds. They correspond to non-singular stationary points of the action func-
tional used to compute the path integral. In this definition, gravitational instantons
are not necessarily described by (anti) self-dual Riemann tensor. For those with non
self-duality, the interpretation in term of tunneling geometries is possible in much
the same way as Yang-Mills instantons can be interpreted as tunneling between
Yang-Mills vacua. These gravitational instantons are said to have a Lorentzian sec-
tion. As noted above, four dimensional Lorentzian spaces do not admit second rank
(anti) self-dual tensors due to the Hodge duality operation being squared to minus
one. Therefore, gravitational instantons with (anti) self-dual Riemann tensor do not
have a Lorentzian section and have nothing to do with tunneling geometries. The
latter is the class of solutions we are interested in.

The positive action conjecture does not allow non-trivial asymptotically Eu-
clidean spaces but does allow asymptotically locally Euclidean (ALE) spaces as
gravitational instantons. These ALE spaces have self-dual Riemann tensor as well
as self-dual spin connections. Since a four dimensional hyper-Kahler manifold has
self dual or anti-self dual Riemann tensor, a gravitational instanton can be described
by a hyper-Kahler manifold. The ALE gravitational instanton can be constructed
from a higher dimensional hyper-Kahler manifold by hyper-Kahler quotient [155].
However, we will not review this construction here. The interested reader is referred
to [155] or [70]. (Anti) Self-duality of the Riemann tensor, Rρ

σµν = ±1
2
εαβµνR

ρ
σαβ,

implies the vanishing of the Ricci tensor

Rσν = Rρ
σρν = ±1

2
εαβρνR

ρ
σαβ

= ∓1

2
εραβ νRσραβ = 0 (B.62)

where we have used the property of the Riemann tensor Rµνρσ = −Rνµρσ and
Rµ[νρσ] = 0. So, ALE spaces are Ricci flat spaces and are solutions of the vac-
uum Einstien equation.

Furthermore, in four dimensions, self-duality implies that the space has
SU(2) holonomy and admitting Killing spinors satisfying ∇aη = 0. These are given
by one chiral spinors which do not see any curvature since their integrability condi-
tion is automatically satisfied [∇a,∇b] η = 1

4
RabcdΓ

cdη. This makes ALE spaces an
interesting supersymmetric background, and they are used in studying dualities in
string theory, see for example [156]. More information on gravitational instantons
can be found in [157] and [158].

We now review the ALE spaces of type Ak whose metric is given by [69]

ds2 = V −1(dτ + ~ω.d~x)2 + V d~x.d~x (B.63)

where

~∇× ~ω = ~∇V, and V = V0 +
N∑
i=1

1

|~x− ~xi| . (B.64)
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The ALE instantons are described by V0 = 0. For V0 6= 0, this metric describes the
multi-center Taub-NUT solution. This solution is also a blown up of the orbifold
R4/ZN . The solution has topological invariant quantities χ = N and τ = N − 1.
The Euler number χ and the signature or the index τ are defined by [153]

χ =
1

128π2

∫
M

εµνρσRµναβR
ρσλκεαβλκ

√
gd4x, (B.65)

τ =
1

96π2

∫
M

RµνρσR
µν
αβε

ρσαβ . (B.66)

As discussed in [153], the additional boundary terms are necessary for non-compact
manifolds. We refer the reader to [153] for their explicit forms. As shown in the
main text, at |~x| → ∞ and near one of the singularity ~x→ ~xi, the geometry is given
by R4/ZN and R4, respectively.

The next issue we will address here is the Yang-Mills instanton solutions on
the ALE spaces. The construction analogous to the ADHM construction on R4 has
been given in [159] and sometimes called KN construction. We have not used the full
construction here, so we only discuss some explicit solutions in special cases. It is
enough for our propose to review the SU(2) instanton solution on ALE spaces given
in [71], see also [70]. Before going to the detailed discussion of the instanton solution,
we repeat the vielbein and its inverse of the metric (B.63) for later conveniences

e0 = V −
1
2 (dτ + ~ω.d~x), el = V

1
2dxl, (B.67)

E0 = V
1
2
∂

∂τ
, El = V −

1
2

(
∂

∂xl
− ωl ∂

∂τ

)
. (B.68)

The ansatz for the gauge fields is given by

A0 =
1

2
~G.~σ, ~A =

1

2
[~G.~σ~ω − V (~G× ~σ)]. (B.69)

As shown in [71], the self-duality condition can be satisfied by imposing the condi-
tions

~∇× (V ~G) = 0, ~∇.(V ~G)− (V ~G).(V ~G) = 0 . (B.70)

The solution for ~G is of the form

~G = − 1

V
~∇ lnH (B.71)

with a harmonic function H satisfying ~∇2H = 0. For H = V , the gauge fields are
the same as the spin connections of the metric (B.63) which are given by

ωτ̂
î

= −1

2
V −

3
2 [∂iV e

τ̂ + (∂jωi − ∂iωj)eĵ], (B.72)

ωî
ĵ

=
1

2
V −

3
2 [(∂jωi − ∂iωj)eτ̂ + (δik∂jV − δjk∂iV )ek̂]. (B.73)
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The spin connections are (anti) self dual as can be seen from the relation ~∇V =
±~V × ~ω.

The solution for H is given by

H = H0 +
n∑
j=1

λj
|~x− ~yj| . (B.74)

At this stage, the ~yj’s do not need to coincide with the ALE centers, ~xi in V . It
has been argued in [71] that the finite action condition requires that the centers of
H which do not coincide with those of V have to be omitted since these give rise to
infinite values of the Yang-Mills action. This argument implies that n ≤ N .

In the ansatz given above, the function H is τ independent. We can gener-
alize this ansatz to the form [70]

AIαdx
α = −ηIabeaEb lnH (B.75)

in which H is now a function of both ~x and τ . By using the identities for ηa’s given
in the previous section, we can straightforwardly compute the field strength

F I
µν = ∇µA

I
ν −∇νA

I
µ + εIJKAJµA

K
ν

= ηIabE
bλ(eaµ∇ν∇λ lnH − eaµ∂λ lnH∂ν lnH)− (µ↔ ν) . (B.76)

Using ∇a∇bH = ∇b∇aH, we can show that the self-duality condition requires

∇a∇aH = 0 . (B.77)

We emphasize here that ∇ is the ALE covariant derivative while ~∇ is the gradient
operator in R3 with the metric d~x.d~x. The solution for H is of the form H =
H0 +

∑n
i=1G(x, xi) where G(x, xi) is the scalar Green function on ALE spaces given

in [124]. Since the explicit form of G(x, xi) is essentially the same as that given in
chapter 6, we will not repeat it here. We also point out that in this generalized
solution with τ dependence, the ~xi’s need not coincide with the ALE centers, so the
constraint n ≤ N can be relaxed.

We now end this section with the derivation of the identity F I
µνF

Iµν =
−4�� lnH. From (B.76) and ηIabη

I
cd identity given in the previous section, we find

F a
µνF

aµν = 2ηIabη
I
cdE

bλEdρeaµe
cµ(∇ν∇λ lnH − ∂λ lnH∂ν lnH)×

(∇ν∇ρ lnH − ∂ρ lnH∂ν lnH)− 2ηIabη
I
cdE

bλEdρeaµe
cν ×

(∇ν∇ρ lnH − ∂λ lnH∂ν lnH)(∇µ∇ρ lnH − ∂ρ lnH∂µ lnH)

= −4�� lnH (B.78)

where

�� lnH = −2∇µ∇ν lnH∇µ∇ν lnH + 4∂µ lnH∂ν lnH∇µ∇ν lnH . (B.79)
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In order to show the above identity, we recall that H is harmonic on ALE spaces,
�H = ∇µ∇µH = 0, and ALE spaces are Ricci flat. The latter is necessary in order
to interchange the covariant derivatives in ∇a∇b∇b lnH = ∇b∇a∇b lnH. Notice
that for the flat space R4, eaµ = δaµ, Eµ

a = δµa and ∇ → ∂, we recover the result of
[114] which has also been used in chapter 5. Notice that there is a factor of 4 in
(B.78) compared to the analogous relation in chapter 5. This is because we have
not put 1

2
in the ansatz (B.75).
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[47] H. Lü, C. N. Pope and E. Sezgin, “SU(2) reduction of six-dimensional (1,0)

supergravity”, Nucl. Phys. B668 (2003) 237-257, arXiv: hep-th/0212323.
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