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"Pure logical thinking cannot yield us any knowledge
of the empirical world; all knowledge of.reality starts

from experiment and ends in it "

e=mee A, Binstein

ABSTRACT

Supersymmetric grand unified theories such as SU(5) and
80(10) model are discussed in this thesis from the point of

view of the gauge hierarchy and phenomenology.



INTRODUCTION

For several years, grand unified theories (GUTS) have been providing
an appealing way of unifying-strong, electromagnetic and weak interactions
and dealing with some problems, such as charge quantization, Siﬁfﬁw and
mb /m as well. Unfortunately, it is clear thatvthere are still many open
questions, for instance, the well-known gauge hierarchy puzzle, connected
with GUTS.

On the other hand, as it is well;known, supersymmetric theories have

a remarkable property, namely, "non-rencrmalization theorem', which enables

us to solve the gauge hierarchy puzzle. Hence, one can imagine that it would

be possible to make interesting physics by @ixing both ingredients together,
This is just a motivation of supersymmetric’grand unified theories.
Supersymmetry is Fermi-Bose symmetry, wheih is of course one of the
most remarkable ideas in particle physics. Unfortunately, so far we have
not yet found where it would be in our understanding of nature. Recently,
many’physicists have tried to make a realistic model ﬁf particle physics

through embedding the conventional grand unified theories into N = 1 global

supersymmetrys‘even'into local supersymmetry {(supergravity). We sﬁall be
concerned only in this thesis, with global supersymmetry, namely, supersym-
metric grand unified theories, in particular SU(5) and SO(10) SGUM's.

The outline of this article is as follows, Firét, in Chapter 1, we‘
shall give a very brisef introduction to supersymmetry which we shall need
later on., Of course,'it is not the pubpcsa of this chapter to give sufficient
material in order to enable the reader to master thé subjécta of supersymme-
try. A basic knowlegde of both gupersymmetric theof& and grand unified theory
is assumed. |

In Chapﬁer 2 we shall deal with supersymmetric grand unified models,
such as SU{B) and SQ(lO} models; in particular, we shall concentrate our

attention on the gauge hierarchy problem.Roughly speaking, we shall show how

o




the’gauge hierarchy problem is solved in the SU(5), SO(10) SGUM's and
O'Raifaartaigh-Witten model, as well as the geometric hierarchy modél..

In Chaptef 3, we shall discuss supersymmetry breaking. It is
obvious that if supersymmetry plays a role in nature itvmust be broken. As
we khow, supersymmetry breaking is perhaps the most difficult task. The
point is how to break supersymmetry in order to make a realistic model;‘
Several ways to break supersymmetry, such asVSOft explicit breaking,
Fayet-Iliopoulos D-term, O'Raiﬂ%artaigh model, will be presented in this
chapter. In additioﬁ, we shall point out the condition and the mass scale
of supersymmetry breaking from the view point of phenomenology.

The problems that we shall tackle in Chapter - 4 are then to discuss

the phenomenological predictions of supersymmetric grand unified theories,

which may involve the weak angle Sinzgw , quark-lepton mass ratios m /nyc}

. mt / mb', proton décay, CP problem and N - N oscillation. Those may yield
us more or less a knowledge as to whether supersymmetric graﬁd unified theories
is relative to nature; |

. ‘Finally, some conclusions and appendices ﬁill be given at the end
of thiétmhasis..'My main contribution to this thesis is the supersymmetric
S0(10) grand-ﬁnified model (SO(lO)SGUM), in which we have discussed the gauge
hierarchy problem and the pheﬁomenological predictioﬁs about Sinzew, quark-

lepton mass ratios, proton decay, N.— N oscillations..

e



. Chapter 1 INTRODUCTION TO. SUPERSYMMETRY

Before the discussion of supersymmetric grand unified models, let us
.recall some essentials of supersymmetry theories [1.1] .

1.1 Egﬁation

Our conventions are as follows:

The metric of space-time is taken to be

!/%w:: gaf}{ﬂ,_!,..g;w;) o (1.1.1)

The Dirac matrices y satisfy
M

(L‘O;A,Wyﬁzzz?[ﬂu (1.1.2)

The frequently employed tensor and pseudoscalar combinations are

defined by
ALY 5 Emp’aful 5 35:’ E()Yi .5’2?3 . (131‘3)
The charge conjugation matrix C is defined by
-] - (
. i 1.1.4)
d ‘%ﬁc == m?;;{, L

The Dirac spinor can be decomposed into the two~component spinors

in terms of the chiral projections

+ 1%
Y, = | 2‘:§ "Eg !. (1.1.5)

e -
The conjugate spinor ¥ , ig defined by
c i a5, b
Yr=CY (1.1.6)
in which vy = w Y .
. . . c
A Majorana spinor in one for which ¥ = ¥ or, in terms of chiral

=T
Yo=Yy (1.1.7)

1.2 Superspace and supertranslations

projections,

Superspace ig defined by (x ,6 ), in which 6 are Majorana spinor
K a o

(1.2.1)

[64,6,} = 0

g




where o8 = 1, 2, ...0, for simple supersymmetry (N = 1 global supersymmetry),

n =4,

Supersymmetry can be understood as an extension of Poincaré symmetry

with the following extended Poincaré transformations

3
acncs

1
b =hu+w X, +=27.0

an
: (1.2.2)
- 1
where b and w = - @ are infinitesimal real parameters. g is an
u 1R i

infinitesimal anticommuting Majorana spinor.

The infinitesimal transformation (1.2.2) yields the following algebra
[P, Pl=0
[P, Toal= 3 (1, Pa =7, P )
[T, L= 3 00 Ty = 2 T ¥ 1 T, - 1, T L)
[8, P10
[ Qy I,1= + (6, Q)4
{Q«,Qﬁgt“(%c)a(g P

where the supertranslation generator Qa tranforms as a Dirac spinor under

(1.2.3)

Lorentz transformations.

The ant;commutator in (1.2.3) can be rewritten as
G P } ={7 P -
Lo af1=(3)"pP, ) (1.2.4)
where Q = Q+Yo (in unitary representations).

1.3 Superfields.
Superfield is defined to be the real scalar functions ¢ (x,0 ) in

superspace (x, ©), which is local if it commutes with itself at spacelike

separations,

(1.3.1)



This definition of locality is compatible with the usual requirement
that Bose fields commute among themselves and with fermionic fields while
fermionic fields anticommute among themselves.

Superfield ¢(x, 6 )may expand in power of 6 as follows

i . o | = | =

o) = AGO+ B+ 580 Fo+ 7056 GG+

| e, - (1.3.2)
T Z6y 16 \, Gy -+ 7 068 Xes + +3. (89)7 Do,

where A, F, G and D are scalars, V is a vector, ¢ and ¥ are spinors with
v
respect to the Poincaré group.

Under supertranslation

B I
$Bine) = 2(%*3}@)%&,@) , (1.3.3)
one obtains .
SA= zq?
- b7

SF=<%- /3/1% (1.3.4)
gé{"‘“‘ TEVK 4 ;Eiﬁ/é}sz
sV, = g’é—w WX LI ying
14 =L (D=igF+% iyG~in iy V,)E
§h= -2 1Y
Since reality requires <I>%(x, 6) = ¢(x,06), A, F, G, V and D components are

real, ¥ and‘}:are Majorana spinors.
The covariagt derivative of &, which palys an important role in

supersymmetry theories is defined by

' RS e
& »—-(’“::w«- /‘)
D &xo)= 17 WA ¢ x,0) . (1.3.5)
D is covariant in the sense of transforming like a spinor with respect to

homogeneous Lorentz transformations and is invariant with respect to

translations and supertranslations, i.e.,

T e




\:Da Txx.y‘l:%guuD
[ D) Flaj - Q
{Dd;Q{g}:O -

From (1.3.5), it follows that the covariant derivatives generate the

(1.3.6)

following algebra
o Y
{0, 0, 8= SRR
We can also define the chiral compohents D+ and the conjugate 5,

D, = ’\.iﬂ’r
+ — D

> (1.3.7)

(1.3.8)

]
= o e~ v
_ [ AP = (1.3.9)
To kinds of superfields, which are often employed, are the chiral
superfield and the vector superfield.
Chiral superfields ®+ are defined by

In components o, (x, o) can be expressed as .

(1.3.10)

@

iy o
8 F¥e0 - -
§4‘:{’{)9): e:FW (Ai(’t)"‘f @:F hi/i(x)*"jz_e;ef—&(")) (1.3.11)
Under supertranslations, .
SAr =t ¥y,
SV = Fs €4 ""i?ﬁ‘i e3 (1.3.12)
- . )
STFe=<CaidVa . '

The vector superfield V{(x,p ) can be defined in terms of the projector

E. [1.1] acting on a general superfield ¢ (%,0 ),

1
V(z’)s): Ei §()(}©> >

(1.3.13)
o= 2
l::i—r(DD)/g;_y .
Its explicit form in wess—=Zumino gauge [1.2] is
. L Purnd \ - 2
Vixe) = 7 83%,% 6V, 00 “%",%g 068 8- L0+ (86) Dex) (1.3.14)

-8



A crucial property of the chiral scalars in their closure 'with respect

to multiplications

/ 4
£,000) B 000 = 3, (x,0)

» (1.3.15)
in component form,
Ay (n)= F\iiﬂf\;(x) ,
%f‘fx} = AL 00 15‘;“%)*“ ‘f’i(x?fi\é (=)
(1.3.16)

I / T = /
Tt = Apoo Floo)+ ¥ o ¢ 9 () + Tt Axlo)
In genral, for the anlytic function W( @+) we have

-1 OX%6 |
wiiy=e i‘vv’(/%+)+9 WA+ @,9,.{1: Wik y+3HC 'y W(A*)}} (1.3.17)

2

WA 2 W (A+)
where . W {A+)z W J Wj/(A‘I'):"‘* - -}A:, s

The similar result may be derived for W( & ).

1.4, Lagrangians

We only draw our attention on the supersymmatric Yang-Mills theories,
which we nged in constructing supérsymmetric grand unified models. The action
must be invariant with respect to both the supertranslations ahd the gauge
tranform.

En order to obtain supersymmetric actlon, we must require z:to
transform as a D~com§mnent of vector superfield or as F -~ component of
chiral superf1,~@,31nce, under supertanslation

§D= -3, (TinX)
§F=~%(gein ) (1.4.1)

&

One may define the gauge transformations which preserve:local chirali-

ty ' oo 1AL () |
$.u8)—= ¢ F 0)

4 (1.4.2)
Apye) = ﬂf‘@:@) T )




where %<'s are the generators of gauge group G on the ¢ bases.
+

For The sake of making kinetic terms gauge 1nvqr1ant we introduce
¥

2gVix, o) ) .
a new object e with the following gauge transformation
-ﬁ»
'Z -
e v A S A W
> € e e (14.3)
It is easy to see that
22»\/ .
5. §, = ¢auge inv, (1.4.4)
since under gauge transformations
ihg
¢, > e 3,
- *
4 + wiA+ (14.5)
%.@, = §+ € N
2gV
Therefore, the D-term of @F e o 1s invariant with respect to both
. + ;

gauge transformation and supertranslation.
; + 2gV-
We will see later that ( @+ 8 g )D contains the kinetic terms of
+
the scalr and the fermion in ¢ as well as their gauge couplings.
+

To construct super-gaugefield strengths, one cbserves that under

gauge transformation

ot
~2%V 29y Ay —2ay _aAT A 29y ~iAs N _
e U e T o (& T ) p (e B ) =

+
here we have used D o = 0,
: E

in order to eliminate inhomogeneous term, one may employ DD =D D R

D D (etj\-&-

’\"Q/WAQ%D? -}-:_:@

50 the field strength may be defined as the following spinor superfield,

HM)__ ”\“‘“b 0., o A+

b

&

Y T s A 2%V
\N‘H‘ f—Z«mj&Eﬁ D"*"D*l € D+ € ) (14.6)

] Qe



Actually, under gauge transformation, it appears like a field strength

W, = et oM
b W.%,_%. f. R (1'4“ 7)
It is also easy to see that W is a chiral superfield, since
ot
E}m E&i¥+‘33 0 .
Consequently, the F - term of W C

(1.4.8)
W are both supersymmetry and
++ A+
gauge invariant. It follows that the Lagrangian for gauge fields can be
written : :
L, = 5

foge T 4

% -
(WMT d {Wﬁ )¥ + .

(1.4.9 )
. k k
where W 's is defined by W =W T,
et + ++
Substituting (1.3.14)into (1.4.8 )
gauge W  can be expressed
+

we obtain that in Wess-Zumino
LA s 4
\j\/ 3@+L,59+
= €
where

’iﬁ/\_)} (1.4.10/
Vi =

‘ b
guvp“‘“suvﬁ“ig [\&.;Vb] s (1.4.11)
YUAL= ikw‘”i? EVAA ?\._] . (1.4.12)
Then the gauge field Lagrangian reduced to
- LEVE
. éigﬁM§g, -4 ¥;u \;
where}\i {

i
+ Ayt +~LDD
are the gauge fermlons, called gaugino

(1.4.13)
The matter field Lagrangian is
imm,m {@: ez%v§ + §_ | “Z%v§_ }T* ) (1.4.14)
which in Wess-Zumino gauge may be reexpressed
;t@w VAT QAL+ AF Y+ T, +(xr3A ATty )
* 3, @%A+ TﬁA.q, &A+ %A.ﬂ""ﬁ,iﬁ“f +F. F. (1,47;15)
+ AEANNE Ty v %}ﬁD"’“A"‘“ T* AL

7
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\ 4.3
where VM + = »?)/MA:!: - Lﬂ’i\/fﬂ T Ai ;
V..

~ 19 VR R
e -
Yo = 0% = T Y (1.4, 16)
Finally, we also need to add a gauge~invariant self-interaction among
the matter fields @i,WhiCh may be easily generatedfrom superpotential W( @ i)

[13] being at most a cubic polynomial function of °. for the sake of

rencrmalization,

, 4
WEy=a+bi 3+ +myE 3, +3 hn i By (1.4.17)

From (1.4.17), (1.3.17) and (1.4.15), we find that the part of the

Lagrangian which describes tha scalar interactions is

¢ v AN aw T |
scafla =RF+R YA, +HF;, A, 5 (1.4.18)

The equations of motion obtained by vayying (1.4.18) with respect to
7. and Ff are
i i
{1.4.19)
and their complex conjugates.
Substituting (1.4.19) into (1.4;18, and changing the sign, one obtains
the part of the three approxim;tion scalar potentials -
Bk
| 3 1 9Ay ' (1.4.20)
From (1;4.13) and (1.4.15), we may pick up another part of the scalar

interactions,

A ceallay

' k
Eliminating the auxiliary field D through its equations of motion, (1.4.21)

D | 2 + '
0, =5 (DY +g DEATTEA
» , (1.3.21),

gives a term of the scalar interactions,

z

V== (aATAY L e

)0



If the gauge group contains U(1) factors, each U(1) factor may contribute

ito the sum a term of the form

T *
Y D+ DA YA+ T D R

(1.4.23)
where g, is the U{1) gauge coupling constant and Y is the U({1) charge of the

scalar fields. The gD term is the Fayet-Iliopoulos term [ 14 ]. (1.4.23) gives

rise to N
L u y
2z (h AYA+T T (1.4.24)
Therefore, the complete scalar potential is given by
\/22}%?*_}“2 oY @eA’"
L oal T2 2 B (ATTTA) (
1.4.25)

&
H

+ Lz (3T ATYTART)

1.5 Mass matrices:

After elimination of the auxiliary fields F, and D in the Lagrangian
‘ i
(lh4.§§), the tree level mass matrices for fermions, scalars and gauge bosons

can be caculated as follows:

i) the mass matrix of the fermions & , ) is

Aﬁabw 02D a D mabcw DaDC
: + y +
be gc o ¢ @ b o &

5 .
M, = i i (1.5.2)

b ~bc e c
W W +D D Woow +D D +D D
abc S8 §6c ab da o o a 3

~13-



iii) the mass squared matrix of the gauge bosons is

2 a a . .
M= De(aDF - DdDFa = gdg§4¢>{1d,Tp}(¢> ; , (1.5.3)
where
AW W
Wa”w %¢m ’ Wﬂ)n:: a?ﬂa¢§ ’

W — 2t + (1.5.4)
Waw“a?’“a?”a’%c W =(Way ),
3Dy o Dy
D{,{ — -»‘-—T J D‘{ — oy
> P 28,

Chapter 2: GAUGE HIERARCHY IN SUPERSYMMETRIC GRAND UNIFIED THEORIES

2.1 Gauge hierachy puzzle

Conventional grand unified theories have many hierarchy puzzles [2.1.]

that appear to be completely unnatural. For example,

a) the ratios of unification mess scale MG to weak gauge boson mass M ,
: W
13
MG/M 2 10, namely gauge hierarchy;
w =
5
b) the ratio of M to matter fermion mass, such as M /M > 10 . Equiva-
W w e
lently, the ratios of gauge coupling g to Yukawa coupling f is about
4
g/T 210 |
L : . 17
c) the ratio of Planck mass M to M , M /M 2 10
p w P ow
d) the ratios of different generation fermion masses, such as m /m >>1,
. T u
m /m >>1;
B -1 9
e) QCD 9 paramete, & ~>>10°

14



_All above hierachy problems are difficult to golve-within the frame-
work of conventional grand unified models. Those require an aftificiél fine-
tuning of paramsters in potential. Such fine-tuning is unnatural since there
is no-extra-symmetry to protect such fine-tuning from radiative corrections
in conventional grand unified theory.

One's attention can now be concentrated on the gauge hierarchy puzzle

[2.2 ]. There are three problems which should‘be solved in considering gauge-

hierarchy. The first is whether it is possible to make an adjustment of the
parameters in the Higgé potential sc that the desired mass ratio MX/MW is
generated. The second problem, even if such adjustment is possible, is
whether it is natural. The technical meaning of the term natural is that the
gauge hierarchy can exist for a finite range of the.parameters in the model.
Finally, the third problem is the following: can we get gauge hierarchy
without the fine-tuning puzzle? |

It has been shown [2.2 ] that a“fine—tuningﬁ of the parameters of
the Higgs potential is unstable under radiative corrections, because the
smallness of the masses of scalar fields is not "natural'. For instance, we
consider a theory with the gauge symmetry SU{2)xU(1l) that may be completely
broken by two scalf Higgs fields, a doublet ¢ = ( b, @ﬁ) and a singlet;t .
The potential would appear:

\ =-Lie + 30 (Fey - LR+ T+ i 0,
The minimum of the above potential that introduces a gaugé hierarchy is given
by .

% 2 5 2 2 5
{$->=0, MF ‘*‘)\;T’;ﬂi , M F +h, T = Ms (2.1.2)
where 4?1>3~F§ : <X1>3;Tﬂ
This would fo: Ak, mxgé 0 yield
x* RSy

— - i C(2.1.3)
"j" - Ai /LLL "‘>\3 M;’




Due to symmetry breaking, three gauge bosons gains masses O(Fz)
and one picks up a mass O(f2 ) for F 2>> 2 as argued by Gildner, the gauge
hierarchy depends critically upon the value of Az which, due to one loop
corrections can be given only with a presession of 0(g" ). Thus the radiative
corrections would be important for gauge hierarchy. In fact, because of
this, it has been shown {(2,21that there would be a limit to the hierarchy,
Mé/Mf <0(a _1) at one loop level, where MH is high mass scalezlétmwhich
SU(2)xU(1) breaks down to U(1), and ML is low mass scale, at which U(1) is
completely broken. g

If one does the perturbation by using the physical parameters, masses
of the various physical fields and couplings instead of-the.parameters
of Higgs potential, u, s Hys Ay, A, and X, one may also have large radiative
corrections to the smaller masses that would spoil the light-heavy distinction.
The low (mass)2 %? would get a correction of O(gﬁﬁg ) at one loop level.

The point is that the gauge hierarchy puzzle comes from the Higgs scalars.

As't Hooft has pointed out‘?.S], in the case the. parameter tends to zero,the
theory acquires an extra symmetry. For instance, ordinary QED acquires a chiral
symmetry when a fermion mass vanishes. Gauge symmet;y can protect vector boson
massless. Unfortunately, there is no such a extra symmetry in conventional

theories to protect scalar boson massless.

So far we have found two possible solutions. The first is to assume
that there are no elemenetary scalar fields and have their role taken over
by billinear fermion condensates. This is namely the technicolour piéture
(TC) [2.4]. Unfortunately, TC is not sufficient to give masses to the fermions
and it is necessary to enlarge the scheme‘by introducing Extended technicolour
(ETC) [2.4 ] which runs into difficulties with flavour changing neutral currents
and §ossibly with pseudo»Goldstoﬁe bosons. No viable phenomenological scheme
has been proposed along this line in my knowledge.

The second solution is supersymmetry that is only extra symmetry

so far known which can put a constraint on the mass of scalar particles .

~16--



The reason is that supersymmetric theories have a remarkable property: non-
renormalization the@rem[ZWB}?which guarantee that the light Higgs sector
does not mix with the heavy one. This gives rise to some hope of soving

the gauge hierarchy problem.

2.2 Non-renormalization theorem:

recently; many people have been interested in éxtending grand’upified
models SU(5), S0(10), S0(14) to supersymmetric ones, namely supersymmetric
grand unified model., The main motivation is that supersymmeffic grand unified
models may provide a solution to the gauge hierarchy problem. It is well-known
that supersymmetry is Fermi-Bose symmetry. In supersymmetfy theories, particles
occeur in supermultiplets, the number of Fermi degrees of freedom being always
equal to the number of Bose degrees of freedom in the supermultiplet; For
insténce, in chiral supermultiplet, one has both a Majorana fermion and a
complex scalar. In supersymmetry theories scalars occur naturally as members
of supermultiplets and their masses can be naturally small if their fermionic
partners have small masses protected by chiral invariance. In supersymmetric
grand unified model, there are cancellations of infinities among Feynman graphs
with fermion loops and graphs with boson looﬁs so they are more convergent
than conventional grand unified theories [2.5] . Furthermore, it has been
prooved that{Z.S]supersymmetry theory has fewer renormalization constants than
non-supersymmetry theory, namely only a wave function renormalization for each:
chiral supermultiplet® and for each vector supermultiplet, a renormalization
constant fof each gauge coupling. No separate mass, Yukawa or Higgs coupling
renormalization constants are-need.These results can be easily uﬁderstood
from the following well-known fnon-renormalization therem" {7]:

To any finite order of perturbation theory, only D-term can receive

radiative corrections, F-term can not.

This theorem can be easily prooved by means of supergraph technique (see Ref.2.5)
_Here we only give some explantion being concerned with the gauge hierarchy problem.

]
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In a supersymmetrlc grand unified theory one can only construct two
different supersymmetrlc invariant operators, one of them is D-term, which
is obtained by integrating Lorentz invariant vector superfield vy (x,@,gv
over all - superspace

O = jdgz Q(xle,'é)ajd*xdtédléa f(x 6,0) (2.2.1)
Another term is F- term, which is obtained by integrating Lorentz invariant

chiral superfield o({x,0 ), which is a function of x and 6 only, over x and 0

0, = fdéz Dln,0) = S‘d‘*x A0 B ox8)

wvhere gand § are the anticommuting coordinates of negative positive chirality,

> (2.2.2)

It is obvious that any invariant which can be written in the form Ol can also

be written in the form 02. In fact, if one defines

§ 0,00 = fdlé_ ¥ (x,68) (2.2.3)
Qlcan be reexpressed
= {df2 Sexe) | (2.2.4)

this is nothing but just F—term, Indeed, there exist a type of supersymmetric
invariankts in, susy.theories, which can be written in the Og'form but cannot he
written in the Ql form. For instance, all mass terms, all Yukawa couplings
and all scalar couplings in renormalizable Supersymmetric theories come from
F-terms which cannot be written in 0 form., In 'con**ast s the kinetic
energy terms, both for chiral superfields and for vector superflelds, and
gauge coupling terms, can-be written in the Olform i.e, D-term .
It follows that wave functlon renormallzatlon occurs for both chiral
and vector superfields, because the kinetic energy operators are D-terms,
There is no Separate mass, Yukawa and scalar couplings renormalization,

"~ because they come from F-terms. As a consequence there are no radiative
corrections to the tree level vacuum expectatlon values of the scalar fields.
This makes supersymmetric grand unified theories an obvious candidate for
the solution of the gauge hierarchy problem.

So far two kinds of supersymmetric grand unified models have been
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presented; »

a). | Supersymmetry is broken explicitly put softly through dimension 2 or
3 term. In such & kind of theories gauge hierarchy occurs only by fine»tuhing‘
of parameters at tree level [2.6] « Due to non-renormalization theorem, such

:fine—tuning is natural at the technical sence that they will not spoilt by
radiative corrections, since supersymmetry protects them from radiative
corrections. B0 we only need fine-tuning once! This is different from.finea

_ tuning.made in non—supersymmetric grand unified theory. It is well-known that,
in non»supersymmetric thgory, such a fine-tuning will unfortunately be spoilt

py radiative corrections [2.2] .

b Supersymmetry is spontaneously proken at tree level. Gauge hierarchy
occurs from radiativecorfeétions: Witten's mechanism [2.3 ]. The key point

of this mechaniém is fhat the small mass scale Mw is aésumed to be fundamental,
the unification mass scale MG being generated and based On radiative corrections/
Along this line, recently Dimopoulos o Raby et al. have presented a geo-
metric hierarchy model [298] in which supersymmetry is spontaneously broken

at an intermediate mass scale, say Msfv 1012 Gev, then‘both unification mass

scale MG and small mass scale M are generated from radiative corrections.
W

5.3 SU(5) supersymmetric grand unified model

Firstly, one briefly reviews the conventional SU(5) grand unified
model, in which all matter fermions(quarks and leptons) of each generation

have been signed in g? and ig'representations as follows

¢ s ¢ < b @OU
0 U; -4, -u

) ( 30 (2.3.1)

Y= ™ 1;\j{;,,n || o W ~ur -t

o 3 7| ue-ut o -w -d
L s

- iy EEJ; %x Kﬁl ‘\A3 o -€

(3 ?
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This model ig anomaly free, since the anomalies of §*and 10 representa-
tion exactly cancel each other.

Because SU(5) has 24 generators, there are 24 gauge bosons, which
have been put in 24  adjoint representations. The covariant derivative D

is defined by
— 0 LS
QM.""E/‘L Vi T A (2.3.2)

where T % g are SU(5) generators; which obey SU(5) algebra

[T TF] T“{W s BBE=1,0 24 (2,3.3)

in which f ®BY are SU(5) structure constants,
g is SU(5) gauge coupling constant.

In order to break su(s) down to SU(3) xSU(2) xU(2) v further to
SU(S)CXU(l)e.m one needs a 24 and a 5 Higgs fleld‘

3

qDL 0, gj-: | +o 5

(Pi PN ;5: \ ' (2.3.4)

®

24 with ¢?=
— i

—t o

i)

¢ﬁ may develop non vanishing expectation vacuum value as follows

(P jo=Tdiag (1,0, 1,3, -2 (2.3.5)

which makes SU(5) break down to SU(3) XSU(Z) xU(l) at mass scale MG.

MG has been estlmated at about 10 15 Gev.

¢f can receive non vanishing exXpectation vacuum value
R B ;
Por=v's , | (2.3.6)

which breaks SU(3) xSU(Z) xU(l) down to SU(3) xU(l) at mass scale M
e.m

9

2
M AalO Gev. The matter fermlons may acquire mass through Yukaws coupling

o ¥ M g -
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We now turn to the construction of the SU(5) supersymmetric grand
unified model [2.6 1, in which supersymmetry is explicitly but softly broken
in order to protect the Higgs doublets from quadratic mass reriormalization.
This model requires a natural but incredibly accurate adjustment of parameters.
The minimal SU(5) supersymmetric grand unified model.should include the
following supermultiplets ;

Matter chiral supermultiplets:

%
Sg( Aard Md:@, Lj:‘,“',g

i3l d=e, T,

(2.3.8
igﬂi =P ?qd )

£33
=M

o

in which o is g family index, i, J are sSU(5B) indices, a vector supermultiplet
which contains gauge bosons,
)’

% e \jg (2.3.9)
Higgs chiral supermultiplets_ , :

24025, SoH 5 s WY

» (2,3.1Q)

The 24 Higgs’ b 2 will develop non vanishing VEV and break SU(5).

The scalar potential Vv ig a sum of two terms. One term related by
supersymmetry to the Yukawa couplings. this term may be easily obtained by
introducing a new function, called the superpotential W. The superpotential W
is a function of the scalar fields ®'g, but not of their complex conjugates
® *'s. For a renormalizable theory W should be at the most cubic in the & 's.
W is also restricted by gauge invariance. The corresponding contribution to

the scalar potential is )
AW\ *

V=256

A B#):,

_ where the sum is taken over all scalar fields.

4 - (2.8.11)
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Let us define the functions usually called D-term [1.1 ]

Dd = ?f-n( C,};;. T°< Ci? no sum on a, (2.3.12)

— lspn2
\/z - ?EDG(

(2.3.13)
One therefore obtains the total scalar potential v
IW ] 2
Vavty, = ? 2w, | T Z b (2.3.14)

sSupersymmetry ig unbroken. Because V1 and V2 are each non-negative, they must
both be zZero, as a consequence 3 the condition for supersymmetry to be unbroken

at the tree level is that for each a and each i, we require

g:; =0 | (2.3.15)
De,{ =0 (2.3.16)

In the minimum SU(5) SGUM, the superpdtential W is given by

= x (Llsts) ot msisi ) 7oty

(2.3.17)

Here ye use same notation fep both superfield and itg Scalar component . It
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’a\N

= Ay Hy (Z «s~3m£ )—«rﬁ(? 3MMMV@:M;Q;M

BH)

(2.3.19)
~W 1 [ et ) V]
M:;\(zwmg.)wéf@ MY M.,
mg R ] R S B (2.3.20)

L

mﬁmﬁ&ﬁe e W wz@ wdg(ﬁ Mt f

-H MF'}), (2.3.21)

'aw

oM,
MPI

Tt is obvious that the potential Vv is minimized for

%“(5 H M , (2.3.22)

: N = =
LHW‘):{HQ‘:}%(M& >M<M¢L>“"O (2.3.23)

and

1 £ i T s;z _; A
ZJQ'Z? 5—&”&@*3’&25”@

* (2.3.24)

By SU(5) rotations we can choose the representation in which the 24 adjoint
Higgs < & > is diagonal

Zi>z§§&§£¥a)xz}x3)x4)?(g> : %71 =0 (2.3.25)

Then one obtains the following equations

/ % i ?S._; m’L . O

S ) TmALT (2.3.26)
Three solutions for VEV Qf 7 Higgs turn out to be
2 L zé s=0 (2.3.27)
b 4 2; = Z diag (1, 11 A -4=<) ‘ (2.3.28)

- ] - 3 3 ot 2 7
"~‘H . . ‘ B 3 . ‘
- ©) QZ§>:: 2m dvﬁ_% ‘(;»1‘)\),2}-».,;,-—?) “ (2.3.29)
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neously be broken, Solution (a) does not break SU(5); solution (b) breaks
SU(5) down to SU(4)xu(1), Finally, solution (¢) breaks SU(5) down to SU(3)C

xSU(Z)LxU(l)Y. These three physically inequivalent vacua are completely de-

generate, as shown in fig., 1.

grand unified theories. The

attractive solution ig (¢), which breaks SU(5) down to standard mode]

SU(S)CXSU(Z)LXU(I)Y’ The SU(3)CXsU(2?LxU(l)Y constants of 24 Higgs 7  ape
given by

24 = (81D + (L,3)+(L1) T32)4(32)  Lislt0s

1 E q x = a ’93:‘)2/3»
i' Za Zb g‘; 2 Zﬂ- ZX. b =45

other hang, (8,1), (1

2
Squared = 6 Aomo,

For 5 and E*Higgs bosons, the SU(S%XSU(Z%§U(l)*oonstants are

24



i - H* H* V=) ote 5 (2.3.31)
— ’43;'2-,3
(3 (L2) e (2.3.32)
/ = g
Hi R He R

+

As we can see from eq,Czﬁei?) and{zgazﬁ), the SU(2) doublets Higgs H and H'
have a\mass squared which is proportional to {(m - m‘)g, whereas the colour
triplets B and H; have mass of order (2m+3m'). The doublet should be very
light, nearly‘massless, i.e. 0(m), since their VEV's break SU(Z%)':EcSU(2)‘>.:U("1),T
down to SU(3§?U(1Ln?t low mass scale Mw(~i 100 Gev). However, the colour triplets

should be superheavy, otherwise they may cause the proton to decay too fast

through Fig. 2

FIG. 2

Actually, if we set m' exactiy equal to m, i.e.

- o= O(Me ) (2.3.33)
then the SU(Q)Ldoublets‘H a, Hé  are massless. Wheréas the colour triplets
Hx R Hébhave mass of order m. According to non-renormalization theorem, such
a fine-tuning is different from those we have made in the non supersymmetric
..case9 because the fine-tuning iﬁ supersymmetric theory will not be spoilt by
fadiafive correction. -So we only need such a fine~tuning once at tree level.

Precisely, the ratio m'/m is not rencrmalized at all, because
£ /

/ A 5 x4 / 4
Py :’(fﬁ’ Zy Zs /ZH’ zi—lz)mo =Zz M,

o 3 -
. _ zz. (l/
mﬂ-(f) My =Zy Mo

(Z25) ""
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therefore mkf/mn = mO/ /’}/}(Zo ) |

% Y
where ZHf s ZH2

and I multiplets respectively. This implies that the SU(2)/doublet would exactly

- )
, and Z * denote the wave function renormalization of H', H
Z -

remain massless to all orders if supersymmetry is unbroken. However, super-

symmetry should be broken spontaneously or explicitly, but softly at smaller

mass scale, M , then the doublet may acquire a small mass of order M from
. w w

radiative corrections, but cannot become superheavy through radiative correction.

2.4 80(10) supersymmetric grand unified model

In this section we discuss S0(10) supersymmetric grand unified model
[ 2.10 ]. so(10) is.a rank 5 group and contains SU(5) as a subgroup. As well-
known, S0(10) has many advantages over the SU(5). for instance, all representa-
tions of the SO(10) group are safe, so we canvput all light fermions (quarks
and leptons) of each generation into a 16 spinor representation and Higgs fields
into any irreducible representation as we wish, without worrying about Adler-
Bell-Jahiw anomalies [2.11] . In addition, the S0(10) group has more attractive
subgroups. Such as SU(5), S0(6)xS0(4) [ . SU(4)xSU(2)xSu(2)] , SU(3)xsSU(2)x
xU(1), SU(3)xSU(2)xU(1), thus S0(10) hasvmore abundant patterns than SU(5) has.
An attractive pattern is that S0(10) is broken‘down to SU(S)CX U(l)e.m. via ‘
SU(4%¥SU(2)§SU(2)R(iQe. Pati-Salam model) [ 2.12.] . SO(10) grand unified theory
has left-right symmefry. So, in prinéiple, we can have right neutrino, and
we can discuss neutrino mass, neutrino-antineutrino as well as neutron-anti-
neutron oscillations.

We now just follow the line of Dimopoulos and Geogi SU(B) SGUM; in
order to construct a S0(10) supersymmetric grand unified model for solving

the gauge hierarchy problem, the fine-tuning of parameters are needed..
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2.4.1 80(10) algebra [ 2,13]

S0(10) has 45 generstors Mij= - Mﬁi i#3=1, ...,10, which satisfy
. N N SV _q _ (2.4.1)
Ui Maed= 3 (B Myr Gy g =55, M= hety,) 7

Mij's are antisymmetric. In terms of the generalized Dirac ¥ matrices of
dimension 2 x 2 = 32x32, Mij can be expressed as follows

o= .
M‘/} -_,‘ri (F"i}"} F;Pi )} 57*:} to 10
I, satisfy the Clifford algebra
£
U EESY

in the 10-~dimensional Euclidean space,

> (2.4.2)

(2.4.3)

In-order to discuss S0(10) SGUM, it is convenient that we work in the

following explicit representation of generalized Dirao matrices [2.13L[2.14]
P{:Cﬂ@o’;®l® §® O—Z
L=08coleoeod

rg = G} ® 5} @l ® 0, & (53

N=0@ 0| ® 6 ® |

(=0® 0,0 ® 0, ®7, (2.4.4)
Qi@‘;@ﬁ%@i@ T e 0
m=000000 |8 |
g = ®G80, 0 | ® |
L =0®080 (06|

N, =00 18l @] ® [

2]




where o; (i =1, 2, 3) are the usual Pauli matrices, i.e.,

- o | _ 0 -1 _ 1 o
G“(IO), gl'(‘t c); 63'(04) (2.4.5)

and | is the 2x2 identity matrix.

The chirality operator can be defined in terms of the r's (i = 1, .. 10)
as
M=)
- (“1) l—; r’z““ PID . (2.4.6)
Iy 11 is a matrix of the block diagonal form, which can be written
- 6,00l
r“ 3 (2.4.7)

by using the explicit r''s matrices (2.4.4).

In SO(N) group there are two different types of representations, one
of which is the spinor representation, the other is the vector representation.
For S0(10) group, the fundamental spinor representation y is 25 = 32 dimensional
and decomposes into two inequivalent irreducible spinors ( w+, w_) of dimension

16 by means of projection operators

L) (2.4.8)
i.e.,

L=< (En) Y

(2.4.9)
where [ is 32x32 identity matrix,

This decompogition of ¥ into W+ is possible because T commutes

with all the generators M,  of 50(10).
1J

S0(10) is rank five Lie group. The diagonal generators are given by

the matrices 0., 0, ;- Oy 0, and o where g, 6 = 2M,

ij ij’

sle »
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Explicitly,

O
w
i

- 1§3C§3§§;Q§ ﬁ} ﬁbi

el
R
i

?54
I

l@nol®neoa

¢ = @185R!I8| (2.4.10)
C%lofzc%gxaéaggg)iéa %

The electro-charge operator is

Q

L
iné"(%‘*’@’”w‘“%s)"‘z C78

= ‘3??(“:1"' Mg = Hee )+ Mg

(2.4:11)

All quarks and leptons of each family are put in a is spinér representation
as follows:

wjﬂ(usﬁxlﬁ Vﬁwdzizﬁ‘dffﬁldfhéf»“f—wf-ﬂ;‘VC)L (2.4.12)
As we know, the above fermions (except ?C) have'been put in 5% 10 representa-
tions in Georgi-Glashow SU(5) model.

Before discussing the gauge hierachy in SO(10) supersymmetric grand
unified model, it is useful to recall some formulas about Kfoenecker production

and branching rule of SO(10) group.
1. Kroenecker'products:,

16x16 = 10 + 120 + 126
16x16 = 1+ 45 + 210
10x10 = 1 + 45 4+ 54
16x%10 = 16 + 144
10x45 = 10 + 120 .+ 320
10x54 = 10 + 120'+ 320
16345 = 16 + 144 + 560
16x54 =144 + 720
45x45 = 1+ 45+ B4+ 210 4 770 + 945

54%x54 = 1 + 45 4+ B4 4+ 860 + 770 +1386
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2. Branching rules

S0{(10) has many attractive subgroups, the most important of which

‘are SU(B), SU(d)CxSU(Z)LxSU(Z)R and SU(S)CX SU(Z)L x U(Z)Y,

a) S0(10)-» sSU(5)
10 = 5 + 5*

16 = 1 + 5% + 10

45 = 24 + 10 + 10* + 1

54 = 24 + 15 + 15% (2.4.13)
120 = 45 + 45% + 10 + 10¥ + 5 + B*

210 = 75 + 40 + 40% + 24 + 10 + 10* + 5 + 5% + 1

b) S0(10) - SU(4)stU(2)Lst(2)R

10 = (6,1,1) + (1,2,2)

16 = (4,2,1) + (4%,1,2)

45 = (15,1,1) + (1,3,1) + (1,1,3) + (6,2,2)

54 = (20,1,1) + (6,2,2) + (1,3,3) + (1,1,1)
210 = (15,1,1) + (20,2,2) + (15,3,1) + (15,1,3) + (2.4.14)
V +

(6,2,2) + (1,1,1)

c) SO(%O) - SU(S)CXSU(Z)LXU(l)Y

10 = (3,1), + (3*,1)x + (1,2), + (1,2)

fanfpe

16 = (3,2zf+ (3%,1)

(3,1 1,2 1,1 1,1
s _}+’( 2'%+( )+ (L), + (1)
- * ¥*
45 (8,1)O+ (l,3)o+ (1,1)O+ (3 ,21§+ (3,2L§f (3 ,22%+ (3,2)5 +
+ (3?12§+ (3,1¥%+‘(?,1)2 + (l,l)o + (l,l)_2
— 1 * * *
54 (8, }l + (6,12&+ (3 ,¥3£+ (3 ,%}L+ (3 ,2);24- (2.4.15)
» 3 3 3 3
+ (3?22§ + (3,21£<+ (3,2)§,+ (1,3)2 + (1,3)O+
3

+

(1,3)_, + (1,1
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where the subscript label denotes the guantum number Y.

2.4.2 Gauge hierarchy in S0(10) supersymmetric grand unified model.

Along the line of Dimopoulos-Georgi SU(5) model, one can make a S0(10)
supersymmetric grans unified model in which the gauge hierarchy pfoblém could
be solved and the colour triplet Higgs is guaranted to be superheav& so that
proton decay is not too fast, while the doublet Higgs, whcih may give masses
to the light fermions at low energy, are light.

We have found that the possibility of solving the above problem on
the basis of S0(10) is dependent on the breaking pattern. The one possible

solution has been found i2.10} if S0(10) is broken down +o SU([B)CXU(l)w

e.m.
" via SU(4) xSU(2) xsu(2 .
via SU( )Cx U( )Lx u( )R
The breaking chain is
54 16,16% 10,10°
e (4 e 2)_ xU(1l)  =—.——=. SU(3) xU(1
SO(lO).-M._,,SU(.)CXSU(Z)LXSU(2)WT su(a)cxsu(_)Lx ( )Y"“'M;‘"’ ( )Cx ( )em
As for the breaking of S0(10) down to SU(4)CxSU(2)'xSU(2) , Wwe need

say, 54 Higgs,and for breaking SU(4) xSU(2) xSU(Z) down to SU(3) xSU(Z) xU(l%
one choses 16 and 16* Higgs.The need of both 16 and 16* Higgs is to guarantee
the D-terms to be vanishing fe.15].

It has been proved {2.15] that if a group G breaks down to a little
group gz by the possible v.e.v.'s, Z, and the coset G/gZ does not contain any
generator of G group transforming as a singlet under the little group gz, then
all D (z) = ‘

As well known, there are two generators Y and B-L in the coset SU(4)
xSU(2) xSU(Z) / su(3 )ySU( k&U(l)Y which are the singlets under the little
group’SU(S)xSU(Q)xU(i) . Therefore, the Corresp@nding D-terms could probably
be non=vanlsh1ng, if we only use a 16 Higgs for the breaking of SU(4)XSU(2)XSU(2)
down to SU(3) xSU(2) AU(l)Yg However, we can take both a 16 and a 16* nggs,
the D-tevms obviously vanish if the v.e.v.'s in 16 and 16%Higgs fields have -
the same little group and the same strengun (in detail see egs. (2.4. 34),

(2.4.35).
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Furthermore, in order to give masses to quarks and. leptons at least

one of 10, 120 and 126 Higgs fields is required, since

16 x16 = 10 +120+ 126 (2.4.16)

@

1t should be emphasized that for the sake of making a second hierarchy,
i.e. the colour triplet Higgs superheavy but the doublet Higgs massless , we need
two 10 Higgs fields. Consequently, the simple supersymmetric extension of the

S0(10) grand unifed model must include the following superfields.

16 matter chiral superfiled @+: (A-\-,"’h, 1:+>

45 gauge vector superfield 1}*_ (W }\ D)
- - My +
54 Higgs chiral superfield _
= | Zy= (a3, 1) (2.4.17)
16 Higgs chiral superfield Ny = (,o Y ‘ﬁ+)

- o I,
16*Higgs chiral superfield N* (b ’ ,Z )

= +, &
10 Higgs chiral superfield Ny = (H.h 2+} G#
10 Higgs chiral superfield -Q';_ - (H{ z*./ G,)

, - / 7 S+

The superspace potential W, which is at most tubic in a renormaliza-

tion theory, is given by
w=1 AHA +f, (bR b+ H/ B +mHA'+
+AH&H’+%MQO’+§L& aaa | (2.4.18)

This superspace potential W is not only supesymmetric and 30(10) invariant,

but also compatible with a global symmetry of

'L% . “i% - DS
Ase A) Lae ) l)*-ae b* Hoe H H—) H.
‘ / (2.4.19)

Such a global U(1l) symmetry will be broken at M2 mass scale, M2~ 1013Gev.
Thus, the strong CP problem can be avoided with invisible axion [2.16] . It
is perhaps worth noticing that in supersymmetric theory we do not always need
a symmetry reason to forbid an allowed term in the superpotential: if it is

excluded by hand at tree lbevel, the non-renormalization theorem . guarantees
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that it will not be generated by loop diagrams. .
The scalar potential V is

| 2

V=355« 10,

Y , ‘ (2.4.20)

&

1, ]
in which (fistand for all scalar fields A, b, b%} H, H and a. The D":—Dji
. y
( {,j =1 to 10 ) is defined by

= (3” (f Ml} (f (2.4.21)

where Mljdenote the matrices of S0(10) generators on the 3’ fields. Mai are

Te

anti-symmetric,i.e, Miiz - Msg, and obey the algebra (2.4.1). The vacuum
expectation values of the Higgs fields are determined by minimizing V. If V=0
at some VEV's of the Higgs fields, supersymmetry of course is not broken.

This will occur if and only if the following equations

'avw
=0 and ’ ..
3CP ED“&

have a simultaneous solution. Otherwise, supersymmetry is broken.

o O - (2.4.22)

One requires that’SQ(lO) gauge symmetry will be broken down *o SU(4)CX.SU(2)LX
SU(Z)R , and futher to SU(3)5<SU(2)£ﬂU(l)Y at high energy ,and finaly down to
SU(B)éCU(l)ém at the weak mass scale MW {(~ 100 Gev ). We assﬁme,that supersjmmetry
is also broken at the weak mass scale qu For the first stage of S0(10) breaklng,
namely S0(10) down to SU(4) XSU( )I§SU(2)‘ ,all ‘the D-terms vanish, since the
breaklng is achieved by the 54 Higgs. As we can see from Eqg.(2.4.14) , 54
representation of S0(10) only contains one singlet of the little group
SU(4)6£SU(2)ﬁKSU(2)R , 80 the coset S0(10)/ su{4) xSU(Z) KSU(E) does not contain
any generator being a singlet of the little group SU(4) XSU(Z) xSU(Z)R.In addition,
.16 -and 10 representations of SO(lO) do not contain any singlet of SU(4)><SU(2) x
‘SU(Z) . Their VEV's may arise at the second , or thlrd stage of breaking,i.e,
SU(4)5&SU(2)ﬁ%SU(2)§%»SU(B)&KSU(2)§<U(1)Y s SU(B)&KSU(2)£(U(1)Y =3 SU(B)é‘U(l)em

respectively.
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From the superpotentimi (2.4.18) one may derive

B |
A ::'ﬁHlé\,
Wk

2 1.,

zigf = f%ki/g%/
9

W ! { /
rﬁ\—‘ﬁAﬁ""A '}’mH;"i")\a,ini )

1

dH!

h 4

2 £ (byb 5T B ) e, H, 05

A"

(2.4.23)

W f / / 2

Bflﬁ

The VEV's of the Higgs fields are given by

(A>=(Hy={H»=0,
E TE~L = E%W“; E*“:: O 3
and

a——;/f‘ = a\v

] v/ T4y =0
1

where § ', ( i=1 to 10 ) are defined by
1S g

1+
fﬁ = “”“”’llm Yﬁi

¥ )

. ( A -
MO+ Ryg Qg =158 Qg Brg )= 0

The five solutions of Eq.(2.4.24) turn out to be

4)

5)

<Q;,3>$C)

=L diag (prribiEv=3)
Cag>=g7F 4%

' | -4 ~4)
LM tag (1 bV

LAijr=73 % é( ,
7 _1 -
3 M S O U N A T

40;5\?':3}"&&'“3“ |
33 _3
l=7 7272

w}dv

NiwW N

]

(2.4.24)

(2.4.25)

(2.4.26)

(2.4.27)

(2.4.28)

(2.4.29)

(2.4.30)



All the above states are degenerate at E.z 0 as shown in Fig.3. It is obvious
that in the case (1), S0(10) remains unbroken ; in the case-(2), the residual
unbroken symmetry is S0{2); in the case (3), it is S0{8)% S0(2): in the case
(4), it is SO(7)xS0(3); finily, in the case (5), it is S0(6) % S0(4) ==

SU(4)*€SU( )§<SU(2)R9

VaVaV

50(10) S0(9) 50(8)x80(2)  80(7)x50(3) S50(6)%50(4)

Fig.3 the five vacuum states in the S0(10) SGUM are degenerate at E=0 .

The case (5) is the most interesting one. However, we-have no potential reason
to choose the vacuum (5) rather than the others. Perhaps it would be possible
to split the degenerate by means of embedding the SO(10)SGUM into supergravity,
but we do not know whether the vacuum (5) is the physical one, by which means
the lowest energy vacuum State
We now draw attention to the interesting case (5), and show how to solve
the gauge hierarchy problem by fine-tunig and how to make the colour triplet
Higegs ,which may caﬁse proton decay (see Fig.E),superheavysbut:the SU(2) doublets
light. From Eq.{2.4.15) one finds that all of 54,16,16, and 10 contain the
coloﬁr triplets,however, the colour triplets in 54 Higgs do not cause too
fast proton decay., since they are as heavy as the unification mass scale .It does
not matter how heavy the masses of the colour triplets in ;g,lﬁ%are, as far as
the proton decay concerned,beacuse there are no the trilinear 16x16x16 and
1§x£§%x;§ couplings due to the fact of 16 and 16% being spinor of S0(10). 1In
concequence, the only dangerous colour tfiplets are those in the 10 Higgs
multiplets.However, they can become superheavy by means of the fine- tuning
of parameters in the potencil.
First of all, let us write down the contents of the 10 representation in

SU(4) xSU(2) x '
( )Cx { ;LySU(g)R
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10 = (6,1,1)+ (1,2,2) - . (2.4.31)

The colour triplets are in (6,1,1) , whereas the SU(Z)L‘doublets iﬁ (1,2,2)

It is easy to see from Eq.(2.4.18) and (2.4.30) that the mass of the doublet

ig different from one of the colour triplet. We therefore can make an ad&ustment
of the parameters in our model so that the doublet is massless , but the

coloﬁr triplet is superheavy. Actually, for the case (5), the mass of the
doublet Higgs is proportional to m-3 M} h ,so if one sets m=3/Mx/h, they will

be massless, whereas the colour triplet acquires a mass of the order of 5}3X/h,
which is just the mass scale of S0(10) down to SU(4%$SU(2%§SU(2%iThiS means

that the colour triplet in 10 Higgs multiplet is also superheavy.

We now turn to consider the breaking of SU(A)CXSU(B)LXSU(Z)Rdown to
12
SU(S)CxSU(2)LxU(l)Y at a middle mass scale M2 (~10" Gev). This can be done
by 16 and 16* Higgs fields, since the SU(B)CXSU(Z)LXU(:L)Y contents of 16 and

16%* Higgs fields are given>by

e (1,2). ¢ (1,1) 4+ (1,1)

16 = (3,2)% + (3,1 + (3,10, 2 2" o
i (2.4.32)
16%= (3,2).,/3+ (3,12’;/3-!' (3,1)%‘*‘ (172)1 + (1’1)_2 + (l’l)o ’

where the subscript label denotes the weak-hypercharge Y. The nieutral compdnents
c .
(l,l)o (i.e, the ¥ (¥ ) components ) in 16 (16*) Higgs generate the breaking
of SU(4) xSU(2) xSU(2)_ to SU(3) xSU(2 . '
( )CX ( )L}; ( )R o SU( )Cx ( )LxU(l)Y
It is easy to check that all F-terms vanish.However, we must say some thing

about the D-terms: For U(l)Y , 1t is obvious that

D, =0, 4.
v ‘ (2.4.33)

because Y of y*(y) component in 16 (16* ) is zero. For U(1) the corresponding

113 B-L’
generator is T = 5 é(B—L) , one then obtains

3.2 2

5) g ( !Vlz

1 2
D = (= - |
- gz [vr]™) (2.4.34)

where v (v') is the VEV of the (l,i)o component in 16 (16%).
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Consequently, we may get that

DB—L =0 , if v o=%v'. _ (2.4.35)
All othef D-terms are obviously vanishing. Therefore, supersymmetry still
remains unbroken when S0(10) is bréken down to SU(S)CXSU(Z)LXU(l)Y. We assume
that supersymmetry would be explicitly or dynamicaly broken at the weak mass
scale\Mw, for instance, we can explicitly break supersymmetry in terms of
the mass term éf the 10 Higgs scalars. Such the breaking is soft as the
dimension of the breaking term being two (see chapter 3). The last stage of
breaking ,i.e, SU(S)CXSU(2)LxU(1)Y down to SU(3) xU(l) , can be achieved by

C Y
the VEV of the neutral component of the SU(Z)L doublets in 10 Higgs multiplet.

Finally, it would be worthwhile to point out that the supersymmetric
partners of matter fermions can not be a candidate for the Higgs fields
responded to the breaking of = supersymmetry or gauge symmtry ;
gince they may iead to the " light fermion disaster”[2°17]due to the mixing
of the light fermions and the gauginos ;and give rise to too far too much
bayon number violation{2.18}. To see how this happen , as an example, let us
discuss SU(S) supersymmetric model:

In SU(5)SGUM the supermultiplets containing the‘quark and lepton fields

are as follows

MY = - MY, Mo, (2.4.36)

where i,j = 1 to 5, are the SU(B) indeces, ¢{ is the generation index (d::gbﬁg"f).
Mig'set to 10 representation of SU(S)s Wéi set to 5* representation. The
SU(B}CXSU(Z)LXU(].)Y symmetry is embedded such that the components of the 5
{ ﬁ'i say ) correspond to quarkg and leptons as follows

ﬁ'j =a®, fora-=1,2,3 ‘ (2.4.37)

where a= 1 to 3 are the three colours, and

Bhoet, w5y | ‘
e ~ %0 e ~ Ve (2.4.38)
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If one makes the identification of Higgs scalars with the lepton partners,
and the gkcomponent of Wéi gets a VEV, then the following SU(5) invariant term
in the potencial

MM M : (2.4.39)
e el Mj

may make a difficulty as concerns proton decay, because the couping af

the tfipletvcompohents of.yﬁi;i-e, the SU(5) partners of the putative Higgs
can madiate proton decay. Precisely, the Higgs triplet M)La (a=1,2,3) can
couple to { ignoring Cabibbo-KM mixing)

5 abc -

b ad a - a
a #T MM M= £ 0 d +ut e 4+ d Y . (2.4.40)
e

M M! .
eb ed e eb b ¢

This couping obviously produces proton decay.

Conclution:

It has been shown that the gauge hierarchy problem can be solved in
supersymmetric grand unified models, in particular for SU(5)8GUM and , as
we have demonstrated, for S0(10)SGUM. The second hierarchy problem, namely,
the very small ratio of masses of the SU(Z)L doublet Higgs and the associated
colour triplet Higgs, can also be solved by means of an incradibly accurate,
but "natural" adjustment of the paramefers in the potencial. Such adjustmenté,
usually calld fine-tunning, are quite different from those in non»supersymmétric
GUM's in the sence that the fine-~tunning one has made in supersymmetric GUM's
‘will not disturbed by radiative corrections. This is because of the non-
renormalization property of supefsymmetry threoy. However, how to understand
zeroth order fine-tuning in supersymmetric GUM's is still a problem. The question
is ¢ can we naturaily solve the gauge hierarchy‘pr§blem without any fine-

tuning ?
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5.5 Witten's mechanism

Along the lines of 0'Raifeartaigh's model (see chapter 3), Witten has
suggested a novel mechanism which may naturally yield a large ratio of gauge
symmetry breaking parameters in a class of field=theories with spontaneous
broken supersymmetry. The key idea is that in a theory characterized by a
small mass scale M ~1 Tev, radiative corrections may produce large anuum
expectetion values (VEV's) of the order of eleM‘in the fields whose VEV's
can not determined at tree approximation. This means that the small mass scale

ig fundamental, the lafge one being generated dynamically.

Before going on to construct a realistic model, iet us consider a simple

example to explain Witten's: mechanism:

The superpotentﬂﬁ W of Ot'Raifeartaigh model is’

2 2 2
W:)\X(A ~-M)+gYA s : (2.5.1)

which has a relevant global symmetry of A -¥ A, X= el ¥ and Y -» e1 Y .

From (2.5.1) we get the scalar potentiol

2 2 22 2 2 2
V=) |A-M 1+ g Al + |2 AKX + gyl (2.5.2)
and
W ' :
- #* r————
Fr =% 2(aX +gY)A (2.5.3a)
* W 2 2
_F. = e = M
=% (A ) (2.5.3b)
F* - 2 A2}
-a v g -a-_Y'- g (2.5.30)

The last two expressions (2.5.3b) and (2.5.3¢c) can not both vanish, so
supersymmetry is spoﬂtaneously broken at tree level. Minimizing the poten&i&l
V one finds that A = 0 or A = (Mg—g2/2}§)% denpending on whether g/ xM 1is
large or small. Besides, one also finds that both X and Y are undetermined

at tree approximation, so long as Y = - 2 2A X/ g -
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One of the attractive features of the Witten's model is that the A barticles
get iarge masses, 23X, this theory therefore can have at tree level an
arbitrarily large mass scale, totally unrelated to parameters in the Lagragian,
Such A particles in any realistic model are not involved in the low energy
symmetry breaking. However, it has been shown[Z.ZO] that X and Y can be
determined by the radiative corrections to the potencil. The one-loop

corrections to the botential was carried out to be [2,21J

b

) . 2 ‘
Zx\/ - ) # ? z (2.5.4)
i*,@vo‘p 2{ £4-T[1 ML{CF) /an. M:/(‘?)//ul ,

where the sum runs over all helicity states, Mi is the mass of the i~th such
state, the s ig the spin of the correponding state, the factor (—l)28 indicates
that boson (scale and gauge boson) makes a positive contribution ang fermion
makes g negative contribution to the effective potencil, and M is a
renormalization mass.

The complex scalar A field is split by supersymmetry breaking into
two real components’of which the masg Squared are given by

1 2 1 2
mB(A)“‘-‘-'4-}le\+2§:t2HZ . . (2.5.5)

Their fermion partners have the mass squared
1 3 Lo b
MR = 4x7[X| + 29

Having substituted the expressions (2.5.5) and (2.5.6) into (2.5.4) ,0ne gets

. 2 2 ‘
VRV Vi [ BB

The above poten&iqlobviously dependents on X. As one can see from (2.5.7) s
the coefficient of the logarithm term is positive, which implies that
X can not become arbitrarily large. However this is not the case in gauge

theories, Witten observed that in gauge theories the logarithm term can
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have a negative coefficient. At one-1o0op level,'actually,.the poten%iuﬁin

threories with gauge fields is found to be

.
Vo= an u i\-a* (mﬂce"")»%livi % :
yihd 5 (2.5.8)
where » 1is a scalar coupling, € is the gauge coupling constant, a,b and ¢
are the calculative model-dependent positive constants. IT b}? - 062<; 0,
¥ would seem become large without limit,and V becomes negative for large %.
As we know, however, the energy in any globally supersymmetry threory can
never become negative (see chapter 3). This suggest that the perturbation
theory should break down at ezlnX*Jl . If a stable minimum of V develops
in the regime 821HX:>1$ one may obtain a theory with an exponentially large

/e and a mass scale M at which supersymmetry

mass scale characterized by X~He
breaklng takes place. The above mass Sﬁales can be interpreted as the scales

of the grand unification and of weak interaction respectively. Indeed, by

using the renormalization group anilysis it has been found that a stable vacumm
exist at a large X in some models such as. SU(o) model. This is because of

the asymptotic freedom which may force the effectlve 62 to decrease at large X
so that the effective coefficient (b”&(f) - ce (t) ) can change sign when

¥ becomes very large,however if A is decreasing or not increasing too rapidly.
This could stop ﬁhe tendency for ¥ from increasing and produce a stable vacuum.

Let us now see how the above idea is implemented in a 51mple SU(5) model.

This model is conatructed from two complex scalars A Y in 24 representations.

e.

LA e : N
(A5) :{A%’}ﬂb ;O ‘::{\1/1,) C
T A:TW'\Y‘:O y

(2.5.9)

and a singlet X.

The superpotential W is given by

3 = Z
W(AY,X) = TTHAYT ?’XA(T"A”M ) ) (2.5.10)

' ief ie
which is invariant under Ay —A, X=pe X and VYewe Y. It follows that
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“FAf:T{A/T}“*Z?'XA“%TTYAY

(2.5.11a)

>

T vl at |
__“‘ijy = 1A= T T A | : (2.5.11b)

_.'FX* =9 (T A*- Mz) ) (2.5.11¢)

Since the equations FY = 0 and FX = 0 are inconsistent for non-vanishing
values of f and g , supersymmetry is spontaneously broken. The scalar

potential is

2
V=T nF;TT:A + T 1:y+ }:y + YEK) +

(58.12)

FEeT (A ry v )

Minimizing the potential , we find

M '
A= o diag (222-~3-3) (2.5.13)

but X is undetermined at this level and can be assumed to take any value

so long as

AV ‘ |
N = —_FX diag (22 2-3-3) S (2.5.14)

The vacuum energy turns out to be

L
. x4
\/ e T (2.5.15)
° T30t e
We see from the éxpressions (2.5.13) and (2.5.14) that the residual unbroken
gauge symmetry is SU(B)CXSU(Z)LXU(I)Y .

Since X is undetermined at tree level , the quantum effects must be taken



,2},‘%’

, | M h R 1 s
V0= —EE (1 B8 ot d) X e
f+~30 gt L 8 fu3e{ ' mr )

Tndeed, (2,5016) implies a runaway, behavior for 29f2~50e2<_0, namely, the X
increases without limit s0 +hat vacuum energy becomes negative and arbitrary
large,which is of course unwarrented. As mentioned before, this means tﬁat
the pertufbation theory breaks down when 1(29f2w5062) in Xg/}kz | 1.
However, Since in sU(5) model the gauge ccuﬁling e is ésymptotically free
but the scalar coupling £ is not{2,283, the effective coupling will make the
coefficient 29§%t)w505%t) to change sign as ¥ oo . S0 one then expects

a stable vacuum o develop in the large X regime.

In this model, SU(5) is strontly broken by the expectation value of Y and
the massive gauge bosons have masses of the order of X, whereas supersymmetry
breaking is characterizéd by the amaller mass M as the vacuum energy being of
the order Qf M . the heavy particles, for example,-the SU(S)CXSU(Z)L singlet
components of A, Y and ¥ may have the masses of the order of M and have
Bése~Fermi degeneracy - Various particles which ére nassless to this order

can only get masses smallier than M from higher—order corrections.

Conclusion:

The main advantage of Witten's mechanism is that the gauge hierarchy
can naturally occur without any fine-tuning problem. Supersymmetry is sponte-
neously broken by using an 0'Raifeataigh -type model. The new idea & la Witten
is that the small mass scale Mewl Tev ,which coresponts the mass scale of

supersymmetry breaking, is fundamental, Then the radiative corrections

i

may préduce large VEV's ( of the order M eiéi ) in the X fields ,whose VEV's
can nét determined at tree level. This large VEV, X , is reasonably
interpreted as the unification mass scale MG . Tn other words, the low -mass
gymmetry breaking drives the high-mass symmetry breaking, but the large

YEV's can leave a larger unbroken gauge symmetry then the small VEV's do,

thereby producing a gauge hierarchy -
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In Witten's Su(s) model, the supersymmetry-breaking mass scale M wag
,assﬁmed to be the same order of the weak interaction massg scale MW. However,
as one will point out in chapter 3 | Supersymmetry may be broken at an
intemediate mass scale » say MIf~'1012 Gev [2.23} » In such a case, there
exist at least three different maSs‘scales_y namely a unification mass scale
MG » & supersymmetry breaking mass scale Mif; and the weak mass scale wa
In consequence, a natural question is that » along the line of the Witten's
idea, can we make suchya model so that only the Supersymmetry breaking mass

scale MI is fundamental » Whereas both the unification mass scale MG and

the weak interaction mass scale MW are generated from radiative Corrections.

2.6 Geometric hierarchy :
————— =T filerarchy :

Very recently Dimopoulous and Raby have Presented én attractive model,
called Geometric hierarchy{Q.S], in which they apply the Witten’s mechanism
and assume that supersymmetry is broken at an intermediate mass scale ,
MI~<1012 Gev, and both grand unification mass scale MG and the weak mass scale
MW are generated from radiative corrections. Acturly Ehey have found that
MG“‘MI el/“ sand Mw«ff M§/MG » where f ig g function of both gauge and Yukawa

couplings. Since MI-is approximately the geometric mean of MG and Mw’ they~

named it Germetric hierarchy.

which may be needed for the breakings of supersymmetry, of SU(5) down to
SU(3)CXSU(2)LXU(1)Y,futher down to SU(S)CXU(l)em,for g€iving mass to both up-
quarks, down quarks and leptons, for avoiding the rapid proton decay,and so on.
The Superpotantia| W in this model can be roughty divited into two parts: W1
and W2; in which,iroughly speaking, Wl only included the heavy Sector and

W2 only the light sector.

WIS NT (ZAD) X (T A M)+ (2.6.1)
2 (HAHFHAHD 4 A (FH+HH OB
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where A and Z are 24 supermultiplets, X and B are SU(B) singlets, H,Hl and
ﬁ,ﬁl are 5 and 5* SJpewmuﬁtlple+sy respectively. It is obvious that the
first two terms in w ig exactly the O*Rafeartalgh—W1tten model which drives
supersymmetrj bpontaneouly breaking at tree ievel, the last two terms are
necessary in order to guarantte no rapid proton decay and the right breaking
pattern of SU(B), namely su(s) to SU(%}CXSU(Z)LXU(l)Y

WZ is given Dby

W, = A Y (?wwgcuwaiﬁz‘)+

W 4 -
’%"(};_ H H)LEOS +9° H 10, k. (2.6.2)
) 9 !
h 11 paramet A Y and d are di sionl
where all parameters \ . . imensionless
T A Ry Ry Ag 7, B0 Bij
vukawa couplings, M, M' and M are the mass parameters of the order MI.

From Wl , we find

~Foal = N, Kc? 1 Y (2.6.3a)
g} ,,f:’h* 2 )) Lo

~T* = (T da- i“’ii}} | - (2.6.3¢)
T AT W S
T&— @H (\)‘zcb,&\"’“}* <§9 ) | (2.6.3¢)
“"’—Fg#;:' (KB\A{)A%‘)“% CF@}C’?HE; ) | - (2.6.3f)

. | .
"‘”'FH‘ = d?g ()43 f{EA T Aq % ) (2.6.32)
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- Tg = (A, <{>A+)\4§_C?8) qﬁH (2.6.3h)
5 |

It is always possible to set FH: Fle Fg = Fﬁ = FA: FB: O ,however the
equations FZ: 0 and FX: 0 are ;nconsiétent, S0 supersymmetry is sponteneously
broken at the scale M. The VEV's of $Z s @X are undetermined at tree level,
Moreover, one can make the colour triplet Higgs Superheavy but the SU(Z)L
doubléts are massless by the expectation value<:A3¢A+ AH¢B> = MGdiag(lllOO),

which is just what we want.

The vacuum expectation valule for ¢A‘is found to be

2 2.
2
<¢ﬁ\>‘x Ad -3 3 , (2.6.4)
7
where
r M
Aﬁz T —— , (2.6.5)
JA,"HGAE
and the VEV's of @Z . @X are
a v [
<<§)§5>: PR 24..3
‘ -3 ~ (2.6.6)

Hence @Ay @Z break SU(5) down to SU(B)CXSU(Z)LXU(I)Y at MG - The magnitude
of X, 1s however undetermined at tree level. Cohsequently , the one-loop
corrections to the pétential must be taken into accunt for the sake of

determing X . we find the poten i1 up to one loop level as follows
o

T



SO SR TP _taptyp Xl
Vo= 2 B SR (29 0= b0pl) g, [ Xl
Nrzony L 8T ATv0A a2

®

According to the argument of Sec.5, a stable vacuum can be developed with
a large X_ that determines the grand unification mass scale Man MIelex
which is obviously much larger than the fundamental mass scale M fv.MI in
the superpotencil W .

The )‘5 term with M' = O in the superpotencial W2 is required for avording
the massless Goldston boson. The last two terms in W2 contain the standard
vukawa couplings of the scalar Higgs with quarks and leptons .

As mentioned above, supersymmetry is broken by FX # 0 and FZ# 0. Morecver,

it is clear that FX and ?Z appear in the Lagrangian only with the following

expression

gimTyié&iT%‘?’}\z?x)ipAz } (2.6.8)

This indicates that the only states , which can direétly feel supersymmgtric
breaking at tree level, are the A scalar states which have superheavy mass AJMG.
In other words, supersymmetric breaking effects due to FXand FZ can only‘
proceed via the superheavy states ¢As Any state,which is massiess at tree

level, will remain massless until it knows about supersymmetry breaking{l.S]
2.5 [2.24]. Therefore, supersymmetry breaking effects into the light sector
of the thesory are expected to be an expansion in the small parameter Mi / Mé .

For this reason, the effective supersymmetry breaking scale of the light

sector is at most

™ >3
= } P1%*”V’§Oé“'t0 Gzyy‘

/“"““(f;:r;,

(2.6.9)

19 ' 12 11
for Mgaulo Gev andAMIm¢lO - 10 Gev . It is this scale that will set the

weak interaction mass scale M, namely M
. w Y

maf/L , in which f is a function
W ,

P Ry o




" of both gauge and Yukawa couplings.

In such a model, any state being massless at tree level can only acquire
. 2 .
a mass from the radiative corrections at most of the order MI/M . For instance,
a gauge fermion }_may receive a mass from Fig.6.l,which corresponds to the

following operator

1y 2 ol
?Z;gd.é )( W &\Ax R

(2.6.10)

Fig.6.1 One-loop contribution to gauginc mass.

Having performed the loop integral in the momentum space, one finds

M. = A fiwi ﬁ
* o ‘M(—Zr = Mc—} ’ (2¢6.11)
31
where o = /é% , £ is the relevant gauge coupling constant. The squarks,
sleptons (the scalar partners of quarks,leptons)may obtain masses of the

2
crder MI/MG through Fig.6.2 corresponding to the operator

10 e, JEUF
Fégw KX 2¢ ) (2.5.12)

where ¢ denotes the matter superfield.

Fig.6.2 Two-loop contribution to masses of squarks, sleptons.

.



It is easy to get the masses Ol squarks and sleptons from Fig.6.2, which .
2
are of the order ”fi. M_/M_ .
29w 1 G

Conclusion:

The geometric heilrarchy model is based on Witten's mechanism. The new
point in the gecmetric hierarchy model is the assmption of a supersymmetry
breaking scale MI»»‘lOlzGevg As a conceguence, ooth the unification mass
scale MG and the weak mass scale Mw can be naturally obtained through ﬁhe
radiative corrections. So called the fine-tuning problem is automatically
avoided.

However, this model is compldcated and contains many particles with masses
of the order M /M =w»103s=10 Gev. This makes trouble for the phenomenology,
sin%i in partlcular. If we input M_~ 10 Zuev, for example, then 81n.9 =0.25
and the unification mass scale Mgtéloz Gev. Obviously, both sin Qw and MG
are out of the range of the experimental values. If we in turn take
sin%&w 0.215 as input, then anleAGev s MgfflOZAGev and Mw ~ 1O"lBGev s
which in any case are unacceptable. An interesting queotion is whether we
can make such a model so that both the unification mass scale’MG (and-Plaok
mass scale Mp, if possible ) and the weak masé scale Mw can bevobtained

from a single fundamental scale MI where supersymmetry breaking occurs,

without either the fine~-tuning problem or the phenomenological problems.

O



Chapter 3 : SUPERSYMMETRY BREAKING

Supersymmetry is perhaps the most beautiful symmetry we know by now. If
nature is really described by a supersymmetry theory, such a symmetry must
be broken, since we have not observed in nature the degeneracies among fermion
and bosons which would be predicated by supersymmetry. This is because of
the following reason:
quersymmetry charge Qd (el=1,...4) changes fermion and boson states

each other. Namely,
E 1
les>:E,Sf§>’ s - spin (3.1)

and , as it is well known, the Hamiltonian H ig given by

1 2
H = = . 3.2
5 29 (3.2)
d’ .
Clearly Qd do commute with the Hamiltonian H, so the fermion and boson on
which qxacts have the same mass.
In this chapter we shall discuss various aspects related to supersymmetry
breaking. We first discuss the conditions of supersymmetry breaking, and then
discuss about the mass scale at which supersymmetry breaking occurs. Finally,

a qustion is of course how to break supersymmetry.

3.1 Conditions of Supersymmetry breaking

SUpersymmetry can be broken either explicit, if Lagrangian is not invariant
under supersymmetric transformation, or spontaneously, if a vacuum is not
supersymmetric but the Lagrangien is.

It is a simple matter to breék supersymmetry explicitly. We only need to
check whether Lagrangian is invariant under the supersymmetric transformation.
For example, if we adds a mass term m@% of a scale feild ¢ in Lagrangian ,
clearly the Lagrangian will not be supersymmetric any longer.

We now restrict ourselves to the spontaneous breaking.
THEOREM 1:
Supersymmetry is spontaneously broken if and only if the vacuum energy is

positive[Z.S] .
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The proof 1is quate simple.

Notas the fundamental relation of the algebra ,

%Qi,@? %:XD{? Pu | (3.11)

where Q, 18 supersymmetry charge | @@T‘ @;n{ X;%

If we multiply Eq. (3.1.1) by’B?: , sum over ig and o , and use ‘the
7
fact (:50):\ , TIr ‘T{a};ﬁ«: 4,50’14, we obtain

4Py = 2 {Qa,@d . (3.1.2)

Here P, is ,of couse, the Hamiltonian H , and {’Qﬁ(’ Qﬂ}:zQ‘j

Therefore, it turns out o bé

5 ) . (3.1.3)

which is an impotant key to understanding supersymmetry breaking. Since
% .
QQ{ is hermitian operator , Qy can never be negative. It follws imma-

digtely that if supersymmetry is not spontaneously broken, then vacuum

energy is zero. In fact, if supersymmetry is not spontaneously broken,

by definitibn, we have

1oy = Qulé>=0, (3.1.4)

where lé} denotes the vacuum state. S means the infinite supersymmetry
transformation.

Consequantly,
H%’@‘?*—ﬁ%%@ii?}ﬁ@ . , (3.1.5)

Conversaly, if supersymmetry is spontaneously broken, i.e,

slpy=Quley#0 (2..0)

then

GlHIey=LT @G =53] >0, aun
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in this case the vacuum energy is nonzerc and positive.

THEOREM 2:

Supersymmetry is spontaneously broken at tree level if either F-term

or D-term is non-zero.
The proof is again simple.
As we know, the scalar potential V at tree level can be written as

. 2z 1 2
V= ?5- Fol+ 5 % Do; (3.1.8)

where F, and D% are well defined
i

(3.1.9)

DM.:? %d %)‘T& %} 5

in which W is superpotential, Tds are the generators of the gauge
group G, gd is the corresponding gauge coupling cons#ant.

Since anyterm in (301.85 is @ositive,so the wvacuum energy is positive
if one of Fi and QX ,evalueted at the vacuum state }@) , is non-zero.
THEOREM 3:

If supersymmetry is not spontaneously broken at tree level, then

supersymmetry will remain unbroken to all orders of perturbation.

Proof: )
In order to break supersymmetry in finite orders of perturbation theory,

we must give an expectation value to ¥ or D . This means that we must
obtain in the supersymmetric effective potential an operator linear in
F or D ,times fields‘with vacuum expectation values .. As is well known,
the only fields which‘can acquire non-zero vacuum expectation values are
elementary scalar fields.

According to the non-renormalazation theorem, F-term , which is an
integral of the type f&a?u\ , can not be generated by loop corrections to

any finite order . So a term linear in F does not appear and F does not
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get a non-VEV.

For the auxiliary D fields, it would seem can get an expectation.
value from the loop corrections, since it is an integral of type jﬂx%g e
However, This does not happen. The reason is following.

The D fields which could get vacuum expectation values are those
associated with unbroken gauge symmetry . However,a D field associated

with an unbroken gauge symmetry is always multiplied by charged scalar fields
which 6f cousce have zero expectation values. Therefore, an expectation value

of the D field is not induced in finate loop level.

Finaly, we come to an impotant criterion about supersymmetry spontaneous
breaking.

First one defines an operator

() = exp(-2miTy) , T-Skn  (3.1.10)

which distinguishes bosons from fermions, since for any boson state j i;>

. F :
=) 1b>=1b> (3.1.112)

for any fermion state ff},

‘ NEANIRS
T FY==11> . )
THEOREM 4:
Supersymmetr& is not spontaneously broken if
= T # . '
A= Tvi-) © (3.1.12)

where A is called Witten's index.
Proof': : E=0
It is easy to see that 4 may be identified with the difference ng -
. . E=g £=e . » .
in which ?@B (?@F )lS a number of the zero energy boson states(ferimon

states).



As we know ,in supersymmetric theory the states of non-zero energy are in
bose-fermi pairs, but the zero energy states are not paried in general

since
2 R
H :é:jg Qm ,any zero energy state (boson or fermion) can be annihilated by @
W

Qb E=oy = Qlf E=0)=0

(3.1.13)

Hance the general feature of the spectrum of supersymmetric theory looks
like as Fig.3.1

..,._,.%,w__‘,‘ ;v’

Py

o Y. ¥ 4
L S LY

Fig.3.1 0 denotes boson,

% denotes fermion.

When we change the parameters of the theory, for example ,bare mass ,

coupling constants, the states of zero energy will move around in energy in
hoson-fermi paris as

Fig.3.2

E 4

3]

e Y

45
A4

£
w7

2
A4 Ea)

Fig.3.2

boson~fermion paris move around in energy when the parameters

E=0
(

are changed. gy EZ9 , supersymmetry is unbroken , since E =0 .
g <~y Fo

In the Fig.3.2 it is shown that it & ?éij ., all states can always be
moved down to ground state, hance E =

0 and supersymmetry is not spontaneously
broken.Hovewer, the inverse

is not true. If A = , supersymmetry may be

spontaneously broken or may be not.



Witten's index ie caculable since 1t does not dependent on the parameters

in the theory.

Conclusion:t

ove are fundamantal and importent. As far as

the four theore
~spcerned, theorem 2 in fact is more useful and more

supersymmetry breaking
practicable when we make a realistic supersymmetry theory. Several comments

3

should be addressed. the vacuum energy may not be possitive in local

supersymmetyy {Supe?gr&vity} theory even if supersymmetry spontaneously
broking{ﬁ,%j . Second, in two dimensiocnal theory, it is possible to break
supersymmetry perturbaiivelyf even if it is not spontaneously broken at tree

1eve1{§,2]n Finally, one would 1like to point out that global supersymmetry

breaking is always accomparied with a massless Goldston fermion {3.14} -

3.2 The Mass Scale of Sup§r§ymmetry Breaking

. From the point of view of phenomenology ,an intéresting question is at
whét mass scale superaymnetry breaking takes place. In principle, supersymmetry
can be broken either at very high energe ,5a8y, Plank mass scale Mpﬁvlolg Gev,
or at low energy ,sSay, weak mass scale MwwlO2 Gev , Different mass scales’
may lead to completely different phenomenologyu For instance, if supersymmetry
is broken at M ,then influence of supersymmetry on the effective low energy
physics may perhéps be negiigible. However, if supersymmetry is spontaneously
broken at Mw,'then we can imagine that the influence of supersymmetry on taday's
physics is very important .Obviously ,the phenomenology may in turn give

some constraints on the mass scale of supersymmetry breaking -

We now give some congtraints on supersymmetry breaking mass scale from

several phenomenclogies.
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3.2.1 gauge hierarchy

Since weak mass scale MW is about 100 Cev ,it is natural to assume that
Supersymmetry is broken at the same mass scale MW in order to protect the
gauge hierarchy from the radiative correction. However, if the SU(2) doublet

Higgs ,which responds +to the breaking of SU(S)S‘SU(E)i{U(l)Y to the
SU(S)@CU(l) s¢an not directly fell Supersymmetry breaking , then the gauge
em ——

hierarchy will not be spoilt by radiative correction even if the Supersymmetry
breaking mass scale MI is much larger than MW, say MInalolZ Gev ,because the
mass of the SU(2) Higgs doublet being set zero at tree level may acquired

a mass at most of MIQyIMG swhere MG is unification mass scale(see Chapter 2:

geometric hierarchy ).

-2.2 Cosmology [3.3]

It is well known that supergravity theorieg necessarily involve a massive
3 .
spin J = 5 particle ,the gravitino, whose mass m is related the scale F of
g

spontaneous sSupersymmetry breaking by the formula {3,43

5 (3.1.14)

P
My = (%) 'f%

19
where mp is Plank mass M~ 1.2%10 Gev.
D

4 < I‘E,w (3.1.15)

Correspondingly, it follows that the upper bound on the scale of Supersymmetry

breaking is given by [3.3]

6
| [T < 2«x 10 Gan (3.1.16)

However, if the gravitino is heévy enough so that almost all gravitinos
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would have decayed before the time of helium synthesis, then the lower bound

on supersymmetry breaking scale is found to be[S.S]
§ 1 '
E 210 40 |0 Gew _ (3.1.17)

5 Sinﬁ%

In the standard supersymmetric grand unified SU(5) model[? 6] it has been
found that sin 9 0.236 ( for two llght nggs doublets ) or sin 6 = 0.259
,(for four llght Higgs doublets) whlch is too large to be compatlble w1th the
experiment limit . However,if we assume that Supepsymmetry isvbrbken at an
‘intermediate mass scale MI,,and the breaking pattern of‘SU(S)SGUM is modified
as follows ‘ ,

| M . M

G v M : _ W
SU(5) —s SU(3) x SU(z)Lx U(l)y«.}. SU(3)C;< S’U(Z)LX,UQ)Y“"' SU(3) x U(l)em

Lo 2
In terms of the renormalizestion group equations and by~gsing‘sin.9w =0.215

and M =85 Gev as inputs, we find [3.5]

15
M@ ~ 4 K10 Gev :
12 ( for two light Higgs doublets )
MINl)ﬂlO Gev

This may suggest that supersymmetry would be probably broken at very high
12 ‘
mass scale, i.e, MI~VIO CGev . This conclusion is coincident with what we

have obtained from cosmology.

2.4 Proton decay

As Welnbeﬂg has pointed out , there are the dimension five opertors in
any supersymmetrlc grand unifield model with SU(3)><SU(2)>(U( )Y as a low

energy theory. Such the operators may lead too fast‘a‘proton decay .Howevey:,
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for SU(5) SGUM, by considering renormalization effects the life—time of proton
may probably be compatible with experiment limit even 1l there exist the
dimension five operators in the theory{SGGE and Supersymmetry breaking scale
is much lower; about 1 Tev.However, this is not the case for S0(10) suaM.

We have found that{4.9] in the SO(10) SeUM supersymmetry would be broken at

7
an intermediate mass scale MI;;lO Gev ,if we want to get a suitable proton

life time ( See Chapter 4 ).

Conclusion:

Supersymmetry can possibly broken either at low mass scale, say MTQ,MW
or at high mass scale, MI E,lollGev - In both cases ,the gauge hierarchy
puzzle can be removed, In addition » as we know, there is a well-known desert
puzzle[2,l] in non-supersymnetric grand unified theory, This means that
there is no’new physies in the "desert!" between MwaleO Gev and MG wwlolg Gev.
IT supersymmetry is realy broken at an intermediate mass scale, say MwalO@ to
1012 Gev, this then would give interesting physics in the desert . The new

physics we expect is Just the supersymmetric phencmenclogy.

3.3 How to Break Supersymmetry

It has been emphasized that supersymmetry must be broken in order +o
cqnstruct realistic supersymmetry grand unified models. Several ways of bresking
supersymmetry have been presented tone is an explicit but soft breaking of
supersymmetry .The second is by the Fayet-Iliobolous D term, The third way
is by using O'Raifeataigh type models. Finally, supersymmetry may conceivably
break dynamically ,for example, through an ingtanton or condensate effects.

It is also passiblé to break supersymmetry by MutermES.lojyif a global

supersymmetry is embended in N=1 local supersymmetry.

3.3.1- Explicit but soft supersymmetry breaking

Definition:
zertnition:
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i)‘bExplicitly broken supersymmetry:

The Lagrangian ;:is not invarient under the supersymmetric transformation,

i.e,

SL=0 ‘ (33.1)

ii) Soft broken supersymmetry:

Soft means that the quadratic-divergences can not be generated from radiative
correction in finite order perturbative theory. Otherwise, we call it hard
broken supersymmetry. \

In order to solve the gauge hierarchy problem in any supersymmetric grand
unifield model,supersymmetry breaking must be soft.‘As we known, in-theories
with'spéntaneous broken supersymmetry the quadratic divergences are absent,so
it is soft breaking. In theories with a explicit broken supersymmetry , the
guadratic divergences can probably be present,therefore, an - explicit broken
supersymmetry can be either soft or hard. Consequentiy, the questions are

(i) In giobal supersymmetric theories , what explicit breaking terms are
soft 7

(2) For a given explicit but soft breaking term, what new logarithmically
infinite terms can be generated in the effective ‘acfion so0 as to require -

introduction of new counterterms and hance new parameters in the Lagrangian ?

The key observation for the answers of above questions is that supérsymmetry
is equivalant to translational invariance in superspace ( XIQEU Therefore |,
supersymmetry is exp;icitly broken if one gives some superfields @v(bx,g)'ﬁ',) a
fixed, xfindependent,g@—dependent values, since this destroys the translational‘

invariance in superspaée : é(&@,?} - §CX+ZS§+96{/ 0*51‘5—"’2) . Such a

fixed field inst — . lata - T
ixed super 1e‘ , for instance, can be choosed as é = 400 } MG"‘O’; Y-S
;4}91 ~atc. Soft supersymmetry breaking then can be achieved by coupling in

a manner consistent with the power counting criteria for renormalizability.

In the superspace picture , it has been shown that[Z.SJ the whole
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effective action can be written as an expession local in @ :

w
o

r(?r&;, s ) = qu'x-v d% Q {@5} %4))\;“3} “Z’:,i,)@!:} (3.

In terms of power counting 13.7), the degree of divergence of any supergraph

is given by

0\_: 2__E -—M(\_ ( =1 for a graph with only chiral or anti-chiral
external lines ) (3.3.3)

where EC is the numbei‘ of external chiral and anti-chiral lines, and MC is

the number of internal (massive)<{P @} and {,GCF 3"} propagators. This result

can be understood from the following dimension counting

[ B

Wx]=-4, [d%1=[d5]=]
Y.Dd]: %_“ 7 i‘??!ﬁ‘l (3.3.4)
fvl=o0

where C\D is a chiral superfield , V 1is a vector superfield. D is the
superspace covariant derivatives.
We now give some examples of possible soft breaking terms of supersymmetry

and the associated new logarithmic infinite terms they generate.

(1) N v
Ecmﬁzjdq‘é U (P = %m (A+ B*)

(3.3.5)
where Tt
U=m 69

o ¢ = L(A+iB)+oY + 75 0°(F-i4) (3.3.7)

It is obvious that the dimension of ig 4 is 2 , and (3.3.5) is
a mass term of scalar components. The induced new logarithmic divergent

terms are

o+ l .
Ai:_[dﬁ U?b-;}a‘;f_‘ﬁﬂw/d»&imlﬁi (3.3.8)



and Ac{;:fd% UDdWaz N/u"p ( if U(1l) gauge field is present)

(3.3.9)
which are shown in Fig. 3.3 (a),(b).

$ NIA*GUQP ~ Am A

PL)P ~(feupw, ~ D
W
(b)

Fig.3.3 (a),(b). The logarithmic divergence terms generated from

Iﬂm&, = jd,qb v 71-5?5

S :fd,ﬁs X'+ g = M(A-8Y)

(3.3.10)
where )( = }L—ng , [&P{Mq,g 1= 2
Its corresponding new logarithmic div. term is
y e
AXL = /d & + 2.l A
X ¢ -F (3.3.11)

as shown in Fig.3.4
X
¢ ?‘}7 ~jd4e Y ¢ +2e ~F

Fig,3.4 The new logarithmic div. term generated by ig i:/"'% ZC}SL—{-;“C_
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(35 ( -
. i%mﬁj‘ﬁg ?Wﬁw&% «f—‘ﬁ{zn ﬂvﬁ\hﬂ/

(3.3.12)
where ?Z’.;a_, ,LL@{L
[‘;C‘g’hm{ ] = 3 . (3.3.12) is a mass term of gaugino }L .
The following logarithmic divergent terms can be generated
(3.3.13)
(3.3.14)
W W {oﬁ _ .
jde 17 ¢ +ac, ~ A (3.3.15)
w \1
Ty B o~ AB" (3.3.26)
~ |de 7Y PP~ A
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The operator (3.3.12) ,which has dimension three, is soft. However, an
operator with dimension three, in general, is not soft. For example, the

operator
i-gm&( :’/d‘fé? UD?Q(?‘T"&C‘ "V/“Q/)%)

2 =2 ,
where U oy A AN ,may lead to hard supersymmetry breaking ,
since this operator can generate the quardratic divergences.

Any operator, whose dimension D ;54,13 not soft.

Conclusion:
Dimension~two operators(of course,and dimension-one,too,) are soft, but
the opertors with dimension more then three are not soft, and in general,

the dimension three operators are not soft.

.3.2 Supersymmetry breaking produced by Fayet-Iliopolous D-term

It has been pointed out in chapter 1 that supersyﬁmetry can be spontaneously
broken when F or D-term is no-vanishing. Following this idea, Fayet and
Iliopolous have presented a mechanism to break supersymmetry: In a class Qf
supersymmetric gauge theories which contain U(1) gauge symmetfy, supersymmetry

can be spontaneously broken by adding an D-term to the Lagarangien[3.8].namely,

L=32,+3(V), |,

(3.3.17)

where Jﬁo is an original Lagaragien {g(V)Dis the Fayet-Iliopolous supersymmetry
breaking term, called Fayet-Iliopolous D-term. V is an U(1) vector superfield,

a4
D means the D-component,i.e, (V)D=Sd9’v , E is a real parameter.

Noticing that +
D«“" P Ty P
and restricting to the generator T of the isolated U(1) factor of the group G,

we then get

D= 39T7%+%

(3.3.18)
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As an illustration of Fayet-Iliopolous mechanism, let us consider a toy

model:

Toy model:
In this toy model there is only an U(1l) gauge group , and two chiral superfields
A, B, in which A carries a U(1l) charge g, B carries -g,as well as an U(1)

vector superfield V. Then the Lagaragian is given by
¥ 23V 4 - ol
L= fio (8 Va5

+ §fd49\/ + f %]3/%/2} (3.3.19)

where the superpoten ial W is chosen as follows

2

1 ; )
N 74 WW, +

bﬂ/"" £ ,A lg . (3.3.20)

The scalar potential V then turn out to be

V= -ﬁi(//"tlé-& /B’/l)“ﬁ”g(!ﬁjzmﬁw”'%)l (3321

It is easy to see that in this toy model supersymmetry is spontaneously broken
only by Fayet-Iliopolous D-term.Indeed, if we set i = 0, supersymmetry remains
unbroken.

Minimizing the potential V, one get

3\/ _; kS & % g
3;\*’%/’\“}3(IM“’““Bg:@”?é)AﬁO (3.3.22)
AV g 3 (1A + 34 ) B = 0
dR* ¢/ (3.3.23)
From (3.3.22)’and (3.3.23) we obtain
(IAM=181"+ 3/5 )AB = 0 \
' (3.3.24)

The vacuum is found to be

i) <A>:<8>:O : if 324{;»&1 (3.3.25)



i) LAY=0, <B>:m/? e 37 >4 (5.3.26a)

r (B >zo, (Avzl(ger)/y T #T<-% (3.3.26)

First, let us assme . 3’% < ﬁ’Z , then the vacuum is given by <A> ‘-‘(E>‘-‘O_

we now proceed to calculate the masses of all particles in this toy model.

The fermion mass metrix is given by

‘I’A Yy A |
WA, ( O + O
M){_: 3 + O o
(3.3.27)

It is easy to get the eigen states and eigeﬁ values,

Lh,z = J’J;f(lb\ + xf's) ) M,)f =+ f | (3.3.28)

1{,3__3 WQ = A M&__; 0 | (3.3.29)

\h% is the Goldston fermion, which is exactly massless, namely, it can not
acquire any mass from radiative corrections. This is a general phenomenon
in a spontaneous broken supersymmetry theory ,just like the case of a

spontaneous bquen gauge symmetric theory, in which there exist the Goldston

bosons.

The scalar mass squared matrix is as follows

qk | %% %f q%
¢¥ (4443 o 0o 0O \
M= o¥| o +%-31 0 0

' (3.3.30)

¢, 0 0 w+3} 0
g, \ O O o f:-ﬂ)
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The eigen states and eigen values are found to be
cﬂ =R C{)A Mfuﬁ 2% 3]
4
=Rty My= £-1
(ﬁr =Tn G My = £-33

In this case, no massless scalar exists, since U(1l) gauge group remains unbroken.

,;.

L+ 4

]

i

IM(PA - MZ:: "

o

i

The gauge boson A has no mass, i.e,

.32)

w

M= M(A) = O | (5.

From (3.3.27) to (3.3.80) one gets a mass sum rule%§59}:

27 2
2.(=) (27+1) M? = {} (3.3.33)
< .

In theories with spontaneous broken supersymmetry this mass sum rule

generally valied at tree level, but not at loop level.

, .
For the solusion ii) < AY=0, <{B8>= I?;gm“ﬁ?’/g ) 93 >k R
The fermion mass matrix is given by

%\
\%A \%‘g A

M){ = % 2 o ,,u.gng:g} | (3.3.34)

A L o TGS o

. The eigen states and eigen values turn out to be

¥, =W B FE o) T -

\1’3»:'-: lf’ér’; ( m) Yot “)/T;? IR

o~
w
w
o8]
)]

—
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and. M == }233__{," . (3.3.37)

l}‘L

(3.3.38)
?13 = ?1@i:: O

\hé is the Goldston fermion which is the company of a broken global supersymmetry .

In order to get the scalar masses, it is convenient to use the shifited .’

fields .
A A.:‘:-;Az
-
Iz

B, + 1Be | (3.3.39)
B=(B>+ —'—ff_;’“‘ , |

when a scalar poten ial V is not complicated.

Inserting (3.3;39) into.the potential V (3.3.21), we get
Ar A, B - B,
VER i ERENN PO gy
9 L3 : % : z (3.3.40)
+1[é..‘.+'qi-(<8>+§‘-)l___.5;+—§- |
2 2 Z = = ? 5 |

One then picks out all the quadratic terms,

1 ~ 3 :
V, = (‘:” +z g A <R>)(A\+A )+(__,+3<,3>+3 (<_g>“%))5 .

RS - T a2 L1
BTN S I AR G WES

(3.3.41)
T by
+'(‘§§'"1L.)B‘
From (3.3.41) we obtain the following eigen states and eigen values
*
bt e L
l;Z— I“" Mlzzz.ﬁ' .
2, .
7% ' ’
bp ¢ = v
4’3’—' BB _, M, = 33-% (3.3.42)
: JZ

4,%

b = 4, =

q%% is the massless Goldston boson associated with the breaking of the U(1)

7 M;:()

e

gauge group.
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The U(1) gaugé boson has a mass as followse

-y
“

el

%

2 = -
Mf: d <By = G-

(3.3.43)

The mass sum rule becomes

C) 1".,_,_. St 597 M.,L,
> (=) (2j+i) HJ‘ = 2(4%~-233) # O
(3.3.44)

The above mass sum rule is somewhat different from (3.3.33), since field here
which carries a U(1l) charge develops a non-vanishing vacuum expectation value.

In general,the mass sum rule 15{3.7}

[

2T 2 -
2= 7 (270 My = 23 D, Tv T, (3.3.45)

%

where Q& is defined by

Di= ¢ <o Tucdd+ 1

Conclusion:

Supersymmetry can spontaneously broken by Fayet-Iliopoulos D~term,if gauge

group contains a U(1) factor. Since the low-energy symmetry is SU(S)@%SU(Z)ng(l

so the Fayet-Iliopoulos D-term mechanism is available,however, one should be
careful to avoid thé breaking of U(l)v sub—group. If the gauge group does
not contain any U(1l) factor, we can add an extra ﬁkl), and we then go futher
to break both supersymmetry and the extraﬂﬁ(l) simultaneously. Obviously,
this will have no effect on the effctive low-energy physies if we assme that
all physical particles (quarks, leptons, gauge bosons and so on) do not

couple with the G(l) sector.
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3.3.3 O'Raifeartaigh model

We are going to discuss a class model with supersymmetry spontaneously
broken by F-term at tree level— the well-known O'Raifeértaigh model[2.19].
As we have seen in chapter 2 , O'Raifeartaigh model has plaid an important

role in Witten's type of supersymmetric grand unified models.

A simplest O'Raifeartaigh model may contain three complex scalar feilds

A, X and Y. The superpotencial W is given by hand as follows

(3.3.47)

. . . Z,
W= 3AY +x X (A-M )
)4
which is compatible with the discreat symmetry A% -A, Y - -Y, and X ~¥X.
It follows that

2w

_.’FA*; -57:’ = 3\(-{- 22X A

(3.3.48)

¥ W

e — e
e

._'F7 = 5y

* W “ 2
_“F‘X :";)—Z = x(A-M") (3.3.50)

(3.3.49)

It is easy to see that supersymmetry is spontaneously broken at tree level,
since FY and FX could not vanish simultaneously .So the key point of
O'Raifeartaigh model is to break supersymmetry spontaneously at tree level

in terms of F-term.

From (3.3.48) to (3.3.50) we derive the scalar potential V

(3.3.51)

N = \3Y+'z>\v\<A\L+ 9" (‘Af‘—k x ] At—H”r ,

The VEV of A scalar can be determined by minimizing the last two terms in

the potencial V (3.3.51)
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2V 2 v
ST FA T2 (AL A =0

(3.3.52a)
jﬂé~__ 24K LY
A GA 2 (A -M JA = 0o (3.3.52b)

One finds two solutions:

. ' 9 B -
i) A=opo for (AH) > 2 (3.3.53a)

ii) A:‘\Mﬂ-__ 3%}} for <?/)»M>2<2“ (3.3.53b)

It it obvious that supersymmetry is spontaneously broken in either case.

However, X and Y Can‘not be determined uniquely, although the minimization
of the potencial determines A. Since the only term in the potential ,which
depends on X and Y, is the first term, i.e, i@‘f+ Zk)if%ii , we can choose

any X, so long as

\Y,:: - 2 %.A;><‘f’%

(3.3.54)

The energy is minimized so long as (3.3.54) is satisfied. X may be arbitrarily
large. such degeneracies are a common feature of 0O'Raifeartaigh type ﬁodelsa
It would be worthwhile to point out that although the energy is independent
of X, the masses of particles are not. It is this fact that provides the
poséibility of generating the gauge hierarchy dynamically -~ Witten's mechanism.
In fact, for case i), if X %% M, then the fermion mass matrix is
\‘k,c\ ‘ "%’;\/ \*/X
Y, \ |
A 21X a

My =

4 (3.3.55)

%
qy 4 Y Q
wl e o o,

The eigen states and eigen values of My turn out to be
2
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¥ = (20X ¥, + 3‘?,)/]@?@ , H‘=23\X+;§§+Q(3‘<7

) (3.3.56a)

| L
Y, = (8% =2 X N T M= - 5X +Olx )

(3.3.56b)
x[z} - L"e{: \PX , Me; = 0. (3.3.56¢)
where \K& is the Goldston fermion.
The scalar mass squared matrix is X *
‘?A* /%"xl* a8 ZAYX  —2AHT o W
KN i - )
r10:1 q} 2)\3)( ? o Ie)
by | -2AMY 0 4 X3t 2AX (3.3.57)
Lo 0 2adX )

The eigen states and eigen values are following

B - (1 LU 2At) Jgpr 2 azmt"z')‘r,—-

¢ (\i 3 ~ ¥t ) (f (3.3.58a)
20X TEN HEXT : |
2 . ‘ (3.3.58Db)
M, = 4XX + 29 2 20M"
1z . ’
_BUXY x  _2AEX % Iéa)\x ¥
(f)bq. = CFA | s’t.:F z)\ZM'L A 31-_.‘:2):-”1 )/ + /\M)z_ )l,, (3.3.59a) .
LS _ i J__
HM‘ B iZ)\MfO( XL) g (3,3.59b)
. . |
For @, M=0 . (3.3.60)

To construct a realistic supersymmetric grand unified model one has to

embed a gauge group, say SU(N), into the supersymmetric theory. The O'Raifeartaigh
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type model in such case can usually be made from two complex fields A, Y in
the adjoint representation and a singlet ¥, for instance, in SU(5) model,

O'Raifeartaigh sector is

W::‘ >\\ TV A:LT - }\z >< (Tv :ﬁxi‘””"Mz ) , (3.3.61)

where A, Y belon to 24 representations of SU(5), X is a singlet.

However, we have found that O'Raifeartaigh model could not work in SU(2ZN)
case,beacuse in this case we can find such a sclution in the O0'Raifeartaigh

sector so that supersymmetry remains unboken. Indeed,from (3.3.61) one may

obatain that

W T A S 1
W»A*‘; = ZA\[(AY);/ o S “‘m‘f}zﬁz}{ AL

(3.3.62a)

e

BW l\% { : " }
— = ) e - : (3.3.62b
2
W ' (3.3.62¢)
== M (AN

i 2
We observe from (3.3.62b)that the matrix A e I, im which I is the identical

matrix of SU(2N). Therefore, one can find the following vacuum

M
A=—=diag (V] - | =i =] «+v =}
IZN 3 \ LU Nt TN i i ;
, N N
(3.3.63)
\T’t= /\ ;- A ){ =
that all E W e Psp il '
so that a gs. A =9, 3’7 = and Ix = {3 are consistant.

Hance supersymmetry remains unbroken.In contrast to SU(2N) case, it is impossible
to find such a solution like (3.3.63) when the gauge group is SU(2N+1). Therefore,

in SU(2N+1) case, O'Raifeartaigh model is available.

Conclusion:
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In contrast to D-breaking of Fayet—Iliopoulqs type, subersymmetry breaking
is achived in O'Raifeartaigh model by F-term.Since in_Q'Raifeartaigh model
the X feild can.nof detérmined at tree level and the masses of the particles
depende on X, this makes the possiblity to generate the gauge hierarchy from
radiative corrections, as what Witten has done. For SU(2N) gauge symmetry
O'Raifeartaigh mechanism may not be avaliable. Even if for U(1l) case, we also
have found that supersymmetry can be‘broken by O'Raifeartaigh model , but the
masses of the particles may be independent on X field, in addtion, therU(l)
gauge coupling is not asymptotic free , this may lead difficulty to generating

the gauge hierarchy in terms of Witten's mechanism.

.3.3.4  Ovrut-Wess mechanism(3.lo]

Ovrut'and Wess have presentéd a new mechanism to break a global supersymmetry
by the M-term if a supersymmetric gauge theory is embedded in N=1 supergravity.
Such the breaking of supersymmefry is manifested by the explicit operators with
dimension two or less, so it is soft.

As we know, the action for supersymmetric gauge theories before the coupling
tosupergravity is

’ V | 6p v %
5= {ite 3 €™q + o 17145 WL -

, * s : |
B gdGS (f?"'%@l“"? \: ) +he (3.3.64)

' \ -—-’-( -3 3V )
where —— g D e v
Wo\ 4 ,Dd fé - ~ (3.3.65)
and (f(V) is a chiral (vector) superfiéldi CZ(A);is fhe'second—order Casimir

invariant. It has been shown[S.l;} that when §.is coupled to supergravity

it becomes
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¢ 7 A} - ( be xS am
e - i ey i d 8 vl W ﬁé’f ;

LT + 7 {h»n?ﬂ(# Mot Ay L,
«lc*faés z(-+H5-3Rr)9 H’«:H s Z{Feg ¢35 ) +ac]

where | L o 4o i‘:) 4 Vo
M, =-z(D-8R)(e" §,e ") |

gj is the covariant derivative in curved superspace and R is the scalar

= - . - = . =
curvature superfield The chiral density supermultlplet;;§ , 18 given by

A
fi

E = a+8p + 6" f (

a = €

- @ v
— e @ 7{’@ (3.3.69)

where

( = kg B, . ”u‘w}if

e

in which e:i—det g b qlis the gravitino, and M is scalar auxllary field
a

in the supergravity multiplet. The EZ is defined by

~x o

- i o N 2

ST (é@ g )G iﬁ,@’v s

4 = 43 we % J =z . (J.,¢Q/O,'
We must add to (3,3a65) the pure supergravity action, %;'Sm o ,whose precise

form need not concern us. One then add the following term

+

S = - gdé«;g ey

c y A
(2 71)
to the action. This term is called the M-term.
We can henceforth ignore the terms of 0{x) and take the flat gpace limit
s 1f the graviton and gravitino interactions arse turned off and +he
Y
cosmological constant cancelled. It follows that e=1 and ﬁ%y:@ s Evaluating
&
above the terms in this limit one finds
;’\,ﬂ_%ﬂ ,:?'-ia .
6 7 — % ~ Y& .
1) jd s # ,_;,cf = |d2 {‘f e ¥ (3.3.72)

~
where q> is ‘f with the complex auxiliary field F veplaced by

T A



v ‘ | - ' (3.3.73)

}: =TF -—%—M*A

2) golés Z’ Y/ WZO( ":Jd s W W, ' (3.3.74)
3

: -2 -2, F :
o kS, =X MK (5:3.7%)

4) gd‘vg% [“#(51“57%7?*]:}“&%%-’_ . (3.3.76).

¢

+ 3 ' L
Writing F in terms of ;f, we find that all M A~ térms ( and their hermition
conjugates ) cancell. This cancellation insures that the dimension 3 opertors,
which may break supersymmetry and destroy renormalizability, do not appear in

‘the action. the equation of motion for M is found to be
s S A A Zﬁ * 4+ ot :
M=A +x (?f/\"'g A+C F ) (3.3.77)

Eliminating M using (3.3.77) and dropping terms of 0( k), the total action

becomes

~e 9V l |
S= e Fre g 2CA) T - - -
’ “Efd?s(f'¥+¥§1+%§g)+ﬁ“]+ - R
+ Jae {éfi N [(§‘ATA+%A1)+,M\J )

where T’__: "j'wA*,C . Supersymmetry is obviously broken by the last te’rmv

in Eq.(3.3.78).

Conclusion:

Ovrut-Wess mechanism is essentially a type of a F-term breaking, but different

from O'Raifeartaigh model. O'Raifeartaigh model is rather ad hoc ,since the
breaking ﬁerms are put by hand. The breaking term in Ovrut—Wess mechanism is
induced. So it would be'interesting'to~apply this new mechanism to the consﬁruotion

of a realistic supersymmetric grand unified model.




Canlution:

We have discussed how supersymmetry can be broken either explicitly but

softly with the dimension d§:3 operators, or spontaneously by TFayet-Iliopoulos
D-term,or O'Raifeartaigh model, or Ovrut-Wess mechanism. In conclusion, one

would like to make the following two remarks:

1) Supersymmetry may alsc be broken dynamiﬂaily§103f7for instance, in terms

of instantons, or condensates, but unfortunately, so far no realistic ( even

toy ) model has been constructed along this line . On the contrary, it seems

that condensates, for example, ) 2 condensate in which Aois a gaugino
== <3

7

not break supersymmetry but only chiral Symmetryg3a13].

2) The explicit and soft breaking terms in section 3.3.a. can be derived

o
Lo

from the spontaneous supersymmetry breaking by the aid of Slavnov mechamism(BGEEE

Thus in this view, all the soft breakings are spontaneous rather then explicit.



Chapter 4 : PHENOMENOLOGICAL PREDICTIONS OF SUPERSYMMETRIC

GRAND UNIFIED MODELS

It has been shown in chapter 2 that supersymmetric grand unified
theories are found to be succesful as a candidate of avoiding the gauge
hierarchy puzzle . We shall procced to discuss in this chapter some other
phenomenological predictions,for instance, the unification mass scale MG'
sin%a . mb/mz, proton deqay, CP-violation and N-N oscillation , in
supersymmetric grand unifield theories, particularly, SU(5) and S0(10)

SGUM's .

4.1 Unification mass scale M_ and the weak angle siﬁé‘ H
1S3 W

As is well known, the conventional grand unified models( such as the
Geogi-Glashow SU(5) model ) have scored one very impressive sucsses. They
predict

5 .
sin@(M ) = 0.216 + 0.004 ( N -1 ) - 0.00Gln(A—» / 0.1 Gev) (4.1.1)
W W H MS 4

where NH is the number of relatively light Higgs doublets andl\ﬁg is the
QCD scale parameter evaluated in the modified minimal subtraction . For
the minimal caée NH=1 , and usnugAﬁﬁzo.lGev obtained from Upsilon decay,
Eq.(4.1.1) gives sin%éMw) = 0.216 . This prediction is in remarkably good
agreement with the avefage experimental value obtained from deep-inelastic

~hadron scattering (including radiative correctioné)

.2 ‘ ‘
sin Q}Mw) = 0.215 + 0.010 + 0.004 _ (4.1.2)
where + 0.004 being the approximate theoretical uncertainty.

T T




. S . .
The powerful tool to estimate ¥ . and Sin leg the renormalization group

§

analysis, which is the same as the non =—supsrsymmetric case sxcept of the

@— function‘being modified to
b, =38 -2 1(d) (41.3)
v
where T(tf) is the index of the representation, ¢ , and is defined by
tr T T = T($) S (4104)
The formule (4.103) is easily proved by noting that [4.8)

= T N= ST - T (4:1:5)
in which the firsgt term is the gauge ~hoson contribution and the second and
third terms denote the fermion and scalar<boson contribution, respsctively.
Since in the supersymmetric case a vector supermultiplet containe the gauge
boson and their Majorana fermion partner a (gaugi@&sﬁgand a Chiral supsrmultipled
contains the Majorana fermions and their complex scalar partners, it follows

that

by={ 5 N-$N) - 204 T -pr2T))=30-2T@) | (4.1.¢)

4.101 SU(5) SGUH.

As we know, the standard SU{5) SC0UM contains quark and lepion supere
multlplets Q and Q_,as well as Higgs supermuliiplets in the adjoint 2224
and the fhndamenfal represen?atlons (E#, ngﬁ&xcepﬁ for the gauge supermultiplet

We assume that supersymmetry is broken at the Mmeaes scale. Then by
integrating the renormalization group equations up to two loop approximation for

the gauge couplings of SU(3),5U(2),and U(1), we obtain [4.71
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-l o { Me i 5-4‘"’;‘?3% .‘o(.(Hq.)
°(3(Mw)":ds(”e)_"ﬁ(g”z“;)%‘g; + = S 3 +

~3Mm, b M) T T I d,(Mq}}

6-amy - LN, Lty 2= Zn, T (M)

=87 ), %) N

~l -|
o, (M) = o, (He) — (6 —2hy “H)*ﬂ"‘“: T { 9~ ~-2n, oy (Mw)

- 2 3 .
24 - 14"g - 5 Ny B G(Me) "5 oMy M""(”ﬁ)}

6 - 2mg - N, oy (Mw) vzné-% Ny s(Hw)
-1 (- (
oly (M)
¢ 38 3 - ‘
N e N‘* g, L) 8 "3 5o“w L 4(”9)} .
6~ Zn‘}-ENH ' d;(ﬂw) v ""2%8 - --_ N . ’Q [Nw) ?
| (417)
with the relationsﬁip
- - _5;'0[!
d (M) = % (o) + 5 & (M) s (4.1.8)

which comes from

x Y _TE
Gl1:_13-+ Y and - = j;; _réy ,

where TB is the normalized U(legenerator, and also by using the boundary .
conditions (4., 8]
S -1 S P |
o, (Mg) = &, (Hg) — 7= = oy (Me) ~ 7x
1 A Mg ) § e e (4+1.9)
n&and N, in Eq:(4 l. 7) are the number of fermlon generatlons and nggs

SU(2) doublets, respectlvely.
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Tt follows from (4.1.7), (4.1.8)and {4.1.9) that

s

& (Mw) 1{3“ A g Ny ) 1 HE L A dlon) [

(M) B 2T Mo 2T e
& 3 .
~24 + § Mg + 5Ny ﬁn'dJHG) . 3 Mo + & Ny 1 oy (He ) E
+ % N
6-2Mg-thy, (M) ~zig =2, A0 "
gﬁ,a.&,ﬂx&()‘
and
3 o (M) % Mg 5o (M)
. = 2 - 10 = Ny ) B e 2 +
32 64, 13 o
4(»«”)("“?”3 P A et B N o ohlite)
———— B St - i . ,;_ﬁv-‘”““-'“""““‘““ b
47 9-2ny oby (M) éa»zwgnméjﬁﬁ ol (M)
32 L 3
THIEM e |
M e
3 ' oy (Mw) / }
-2 N ~ o 1 L w
e AT H J (4.1.11)
Carrying out the analysis described above for n =3 N "= 2 or 4 and a

range of Aﬁgvalues, we find M@ and Siﬂ@w gilven in table I and IT.

pt 2 -1
i I M (G o (M (M
(Gev§ Mw(Gev) sin Q}ﬂw) G((ev) CAS( w) o { ,»
o L5 B}
0.05 78.2 0.248 2.1X10 0.093 127 .68
1C
0.10 78.8 0.239 4,8X10 - 0.102 127.65
- 15
0.20 1 79.4 0.235 1.1X10 0.113 127.63
0.30 79.7 . 0.233 16 0.122 127.59
1.7¥10
0.40 80.0 0.232 2.,4%10 N 0.128 ’ 127.58
TableI. SU(5) SGUM predictions for W = 2.
Nis M (c ' 2 . 14 ; -1
ev sin M M{10 Ge /(M M
(Gev§ Wf ; ) \ Q; mﬁ é v) QXS( w) L w>
0.05 75.0 0.263 1.3 0.093 127.75
0.10 75.5 0.260 2.6 0.103 127.72
0.20 - 75.8 ) 0.258 5.5 0.114 127.70
0.30 76.1 0.256 5 0.122 127.67
o .1 27.66
0.4. 76.3 0.255 te 0.129 1270

Table IT. SU(B) SUGM predications f0r H = 4.
- B



From the above numerical analysis we learn that the predictions of
supersymmd try grand unified models are very sensitive to the Higgs content

of the theory, For /\ﬁg% 0.1 Gev, SinB(Mw) and Meare found to be
w
. 15
i) HQ:& 4.8 X10 Gov ) Sinzew 0,239 for Ny=2,

.. 14
i) Mg> 2.6 %10 Gev, Siw6, x0260 for N,=4 . (4.1.12)

2z
Obviously, Sin 0, is uncomfortably large when compared to the experiment

value (401.2)s This a well-known problem in SU(5) SGUM.

4.,1.2 30(10)SGUM.

A1l the coupings in the S0(10) SGUM are oy, 0(4) day , %ap, 0(3) ., ol; and of
corresponded to S0(10), SU(:J,)G,SU(?)L, SU(2)5, SU(32 . sv(z)L, U(l)Y and U(:)em,
reaspectively.
Having integrated the one=loop renormalizé,tion group equations by using
standard procedurss, one may obtain the solutions for the running coupling

constant as follows

-1 -l b M
oy (M) = oy (H}) = 5o S ol

- =i L‘z.L My
dzL(Hz):‘ c{n(H‘)—" —;_—r(""&/wwﬁz ,

- | -1 bar M
D(ZR(MZ): O{ZK(H') " ——{T-E—' J?n ...-—l-

My’ (4.1.13)
=} =} L . H-]_ ‘
d3 (Mw>: ols (M) — “‘Ez""?n’m P
- o b; M
d, (M) = ol ()= 5o I

-\ - b
o, (4 = Ay (M) = o

W

?

-81-




with the boundary conditions

-4 -1 o~ -4 N
ody (M) = oy (1) = oy (M) = o () = elggy
=i -1
°<3 (Mz)::’ (’{4., (Ml> s
- -1
dz (Mz): ‘3’(2;1,(”2) ; (4.1.14)
and the relationships
5 =i “'0(’"'! g i O{*i(ﬁg ),
3 oy, (M) = olyp (M) = 3 P4 20027
oL () = 4] ) + 2 ol ()
w/ 7= Gy WMw) T ey ATW S (401.15)

Since in the S0(10) model,

EToﬁa?}R"+%TC ’

(Q = QT§L0+ j%? WT% >

Er=<.

where Qvis an electrocharge operator, %319T3§ are generators of the SU{2)
SU(Z)R subgroups, T, is a generator of the SU(4), subgroup, and Tg is the
generator of U(l)YS Y is the weak~hypercharge.

From Egse{4ele13)==(4.1.16), one obtains

at) 3§ T Ll M5, 8 Mol
oiz(ﬁw) -8 { -+ 27 i(gzlﬁ %KR zk’@jgn“ﬁz *-"%“(,”g%?ﬁi‘zw 3 %)&n ﬁ; }5 (4.1.17)

d\ { § H! 3 2, 1
saxeénw):% ‘+ﬁl(%L%+szw3 by 0ot 200 e ‘H

—

It should be born in mind that in the S0(10) SGUM there exist a 45

et

vector supermultiplet; a ié matter chiral supermultiplet, a 54 Higgs chiral
* -
supermultiplet, and éé Higgs chiral supermuliiplets, as well as iwo 10

B0



' Higgs chiral supermultiplets.
As we know, the 54 Higgs and the colour triplets in two 10 Higgs are
superheavy, they give no contribution to the F~functions. For the 16
and 16*Higgs, one may assume that the (4,2,1) component of 16 and (2;2,1)
compont of 16*Higgs have masses of thé order Ml’ while the (5,1,2)
componet of 16 and (4,1,2) compont of 16% have masses of the order‘Mw. 
Therefore,when M2<ﬁA<ZMl, the surviving particles are:
(4,1,2) component of 16 Higgs supermultiplet;
(4,1,2) component of 16*Higgs supermultiplet;
16 matter supermulfiplet;
the four doublets in two 10 Higgs supermultiplets;
(15,1,1),(1,3,1) and (1,1,3) gauge bosons of SU(A)C,SU(Z)L and SU(Z)R
and their fermion parfnersaA
When Mw </4< Mg’ the only surviving parlticles are:
16 matter supe:multiplét; (§,1)5§, (§,1};%, (l,})2 and (1,1)0 components‘

of 16 Higgs supermultiplet; (3,1) , (3,1)

,(1,1) d (1,1)
-% % _p 20

0 componenfs
- of 16* Higgs multiplet;

the four doublets in twoyég Higgs supermultiplets,
the (8,1)0,(1,3)O,and B gauge bosons of SU(S)C,SU(2)L and U(l)Y'Bnd their
fermion partners.

In table III, we'displéy bN at one-loop approximation for three

generations.#

4 -2 -6 1 -2 -52/5

Table III: bN values in the SO(10)SGUM at one-loop level for n = 3 .

# The bN values here are different from those in Ref. 4.9 since 16* Higgs

supermultiplet has been introduced here whilé it is not in Ref. 4.9 .
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Substituting the above b valuee into Egs. (4.1.17), (4.1.18), we get

(M) 3 (. d My My ]
Sy — 8 | fﬂ(g”év"m%’“ M «)g )

w
(4.1.19)
3 ( 74 B ‘
‘2 = 2 [y~ 15y Fa , .
Sin'g (Hu) = 7 5 - gﬁﬁw .  (4.1.20)

IWNorder to determine M, ¥, and Siniéwg one chooses as imputs
the electromagnetic coupling consta;nt@{(Mw) and the strong coupling

ds(Mw) determined from low energy physics

[a]
fr

S
P
Lo

4 b
)= 1 /1285  [&10] (4121

o
BN
@
et
©
£
(A

P

oly(My) = 0.01  [4.11]

where the values of el,(M_ ) used here are based on the experimental
values d3(1OGeV} = 0.1476 £ 0.9994 with A§§f@ 15?i§§§ Mev, from
the analysis of experimental data in e e” deep inslastic structure
functions and_purely hadronic reactions.

We also need to introduce ms imput the ratio of two mass acal%
M,, My, Let us define

R = In hal . (4.1.23)
()

In‘ table »'_l?V{,7 we display ths mass scales Tﬁé 9:.‘@12 and the weak
angle sthJHw) as functions of R for both the S0(10) SCUM and S0(10)
GUM. Notice that ‘}ﬁ‘&nd siniew(%iw) mgmt@m@i%}/ increase with R, whereasn

M, decreases.



Model SO0(10) sGuM S0(10) GUM

R 0 2 a | 7 0 p) 4 10

Ml(lOISGev) 0.73 1.3 2.2 5.0 0.73 1.4 2.7 20

-3 -3
M2(1015Gev) 0.73 | 0.1I7 | 0.04 [4.1x10] 0.73 0.19] 0.05 | 9x10

sinZQ(M ) 0.181 j0.190 {0.200 [0.215 0.206| 0.244 | 0.282] 0.396
Wow

Table IV: M, M, and sinzéw(Mw) as functions of R for both the

S0(10)SGUM and SO(10)GUM.

It can be seen from table IV that if choosing R = 7 s then
sinlsw(Mw) = 0.215 which is just its experiomental value (4.1,2),
‘This unification mass scale M, = 5x10’5,Gev. Thus wnification mass
scale is quite close to that in SU(5)GUM with two doublet Higes.
(See (4.1.12) ). However, in contrast to SU(5) GUM, the SO(10)SGUM

£
has no problem with sin 6.

~ Bonclusion
Unification mass scale M %and the weak angle sinzsw are model-

dependent, particulary dependent on the Higg content of the theory.

When the number of SU(2) Higgs doublets increases, then Mq_will decrease

whereas sin®g,, will increase . The SU(5)SCUM has a difficulty with
sinzew, which is too large to compare with'the experimental value, but

the S0(10) SGUM has no such a problem.



i, R iy
4 .2 Quark-lepton Hass Ratios /Q?q a%;&&n& ﬂééﬁa

Another succesful prediction of the conventional grand onified

T
models is the ratio >§ﬁtn

In supersymmetric grand wnified theories both 7gﬂ(masa anomalous
dimension) and by (g - function) will be chenged. The gemeral formula .

for the anomalous dimension ¥,, is ¢ hanged from

q -
Y= 6 Z(T0) (Ted @.2.1)

in the non ~supersummetric casg %o 4.7, 4.9

4. . 4 )
V= & % (&TL);,} {\Tﬁ7gi 4. .2.2)

. &
in the supersymmetric model , where T LR denotes the generator
Ta’in the representation of the left (right) matter fermicns

{quarks and leptons ). The point is that in sddition %o the usual sell -
energy graph (Fige3.2 = ia) contributing to the anomalous dimension of
the mass operator Y, , there is also the graph (Pige 32 - 1b) with the

gauge fermion and complex goalar partner of the fermion.

(a) (®)
Fig @ g2w1): Graph contributing to the one~loop anomalous dimensiocn.
q;,ﬂ chiral fermion, ? —gcalar partner of the fermi(m‘{’9 L emgapuge

boson, ) -~ the gauge fermion. (a) gauge boson contribution

(v) gauge fermion sontribution.
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One now may recall the mass renormalization group equations

PR e Ty
— = Mm o
> b o , (4.2.3)
Since 43 i
(ﬁp)\«/& - Fig‘) 5
Eqe(4.2+3) can be rewritten as follows |
. i) 4Cm) 4%
MR ) B@) (4.2.4)

It is well known that at one =loop approximation,

HEYERS S b, 3’3) ¥ @)= —T Y3 (4.2.5)

where b%is defined in (4.1.3), 7, is one in (4.2.2) for supersymme tric

cases. From (4.2.4)and (4.2.5) one finds

M) (e{w )“’“/2;,"

.
P

m (ﬁg) ’d {ll«io) (3-20,6), ‘
If we have semi-gimple group G =~ l} Gi’ then ’
M) T
P i oy (M) ) Y bs
mpe) N e () (4-2.6)

where r1 runs over all subgroup (. .
5 ’ 4

L4

4.2.1 3U(5) SQUM.

Assuming ihat supersymmetry breaking occurs at Mw‘, we find for

the SU(5) supersymmetric model with 3 grnerations
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m 12 - 8
J:(M}ﬁ (Lm) (20 )5

My Ve (7 43 tm)) L olseum (4.2-8)
While in the conventiomal SU{5) model
my [ dym VA [ ayome \ £
i = [ 23 {A“W;W#mm_,> T v s )
M oly (M) Lol gum (4.2.9)

2

Here M » ﬂ% present the masses of b, t-guarks. #e have neglected

4he contribution from the ﬁ(l)Y gubgroup, which in both cases gives

, : . \ -
a correction of 0(10 9/ Yo For ol 74 o, = ’ at

GUM T 41
m, = 20 flev. we obtain

My ™My
v—ﬁ" \ = 3.7, — ~ 34
T Yogum ’ Melgyy

(4:2.10)

®hus the prediction. of the SU(5) SGUM does not differ greatly from
that of the SU(5) GUM. ’

4.2.2 S0(10) sGUM

We agsume that m§M§) = ET(MB) and m*(M‘) = my(Mi) at the unification
<

mags scale M\, and also assume that supersymmetry breaking ocours at ¥ -

W

Then the quark and lepton masses at lower energies are renormalized by the

radiative corrections, with the following results, at present energiles

in the SO({10) sSGUM, . 2 3

-
ey i o

SEUR ,
_ : g i 3 (452333}
My ‘l _ (\MHM)”Z;‘% ( o (M) %(d(w) 37
My lseum o, (M) Mﬁi&)) u((ma) ; (402.12)
| 27 27 27 )
My Bo

,,__.\ ,,,(\&t(”w?f)”m o () ”f;;?:{@t(mm id(%))‘g‘i‘
My gy 10U (%‘-%‘J Ty, A d(H)  (42.13)

BB

4

m, (d;(m'} 23 [ (P \ T [ () \3( i) \ 78 )\ - T ety el |
n r\ - «,(m) aB(w) (%sﬁ%)} o, (M) {d(%@) (a&(mg (@%{m@;

1
i



. |
From HEgse(4.1:13), (4+1:14) and (4.1.15) and M\::S}(lo

we find

-3 - - B ]
dz (M) =13 di ) =20, of (M) 20,
and

-t = -
ol (M) =y (M) = oy (Hy) = Asqon = 24

Emplaying the following imputs

- N ’
dy (M) =57, dy(my)y= 70 oly (Hw) 220,11

-1
d‘(Mw>7~$£{) &(Mt)wa(mb§%d(wt)%d(ﬂw) 5

those mass ratios in 80(10) SQUM tnrn out to be

m
_h ~ 3.2 ,
Mt 1seum
my
—w\ SERE
my, Vseup
Me

~ . 2
My lequm = ‘

On the other hand,

$0(10) GUM (ignoring Higgs contribution ) are given by

- 12 & i
m, ﬁ‘m(c{;(mw)zz {\d;(mt))‘{ (d,(ﬁw))‘%
M Loy T\ Ay (my o3 (My) \ oy (M)

27

L (M) L (M)

3G

5 - iz
Gevy, M=~ 4.lx}o Gev

(42014)

(42.15)

(4+2416)

the above mass ratios in the conventional

_2r 3 L ,
o (me) 7@(% T é_ﬂﬁ‘f)_”r - (442417)
A (M) ) ( ) y



N (42,18}

27 9
{0 4 B0 g (myy \ 32

st

kcﬁ{ﬁ@}j "o (M) (4.2.19)

w47 (402.20)

one obtains

(4+2.21)

(4:2:16) and (4.2.21),

By a cowpal

we find that A mags ratios are mostly

mode Leindependent.

aigm find that the predictions of %nyéwg

. e .
and ﬁf are &h
Sy,

Just like those in

the pon=gupers: problem is caused by the

If one employs both 10 and 126 Higgs

sa, the relation m (M ) = mt(M )
t

Gonclusion

Phe predi

ratios are almostly modele

indspendsnt. I o unified models share those

gucscesful pred sonventional grand unified modsls.
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4.3 Proton Decay.

The most exciting consequencs of grand unification is; the eiistence
of heavy gauge bogons and Higgs paz:"'%icles which violates, baryon number B
and lepton number L conservation laws. Such new interactionlmay cause
proton decay. 1In this section we study proton decay in super-

symmeiric cagess

4¢3.1 Proton life time [p,

The proton lifs +ime ‘T{"? is determined by the total decay width [
of the proton, which is given by

o= )\Az(j’l‘%’(@}r .
g (4e301)

where ) is the 3U(6) ﬁeigh%f&c%am A is the ez‘ihaneement factor due to
the renarmalizati.an affect of the effective interactions

which are responsible for proton dscay. G’denoteg the bésic ¢cross section
for the process qq = Ei sin which g, ¢ denote quark and lepton Teg peGe

tively,
4

2
T m
0= 3n Mg (Mg 2 , |
7 - (4.302) ‘

if only dimension six operators are taken into account, MG is the

unification mass. (m;‘q> is the average of the total center=of-momentum

energy squared for the process qge "q}i o
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2 2, 2
WMo, > = 0.7x =V mE ~0.274 Gav -
{ iz (3) b (4+343)

2
‘P%“ﬂ in Eqe(4.3:1) is the square of the quark wave function inside the

proton evaluated at the origin, which bas been estimated from an analyses

14121
of weak hyperon decay. The values of A and ¢ in supersymmetric grand

unified models will be different from those in conventional grand unified
models, but one can imagine that }\andeﬂvrmay remain unchanged.

It is well known that a remarkable feature about profon.decay in
supersymmetric grand ﬁnified theories is that apart from the dimension

gix operators, there are some dimension five operators which may cause

: 24-23 -
faster proton decay, say TPMlO yvears. Weinberg has suggested that

such new operators can be ruled out by introducing an extre U(l) gymmetry |

However, recently J.Ellis et al re-analyed the proton decay of SU(5)sSGUM
by congidering rencmalization effects and found that the proton lifetime
is compatible with the experiment limit without the need.of such U(1)
symmtry to kill the dimension five operators.

Here we only pay attention to the dimension five operators. First

we discuss the minimal supersymmetric SU(5) model, then SO(10) model,

Ao SU(5) SGUM.

The diamension five operators which are dangerous for proton decay

in SGUM"s are shown in Fig.4.l

00



" o ¥ o
\gg.%: — -‘g‘iﬁf T‘X\{’f h‘f
N Fﬁg /f' éHg
|
SR NN,
(a) (b) (e)

Fig.4.1 Diagrams generating the dimension five operators being responsible
for proton decay in SGUM's, a) Higgs~fermion exchange, b) Higgs exchange,
c) local two scalar - two fermion operators %f%f which are reduced.from

both (&) and (b) at low energies ML Mg
x

The corresponding sffective lagrangian would be of order
Lo = (5730 o T337 )
Q‘% - Mg ° 5 (4—3354)
%
where &y is a typical Higgs-matter Yukawa couping, E% is the fermion

pPartner of a colour triplet Higgs Hxs Efand i'are the squark and slepton.

It has been poind out that there exist two possible dimension five
operator, which could break proton down [4.14)
Q= € fde Q@ QS L, | O (43.5)
Q= (e Uy U DI En ,  (4.3.6)
where QL, LL ﬁenote respeﬁtively'SU(Z)L doublet chiral supsrmultiplet qf
the quark and lepton. Uﬂ, DR and Egiare SU(Z)‘singlet 1y d—quark and the
right hand electron chiral sﬁpgrmultiplets. The a,b,c are the SU(E)c
colour indexes. In order o get the four-fermions operators for proton

decay one must consider +he one=-loopdiagrang of Fig.4.2, with an exchange

of the gaugino ﬁ; G and %;’

~G3.




Fig.4.2 A four-fermion operator (£LFf) for proton decay generated

from Fig.4.1(c) by the exchange of & W, G or B

If Mg or Mo 5> mz, the Figed.2 can be pinch into the form of Fig.4.3,
AT L L
;/ \E ﬁg Mg

Tt
(O |

2 ¢ ’ K e
tA %t Hu,
Pig, 4.3 The sim‘?‘le one=loop diagram pinched from Pige4.2, when Mg or
M“g P> '}’77..}" s
Thereby we obtain the effective Lsgrangian

AP T O N
Ko wﬁi«@ g ) (H139)

The loop of Fig.4.3 gives a Pactor
%
oM & & e
e 2 Mo ﬁ%%;{ for W exchange
&
;ﬁm 8‘%3 ) & Mg
en* "3 My Ma,

] 8§%” ./t for B h (4.3.8)
! T gy or B exchange o3

g‘g in (4.3.7) is given by

(4.3.7)

for G exchange

g = W2 GMmox (k21) | (4.3.9)

in which X i an extre factor depending on the ratioc of the VEV's of

5 and § Higgs.

ey



We now recall the formula of the renormalization enhancement factor A

of an operator 0 for a gauge group G :§§Gi s
$

0,
o (Mo )\ é/i%i{&)
g% — [m? 3 el

I

oy, ( Ma) (4..3‘,10)‘
’

5

where ?étis the anomalous dimension of the operator in Gigroup, bi(a) is

. Both 35~and b.
6 i

the? ~function of Gi in the energy range between_}%toj&ul

depend on whether superéymmetry is broken? In non-supersymmetric cases,

the renormalizations of both wave function and vertex can contribute to

the operator anomalous dimension'@x but in supersymmetric cases, only wave

function renormalizations (no separate vertex renormalizations as those

vertices being F-terms) should take into account as conccerns 3; - Consequently,

it would be better to divite the scales of interest into the range ' between

proton(*;l Gev ) and Mﬁ and the range between Mwaand Mﬁg“ In the former

supersymmetry is broken, whereas in the latter supersymmetry remains unbroken.
Between 1 Gev and MﬁﬁﬂMW, the Higgs vertices (4.3.8) get renormalizad

downwards, while ths operator (4.3.7) gets renormalized upwards by the

strong interactions, resulting enhancement Azis

A 4 :

= L o s

(1) \ 9 7if (o) \ 22 )\ gy 7
AI‘: 2 )) W e M) (4.3.11)
1 « 3 b) s&&;(m't; di(ﬁw) |

Between'MW and Mﬁ::MG , both gH and the dimension five operators (4.3.5) ,

¥
(4.3.6) only get renormalized by external wave functions as sypersymmetry

being unbroken. so the coresponding enhancemet éﬁis given by

= “”"2 S’
. f@gi(%m} Z [ el (Mw] \ 35 0
A 3(”4;(%) jﬁ (di&vm \»G{S@Uﬁ/} L
I 2 - % . 2.k
TGUM Fiw) | 2 " 39
oy ( “”)2 M) 3% for Oy (4.3.12)

&
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To compare with the cnventional SiI(5) GUM, we recall the coresponding
enhancement A{ﬁ.lS}

z § ¢ 2
dy (V&ov) @"'{&% Y V2E 4 ol Omy) V23 /el ( E2
A“—:(W« (m}} w;}“@.sfm; s !
e Vol () (4.3.13)

27 23
o f oy (Hw) \5g da(”‘“l)“ 82
d gum \ deui

Putting together all the factors (4.3.7), (4.3.8), (4.3.9), (4.3.11),(4.3.12)

and (4.3.13), and using the imputs

ms(lGev) 2z (150 Lo 500) Mev , m, x> 0.03 mg

=1 =
dy(Ma)z 012, o, () =31, o (hw) % £0 5

-1 -1 1% (4.3.14)
dGUM - 4—& ) d§%um e 24‘ » M@UM %4')( ¥ G’Q/V 3
we obtain
Alzmi’éi, Ap= 022, A=3.9
and ‘ » .
i:;zy i 29 2 20 M;
Z e 22 {03 X W6 i £ vyt .
S= F ey (037 o 4.1 )x10 x (16 %10 Goy®) i My, Hg”&; (£.3.15)
4 .
A ing 82§ 10 d i M M = (0.4 to 1.6) 1016 G find
ssuming % 10, and using .ﬁgg, seun . o 1. X ev, we fin
from (4.3.15) that
M\:; ?: (30 +o 600 ) G‘J?JV : (4.3.16)

The limit (4.3.16) suggest that the proton life time in SU(5) SGUM is still

close to the present experimental lower limit.

B. S0{(10) SGUM

In SO(10) model, if SO(10) is broken down to SU(S)CXSU(Z)LXU(l)Y via

- 06 ~



(4) xSU(E) xSU(E) the effective Lagrangian related to proton decay

(d;men51on six operdtor) is [4.16]

i&ﬁ‘gh G gb‘ﬁi(uﬂ g u]L.)(e!Z P R +2 eL Yoy )=

- . T e okt 8
~ (e 2 0 ) (e % ir) = (g 550 ) (8%, Uy ) -
= (4.3.19)
In deriving (4.3.19) the Higgs contributions and the mixing angles between
quarks of different generations have been ignored. If we include the renor-

malization effects, the effectve Lagrangian (4.3.19) becomes

cf-agg =A§q iy {z(ﬁﬁcz@ u;z,)[" (52%41:1,)*

(4.3.20)
- =L =
M’ﬁk%diﬁﬂ“?(“ﬁ&@fﬂ){%7’)14dqum} _
For the conventional S0(10) GUM one obtaing
& ¢
oly (16en) sly(me) =5 2
3 SR 28 (o my) \3F 4
= () (405 (2o 0w 3
dlma J iy ) Gy, ) W X
27 i
x(dz(ﬁw})‘@fg ol (Mw) \"Fg (4.3.21)
Az (Ma) L (M) S
3 ,
NECYRNT
= d.(Hz)) | , | (4.3.22)‘,

in which Lhe smmall renormalization effects due to gauge bosons of SU(4)

SU(2) and SU(Z) between Ml and M2 have been neglected.

Employing (4.2.15) ,(4.2.20) and

Rl -1
@gz (MQ§ :‘,}:’/4,‘2 , @{?_ CMW) =~ 28 2 (4.3-23) '

one finds

A~ 2.9 , b~104 . | (4.3.24)
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For the supersymmetric SC(10) model, the dimmension five operators

will give rise to a new effective Lagrangian

C e (A,
£ e | T 0y T
I’*ﬁ‘@ mg‘;{ ﬂJvf’G Ng | (%Z’ﬁ) ) (4.3.25)

In order to estimate the enhancement A, we divide the scales of interest
into two ranges: one betwsen 1 Gev and Mw' ancther between Mwand Ml.Hence
the enhancement factor will be changed to

A = A" = Ai A}I s b -5 bt , (4.3.26)

where Ai is the enhancement between 1 Gev and Mw » which being the same

as (4.3.11) , Ail ig one between Mw and M, being different from (4.3.12)

due to the different §-functions. Using the anvalues of the S0(10)SGUM
in the table III , we find

4 el 2
A = é,s_ﬁfifl) 3 [t VE o () NTE2E
il ETCRY oy (M) ) S iy ) 5
. (4.3.27)
, 2. 3
L = (A QW T (g ) (o
- & oly (Ma} / f){E (Hz))

in which fhe small renormalization effects between M2 and Ml have been
neglécted. Using

- : Sny e 28, o (M) & 6l

oly (Mw) = 01, oy (M, ) . { ~ R

and

-1 L coed = —
dy (M I=13, o () = e, (M) = 20, (see(4.2.14) ),

it turns out to be

/ e
Ag =050  V=l.57

(4.3.28)
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. . - =1 - e U
-Bnploying efgi(a&w)%z’.‘%) oy (my 4,2, ol (m,)% 5.7, ol3 (my)= 7.0,

we find

81 0.5 , | (403429)

therefore, the enhancement A' is
AV = AT AT = 0,26 (4+2.30)
Employing (4324}, (4¢3+25), (4.3.30) and

* ~8
th =Gmum; x1.3x 10 (4.12]

one obtaing

o2
A @plseon _ 128n" f deun A Mw) , (4.331)

e
(Fravn — 2 L, A M, |
where ‘XGVﬁ is the coupling of the non-supersymmetric S0(10) model at

the unification mass ascalae We +take

-} : : ,
Aep 4T o  (43.32)
Finally we f£ind
A ~18 2
R = l.7xle Mg . (4+333)
If one imposes % s 10 s the gaugino mass Mc;must be much large than

the weak mass scale M,

‘ 7 .

Mo 2 8xlo Ceve (4:3634)
This is unacceptable if supersymmetry is broken at the weak mass scale
Mw. 8o this simély imply that supersummetry could be broken at an

7
intermediate mass scale which is larger than 10 Geve.
Conclusion;

If the renormalization enhahcement of the dimension five operators,

which lead proton decay , is taken into accaunt, the proton lifetime

in the SU(5) SGUM with a supersymmetry breaking scale ~ 100 Gev  is
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compatible with the experiment limit. However,in contract with SU(5)

SGUM, we find that the S0(10) SGUM may still has problem with 7;,, if

supersymmetry breaking mass scale iz about 100 Gev. This suggest that
7

supersymmetry would be broken at an intermediate scale of order =10

Geve

403.2 Proton Decay Modes.

The new dimengion five operatéra in Piged.l may generate a Yukawa
goupling among the Higgs superfields and the matter superfields, for exampls,
in the minimal SU(S) SGUM, the Yukawa Lagrngian is [3.6]1[4.17]

& K mi(H:‘V{Hf?‘)} (4+3435)

9

Qusy )

— 4t d-d sHBTEY

;CY "/d6{4~2 Xa{é’%&’gﬁz}‘/é?
where Hi(gg is 5 (5) Higgs, X (¥) is 10 (5) @a%ter field, and %%!) ?%2
are matrices in generation space. The diagonal forms of‘??Zgive fermion

hz
masses

%’Zi = Té?; di@g' (md_)msf ny, )

. . l ) ' -
M=t (Mo, M) (0336)

s

The one -loop diagrams of Fig 4.2 with an exchange of the gauginos ;ﬂ G

and ﬁ’yielﬁ the feddowing effective interactions for proton decay,

Sws
':C%gy ~ 4,0y +% Og +%: 0y (43:37)

) . post
where the operators Ogg Oétand Og'correspond to an exchange of ﬁ, G and F.

It has been found for the first two generations that
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Gé.:: "%f m m, 3%@{,[«2 Sh”@t(i—&to&h)(g" .‘%L).{fz si‘ae{gﬂgc(ﬁﬁ%)(a%l’)_*

+ zgaﬁc&m%(ﬁish)(EQ%L?j~%W§W&CmeCCmu&gm“'ﬁmm;«WHL

WY ) & My Mg Coz6, [Si"’“gc C:‘Xcdﬂ(gqﬂt) “m9c<u<31_)(ac/“i-)+
42 (475 ) (U Y )+ (2 $0l6, + Sinbe es16¢ ) (Aol ) (A, ) +

F (St~ 250 e, ) (USde) (S X)) = (Cott, + 258 Coz®, Yx
x(ﬁcﬁj(aﬁ%kﬂwﬁnmm&S%GC(MMLWMM o Sms
Witk YY), amd more ) } (453438)

0. = + {'mcmgsmeciz S im0 (‘ﬁcdg)(ge %L)wzsime,_mgc(ﬂtd,_)(fc%)_
—-»zsa:as«amst(?é“gu)(&’“%,ﬂﬂ«%-mcmd 536, (analosmus Xetms with
VaoVe ) + P 50, [ sing, (M d)(UM, )= cono, (U s ) (U, ) +
F2 (A58 (A Yy )+ (Sinb core, — € 5020, ) (Ud, ) (dY, ) +
T (St €S0, €O ) (e (51, ) + (€ 5imbe Co36, — CasB )X
* ( ﬁt?ﬂia( Eu@,)j — M, My Sinb, (mﬁoaﬂws derm

(443439)
WAL V7Y, amd m2e ) } s

0y = ““'{\ig’ 0 | (43+40)

&

From (4.3.38) to (4.3.40),%he following hierarchy for proton decay rates

have been derived |
F(paTukt) > P(PTe™) > TP Kyt ) >

> [ (po3, K5 ) > T (r% (LK) > (p5 ) >

5 [ (pr AK7) 5> T (poa i, 40T, 400 ) 5>

A tooer*
> p>dK0) s T(paey®, €67, e, 8w, e K °). (he3oal)
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So it is evident from (4.3041) that the dominant proton decay modes should be

yu'+s£range particles. This is completely defferent from the conventional

3

GQUT in which the dominant proton decay modes are e + non-strange.

Conclusions

The dominant proton decay modes in the minimal SU(5) supersymmetric grand
unified model are waiLa-strange particles, in contrast with the
conventional GUT's, in which the dominant one is p = e + non- strange.

This is asignal to distinguish supersymmetric grand unified theories from
conventional grand unified theories. We have also found that the dominant
proton decay modes in S0(10) SGUM are also P —» iL_+ strange particls:

because the S0(10) involves the same dimension five operators. Therefore,

the similar calculation for the S0(10) SGUM is eliminated in this articles

4.4 ¥ = T Oscillation in S0(10) SqUM. [4.19]

Apart from’proﬁon decay, another interest consequence of B and L
non = congervation interactions is neutron —aptineutron oscillation.v
Tt has been noted +that in the context of left = right symmetric models
(for example S0(10) model ), where the generator of the U(1) part of ihe
eletroweak gavae symmeiry is identified with B - L quantum number, the
breakdown of left — right symmetry leads naturally to N - N oscillation

( B =2) or Majorana neutrinoes oscillation ( L =2 Yo

A crucial question in planning experiments to detect N = N
ogcillation js the theoretical lower bound on .thﬁ that is consistent
with the known upper limits on nuclesr inetability. One can parametrize

N-§ oscillation by a neutron Majorans mass term

x% = gm N‘T‘:N -+ h.C 2 (40401)
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which implies ¥ mnﬁ ogcillations in empty space with a time
I 4 |
TN‘-W % Sm' 3 gm%GN_ﬁlIl{)(o)l 9 (404‘2)

3
where H’{a)[ s “;Elg; ( R being the nucleon radius ) is the probability of
Tinding two quarks at the same point inm a nucleon. The effective coupling

constant GM@ depends on the specific modsl.

In the conventional 30(10) GUM, the operators relevant to N = §

oscilation have dimension 9, namely

Loy =~ F3356F

The Feynman graph leading to ¥ - T oscillation is shown in figede4.l

P\ A8

{ FIRN
@ 3
4.,
58,7
rd

A ) .
B ?\(\?—
| ﬂ; 3 4
Fige 4¢4.1 Feyman graph contributing 4o N m'ﬁ’oscillaﬁiona
In figededol Aﬁéis diguark Higgs, whose mass is M, . From Fige4ed.l one
' 14 ‘ -
gets
c 3 '
dMm = ARV /S
M, R
43

where R is the radius of the nucleon and the factor Rm6 is induaed

(4¢403)

for taking into account the effect of the 3 ~ quark wave function inside

the nucleons.

In:order to estimate §m, it is important to know the mass of [lz%
‘ ‘ 10
diguark Higgs. In the conventional 80(10) gum, Pﬂ&%%ﬁfr1cﬁv\0 Gev
(M, is the mass scale of SU4) xSU(2) x SUR) = SUBIX V() x SUQR) xSUG) ¢ >.

So $m is too small to be observable, ¥ — T osecillation in S0(10) cuM
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is suppressed.

Wo now turn to discuss the N - N oscillation in'SO(lO) SGUM. As is
the case of proton decay , SGUM provides a new kind of operators with
dimeneion T and 8 (shown in Fige4e4s2), which lead n -~ N oscillationse
i
[
]

i
i
—_

TN /ST~

o

Sras®
S
s amme oo wms

N/ hd | A%
) G‘) >—-——< >--L~< >_.+_.< l i ‘
, ~ y i. | z

Figde4o2 The dimension Tand 8 operators respongible to N — ¥
oscillations: a) dimension 7 opsrtor (P3P P P & )"F )
b) dimension 7 operator ( 73383 )D’ c) dimension 8 operator

(33¥3383 )
Out of those dimension 7 and dimension 8 operators, one can form N -1

oscilletion diagrame asg Figs 4e4e3

i - l \/ \\/ \/ !\Y} % ,\Z_T__\:V/
1, 5 Ao ‘, o
/\m/\ /?/m ™ ce) I /(<>

A['e' :| :y/ \1{/ o
) W (h) W

‘Figs4o4q3 N¥-N oscillation diagrams formed from the dimension 7

and 8 operators.
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The,effective coupling'G Mﬁq for N =N oscillation is roughly

: ‘>estima‘-te‘d as. follows 3 - o

. for Fige4+4.3 (a) ‘?-f‘mgg , | ® ~xf? MZG) |
© ~ oty @ ~rtE g,
© Xt B ~timy,
@ ~ X7, @~ N Pl
@) o~ fom;®

(4¢4.4)

where )\, )(,-f- ;msa.nd m)‘denote scalar ‘andYukava couplings; scalar and
fermion masses; respectively. In general we would expect the presence
of the diagrams (a) ~ (i). However which diagrams appear has to be checked
for each model. For instance SU(5)SOUM without R~ symmetry has (o) which
contributes most among (a)~(i) » If any of those diagrames appears and if
Mg~ | Tev (= supersymmetry breaking scale ) N —-ﬁroscillation is too
large. . Besides profon decay will be too large. Therefore such diagrams :
have to be eliminated from the model by, for example , impoaing an extra
symmetrys Im S0(10) SGUM we don't find diagram (c) due to the differerice

in the manner Yukawa couplings are formed.

In the S0(10) SGUM, the dominant N - ¥ oscillation diagram is shown

in Flgo4 eded

w » , - U
e \‘ . “ d,
\L T \l\o /Q;\O’? (.\0>@\; IO\Zf 1A
N AT ; , N
R dls \7‘\(,, __ 1 ,(XA\ <167
@ N 4 s v

£,

3\ <
L ,

Figedoe4e4 +the dominant N — ¥ oscillation diagram in the S0(10)SGUM.

*x
RN
>/\n
T~
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Fig.4.4.4. gives ‘
1t 2 o 4 ks

where ), £ and g are scalar, Yukawa and gauge couplings,»respectively.m16, 10
L

are masses of the diquark in 16 and 10 representations. The 16 scalar is the

partener of the gquark, so mlgﬂa M , and the 10 diquark is colour triplet,which

)

W
15
107 Mlﬁglo Gev . Since the VEV of 16 Higgs breaks

SU(A)CXSU(Z)LXSU(2)R down to SU(B)CXSU(Z)LXU(l)Y , and the VEV of 10 Higgs

should be superheavy, thus m

breaks SU(3) xSU(2)_ xU(1).  down to SU(3) xU(1) , 50 {16'»xM_and <103 =M
C L Y C em 2 w
Consequently, (4.4.5) becomes

M';_ﬂ,q, A .3
G o =X Syl

* (4.4.6)

. . =3 2 L 12
Taking Ax1l, £ £10 , g /4n#0 , sz:élO Gev ,we get

%stﬂ

This implies that the N-N oscillation in S0(10) SGUM will be highly suppressed.

- 4.8 -8
10 (gov) . , (4.4.7)

X

Conclusion :

In supersymmetric grand unified theories, in addition to the original dimmen-
sion 9 operator, there exist the dimmension 7 and 8 operators which may also
lead N-N oscillation. However, the N-N oscillation in SO(10)SGUM is still

highly suppresed.

4.5 CP-violation: [4.22]

As we know, CP-violation can appear not only»by the explicit weak interaction

but also can be associated with non-~perturbative effcts in the stron interaction
: a
sector. ‘Actually, although the normal QCD Lagrangian ( = -H%EMVF;"ﬁ is CP-

invariant , one can add an additional term

6 ‘E: @ «%;,uv
;ggm 32mwe MY a -
' ‘ ) (4.4.8)
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= : veo . ' \ mv .
where F ""Ji g f-Fcf,o. is the dual tensor of T o It is
clear that such a éze term will induce CP-violations in the strong

interaction Lagrangian.

CPviolation effects in strong interaétion have to be very'small

as required by the electric»dipoie moment of the neutron (d, ):

®

= C L k
dy 6/ m, . (44.9)
From the limit onvdN one obtains a very low upper bound on @
‘ -2 -i0 ~ ‘
6= 10 —1lo (4+4.10)

The effective @ in (4.4.8) can be expressed

6= eQdD-_'-GG'FD D - (4.4.11)

where @ cDiS the bare value from the QcD Lagrangian and

&
. — QY ' : =
Oqrp = avj det M 5 (4+4412)
where det M is the determinant of the quark mass matrix . Hence the

renormalizatidn of @ would be induced by chiial rotations on guark fiﬁldg”

necessitated by the renormalization of quark.mass matrixe

A problem is : can we make §so small or zero iﬁ a natural way?
It is clear that the renormalizatign of 6 parameter in supersymmetry
theories vanieheé, since @ renormalization is related fo mass
reﬁormalizations which vanish in supersymmetry theories, according'
t§ none= renormalization theorems, If supersymmetry is broken, 9 may get
a renormallzatlon, the magnitude of whlch depends on the scale of

supersymmetry breaklng.

More preclsely, let us see how @ renormallzatlon is related to mags
s [4.23) -
renormalizatione. At zeroth order in the non-- strong 1nteract10ns the”

‘inverse. qpark proPagator 13
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-]
M\ —_— bl .
S, (p) = ¥-M , (44-13)
with M a real and diagonal matrix . We dencte by"ZXR)the sum of
jrreducible non =gtrong diagrauw conitributions to the quark propagators

S (p) can be decomposited as follows

= MelL +DMR |
(M =APL+BFRT : i)

where ThermitiCity imposes the constraints

o + = + C = +
A=A, B=EL o (40415)

Gombining (4,4013) and {4@4»14) to get the full inverse gquark ppopagator
we see that the left and right and right- banded quark fields must
undergo wave = function trnormalizations

& Ren

_ L e L
YZeim e, =T (4-4:16)

and that the gquark mass matrix becomes

T 7B

When one makes this mass matrixz real and diagonal by a U(1)rotation

Rexn A ! S
= e C’ ¢ LY/ 2
M M+ C) T (444.17)

through an angls

Ben
$0 — oavqe det , ;
¢ M s (4+4418)

it is apparent from (4.4.17) that

50 = avg det (¢ )= Tm T C +-*°
; ' ' R (404.19)

because the herﬁi%iaity of 4 and B and the real and diagonal nature

of Mo 1In supersymmetry theories C = O since C is related %o the
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supersymmetric mass counterterm. Therefore , it follows from. (4e4.19)

that

66=0 (424.20)
For this reason it is technically *natural® to set O6=0 1in super—
symmtry theoris. However, a finite corrections to @ parameter may
arise when supersymmetry is broken. For the supersymmetric extention
of the Kobayashi: Mashawa model , it is estlmated that

Amy my
o= zo 2or2) Tu(UVY) i %

23 mfoim;. My 7(4.4.21)

where WB"’, mgand. m;are squark, gaugino and quark masses respsctively,

U and V are the gaugino cauplings to left =~ and right = handed quark-

gquark combinations.

Conclusions
S S e e SR by

Since § renormalization is related to mags renormalization, it is
technlcally "natural' to set f= 0 in supersymmetry theories. A‘finite
corrections to @ parameter may arise when supersymmetry is brokene.

In this sense, supersymmetric grand unified theories may also be

available for solving the strong CP problem.
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CONCLUSTON

We have discussed most a2spects of supersymmetic grand unified theories:
fhe gaﬁg@ hierazely problem, supersymmetry breaking and phenomenological
predictions. In particular, I myself have presented an S0(10) super -
symmetric ground unified model, in which the gauge hierarely problem
and most phenomenoclogical predictions have been examined. We find that,

by compareson with the minimum SU(5) supersymmetric grand unified model,

the S0(10) SGUM has some attrative advantages, as concerns the Phenomenoclogy.

The key point of supersymmetry %heary‘is its remarkable property e
fhe wellknown ‘mon = renormalization’ theorem. This enable ue to.dezl
with wany difficult problems which emergsd in the non - supersymmetric
GUT's, where those problem are caused by renormalizations ,for exampls,
the gaugs bhierarely puzzle. In addition, another exciting feature of
supsreymmetric GUT's may perhaps be that supersymmetry theories may
provide a hosful sclusion of the Ydeseri® problem in GUT's, if super=

symmetry is broken at an intermediate mass scale between ¥, and %é%e

However , it iz still too early to say that supersymmetry theory
is guitable to desorible mnature, because we-have paid a heavy price for
solving the gauge hierarely problem, and perhaps the desert problsam

ag walls The cost may bs summarized as follows:

1). The proton decay is etill an ambiguous problem. As we
demonstrated, the proton lifetime in SU(5) supersymmetric model can be
compatible with the lowest experimental limit, but not in the S0(10)

SGUM, if the supérsymmetry breaking scale is Mwﬂv 100 Gev o
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2). 8in @, in SU(5) SOUM and the geometric model is unacceptably
large compared with the experiment. Besides,; we find that it is unstable

against the number of Higgs multiplets.

3); In any supersymmetric grand unified model there are too many
new particles: squarks, sleptons, Higgs fermions, whose masses are
agssumed to be very great, since none has been observed so far.. In my
opinion, this is not a satisfactory feature. Even in W — § model, the
Higgs pasticles are not yst understood very well. Hence, many people
have attempted +o iﬁprove the W —~ 3 model without Higgé particlese.
At the begining, we expected to identify the scalar partners of the
matter fermions with the Higgs scalars so that the Higgs particles would
be naturly intyvoduced in the supersymmetry theofy, Unfortunately, we
have finally found that this attempt fails. Therefore, in order to break
the gauge group, and supersymmetry, and to give the matter fermions
masses one has to ask for extra Higgs supermultipletsito eome to the
rescue. On the one hand, we have the scalar partners of quarks, leptons,
which so far useless; on the other hand, we bave the fermion rartnews

of Higgs scalar, which are also unwanted.

4)a In any global supersymmetry theory, there are always vacuum
degeneracles, for example, in SU(5) SGUM, there are three vacuums, whlch
are respectively SU(5), SU(4) x U(1) and SU(3)x sU(2) xU(L) invariant,
and are degenerafea ¥hich vacuun do we believe ? There is ﬁc potential

reason to choose SU(3)x8U(2)xU(1) but not SU(4)xU(L) .

5)s In supersymmtric grand unified theories, in particular, the
geometric hierarely model, the unification mass scale is boosted és-high

as Plank mass scale Mp" evem higher. In this case, gravity should be
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included in supersyumetry theory.* Im addition, many old problems,such

as family puzzle, could not yet be answered by supersymmeiry theoriese.

In view of the above comments, T suggest the following directions

to myself :

a)s From 4) and 5), it would be better to embed global supafsymﬁe%ry
grand unified model into supergravity theofy. In a supergravity

theory the degeneracy of vacuum can be splite Perhaps we can find a
theory in which'Sﬁ{B)g<SU(?)J&U(i)Y correspones to the lowest vacuum. In
such a theory the supsrsymmtry breaking can be naturelly derived by

M = terme OF cause, ons may imagine that some new problem will probably
come in. As we know, supergravity theory is not renormalizable

( except perhaps N = 8 supergravity theory in which renormalizations

may be finite although it is also unrenormalizable..’)

b)e From 3), ‘alsc 2), three directions may be of intevests

(i) To extend the supersymmetric grand unified theory into high
dimension. WThen it would be possible that the Higgs scales come from.
the dimension reduction. However, the preblem we may have in such a
theory would be that it is difficult to get a suitable scalar potential
g0 that the breaking direction is just what we would wish, since the
potential is also deduced from the dimension réductidn, therfore, it

is almost fixe&@'

(ii) To explore the new mechanism of both supersymmetry and gauge
symmetry breakings without the introduction of any Higgs particle, i.s.,

dynamical breaking.

#This is.now being considered. ( Arnowitt, Rbamseddnio & Nath ')
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(1ii) To construct a supersymmetric sub = quark model, in which,
we may only have a minimal numbser of sub =particles, from which all

quarks, leptons, gauge bosons and Higgs =scales are ma,d,ee[m%l

c)s From 2). it would perhaps be interest to comstruct a 80(10) geometric
hierarchy ‘model, since we have found that both unification mass scale

MG and sinlew in S0(10) SGUM are lower than those in SU(5) SGUM. Therefors
we can expect that sinzew in 80(10) geometric hierarch}f model may be

compatibal with the experiments.{4 9,26]
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