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Chapter 1

Introduction

String theories [1] are toda,y seriously regarded as realistic candidates for a unified
description of all the fundamental interactions.

Their structure is strongly based on the two-dimensional anomaly free con-
formal field theory [2] defined on the world-sheet of the string. It is well known
that a one-dimensional string in its motion sweeps out a two-dimensional surface
. z#(1,0) (u = 1,...,D) imbedded in a D-dimensional target space. The whole infor-
mation about dynamical properties of the string can be derived from the intrinsic
geometry of the world-sheet: they are independent on the kind of parametrization
chosen for z#(7,0). In order to achieve a manifestly reparametrization invari-
ant two-dimensional action, a metric g,s(7,0) can be defined on the surface; the
parametrization invariance can be exploited to put this metric equal to the flat
two-dimensional Minkowski one except for alocal scale factor. This choice defines
the conformal gauge: in this gauge the action of the theory still exhibits a residual
invariance, that is the invariance under transformations of the conformal group.
So the conformal group constitutes a gauge group in string theories.

It is worthwhile to observe that the space-time, in string theories, should have
no fundamental place, but it should be a prediction of the theory. This fact gives
the possibility of bypassing some problems connected, for example, with canonical

quantization of gravity. When quantizing gravity, indeed, an operator valued field
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4 CHAPTER 1. INTRODUCTION

corresponds to the space-time metric which is classically regarded as a dynamical
variable and that operator must have vanishing commutation relations with other
observables. The operatorial character of the metric causes a lacking of a unique
geometry and leads to an undeterminess for the sign of the distance between two
points with a consequent ambiguity for the definitions of space- and time- like

distances.

This is a good indication for claiming that string theories provide a consistent
quantum mechanical framework in which gravity can be embodied in a very natural
way; but there are other two observations on which this claim can rest. The first is
that string theories reproduce, in a suitable limit, the Einstein equation of motion
for the metric in the flat space-time; the second one concerns the problem of non-
renormalizability of gravity. String theories indeed seem to be finite, order by
order in perturbation theory, therefore there are no renormalizations to perform.
So strings may remove the problem of non-renormalizability of gravity replacing
the non-renormalizable interactions of gravity by interactions which reproduce
~ gravity at “low” energies while avoiding unphysical infinities. Intuitively this is
very probable: the unphysical infinities of quantum gravity arise in the short-
distance (ultra-violet) regime, but this is precisely where the strings show their
“stringy” character.

Hence a very relevant problem in string theories is to check their finitess,

through the study of perturbative expansions.

String interactions result from non-trivial topology of the Riemann surface
constituted by the world-sheet; this is also a very peculiar feature in string theories:
for point-like particles there exists a separation between free theory and interacting
theory and furthermore the nature of the interaction must be specified. On the
contrary this separation is meaningless in string theories. In a Lorentz covariant
formulation, the action of an interacting string coincides with the one of a free
string: the interaction is simply indicated by the topology of the world-sheet

swept out by the string. If external source terms are added to the free action of a



string, these terms are forced by the intrinsic structure of the theory to describe
just physical string states. External strings can be thought, from a geometrical
point of view, as attached to the world sheet of the propagating string. So one
can claim that strings can interact consistently only with strings. Hence if string
theory is a fundamental theory of anything it must be the fundamental theory of
everything.

Until now explicit expressions for scattering amplitudes at any order of pertur-
bation theory have been calculated only for the bosonic string, but some partial

results have already been obtained also for the fermionic string.

Many different approaches have been developed by now for computing scat-
tering amplitudes in string theories. They include the functional integral tech-
nique both in the covariant [3] and light-cone gauge [4], the covariant old oper-
ator formalism where the orbital and ghost degrees of freedom circulate in the
loops [5] [6] [7] [8], a more hybrid technique where both the operator formalism
and the path integral are used [9], a group theoretical approach based on over-
~ lap equations [10] and a new operator formalism based on the construction of the
so-called g-vacuum [11].

Among these, the covariant path-integral formalism is the most elegant and
transparent from a geometrical point of view but at the moment it does not allow
to go behind very first perturbative orders in getting explicit expressions for the
scattering amplitudes. In this formalism the relativistic quantum theory of the
string is obtained by a natural extension of the path-integral formulation of a point-
like particle. Indeed the integral over the “trajectories” becomes now, according a
Polyakov’s proposal [12], an integral over surfaces, each characterized by its own
metric g,3. Moreover the perturbative parameter is identified with the genus p,
that is defined as the number of holes or handles of the surface. Therefore the
perturbative series becomes a sum over all topologies of the world-sheet; for a
closed string, the tree level corresponds to a sphere (p = 0), the one-loop level to

a torus (p = 1), the two-loop level to a surface with two handles (p = 2) and so
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forth.

In this approach it is possible to write any string scattering amplitude as a
sum over all the inequivalent topologies labelled by the number of handles g; the
scattering amplitude involving IV physical states is indeed given by:

A(1,2,..,N) = i /?%:c_‘i ﬁ d*&;exp {—-‘S (:c,g"‘ﬂ) + (Source Terms)}
g=0 i=1

where S (;r,g“ﬁ) is the action of the bosonic string; { = (& = 7,& = o) denotes
the coordinates on the Riemann surface on which the metric g, is defined, A is
the volume of the gauge group of the theory, and the &;’s are the Koba-Nielsen
coordinates of the punctures, i.e. the positions of the N external states on the
world-sheet. The source terms depend on the external states and therefore on the
coordinates &,.

After having performed the functional integrations over g, and z*#, that can be
exactly computed, it still remains to evaluate an integral over a finite dimensional
space spanned by 3g — 3 parameters (moduli), that describe inequivalent surfaces
of genus g. The integrand is connected to the determinants that come just from
having integrated over g,s and z* respectively.

Hence in this approach in order to compute the multiloop amplitudes one must
choose a parametrization of the moduli space [13] and compute the contribution
of the measufe, of the determinants and of the source terms as functions of the
moduli.

For g = 2 [14][15] and g = 3 [14] explicit expressions of the integrand describing
the amplitude have been obtained, by using the %g(g + 1) elements of the period
matrix as the 3g — 3 moduli. For higher genus a rather explicit expression has
been obtained only in the light cone approach of ref. [4] apart from a correction
factor, that has a complicated form in terms of the first abelian integrals.

The old operatorial formalism[16], revised within the framework of the co-

variant approach with BRST invariance, has been instead revealed very helpful in



order to analyse the various string interactions and loop corrections perturbatively.

The starting point for this purpose are the dual vertices: the three-reggeon
vertex constructed by Sciuto [18] and made symmetric by Caneschi, Schwimmer
and Veneziano [19] and the N-Reggeon vertex. In the dual resonance model these
vertices were written in terms of oscillators: the conformal invariance underlying
string theories allows to wfite them in terms of fields of the two-dimensional con-
formal theory defined on the world-sheet. So doing one can apply the methods of
conformal field theory straightforwardly. Requiring the consistency with BRST in-
variance corresponding to the two-dimensional reparametrization invariance of the
world-sheet, various proposals in this direction have been made for the three-string
vertex and the N-string vertex, including the ghost contributions.

The aim of this thesis is just to illustrate one of the possible constructions of
an N-string vertex in some cases and to show its main properties.

This is a very fundamental operator in string theories, defined as a bra vec-
tor in the direct product of the Fock spaces of N strings. When saturated by N
- arbitrary physical states, it is required to provide their corresponding tree ampli-
tudes. Correlation functions of a general conformal field theory exhibit invariance
under transformations of a subgroup of the conformal group, namely the projective
group. In string theories this invariance is exhibited by amplitudes: it is connected
to the freedom in choosing a suitable system of local coordinates for the point z; in
which the ith external string is attached to the world-sheet. Hence projective in-
variance is expected to play a fundamental rule in constructing an N-string vertex.
This can be indeed expressed in terms of matrices belonging to unitary irreducible
representations of the projective group [20] in the Fock spaces of the string states.

Besides providing the tree amplitudes, an NN-string vertex can be also used in
loop calculations [17]. An arbitrary multiloop amplitude can be in fact obtained
simply sewing together two or more legs with the insertion of a propagator. In
this sense it seems to have the same rule as Lagrangian has in an ordinary field

theory.
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In this thesis a definition of N-string vertex [21] is at first given in the case
of the bosonic closed string and in the case of both open and closed interacting
strings [22]. In other words an (N + M )-string vertex is constructed describing the
interaction between N open and M closed strings. It has the important property
of being projective and BRST invariant. In addition it reproduces the correct
physical tree scattering amplitude [23] when saturated with physical states.

If M = 0 this vertex is identical to the N-Reggeon vertex of ref. [21]. When
N = 0 it gives instead an M-closed string vertex, that has an SL(2, C) projective
invariance and it is invariant under the two independent BRST transformations of
the closed string.

For N = M =1, the transition between one open string state and one closed
string state is obtained. It has a form that is identical to the expression constructed
by Caneschi, Schwimmer and Veneziano for three open strings and generalized
in ref. [24] to include the ghost degrees of freedom in order to achieve BRST
invariance. However in the mixed case one set of oscillators describes the open
- string while the other two sets correspond to the two sectors of the closed string.
In addition the zero modes of the two sectors must be identified.

This form of the open - closed string transition is very natural because a closed
string can be viewed in this formalism as two open strings attached together at
the two end points. For the same reason a vertex operator for the emission of a
closed string state is given by the product of two vertex operators corresponding
each to the emission of an open string state with half the momentum of the closed
string. |

Within the framework of Witten’s string field theory, Shapiro and Thorn [25]
have constructed a BRST invariant open - closed string transition. Since by con-
struction the two vertices reproduce the correct open - closed string scattering
amplitudes for on shell physical states, they must differ by a conformal transfor-
mation as it happens for the vertex for three open strings.

The case of the vertex for two open and one closed string is also considered



and it is shown that it can be obtained by sewing together a 3-open string vertex
with the open - closed string transition vertex after the insertion of a twisted
propagator. This is a consequence of the general factorization property of the
mixed vertex and shows that in general a closed string interacts with open strings
through a direct closed - opén string transition: in other words, it interacts with

open strings after having become itself an open string.

In the operatorial formalism, sewing vertices through a twisted propagator
simply means to consider a product of elements of a particular set of operators
defined in the Fock space of oscillators, called canonical forms, to which both

vertices and propagator can be shown to belong.

The definition of N-string vertex is then extended to the case of the Neveu-
Schwarz string [26] In that case it was shown that a consistent /V-string vertex
should contain orbital oscillators and spin anti-commuting oscillators, according to
a realization in the Fock space of two different unitary irreducible representations of
the projective group. However no expression was given in terms of conformal fields
- showing explicitly the connection between the N-string vertex and the scattering
amplitude for on-shell physical states. In addition the vertex was not written in a
manifestly super-projective invariant form. An expression for the 3-Reggeon vertex
was found [27], by integrating gauge identities that come out from demanding
invariance under a transformation that belongs to the graded (super- ) extension of

the projective grbup; and also a BRST invariant generalization was formulated [28].

In this thesis two different constructions of the N-string vertex for the N.S. open
string are given. The first one is only manifestly projective invariant while the
second one is manifestly super-projective invariant. The details of the derivation
lie on the structure of the unitary irreducible representations of the projective
and super-projective group. These vertices are connected in a manifest way to
the N-point amplitude in the super Koba-Nielsen form [29]. Examples of direct
computation of the N-tachyons scattering-amplitude are given in both cases, as

well as, for N = 3, generalizations of the Caneschi-Schwimmer-Veneziano vertex
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are easily obtained.

These applications show how the formalism of the N-string vertex not only
reproduces the one that makes use of the vertex operators, but differently from
the latter, it has the advantage that the external states may not be on the mass
shell. It is this property that allows to construct vertices with NV strings external
to g loops by starting from an N + 2g-string vertex and sewing 2g legs together
after the insertion of a twisted propagator [5].

This formalism seems to be sufficiently general to be presumably applied to
any conformal field theory. In this case the role of the N-string vertex for string
theories is played by an N-point vertex, that has the property of reproducing the
N-point correlation functions involving the primary fields of the theory when it is
saturated with the corresponding N highest weight states.

There are of course some differences between the case of a string theory and
the one of an arbitrary conformal field theory. In the former our interest has
been directed to amplitudes so that an integration over the Koba-Nielsen vari-
ables is needed; in the latter we are interested to correlation functions so such
an integration is not needed. Furthermore the conformal group in an arbitrary
conformal field theory is not a gauge group as in the case of string theories, hence
no integration over the moduli of the Riemann surface must be performed.

These concepts are applied here explicitly to a fermionic free theory [30]; an
N-point vertex for free fermions on an arbitrary Riemann surface is written: it
turns out to be a function of the Szegd kernel written in terms of the Poincaré ©
series. In particular V7, reproduces the g—ifacuum discussed in [11].

The thesis is organized as follows.

In chapter 2 we review the basic features of the BRST invariant operatorial
formalism, giving also the expressions of the scattering amplitudes in the case of
bosonic open and closed strings in interaction.

In chapter 3 we discuss the properties of the N-string vertex, that is given

both in the case of only closed strings and in the one of mixed strings. Projective
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and BRST invariance of these vertices are shown. Here it is also illustrated the
technique of the conformal cut-off, very helpful in treating the zero modes in the
orbital contribution to the N-string vertex. This technique consists in writing
the position operator z* as a conformal field of weight %5 and to perform all the
calculations with ¢ which is Supposed to be sent just at the end.

In chapter 4 it is discussed the generalizationto the Neveu-Schwarz string,
giving a projective and super-projective invariant expressions for the N-string
vertex.

Chapter 5 is devoted to the possibility of generalizing the technique of the
N-string vertex to an arbitrary conformal field theory, constructing an /N-point
g-loop vertex for the fermionic field which gives correlation functions on arbitrary
Riemann surfaces. The sewing used for such a construction is illustrated in some
detail. The same procedure is then considered for free bosons checking in this way
bosonization of the free fermionic theory on an arbitrary Riemann surface.

In Appendix A we give definitions and properties of unitary irreducible repre-
sentations of the projective group for a conformal field of arbitrary weight, which
have a considerable role in the definition of an N-string vertex; in Appendix B we
give some details about the Schottky description of the Riemann surface.

Throughout this work we use the space-time metric 7" = diag(—1,+1,...,+1),
a value o/ = ; for the Regge slope, and (super) Koba-Nielsen variables Z = (z,0),

with z = €™, becoming real after a Wick rotation, and ¢ a Grassmann variable.
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Chapter 2

BRST Operatprial Formalism

The aim of this chapter is to review the main features of the operatorial formalism

with BRST invariance embodied.

The operatorial formalism was introduced in late 60’s in the framework of dual
models [31], when they were not interpreted in terms of string dynamics, as a
way to exhibit explicitly the factorization property of the Veneziano amplitude.
In fact a typical contribution to the Veneziano integrand has an expression of
the form exp {b;b;c}, where b;, b; are scalars and ¢ is a constant; factorization of
the amplitude means to split this expression into the product of two objects, one
depending on b; and another depending on b;. This can be directly achieved by
introducing creation and annihilation operators satisfying canonical commutation
relations. Through factorization of tree amplitudes describing the interaction of
an arbitrary number of external ground states it was possible to define spectrum,

propagators and vertices of the theory.

This approach was very successful, but could not overcome a huge obstacle:

the propagation of unphysical states in the loops.

Yang-Mills theories have provided the solution of this problem: it is enough to
compensate the contribution of unphysical states with the one of Fadeev-Popov

ghosts, by building a BRST invariant formalism, we are going now to illustrate.

13



14 , CHAPTER 2. BRST OPERATORIAL FORMALISM

2.1 Bosonic strings

A bosonic string is described by the following action:

T
S (a*,97) = -5 / B2./G9° (£)0az* pz* G () (2.1.1)
where ¢ = (€, = 7,8 = o) defines a system of local coordinates on the two-

dimensional world-sheet, on which the metric g,z is defined; g is the absolute value
of the determinant of ga/,; G, is the background space-time metric; the parame-
ter T has dimensions of (lenght)~2 or (mass)? and can be identified as the string
tension: it is related to the universal Regge slope parameter by T = (2ra’)~!.
The action (2.1.1) is invariant under the following local symmetry transforma-
tions:
i) reparametrizations of the world-sheet coordinates (world-sheet diffeomor-

phisms):

6z*(€) = €e%Baz*(§)

69ap(&) = €76,9ap + 0t Gyp + 6p€7 Gar; (2.1.2)

1) Weyl transformations:

09ap = A(€)Gap (2.1.3)

Furthermore (2.1.1) exhibits also global symmetries that reflect the symmetry
of the background in which the string is prdpagating; for flat Minkowski space this
is just Poincare invariance.

Since there is no kinetic term for g,4 in (2.1.1), its classical equation of motion
implies the vanishing of the energy-momentum tensor, which is just defined by the

variational derivative of S with respect to the two-dimensional metric:

1
Taﬁ = Ba:v(?ga: - igaﬁg""s&,:c 85113 =0 (214)
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The local symmetries 7) and 1) can be exploited to choose the three independent

elements of g,3 so that

gap = P(E)Map (2.1.5)

with 7.3 (M0 = —nu = —1) being the two-dimensional Minkowski metric. Eq.
(2.1.5) defines the conformal gauge: this is the gauge where the world-sheet
metric coincides with the two-dimensional flat metric except for a local scale factor.

Setting gas according this choice does not completely use up the gauge freedom.

Indeed any combined reparametrization and Weyl scaling for which:
5”4 6P = AP (2.1.6)

preserves the gauge choice. These transformations which leave the conformal gauge
invariant are defined as conformal transformations. They in turn define the
conformal group.

The conformal gauge has the advantage that by it the action (2.1.1) simplifies

- to:

1 [
S=-5 / Lon 8,20z (2.1.7)
where the flat metric has been assumed for the Minkowski space-time and 7' = 1/.

The Eulero-Lagrange equation generated by (2.1.7) is nothing but the free

two-dimensional wave equation:

0% o2
— — =z =0 2.1.8
(802 orz ) * ( )
In the case of open strings the stationarity of (2.1.7) is guaranteed by the
vanishing of a surface term:

0
g T
/d’r{aam bz _

0
— M hpH
5 zhoz

ﬂj =0 (2.1.9)
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giving the open string boundary conditions. For closed strings the stationarity of

(2.1.7) is ensured by the periodicity condition on z*:
z#(71,0) = z#(r, 7). (2.1.10)

The general solution in two dimensions of the massless wave equation (2.1.8)
can be conveniently expressed in terms of complex coordinates introduced on the

Euclidean world sheet:

z =& 42 z:gl—zfz.“‘ (2.1.11)

z#(z,z) = 2l (2) + zi5(3) (2.1.12)

In the solution (2.1.12) two sectors appear: the sector =/, describes right-moving
modes of the string and z describes left-moving modes.
For the closed string the boundary condition (2.1.10) determines the following

- general solution:

1 i Lo, ==L
zi(z) = S(¢" —iplogz) + > —az
nF0
= 1 L ) = i 1 — L ==
h(z) = 3 (¢" — iptlogz) + 5 > ;a@z (2.1.13)
nFu )

In (2.1.13) ¢* and p* may be respectively considered as the center of mass
position and momentum of the string.

For the open string the boundary conditions essentially identify the two sectors,
in the sense that left- and right-moving components combine into standing waves

and therefore the variable z can be taken real. One has the following solution:

1
g'(z) = ¢" —ip*logz + 1) —akz™" (2.1.14)
n#0 n
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Since the left and right sectors of string can be treated separately, in what
follows we will often refer to one of them or, equivalently, to the open string.
With the choice (2.1.11) of the world-sheet coordinates, the conformal group

can be thought as consisting of all reparametrizations:
z—&(z2) z-—-E&(32) » (2.1.15)

where £(z) and £(Z) are arbitrary analytical functions. Thus one can think of the

world-sheet as a complex manifold, constituting a Riemann surface.

z#(z) is meromorphic in z, except for the branch points of the logarithm in the
zero mode part. From a point of view of conformal theories, it can be regarded as
a primary conformal field of dimension 0, even if, as we will note in a little while,
this is not a quite proper statement.

In general, a primary conformal field with dimension A is defined through

its transformation law under a finite analytic reparametrization z — Z(z) [2] [33]:

Pa(3) = (%’)A 9a(2). (2.116)

A general conformal field of dimension A admits the following expansion at

P
=

oa(z) =D pnz™" 8 (2.1.17)

nez

When ¢a is thought as a quantum field the expansion coefficients in (2.1.17)
are identified with creation and annihilation operators. The distinction between
creation and annihilation operators of course depends on the choice of vacuum.
Annihilation [creation) operators are defined as annihilating the right [left] vacuum.
The right vacuum is chosen as the state annihilated by all operators multiplying

a singular z-dependence (at z = 0).



18 , CHAPTER 2. BRST OPERATORIAL FORMALISM

This implies that for z#(z), the annihilation operators are p* and af with

n > 1; so the following covariant commutation rules can be imposed:

o, an] = mg* 6m —n

[¢",p"] = ig"".

The oscillators a# of the field z#(z) are related to conventionally normalized

harmonic oscillator operators by:

L — /
aiu - ma’fn? m > 0

at,, = matt, m >0

According to the above general rule for the choice of vacuum, for z#(z) the
vacuum |p = 0,0 > of the Fock space is annihilated by a,, with n > 0 (af = p#) ;
the left vacuum is defined as the state < ¢ = 0,0 so that any operator in the
expansion of z#(z) annihilates either the right or the left vacuum, but not both. -
. Consequently the normal ordered product is defined as the one that has:
i) a”, to the left of a# for any n > 1;

1) g* to the left of p*.

These rules give:
:c“(z)m”(w) =: z¥(z)z"(w) : —g"In(z —w), |z| > |w] (2.1.18)
or, equivalently, the following contraction:
< zt(z)z¥(w) >= —g"In(z — w) (2.1.19)

The correlation function (2.1.19) contains implicitly a definition of time order-
ing on the world-sheet. Actually the variables (2.1.11) allow to consider the latter
one as radial ordering: they send the cylinder (7 real, o in the interval [0, 27])

representing the world surface of the free closed string into the complex plane
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(Riemann sphere), where the time evolution becomes a radial evolution from the
origin to the infinity point [32]. For bosonic fields, like z*(z) and its derivatives,

the radial ordered product R is defined as follows:

R(§(z)n(w)) = 9(z)n(w) if [2] > Jul
= Y(w)n(z) if |z| < |w| (2.1.20)

Eq. (2.1.18) can be seen as ahsimple example of operator product expansion
(OPE) that is in general obtained by normal ordering the time ordered product
of operators in order to pick up the singularities of the latter one.

Eq. (2.1.19) demonstrates that the field z# does not have a well-defined con-
formal dimension, and so strictly speaking, it is not a proper quantum conformal
field, but in general it is necessary to consider only operators involving dz and gike
which are genuine primary conformal fields of dimensions 1 and p?/2 respectively.

The quantum generators of the conformal transformations defined on the world-

sheet are the operators L, satisfying the Virasoro algebra:

D .,
[L,n,, Lm] = (’n — m)L.n+m + En(n‘ - 1)(5&_.,,,, (2121)

and have the following expression in terms of oscillators:

Lo=zY :afal_;: gu (2.1.22)
€2

For closed strings two sets of operators L, and L, must be introduced contain-
ing respectively a, and &, oscillators.

L,’s are the Fourier components of the two-dimensional energy-momentum
tensor.

Since the classical energy-momentum tensor is vanishing, also its Fourier com-

ponents must be vanishing. In quantizing the theory, this condition on L, becomes
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an additional condition which characterizes physical states in the Fock space gen-
erated by the orbital oscillators a* that is not positive definite because of the
negative metric in the commutation relations of the time components: physical

states, indeed, correspond to the subspace defined by the conditions [34]:
(Ln — 6n0)lphys >=0, n=0,1,2..., A (2.1.23)

which is equivalent to claim that a physical state is a highest weight vector of the
Virasoro algebra. |

For a closed string the classical conditions:
L,=L,=0 (2.1.24)
become in the quantized theory:
L,|phys >= L,|phys >=0 n>0
(Lo + Lo — 2)|phys >= (Lo — Lo)|phys >= 0.

In a general conformal field theory the energy-momentum tensor is traceless
and symmetric and so it has only two independent components T},(z) [T(z)] and
T:: [T(2)]; T(z), and analogously T'(Z), can be expanded as follows:

T(z)=")_ L,z7"2 (2.1.25)
ne€Z

This expansion also shows that it is a primary field with dimension A = 2.
Eq. (2.1.25) implies that the energy-momentum tensor relative to our theory

is given by:

T(s)= -1 (g—i—)z(;’) . (2.1.26)

From the contraction of the field J.z, easily obtained from (2.1.19), one obtains

from T'(z) the following OPE: [33]
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c/2 n 2T (w) +6T_(w)

TETw) = s+ oy

” + reg. terms. (2.1.27)

with |z]| > |w].
The OPE (2.1.27) embodies the Virasoro algebra; indeed eq. (2.1.25) implies

the following expression for L,:
— _L n+1 -
Ln=5— ]4 dz"*T(z) (2.1.28)

where the contour integral encircles the origin. From this expression it is possible

compute explicitly the commutatér of L, and L,,, obtaining:

= ___1 n+1 m+1
[L'na Lm] - (27‘_1)2 £=O dz p4 {fi‘w'<lz| dw w T(,Z)T(w)
Sl dww™*! T(w)T(z)}
1 n+1l 41
~ (2mi)? f;,:() dw ¢ dzz™ w™ T T(2)T(w) (2.1.29)

By substituting the right-hand side of eq. (2.1.27) in (2.1.29) one gets the result
of eq. (2.1.21).

Since the energy momentum tensor is the generating function of the L,’s, it
provides an helpful tool to derive informations about the transformations proper-
ties of the primary conformal fields characterizing the theory. The variation of a

general conformal field of dimension A is indeed given by:

[Ln, 0a(2)] = 2™ [(n + 1)Ada(z) + 2064(2)] - (2.1.30)

But eq. (2.1.28) implies the equivalence between this commutator and the following

OPE:

T(z)pa(w) =

AéA(’w) Bch Z
-wp? "

+ terms regular as z — w (2.1.31)
—-w
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The anomaly of the Virasoro algebra (2.1.21) describes the lack of invariance of
the quantum theory under deformations of the two dimensional metric. It vanishes
for n = 0,%1, so the generators L_;, Ly and L; form a subalgebra, that is the
maximal closed subalgebra of the Virasoro algebra; this is the projective group

SL(2,C), i.e. the group of the linear fractional transformations:

a
C

2

+b
+d

z—(z) = (2.1.32)

&

with a, b, ¢ and d complex coefficients and ad — bc # 0. In particular, the operator
L, generates translations; Ly genérates infinitesimal dilations of the coordinate z
and in the coordinate system o, 7, it is a generator of “time” shifts, hence it plays
the same role as the hamiltonian one.

The vacuum |p = 0,0 > above defined in the Fock space of the orbital oscillators

is projective invariant:
L,lp=0,0>=0 n=-1,0,1 (2.1.33)

The same property is also exhibited by the vacuum < p = 0,0|. Since the commu-
tation relations of SL(2,C) are unaffected by the anomaly of the Virasoro algebra,
the correlation functions on the complex plane (~ amplitudes) will exhibit invari-

ance under (2.1.32).

2.2 Ghosts

For D = 26 the anomaly of the algebra (2.1.21) is cancelled by the contribution
of the Fadeev-Popov ghosts. In the covariant path-integral quantization approach
these are introduced in (2.1.1) in order to deal with the gauge-fixing determinants;
this is in fact represented as an integral over a conjugate pair of anticommuting
ghosts c, ¢ and antighosts b, b, with different tensor structures, being ¢ a contravari-

ant vector field and b a covariant symmetric, traceless tensor.
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Introducing ghosts in the theory amounts to add to the classical action of the

string (2.1.7) a term, which in the conformal gauge reads:
17, .
S = — / a2 [b6zc + 587 . (2.2.34)
This action implies the following equations of motion for b and c:
0:b = 0:¢c = 0. (2.2.35)

The solutions of eq. (2.2.35) are:

b(z) = Y bz

nezZ

o(z) = Y cpz ™M (2.2.36)
ngz

with analogous expansions for 5(Z) and &(2).

The equations (2.2.36) show that b(z) and c(z) are conformal fields of weights
- A = 2,1 respectively.

The coefficients in (2.2.36) are identified, in a scheme of covariant quantization,
with creation and annihilation operators. Since the annihilation operators are
defined as the operators multiplying a singular z-dependence (at z = 0), they
result to be b, with n > —2 for b(z) and ¢, for n > 1 for ¢(z). Hence the following

canonical anticommutation relations must be imposed:

{bn,Cm} = bnimo  {cnsCm} = {ba,bin} =0 (2.2.37)

with all other anticommutators vanishing and the normal ordering is defined by:

SCpbont = cnbop if n<l

~b_nCn if  nx2 (2.2.38)

with
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by = bon of =c-y (2.2.39)

From the definition (2.2.38) of normal ordering it is immediately to derive, for

instance, the following propagator on the plane for the b, ¢ system:

< b(z)e(w) >= . | (2.2.40)

The introduction of the ghosts fields in the action brings to a redefinition of the

energy-momentum tensor; indeed for the b, ¢ system it reads now:

T(z) = To(z) + Tyn(2) | (2.2.41)
where
Tyn(z) =: cOb(z) + 2(0c)b(z) : . (2.2.42)

T, is defined in (2.1.26).

It is to observe that, despite the asymmetrical tensor structures, ¢ and b enter
| symmetrically in the action (2.2.35), which refers to a flat world-sheet, but this is
not so on a curved world-sheet. Analogously they do not enter symmetrically in
the energy-momentum tensor (2.2.42) which is obtained considering the variation
with respect to the world-sheet metric.

The OPE T,(z)T,(w) that can be derived by eqs. (2.2.40) and (2.2.42) de-

n o}

termines the Virasoro algebra of the operators L?*, Fourier components of Tj:

-13 + 21—}111.(2) + aquh(Z)

.t 2.2.43
Gow)i T z-wp? p— + reg. terms ( )

Ton(2)Tyn(w) =

Hence the OPE T'(z)T(w) relative to the energy-momentum tensor (2.2.41) of
the complete theory is immediately obtained from (2.1.27) and (2.2.43):

_ (D —-26)/2 + 2T (w) N 0T (w)

T(2)T(w) (z — w)? (z—w)? z-w

+ reg. terms (2.2.44)
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Hence in D = 26 dimensions the total anomaly of the Virasoro algebra vanishes.
This result allows to apply consistently the scheme of the BRST quantization in
order to decouple unphysical states in the direct product of the Fock spaces of the
orbital and ghost modes.
In general, for any physical system with symmetry operators G; defining a
closed Lie algebra G:
(G Gj] = Zk fiikGr (2.2.45)
53

one defines the ghost number operator:
U=> cb (2.2.46)

(where a normal ordering must be introduced in the case of infinite-dimensional

Lie algebras in order to have a well-defined operator) and the BRST operator:

, 1
Q=) ¢Gi+ 3 > fircic;by ; (2.2.47)

i’jik

which can be shown to have the basic property to be nilpotent:
QR*=0 (2.2.48)

that derives by considering the commutation relations (2.2.45) and the Jacobi
identity.

In the case of the string, the BRST operator associated with the residual gauge
symmetry under analytic reparametrizations is defined by:

1
Q= chﬁn + 3 Z P CnCmbi (N — M)ptmtio (2.2.49)

n,n.d

while the ghost number operator is:

+20
Jo= D tenbon: (2.2.50)

n=—0o0
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Both the BRST operator and the ghost number operator can be obtained as

integrals of current densities:

dz dz 1 R
= ¢ —j =¢ —: T 4 2Tk ] : 2.2.51
@ f{ 27  BRST f{ o7 [c (T 3 ) ( )
and
dz :
0= — :¢cbh: 2.2.52
Jo f omi € | o )

Q acts on the fields as:

[@,2(2)] = eda(z)
{Q,c(2)} = cBe(z)
@)} = T(z) | (2.2.53)

For D = 26 the quantum BRST charge @ is nilpotent if the normal ordering
is the one defined in (2.2.38). In order to define the vacuum state with respect to
~ this ordering let us consider the properties of the states |g = m >, eigenstates of
the ghost number operator relative to eigenvalue m.

The ghost state | = m > satisfies the following relations:

bulg=m >=0 n>-2+m
Calg=m >=0 n>1-m (2.2.54)
Furthermore:
bnlg=m> = |[g=m—-1>
Culg=m—1> = |g=m > . (2.2.55)

The right vacuum is then given by the state |[g = 0 >.
The left vacuum is determined by the following considerations. The number
ghost operator (2.2.50) is not antihermitian; indeed from the hermiticity proper-

ties (2.2.39) one gets:
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jo+jf=3 (2.2.56)

The relation (2.2.56) has heavy consequences in the theory; first of all the scalar

product:
1 o
<g=0lg=0>=3<qg=0[(jo+jj)lg=0> (2.2.57)

vanishes; more generally (2.2.56) implies that the scalar product < ¢ =¢'lg =¢" >
between two states of definite ghost number is different from zero only if ¢’ +¢" = 3;

the non vanishing product is given by:
<qg=3lg=0>=<¢qg=0]c_1cc1|g=0>=1.

Hence the (adjoint) left vacuum for ghosts is < ¢ = 3|.
Let us see now how the definition of physical states can be implemented in the
direct product of the Fock spaces of the orbital and ghost modes; in this space the

right vacuum is given simply by:
lvacuum >=[p=0;0 > Qlg=0>. (2.2.58)

In this case, physical states of the free string theory (or the asymptotic states of

the complete theory) are defined by the condition [35]:
Qlphys >=0 (2.2.59)

From the nilpotency of @ it follows that the condition (2.2.59) is clearly satisfied
by any state of the form:

|phys >= Q|A > . (2.2.60)

So a physical state is not represented by a single vector but by a cohomology
class of Q: two vectors satisfying (2.2.59) whose difference can be written in the

form (2.2.60) are equivalent and represent the same physical state.
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The states (2.2.60) are called spurious states. Since the BRST operator is self

adjoint spurious states have zero norm:
< A|QTQIA >=< A|Q*A >= 0. (2.2.61)

Furthermore [Q, A], for any A commutes (or anticommutes) with Q and hence
gives a physical zero norm state when applied to a physical state. In particular by

setting A = b, one gets:
i ={Q,bn} = Lo+ S (n—m) : conby_,, - (2.2.62)

The I,’s are (in 26 dimensions) the .quantum mechanical anomaly free generators
of the conformal algebra.

The vacuum (2.2.58) is both BRST invariant and projective invariant:
Qlp, =0,0;g=0>= l+10lpp = 0,0, =0 > (2.2.63)

It is important for unitarity of the space-time S-matrix that spurious states
decouple from physical amplitude, i.e. that physical amplitudes only depend on
the BRST-cohomology classes of the external physical states.

Freeman and Olive [36] have shown that in each cohomology class it is possible

to choose a representative of the following form:
Iphys >= |phys >, ®|g =1 > | (2.2.64)

where |¢ =1 >=¢;|¢ = 0 > and |phys >, [37] satisfies (2.1.23).
The statement of the decoupling of spurious states is that any representative
of the same BRST-cohomology class gives exactly the same physical amplitudes.
The presence of a nonvanishing background charge in (2.2.56) is a consequence
of the Riemann-Roch theorem; the ghost number current satisfies the following

OPE:
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Ty = ) L, 3w Q

zZ—w (z=w)?  (z—w) (2.2.65)

The extra term, that makes j(w) not quite a primary field. is a consequence of
the anomaly appearing in the conservation equation for the ghost number current.
Integrating the anomaly equation one gets the Riemann-Roch theorem (which can

be proved by the “ordinary” Atiyah-Singer index theorem in two dimensions):
(# of b-zero modes) — (# of c-zero modes) = Q(g — 1) (2.2.66)

where b[c]-zero modes are referred to the b[c] solutions of the equation of mo-
tion (2.2.35); furthermore g is the number of the handles of the world sheet and
Q=23

The anomaly in the ghost number current conservation can be put in analogy
with the case of the axial anomaly in an instanton background where chiral charge
is anomalously non-conserved. The ghosts are “chiral” because they are purely
right moving (by the equations of motion).

c-zero modes correspond to globally defined conformal reparametrizations and
are also called conformal killing vectors; b-zero modes are known as moduli and
they correspond to deformations of the metric which cannot be brought about by
infinitesimal reparametrizations. On the sphere, that is to say for g = 0, there are
precisely three c-zero modes. Since the sphere has no handles one can conclude
by the Riemann-Roch theorem that there are no b-zero modes on it. For g =1 ¢
has one complex zero mode and none for g > 2. Consequently the torus has two
moduli while for Riemann surfaces with tv§o or more handles there are 3(g — 1)

moduli.

2.3 Vertex operators

There exists a one-to-one correspondence between physical states and conformal

fields, in the sense that it is always possible to find, given an on shell physical state
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|phys > a conformal field called vertex operator of |piv: - which generates it
at 2 =0,i.e. at t = —o0:
lil'l'(l) Va(2)lp=0,0 >=|a > . (2.3.67)

Conformal invariance dictates that vertex operators associated to physical
states are conformal fields with dimensions A and A respectively in z and Z both
equal to 1.

The vertex operator associated to the lowest state of the open string, the

tachyonic state |p = k,0 > is:

V(z) =: exp (ikz(z)) : (2.3.68)
In fact:
I% cexp (tkz(2)) : p=0,0>=p=k,=0> (2.3.69)

The transformation properties under the conformal group of (2.3.68) can be

deduced from the OPE with the energy-momentum tensor (2.1.26):

_ O¢ s exp (tkz(€)) . k*/2: exp (ikz(£))

= :+re . terms(2.3.70
FEY. G-gp e tems2310)

T.(z) : exp (1kz(£))

which, compared to (2.1.31) suggests that : exp (ikz(£)) : has dimension A =1 as
required by the conformal invariance only if k% = 2, that in fact corresponds to
the mass shell condition for the tachyonic state.

Analogously the vertex operator associated to the massless photonic state of

the string:
|photon >= —ie - af|p =0,k >

is given by:
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Vor = 0.2e, exp (1kz(2)). (2.3.71)

So a physical state |phys > can be also interpreted as an asymptotic “in” state
created by the conformal field V,(z).

Furthermore the following properties hold:

lim <p= 0,02°V,(z) = < phys|

L Val2)] = [*7,(2)]
g <%5__k> = FEDTalh) (2.3.72)

where IV is the level of the state.

In D = 26 dimensions it is possible to write explicitly the vertex operator
for an arbitrary physical state by using only the tachyon and the photon vertex

operators [37]:
Ve (z,m) = Z]] [% dzja:"‘(zj)ajfe""’fr(“l) cetrrlz) (2.3.73)
j z

The integral over the variable z; is evaluated along a curve of the complex plane
z; containing the point z.

The singularity of the integrand function is a pole at z; = z, that arises from
bringing all creation operators to the left of the annihilation ones, provided that

the following conditions are satisfied:
pki = —N; | (2.3.74)
where IV; are integers. Furthermore the momentum 7 of the vertex is given by:
T =p—» Nk (2.3.75)
J

The vertex (2.3.76), acting on the vacuum, reproduces the transverse states

IDDF >:
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lim Vi, (2,7) = HAij:NjIO,p > (2.3.76)
i
where
. — L 1 { N\l p—tNkz(z)
Ay = o fdzac#(~)ei e . | (2.3.77)

The index 7 of these operators runs over D — 2 transverse dimensions of space-time.
They commute with the Virasoro operators.

The transverse states (2.3.76) form a complete and orthonormal basis in the
subspace of the physical states if D = 26.

The vertex operator V, g (2, %, k;) associated with the physicél state |a;, G; >
of a closed string can be written as a product of two vertices of open string,

respectively associated to the left and right sector with the zero modes identified:

Vi (20, 20 ki) = Vi, (z,-, %k) Vi, (;:-, %k) . (2.3.78)
The ordering explicitly indicated is relative to the zero modes — with the g operator
on the left of the p operator. Eq. (2.3.78) appears to be very natural because a
closed string can be viewed as two open strings attached together at the two end
points. V,, s, is a primary field with conformal weights A = A = 1.

The physical state |phys > in the Fock space of orbital and ghost oscillators
can be obtained from the right vacuum (2.2.58):

by
|y >= lim c(z)Va(2)]0 > (2.3.79)

where V,(z) is the vertex operator associated to the physical state |a >.
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2.4 'Tree scattering amplitudes

A fundamental feature of string theory, which is new with respect to the ordinary
field theories, is that if one adds to the free action a term describing the interaction
between strings and an “external source”, then this source is forced by the structure
of the theory to be a string itself. So one can claim that strings can interact
consistently only with strings.

Conformal invariance underlying string theories allows to visualize a typical
Feynman diagram as the compactified world sheet of the propagating string with
the incoming and outgoing external strings projected to points, at which the cor-
responding vertex operators are inserted. These diagrams can be classified by
their topology, being the order of a diagram defined by its genus, that is to say
the number of holes or handles of the surface. Therefore the perturbative series
becomes a sum over all the topologies of the world sheet.

Let us here examine what is the form assumed by tree N-point amplitudes
in the cases of open string states, of closed string states and of interacting open
 and closed strings. These amplitudes are written as integrals over a finite number
of variables, z; with (i = 1,...,N) at which the external strings are attached to
the world sheet. From a geometrical point of view the variables z; are interpreted
as coordinates of punctures, corresponding to the insertion points of the vertex
operators on the world-sheet, that so becomes a punctured surface. For this kind
of surfaces, the location of the punctures contains geometrical properties, hence the
invariance under reparametrizations is restricted to those transformations which

leave the punctures fixed.

2.4.1 Open strings

For an open string the world sheet has boundaries, and emitted open string states
are attached to these boundaries. This is just a consequence of the fact that two

open strings interact attaching to each other at the end points, i.e. the points
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corresponding to o = 0, 7.

The world sheet of an open string can be convenientiy mapped in a disk or the
upper half plane with external strings appearing as punctures on the boundary.
The order of the punctures is meaningful. In fact if we think to the disk with
a certain chosen order of the punctures then it is easy to see that a conformal
transformation can turn them only in a cyclic order.

Invariance under cyclic permutations is the translation in geometrical terms
of the planar duality. This invariance suggests that the integral expressing the
amplitude over the coordinates of the punctures is carried out only over values
of them corresponding to a given cyclic order. So one can write the follow-
ing scattering amplitude involving /V on shell physical states of the open string

la; > ,(i=1,2,...,N) is given by:

Alay,..,ay) = / Hi]il[dzf‘(/z; — %i-1)] <p=0;0| ﬁ Vo (21)lp = 0;0 > (2.4.80)
abe =1
where V,,, are the vertex operators associated with the physical states |a; > and
- where the puncture are ordered along the real axis through the 6’s functions.

At the end of the sect. 2.1 it has been said that in a general conformal theory
the correlation functions on the complex plane are invariant under the transforma-
tions of the projective group, i.e. invariant under translations, dilations and special
conformal transformations. In string theories this claim amounts to say that tree
scattering amplitudes, which can be seen as correlation functions of the vertex
operators, must be projective invariant. Indeed the amplitude (2.4.80) is that its
integrand is invariant under the group SL(2, R) of the projective transformations
with real coefficients:

az; +b
z 5 = 2.4.81
= cz; +d ( )

with ad — bc = 1.

As a consequence of the projective invariance the locations of three of the

punctures is made completely arbitrary: so three of the integration variables z,,



2.4. TREE SCATTERING AMPLITUDES 35

zp and z, can be arbitrarily fixed and the volume eleme:: .. must be inserted:
dz.dzpdz,
(2a — 26)(2a — 2c)(26 — 2c)

The conventional choice is the one that fixes the three variables in such a way

AVipe = (2.4.82)

that z; — 00, 2 =1 and zy = 0.

The projective invariance of the integrand of (2.4.80) is easily checked: dV,,.
is left invariant under (2.4.81); the vertex operator V,, is a primary field with
dimension A = 1 and therefore its transformation is:

Va, (awiz k; ) = (czi + d)*Va,(zi, ki) (2.4.83)

In addition one has:

dzi

4z = —25
(cz; + d)?

(2.4.84)

Hence the integrand in (2.4.80) is projective invariant.

Although the expression (2.4.80) is manifestly conformal invariance, it is how-
ever not manifestly BRST invariant and it contains explicitly the volume of the
- projective group.

A BRST invariant amplitude can be obtained replacing the vertex operators
corresponding to the fixed variables with ¢(z)V,,(z) obtaining in this case a vertex
operator with dimension A = 0 and leaving unchanged the remaining N — 3 vertex
operators.

With these modifications (2.4.80) becomes:

| ILL, [d2if(z: — 2im1)
A(Ct'lw-'aaN) - / dz d,v(dxa 1]

N
<p=0,0,q:OH z)lp=10,0,g=0> (2.4.85)

~

where V,,(z;) = Vo, (2i) for @ # a,b,c, Vo (2) = ¢(2)Va,(2) for i = a,b.c and

|g = 0,0 > represents the BRST and projective invariant vacuum.

The expression (2.4.80) follows from (2.4.85) by means of the equation:



36 CHAPTER 2. BRST OPERATORIAL FORMALISM

< g =0le(za)e(zp)c(2e)lg =0 >= (2, — 2)(24 — : S (2.4.86)

that can be easily checked.

The amplitude (2.4.85) is now BRST invariant since:

{@ c(z)Va(2)} =0 {Q,Va(2)} = £ [e(2)Val2)]. (2.4.87)

Using the relation

Va(z) = 20072V, (1)z 710 (2.4.88)

with A = 0 for ¢ = a,b,c and A = 1 for the others and introducing the new
variables z; = z;/(z; — 1) for ¢ = 3,..., N — 1, it is easy to rewrite (2.4.85) in the

fully factorized form:
Alay,....ay) =< g=1;a1|c(1)Vo, (1) D ... Voo ,(1) DV, _lg=1;ay > (2.4.89)

where the choice ¢ = 1, b = 2, ¢ = N and V; = V|, has been performed. In
obtaining (2.4.89) the usual choice z,, 2, z. must be performed and the following
- relations must be used:

lime(z)lg = 0 >= g = 1>
lim < g=0]c(z)/z" =< ¢ =1| (2.4.90)

The propagator D is given by:

Lo = bO/ dzzlo~l, (2.4.91)

(2.4.89) contains vertices and propagators which are locally BRST invariant. In

fact

{Q.c()V(1)} =0 {Q,byzlo~} =Lz (2.4.92)
The extra terms appearing in the right hand side of (2.4.92) do not give any

contribution and therefore the amplitude (2.4.85) is BRST invariant.
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2.4.2 Closed strings

The world sheet of a closed string is topologically equivalent to a sphere, which
can be mapped by stereographic projection onto the complex plane, on which the
external strings are attached at specific points z;. Differently from the open string
in this case there is no natural ordering of the external strings: this means that,
unlike the open string case where the emission must occur from a boundary of the
world sheet, closed string emissions occur from the interior of the world sheet.
The scattering amplitude involving M physical states of the bosonic closed

string can be written as follows [38]:

d?z;
A(alalghkl) . )aMH@MaAM / Hld‘l/l < OIR <H VQI[j (a,,Z” ) lO > (2 4, 93)

=1

where (z;, Z;) are the Koba-Nielsen variables associated with the ith external state

of momentum &;:

z; = e¥ilritod) 5 QRilrimol) (2.4.94)

After a Wick rotation z; and Z; become the complex conjugates of each other.
R refers to the ordering prescription with respect to the moduli of the variables
z;, that are integrated over the whole complex plane.

The integrand in (2.4.93) is invariant under the group SL(2, C) of the projective
transformations with complex coefficients. As a consequence of the projective
invariance, three of the integration variables z,, 2, and z. can be arbitrarily fixed

and the volume element dV,;. must be inserted:

dVabc -

ek (2.4.95)

This amplitude can be made BRST invariant through a procedure similar to

the one considered for the open string case.
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2.4.3 Mixed strings

More generally, one can calculate a scattering amplitude involving both open and
closed strings [23]. For this aim one must first introduce the vertex operators

corresponding to the emission of a closed string from an open one.

The form of this vertex can be guessed by the following considerations. The
emission of a closed string from an open one can be considered by adding to the
free action of the open string an interaction term describing the interaction of the
end points of the open string with the closed string: this term is represented by
an integral over the D-dimensional target space of the product between the closed
string (2.3.78) vertex and a “current” generated by the open string, whose tensorial
character will depend on the one of the closed string vertex. Now, the most general
vertex of a closed string is written in terms of the tachyonic vertex exp(ikz) where
z(2,Z) is the free closed string position field (2.1.13); so the coupling with the
open string current makes to substitute in this vertex the free open string position

field (2.1.14). This implies that the left and right movers of the vertex of the
closed string must be identified and the interaction term factorizes into a product
of two vertices of open strings, one depending on the variable z and the other on z.
Hence the following vertex for the emission of a closed string from an open string

can be considered having the following form.

1 1 '
Vap(2,2,k) = Vo(z, ik)Vg(f, 5«). (2.4.96)

It is very important to stress that, differently from the closed string vertices,
(2.4.96) contains only a normal ordering for each constituent vertices and not
an overall ordering; actually, this prescription guarantees the right conformal be-

haviour of the vertex (2.4.96). This is, in fact, given by the following OPE with
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the energy-momentum tensor (2.1.26):

Lo L BuValw, dk)Vp(m, 5k) 0w, $k)Va(@, 3k)
T(Z)Va(wa 5’9)%(@0, —2'k) = po— 4+ —
AUSNRACEL
) = + reg.terms
(3 - w) (:: — )

An overall ordering prescription of (2.4.96) would introduce in (2.4.3) a term with
a singularity (z — w)(z — w), breaking the conformal invariance.
The vertex operators (2.4.96) allows to write the mixed scattering amplitude.
The scattering amplitude for NV open and M closed physical states interacting,

here denoted with |a;, p; > and |e;, 8;, kj > respectively, is given by:

]-\_[_ d i@ i — &Ly M_ d22'
A(N, M) — / H‘l—l[ L (II' dvmb +1)] Hj—-l J

N M

X < OIR* (H H ‘/ﬂi(wi;pi)‘/ﬂjﬁj(%’, 5]'; kj) ‘0 > (2497)

1=1j5=1

where V,,(z;p:)[Va,8,(25, Zj; k;)] is the vertex operator associated with the state
aus;pi > [lay,B53k; >]. The Koba-Nielsen variables for the closed strings are
integrated over the whole complex plane, while those for the open strings are
integrated along the real axis with the ordering given by the # functions. The R*
prescription refers to the ordering of the closed string states among themselves and
with respect to the open string states according to the moduli of their variables z
and r. '

(2.4.97) can be diagrammatically represented, for example, by the upper half of
the complex plane with the punctures relaﬁve to the open strings inserted on the
boundary of the world-sheet, i.e. on the real axis and with the punctures relative
to the closed strings inserted in the interior of it.

Although (2.4.97) also contains closed strings its integrand is only invariant
under real projective transformations as in the case of open strings. Consequently,
three real variables can be fixed arbitrarily and the corresponding volume dVi

must be introduced.
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Chapter 3

BRST Invariant Bosonic N-String

Vertex

A definition of BRST N-string vertex is given in this chapter both for bosonic
open and closed strings. Starting from these vertices, a mixed (N + M )-string
vertex is then constructed: when it is saturated with N open string and M closed
- string physical states it reproduces their corresponding scattering amplitudes. As
a particular case we obtain a BRST invariant vertex for the open - closed string
transition.

Furthermore the conformal cut technique is discussed: it reveals very helpful

in treating orbital zero modes.

3.1 Bosonic N-string vertex

In sect. 2.4.2 scattering amplitudes involving N physical bosonic strings, both
open and closed, were given in terms of vertex operators, stressing their invariance
under the group of projective transformations. By exploiting this invariance, it is
possible to define a bra vector in the Fock space of the string, that we will define
N- string vertex, which is required to satisfy the following properties:

i) when applied to N physical string states, it must give the correct tree am-

41
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plitude;

it) it must be invariant under transformations of the rojective group;

#1%) it must be BRST invariant. »

The underlying projective invariance of the tree amplitudes is extremely rel-
evant in the construction of such a vertex. When written explicitly in terms of
oscillators in its expression appear infinite matrices belonging to a suitable unitary
irreducible representation of the projective group, the space basis being the Fock
space generated by the orbital and ghost modes.

So we want to start by giving some properties of these representations: more

details about this subject can be found in App. A.

3.1.1 Unitary irreducible representations of the projective
group
To an arbitrary projective transformation of the form

az+b
cz+d

(3.1.1)

=Xz =

with a, b, ¢, d constants and ad — bc = G # 0, one can associate the 2 x 2 matrix:

Azab
c d

It can be very often convenient to normalize A such that G = 1.
Given an arbitrary quantum conformal field of weight A, a projective trans-
formation induces in the Fock space of the relative oscillators an infinite matrix

D.,..(A), defined by the following equation:

: 2J m
S DYNAN(J,n)e"2 = N(J,m) | £ (a” T b> (3.1.2)
n=A |G! cz 4 d
where
N(Jyn) = | Ln=2)) (3.1.3)

F'n+1)
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with J # 0 = —A.
(3.1.2) provides straightforwardly, for example, the innnite matrix Mpm(V') for

orbital oscillators, considering J — 0:

z+b
wml M) = dyEor |(E53)
z=0

A3
n>1 "\d (3.1.4)
Mon(V) = /% (‘2)
Moo(V') = —log (_—C‘i‘“—>
vad - be
Analogously for J = —1 one obtains an infinite-dimensional representation of

the projective group E,,(V) in the Fock space defined by the oscillators of ¢(z);

az+b\"" 1
RN . 1.5
(cz + d) V’(z)} 0 (3.1.5)

3.1.2 Sciuto-Della Selva-Saito vertex

it is given by:

n,m> —1 E.n(V)= ('m«-1+-1)! gm+1

The basic ingredient for constructing an N-string vertex is the Sciuto-Della Selva-
Saito (SDS) vertex [18].

Let us first examine the definition of SDS vertex for the open string, limitatly
to the orbital part.

The scattering amplitude (2.4.80) involving three open strings can be written,

according (2.4.89) as
A(a'l, kl; az,kg;a3,k3) =< C!l,kllvaz(l,kg)!ag,k;; > . (3.1.6)

The aim is the one of defining an operator that, taken among the states |a;, k; >
with j = 1,2,3, reproduces (3.1.6); one possibility is to consider an operator W,

depending on two sets of oscillators acting on two different Fock spaces: the one
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of the propagating string that constitutes the set of «.....iri vscillators and the
other one relative to the emitted string which will be de¢noted by an index 4. The
dependence on these sets of oscillators must be such that the following condition

is satisfied:
i < T = 0,0IWiIaz,kg >= Vaz(l;kg), (317)

i.e. the operator W; we are looking for, closed between the state |as, k2 >; defined
in the Fock space of the emitted string and the left vacuum of this one, must
become depending on only the set of auxiliary oscillators with such a dependence
that it can reproduce exactly the .vertex operator relative to the state |as, ks >.

An operator that satisfies (3.1.7) is given by:

W, =: exp {j{db ~z(1l — z). (z)]} : (3.1.8)

originally constructed by Sciuto and written in this form by Della Selva and
Saito [40]. The contour of integration encircles the point z = 0 and a factor 1/2mi
in front of the integral is understood to be. That this vertex reproduces (3.1.7)

- can be seen considering the expansion of the field z#(z) around z =

[ o]

z#(z) = ¢* — iptlogz + i Z ( poy=n _ alf:-\‘-:‘n) ’
n=1

so obtaining:
i<z =0, 0|Wila, k >i=: exp {ikz(1) }exp{ Z “)8" )} la >;: (3.1.9)

where the quantity at the right hand coincides with the expression of the vertex
operator, in z = 1, associated to the state | >; with momentum k. Hence (3.1.9)
shows that, given an arbitrary state |a >, W; allows to compute the corresponding
vertex operators V,, in the point : = 1 of the world-sheet. If the state |a > is
physical, i.e. a highest weight state of the Virasoro algebra, then the vertex will
be a primary field with weight A = 1.

The SDS vertex defined in (3.1.8) does not treat the three external legs in a

cyclic symmetric way, since it acts on one external state as bra and on the other
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two states as kets; it is clear that, in order to make it v~ . ~mmetric, all of them
must be on the same side: for instance, the bra must become a ket like the other
two states, or, in other words one has to twist the leg relative to the bra. This
was performed by Caneschi, Schwimmer and Veneziano [19], who multiplied the

vertex (3.1.8) with the following twisting operator:

OF = (=1)L- 27" i | (3.1.10)

€T

and introducing a third set of oscillators; in this way one obtains a cyclic symmetric

vertex written as:

V, = de(a:)1 < ,0); < z,0]3 < z,0]
3 ol | =] m n
(r) ,(r+1) m (r) ,(r+1)
exp { — —=p'"a, T + —-1) —( )am a, . (3.1.11
% ez P A (344
The SDS vertex can be made BRST invariant by adding the contribution of
the ghost and antighost fields ([24]); (3.1.8) so becomes:

;<z=0,0qg=3W, (3.1.12)
 with
W, =: exp {fdz [—z(1 — 2)zi(z) — c(1 — 2)b;(2) + b(1 — ::)cl(z)]} . (3.1.13)

This form of the SDS vertex with ghosts is guessed by observing that the
integrand appearing in (3.1.8) is dimensionless because z(z) has dimension 0, while
the dimension of dz and z)(z) exactly cancel. Using the same rule in the case of
the ghosts it seems natural to have in the integrand a product of the ghost times
the antighost coordinates.

The property of BRST invariance of (3.1.13) is guaranteed by the holding of
the following equation [24]:

<zx=00,g= 3l [Ql + Q,Wr‘i] (3.1.14)

where Q; and Q are the BRST charges corresponding to the fields z;(z) and z(z)

in terms of which the SDS vertex is defined; they have the following expression:
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Q=fds: {—%ci(z) ()] + b(z)c(z)c’(,:)} . (3.1.15)

Let us now consider the extension of the definition of SDS vertex to the closed
string.

Since the vertex operator for the emission of a closed string state is the product
of the vertex operators corresponding to two open string states, also the SDS vertex
for a closed string will be the product of two vertices for the open string. They
will depend on the variables z and % respectively and contain the same oscillators

for the zero modes. So this suggests that the SDS vertex for a closed string is

given by:

i<z=0,0]Wg (3.1.16)
where

Wi; =W, -W; (3.1.17)

| with
W, = :exp {j{dz[—w(l - :)mi(:)]} :
W; = :exp {}{ds[—a‘c(l - z)a“:g(z)]} :

The contours of integration encircle the points = = 0 and Z = 0 respectively
and also here a factor 1/27% in front of the integrals is understood. The opera-
tor (3.1.16) depends on four sets of oscillators : two sets are labelled with the
indices ¢ and 7, relative to the emitted string while the others correspond to two in-
dependent sets (except for the zero modes) of auriliary oscillators and are relative
to the propagating string.

The state ;< ¢ = 0,0| is the vacuum of the Fock space of the emitted string
with vanishing eigenvalue of the center of mass variable ¢¢ = ¢'. Tt is easy to
convince oneself that the vertex (3.1.16), acting on any state, will reproduce the

corresponding vertex operator. In particular if the state is physical then the vertex
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operator will be a conformal field with weights A = . - . n fact considering

the following expansions for z*(z) and Z#(Z):

(z) = ! q" — zI—)i logz+1 i L(a":_"‘ —aiz")

2 2 — \/-T—I/ n n

1 .pH e 1 , ,
FH( = - = S 3 A P —,Lfi_-n,
£ (“) 2 [q t 2 10g +7 \/ﬁ(a’nz a"n, )jl

one gets :
ki ]Cl'
g <z=0,0W;ila, B, ki >5 = Vg, 11—2‘ Vi 1,—2‘ i=
o= Vep(l,1,k) (3.1.18)

3.1.3 BRST invariant N string vertex

Eq. (3.1.7) shows that the SDS vertex, when applied to any highest weight state,
provides the corresponding vertex operator, computed in z = 1. On the other hand
~eq. (2.4.80) indicates that the tree amplitude for physical states, that we want to
reproduce, is expressed in terms of vertex operators computed in a general point z
of the world-sheet. But the vertex operator associated to a highest weight state is
a conformal field of dimension 1, so the transformation properties of this operator
under projective transformations are well-known. Hence it is very straightforward
to obtain from the SDS vertex the vertex operator associated to a highest weight
state in any point z: it is enough to consider the transformed operator under the
projective transformation that sends 1 — z. For a not physical state this is not
true. Nevertheless we would like to transform a vertex operator associated to an
arbitrary state from the point 1 to z, considering the transformation property of the
SDS vertex W;, that is not a primary field, under this projective transformation.
This is so because we could then collect N SDS vertices in order to obtain the
general coupling of N arbitrary states, without any restriction to the only physical

ones.



48 CHAPTER 3. BRST INVARIANT BOSONIC N-STRING VERTEX

A possible solution is the one of considering the expii. .. ~ression of the oper-
ators %;’s which in the Fock space of the auxiliary oscillators realize the projective

group and compute explicitly the transformed W/ of W:
W = 3Wi5: 7 (3.1.19)

and, in order to have the N-string vertex, one will qonsider the product of IV such
objects.

First of all we must choose a suitable projective transformation 7;(z) which
sends 1 — 2; with 4 = 1,..., N for every puncture of the world-sheet; the three
parameters which characterize a projective transformation can be fixed in such
a way that oo is transformed in 2,_;, 1 in 2; and 0 in z4, or, using Lovelace

notation: [41]:

1 0
=] % (3.1.20)
Ziy Z Zip
If we introduce the projective transformation:
) a;z -+ b;
() = m(z) = 222 (3.1.21)
- the parameters are fixed by (3.1.20) to be the following:

a; = zi_l(zi — Zipa) b = 2i(zi — Zio1)

Ci=2Z,— Zi41 di = R4~ Zia (3.1.22)

The variables z;,_, and z;,,; which appear in the definition of the projective
transformation ~;(z) are relative to an ordefing of the variables z; (1 = 1,...,N)
chosen in advance.

From a geometrical point of view performing such a projective transformation
correspond: to choose a suitable system of local coordinates on the Riemann surface;
in particular the projective transformation V;7*(z) corresponds to a choice of local
coordinates vanishing at the Koba-Nielsen point z,.

‘The operator ; which in the Fock space of the auxiliary oscillators performs
the projective transformation 7;(z) can be expressed in terms of the generators

L_1, Ly and L, of the projective group in the following way:
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i a’ Lo b; + a :
Yi = exp{—a—il}_l} {m} exp {" 2 L (3-1-23)

which allows to compute f?,-Wﬁi_l. Indeed one has:

.t e — 1 5 aid; — bic; = 1 c\" ;
FWA T = exp {517?108——&2—} exp {Z (-‘—) p'a"(n)}

1 n=1

20 ; M n(n+1) i n—1 () 2 i n () TL(TL-l) c; n+1 ()
XEXP{ZC;) _" B (“d—) by’ +(n”—1) (‘I) by’ ~ o (“Z) b }

n=2

X 1 exp {fdz _—:z: (Vi(2)) zi(z) + e (Vi(z)) b“)(::)wl(z) +b(Vi(2)) (2 )V’(z)z}} :(3.1.24

If the product of N vertices (3.1.24) is taken between the projective vacuum

lp=0,0,¢g= 0 > both on left and right hand, one obtains the following:

<p—00q—0|IIme 1lp—00 g=0> =
=1

N

— expe— —;— S al M (TVHV))ald) + Z L (TVLV,)0Y)
il ) ey
N o\ 1 (N 1
2 <Zp“)> I1 {Z > Eum } (3.1.25)
PES n=-—1 | i=1 m=-1

Here M,.,(V) and E,,,(V) defined in (3.1.4) and (3.1.5) respectively. Furthermore
the matrix I' is given by:

0 1
I'=
corresponding to the inversion:

I(z) =

™|

The expectation value (3.1.25) establishes a connection between the product of
transformed SDS vertices and the /V-string vertex written in the old days of dual
models by Lovelace [41]. Furthermore it easy to check that (3.1.25) is invariant

under a projective transformation acting on the variables z;:
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l_azi+/3

;2

o yz 46

>=(5%)

Under such a transformation, the matrix V; is transformed in AV, and therefore

or

V:"'V; is transformed in V;'V;; this implies that the arguments of the matrices
D,., and E,, are invariant under any projective transformation D. The same
properties are also valid for the fermionic d-functions appearing in (3.1.25).

A BRST and projective invari;':mt N-string vertex can be now simply written

in terms of (3.1.25) in the following way:

HZ\Ll dz; 1_‘[]\—[——11 H(Zi - 3i+1) -
Vy= [ == = , i<z=0,0,g=3
AVape Hf\-[_-l [7(1)] ¢=1_'[1[ , ”
N
x <p=0,0,g=0/][%Wi4 'lp=00,g=0>  (3.1.26)
=1
with
dz,dzpdz,
AVope = e (3.1.27)

e ()2 (1)vi(1)]

The scattering amplitude (2.4.85) is reproduced from Vy by saturating it with
three physical states of the type |phys > ®|¢ = 1 >, obtaining a vertex operator
with weight A = 0 and with the other IV — 3 states of the type |phys > ®|¢ = 0 >,
obtaining a vertex operator with conformal weight A = 1.

The BRST invariance of Viy derives straightforwardly from the BRST invari-
ance of the SDS vertex (3.1.14); indeed taking into account that each @, commutes
with all the factors in the product [T;Y, 4;W,4;" except the one with the same index

and that the (3.1.14) holds, then it is possible to write:

N N n
<p= 070,‘]: OIH[z <= 0,0’(1: 3” IVZQ]9H’%W1"?1‘-I} [pz anvq =0>=
i=1

j=1 =l

N N
~<p=0,0,¢g=0][:i<z=004g=3| {Q,H’inﬁf] Ip=0,0,g =0 >= 0(3.1.28)
=1

i=1
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since
Qlp=0,0,g=0>=0. (3.1.29)

The M-closed string vertex can be defined in the following way in terms of the

SDS vertex (3.1.16) Wj:

M d*z L
Vu = / =y & M iz
dVase  TT2; [7i(1)]

M M
[I(s<z=0,0]) <p=0,0|R (H Fivi Wi if‘ﬁfl> lp=0,0> (3.1.30)

=1 =1

where 4; and 4; are operators which act in the Fock space of the auxiliary oscilla-

tors, performing the projective transformations:

a;z + b;
z dz) Z Y:(Z) ; (Al —2)=Vi(z) =
~ () P e w(l-n)=KE) =
or, using Lovelace notation:
- 1
co 0 1 — oo 0 1
V.= Vi=| o (3.1.31)
| -1 Zi Zitl | Ti—1l A 4
and
o 1 0 ] 10
N = = 0 (3.1.32)
| Fi-1 % Zi4l Ri=1 % il
The parameters are given by:
a; = Zi—l(zi - Z‘i-}-l) b; = Zi(3i+1 - Zi—l)

(3.1.33)
C; = Z; — Zi41 di = L4l T Ri—1

(and the complex conjugate values are taken for the parameters characterizing Vi).
The couples of variables, (z;_1, Zi—1) and (zit+1, Zi+1) here introduced, are relative
to the external states that respectively forego and follow immediately the ith state
in the various terms of the sum on the permutations prescribed by the R ordering.

The fact that the M-closed string vertex (3.1.30) reproduces exactly the ampli-
tude (2.4.93), by acting on M physical states, easily follows from (3.1.18) and from

the well-known transformation property of primary fields, that for V, 4, reads:
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Ve (L LRI = BOPEORY., (3.1.34)

with A= A =1.
The vacuum expectation value in (3.1.30) over the auxiliary oscillators can be

explicitly performed. One gets:

M4, &%z 1 M
Vy = ; —0.0).
o -/ dVle 'iM=1 ,7:(1)12 Z H(LL< T l)

{permut.} i=1

M

Xexpi{—, ; Z at M,..(TV"'V;) ad, + Z @ M(TV;71 V) &l
lzl#] 1 7':' =% I’I‘L =(()J
x8° (T ) (3.1.35)

where aj = @}, = p'/2. The matrix M,,, [M,,..] is related to the infinite-dimensional
representation of the projective group (see refs. [20] and [26]) with J — 0, corre-
sponding to the coordinate z#(2) [£#(Z)] defined in (3.1.4).

From (3.1.35) it is rather simple to verify the projective invariance. Indeed if
- one performs an SL(2, C') projective transformation on the external variables such

that:

az; + 08

W PE= ST

(3.1.36)

then V; — PV, and V; — PV;. Therefore the arguments I'V;"'V; and LV 'V, of
the matrices M,,, and M,,, are left invariant under the transformation (3.1.36).
Furthermore it is very easy to show that the integration measure in (3.1.35) is
projective invariant. Hence the full integrand in (3.1.35) is projective invariant
and also the requirement 2. is satisfied.

The previous vertex can be made BRST invariant by adding the contribution
of the ghost and antighost fields as in the case of the open string. In this case

eq. (3.1.16) becomes:

F<z=0,0,g=3,q=3 W; (3.1.37)
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where

Wi =: WiW; : (3.1.38)
with

W, = :exp {?{dz[—z(l — 2)a(z) = e(1 = 2)bilz) + b(1 — z)ci(z)]} :

W; = :exp {}{ds[—z(l —2)z4(2) —e(1 = 2)bi(2) + b(1 — z)ai(z)]} :

In terms of (3.1.37) the M-closed string vertex reads now:

I}, &= i
£=0,0g=3g=3|)-
/ dV:le 1 1 h/z l) I—_-I 1 4 [)

M
<p=0,0,4=0,7=0R([[33.W:A75 | p=0.0.0=0.0=0> (339

1=1
with
d?z,d? zpd? 2,
7L (Dm(1)7i(1) )2

The difference in the measure between (3.1.30) and (3.1.39) corresponds to

dVabc =

(3.1.40)

- the fact that the scattering amplitude relative to physical states is now obtained
from (3.1.39) by saturating it with three physical states of the type |g=¢= 1>
® |transv. > (obtaining a vertex operator with conformal weights A = A = 0)
and with the other M — 3 states of the type |¢ = § = 0> ® |transv. > (obtaining
a vertex operator V,g(z,Z) with conformal weights A = A = 1). In such a‘Way
the M-closed string vertex will reproduce the scattering amplitude proposed by
Friedan, Martinec and Shenker [33].

The matrix element for the auxiliary oscillators can be computed and we get

the following expression for the AM-closed string vertex:

1, &2z 1 M
/ dVb M N 2 Z H(-z2<:1?=0,0,q=3,q—_—3‘).

=1 h”(l) {permut.} i=1
M 1 o _ -
cexXpy — Z Z aann(FV 1V a, + = z M"m Vj)a'{n. +
ig=1 n=0 n=u

177 m:() mn=u



54 CHAPTER 3. BRST INVARIANT BOSONIC N-STRING VERTEX

+ Y GBIV, + Y G B
1r?==—2-1 7r:l==El
' 1 M 1 ‘ 1 Mol
o7 () 11 {Z > Enm,mbitn.} 11 { ) Enm<w>b:n} (3.1.41)
n=—1 | i=1lm=~1 n=-1 {i=1lm=-1

where

E,.n(V) and E,»(V) provide an infinite-dimensional representation of the pro-
jective group with J = 1, corresponding to the ghost coordinates c(z) and &(Z).
Besides the projective invariance (for the new terms in eq. (3.1.41) it is immediate
to show they are left invariant), ‘ghe M-closed string vertex constructed exhibits

also BRST invariance, in fact:
M Mo
Vu) Qi=Vy> Q=0 (3.1.42)
t=] =1
as a consequence of the BRST invariance of the constituent SDS vertices used in
(3.1.39).

Q: and Q; are the BRST charges corresponding to the coordinates of the i-th

- closed string:

Q: = j[dz : {——%cl(z)[:z:i(z)]2 + b.i(z)ci(z)c,’j(:)} :

~ | N e,
Q: = fd?f : {—ic,(z)[:zi(z)]z + bi(z)ci(:)cﬁ(z)} . (3.1.43)
Therefore also the requirement 3. is satisfied.
In conclusion we have constructed an M-closed string vertex that is projective

and BRST invariant and when saturated with physical states it reproduces their

corresponding scattering amplitudes.

3.2 BRST invariant mixed string vertex

In this section we want to generalize the construction of the previous sections
to include also a number of open string states by constructing an M-closed and

N-open string vertex.
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As in the case of a vertex involving only open or < ... sirings the starting
point is the scattering amplitude with N open and M closed physical states, that
we denote with |a;,p; > and |a;, §,, k; > respectively. Such an amplitude is given

by [23]:

/- H:‘f_,l [d;?.?g ¥z; — i+1)] HJ‘;dz‘?’j ]
d‘/ubr

li :12

; M

- < O|R” k H (x5 00) V(255 250 K )) 0> (3.2.44)
where Vy,(z:;pi) [Va,s,(25, Z;; kj)] is the vertex operator associated with the state
lai;pi > [lay, 053 k; >]. The Koba-Nielsen variables for the closed strings are
integrated over the whole complex plane, while those for the open strings are
integrated along the real axis with the ordering given by the ¥-functions. The R*
prescription refers to the ordering of the closed string states among themselves and
with respect to the open string states according to the moduli of their variables z
and .

Although (3.2.44) contains also closed strings its integrand is only invariant
under real projective transformations as in the case of open strings. Consequently
three real variables can be fixed arbitrarily and the corresponding volume dVo.
must be introduced.

Still the basic ingredient for the construction of a mixed string vertex is an
SDS vertex, that describes the interaction between a closed and an open string.

It is given by:
i <z=00W;-W; (3.2.45)
where

W, = :exp
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with z(1 — z) and z(1 — Z) containing the same set ¢ . ...iiary oscillators. The
vertex (3.2.45) has the property that, acting on any closed string state |a;, Gi, k; >,

gives the corresponding vertex operator in the space of the auxiliary oscillators:

ki\ . ks
it <zr= 0,0IWinlai,ﬂi,ki >12 = Va' (1, 72—) V/jl (1, 5‘) = Valﬁ,(l,k,)(3246)

In terms of this new SDS vertex we can construct a mixed string vertex that

is given by:
15, [dzad (2 — z4,0)] [T, 4Pz 1
VN‘M:/ dv, Y AL ) %)
abe ]Hl:l ’YL( ) j=17]( )71( )]
N M
x [IG<z=0,0) [[(;;< z=0,0]) -
i=1 j=1
N M
x <p=0,0R [ [[ % W: 3 ] % W, 47 4 W; f‘r,:l) lp = 0,0 £3.2.47)
i=1 j=1

where 4; (or 4;) is the operator performing the following projective transformation:

o 1 0

i = . (3.2.48)
Ug U; Up

Here the variables u,, u, and w, stand for anyone of the variables z;, z; and

Z; according to the sequence of the vertices in (3.2.47) in a generic term of the

sum prescribed by the R* ordering. By construction if we now saturate the ver-

tex (3.2.47) with physical states we immediately get the amplitude (3.2.44). This

follows from (3.2.46) and from the transformation property of the vertex operators

under (3.2.48):
FiVa, (L, hi) 3™ = (1) Vi (wi, i) (3.2.49)

where V,, can be either an open string vertex operator or one of the two vertices
in which V; 4, can be split.

The matrix element over the auxiliary oscillators can be computed and we get:
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N]\/I

/ H dl‘ ?9 l"z'+1)] Hﬁq dzzj o - .
dva,,c T, b Ly v ()s(D)]
N+2M
x? (i + LK) X Il (<z=0,00)-

{permut.} =1

N+2M 1 o

X expy — Z 2 Z a'nMrun F‘ —1V) a;, . (3250)
1g=1 n=0
1¥7 m=0

From eq. (3.2.50) it can immediately be seen that the integrand of our mixed
vertex is invariant under projective transformations. In fact also in this case the
effect of an arbitrary projective transformation P on z; or z; is that V; — PV,
and therefore the arguments FVfle of the matrices M,,, are left invariant. This,
together with the projective invariance of the integration measure, guarantees the
projective invariance of the whole integrand in (3.2.47).

The BRST invariance can be implemented as in the case of the only open or
closed string vertex by adding the contribution of the ghost coordinates. The

vertex (3.2.45) becomes:
a<z=00g=3q=3W W (3.2.51)
with
W, = :exp {fdz [—2l(2)z(1 = 2) — o1 — 2)by(z) + b(L = z)c,i(z)]}
W; = :exp {fdz Zh(2)z(1 — 2) — (1 — 2)bi(2) + b(1 — 2)5;(2)]} :

The complete N-open M-closed string vertex reads:

_/ I% [deH(z; — i) d?z; 1

Ve I A (OIEL % (D))
M
(;<z=0,0,¢=3|)[[(;;<z=0,0,¢g=3,§=3])-

=1

X

e

I
-

M :
x < p=0,0,¢g=0|R" (H W3 T ijwjyj-lij—wyffl) lp=10,0,g=0> (3.2.52)
i=1 j=1
Now, if we fix for example a closed string variable z, and an open string variable

Ty, the volume dVyu,. is given by:
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d?z,dzy
AV, = a 3.2.53)
= O O] (
The expectation value in (3.2.52) can be explicitly computed, yielding:
i T, [dzd(z; — Ziy1)) Hﬁl d*z 1
Vvwmw = / N M ;
: AVape | TT;L, '71‘(1)Hj=1 ”Yj(l)"f;(l)l
N+2M

Z H (i< z=0;0;¢=3|)-

{permut.} i=1

N+2M oc ] ]
"€Xp § — Z 5 Z a:vz‘/jn7't(rvi_1v;f) Cl,{""'f'

t.g=1 n=()
#i L om=0

2 <}

+ Z CizE'lt"n(P‘/i_11/J)b{rz,

. ) 1 N+2M 1 ’
6P (Zfilp’-;-zj‘_‘__l kf) II { >y E,L.,,L(Vi)bjn}. (3.2.54)
i=1

n=—1 m=-—1

The mixed vertex so defined is BRST invariant, since it satisfies the following

relation:

N M Mo
Ve D Qi=Vyu > Qi =Vyu Y @; =0
=1

j=1 i=1

where Q; [@Q, and Q,] are the BRST charges corresponding to the coordinates of
the open [closed] strings, defined as in (3.1.43).
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3.3 Vertex for the closed - open z:r:ng transition
From the expression of the mixed string vertex it is straightforward to derive
the vertex relative to the open - closed string transition. The final result is:

Vl;l = 1<a:=0,0,q=3]2<:c:0,0,q=3lg<§:=O,0,(j=3‘-

.exp{— [Zﬁ (a}h-g—{—af)-g—i—d%-k)-&

n=1
m=1
i ! N +1 ) 5 5 1
] d 1 2 2 712 =2
+ Z z (_1)"7- ( m+ 1 ) (C'n-' bm + Cpr bm + Cn- bm) +
n=2m=-—1 ’

2

Y (e ( e ) (ch B2 + 2 bh + 22 0%) | - 62 (p+ k)

n—2
(b1, — b — b3 + 67 + B5) - (b2, — b5 — B3 + B + bj) -
(62, — BG — by + b1 + b5) - (3.3.55)
"It is obtained from eq. (3.2.54) in the special case with ¥ = M = 1. In this

case the measure factor in (3.2.54) is equal to 1 and the terms depending on the

oscillators can be easily computed if we observe that:

_ 1 -1
TV, 11/;451 = ( 0 1 ) (3.3.56)
and
-1 0
VIV = ( L ) (3.3.57)

The expression of the vertex (3.3.55) is exactly analogous to the BRST in-
variant generalization of the Caneschi-Schwimmer-Veneziano vertex where now
one oscillator is relative to the open string and the others correspond to the two
sectors of the closed string; this reproduces the analogy between the transition
amplitude 1 n a closed to an open physical on-shell string state and an ampli-

tude for three open string states, already observed in ref. [23] after factorization
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of the mixed scattering amplitudes. In our approacs 15 form for the opén -
closed string transition vertex is very natural and also it can be considered as a
constituent piece in the factorization of a generic mixed string vertex, as it will
be shown with an example in the following section. But first it is interesting to
make use of eq. (3.3.55) for computing, for example, the amplitude between an

open string photon described by the state:
—ic-all0>®|g=1> (3.3.58)
and an antisymmetric tensor state of the closed string:

e (al al, —al,al)0>®lg=g=1>. (3.3.59)

Such an amplitude is obtained by saturating eq. (3.3.55) with the two states
(3.3.58) and (5.1.29). The result is:

A(photon — antisymm.tensor) = ¢, €,,(p*g*” — p"¢"*)6°(p+ k)  (3.3.60)

. where p denotes the photon momentum. It is also easy to see that the photon -
graviton or photon - dilaton amplitudes are vanishing as expected from angular

momentum conservation.

3.4 Factorization property of the mixed vertex

Another interesting example is the vertex for one closed and two open strings,
that is a particular case of our general vertices (3.2.47) and (3.2.52) for N = 2
and M = 1. Its integrand will depend on a complex z4 and two real Koba-
Nielsen variables z; and 2, relative to the closed and open strings respectively.
The projective invariance allows us to fix three of these variables. We are then left
with an integral over the fourth one, which corresponds to the fact that the closed
string interacts with the open strings by first becoming an open string through

the open - closed string transition and then generating the two open strings.
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This can be seen immediately by sewing the open - closed string transition
vertex with the 3-open string vertex after the insertion of a twisted propagator
(see fig.2), and we shall get the N =2 M =1 vertex. The integration variable of
the propagator corresponds to the variable that cannot be fixed in this vertex as
previously observed.

But before considering this sewing, we would like at first to explain what is,
from the point of view of the operatorial formalism, the meaning to give to the
sewing of a general N-string vertex with a propagator. For this aim we will now
introduce the definition of canonical forms: a canonical form is just a particular
form in which some operators defined in the Fock space of the oscillators can be
put, with the property that the product of two canonical forms is still a canonical
form. So if it was possible to define both the N-string vertex and the propagator
as canonical forms, then the sewing of the latter with the former would have the
simple meaning of product of two canonical forms, which can be easily obtained.

This is what we are illustrating in the next subsections.

' 3.4.1 Canonical forms

A canonical form in the Fock space generated by the oscillators relative to the

field z#(z) is defined [31] as any operator O which can be put in the following way:

0 =: exp {Z a:An} exp{ > at(Cum = 8 )@ {1 €XD {Z Bﬂ,an} exp {—¢} (3.4.61)

n=1 n=1 n=1
mz=1

or, equivalently, introducing a zero mode af = o} = p,:
b J\M
O =:exp{>_ af (Com — bnm)} : (3.4.62)

n=0

where the matrix C,,, provides an infinite irreducible representation of the pro-
jective group. ‘

Let us consider, for the sake of simplicity, the orbital part of the exponential of
the N-string vertex for open strings and let us extract from it the terms relative

to the leg E to which we mean to sew the propagator; it is:
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Ve = exp{ — Z Z Z Mn(TViVe)alE' — 5 7 0 3L(TV  VE)p §(3.4.63)
oy R izE"
This operator can be put in the following form:

exp { i Bm,agf)} exp {(]5} | (3.4.64)

m=1

with

B'm = - Z z a‘slz nm FV 1‘/E)

=] n=1
by

¢ = EN: iagjwfno(rvg-lvg)p (3.4.65)
:;1%3 n=0
Hence it is a canonical form, according to the definition (3.4.61).

Another example of canonical form is given by the twisted propagator. The
reason for introducing such an object lies in the fact that open strings have an
“orientation” since their couplings to a given final state are not invariant if an
. anticyclic permutation of the particles in the final state is made: so they must
remember in which way they are to be coupled. Since the N-string vertex we
have defined is symmetric, in the sense that all the external strings have the same

orientation, a twist is necessary when two of them are sewn.

A possible definition of twisted propagator [31] is given by:
P(z) =zl (1 - 2)V (3.4.66)
with
Q= eLl(~1)L0—"z3 W=1L,-L; (3.4.67)

~

corresponding to an intercept ay = 1. P(z) generates the following projective

transformation:
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It is a canonical form, since:

zlo —. exp Z a: (Mpm(A) = bpm) @m | - P
n=1

m=]

with

and
oo p oo _
Q(I) = exp [ a;{; "‘——'} . €Xp a,,'f(Mn.,,.,(:) - 6-11,111)a‘7n
m=1
exp [Z Eian] (1—z)2#
n==1 n
- with

I
An =
P
pm‘"‘
B, = 2
n
1,

63

(3.4.68)

(3.4.69)
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3.4.2 Sewing a propagator to a vertex

This operation is nothing but a product of canonical forms.
The product of two canonical forms O; and O, given by eq. (3.4.61) is again a

canonical form with

= ¢1+¢2+ D Bindon

¢
n=1
A = A+ CiA;
B = B+ B,Cs
C - 0102 . (3470)

So the sewing of the twisted propagator on the leg E of the N-string vertex
means to apply this definition of product to (3.4.64) and (3.4.68) and in this way

it is possible to show, by using the conservation of momentum, that:

7

expi— Y. Y, 0! M, (TV1VE)alE) b PE(2) =
1#£E n=0

\ m=0

;

N oo
expq— > > al) My (TV, ' VeP¥(z))al

m

i=1 n=0

\  #FEm=0
(3.4.2) shows that sewing the propagator to a leg of an /N-string vertex simply

means to multiply it by the argument of the matrices M, relative to that leg.

3.4.3 Sewing two vertices

Here we want to show in which way it is possible to sew a mixed vertex with
M = N =1 and a 3-open string vertex. If this procedure could lead to a mixed
vertex M = 1N = 2, then it would be a proof of the correct factorization property
of the mixed vertex.

For the sake of simplicity we show the steps of the sewing procedure limiting

ourselves to the orbital part. The procedure for the ghost part follows similar lines
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and introduces one new fermionic § function besides the nree ones present in the
general vertex (last term in (3.2.54)), yielding an equivalent form of the vertex,
but we do not want here to deal with this feature (see ref. [42]).

We want to compute the following expression:

d‘/lzl
dVAAE

~ - lde dVs.y -~
Via(A, A B) [ 5 Pola) [ S20V4,(F,1,2) (3.4.71)

F12
where the integration volumes stand for the usual ones, respectively of a mixed
vertex with V= M =1 and of a 3-Reggeon vertex, while E and F denote the two
legs to be sewed together. Vi1(A, A, E) coincides with the orbital part of (3.3.55).

Since V1.1(A, 4, E) and Vio(F, i, 2) are both defined as bra vectors, as first step
we have to invert the leg F' and then identify it with the leg E: in other words we
have to write VQT;O with E in the place of F'; it is obtained from %;O(F, 1,2) through

the following substitutions:

al — —alf ph — —p? (3.4.72)
F<z=0,0 — |z2=0,0>g (3.4.73)

The twisted propagator used here is given by [31]:
ldx -
T= [ P 3.4.74
& pa) (3.4.74)

where P(z) is given by (3.4.2).
As a second step we have to identify the Koba-Nielsen variables of the two

vertices as follows:
ZE =21 Zp =24 (3.4.75)

and we choose the variable z; as a function of z identified with the following

anharmonic ratio:

29— 21)(z4a — 21
T = (22,21,24,24) = Ez; — 7;))((:‘: B ;3 (3.4.76)

The identification of the variables as in (3.4.75) and (3.4.76) imply the identity:
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(A, A, E)Pg(2)Vy(F,1,2) = Vag (A, 4,1,2) (3.4.77)
which means that the expression (3.4.71) can be rewritten in the following form:

/0 HH (;<z=0,0];<z=0,0])-

exp{"‘ > ZZ (0, Mo (TV; 7 V1), + o] M..m(r%'lvi)“”}'

nm=0 1

1%7 I#£7T

- exp {—-—;- 2;0 [Z 0t Mo (CVV))ad, + 3 al M (DVT TV )a,

8P (k + p1 + p2) (3.4.78)

with i,7 = A, A and I,J = 1,2. The projective matrices V’s are however defined
according to the ordering in the two component vertices and not to the one in
the composite vertex. The correct ordering is obtained performing two projecti =
transformations Q4 and @i, in the space of the variables A and 1 respectively,

that change the old transformations in the new ones, as follows:
1:1 2;1 (3 2;1
VitQa=viT Wi =w

- It turns out that the corresponding operators have the following form:

Qa = (21,27, 22, 24)" " (3.4.79)

and

Q1 = (22,24, 21,22)". ' (3.4.80)
Furthermore the measure in (3.4.78) must be rewritten in terms of the Koba-
Nielsen variables of the composite vertex. Putting all together we can finally write
(3.4.71) as follows:

Hz d‘*z — ) 1 _
- [RERE H(m 1 I)H("“_O’OD'

1

exp{——z Z CL A/[nm FV lv)a’{n} ’

i#y nan=4

) W_ﬁ-l(,, -Wi+1 |

'(Zl>zA7ZZsZA ‘ZazAazlsz)

6P (k + p1 + p2)
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withi,j = A, A 1,2.

Therefore we obtain the vertex for one closed and two open strings, apart from
the two projective transformations that do not give any contribution if we saturate
that with physical states.

Since we obtained this vertex by sewing it is guaranteed to factorize correctly.
In fact, factorization is simply the sewing in reverse.

Furthermore we have also shown in a particular case that a closed string inter-
acts with open strings through the direct open - closed string transition.

The foregoing procedure can be followed step by step, as said, for the ghosts.
In this case the twisted propagator to be used in sewing the two vertices has the

following form:

dz -

T=(by—b) [ P(z) (3.4.81)

o z(1—2z)

corresponding to an intercept ay = 0.

3.5 Conformal cut off formalism

Zero modes can give rise to complications both in the orbital and in the ghost
contribution to the /V-string vertex.

For the orbital part, it is possible to show that the zero modes problem can be
avoided from the beginning. In fact in the previous sections it has been pointed out
that the field z#(2), strictly speaking, is not a genuine conformal field of dimension
0, but it is a genuine conformal field of wéight %8, where ¢ is a positive number.
The technique of the conformal cut-off consists in treating the position operator
x(2) with its true conformal weight and to send ¢ to zero at the end of calculations.

This formalism provides a more straightforward derivation of the N-string
vertex with respect to the one given in the previous sections: in particular it
gives the possibility to obtain in a much simpler the vacuum expectation value

of the product of the projective transformed SDS vertices. For this aim we need
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introducing a particular kind of operators in the Fock space that transform like
irreducible tensor operators under a transformation of the projective group. These

are said field operators.

3.5.1 Field operatoi's

In a Fock space generated by canonical oscillators an arbitrary element of the
projective group can be expressed through exponentiation of the operators repre-
senting the generators Ly, Lo, L; of the projective group, which are given by:
L= Z atDI (A (3.5.82)
n=()
m=0

where A, are the representation of these generators in terms of 2 x 2 matrices:
11 0 0 O 0 1
Ap == Ay = A=
2\ 0 -1 -1 0 00
An arbitrary element of the group can be expressed as:

U = explay L] explagLo] expla-L-] (3.5.83)

The exponentiation of an operator L, is simply obtained through the following [31]:

exp | Y at Dpm(A)am | =: exp > af (Dym(exp[A] = bum)am | : (3.5.84)
n=0 n=y -
m=0 m=0

where the quantity at right hand of (3.5.84) has been put in a canonical form,
according to the definition given in the pfevious section. It is possible to show
that canonical forms satisfy the group multiplication rules.

So an arbitrary group element (3.5.83) can be written in the canonical form:
U(A) =: expla} (Dpm(A) = Enn) ] (3.5.85)

By using canonical forms it is possible to show the simple transformation laws

under projective transformations of the field operators. The latter are operators in
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the Fock space that transform like irreducible tensor operators under a projective
transformation.

If V is a 2 x 2 matrix corresponding to a projective transformation, the field
operators operator-valued functions F/(V) and FJ(V) defined in the following

n

way:

Fl(V) Z at. Dl (

7rz1z
m—()

Z amD; ( (3.5.86)

m=0
Then, writing a group element in Fock space U(A) in canonical form, it follows

that:
UMF]/(V)UTH(A) = FJ(AV)
UNE/(VUY(A) = FJ(AV). (3.5.87)

In the next subsection we will show how these objects, considered for the orbital

oscillators, are connected to the definition of z(z) and to the one of the SDS vertex.

3.5.2 N-string vertex with conformal cut off

In the Fock space of the orbital oscillators, let us introduce the following field
operators:

:E:: Cl4_.l:)fn11

m={)

=> D, (TV)a., (3.5.88)

where the definition of D¢

mn

is, as usual, derived from (3.1.2):

. _ | Fm+e)T(n+1)1 ., 1 az+b\"
D'""(V>~JI‘(m-{—l)I“(n~+~s)n!(9 {(cz—{-d)f (cz—{—d) }

Let us now consider:

(3.5.89)

z=0

Fo(V) = FE(V) — FS(V). (3.5.90)
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It is straightforward to show that:

lim /T () Fo(V) = z [V(0)) | (3.5.91)

e—l)

i.e. this limit reproduces the ordinary position field z(z) at the point V(0), with

ao and al related to p and g by the following equation:

1
ay = %—Ei\/gq
1
af = L+ Ziveg (3.5.92)

Ve 2
But we can now go from V(0) to V(z) through a projective transformation,
under which F; has the simple transformation law (3.5.87).
Hence it is possible to give a redefinition of this field, seen as a conformal field
with dimension e for any arbitrary e through the quantity 'I:\/I‘_(E—)fg(V). This
turns out to be:

> ?’TL + 8) —(m+e/2) + . mmtef2) —€/2
5 [ e s

The vacuum for the Fock space generated by the oscillators a, and a} with

n > 0 is defined by:
a0 >=0 <O0lat =0 m > 0;

with respect to this vacuum one can introduce a new ordering that we will denote
by ;: which means that the oscillators a{*) must be put on the right side of the a{’*
with » > 0. So taking into account this definition one can compute, for example,
the 2-point function for the field z., which turns out to be:

L'(e)
(z—y)

From (3.5.93) one gets the following expansion for the momentum operator:

< z.(2)zc(y) >= |2 > |yl (3.5.94)

m=1 )

z.(z) = _t { 276 4+ Z (m + t) [a,,,(m +e)27"TF 4 ajtzm]}(3.5.95)

In this formalism we can give the following definition of the SDS vertex:
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U;(1) =;exp {— fdzm(l - z)a:ﬁ(z)} ; | (3.5.96)

where the index ¢ has been omitted and where, as usual, the field z(z) contains
auxiliary oscillators.
The integral appearing in (3.5.96) can be computed easily if the limit ¢ — 0 is
performed for the non zero modes; so one has: ‘
: =~ V7, ;
jgdzm(l —2)zi(z) = —1 {\/Em(l)au +> —n\/T—B"' (1l - 2)|,_, ag)} (3.5.97)
n=1 :
Since Fy(1 — z) is connected to the definition of the position field in 1, one may
also wonder whether there are connections between F,(V) with n > 1 and the
contribution deriving from the non zero modes in (3.5.97). Therefore let us con-

sider:
Fo(V) = EE(V) — F5(V) n>1 (3.5.98)
It is easy verify that in the limit ¢ — 0 one has:
iFn = ‘g—!ﬁa‘" z(V(2))],-0 (3.5.99)

Hence the operators F, result to be connected to the SDS vertex (3.5.96)

through the relation:

Ui(1) =;exp {- > Fna,‘;”} ; (3.5.100)
=0

from which, taking into account the transformation laws of the field operators, one

has:

Ui(7) = 4Ui(1)57" =;exp {—— fdz:c(v(l — z))z;(z)} ; (3.5.101)

This shows that in the e-formalism, the SDS vertex transforms under projective
transformations as a conformal field of weight zero. Hence the computation of the
expectation value of a product of more operators as (3.5.101) can be very easily

performed taking into account the following commutation relations:

[FaVil2)), Fi(Vi(2))] = DL, (TVi7'V)) (3.5.102)
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where the transposition rule for the matrices D,, has been used:

Dt _(A) = Dt (TATTY) (3.5.103)
So one has:
< 0] HU )0 >=exp —= Z Z D, (TV,7V §)ald (3.5.104)
;J =1n.m=0
i)

The same result is reproduced by the following operator which does not make

use of auxiliary oscillators:

Vy =< 0];exp —7 jt{dza: Vij(2)xi(2) ¢ 5 - (3.5.105)
13 =1
iy

So we can conclude that:

N

< [13U:ig7" >= N. < 0f;exp{ —= falzacz ii(2)z(2 )) . (3.5.106)
=1 z] =1
1#j

" where

N. = (271'6)%\"

The right hand quantity of eq. (3.5.106) gives the possibility of writing the
integrand of the N-string vertex in a very suggestive way.

From (3.5.104) the Lovelace results are recovered by taking into account that
the state |k >, with which the N-string vertex must be saturated in this formalism,

is defined, when represented in the z-basis, by the function:

1 DJ/2 1 i
< zlk >= ) exp (zkx — ZECE“)

that is an eigenstate of /¢ with eigenvalue k.



Chapter 4

N-Reggeon Vertex for the

Neveu-Schwarz String

‘Two N-string vertices for arbitrary open string states — Reggeons — are constructed
for the Neveu-Schwarz string. One is manifestly invariant only under the projective
group, while the other has the full super-projective invariance. When they are
- saturated with physical states they reproduce the correct physical tree scattering

amplitudes.

4.1 Fermionic strings

We want to review briefly here some generalities about the fermionic string the-
ory [33].

Basically the treatment of fermionic strvings is a straightforward generalization
of the case of the bosonic string. So the classical action for the fermionic string
can be derived from (2.1.1) by introducing a world-sheet supersymmetry that
relates the string coordinate z#(£) to a two-dimensional supersymmetric partner
spin-1/2 field ¢¥#(¢), and the world-sheet metric gnp to the world-sheet gravitino
(spin-g), Xo- In terms of these fields the classical action, with a flat metric for the

background space-time metric, is given by [43]:

73



7T4CHAPTER 4. N-REGGEON VERTEX FOR THE NEVEU-SCHWARZ STRING

2 1 a ? L i o i
S = / d“g\/g—z-g ﬁaa$”6ﬁ$#+“2‘¢/ VUV{Y’(,[)“—}——Q— (Xuf),/’,.y wl‘) (6ﬂwl,_ - Zxﬁ¢#> (411)

which is obtained from (2.1.1) by requiring invariance under local supersymmetry

transformations:

6Gap = t€(YaXa + V8Xa)

0xa = 2VaqE
ozt = dept
St = A4 (aa;ﬂc# - %XQW) . (4.1.2)

Here ¢ is an infinitesimal world-sheet spinor, 7, are the two-dimensional Dirac
matrices and 7 is the covariant derivative.

Furthermore, since in (4.1.1) there is no kinetic term for the gravitino, that
like g,4 is a nondynamical Lagrange multiplier, one has the vanishing of both the
two-dimensional energy-momentum tensor and the spinor current, which is just
defined by the variational derivative of the action with respect to the gravitino
 field.

It is important to observe here that one of the most important differences
between fields of integer and half odd integer spin is that whereas the former must
be single-valued the latter are defined only up to a sign which may not be globally
well-defined: this means that a spinor may change its sign under parallel transport
along a closed contour. This implies that, in order the action (4.1.1) is well-defined

we have to specify which spin structure on the world-sheet we are using.

4.1.1 The super conformal gauge

By appropriately choosing local world-sheet coordinates and supersymmetry pa-

rameter, one can define a superconformal gauge:

P(E)Nap

Xa = 7l (4.1.3)

Gap
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in which (4.1.1) becomes:
S = / d*€ [%&,m“@"z” - %%“ aw} (4.1.4)

Supersymmetry can be made manifest by formulating the theory in a complex
superspace coordinate, Z = (z,0), where # is odd (Grassmannian) so that §% = 0,
the super line element, dZ = dzdf, and super derivative, D = 3§, + 89,, satisfying
D? = 8. one may combine the bosonic spin 0 field, z, with the fermionic spin %

field, 9, into one superfield, X(Z), given by the expansion:

X*(2,2,0,0) = z(2,2) + 09¥ (2, 2) + GF(, 2) + 00F*(z, 2) (4.1.5)

where ['*(z, %) is the so-called auziliary field.

In super space the gauge fixed action reads:
1 _ o
S[X] =3 / dZdZDXDX (4.1.6)
where the integration over odd variables is defined by

/d9 —0, /dee =1 (4.1.7)

The solution of the equation of motion implied by the action (4.1.6) is given

by:

X" = Xt(z) + X*(2) + 09+ (2) + 09+ (2), (4.1.8)
where the fermionic coordinate admits the following expansion:

PH(z) = =13 bR (4.1.9)

where the index r is half odd integer for the Neveu-Schwarz model (bosonic sector)
and integer in the Ramond one (fermionic sector).

Eq. 4.1.8 shows that right moving and left moving fields on the world-sheet
decouple, so one can consider the two sectors separately exactly as in the bosonic

case.
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4.1.2 Super conformal algebra

The super conformal conditions given by eq. (4.1.3) can be formulated in super
space. The superconformal residual invariance is generated by the super energy-

momentum tensor:

1

T(Z) = -5

DXD*X(Z) A (4.1.10)
This can be expanded as:
T(Z)=S.G2"" 2 +8> L,z"? (4.1.11)

where the summation variable r is half odd (integer) in the Neveu-Schwarz (Ra-
mond) sector.
The expansion (4.1.11) of the energy-momentum tensor defines the generators

of the super conformal algebra:

[L-m Lm] = (TL - m)Ln+m + i%n(nz - 1)511..—111

1 o
{Gma Gn} = 2Lm+n + §C (m— - i) 6-m.—-—n
1

[L'nu Gn] - <§m - 'TL) G1n+n‘ (4112)
In the Neveu-Schwarz sector Ly, Ly, L1, G_12, G1/2 generate the super pro-
jective subalgebra (O Sp(1]2)); we will deal with the elements of this subalgebra

in sect. 4.2.

Under finite super conformal transformations Z — Z(Z), one has:

dA(Z)(dZ)* = ®a(2)(d2)* | (4.1.13)
and so:
$.((2)) = ®4(Z)(D)** (4.1.14)

where D6 denotes the super jacobian of the transformation.
This tensor, analogously to the bosonic case, can be exploited to derive infor-

mations about the transformation properties of a primary super conformal field
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under a super conformal reparametrization. Indeed a general primary super

conformal field, ®4(Z), of dimension A has the expansion:

6-6 / 1/2 'I' / 9_0/,
o) z/)zq)A(Z )+ 2 p BA(Z')+——0'®a(2)(4.1.15)

2=z z -
X is a primary super conformal field of dimension 0.

T(Z)®5(Z') = A

4.1.3 Physical states, vertex operators and scattering am-

plitudes in the bosonic sector

The bosonic sector of the fermionic string can be quantized by requiring together
with the commutation relations for the bosonic oscillators also the following anti-

commutation relations for the fermionic oscillators:

{bli’ bl:} - guU§r+s,O' (4116)

r

From eq. (4.1.11), considered for the Neveu-Schwarz sector, taking again the
- annihilation operators to be those multiplying a singular z-dependence at z = 0
we get immediately the definition of the vacuum for the NS string.

Two different pictures can be used in order to define the states of the bosonic
sector of the string. These pictures, that can be shown to be equivalent, are called
respectively F; and F,.

In the 7, picture, the on shell physical states are characterized by the following

conditions:
1
Ln|phys >= G, |phys >= (Lo - 5) |Phys >=0 (4.1.17)

with n,7 > 0.
There exists a correspondence between the physical states in the picture F;

and those in the picture 73, given by the following relation:

Iphys(F1) >= G_1/2|phys(Fz) > . (4.1.18)
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A physical state |phys(F1) > is not annihilated by Gy/2. In fact:

Gl/glphys(]:l) > = Gl/zG_l/glph}’S(fz) >
= (2L0 - G_l/gGl/g)lph_YS(fg) = IthS(fg > . (4.1.19)
|phys(F;) > is annihilated by G, with r > 3/2.

A vertex operator V,(z,8; k) corresponds to the physical state |a >; in the F;
picture the request of superconformal invariance of the theory makes this operator
a superconformal primary field of dimension A = 1/2. The following conditions
are satisfied by the operator V,:

I;SmOVa(z,B,k){O_ > = |a,k >
lim < 0|V (z,0,k)0> = < a,k|
1
v (;,0, ——k) = Va(z,20,k)z

Lo V2] = [*70.+ 5(n+ 12| Ve

G, V¥ = xa.[:+2vy] (4.1.20)

that generalize to the fermionic string the conditions (2.3.72).

V7 and V¥ are the two components of V,:

Vilz,0,k) = VZ(2, k) + 0V¥(z, k) (4.1.21)

where )\ is a constant Grassman parameter.
The vertex associated to the tachyon state is given, similarly to the bosonic

string case, by the vertex operator
V(z,0) =: gihe(z6) .

A physical state |phys(F;) > is associated to a vertex operator with dimension

A = 1, as in the bosonic case. This is the reason why the F; picture was used
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to give a manifestly SL(2, R) invariant formula for the tree amplitudes in which
cyclic symmetry can be readily established as in the case of the bosonic string
theory. |

The scattering amplitude for an arbitrary state of the fermionic string is given

by the super Koba-Nielsen variables formula:

e

where dVy. is given by (2.4.82).

N .
< O] Ve (24,65 k) [0 > (4.1.22)
i=1

4.2 Super-pro jectivé transformations

In this section we give some definitions and derive some useful formulas about
super-projective transformations, that will be used in constructing a super-projective
invariant N-string vertex.

Let us first define a super-projective transformation on the variable (z, )

in the following way [44]:

az+ b+ ap

cz+d+ By (4.2.23)

az+p3+ Ap
cz+d+ By
with:
a,b,c,d €eR ; G =ad- bc#0,

a, 3 Grassmann parameters,

a=Js(af-ca) ; B= (b8~ da)
A= J-(G-3a8) ; B=L(G-1af)=vG—ab.

This transformation can be also and nicely represented (a multivalued repre-

sentation) by the following 3 x 3 super-matrix!:

'See for example ref. [45] or [46] for definitions of super-matrices and super-determinants.
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a b a
ve=lc d B | (4.2.24)

a f A
acting on vectors & = (z1,zq, pz2), With 2 = x1/12.

Its super-determinant is simply given by:
DetV*=B.

This is a particular superconformal transformation®. In fact (4.2.23) can be

also written just as in the general-superconformal case [45]:

az+b az+p B
. ) _ — ®(2)J(z
V(2,0) rd P erd o rd v(z) + ¢ ®(2) ()(4225)
~ o .—c‘zz+5 B —
) VP(z,0) = b 4o = B(2) + 9 J(2)

with v, ® and J satisfying:
8.v(z) = (J(2))* — (2)8.8(2).

The group of these transformations is the graded extension of the projective
(or Mébius) group and in the previous section we have seen that in the Fock space
of the string states its generators are the operators L_;, Ly, L1, G_% and G%.

The super-Jacobian [47] of a superconformal transformation is simply given by:

(2, ¢') (6(,0')—2 <8z’ oy B¢’ Bz’>
sJ - = | = _—— ] =
() dp 9
o} 0

hence for the transformations (4.2.25) one has:

(2, ') B
: = . 4.2.26
SJ(z,cp) cz+d+ By ( )

2As in the general case there are two possibilities in choosing the sign in front of square-roots;

they correspond to two disconnected parts of the group.



4.2. SUPER-PROJECTIVE TRANSFORMATIONS 81

The behaviour of a primary superfield, F(z, ), under a super projective trans-
formation, according to the general rule for superconformal transformations [48],

is the following:

B

2A
—_— F(VEV? 4.2.27
cz+d+ B(p) ( ) ( )

F(z,9) = V*F(V*)l= (

where A is the superconformal weight of F'. The expression of the operator V* for
an arbitrary super-projective transformation in the Fock space, corresponding to
the (4.2.23), is given by3:

L
f/s — e—(c/a)L1 e(&/‘l)Gl/z (G u? ﬁ) 0 e_(a/a)G_1/2 e(b/a)L_l. (4228)
- (¥

Now we can introduce the supersymmetric extension of the Sciuto-Della Selva-

Saito vertex:
W; = Wo, +0;Wy, = : exp {— $dZ DX (z.p) - XO(1 42— b1p,6:+ o) } . (4.2.20)
Our expression for the fermionic field ¥*(z) is:

W) = =i 30 (bR )
r=1/2
The superfield X9 depends on auxiliary, or interaction oscillators (in the fol-
lowing without any superscript). The superfield X9 depends on the oscillators

acting in the Fock space of the i-th string. 6, is a parameter of a super-projective

transformation acting on the variables (z, ). More explicitly we can write:

i<z=0,0W; = ;<z=0,0] : exp{ip" z(1)} x

sl . rl
exp {3 Ll 0 214 om0 — i 3 ol b0 HY(1 4 2o |

n=1 r=1/2

3n the following. writing only V. we will mean a simple projective transformation, that on the

variables yields:
2z — v(z) = Vu'(z) e

and the super-Jacobian is:  sJ = /v/(z).
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exp { ; {ip‘“ (1) + i3 el a1+ 2) =0 +

n=1
o . ot
+i ) (r—i/Q}! b\ 8:" *2(1+2) im0 =
r=1/2

= ;<z=0,0| : exp{ip"  X(1,6;)} x
exp{ Z S0P X (14 2.6)].= }x

T

Y
exp —1 Z (r— 1/2)‘ b(l «,8" ZDX(1+Z'9i)]z=() . (4230)
r=1/2

It is easy to realize that the W vertex is constructed in such a way that,
applying the operator (4.2.30) to an arbitrary physical state of the i-th string,

|a;, ki >, we get the vertex operator* relative to that state, computed in (1,6:):
i<$:0,0lWi|a,’,k,‘>,’= Va,(l,()i;ki) (4.2.31)

This operator has superconformal weight A = %, and we know how it trans-
forms under projective or super-projective transformations; whereas the W vertex
is not even a primary superfield. Nevertheless we want to transform it from the
point 1 to the point z; and collect N of them so that we get the general coupling
of N arbitrary states of the N.S. string, without any restriction to the physical
ones. We have two ways to pursue our task, that we are going to explain in the

sections 3 and 4 respectively.

4.3 Projective invariant N-Reggeon vertex

In this section we construct an N-Reggeon vertex using the more familiar

projective transformations on the vertex (4.2.29) previously introduced. We keep

“See for example the second ref. of [29].
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the 6’s parameters for the sake of completeness: this choice will be discussed at
the end of the section. We will get a manifestly projective invariant vertex. We
can perform one of the possible projective transformations such that 1 is mapped

into z; (and 6; is left only scaled). We choose the following transformation:

o0 1 2 . a;z + b,‘
;= (1 =Up\R) = ———— 4.3.32
7 {21‘_1 i Zz‘+1} %1 +2) = wi(2) ciz +d; ( )
and v;(z) has the usual parametrization:
ai = zi(2i = zip) b= 2z — 2)
(4.3.33)
Ci = 2 — Zin di =z — 2y
The expression for the corresponding operator #; is:
A -—%L]_ a? Lo b'L-“’;a L.
Y= € <‘G‘:> € .
So we introduce the following definition for the N-Reggeon vertex:
I 42 T15 92 — 2i)
Ry =
dv:lbc Hl:l 7!(1)
N N
H ;<z=0,0]) <p=0,0/J] % W;47![0,p=0> (4.3.34)
where:  Z; = (z;,6;),
adzpdz. | 2 — % i-1 — %
A dz. dz dz and (1) = BT Z)(E = &)
(za = 20)(26 ~ 2c)(20 — 20) Zip1 = Zio

This operator, applied to N physical states, yields the tree-amplitude in the
super Koba-Nielsen form, as it can be immediately shown making use of formu-
las (4.2.27) and (4.2.31).

It is very instructive to work out from the expression (4.3.34) a form without the
auxiliary oscillators. For the actual computation of the projective transformation
on W; it turns out useful to represent the orbital part of W; by the unitary

irreducible representation of the projective group with spin J = — (with e — 0

£
2



84CHAPTER 4. N-REGGEON VERTEX FOR THE NEVEU-SCH WARZ STRING

after having performed the whole computation). The use of this representation,
called for brevity e-representation, involves a reordering with respect to the zero-
modes because the oscillators ay and al are needed instead of ¢ and p. As
regards the spin part it can be represented by the UIR of spin J=-3

In this way we get, apart from c-factors, an operator that behaves exactly
like a primary field of supérconformal weight A = 0. We want to give here its

expression written in the following concise form:
; exp {—j[dZ DXE(i)(z,go) X (142 —bip, 0: + ) } ;

The subscript ¢ in the fields of this covariant vertex refers to the field x, that has
conformal weight A = § defined in the previous chapter.

Hence the projective transformation y; on the vertex W; can be easily computed
and also the vacuum expectation value of formula (4.3.34). We get the following
expression:

H, 1 dZ H\ Tt 19("*1 Z'H-l N
Ry = / (;<2=0,0
N dVabe 1 7i(1) 1—=‘[ ) x

,

[oe)
exp —Z S al) Mo(TV;'V;) @) LS DYV ) )| b x

1,5= 1 n=0 r=1/2
L i#y m=y 4=1/2

N
— > 16 Z S M, TV V) e+

L 1,=1 r=1/2
1<] n=0

exp

—1 Z m amD /21 S(I‘Vi_le)b(sj) +

m.
=0

s=1/2

o

+6; | 3 ad M, a(rv ) 07 e+
m=0
s=1/2

+i S BDY2 (Vi) e v | +
r=1/2 :
n=0
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-0, 1/—~vr-+1/2b.ﬁ”MM%_”%(FVi‘lV})bgj),/ﬁ—s+1/2+

r=1/2
s=1/2

50
. , (i) 4 1/2 -117.\ o (J)
—3 Z ma,, D‘,"‘+%_,”‘+%(Fvi Vi)a; vn X
n=0
me=={)

x 8P (X, p) ' (4.3.35)
where o) = pti) | and V0 has to be understood as 1.

The infinite matrix {M,,,} is related to the true (J =—¢/2)-representation
element {D¢ 1}; that is:

emzl W)= dE e (EE)] <)
~ z=0

Do) = E () = VEMun)

m>1

D5, (V) = /= <_§)WB = V& Myn(V)

DgO(V) =1 - ElOg <—£i—> =1 -+ EMOQ(V)

VG

The matrix {D}/?} is the (J=—1/2)-representation element, given by?>:

1/2 _ 1 g1
D, (V)_ma z[cz—f-d cz+d

r—i
VG ( az + b) 2}
z=(
It is worth to point out that the latter matrix has a transposition rule depending

on the sign of G:

[DY2(V)T = !—g—’Dl/Q(FV‘lI‘).

By V we have always meant the real 2 x 2 matrix:

5The following is a two-valued representation. The previous one also is two-valued because of

normalization factors.
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a b
V=
without restrictions on the determinant, and by I' the matrix:
01
I'= .
The coefficients of the V; and V; matrices are given by (4.3.33); the product vy,

means the composition of the two projective transformations:

oo 0 1
Zj-1 R A

Therefore, like the bosonic N-Reggeon vertex, we can conclude that this vertex

Zi_ Zi 2
U =TV ! \: ' ! } and Vi &
0 o 1

is projective invariant at sight. In fact a projective transformation on the variables

Z; of external legs:
zZ; A(z,i)

b — JN(z) 6

corresponds to matrix products AV; and AV in the argument of the infinite
matrices {D}, that consequently remain unchanged. T he transformation on the

@’s is compensated by a factor:

fi]

that comes out from the integration measure in (4.3.35).

However the expression (4.3.35) is not super-projective invariant and we can'’t
fix to zero two of the §’s. We may indeed integrate from the beginning over the 8’s
but this would be paid with a certain complication in computing the vacuum ex-
pectation value in (4.3.34). Alternatively a simplification can be obtained putting
all the §’s to zero and using the Wy, of formula (4.2.29) in the expression (4.3.34).

In the subsequent expression (4.3.35) we are left with the first two lines only. This
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means, on the other hand, that we have to work in the old F; Fock space [49]“, in

which the tachyon state is given by:
ki - 61900, ki > (4.3.36)

and all other physical states are related to the usual ones (that live in the F, Fock

space [49]”) by:
|phys (F1)> = G_y|phys(%3)>

We have applied the RN vertex to IV tachyon-states like (4.3.36); the N-pion

amplitude [49], b is easily derived:
4
= R{ 17, (ki : bg‘“[o,km) =
dz; N
i= 1 1 Fol
= / dVb V' 119(2"'_’81'4-1) (Zx 1k)( )2 X
aoc
A(Ntach.) < P & i
Mmmt Y (e fake b g,
ij=1 {i1vin} Ziy — Ziy Zinoy T Ziy
1< '
=0 N odd
where the summation runs over permutations with i; < 12,...,iy-1 < in; and p
is the parity of the permutation.
The 3-Reggeon vertex can be also easily derived:
. .
= [IG<z=0,0]) 6" (v ) x
=1
3 20 n . .
exp Z _\}1 a’L p(l-}-l) + Z m m ( N ) aS)_ ag;+1)+
i=1 |n=1 n=1
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Before passing to the discussion of a super-projective invariant version of the
N-Reggeon vertex we want to remark that the R(,\“}c‘) vertex can be also rewritten

in the following way (in the e-representation):

N odz IV 9(z— 2ia) &
R(J"l) — / H“'l v Ldi=t <a' =0, O
N dVabc H:\_x ’71( E ’ !
. exp _7 }{dz X (0502 \Joy (21 9) - DXIz00) 0 3%
j=1
_,;]
(27{'8)DN/2 6D (va lp(1)) (4337)

where different vacua are used and also different 0, k; >, states. The X, fields in

(4.3.37) have superconformal weight A = £ , so that in the case of the transfor-

mation V7'V, we have:

X{i = X (vi,-(z),,/vz,-(z) «p) ( vij(Z))a

CLijZ -+ b,‘j

where vi;(2) = ,
! cijz + dij

and ajj, bij, ci; and di; are elements of the matrix V,7'Vj .

i

4.4 Super-projective invariant N-Reggeon ver-

tex

As we already pointed out all the previous expressions for the N-Reggeon
vertex are merely projective invariant. We can construct an N-Reggeon vertex
in an alternative and suggestive way, by transforming with a super-projective
transformation the W, vertex from the point (1,0) to the point (z,0;) , and
then collecting IV such vertices as in (4.3.34); eventually we can also eliminate the
auxiliary oscillators.

Let us first proceed looking directly for a form without auxiliary oscillators like

(4.3.37),1.e. a manifestly super-projective invariant expression. It should contain,
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in the exponent, the field:

By r (4.4.38)

X8 = X9V, Ve
Vs S 5 (2,9), Vi (2 ) C,:jz+dij+ﬁij‘10

Vij is a super-projective transformation given by the product (V;*)-! V? —that
can be easily computed making use of super-matrices (4.2.24). (V;*)™! corresponds

to the transformation:

diz — b; + Bip
Z  —
—Gz+a; — @;p
o — —fiz+ai+ Aip

—CiZ +a; — &;p
while V}? corresponds to (4.2.23). The coefficients a,b,c and d are given by
(4.3.33). @ and f take the following values:

2i0;_, — 2;_,0; i, — 0,
o = Sy ——— B: = [y, ———=
: : 2oy — % ' ' Zio1 — 24

(4.4.39)

with i = (202, — 2)(2i — 20,1 ) (21,0 — Zioy).

We will also use for the transformation Vi; a shortened notation as in (4.2.25):

3

2 = Vi(2) = vi(2) + 0 @,(2)J,4(z)

(4.4.40)
v = Vi(2) = 0,(2) + 9 Jy(z)
and in Lovelace extended notation:
, (21, 0i) (2:,6;) (2i41,0;) (c0,0) (0,0) (1,0)
V:_] - o ;
(OO’O) (0’0) (170) (3j~170j~1) (z]'aej) (Zj+1’®j)

©; is obviously a combination of 0;_, and 4,.
It is rather easy to convince oneself that a super-projective transformation,

A*, acting on all external legs, implies:
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so that the superfield (4.4.38) is left invariant. This fact assures that the operator
part of the N-Reggeon vertex is super-projective invariant.

We also introduce the following new integration measure:

du . dz; IS H(zi — zia)
/’L]V = 8 . r
d abe H:\;l l: J’Z(;“X‘—)] ==
p=\

(4.4.41)
z.p)

where we use the super-projective invariant expressmn for dV. [50],

J dZa de dZ,
d‘/abc = 1/2
[(Za - Zb)(Zb - ZC)(za - zb)(zb - z':)]

The new integration measure (4.4,41) is super-projective invariant by itself.

Finally a manifestly super-projective N-Reggeon vertex for the N.S. string is

given by:
N
/du}’v I] (:<al=0,0]) x
=1
; expq —= Z }(dZX V-(Z).Vﬁf(Z)) DX (z.0) p ;%
1,5=1
zj#y
(2me)PN/2 67 (s,pt) (4.4.42)

Translating the different conventions on states of expression (4.4.42) in the
usual ones, and letting £ go to zero, we obtain the following N-Reggeon vertex in

oscillator form:

N N ] D‘/ZLP
Ry = /d,u,j’v [T (i<z=0,0]) exp{ - {p(”log ( V-Z-J>

=1 ig=1
1<y

7 gn DV? .
J;0 '+ E pvr g {log < VMJ )} o al) +
t ®

ne1 =( n=1 1 =0
1 m .
[ an (4)
+ Z a‘m ,,l " 8' [(V:) }:::0 arz +
'"—11 K p=U
i
o L DVE 1\ j
LS et |2 ()] s
e ! 'Vl; ‘/z; z={)
; p=l}




4.4. SUPER-PROJECTIVE INVARIANT N-REGGEON VERTEX 91

1
o0 1) 2 [N
(z) wof = (J) — (7)
Rl (Vf-) J 3w hj) L”an i
r=1/2 J J sa=u r:f - p=0
~ oo @ a‘g_% &y bj)
s=Zl/2p (3_1/9)' [a.. + bl]Jz=0 ' +
- i al { 11/,42)| S [——*—DVL; <‘1~) } by X
s=1/2 ’ ‘/'; ‘/‘; zzo
n=1
% &P (Z:\;l p“’) ' (4.4.43)

The previous expression can be written in the following compact form:

= [ du, T i< 2 = 0,005 <ZP1)

1=1

(4.4.44)

Hexp[ Z Do (V5 A(’ A“

i<y n.m=0

with V;; = V"1V,

The indices n and m run over all non negative integer and half integer numbers

and A} = aff) or b depending if n is integer or half integer. The matrix Do is

given by:
1 N Vg(z €)>2(u_[.n]) ) 4 1
’D'nvn = ——D"" —-n : V= 3,0 =[xl n 2> o m >0
n[m] {( V#(z,0) [V*(2.0)] oo =9 =
DV?(0,0)
Dy = log|——m2~
v = T
1 *(2,0) V9(z,8)
Do = —— D™ 9. | — 4.4.45
L 5] { Vo(z,9) (wz,e) (4.4.45)

where [m] is equal to m if m is integer and (m — 1) if m is half-integer.

As in the bosonic string the form of the vertex (4.4.45) is independent from
the particular choice of the superprojective transformations Vi(Z), that generalize
the transformations V;(z) of the bosonic string.

The expression (4.4.43) reproduces the scattering amplitude of N tachyon-

states as it can be easily checked by using the following formulas:



92CHAPTER 4. N-REGGEON VERTEX FOR THE NE VEU-SCHWARZ STRING

fes]

2~ i
_ BT En g -z,
\/zi+1 — Zi1 ( o l)

Zigi — Zic1 41 T RSjed
= (- z,) B i
B; B,

o
SN

‘\

S

We immediately get:

N

j\’ dZ:L .
Ry TL(10,ki>) = / Hdl I 9z — 20 X

=1 abc

N d.
[T & e |- 5 tog(52) boky| 67 (mik) -
=1 4

=1
1<y
N dZ; al
HCIZ 1 b ——11 ’19(2i - zi+1) H (Z'i - Zj)kl.kj 5D (Zﬁlko )
abe 1g=1

1<J

If we restrict ourselves to the case N = 3 we reproduce the 3-Reggeon vertex
constructed in ref. [27]. In fact in this case we are left with only one # and it
~ is quite easy to compute the actual coefficients of the composed transformation
(4.4.40) and consequently all the terms appearing in the formula (4.4.43).

In conclusion we get:

/d@ H(<CL‘ 0,0]) exp{ i{i% (i) t+1)+

= n I 1 r—1/2 P
+Z(—1)"\/%(7:> I)a’“’+ }<;_1§2>b.(r‘)-bi“) X

n=1 = 1/”
m=1 s=1/2

3 20 0 o ‘ .

Th
=1 |r=1/2 r=1/2

+Z '“—— F—HH-:2 ( T +IL1/2 ) a‘("’i). b(’.iﬂ) 6D <Z?=1 p(i)> ’

r=1/2
n=1
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As we said in the beginning of this section it is possible to show, after fairly
long calculations, that the vertex (4.4.43) is equal to:

N
[ TI (:<z=0,0)) x

=1

<p=0,0| H P Wo, ()70, p= 0> : (4.4.46)

In this expression the super-projective transformation 7! is the generalization

of (4.3.32):

(O0,0) (170) ‘ (2’0) ’yf(l-i—z.ga) = Viz(z,cp)

(zi—1,0i~1) (zi;ei) (3i+1, 0;) 730(1 +Z~<P) = Wp(zﬂp)

with V;* and V;* given by (4.2.23) or (4.2.25) and the coefficients given by (4.3.33)
and (4.4.39).

The operator 4; is like (4.2.28) but with the following parametrization:

3l = e—ﬁLl e%Gl/2 (__“Gi fi“ﬁi)[lo e—%-fG—l/2 eg%iail’“l.

Still, after use of (4.2.27) and (4.2.31), one can immediately check that the
vertex (4.4.46), applied to N arbitrary physical states, yields the general tree-
amplitude.

The N-Reggeon vertex we have constructed in this section is the best candidate
for the introduction of the ghost fields: the structure of the terms in formula
(4.4.43) should suggest the way how to treat those; for this purpose we believe
that it is very useful to introduce unitary representations of the super-projective
group, as well as that the calculations needed in going from (4.4.46) to (4.4.43)
may be drastically simplified by using their properties as in the case of previous

sectiomn.
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Chapter 5

g-Loop Vertices for Free Fermions

and Bosons

This chapter is devoted to the possibility of applying the formalism of the N-
string vertex to any conformal field theory. The starting point in this case is the
- N-point vertex, which has now the property of reproducing the N-point correla-
tion functions involving the primary fields of the theory when it is saturated with
the corresponding NV highest weight states. By means of the sewing procedure one
can then construct the N-point g-loop vertex, that gives the correlation functions
of primary fields on a genus ¢ Riemann surface when it is saturated with the cor-
responding primary fields. This program of working is developed for free fermionic

theories.

The g-loop vertex for free fermions is expressed in terms of the Szegd kernel
and we study its connections with the g-vacuum, that is the starting point for the
computation of multiloop amplitudes in a recently developed operator formalism

on arbitrary Riemann surfaces. [11]

The same construction for free bosons allows to check bosonization of the free

fermionic theory on an arbitrary Riemann surface.

95
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5.1 g-loop vertex for free fermic:.:

The starting object is the vertex with N external legs for free fermions on the

sphere [20]:

N 00 N
V]\?O = Hi < Olexp __.;_ Z Z (1 D(l/") UV)b(J) (511)
1=1 r.s:‘—.ll"=
P i
where U; = I'V,"" and
(1/2) 2)) = §— 1/2 1 r—1% 1.2
Dy (V) = 5= 1/2) & [V'(2)} (V(2))7F] . (5.1.2)

is an infinite dimensional representation of the projective group corresponding to a
conformal weight A = } and I'(z) = 1/=. Vi 1(z)’s are projective transformations
corresponding to a choice of local coordinates vanishing at the Koba-Nielsen points

Although in the past the choice of V;"}(z) found by Lovelace [41] has been
. widely used, our results do not depend on the particular choice for Vi(z).

The vertex (5.1.1) reproduces the correlation functions of the free fermionic
theory. Indeed if we want for instance to compute the fermion propagator on the
sphere we have to saturate VJ, with the fermion states obtained by the relation:

1
2

tim [V ] 9 [V ()] 10 >= gm0 > (513)

(1

corresponding to the local coordinate V;7}(z) vanishing at the point z = z;.

Here the following expression for the fermionic field is assumed:

By saturating (5.1.1) with two states as in (5.1.3) we get the Green’s function

for free fermions on the sphere:
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< P(2)(y) >= —— | (5.1.4)

Y

In the same way one can obtain from (5.1.1) and (5.1.3) an arbitrary correlation

function of the free fermionic theory on the sphere.

3.1.1 Sewing procedure

The vertex Vi, is obtained by sewing together 2g legs of V{5, ¢ after the insertion

of the following twisted propagator [31]:
P(z,) = (-1)1 B uglo(1 — z,)W (5.1.5)

on the uth leg, that is sewn to the next one. The twist operator {2 and W are

given by:

Q=e(-1)b"F W=1I,— L, (5.1.6)

Even if we use for convenience the twisted propagator we believe that our
results are largely independent from the specific choice of the propagator as it will
appear from subsequent calculations.

Furthermore B, in (5.1.5) can be regarded as the uth component of a g-
dimensional véctor, which can take the values 0 or 1, corresponding to the possible
insertion in P(z,) of the fermion parity operator (—1)F. The quantities B,’s spec-
ify the boundary conditions fixed for the fermionic fields around the g homology
cycles commonly denoted by b of a compact Riemann surface of genus g: hence
the vector B, so defined, takes into account of the Spin structures.

Let us examine in some detail how the sewing procedure works.

The starting point is the vertex V,ﬂzg‘o on the sphere defined by (5.1.1). We

will use the following conventions about the indices:

,j=1,...,N my=1...,g (5.1.7)
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and we will sew the leg N + 2p — 1, that will be labelled only by 2 — 1 with the
leg N + 2, that will be labelled only by 2u.

The first step is joining the propagator (5.1.5) to the each of the legs labelled
by 2u — 1 of the vertex Vyio,0, according the meaning given to this operation
‘1 sect. 3.4.2 and to connect it to the leg 2u. Oscillators of the latter must be

inverted according to the following rules:
pi2w) — —pF(2m) (5.1.8)

Furthermore the vacuum of the Fock space of the string labelled by 2u must be

transformed from left vacuum to right vacuum, i.e.:

2y < 0] = 10 >2, (5.1.9)

Taking into account the transposition property of the matrices D/,

D(l/o)(UV) D(l/z)(Uj‘/i)

nm m

and that the insertion of the propagator Py,—; on the (2u — 1)th leg amounts to

. send:
V:.Z,u—l - ‘/Zu—lp’.?.u——l = Vlu—l
Ug#_l — Pgu_lI\VQ;l = 02#_1 (5110)

one obtains from (5.1.1) the following vertex:

~ N g
Vg0 = H li< 0] H 2u-1< 0]
1=1 n=1

N o » g 20
exp l Z Z me” UV b(]) ZZ z b(i ” UVZV l)b(2u 1)
2 1]=1'r.s=5 i=lv=1,, ,_%
i
g
+§:1§:1 Z b’)Dm UVzu)b 2#)+ Z Zl b(2[£ ”D (UQ”_IVQU~ )b 1)+
i=1v= 'rq—§ ’ll/——l,q 5
nF#EV

g =S q g
S }: 0% D,y (Uzy Va1 B2V — Z D, (U2 Var )b 5 T1110 %8,d.11)
pr=1

/LV:l [_L:]_
n#Fv

N
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where V' means that the insertion of the propagator has i-oen nerformed.
Constructing a g-loop vertex sewing each leg 20 — 1 1o the next one 2y, af-
ter the insertion of the propagator, means to calculate a multiple trace of the
operator (5.1.11). Each trace can be conveniently computed introducing a set of
coherent states; in the Fock space generated by oscillators b, the latter are defined

as follows:
‘/3 >= E_Em=%/3mbmlo > (5112)
They satisfy the properties:

balB> = B8 > (5.1.13)
<P, = -<BI5: (5.1.14)

By this choice the pth loop trace of the vertex (5.1.11) results to be defined

as:

~ o B i
Tr(Ep—l.Qu)VI\.}-i-Qg = / H dzﬁﬁez""é -1 < ijﬁuzgiﬁ >au (5.1.15)
1

n=gy

Hence the N-point g-loop vertex is given by:
g .
Vg = I Triop-120) Vi 1oy (5.1.16)
u=1

The traces in (5.1.16) lead actually to gaussian integrals, which allow to write

Vv, as follows:

Vi, = [detM]} exp [—%(X;MIX)} (5.1.17)

where the matrix M is:

ME(MH Mu)
Mz Mo,
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being the elements M;; themselves representation ini: Loires:
(M)t =20 (M)t = DUt o) p#EV
(M) = 6,6 + FIY F1 = (=1)P Dy (UnuVar-r)
(Ma1))y = =6,0" = &7 Err = (=1)P0 Dy (Uzu1Va)

(Mee)tth =0 (M)l = (—1)B"+B"+1Dr~s(0’2u—1%v—l) [b7#.18)

and

N = N x
v = (— SN 0D, (UiVa), (-1)% 30 3 0D (UiVay-r) | (5:119)
The inverse of the matrix M can be easily computed if one writes it as:

M=K(1+H) (5.1.20)

with H consequently defined by (5.1.18), so that:

M7 = =) (-H)"K
n=0
detM = exp Z%T‘I'H"] (5.1.21)
n=1

with

) 01 £ —Ma
K = , H =
-1 0 My F

The explicit computation of H™ gives:

A (=1)B2 D,y (Uso1 TV, (=1)Bi+Bv D, (U1 " Vo o1)
(e = T " R IGEE-2)
Dl's((jﬁu f’lu) (—1)B'1Dm(UQuVQu—1)

with

L= Zl [+ 57] (5.1.23)
=
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where we have put:

5“ = /:2/,,_1 Uéu

S = Vo, Uayoy (5.1.24)
L™ contains a term S,S; " that must be equal to zero.
The calculus of (X|M|X) through Eq. (5.1.22) and the one of detM yield to
the following automorphized expression for the vertex:

I TT (1= 0%k T <o

@ p=1 =1

X exp -—Z > 0 DL (U 3D (=) DA (T,) DI (V)bY) §5.1.25)

ms
1)=1 g y= a€S

i
where the sum runs over the elements 7}, of the discontinuous Schottky group &
(cfr. App. B) generated by S,. X' denotes that in the terms where § = j the
identity must be left out and, furthermore, a sum over the indices [ and m from

1/2 to oo is understood; NP is defined as follows:

g9
=Y B,N, (5.1.26)

p=1

where N, corresponds to the number of times the generator S, appears in the
element T, of the Schottky group. Furthermore [L.71in (5.1.25) denotes a product
over all prime' classes each characterized by the multiplier k,,.

Using the relation:

DU 3 (=1 DY (T ) DMV =

‘m Ty

agSs
! L r_g 3 (). V. _ bij -
= iR G 1) 9: 29, * |G (Vi(2),V(y)) WJ . (5.1.27)
where
N U 1 €
Glz,y) = ;( D T o) (5.1.28)
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it is possible to rewrite the vertex (5.1.25) in the [ciL -~zant form:

N =) L
X exp 1 SN b _11 ' jl '3;_582 2G [Vi(2), Vi(y)] pU) % (5.1.29)
2L_/=1,.3=L (T 2) (S 2) 0
2 r=y=
where
i _ ' 1
GIViz), Vil = GV Vil = =y (5.1.30)

The g-loop vertex (5.1.29) consists of three pieces. The first one is just the

g-loop partition function for a Majorana fermion:

(g) - NB =3
zy' =111 (1 — (=) ka ) (5.1.31)
[a3 n=1

The second one is the vertex for the sphere while the last term is the contribution
coming from the automorphization procedure needed to go from the sphere to an

arbitrary genus g Riemann surface.

(5.1.30) represents the Green function regolarized.

5.1.2 Two-point function

If we saturate V,, derived by the g-loop vertex with two states as in (5.1.3) we

get the fermion correlation function on a genus g Riemann surface:

< P(2)d(y) >4= G(z,9) (5.1.32)

with G(z,y) defined in (5.1.28).
This function is called the Szegd kernel in the literature. Actually the Szego
kernel is usually defined in a different form in terms of the ©-functions and the

prime form:
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@{“1- (1 Jj w)

G(z,y) = — (5.1.33)
‘“ } (7l0)

[(87))

where (ay, as) define an even spin structure on the Riemann surface. In (5.1.33) T
and E(z,y) denote respectively the period matrix and the prime form of a Riemann
surface of genus g.

Since the two expressions (5.1.28) and (5.1.33) have the same singularities and
periodicity properties around the various cycles they must be identical.

It is interesting to check the equivalence between (5.1.28) and (5.1.33) on the
torus where (5.1.28) gives the following expression for the spin structures y = (—4)

and x = (——), corresponding to B = 0 and B = 1 respectively:

Foo (41\ngn/2

TU= == D0

while from (5.1.33) one gets:

o0 . 2 1 T k- /2y (1 - A’L*‘l/ :
Gox(z,y H a k”;” 13 I ( ”l) ) (5.1.35)
S (k) (1= k3)
In deriving (5.1.35) we have used the following explicit expression of the prime
form [51]:
o , — A" _ k’lh;
E(zy)=(z - 9) I] \ >(yk“)2 ), (5.1.36)
na=l1

It is possible to check thiat the two expressions are identical [52] using the identities
Rig and Ry of ref. [53]. It is also easy to see that they have the same expansion
around k£ = 0.

It is interesting to obtain from our formalism the g-vacuum, that is the starting
point for the computation of multiloop amplitudes in the new operator formal-
ism [11]. It is given by the vertex 17,. By choosins the local coordinates such

that Vi(z) = » we get for V,, the following expression:
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1 >C
xfl-!] - Z}g) < 0‘ exp _; Z b-rB-rsbs (5137)
< rs=1/2
with
1 1 5 1
B, = oo {G(z,y) - } (5.1.38)
(T—%)!(S—%)! =Y.

that reproduces the definition of g-vacuum for fermions given in [11].

5.2 g-loop vertex for free bosons

The previous construction of VI , can be extended to the case where we have many
fermion fields.

A very interesting feature of the two-dimensional quantum conformal theories
is that free bosons and free fermions are equivalent in the sense that there is a
one-to-one correspondence between of their correlation function. In particular in
| the case of two Majorana fermions the theory is equivalent to the one with a free
real scalar field. So we want to construct V7, for this theory and check how

bosonizations works in our formalism.

A scalar field ¢(z) admits (at z = 0) the following expansion::

¢(z) = g — taglogz + 1 L (5.2.39)
n#o

with ecommutation relations:

[a.”, Oé‘m] = n571,+7n.0

lq,a0] = 1 (5.2.40)

For this field the zero mode is compactified and is given by: is compactified and

it is given by

CMS) = —iV;
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where V; is an operator that has integer eigenvalues.
The vertex V7, for scalar fields can be computed -+ means of the same

sewing procedure used for fermions. It is given by:

HH oy

a o= l cz
N 0 1 s .
X exp { 2 30 g 0100 [Vi(2), Vi(w)]| _, ol
a 1 E& 1, (v
il i g / " 2.41
Xe[az}( 27 ;Z;nz:ua n! e . (5 )

where w’s are the g first abelian differentials.

The vertex V3?, appearing in (5.2.41) is the following:

> i< ni,0, |J (ZN)exp {-—Z Z D,,.,,L(Uz-vg-)a_ﬁg)}(5.2,42)

n; t#Ef nan=0

Vvo = H

i=1

being D,,, the infinite matrix representation of the projective group with J — 0.
Bosonizing free complex fermions means that they are expressed in the bosonic

theory by:
P(z) — e () — e, (5.2.43)

In order to compute the fermion Green’s function in this theory we must sat-

urate I/ w1th the states:

i 1
.1_1_{1:1 [‘-/1'_1(2)] 2 E‘szlo > = —’————L(nl =1, D,, >1
T V(0]
; 1
}1_.1'{1 [L’g—l(Z):l 2 eméls lO >0 = —“—Tlng =~-1,0, >2. (5244)
= V(o))

So one obtains the following two-point function:

° [ " } (7l 22 w)

(8]

“

(5.2.45)

E(z1,20)0 [ a1
Qs

[om

that has been normalized dividing by the bosonic partition function:
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Z¢ =TI 1‘[ { “ }(750). (5.2.46)

. n= 1 a (842]

Bosonization implies that:
(z¢ ) = 7y (5.2.47)

This equation can be explicitly checked in the case of the torus for those spin

structures described by both vertices (5.1.29) and (5.2.41). In fact from (5.1.29)

we get:
zZu = ﬁ (1 ~ (—1)%"‘%) " (5.2.48)
n=1

while from (5.2.41) we get:

st 1 o .
20 =11 (=) © [ 1 } (7/0)
n=1 (87,

= H ( ) Z g (2miorgen )" preigtronee, (5.2.49)

n=1 n=--0o0

So (5.2.47) is simply checked using the Jacobi identity:

n g fj] k) (1+ kn5z) (1 + A”—f) (5.2.50)

+o0

>k

N=—20

m[w

with the identification 1 — B = 2a,. By saturating the vertex Y/}?g (5.2.41) with

the states |n;,0 >; we can compute the more general correlation function:

C) { “ } (T\ﬁz LN "O'w“>
(80 ’
93]
1o
Qo

that reproduces the result obtained in ref. [54] with other techniques.

< He" W) s =TT [E(2i 25)]

1<y

(5.2.51)
©

In particular if the vertex (5.2.41) is saturated with M states |n; = 1,0, >
(i =1,..,M) and with M states |[n, = —1,0, > (j = 1,...,M), then from the
“addition-theorem” for Abelian functions [55], it is possible to write the corre-

sponding correlation function (5.2.51) as follows:
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M M
< [T exp—[¢(z)] [ explo(y;)] >= det << vl (5.2.52)
=1 j=1
that is equal to the correlation function of M fields U(z,) and z:'(y,)

In conclusion we have seen that the sewing procedure used in the old operator
formalism for free bosonic and fermionic theory provides a very powerful tool for
computing correlation functions on an arbitrary Riemann surface starting from

those on the sphere and the propagator (5.1.5) and for showing bosonization.
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Appendix A

Unitary Irreducible
Representations of the Projective

Group

To every real projective transformation of the formn

az +b
cz+d’

tn

(A.1)

=T(z)=

with G = ad — be, one associates the 2 x 2 matrix:

b
c d

which can be thought to act on a vector £ = (&1,&2), the two components of which
are called homogeneus coordinates of the variable z. The set of these matrices
define the group SL(2, R) isomorphic to SU(1,1). The unitary irreducible repre-
sentations of the projective group are obtained by considering the transformation
properties of the monomials of the components of the spinor £, namely £7¢%, which
provides a basis for them. The powers a and b can be arranged in such a way these

basic states are written as:

k+1n
|Jkm >= N(J, k,m)(&&)7 (%) : (A..2)
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where N(J,k,m) is a normalization coefficient. The . aumbers J and k
label irreducible representations.
When a transformation A is performed on the two-component vector &, corre-

spondently the basic states are transformed in:

1\ k4 ~
7m = Nk mEe)y (8) = S Dl ()
2 n=()
Let us consider the representations with J = —k. In this case eq.(A..3) may

be written explicitly in the following way:

. e b 118 e ) ‘
N(J, —J,m)(cz + d)¥’ (Z : d) =S DI (A)N(J,~J,n)z" (A.4)

n=t)

where z = &,
&2

The generators of SU(1,1) are denoted by Ly, L+ and satisfy the commutation

relations:
(Lo, L+1] = FLa
(L1, L_1] = 2Ly
These generators are represented by the following matrices 2 x 2:

1 0 0 0 0 -1
0 -1 -1 0 0 O

Their matrix elements in the (J, k) irreducible representation are so given by:

D(J.L:)(AU) = (k+m)bmn

mn

. N(J,k,m)
(JkY/ - 3 vy . . ’
Dm.n (‘\-1-) - lV(J, IC,TL) (k +m ])671.m+1
L, N(J, k,m
Dy(A2) = W(k +m o+ T (A..5)

The normalization coefficient N(J, k,m) is determined up to a phase by requir-

ing that L; = LT; if the phase is fixed to 1, one obtains:

I(n—-2J)

N =hm) =\ Fms

(A..6)
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The following transposition rule for the matrices .

D7(A)T = DY(TAT'T) ‘ (A7)

0 1
F=(1 O) (A..8)

satisfies I'> = 1.
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Appendix B

Riemann Surfaces in the Schottky

representation

'To a Riemann surface M of genus g it is possible to associate a Schottky group G,
which is a discrete group freely generated by a set of g projective transformations
Sy with p = 1,..., g called Schottky generators. Any group element, with the

exception of the unity, can be written in the following general form:

L = Snrere 9 r=20,1,... n,e€Z -0 ui#uﬁl (Bl)

M1 T2 Y Hnr

The number of generators or their inverses in the + 'ment (B..1) is called its
order n, and it is given by:
=3 il (5.2)

=1

A projective transformation can be defined by:

T(z) = — (B..3)

with ad — bc = 1 or, alternatively, by:

I

I'(z)-n
f_k

-1
T(z) - z-¢

2
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where k is the so called multiplier while  and & we ' noints, which are
just unchanged by the transformation (B..3). Clearly . = iand T'(E) = k7%
since one can always take k£ < 1, this is the reason why 7 is called attractive fixed
point and ¢ repulsive fixed point. Furthermore one has that T" = AT A~! has the
same multiplier of T and fixed points A(7n) and A(§).

Two elements T, and T, of the S tky group belong to the same coniugacy
class if they go into each other by « .yclic permutation of the generators which
define it. All the elements of the same coniugacy class have the same multiplier.

Given a genus g Riemann surface M it is possible to associate to it a Schottky
group generated by g projective transformation S,.

In the Schottky representation one uses the fact that a genus g Riemann sur-

face is equivalent to the compactified complex plane in which g circles €, and g

!
/}L7

circles called isometric circles, have been cut out and identified. There exist
g projective transformations S, (g = 1,...,g) which map the circles C, into C,.

If we denote:

A,,,(z) + B,

S,.(z)=
w() C.z+ D,
-D,z+ B
Sl = 7 L B..5
s C,z— A, ( )

with 4,B, — B,C, =1 (p =1,...,g); then the points of the circles C, and C,

satisfy the relations:

ds. —1/2
‘é =|Cuz+ Dyl =1
ds-1|71/?
\ - =|Chz— Al =1 (B..6)

respectively; their centers J, are given by:

D# _ My — kugu A[L o g/l, - /»‘;177;:,

Up — Ppsp J = =
PTC T 1k,

J, = ——t =
’ C, 1—k,

(B..7)

while their radii are defined by the following equations:
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€u

R, = R/ \/ku I

Any point outside the c1rc1e C, will be mapped b -, into a point inside the

(B..8)

circle ¢

1)

while any point outside the circle C,, will be mapped by S into a point
inside the circle C,,.

This implies that the attractive fixed point 7, is inside the circle C,,, while the
repulsive fixed point £, is inside the circle C,.

A genus g Riemann surface M, is identified with the region outside the 2g

isometric circles or in other words it is equal to:
CU {0}
G

where G, is the Schottky group associated to a genus g itiemann surface.

M, = (B..9)

Y

One can show that the representation (B..9) of conformally inequivalent Rie-
mann surfaces is one to one, apart for an overall projective transformation and
modular transformations.

Going around a cycle a, in the Riemann surface corresponds in going around
¢y or €}, (in clockwise and anticlock direction respectively), while a path that
brings from a point z of C), to the point S,(z) of (", corresponds to going around
a b, cycle.

By means of the Schottky group one can define the geometrical objects of a

Riemann surface. The simplest ones are the g abelian differentials defined by:

(1) 1 1
wu(2) =" (z T : (5,,,)) dz (B..10)

Ty ~ = Ly
where 37;x means that we sum over all elements of the Schottky group, that do
not have S}, n € Z — {0} as the rightmost element.
The g abelian differentials satisfy the following important properties:
t) wy(z) is holomorphic in the entire Riemann surface; it has simple poles in
the isometric circles C, and C},, v = 1,..., g and therefore they are in the complex
plane, nut not in the Riemann surface.

i7) The abelian differentials are normalized as follows:
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%1 wu(z) = fc wy(z) = 2wid,, (B..11)

that follows from the fact that the circle C}, contains two simple poles of wu(2)

with opposite residues for those T, that have a factor S;,n > 0, as the leftmost

)

element. Their contribution will cancel except in the case of the identity, that
gives the normalization (B..11):

' 1 1
(z) = — dz = 2wid,, B..12
fc w;»( ) ‘%Cl,u < ) T0, ( )

=T L= fu

i71) The period matrix 7,, is given by the following relation:

!
1

(27i)7,, = y{ w,(2) | (B..13)

v

It follows from the following steps:

Su(:o)
(27%) Tynu :‘/b wu(z) :/_ wu(z) =

0

Su<30)”Ta(77 )’ZO—Y_’H(EL>
)y U, H i
Tzu OgSV(za) - Ta(&;t) o T:x(n/:)

d u"Tu(fl)ff E,(T],)
5, logh, — 3" Wiog™! w ! B..14
* g ! T- n — Ta(rhu\ s TI(SC[I) ( )

) 570, /" means a sum over the elements of the Schottky group, that do not have
any factor S} as the rightmost element and 5" as the leftmost element for arbitrary
n,m # 0 and that the identity is not present for 4 = . The period matrix is
therefore independent from the point zy.

Another important object defined on a Riemann surface is the prime form
E(z,w), that is the generalization to an arbitrary Riemann surface of what a
simple monomial (z—w) is on the complex plane. It is holomorphic on the Riemann

surface and has a simple zero when z — w:
Ezw)=0—z=w (B..15)

Since the function (z — w) is not holomorphic already on the sphere, one actually
defines a holomorphic differential form with conformal weight —% x —3, which

generalizes
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~

(B..16)

w
Vdzvdw
which is regular also at the infinity point. The expression i the prime form in
terms of the Riemann Theta functions is:
_ fla]( [, w)
/T 0u60al(0)0,(2) /2, 8,8a)(0)w,(w)

for an arbitrary odd spin structure . In the Schottky representation it is given

E(z,w) (B..17)

z=w ypz—T(w)w—-T,(z)
dzvdw a % _T:x(z) w — T,('ll))

where the product is over all elements of the Schottky group apart from the identity

(B..18)

and where the transformations 7,, and 7);! are counted only once.
The prime form does not change if one goes around a cycle a,, while one can

prove that its change around a cycle b, is given by:

B(S,(2),w) = - exp [ -2 GT“" + [Cw)] BGow) (B..19)

1
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