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1. INTRODUCTION

In recent years, several people studied the nonlinear elliptic boundary

value problems of the form

Ay

(BVP) f(x,u) in @

u = 0 on 3af

where f is a regular open bounded domain in me and f is a smooth function on

£ x IR and valued in IR . We are interested in finding conditions which ensure
the existence of solutions of (BVP) or yield multiplicity phenomena. To this aim
it is of particglar importance to notice the relationship between the spectrum

¢ of the differential operator -A and the range of the derivative of the nonli-
nearity with respect to the last variable. In particular, a classical result for
(BVP) ( [32],[10]) concerns the case in which the range of 3m+1f is
disjoint from ¢ . In this case one can study (BVP) via a global inversion method
proved by a local analysis: it is apparent that our hypothesis ensures in parti-
cular that the linearization of (BVP) has nowhere nontrivial solutions (see e.g.
[36]).

A more interesting case is obtained medifying £ for u in a bounded
interval. In this case one easily proves, using Leray-Shauder degree that (BVP)
always has a solution and can study the multiplicity of the solutions under various
assumptions. In all these cases, any boundedness hypotheses on 3m+lf can be
considerably weakened but here we are not interested on this problem.

The existence results are generally lost if the interaction between ¢
and 8m+1f is assumed,roughly speaking, in an asymptotical sense as we do
therein.

Before stating the assumptions, a last remark, although obvious, must
be done. We will assume later the bounds we will need in a stronger form, since
we are more interested in the application of the methods of nonlinear functional

analysis than in the technical problems of finding sharp a priori estimates:

in the same way, -4 can be replaced by a more general strongly elliptic operator.
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Throughout the paper, we shall assume that

lim
£ = 3 f(x,s) .
* S+ tw m+

exist uniformly with respect to xe § and are real numbers. Our aim will be to
give, under various subcasesg, some recent results about the solvability of
(BVP), in all these subcases we will have ]f_,‘f+[r10 £ 0.

We briefly state the main notation and outline the paper. We denote by

A A A

RTINS the eigenvalues of -p on g with the homogeneous Dirichlet

boundary conditions. By ¢j we denote a normalized eigenfunction related to
the j-th eigenvalue A . In the sequence of the ), 's each eigenvalue is repeated
: J

J
so many times as its multiplicity, therefore we can choose the sequence of eigen-

functions ¢j such to be a complete orthogonal system in L?. It is well-known
that, by the Krain-Rutmann theorem, [ 27 ], the first eigenvalue A, , is simple
and the eigenfunction ¢, is of constant sign on 2, we will take ¢, > O; by
this choice, ¢, will be strongly positive (i.e. will belong to the interior of
the positive cone, see e.g. [2]) in Cg,u( Q).

We will sometimes denote the set of the Aj's by o .

The paper is divided into two parts. The first part is devoted to the
case f_ < xl<f+. We first prove essentially the first result on this class of
problem, following [9 ], [18 ], to the aim either of giving an immediate model
for the results which will be obtained later on = in a more general form, and
of introducing the most used tools in this paper. Subsequently, we treat the
main existence and multiplicity results in this case.

The second part is concerned with the case A < f+ . We first briefly
study this problem in general, afterwords we confine us to the case:

“Ak~l < f_< xk < f+ < Ak+l’ for some k >1, following essentially [20] . This type

of results will be then applied also to some problems with suitable symmetries.

Finally, we shall discuss some recent multiplicity results.
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2. THE CASE f < A, <f .

- +

In this part we are concerned with the most studied case for our problem

and that in which the strongest results about the nonexistence and the multipli-
city of solutions are known. The first paper on this subject was [6] in which

f(x,u) = h(x) + g(u) is taken and

g eC2(R), g" >0 (2.1)
0<f <, < T <, (2.2)
- +
Fixed g, under (2.1)~'(2.2))in [6]it is proven the existence of ¢! closed con-
nected manifold T, of codimension 1 in C ® (@) which splits the space into two
open sets FO and T, and such that (BVP) has exactly i{classical) solutions
for heri , 1 =0, 1, 2.

This result has been restated and improved in several subsequent papers,
we recall e.g. [9], [20], [35 ]and the survey papers [15 ], [ 5 ]. The pheno-
mena of existence of zero two solutions (eventually in a weak sense) also
hold under weaker regularity assumption on g and the first inequality in (2.2)
can be dropped; however in this more general setting, the result cannot be stated
in the same geometrically meaningful form. The method used in [6] is closely
related to the global inversion method, taking into account that the linearized
problem near a point uo has a nontrivial solution if uO solves (BVP) for hel,

We will never follow this method (and will not prove completely the result)and
we invite the reader to consult [6][7 ]. The convexity hypothesis g"2>0 it
is essential to have the sharp estimate of the number of solutions.

In [26 ] assumption (2.2) is considerably relaxed being only asked

f < >\1<fJr . (2.3)

We write h = h, + t¢, with h L¢ ; in [26]it is proved the existence
of t(h,)¢R such that (BVP) has a solution if t < t(h,) and no solution for
t(h,) <t. This result has been improved independently in [13]-[31;

it is proved there the solvability  of (BVP) for t = t(h,) and the



existence of two distinct solutions for t <t(h1)' Higher multiplicity results
were proved later in [30 ], [50] under the further assumption A,< < A,
+

and in [25 ][48 ] for A, <f , T # .
+ + J

In this part we give an unitary exposition of the above results.
§ 1. APPLICATION OF THE LYAPUNOV-SCHMIDT METHOD.

We shall work in this section with the Hilbert space E = L2 ( @, IRn)
ordered by assuming ugv iff the range of v - u is contained in the positive
cone of IRn, and let a linear selfadjoint operator A: [(A) + E be given. The
generality of our setting is required by further applications of . the results in

this section which will be given later on. We use the notation

+ - +
u = sup (u,0) u = (-u)
Let a,B eR -~ o(A), denoting by o(A) the spectrum of A, and (PA )erR be
the spectral resolution of A [16] , [51] . We write:
B o ©
P = de Q =I1-P-= fdP +ﬂiP
A A A
o - B8
V=1ImP W=1ImQ
Therefore we have E = V o W.
Let G : E +E be such that
+ - + -
o(u-v) -pglu-v) < Gu - Gv< g(u-v) - o(u-v) (2.4)
Lemma 2.5 The equation
Au = Gu + h (2.6)
with h fixed in E,is equivalent, for u = v+w(v), to
Av = PG(v+w(v)) + Ph ~ (2.7)
where w(v) is the unique solution of the equation
Aw = QG(v+w) + Qh ) (2.8)



Moreover w: v - w(v) is a Lipschitz map from V to W and there exist ¢>0

such that

Hw(v) Il < cCllvil + fienl) (2.9)

i

for any given veV , heE.

Proof It is apparent that (2.6) is equivalent to the system (2.7)-(2.8).

About the solvability of (2.8) we remark that it is equivalent to:

(A - 9.:2’__@_ Dw = QG - 0_‘..;..@1) (v+w) + Gh

-+
and Q(G - cxz B I )v+.)isa Lipschitz continucus mapping on W, with
- +
Lipschitz constant g — o , while A - iiili I is invertible on W, with inverse
- -1 :
KW’ and || KW |i<cizrg}. Therefore the statement is a straightforward conse-

quence of Banach's theorem on contractive mappings.®@

Using the previous lemma, it appears very easy to prove the existence
results when the range of am+lf is contained in a compact set disjoint from
o, as we stated before. We now use it to prove a theorem of existence
of zero-two soluticns of the type of [6], a similar approach was used in [ 8]

We state an easy corollary of the lemma.

First we assume f: @xIR + IR be a Caratheodory function i.e.
(Fl) f(x}t) is continuous with respect to the t variable for a.e. xe8
and it is measurable in x ¥ t €IR

and let

(Fz) f is bounded on bounded subset of 2xRR

£, = lim I, 0 (2.11)
+ s

+ +Xeo

there exist uniformly with respect to xe@ and f < X,< T, moreover let
T+

. f(x,t) - flx,s) f(x,t) - f(x,s)
- o <jinf =o0< B= Sup < A (2.12)

2
t £s t -5 t £ s t-s




Of course (Fg) holds when (2.12) is true and f is bounded on x. Let V and W

be as in the lemma ( therefore V = spanned ( ¢,)) , let w: R+ W defined by:

- Aw(s) = Qf(s ¢, + w(s)) in E (2.13)

w(s) e H' Q)
o

and

£(s) = (£(so,+ w(s)),b,) -, s (2.14)

We parametrize (BVP) fixing V¥ €¢E and considering

-4 = T ty i Q
() u (x,u) + in
t
u =20 on af
Corollary 2.15 u is a solution of (P ) for ¥ =¢, iff u = s¢, + w(s)
|9
with g(s) = - t.

The corollary is a re-statement of the lemma in a simpler setting. We remark
that our approach is not more restrictive than assuming f(x,u) = g(u) + h(x)
and considering h split into the form h = h, + t¢, with h,i.¢1 since h, can
be inserted in the nonlinearity, without changing (2.12). If nothing is said,

we shall always assume ¢ = ¢, in (Pt)'

Lemma 2.16 Under the above assumptions & is a continuous real function
and
lim £€(s) = + o (2.17)
5]+ 4o

Proof We choose f; ,c eR , £ < f' <

s A, < <
! ! + + and such that

fx,t) > ' £ - £t  +c (2.18)
>f v -1

Therefore we have:



gs) > (£ uio T v, g,) -, (2.19)

taking into account the positiveness of ¢, and denoting sg¢, 6 + w(s) by u.

From (2.19), by easy computations:

gs) > (8lul + c,¢,) >
> sls| + (c,6,) (2.20)

for 6 = min ( A, — fl . f; - A,) > 0. From (2.20) we get (2.17); the first part
of the statement is a straightforward consequence of lemma 2.5.H
Theorem 2.21 Let f be given and (Fl)’ (2.11), (2.12), f < < f+ hold,
Then o tos IR such that (PL) has:

no solution for t > tu

at least a solution for t = to

at least two solutions for t < tu
Proof It follows easily from lemma 2.15 - 2.17 taking to = - inf ¢ B

In § 3 we shall treat the problem of finding the exact number of solutions of

(Pt) for convex f.
§ 2. THE GENERAL CASE

Qur goal in this section will be to eliminate assumption (2.12), asking
only — = < o , assumptions (F1 - F2) still hold. We assume, as before, h1 = 0,
this condition is now equivalent to hleLw(9> since we need (Fg) hold completely.
Condition - = < o and the weak maximum principle ( [22] cap. 8 § 1) imply
. the existence of a solution of (Pt) when one can find a subsolution u and a

supersolution u, u < u, see [2 ].

Lemma 2.22 ¥t ¢ IR (P ) has a subsolution u such that, if u is a super-—

solution of (Pt)’ then u < u.

Proof, Fix f' as in lemma 2.16. We have:

f(x,t) > f' + ¢ ¥(x,t) € 2 xR (2.23)



with a sulitable constant c¢. Let u be a solution of

in @

il
o}

- Au - f'u
- (2.24)
u =0 on 3Q

Of course u is a subsolution of (Pt); to prove the second part of the statement

let u be a supersclution, using (2.23), (2.24):

~pu-u)-f (u-u) > 0O in @
(2.25)
u-u > 0 on 3Q

From (2.25) and the weak maximum principle we get u < U.ig

We are following closely [15] . A further lemma will allow us to give a first

extension of Theorem 2.21.

Lemma 2.26 J t e R such that (P ) has at least a solution.
- T

Proof. By the previocus lemma, it will be enough to find a supersolution of
(Pt) for some t. To this aim, let m = sup |f| on@x [ - 1,1 ] . Let Q' be the
trace on @ of a neighbourhood of 30 and X g be its characteristic function.
Let u be the solution of

- Au =m X in @

- (2.27)
u = 0 on 39

P
Of course, using L estimates for linear elliptic equations [22 ]Jand Sobolev's

embedding theorems [1 ], one can get || u || < 1 by taking @' small enough
L® -
~ in measure. In this case, by the definition of m, we have:

- Au > f(x,u) on g' (2.28)

Since, on @ -g', f(x,ﬁ) is bounded and ¢, is bounded from below by a positive

constant, we can take t such that -

f(x,u) + t9,< 0 on Q- Q° (2.29)



by (2.28) - (2.29):

~Au > f(x,;) + t in @
- ta (2.30)
and therefore u is the desired supersolution for (Pt).l
Theorem 2.31 Assume (F. - FZ), -® <o, f <Xx,<f hold. Then a‘t € R
i — + o

such that (Pt) has

no solution for t > to

"at least a solution for t< to
Proof  We remark that if u is a solution of (Pt)' then it is a supersolution
of (Pt') for t'< t. Therefore, by lemma 2.22, we see that if (Pt) is solvable
for some t, then it is solvable for all t', t' < t. We must only show tihat

to =sup {telR | (Pt) is solvable } ¢ IR
and the statemént will follow from the above considerations.

The previous lemma implies that -« < to; to see that to< + @ fix fl,
f; , ¢ as in lemma 2.16 (of course the condition fl< A,must be dropped) and

suppose that u is a solution of (Pt). We have:

t = (- 8u - f(x,u), ¢,) <
< (- 2u - £ ut e £ U - cib,) =
= (A, - fi) (u+,¢1) + (£ =x)) (u,0, ) -c jf¢l <
Q
= ‘C!{qﬁ

and, taking the supremum, to < - C5{¢1'.

(2.32)

We remark that to get this kind of results it is notnecessary to take V¥ = ¢, see eg.[23]

Theorem 2.21 can be completely extended to the case A,< £ . To this aim, itwill
-+

be convenient to work with the Schauder's space F = CZG(Q); it will require

some more regularity assumption on f. Precisely, we ask:

fisacC function on IR such that

: T
(F) £, = lim (5) there exist in R and £ < A, < f
T g ate s - *
(FS) ensures that the mapping Tt defined by :
- A(Ttu) + (o 4 1)Ttu = f(u) + (¢ + 1)u + h + to, ) (2.33)




1, o . a
on C ', for given t ¢IR, he ¢’

o
increasing. Here, coherently with (2.12), we denote by o the inf f' ; Tt

s is completely continuous and strongly

strongly increasihg means that whenever u< v (i.e. u i v in the pointwise
ordering and u # v ), then Ttu << Ttv (i.e. Tt(v) - Tt(u) is an interior point
of the positive cone P = {u EC;’alu > 0 }).The properties of Tt are easily
deduced by the continuity of the Nemytskii operator induced by f, the Schauder's
estimates for linear elliptic equations , the Schauder's embedding theorems
and the strong maximum principle, see e.g. [22] .

The complete continuity of Tt allows us to use the topological degree
of T - T_on bounded subset of F; [31], [46 1, [38 1, [33]. Englobing h in
the nonlinearity f, the zeroes of I - Tt are precisely the solutions of (Pt).

We will extend the theorem using the following lemma.

Lemma 2.34 ) For any given constant T € IR, the set of the zeroes of

I - Tt)for T <t,is bounded in F.

Proof  Arguing as in the theorem 2.31 we find f' , f'y ceR, f'< i, <f!
—_— + - - +

such that (2.18) holds.From (2.32), letting§= min (f' =X ,,A, -~ £')> O we see:
. + —

f}u[cbl < m (2.35)
Y

-l
where m is the constant - § (1 + c‘f¢1)

We now use the Hardy-Sobolev inequality

u
< v 2.
=, < cllvull, (2.36)
¢, L L
3 1 1 1-
for ueH , 0 < n< 1, — = o - ___D
© -~ P 2 n

Using (2.3) withn= 1, and Holder inequality:

% ul % % %

Jree <[, (rar BLY cocFira i o oy oo

Sy & Q '
By the L estimates for linear elliptic equations one has, for a suitable

t
constant ¢
2 3/2 (2.28)
ull, <l i,

~10~




Therefore we have a bound in L 2( &). Using standards bootstraps arguments

1.0
one extend it to the C ' norm.E®

Lemma 2.39 Let to be as in theorem 2.31 and t.<to. Then there exist a

non empty open bounded set B C F such that
t

deg(I - T , B, 0) =1 2.40
eg( & By ) ( )

Proof  We remark that if t<:to, using the arguments of this section, we

can find a strict subsolution u and a strict supersolution u of (Pt)’ in F.
Since [ u , u ]is bounded in the La>—norm, using a bootstrap argument, we see
that the set of the solutions ue[u , E] of the equation u = sTtu, for se [ 0,1 ]
is bounded by a constant rt—l, in the F-norm. We claim that, by the strong
maximum principle, the solution u of (Pt) infu, u ] belongs to Bt = B(o,rt) M

N[u, u ] . To prove (2.40) we use the homotopy H : [0,1]x B + F defined
H(s,u) = u - sTtu (2.41)

To prove the admissibility of H for the computation of deg(I - Tt , Bt’ 0) we

first note that, by the strong maximum principle, H(s,.) sends [u, ulinto

its interior; therefore if ue Bt is a zero of H(s,.) then u must belong to

aB(O,rt)f\[H, u ] . This is impossible because, by the choice of rt, we have

Il ull < r. = 1. We have showed that H is admissible, since H(0,.) = I, (2.40)

follows.B

We are now in a position to prove the main result in this section.

Theorem 2.42 Let (Fl - F ) hold. Then there exist tOeBR such that (Pt) has
5 .

no solution for t>t
o

at least a solution for t = t
o

at least two solutions for t <t
o

Proof Of course, t is the same that in theorem (2.31). We have only to
e o)

show that there exist at least a solution of (Pt ) and at least two solutions

o}

of (P ) for t<t .
t o

For the first part let u,rl be a solution of (P 1), whose existence is
o -
n
ensured by theorem (2.31). Lemma (2.34) ensures that (un)n is a bounded seguence

in F; by Schauder's estimates and Schauder's embedding theorems, we can prove

~11-



that (un)n has a compact subsequence (un )k. It is apparent that u = lim Un,
k
is a solution of (Pt ). Let now t<ito. By lemma (2.39), there exists Bt such

o
that (2.40) holds; by lemma (2.34) we can choose Rt such that

Bt C B(0, Rt)

and if u is such that u = Ts u for t<s, then: || u ||< Rt. We consider the
homotopy H: [t, to + 1] x B(O, Rt)+ F defined by:
H(s,u) = u - T u
s

Our choice of Rt proves the admissibility of H. Therefore:

deg(I - T_, B(O,R,), O) = deg(I - T ,R =0 2.
eg( £ R ), 0) eg( ¢4+ 1 BOR), 0) (2.44)
o

the last equality holds since (Pt ) has no solution. From (2.40), (2.43)

+ 1
o)
it follows that I - Tt has a sclution on Bt and a solution on B(O,Rt) - Bt.l

§ 3. FURTHER MULTIPLICITY RESULTS.

The previous theorem shows the existence of at least two solutions of
(Pt>’ for t< to. Actually, if we take t small enough, we can prove in many cases
the existence of more solutions. The first result in this sense was in [307,
we present it here under weaker assumptions following [48] . We ask (2.11) in
the stronger form

+ —
fx,t) - f+ t +f t is bounded (2.45)

Condition (2.45) which, of course, implies (FZ)’ can be considerably relaxed;
we assume it here to simplify the computations of the '"a priori" estimates which

would be otherwise much more tedious.

We denote f(x,t) - f tP e ot by g(x,t). For given t € IR,¥€L?(R) we consider
+ P

-Av = Av + g(x,v + tV¥) in &

2.46
0 on 98 ( t)

<
It

~12-




P
We state an easy lemma whose procf is immediate by the L estimates for the

linear elliptic equations.

Lemma 2.47 Let v be a solution of (2.46 ) for some teIR and A# A . Then
G J

there exists a constant C, depending only on g and such that

| u I, .= ¢ (2.48)

From lemma 2.47 it follows:

Lemma 2.49 Let A £ A and consider
J

- My = du + glx,u) + to, in &

2.50
u=0 on 9 ( t)

If A<X, there exist T ¢€IR such that every solution of (2.50t) is negative
15 2

if t< 7, and is positive if 1,<t. If AKX, there exist 1, , ¢ IR such that

every solution of (2.50 ) is positive if t < t,and is negative if T,< t.
U .

-1
Proof Let A < i, and let u be a solution of (2'50t); then v = u =(A=% ) " ¢,
-1
is a solution of (2.46t) for ¥= (X, =X ) 7 ¢, . Using the bound (2.48) and the

strong positiveness of ¢,, we see that u is negative for t large negative and po-

sitive fot t large positive.B

Proposition 2.51 Let (Fl), (2.45) hold with £ < K]:< f # X . Then FTeR

such that (Pt) has a positive and a negative solution if t<t .

Prcof  We solve (2.50t) taking » = £ . Fort <1, , every solution of (2.50t)
is negative and therefore as one can easily see, is a solution of (Pt)
Taking X = f+, we find a positive solution.B

We have seen that we can solve (Pt) reducing it to an asymptotically
linear problem of the type (2.50t). Our next step will be to recognize that
these solutions preserve their variational characterisations as solutions of
(2.50 ).

t
We will see later on that also the local degree is preserved.

1
We shall work with the Hilber space H = H (). We define on H the
o

~13—



functionals:

1 -
I (u) == ({lullz -¢ lu+]2 - f |u |?) - ‘( G(x,u)dx - t f@l u
t 2 + -
Y] Q
. 2 2
From now on, we denote by ||-|| the norm of H (i.e.: ||u || = J|Vul? ) and
2
by |-| the L?norm. We set G(x,s) =.fsg(x,r)dr. It is well-known that, given

1 [e]
t, It is a C functional on E and that the critical points of It are precisely

the solutions of (Pt) for general references about variational methods seel43],
B4 ],[37] . Let:

t
¢, , r).

P

We will prove that, if r is suitably chosen, than Bt contains a local minimum
T

of It. To this aim, it will be convenient to consider on H the functionals:

I (w) = Hull? = £ Jul?) - Ee(x,u) -t fw
t 2 + 4 o
Ji (u) = i&.( full? = £ Ju ]2 L.J Gi(x,u)
t 2 + 3 t
. s
where: QJX@): Jghgr+ M_ﬁ_qﬂxﬂdn
° *

Lemma 2.52  There exist r eI _such that ¥teR, VueE, ||ul|> r:
+

- Ay, =
J (u) > ——= ||u]|?
4x,
p
Proof It is easy to see, by (2.45), that \ Gt(x,u) < c|ul, where the
the constant ¢ does not depend on t. Therefore: -
- Ay = f_ Ay =
Jw) o> = lull® = e ful > =—= |Ju|l?
Ay 4,

-14-



- Ay - f
provided: |jul|l > r = —= .B
4yc

il

Let us denote by V. = Sp { Grab, 5 ooy ¢n } the space spanned by the first
n
n eigenfunctions of - A. We remark that, by the strong positivity of ¢, in

1
C (@), we can prove
o

-1
Lemma 2.53 ¥r eR ¥nelN, Dalr,n) e R such that ¥teRR, t< a(r,n):

B Nnv C -P
t,r n

P, as before, denotes the set of the positive valued functions on Q.

We are now in a position to prove the existence of a local minimum inBt

, T
It is an immediate consequence of the next proposition.
Proposition 2.54 " If t < al(r,n), r:_;: Vue 3B _ -
s
A~ T fi- f_
I(w) -1 ( 0,)> (—=—= - = ) r? (2.55)
A, ~-T 4 2 22
o~ Ay >\n +1
Proof We note that the functionals
+ + t
I (u) - U = e
t() I ( - 0,)
+
b4
are constants on u, i.e., since Jt(O ) =0
) - 17 )= I L e (2.56)
- ———— =J (U - ——— 2.56
T e, o T e
+ +
. + t
For t < 0, since ¢, > 0 and f_< x;:f+, we have It (A “?Q,¢l)= It (11“ f+ b,)-
We get, using (2.56} and lemma 2.52, for ueaBt . - B
- - Ay— f_ 2
I (u) ~1I —ee > ———— T 2.57
t( ) t(xl—f_d’l) = 4, ( )
and, as a consequence
I(w) -1 (——0,) >0 2% r2 1 (4) - 17w (2.58)
u) - S — Py u) ~ u). .
t t A=-f VT = 4 t t ,
Therefore, we only need an estimate for It(u) - I;(u). This for, write u = v +
n
1
+w , with v eV , weV . Noting that t<a(r,n) implies v, £ 0, we have:
n n n n n : -
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1 +,2 1 + 2
I -1 = e (f - f u < (f - f w <
(u) t(u) > ( ) fu | < > ( .\ _)l nf =
<1 P e
Eﬁ(f+ - f~) :wn' - 2 A? T

From the last inequality and (2.58), (2.55) follows.®

Corollary 2.59 If n is chosen large enough, for t < a(r,n), I has a local
¥
minimum on B .
t,r
Remark 2.60 It can be shown that this local minimum can be chosen as

the negative solution found in proposition 2.51. In fact, the negative solution

is a local minimum of I; and is strongly negative in CZ(Q). By standard regu-
larity arguments, it follows that it is also a local minimum for It. This provides
an alternative’proof of corollary 2.59. Since we want to prove the existence

of a third solution of (Pt), we can suppose that the solutions which we find

by variational methods are the same that in proposition 2.51. This will allow

us to use the sign characterisation when it will be convenient.B

We denote by Vt,r the absolute minimuh of It in Bt,r'

We now have to study the behaviour of It in aneighbourhood of the positive so-

lution. From now on we are assuming that A, < £ # \, and, therefore., proposi-
+ J

tion 2.51 holds. Let k > 2 be the positive integer such that A.k< f < }'k+l .
- . , +
W t: ! f - f
e s¢e >Lk+l ( + -)
p = + 1
f - f
+ ( >\L<;+1 ~)
and
%~=(B(@Jﬁfﬂn x (B(0, pr)hW)
3,C_ = (8B(0,r)NV) x (B(0, pr)NW)
8,C,, = (B(O,r)NV) x ( B(O, pr)iW)

where V = ’\/’k =Splo,,0,, ...,¢k} and W = V'L.

Finally we use the notation:

t
C, =——¢,+C_ 3C = —=t
r

+ : +

-16-




For every t,r ¢R we can choose, since 1im I (a$,) = -= , u e Hx_(B_ {C )
o+ 4o t,r t,r t,r

such that: I (u )< I (v ). Let T be the set of all the paths in E
t t,r — t t,r t,r
joinin and u . Let:
J g Vt,r t,r
c = inf sup I
t,r
vel Y
t,r
' = {yer v A C = ¢}
t,r t,rl t,r
1]
c = inf sup I
’ ' t
yel Y
,r
We wish to prove:
Proposition 2.61 There exist T,r €R such that ¥t < 71 : Ct contains in its
-— ' ’r
interior a critical point u which, if moreover c £ c ,can be chosen
t,r t,r t,r
such that I (u
such that I ( t’rl_f_gt,r
We will prove this result by a series of lemma.
- - +
Lemma 2.62 There exists r e R such that ¥te R, ¥ > r, I has a critical
P S — - L
point u such that:
—_— -t’r\ ————————
+ +,-
inf I. > I (u ) (2.63)
t t t,r
3,C
t,r

Proof We use (2.56) and therefore we have to prove the existence of r ¢ IR such

that ¥teR, ¥r > ;, there exist a critical point u such that:

inf g > Jt(u) (2.64)
3,C '
27p
- = t o L
By (2.56), U = uE T ¢, satisfies (2.63). To find u, we consider all
’r‘ 1=
+
the regular deformations non E which leave fixed 3B M V. It is easy proved that
r
- - ; + +
ar such that for r > r : st = inf sup J > sup J
z T
n n{BNvV) 3B MV
r r

17




It is well-known that this implies the existence of a critical point u at
level St . If T is chosen large enough, one can also prove that uec

§ r
All this estimates are independent on t. To prove (2.64) it is enough to take

1 = identity and to observe that

R + +
inf J > sup J

2.
3,c B AV (2.65)
r r

For the proof of (2.65) let u €3,C and v'e B NV. We write: u = v + w,
r r

veV weld.
A - f f -2
+ + k+l T+ + ! \ (
J (u) - J (V) > @ ——k 2 v 112 - e G v' >
t( ) t( ) > A [w]] T (v |l ) O ) AN
k+1 o S
M~ £ £o-
> o : . ) r? - cr
- X A
k+1
M1~ £ -,
+ + +
Our choice of ¢ is such that: c¢' = p( : - = 1> 0.
k+1 !
For r = cc' = one gets (2.65) when r > .

A A, - f
e (h .

We set: L = + 1 and consider:
by A = f)
- k +
S = (1 + %) 3B_MV. Given u €3,C , if one sets u- ¢, = v +w, veVweW,
r r t,r £ A,- T
i +
the projection of u on S =S 4+ =——— ¢,is v | = —0,+ (1 + 2)v.

t,r r Ay =-1F t,r AT
+
Therefore,the siraight line path joiningku with vé has equation:

g

t
Gt,r(a> = KT:?:¢1+~(1 ) (v + w) +a( 2+ 1)v =

]

t
'—ff}_¢1+ (1 +a2) v+ (1 —a) w

A E
for ae [0,1].
Lemma 2.66 There exist r eIR such that V{te R, ¥r > _}:__
+ v
i Yue s Yae[0,1): VI (o a)), v - u) < - cr?
) 5y L [0,1: ( t( t,r( )) tor ) <
+
ii) sup I. < inf I'
t t
S C
t,r t,r

-18-




Procf Using (2.56), one sees that (i) and (ii) are respectively equivalent
to:

+ t
J Y - —————— -~ < - 2 .
(v t(ct,r(o) T ¢, )8V - w) < -cr (2.67)

sup J < inf J
Py £ (2.68)

in (2.67) we have used: vt P U LV - W.

(2.67) follows from:

(v3,(o, (o) - 26,002V = w) = (7301 +an)v +(1-a)w), 2V - w) <

,r A= 1
+
AT i; A, -t
S = vl + fg((h—a%)v + (Ima)w) (2vew) < — Zrty dr< —cr
k Q k
|}
c' A
if r>r = K
f -2
+

+ + Moo €- Xk -f
- +
J (u) = J (v') > viPf - —— v ]]2-t G G (v') >
N L e L[ CR SN CX PR
f -2 A~ T St St
+ k oy
> %+ r? - cr.
A A
f - A, =T
PP + k ! +
By definition of &: c¢' = & 4+ >0
A Ay

Therefore we get (2.68) for r>r = cc' .B

We have to transfer the estimates in the previous proposition from the functional
+

It to the functional It. In order to do so, we argue as in lemma 2.53. We denote

by T the convex hull of C \/ S and remark that, given neIN , we can

t,r t,r t,r
choose b(r,n) e R such that Vt <b(r,n): Tt f\\ﬁlc: P. The following lemma
r

is analogous to proposition (2.54).
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Lemma 2.69 Let r >r be given. There exists tc¢ IR such that Vt <t thereexists

a critical point Gt cf I in Ct such that:

, T t ,r

i inf I I (u
i) }n 2 t(ut,r)

3,0

t,r
ii YueC s, ¥ 0,11]:(vI v' - u) < crz2
) € - ae [ J: ( t(ct,r(a>’ t,r ) <

iii) sup I < inf I

S C

t,r t,r

Proof We apply lemma 2.49 to prove that the critical point Gt found in 2.62
Froot v
is positive. Therefore Gt is a critical point of It and (i) follows trivially
, T
+ —-—
from (2.63) since It _ It and It(ut ). To prove (ii) and (iii) we apply lemma
,T

2.66 arguing as in proposition 2.54 - corollary 2.59.8

We can now prove proposition 2.61.

Proof of proposition 2.61 We take Gt as in the previous lemma. Suppose,
9
by contradiction, that I u = C . Usin i we choose such that
v £ 8,0 = Cer g (1), vely p Such tha
sup I < inf I . Since, of course, c <c! , we can, by contradiction, also
Y t azc'i?[,l"t trr —; t’r
suppose su c! . It follows: C and C = @.
PP ap £ < . YO t’r#(é ynazt’r @
Letsﬂ=1nf{s e [0,1]: ~v(s)e¢ Ct,r} and s, = sup {se [0,1] : y(s)e Ct,r} .
Since YN\ 3,C = and v, u C we deduce that 3.C i=1,2.
t,r ‘ t,r t,r¢ t,r’ Y(Si) % t,r’ ’
Therefore,we can consider the projections v, of ¥(s.) on St . We define:
i i , T
Y, the restriction of Y to [O,si]
Y, the straight-line path from ‘Y(sﬁ) to v,
Y 3 a path joining ) and v, in St,r
Y, the straight-line path from v, to Y (s,)
Y the restriction of v to [s,, 1]

and, finally,T‘the path obtained joining vy , i = 1...5. We claim that sup It <
i }
< sup It. It is equivalent to show sup N < sup It for i = 1...5. This is trivial
Y Yq Y
. 2
for i =1 and i = 5, while (ii) shows that It is decreasing along y, and in-

creasing along Y, and therefore proves the cases i = 2,4, (iii) proves the
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case i = Bsince v \ i !
3 , y&c:St’r and Ytﬁxct,r # @. We have so found Y'e Pt such

that sup I <c = inf sup It’ a contradiction.B

4
L

v ey
We are now ready to prove that

(Pt) has at least three solutions if £ <

L, <A, < T # A, and t is large

+ J
negative. The proof will be carried out by using a variational method, precisely
a variant of the mountainpass theorem of Ambrosetti-Rabinowitz ( [ 8] theorem 2.1).

Let us recall a well-known definition.

1
Definition 2.70. Let I be a C functional on H. We say that I satisfies the [P.S.]

condition iff every given sequence (u ) of points of H such that:
n'n

(l)‘ I(u ) is bounded
n

(2) lim vI(u ) =0
n n

has a convergent subseguence.

Proposition 2.71 #telR; I verifies[P.S].
[¥

Proof Actually, to prove that (un)n has a convergent subsequence, we use only

(2). We claim that, under (2), |un[ is bounded. Suppose by contradiction that

- -1
this is not true, i.e. passing to a subsequence |un|+ + and set: v = [unl u .
* n
Since:
+ -
VI{(u)==-28u -f u +f u - gu +to, (2.72)
t n n + n - n n
dividing by |u |:
n
- v -F vi+f v o= u l'l(VI (u) +gu - to,) (2.73)
n + n - 'n n t n n !

From our assumptions, it follows that the right-hand side of (2.73) converges to
-1
0 in H "(9) as n++ . Therefore, || av || is bounded and (v ) has a con-
: n -1 n nelN
vergent subsequence in ﬁ(ﬂ)to a limit point v e¢H, Ivl = 1, Taking the limit

. of both sides of (2.73), one finds:

- v =f v -f v (2.74)

this is a contradiction, since (2.74) cannot have a nontrivial solution v if
f < x,<f . Therefore, (u_ ) is bounded and, passing to a subsequence, (u ) is
- + n'n ‘ n'n
convergent in L2(q). This, by (2) - (2.72), implies that Au converges in
n

-1
H (@) and finally that (u )n is convergent in E.@
n

-1~



In [8 ] is proved the following deformation lemma. Given I, we set ¥c e IR:

K = {ueH |VI(u) = 0, I(u) = c )}
c
AC ={ueH | I(u) <e}
Proposition 2.75 Let I satisfy [P.S.] and N be a given neighbourhood

of K for celR . there exist € >0 as small as we want, and a deformation
[

n : [0,1] xE + E such that:

(1) n(o,x) = x ¥ xeH
(ii) n{t,x) = x ¥ xehA MN(HNA ) wtelo,1]
c-2¢€ C+2€
(iidi) n(l,x) € A ¥ xeA NN
C—€ . C+€

The following is a first improvement of Theorem 2.42.

Theorem 2.76 Let (Fl), (2.45) hold and £ < A, <A,<f £ XA . Then

= 1 € R, such that, for £< T,(Pt) has at least three distinct solutions.

Proof By corollary 2.59, for t small enough, It has a local minimum v

»

By [8 ] theorem 2.1, ¢ is a critical level and, of course, I (v )< c .
£, t t,r t,r

For t possibly smaller, we have alsoc the solution Gt , therefore, if

s

I (u ) #£ ¢ , we have three solutions.
t t,r t,r ,

Suppose I (u = C . B roposition (2.61): ¢ =cC in this
PP £ ) t,p" Y PTOP ( )ioel L t,r’ *

case we find three solutions if we show that KC # 1 Gt }. Suppose by con-
, T

t,r
tradiction that this is not the case, then proposition 2.75 holds with N = Ct

! ¥ 1

1
By definition of ¢ we can take Y €T sy YC A ~N. For ¢ < ¥% min
t,r t,r , C+e
c - : s C - I(u s = n{l, .) o e T . B roposition
t,r (Vt,r) t,r ( t,r)) v ( ) v t,r ¥y prop
2.75 (iii) sup It < ¢ - ¢, a contradiction.B®
=~ %, r

Y

In [25] it is proved that the number of solutions is actually four if It is C?2.

~ We do not prove this result but will give an idea of the proof and will show

a simpler but weaker related result in [ 50 ]. First we have to compute the

Leray-Schauder degree of some mappings. Since we will need these results later

on in a more general setting, we are assuming on f+ only that f+ £ A, and
: = = J

denoting by k, the positive integers such that: Ak< f, < Ak . l(k+ =0
- -1+ : -

if £,<XA)). Let K be the resolvent operator (- 4) on & , with the homogeneous

Dirichlet boundary conditions, and

00




Ft<u) =u - K(f(x,u) + ty) (2.77)

— o, ) (2.78)

Fis,u =u-K(f u+ sg(x,u +
t( ) (t g(x, %

From now on we are assuming the conditions (Fl) and (2.45) and are taking v =¢,-

+
The functions Ft' F; are defined on E = L2(g). Our aim is, roughly speaking, to

compute the local degree of Ft in VAt,r and L_At,r. We begin, following [49] , with
a technical lemma. From now on, inthis section, by |||l isdenoted the norm of E.
Lemma 2.79 e, € IR+ such that ¥ue E which verifies:

172 (5w 1l < e Jull (2.80)
for some t eR, se [0,1] , it holds: |Jull >r.
Proof  Since £, # xj Hee]R+ such that: || u - f Ku Il > 2¢ [lu]l . 1If (2.80)
holds with such_a e, we get: || glu + - ff+¢1) [l > el|lull and, therefore, the

1 =

- 1
statement with r =e l@f/zmaxlgl B

We fix r as in the previous lemma and set

+ +

‘+ lt = deg(Ft (19-)’ B(’O,I‘), O)
'it are well defined by lemma (2.79) and the complete continuity of K. It is

+
easy to compute i

t + "
Lemma 2.81 ¥t eR : i, = (-1) %

f 9]

Proof F;.(O,.) is a linear operator and:

deg(F_(0,. ), B(O,r),0) = (- 1)ki.
t +

Lemma 2.79 ensures the admissibility of the homotopy Ft_ . This proves the statement.B

- Now we set, as before, V = Spl,, ..., ¢ } and claim that, by the strong positivity
: n n

+
of ¢,,¥Ne N Bans IR such that:

I+
ck

o, ,r)v Ctp
n

, + . - . . +
for t<a , in the + case, and a < t in the -case if A, < £, and for tc¢a~
n n. - n

if £ < A, < £ . We use this to prove:
- +
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Lemma 2.81 Ezném such that:

deg(Ft, Bt, 0) = (- 1) % (2.82)

+ - . *
for t < a or a <t, if A <f , and for t < g if f < A, < T,
I n N e} - +

Proof We prove the +case. Consider the homotopy

n(s,u) =F (u) + s(f - f ) Ka (2.83)
t t + -
Note that nt(l,u)z Ff(l,u - ; ¢,), therefore, by lemma 2.81, we have by
t L=
translation: *
+ k
deg(nt(l,.), Bt , 0) = (= 1)+ (2.84)

(2.82) follows from (2.84) if we prove that n, is an admissible homotopy if

+ +
t < a for a suitable n. To this aim we note that, by lemma 2.79, Vvt eIR, ¥ue aBt:
n

t
A,- T

[ nt(l,‘u) Il >e |l u- o, |l (2.85)
+ :
+ 4
By contradiction, suppose n(s,u) = O for some t'<ah,, s€[0,1] , Llé’BBt. Write:

Uu=v +w, withv €V, w € W . From (2.85) we get:
n n n n n n

- t
a7l > - llu - 6, = —=F (2.86)
€ - ) IK]] Ay =1 ¥l e - 1)
+ - + + -
since t < a+ A B+Fﬂl C P; therefore
n n t n
= - < o< .87
e I (N P (2.87)
by (2.86) - (2.87):
w II > ——22
HEI(f -1)
+ —_—
and, therefore:
er(a 1" )
Il =tu-fu-ztoll > aw -fw || > ——=
-+ - n + -
Iklite - 1)

while, using again ﬂ+(s,u) =0, we get:
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[l- au - fu-toll < (1-s) (£ -1) Hu Il + Heull < (f -f Jr +c (2.89)

where (2.87) is used to show: ||u || < r and c is a constant whose existence
is stated in (2.45). From (2.88) - (2.89) we get:

er { A -f)
n+l +

-(f -f)r-c<o (2.90)

K| (£ -£)
+

which is a contradiction if n is chosen large enough. The -case is treated

in a similar way in both cases A, < f or f < A, B

Since Bi is a neighbourhood of ut,r and B; is a neighbourhood of vt,r
we have showed that these two solutions have odd local degree, for t large
negative. It follows, in view of lemma 2.34 and 2.40, that whenever also the
third solution found in theorem 2.76 has odd local degree we must have also a
fourth solution. 1In [25] is showed, by using at the same time the degree theory,
the calculus of variations and the order methods)that the solution found by the
mountainpass theorem has local degree -1. We refer to [25] for the interested
reader and treat here a particular case (i.e. asking A, < f+ < A; inside of
A, < f+ # %f ) in which the existence of four solutions can be proved using a
simpler device which will be useful also later on, following [50]. First we
use’ some "a priori' bounds for a class of parametrized problems, assuming :

f <, <, <Ff <2
+

3

Lemma 2.91 Let e be a fixed real positive number, which we suppose chosen very

‘émall. Consider the problem:

(2.92) - Au = F u+ - fu + s (6, + € ¢,) + b,-€0, in @
+ -

u =20 on 30

—o5._




+
Let S be the closed hyperplane: IR* (6, +¢ 9,) + {o,, ¢2}i. Then

¥ se¢R: (2.92 has no solution u & S.

Proof. Let Q be the orthogonal projector on E such that: ker Q = IR'(¢2F €0, ).
Suppose by contraddiction that u & S solves (2.92) for some se¢ R . Projecting

(2.92 ) by ¢ we find that u is also a solution of:
- AV) =(Q(f+v+— f v ) +s (¢, + ed,) in &

2.93
( ) v =0 on 30

We remark that (2.93) is a problem of the type considered in section 1.

Precisely, we use lemma 2.5 to prove that v is a solution of (2.93) if v =

A:'f R
= r(¢, + ¢ —_— ¢,) + w(r) where £(r) = -s and £ and w are two functions
A, - T
+

given by a Lyapunov-Schmidt reduction as in section 1. If we note that the
Lo, . . .
projected equation on {¢1, ¢,} is positively homogeneous, we find easily that

£ is of the form:

with ia+ > 0. By the above arguments, we therefore see that (2.93) has
exactly two solutions for s < 0, exactly one for s = 0 and no solution for

s > 0. Let us try to find directly the solution of (2.93), for s < 0, of the

A, - T
form v.=r (¢, + ¢ AI f* ¢, ). With simple computations we find that v is
, -
a soluticn of (2.93) if :+
+ —
(2.95) b r -b r =g

+ -

where:
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_l 2 1 + 2 1 +
~2 P
+ by= (1 + &) (A}, + €1, -1 - ft (1 + ¢ 1 ))
+ +

This implies, by the condition: f < Ay o, < f+, that b, < 0, and, as a conse-
9 -—

-1
quence, that (2.95) has the two solutions r, =;_l--b+ s of opposite sign, when

s < 0, and, therefore, that the two solutions of (2.93) for s < 0 are:

-1 A, - f
t b, s(¢, + ¢ Al f* ¢,).Let us come back to our hypothesis that for
z +
some s, (2.92) has a solution u& S. We have shown that u must be equal to
1 M- f+
+ b+— s (¢, + € ;-**;— %)for some s < 0. Substituting in (2.92) and taking
- 4 , - -
the scalar product of goth sides with ¢, - €$¢, , we find:
Ay - 1 2

(2.96) * b, « ((h, -1,) .

- ~ A, + f s =1+ ¢
* £/ a, - f ! i)
+

which gives: s > 0, a contraddiction.B

Lemma 2.97. Let ¢ > 0 be a fixed constant.

There exists m > 0 such that the equation

(2.98) -du = f£(x,u) + s (¢, + €9,) + n (6, — €¢,)

has no solution u ¢ S, u=0 on 32, for some ms such thatis{«€ cm, m> m
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Proof. Suppose by contraddiction that yneIN ,(2.98) has a solution (u , s ,

n n
mp) with mp > n, |sy| < emy. We divide (2.98) by m obtaining, setting v, =
-1
= mn U.n:
+ - -1 -1
(2.99) ~av =T v —-fv +m glu)+m s (¢, + €0,) + ¢, - €9,
n +n -n n n n n

. . -1 .
By our assumptions we can suppose, passing to a subsequence, that m s 1is

convergent to some s € IR. Suppose in addition that (vn)n is a bouidednsequence.
Using (2.99) and passing to a subsequence, we can suppose v -+ v & S in E. In
this case v is a solution of (2.92) which is false. There;;re (v ) is un-
bounded. We divide (2.99) by !Ivn[l and, taking wn = [lvnll_ vn,nwg can

1. Taking the limit in

1l

suppose, as before w =+ w in E, and therefore ||w]|]|
n

(2.99) we see that:

(2.100) —Aw = f4 w - f W

But it is easily seen that (2.100) cannot have non trivial solutions for

f < i, <f, since, taking the scalar product of (2.100) with ¢,, we get:

+ -
(2.101) (f+ = X)) (wy 0+ (A, - f) (w6, )=0
which implieS€ZWWin = O and therefore w = 0. B

Let us use the notation:

. Moo=
B (0,r) = {ué Blo,r)| t(u, e —™—— ¢, - ¢,) >0}
A, = T
+
Lemma 2.102:§151R such that ¥t < T:ﬁrt such that:
+
(2.103) deg (F., (0, r),0) = o.
. 1 €
Proof. Let us note that: ¢, = 1T (¢, + €9,) - T (¢, — €¢,). We use
—_— + € +
. T -1 - -1 2 . .
the previous lemma with ¢ = ¢ and take T = - me (1 + €°). With this nota-
tion, we write t¢,, t <Tas - cm (¢, + €,) + m (¢2 - €¢,), with m>m. We

consider the homotopy:

(2.104) H(s,u) = u K( f(x,u) +s (¢, + €6,) +m (¢, - €¢,))

defined on [-cm, cm] x E. The previous lemma shows that H has no zeros on
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[-cm, cm]xS, while the results of section 2 show that H has no zeros with

[lu]| > r, for a suitable r . Therefore:
. t

+
(2.105) deg (H(s, °¢), B (0, r), 0) is constant for s € [ —cm, cm]

¥r > rt. Taking 1 smaller, we can also suppose that F(cm, °) has no zeros on
E. This can be seen taking the scalar product of both sides of (2.104) with

¢, and wusing (2.45). It follows (2.103), since Ft = H (-cm, °).@

Lemma 2.81 - 2.102 allows us to prove the existence of four solutions of (Pt)

when t is large negative.

Theorem 2.106 igT ¢ TR such that (Pt) has at least four distinct solutions, for t<t,

Proof. We take 1 such that + < a (n), with n as in lemma 2.81, and such

+ +
that Bt n S # @. This implies Bt «z B (0,r) for r large enough. Taking

=+ 1+

T > rt, where rtis the constant found in the previous lemma and using (2.82),

(2.103) and the additivity of topological degree we get

(2.107) deg (F_, B, 0) # 0

+ +

+ +
when B = Bt or B=B (o, r)\Bt .
This shows the existence of four distinct solutions.B
We close this section showing that, if f < i,, it can happen that ¥teR : (Pt)
+
has no more than two solutions, this is precisely the case when f is convex

on the t-variable. 1In fact, under this additional assumption theorem 2.21

holds in the following sharper form.

Theorem 2.107 Let f be given and (F,), (2.11),f <, < f+ hold, moreover

assume that f is strictly convex on its last variable. Then Egtc)e IR such

that (Pt) has:

no solutipn for t > to

exactly a solution for t = to

exéotly two solutions for t < to
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Proof. Since (Pt) is equivalent to £ = -t, to prove the statement it is suffi-
cient to show that ¥t & IR : (Pt) has at most two solutions and then to apply

theorem 2.21.

Let us consider the eigenvalue problem with weight:

- A = i Q
(2.108) H=we U 4n

u=2~0 on aQ
It is well known, [28], [35], that the positive values of M for which (2.108)

has non-trivial solutions are a diverging sequence:
rlg) < u(g) < ... < I (g) < ... that y is simple and the corresponding
4

1 2
eigenvectors. have constantsign, and that if g,< g, then ﬁ(gz) < pley) k.

Suppose, by contraddiction that there exists t £ IR, such that (Pt) has three
distinct solutions ui, i=1, 2, 3. Since, ¥ i, j : ui - u, is a solution
: J

£{x, ui(X)) - f(x, u].(x))
of (2.108) for u= 1 and g(x) = - = g, .(x) where u_(x) #
ui(-X) - uj(X) + *

< < i
# uj(x), and gij < f+ A, by the convexity of f and (2.12) we have Uk(gij)

> B (A,) > 1 for k > 1. Therefore 1 = q (gij) and u, - u‘j has constant sign.
™ - 1 *

By this, we can suppose u, < u, < u,. Therefore, by the strict convexity of

£, we get: g < g and, as a consequence, B (g ) < B (g ) ¥k. This -
12 ) 23 23 12
is a contraddiction since we have shown that u(g_j) =1 ¥i,j.B
. L 1 e
3. THE CASE A, < f+

The general assumption made in this part mekes the study of (BVP) some-
what different than in the previous case. For instance, it is not true that
if [f_, f+]F§G# ? then phenomena of existence of zero-two solutions must occur;
we shall prove later several results of existence of at least a solution for
every known term. We have seen at the end of the last section that the equation
(2.100) cannot have non-trivial solutions for f o<, < f+ (however we have

used this implicitly many times, as to show that the functionals It satisfy

the [P.S.] condition or to prove the "a priori" bounds in 2§2) while, assuming

1

A, < f; , we shall see that it is in general a hard problem to understand

whether or not (2.100) can have non-trivial solutions.
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This larger variety of phenomena makes it more difficult to give a systematic
exposition of the results under this assumption, therefore we shall restrict
ocurselves to consider some subcases of particular interest. In the first
section we briefly treat the general problem of homogeneous equations; for
every further comment we shall refer to [12]. 1In the second section we shall
make the additional assumption that {f_, f+] contains exactly an eigenvalue
of -4, which is simple. This is a case first studied in [41] and recently,
more in general, in [20] , [45]. After we show, following [47], how this
approach can be used with eigenvalues of higher multiplicity, when the pro-
blem presents some particular symmetries. This result will be applied to some
ordinary differential vector valued equations and to the wave equation. We

shall obtain some existence results which hold in a much more general form for

the scalar ordinary differential equations.

In the last section we shall give some multiplicity results obtained

with similar methods to those used in the first part.

81 STUDY OF THE HOMOGENEOUS EQUATION

In this section we are concerned with equations of the type (2.100)
without any restrictive assumption of fr‘ As we have said before, we are able
to give only a few general answers to this question, that is in general one of

the main open problems on this argument. Let us consider:

(3.1) -Au =X u - X u in@
+ —
u=20 on af
2
and let: I = {(x, » )e R | (3.1) has non-trivial solutions}. We see
: + - 2 2
trivially that I is not empty and z;x{(x+, A)e R |a =x } =0

We shall see in the following sections that many existence problems are
essentially a question on a local behaviour of £; this gives an idea of the

importance of any general information about the structure of z.

i

2

Theorem 3.2 IR - Iis an open disconnected set.
Proof. The disconnectness of IR® - 3 will follow from the continuity of the
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Leray-Schauder index, which will be defined later on, and by prop. 3.7. . We

prove that IR® - I is open. This will follow from the following lemma:
-1 ’
Lemma 3.3 Let K = (=8) ", (A, A ) & I. Then =c > 0 such that:
+ —
+ —
(3.4) Hu——K(X+u -2 u)l|>c ||ull Yu€EE=1%(9)

Proof. (3.4) is trivially equivalent to:

(3.5) ]iu-K(x+u+_x u)ll >ec >0 vuek, ||lul] =1.

This is obvious, because a map whose difference from the identity is completely
continucus, is proper on bounded closed sets; from this it follows that it
maps closed bounded sets into closed sets (see e.g. [7]). Therefore the set:
. + _
C=fu-KQO uw - uw)luek |lul =1
is closed in E. The condition (x+, A )& 1 it is equivalent to O & C. There-

fore ;Qc > 0, such that CN B (0, c) £ @. It follows (3.5).B

We come back to the proof of theorem 3.2.

Take (A ', » "Je R, dist ((x ', 2 '), (A, 2 )) < c
+ - + - +
2| x|
Using (3.4) we get, ¥ ueg E:
[lu =K(x ' u" = 2 u )l >
+ — —
> Jlu-Kn u = a u |l =] K((x =2 D) u = (x =2 Du)]]
- + - + + - -
>cllull = TR a_ =l +fa =2 D [l > o.

The last inequality proves the statement.B

We set: F(A , A, u) =u-K{(x u -2 u).
+ U= + -

If (x, A ) ¢ £, it is well defined:
+ - i

(3.6) i(x , ) = deg (F(x» , » , *), B(O, r), 0),
+ - + -

since the right-hand side of (3.6) has meaning and is independent on r. By
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the homotopy invariance of Leray-Schauder degree it follows trivially:

Proposition 3.6 The function i is constant on the connected components of

R -I.

It is easy to compute i on some particular subsetsg of IR®, as we see in the

following proposition.

Proposition 3.7 ¥ k positive integer let: Ak =],

Let: B={(A, 2r) ] r <a,< A or A <A, < A} . Then

+7 - - ! + + 1 -
2 . k .
Ak’ BcR -3% ¥k >0. Moreover i = (-1) on Ak , 1 =0 on B.
Proof. Akc: IR’ - ¢ it is a consequence of lemma 2.5 in which it is stated
that 2.8 has a unique solution. In this case: G u = ) u - A u-, v=20
+ —

Q = identity. It follows that O is the unique solution for h = 0. If

(A, A )€ B we argue as in lemma 2.97 to prove that (2.100) has only the

s
-+ —

trivial solution, and we get: B& R® - £. To compute i, we note that if

A_# 0 we can take e Fa, a [and it holds: (A,2) € A . It is well

k' Tk+1
known that

(3.8) deg (I - XK, B(0, r), 0) = (- 1)¥

k
Since I-AK= F(x,r,®), it follows i (x,r) = (- 1) . Since Ak is connected,

k «
i = (- 1) everywhere in Ak. If (A , » ) € B, suppose, by contraddiction,
+ = , ,

that u solves

+ - .
-Au =X u -Xx u + (A+ - 2) ¢, in @

(3.9)
u=2~0 on 3N

Taking the scalar product of both sides of (3.9) with ¢, we find:

which is a contraddiction, since X+ - 3i)x1 - A, X = A have the same sign
1. - + —
if (x+, A ) & B. Therefore (3.9) has no solution. We shall see in the next

proposition that this is impossible if i{(x , » ) # O.B
+ —
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We now consider a nonlinear operator G : E + E. We shall say that G is

sublinear if:
. "'1 |
(3.10) lim r  sup ||Gul| =0
r o4 | ju]|<r

Proposition 3.11 Let (y, 2 )& IR -5, and G be a sublinear operator on E,
+ -

+ —
and let F:E + E be defined by: Fu = u - K(x+ u - A u )- Gu. Then F is a

proper mapping. If moreover i(k+, A ) # 0, F is surjective.

Proof. Using (3.4) and the sublinearity of G, we see that the counterimage
by F of a bounded set is bounded. By this and by the properness of F on bounded

sets it follows that F is proper on the whole space.
To prove'the second part of the statement, consider the homotopy:
(2.12) H(s, u) =F(r, », u) - sGu
+ -—
We claim that the set {ue E | 5}8 € [0, 1] such that H(s, u) = 0} is
bounded. In fact if H{s, u) = 0, using (3.4) one gets:
(3.18) [le(w] > ¢ ||ull
By (3.10) 3 r_such that if ||ull > r :
-1 )
[al | Ila(u)]|| < c. By (3.13) : ||u]] < T
Using the homotopy invariance of the topological degree, we get:

(3.14) deg (F, B(O, ro), 0) = deg (H(1,¢), B(O, ro), o):

il

deg (H(0,*), B(O, r ), 0) = deg (F(x _, 1 _,*), B(O, r), 0)=
= i (x, )
.+. —

Therefore, if i (» , » ) # O, F takes the value O in B(O, r). The same
+ -

argument shows that F takes any fixed value u € E, since G + u is also sub-

linear.@

Corollary 3.15 Let f verify (F1) and (2.45) with (f+, f)Yegs . If i(f+, f)

# 0 than (Pt) is solvable ¥ t€ R, vy ¢ E.
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Proof. We need only to note that u =+ K(g(x, u) + ty) is a sublinear operator.E
It is clear in the above proof that (2.45) can be considerably weakened.

We shall close this section pointing out that the study of the connected
components of IR° - Iand of the behaviour of i, in view of corollary 3.15, is
of fundamental importance for the solvability of (Pt)' We shall see later on
that, if we take V= ¢y it is always true that when i(f+, f_) = O the problem
(Pt) has at least two solutions for t large negative; however, if fi > X, it
has also two solutions for t large positive. We shall show in the next section
that, with a different choice of ¥, we shall have similar results to those in

the previous part, in some particular cases.

We could say more on the general structure of 5. For instance, using the
continuity of i,‘it is easily seen that if kk is an eigenvalue of -p of odd
multiplicity, then (xk,x k) must belong to an unbounded connected component
of z. Actually the oddness requirement is not necessary if one uses a more
general index [14],se also [11], [4]. Further general information regarding

I can be found in [12].

It is much easier to study the one-dimensional case. One can completely
study the behaviour of 3 by direct computations, either for the two point than
for the periodic solutions problem [17]. 1In this last case the only connected
components of IR® which do not contain pairs (x+, x“) with » = A_ are the two
component of B. Therefore, out of B, i is never 0 and one can have results
of existence of solution as corollary 3.15, [17], [19]. We shall obtain local

similar results for vector valued equations and for the wave equation, for

which a direct computation of the pairs in r seems to be not so easy.

§2 . THE JUMP ON A SIMPLE EIGENVALUE

In this section we shall study: (BVP) under the additional assumption
that [f , f+ ] o is reduced to one eigenvalue of multiplicity one. For

further application we work as in 251 with an abstract symmetric operator A

‘
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on the space E = 12 (gq, }JB. We shall refer sometimes to A the notations intro—

duced for -A up to now, with obvious meaning. We assume that ) is a given

eigenvalue of A, such that A = sup o A] ==, A [ <A and ; = inf ¢ ,q}xl + @ >y
. The main problem we have to solve here is to study gz on the open

square ], A[?

We use the notation V and W as in 2581, taking(a, @é:] As A [XTa x]

moreover we set: .

QO + oo .
Q1=f @, Q, =j, ", W= In@), =1, 2.

Given u€ E, when no confusion can occur, we often write v for Pu, w for Qu,

W, for(Qiu i =1, 2. Using the notation in lemma 2.5, with Gu = ) ul - AU,
we set ¢(A+, A, V) o= A vlE - (x+- (v + wiv))" - A (vo+w (v)) , v). It
is easy to see that the function ¢ so defined is continuous on its three varia-

bles. An important property of ¢ is proved in the following lemma (see also

[20]).

Lemma 3.16 ¢ is decreasing on its first two variables; if v changes sign ¢

is strictly decreasing.

1 2

i i+
Proof. Suppose A+< x+ and let w (v) be the solution of (2.8) for Gu = x+ u -
- i i i
-2 u,u =v+w(v), for i=1,2. LetinJ = Wi i, 3 =1, 2.
By easy computations:
i i i+ i -
o(h , A, v) = (-av =2 (u) + 2 (u),vVv)=
+ - + -
i i+ i- i i i
= (-Au - A+ (u) + 2 (u) ,u)=J (u)
i -
where the last step is justified by (2.8), with Gu = A T A u , since
+ . -

U - v €W. We easily see that J? < J% Let us consider Jl as two functions
of the three variables (er, w, ); by (2.4) it is apparent that they are
strictly concave in their first variable and strictly convex in their last
variable. By (2.8) u! and @’ are stationary points of J! and J? on ui+ w

therefore they maximize the respective functional with respect to wl.and

minimize them with respect to w,, strictly.
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Therefore:

¢(xi, A,ov) = P s v e W) < I v+ ow)) <

+ v+ w) <IN (wl o+ v+ ow) = ¢(ki, X, V)

If the equality holds we must have w; = wia, i=1, 2, i.e. u! = . Substitu-
ting in (2.7)-(2.8) for i = 1, 2 and taking the difference we get: (u’)+ = 0.

Therefore, by (2.8):
(3.17) Q@ (Au') = Q (x_u')
which is equivalent to:

(3.18)  Aw'= A w?

Since A 1is not an eigenvalue of A on W, from (3.18) it follows that w*= 0 and

therefore that v = u!' has constant sign.m

We remark that in the case in which v has constant sign the study of

¢ is trivial, since w(v) = O for all pairs (A+, A ).

Since ¢ is positively homogeneous with respect to its first variable
and we are interested in the sign of ¢ we can confine ourselves to the norma-—

lized vectors v.

Using the previous lemma we see that ¥ vg V, the set I'(v) = {(k+, A )]
+ -

[* into two connected components TI'#(v) = {(A+. Adel oA, a[? ]

[ & (A, A, v) = 0} 1is a continuous curve which crosses (A,x) and splits
by

Ix,

T o (A, 2, v)>01}.
+ —

We also see trivially that in ] A, i[’c %,6 I'(v) and that the sets
- €

+ !”3 +
rm =1 T (v) are also connected.
ve V

Let us come now to the case that X = lk is a simple eigenvalue of -A.

In this case the possible choices éf a normalized vector veV are two i.e.

[

=

v = ¢k or v = —¢k. In this case the two curves T(i¢k) split ]Ak~1’ Ak+l

2 +
r[le T and]xk,

in at most four connected components. Since ]xk 1 A

A
k+1
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& T , as can be easily seen using lemma 3.16 and the relation ¢(xk, Xk' v) =

=0 ¥vegV, and ¢ f;]kk_l,xk+ﬂ = F(¢k) Ur (—¢k)/ i is defined on r+ uUr

k-1 + -
and i = (-1) on I and i = (-1) on T . Therefore a straightforward

application of corollary 3.15 gives the following.

Theorem 3.19 Let f verify (Fl) - (2.45) and assume (f , f ) e If v T .

Then (BVP) has at least a solution.

+ -—
We now consider briefly the case (f+, f)gr ur. Suppose (f+, f) e

r+(-¢k) 0o

Proposition 3.20 Let (FI), (2.45) hold an (f+, fl) Q,If(—¢k) n r-(¢k).

Then, for ¢ = @k, 5 rle’R such that Pt is not solvable for t >Tl.

Proof. By definition of ¢ we see that the problem

(3.21) -mu =1, A up o =0

k 139

has no soluticn for t > 0. Arguing as in lemma 3.3, since (f+, fle s,

from (3.21) we get:

(3.22) [Ju-E(f u = f W +to) || >ct
. - K

with a positive constant c, - ¥ t > O.

'!,g;
“sup |g| and from (3.22) we get the statement.H

-1
For t,=c¢ "|[K||-]|a

+
Let Bk—(o, r) = {uge B (o,r)]| #(u, ¢k) > 0}.

Lemma 3.23 Suppose (A+, X ) &€ T (i¢k). Then ;}FO > 0 such that ¥ r > FO‘

+ k-1
(3.24) deg (F(x+, X ,°), B ©, r), ¢k) = #(-1)

- k

Proof. We prove the + case.

Suppose A < A We claim that the homotopy H, defined on [x w2 ] xXE
+ - D+
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in E by:
(3.25) H(s, u) = F{» , s, u)
+

is admissible for the computation of the degree in (3.24). This is true since,

for all s¢[Ax , » ], the problem (3.1) has no nontrivial solution u such that
+ —

(u, ¢k) > 0, if » 1is replaced by s. Moreover, H(s,*) has no zeros u on (¢k)f

since, by lemma 2.5, we would have u = 0. Therefore, by the homotopy invariance
of the Leray-Schauder degree:
+

(

(3.26) deg (F(x+, A ,*), B

_ k Qy r)y ¢ ) =

k
= deg (F(x , % ,*), B (0, r), ¢ )
- g +’ +9 9 k b ¥ ¢k °
Since F(A , A ,*) = I - XK, » < A, (3.24) is easily proved. [
+ + + + k

From (3.24) it follows:

+
Lemma 3.27 Let (Fl) and (2.45) hold, (f , f yer (+9,). Then g1 eR such

ﬂwt,¥t2>13rt>05md1ﬂmtifr>1¥:

:t 1+
(3.28) deg (Ft’ Bk (0, r), 0) = £(-1)

for ¥ = ¢k.

Proof. Note that for t > O, setting v = t u:

(3.29) F (u) u -¥ (£ u+ - f u + gu + t$ ) =
t + k

t (v - K(f+ v+ - f_ v o+ t_lg (tu) + ¢k» =

— ot (F(f, £, v) - t Kg(tw) - it o)

4. k 'k
-1 - -1
From (3.24) we have that for r > xk r = t r
- t
+ -t k-1
(3.30) deg (F(f , £ ,°), B. (0, r)\A0 ) = *(-1)
+ - k KKk

-1
Since g is bounded, for t large enough, the perturbation t Kg(t®) does not

change the degree in the left-hand side of (3.30). Therefore:
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+ -1
(3.31) deg (F(f+, £ ,°), B, (0, T)yx k¢k) =

i

-1 ]
deg (F(f , £ ,¢) -t K (g(t*)) - x¢ , B (0o, r), O) =
N k ¥k

t

+
d F , B (0,tr), O
eg(t,k(tr) )
The statement follows from (3.30) - (3.31).08

+
Corollary 3.32 Let (F,), (2.45) hold, (£, f )¢ I (%4 ). Then dr, ¢ R

such that ¥ t > 1,, (Pt) has at least a solution u such that *(u, ¢k) > 0,

f = .
or ¢ q>k
The previous corollary provides a result of existence of zero-two solutions for
+ - + -
the case: (f+, f)el(r (—¢k) AT (¢k)) u (r (¢k) nr (-¢k)) and for the semi-

resonance case: (f+, f)e (P(¢k) A} F(—¢k)) u (F(—¢k) \ T(¢k))-

Proposition 3.33 Let (F,), (2.45) hold and (f+, ) ¢ r+(-¢k) N r—(¢k).

Theng'cl,‘2 e R such that, for y= qi(, (Pt) has:

no solution for t > T,

at least two solutions for t < T,

The proof follows at once by proposition 3.20 and corollary 2.32 (changing ¢k
with —¢k). Corcollary 3.33 contains quite explicitly the informations for the
semiresonance case. We have so studied all the possible cases for (f+, Ff e

Ao
€] k-1 xk+l

includes as a particular subcase f = f = xk. In this last case conditions

of the Landesman-lazer type [29] can be done (see [21]).

[, but the resonance case (f+, f)e T(¢k)lﬁ T(—¢k), which

§3 THE JUMP ON AN EIGENVALUE OF HIGHER MULTIPLICITY: THE SYMMETRIC CASE

We now come back to the casé of a general operator A, without asking
that A is simple. The problem is, in general, hard because we have an infinity

of curves I'(v), given by normalized v € V. However, in many applications it
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happens that I(v) does not change changing v in V. In this case we get easily

some existence result in [47].

We assume that H is a set of linear isometries.

Definition 3.34 Let b: E ~ E. We shall say that b is H-equivariant if ¥ h € H:

: bh = hb.
We shall ask that H satisfies the condition:

+
(H,) A, P and (*) are H equivariant

(H,) ¥ Vi o €V, [Iv Il = 1]]v,l] dh € H such that h(v,) = v,

b

Proposition 3.35 Let (H, - H,) hold. ¥ v_, v, € V-{0}: I(v,) = I'(y).

17 2

Proof. Using (H,) one sees that ¥ (A+, Ade] a, [, ¥ VE V, ¥he H :
:w (hv) = h (w(v)). Using (H,) and taking into account that h preserves the

scalar product:

00, A, v)

M 1P = O v+ w(e, )T = (v +wlv, )7, v) =

1]

Alv, | 1? - (r (B(v,) + w (h(v, D" - A (h(v)) + w(h(v ), hiv)) =

MIv, 1P = G vy s wle ) =0 (v, + w(v,)7), B(v,)) =

o(x, r, v,) @

+ —

Therefore, under the assumptions of the previous proposition, ] As A [2\2 has at
most two connected components. They are exactly two every time there is an index
like i which changes from JA, A[®* to ]r, A[®. However, we can prove it directly

when H verifies a further condition, used in [42] to give simpler proofs of

various classical bifurcation theorems for conservative systems.

Proposition 3.36 Let (H,) and

(Hy,) ¥ v,, v, €V, linearly independent 3h €& H such that:

h(v,) = v, , h(v,) # v,
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Then ¥ v € V \k{O}: Mv) o 2

Proof. We prove that v + w(v) is a solution of (3.1) if (x+, A ) er(v). To

+ -
see this we must only prove that v, = v - K(x+(v +w(v)) = a2 (v+w(v)))
and v, = v are linearly dependent, since ¢(x+, A, V) = 0 implies: v, =
= ||vl]™® (v, w)v = ||v]l] %o (x+, A, V) v = 0. Suppose, by contraddiction,

that v, and v, are linearly independent. In this case (Hz) holds. Using (HO)

and the first part of (H,) we get:

h(v,) = h(v vulv )T = (v, s wv D) =

h(v,) - K(a (h(v,) + W(h(vl)))+ = (h(v) + w(h(v ))) )

I

+w(v)) = a (v, +w(v))) =,

which is a contraddiction to (HS).II

The symmetry conditions (H, - H, - H,) are often verified by problems
of existence of periodic solutions. We state explicitly some results for the
systems of ordinary differential equations. Let B be a n x n symmetric matrix
with eigenvalues -w?> w5 >... > —win, whereUJh € R \N{0}, h=1, ..., m.
Suppose that, for a given i, —w; is a simple eigenvalue and that wi & wj-ZZ »
¥ j £ i, and denote by gi a fixed eigenvector of B related to —wz. Let g =

= [o, 21], E = 1L? (g, Efw and L be the linear operator on E defined by Lu =

& u
at?
verify the periodicity conditions. It is easy to see that L has compact resol-

n
, on the subspace D(L) constituted by the functions in H (g, IR ) which

vent. Moreover:

Proposition 3,37 w; is a double eigenvalue of L which corresponding eigenspace

V generated by gi sin and gi COS.

Proof. To calculate the eigenvalues of L we use the Fourier decomposition:
=
u = ﬁib (ukcos kt + u « sin kt), by which the equation Lu = )u becomes:
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AV

S (Buk cos kt + Bu K sin kt) =

k=0
= 2 A (uk cos kt «+ u~k sin kt)
k=0
and therefore, it is equivalent to -KzBuk = XUk, ¥Yke Z This implies that,
when u # 0, it must exist h € { 1, 2, ..., m } and keZ such that ) = K*w ? - and

h
uk # 0. In this case uk cos kt and uk sin kt are eigenvectors of L, with eigen~

value A. The previous analysis shows that wiz is an eigenvalue of L and that
Ei.sin and Ei cos are related eigenvectors. Moreover, it shows also that, if
we had a third independent eigenvector, we must have wiz = kzwii for some j %i ,

a contraddiction. .

We show that the set H of the transformation on E of the type:
[h(u) J(t) = u(a - +)
for any given a € R verify (H, - H, - H). (H,) is obvious, to see (H,) let

vV,, Vv, € V = ker (wi2 I -L). We have shown in proposition 3.37 that Yj must

be of the form Vj = aj €. cos (a, + t), j =1, 2. The hypothesis that v,
1 J

and v, are linearly independent is guivalent to a, -3, &1  Z ., We take
in the definition of h : a = - 2 a,. We get:
[h(v,)] (t) = v, (=2a, - t) = @£, cos(a, - 2a, - t) =
= o, £, cos (-a1 - t) = v, (t)
which means : h(vl) = Vv,. By similar computations : [h(v,)] (t) = v2(2al -a, + t),
by which it follows that h(v,) = v, 1is equivalent to the condition : 2a -2a, €

€ 27 * Z , which contradicts the linear independence of v, and v,.
To prove (H,) we make similar computations for a = -(a, + a,).

Before stating the application of ttre abstract results we ®mark that,

using the notation of §2, we have:

A=sup LKWt [ ke g1, 2, m gt et < wt )

>
]

I (KR KEZL G212 mi kT > )
J ¢
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Theorem 3.38 There exists a relatively closed subset I € 1x, [ which

crosses (wiz, wiz), has at most a point on every straight line of positive

direction and which splits Ix, Al ? into two connected components, such that:

if f verifies (F)), (2.45) with (f ., f£)e]la A[*\T , the equation:

du

(3.39) B E;; = f(t, u)

has at least a 27 - periodic solution.

Proof. It is an easy variant of Proposition 3.20, since, in our case, the
Leray-Schauder index can be used and the connected components of Ia, A [AT
contain respectively |3, wi2 [? and ]wiz, A [?, on which the index is not O.

Note that in this theorem we have used t to indicate the variable of @ = [0, 27].[

We remark that the set H verify (H, - H, - H; ) with every autonomous
differential operator of even order. For the odd order differential operators
the set H of the traslations verify (H, - H,) and therefore the main results
of the abstract theory are also applicable. We wish now to give an application
to the one dimensiohal wave equation. The main difference from the previous
equation is that we use an operator which has not compact resclvent and, there-
fore, the Leray- Schander topological degree is no longer applicable. However,
with some further restrictions on f, we can use the generalized degree for the
condensing perturbations of the identity. We introduce the necessary terminology.
Given a subset C of a metric space we call non-compactness measure of C the
positive number a(C) = inf {&> O | Chas an €& - net }. It is clear that a
set is bounded iff it hasfinite non-compactness measure while is precompact iffr
its non compactness measure is 0. A mapping f between two metric spaces is
called an o-contradiction of modulus B if ¥C : a(f(C)) f B (a(C)), is called

condensing if ¥C : o(f(C)) < a(C), when a(C) éZ{O, + «},

One sees at once that an oa-contraction of modulus B < 1 is condensing

and that f is completely continuous iff it is an a—contraction of modulus O.
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It is well known that the topological degree can be defined for the
condensing perturbation of identity (for further details see e.g. [35]).
Let @ = [0, 27 x [0,n], we shall denote by t the first variable of the

pairs in @ and by x the second one. It is well known that the operator

¢ ¢
= E;; - 57; , defined on the elements of H (g) which verify the periodicity
X

conditions on t and the Diriclet homogeneous conditions on X, has as eigenvalues
the numbers of the formk?-h® with k and h integers. Moreover, if c is not

an eigenvalue of [] , then KC = (cI - [] )-.l is an og-~contraction of modulus

Icl_l (see e.g. [34]). Therefore, a generalized topological index can be

defined for all the pairs (x+, x_) ER - = such that A+A_ > 0. In fact, suppose

-1

A > 0, » >0 and choose ¢ > 2 max(x+, A ). In this case the map GC which

+ — —
+

- + -
sends u in KC(A u - X u -cu) = KC((A+ - c)u - (x -¢)u) is an

+
-1
a-contraction of modulus [c| "max ((A -c¢), A - c)) < 1. Therefore we can
+ —
use as i(k+, A ) the number: deg (I - GC, B(O, r), 0), where r > 0 is arbitrarily
chosen and c is large enough. We do not treat more this problem, noting also

that, using the generalized degree as shown above, one can easily repeat the

analysis made via Leray-Schauder index.

In this way one proves the following result when A is a number which

can be written in a unique way in the form: y* - h® with h and k integers and

A=sup {k?® - h® | k, heZ ,k? - h? < 3}

I

A

I

inf {k? - h | k, heZ, k2 - h? > )}

Theorem 3.40 There exists a relatively closed subset T Clxr, X2

which crosses (A,1), has at most a point on every straight line of positive

direction and which splits J» , X[? . into two connected components,
such that: if f verifies (F,), (2.12) and (2.45), with aB > 0 and (f , f )&

+ f—
€] :1[2 ~T , the equation

(3.41) Ou = f(t, %, u)

has at least a solution on gq, 27 - periodic on t and with null trace on

[0, 2] x {. 0,7}
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The proof of theorem 3.40 is the same that of theorem 3.38, the only difference
being the use of fhe generalized degree. We remark only that the condition
(2.12)with af > O allows the use of the degree with the function f since,
supposing e.g. o > 0, when c > 2-lmax (a,B) then Kc(f - cI) is an g-contraction

-1
of modulus |c| "max (|la - c|, |8 - c|) < 1.

§4 SOME MULTIPLICITY RESULTS FOR THE CASE Ad;j,f+

What we want to do in this section is to study the parametrized problem

(Pt) with y = ¢, , as already done in the case f < A, < f+. Also here we

get results of existence of multiple solutions for suitable values of the

parameter.

Using the results of 2§3 we get easily two multiplicity results under

general assumptions.

Proposition 3.42 Let f verify (Fl), (2.45) with (f , £ ) &EE: » A, < f+# AL
+ - SN

Then if (Pt) is not solvable ¥t é.EL_E T > O such that for |t| > T(Pt) has

at least two distinct solutions.

Proof. Suppose that (Pt) is not solvable ¥t € IR. Then by corcllary 3.15

we get i(f , £ ) = 0, and (3.14), taking F = F,, shows the existence of rtﬁ R
+ ——

t’
such that ¥ r > P

(3.43) deg (Ft, B/O,r), 0) =0

Fix 1 in such a way that (2.82) holds with the + or - sign according to the

case tt < £ (-1).

+
Let t < -1; we take r > ry large enough to have BtCZ B(O, r). By (2.82),
(3.43) and the additivity of the topological degree, FJC has non zero degree
+ +
on the sets Bt and B(O, r)\\,Bt. Therefore, the equation Ft = 0 has at least

two distinct solutions. The case 1 < t is obviously similar.[

—46—



Proposition 3.44 Let £ verify (F,), (2.45) with (f+, f;) € r A, < f+ # A

J
and let the total number of eigenvalues of -A in [f , £ | be odd. Then
- +
EE: ¢ IR such that (Pt) has at least two solutions either for t < - 1 or
for © < ¢,
Proof. Suppose by contraddiction that the statement is not true; then we can

choose two sequences of real numbers (ti)n such that tz +X o agnd (Pt) has
at most a solution for t = tj. As in the previous proposition, we can suppose
that (2.82) holds, with the + or - sign for t = ti. By our assumption and by
the excision property of the topological degree, from (2.82) it follows that
deg (Ft’ B(O, r),‘f) = (—l)ki for t = tz and if r > ro where r is chosen in
such a way that B{} & B(O, rn). But, by (3.14), when r is large enough,
since (f+, f;) é{zrl , we must have: deg (Ft’ B(O, r), 0) = i(f+, f_).
Therefore, by the above equalities, we get: (—l)k+ = (—l)k— which means that
k; - k is an even number. This is a contraddiction, since K+ - K_ is the

Eal

number of eigenvalues in [f , f ], which we have assumed to be odd. &
+

We can have better results taking the additional assumption that
[f_, f+] contains exactly one, simple, eigenvalue of -A. Note that, in this
case, the assumption (f+, f_) &€ I is explained by the results in section 2.
The result is similar to theorem 2.106 and we first need a lemma of the type of

lemma 2.91. From now on, we essentially follow[50].

Lemma 3.45 Let £ be a fixed real positive number, which we supﬁose chosen

very small. Let K £ 1 be fixed and : A <f <A <f < ; consider
k-1 - k + k+1
the problem:
(3.46) —du=f u' -f W ss (6,4 c0) 406 -co, in 9
+ - k k
u =20 ‘ on a9
A, - f
+ 4
Let S be the closed hyperplane: R (o, +ei————jg ¢k )+ 1o, , ¢P} . Then
k4 )

¥s €R : (3.46) has no solution UE€E g,
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Proof. The proof is, obviously, somehow similar to that of lemma 2.91. Let
Q be the orthogonal projector on E such that Ker @ = IR (%{'— € ¢1). If u solves
(3.46) then it solves also:

. =Q (av) = Q(f v+ - f v ) +s (¢, + €¢ ) in @
(3.47) + - k

v =0 on 3

It is an easy variant of lemma (2.5) to show, by using the Banach's theorem for

contractive mappings, that ¥ s € IR : (3.47) has exactly one solution v & S.

A, - T
+

We try to find directly a solution of (3.47) of the form v = r(q)l +€ ;-—jg~ ¢k).
‘k +

It is not difficult to see that, for € small enough, v is a solution of (3.47)

if:

(3.48) br -br =s
+

where the coefficients b, are given by:

- =1 2 ’)\1 - f"’ 2 )\l - f+

+ B 5 -_—r P
(3.49) + bi - (1 + € ) (}\1 € )\k y - f fi (l + € X _ 1 ))

k + k +

and when £ is small : b < 0. Therefore (3.48) is eguivalent to

il
o
n
i
o
0

(3.50) r

We have so shown that if u is a solution of (3.46) u must be equal to:

A, - T
-1 4 -1 - ! + L .
(b s -b s ) (¢, + € NS ¢k) for some s € IR. We substitute this
— + —
k +

value in (3.46) and, taking the scalar product of both members with ¢k -€9¢,,

we find:
A, = F
-1 4+ -1 - ! + R
(3.51) (b~ s - b+ s ) ((Ak - fi) T (x, - fi)) =1+¢
k +
where the + or - sign of f has to be taken according to the sign of r (i.e. of
-1
b+) and not of s. Therefore, from (3.51) it follows: b s+ > 0; a contrad-

diction, since we have remarked that b+ < o. @



From the previous lemma, we get:

Lemma 3.52. Let ¢ >0 be a fixed constant.There exists m >0 such that the equaticn

(2.98) -fu = f(x, u) +s (¢, +6d,) +m (¢, -g0,)

if £

31

has nc sclution u e 8, u =0 ::on 30 for some m, s such that [s|< cm, m>

fies (F )= (2. - LA < f <
verifies (F,)- (2.45) with Mot =2 + k+1

The proof of lemma 3.52 is completely similar to that of lemma 2.97. We set:

+ Ay - F

Be—k (O, r) ={u€eBO, r) | £ (u, ¢

= % s )} > 0
N ; .

Lemma 3.53 Let all be assumptions of the previous theorem hold. EE'r € R

+
such that ¥ t > =t :grt such that if (f+, f)yer (% ¢k), for v = ¢, , r > rt

(3.54) deg (F B * (0, r) 0) = % (—1)k'_l
. g ty E, k 9 ’ - -

)

Proof. As in lemma 2.102, we consider the homotopy:

(3.55) H(s, u) =u - K(f(x, u) + s (¢, +¢ ¢k) + m(¢k -e¢,))

-1
with m = -t g (1 +sz) . Using lemma 3.52 and arguing as in lemma 2.102, one
finds:
. -1 *
(3.56) deg (H(" € m,')yB " (O, l"), O) = deg ((H(O’ .), BEik (O; r)y O)
£, 3 .
-1
As in lemma 2.102: H{-¢ “m, °*) = Ft’ taking ¥ = ¢, in the parametrization,

while H(O, °) = Fm, taking ¥ = ¢ - €¢l. From the above considerations, and

k
in particular (3.56), (3.54) follows from (3.28), for € small, in view of the
Eontinuity of the topological degree, taking eventually large -t (and subse-—

quently m). B

We are now ready to prove our main multiplicity result in this section:

Theorem 3.57 Let (F,), (2.45) hold and suppose that 3k > 1 such that:

~49—




by < f < a < f < . Moreover assume that (f , £ ) € ¢ and consider
k-1 - k + k+1 + -

the problem (Pt) parametrized taking ¥ = ¢,. Then one of the following three

cases is true:

(i) _31 ¢ IR such that (Pt) has at least three solutions for t < =

(ii) ‘q'r e IR such that (Pt) has at least two solutions for [t]| > 1.

(iii) q T e IR such that (Pt) has at least three solutions for T < t.

Proof. By the results of section 2, the hypothesis (f+, f )el is equivalent to
: Y + ~(_ +

(£, £ )€Tr(e ) LIT(= ).If we suppose (£, £ )E (I' () NI (=4, ))U (T (=4, )0

AT (¢k)), then, by proposition 3.20, (Pt) is not solvable ¥ t € IR, therefore,

by proposition 3.42, the case (ii) must be true.

Assume, on the other side, that (f+, f)e r'(¢k)rw r'(-¢k). For t

large negative (3.54) holds with the - sign and B;C: B+k (0, r) for r large.
€;

Moreover, by what stated in section 2, i(f+, f) = (—l)K, therefore, with an
eventually larger r, by the additivity of the topological degree, deg (Ft'

B" (0, r), 0) = 0. Using this, (3.54-) and (2.82) one gets the existence of

9

+
at least a solution in each of the three disjoint sets: B N (0, r), Bt’
€
+ + : +
B 0, r E,. The last case we have to consider that (f , f T
NG a (£, £)E17(6 ) ()
f)F+(~¢k). In this case, arguing as before, one shows that (iii) must be

true. However, to this aim, one must change also the lemma in such a way to

have an analogous of (5.54) for t large positive. [l

We remark that it is implicit, by proposition 3.42, that, in the cases

(i), (d4ii), (Pt) has also at least a solution ¥ t € IR.
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