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ABSTRACT

Among hot problems in cosmology and ( high energy ) astrophysics, the role

played by dark matter and its nature deserves a particular attention.

It is widely believed that dark matter has a key role in accounting for

the dynamics of gravitating systems over a wide range of mass scales.

The amount of dark matter needed to account for observational data seems

however to increase when going from small scales ( e.g. star dynamics in

the solar neighborough ) towards greater scales ( galaxies, galaxy clusters,

etc. ) .

In principle dark matter could be made either of ordinary baryonic matter

or of mope exotic particles. In the former case, besides the problem of
_explaiﬁing in which form this matter should exist in order neither to radia-

te nor to absorbe radiation, we face severe costraints coming from cosmo-

logical nucleosynthesis results. According to the most recent results of

Yang et al. ( 1984 ) the observed abudances of De, 3He, T,7Li, etc. constraint

the baryonic density parameter XQ_B to be below 0.1 . Dynamical estimates

over galaxy cluster ( or greater ) séales, instead, seem to indicate that

the overall density parameter ) = 0.3.

The poésible existence of a non-baryonic dark matter component appears

therefore quite reasonable.

A number of possible candidates for it have been suggested..

In principle, massive neutrinos with mass of some tens of eV could solve




most present epoch dynamical problems.

Their role in the frame of the origin and evolution of inhomogeneities has
however been widely debated in the literature,and it seems difficult to
accouqt for a number of cosmological evidences in the frame of cosmological
models in which the sole components of dark matter are massive neutrinos.

A careful analysis of the way in which this conclusion is attained will be
performed also in this thesis.

An alternative possibility is that dark matter is made of other kinds of
collisionless particles ( X )with higher mass ( my ) and lower number den-
sity. A critical value for my is 1 KeV. It can be shown that, if mX > 1 KeV,
the smallest inhomogeneities surviving at the beginning of non-linar stages
exceed a galaétic‘mass. Galaxies will then rise from fragmentation of
primaval fluctuations in non-linar collapse stages.

If, instead, mX < 1 KeV, primeval inhomogeneities will involve less than

a galactic mass. The former case fits the so-called ' pancake' scenario,

the latter case fits the so-called ' hierarchical' clustering scenario.

In both cases the galactic mass scalé should be singled out by the dynamics
of dissipative phenomena. Of course, also the intermediate case mxgg 1KeV,
1eadiné directly to inhomogeneities of galactic size should not be disgarded.
The existence of collisionless particles of various masses can fit different

fundamental different schemes.

Supersymmetries lead to the expected existence of particles whose mass




should exceed 0.8 KeV ( Goldberg 1983 ), but is likely to be much higher.
Right-handed massive neutrinos are an alternative possibilty. Recent reports
on the Moscow experiment seem to support their existence.

Further proposals range from axions ( particles related to CP violations )
to exotic proposals like gquark nuggets ( Witten 1984 ).

Within the framework of X-dominated Universe the details of galaxy formation
theory and clustering are just beginning to be worked out.

In the first part of the thesis we deal with the linear evolutions of
adiabatic perturbations in a Universe dominated by dark matter made of X
particles with mX:fl KeV, or by a mixture of such X particles and massive
neutrinos ( ¥ ). Hereafter by X particles we shall intend particles whose
mass is &~ l”Kev.

The second part of the thesis concerns N-body numerical experiments to si-
mulate the gravitational collapse of a protogalaxy in’the presence of .a’dark
halo.

The first part comprises chapters I to III.

The first chapter is an introduction to the dark matter problem, stressing the

cosmological and astrophysical consequences arising if dark matter is made

of massive neutrinos or other massive collisionless quanta.

In the second chapter we present the results of numerical computations for
@

the' linear evolution of adiabatic perturbations in a X-dominated Universe;

a comparison with results concerning v — dominated models shows that the




final spectra are in better agremeent with the large scale clustering
features. The possibilty that dark matter is made of X and % is also
debated. Even if massive neutrinos account for most of such mixture

(2~ 75 % ), the final spectra are drastically changed by the action of
X- particles. Moreover the mass scale over which non-linearity is achieved
first is strongly sensitive to the steepness of the initial spectrum.

In the third chapter the small scale fluctuations in the microwave ( MW )
background radiation are computed in models dominated either by massive
neutrinos or X particles; ¢’~d0minated models can be in conflict with

most recent limits ( Uson and Wilkinson 1984 ) on small'scale MW back-
ground fluctuations unless galaxies have formed at very recent epochs.

On the contraTy X-dominated models find much less difficulty to fit MW
background data and the limits on the epoch of galaxy formation turn out
to be highly dependent on the steepness of the initial spectrum.

The second part comprises chapters IV to V.

The fourth chapter is a discussion of the present status of galaxy formation
theories at the beginning of non-lingar stages in the presence of dark
matter. N-body numerical experiments, which have been performed to simula-
te the gravitational collapse of galaxies, are also debated.

In, the fifth chapter we present a series of results from N-body numerical
experiments, for the collapse of a protogalaxy with and withouth a dark

halo. Although the research on this point is still in progress, we have




completed a number of numerical simulations showing that elliptical gala-
xies should have collapsed by a large factor ( in radius ) as a consequences

of the potential wells due to the dark haloes.




I. THE DARK MATTER PROBLEM

I.1. Evidence and problems for dark matter

In recent years there has been a growing experimental evidence that
the Universe appears to be gravitationally dominated by a form of unseen
dark matter from spiral galaxies up to cluster super-cluster scales (Faber
and Gallagher 1979, hereafﬁer FG).

For spiral galaxies the rotational curve V (R), which gives the
velocity of rotation versus distance R from the centre, appears to be
flat up to radii comparable to RF? and beyond (Rubin et al. 1978, Bosma
1981).

The unseen keplerian fall off in V (R) at large radii implies that
spiral galaxies are embedded in a halo of dark matter. The simplest
hypothesis is that the halo has spherical symmetry (although other
interpretations are possible, sec e.g. Bahcall et al. 1982); in such a

-2
case V (R)x~const implies ewnoc R and MHJ_OOC R .

If one defines a mass-to-light ratio, equal to one in solar units,
for spiral galaxies one has (M/ Le)z (5-15)h (FG).
whére h is the Hubble constant in units of 100 k(w,segirw[,’i .

4

This M/L ratio is only a conservative limit since the full extension

* Ry is the Holmberg radius at which the galaxy surface brightness
reaches 26.5 B mag/ squ arc sec.




-2 -

of the flatness of the rotational curve is unknown and M/L refers to
the Holmberg radius.

Fof elliptical galaxies the presence of dark matter is not yet firmly
established and in respect to spiral galaxies the situation is much more
complicated. The reason being that for these systems the rotation is
negligible (Bertola and Capaccioli 1975, Illingworth 1077) and the mean
rotational velocity is much less than the velocity dispersion ¢ .

If one refers only to the central regions the King (1972) model,
which has a gaussian and isotropic velocity distribution with o constant
over the core region of radius t (at i the surface brightness drops to
% of its central wvalue), gives ( NL/LB):5(9¢4_O) h (Faber and
Jackson 1976, Schechter and Gunn 1979).

There are several cases in which ¢ is constant also out of the
nucleus. Schechter and  Gunn (1979), on a sample of 12 elliptical
galaxies , found that s is constant up to fp=~ 6 h’iKF(

In the isotropic velocity dispersion case the explanation is that M/L
grows linearly with the radius (Efstathiou.et al. 1980). There are
several elliptical galaxies (Illingworth 1981) in which the velocity
diépersicn profile decreases with radius and they are consistent with

an isotropic model and M/L constant.

The conclusion would be that at least in elliptical galaxies with




& ~ const there is evidence of dark matter. However this conclusion
must be taken with care: if the flattening of these systems is due to an
anisotrépic velocity dispersion, as in the Binney(1976) model, the &
profile could be determined by dynamical effects and not related to true
gradients in M/L (Illingworth 1981).

Going on larger scales, the mass-to-light ratio seems to increase
linearly with the considered scale (Rood 1981). Galaxy clusters are the
largest systems for which M/L is known.

Using the virial theorem FG found <P1A®;>:: 290 , over a sample
of seven clusters, with a range 165-800.

Such high values for M/L in clusters have been independently confirmed
using the King model applied to the cluster central regions (Rood et al.
}972, Bahcall 1974, Van den Bergh 1977) and by dynamical models for the
Coma cluster using N-body computer simulations (White 1970).

Together with spiral galaxies, clusters are the systems for which the
experimental evidence for dark matter.is particularly striking.

On mass scales below the galactic ones there are recent measurements
of dark matter for dwarf galaxies (Faber and Lin 1983, Aaronson 1983),

not yet confirmed (Cohen 1983), and in the solar neighbourhood (Bahcall

1984).

Since these measurements are of extreme theoretical importance in




deciding the true nature of dark matter, they will be discussed in
detail in the following paragraphs.
From the mass-to-light ratio found for large clusters, it appears
that dark matter dominates gravitationally the Universe on large scales
( R > 1(3H‘1P1Fc ) with respect to the 'visible' mass.
In estimating the mean matter density in the Universe the cosmological

density parameter

Q= C/(oc (1.1)

is defined, where - e is the present mean matter density and Ce =
BH?//Sﬂféa is the critical density necessary to close the Universe.

There are two ways to estimate {L : the first makes use of the
cosmic virial theorem( Fall 1975; Davis, Geller and Hucra 1978; Peebles
1979),'the other estimates St from the local anisotropies in the Hubble
flow due to the collapse of the Local'group towards the Local supercluster
(White and Silk 1979, Davis et al. 1980).

inuthe first method the assumption of virial equilibrium on the
coﬂsidered scale yields a relation between the peculiar galaxy pair
velocities and & ; in determining this relation the two p;int
correlation function §(r) % (Peebles 1980, hereafter LSS) is used,

then the assumption is implicit that the light is a tracer of the mass

®

g )
% QObservationally it is found ? (»= (*o//l') , with
b::' 1.%11+004 , F,= (54% 0.3y~ 1 Mpe on scales

0.1 H'erc < rF < 10 h"'Mrc (Davis and Peebles, 1983).




distribution. Typically one finds (Davis, Geller and Hucra 1978; Peebles
1979) O ~o071,— 03 , however the determination of L
with fhe cosmic virial theorem is affected by the poor knowledge of

2 (r) at P> 10 Mpc  (Gunn 1978).

In the second approach the motion of the Local group is supposed to
be entirely determined from the Supercluster matter over density, i.e.
our Local group is gravitationally collapsing toward the Supercluster.

This does not agree wifh the observed dipolar anisotropy in the
cosmic background radiation (Smoot and Lubin 1979, Cheng et al. 1979),
according to these measurements the motion of the Local group with
respect to the‘CBR is of the order of utz(S‘Ooi 100) Km sec™ 1 5
but the apex of the dipolar anisotropy is nearly 45° off the Virgo
centre.

The direction of the dipolar anisotropy in the CBR can be reconciled
with the previous hypctheses if one assumes that the SC collapse is non-
spherical, with non-radial motions in the outer regions (White and Silk
1979). This hypothesis has been confirmed by Aaronson et al. (1980)
who did not find appreciable anisotropies in the Hubble flow at a redshift
¢t >~ 5000 kmsec” T , i.e. the motion of the Local group is

entirely determined by the gravitational action of the Supercluster.

From the Local group motion is found L ~ 04+ 0.1 (Davis et al.

B bRy e




1580). Using the standard big-bang model it is possible to set upper
limits to the baryonic contribution to fL trough the observed Helium
and Deﬁterium abundances; Yang et al.(1984)found 001 <0, < 0.14
In such a case it is still possible to explain dark matter in purely
baryonic terms, but only in a low-0 Universe ( & ~ 0.1 ).

However there are several arguments which suggest that dark matter
must be of non baryonic nature (Peebles 1979q).

In the case of galactic haloes dark matter cannot be atomic hydrogen
since in this case the 21 cm background would be too high, the needed

surface density is about 160 Pﬂgrc‘@ which imply a column density

2 . .
~ 410 b o™ Y . a 100 times greater than the HI column density at

the poles (Kerr 1965); dark matter cannot be ionized hydrogen since to
g
avoid gravitational collapse over a free-fall time scale ( =~ 410 vyr )
3
the halo equilibrium temperature must be T~5%40" °K from

3

the E<1keV X-ray background the upper limit to the plasma density
in the halo is ~40" "> om ° (Field 1972), a one hundred times
less than that deduced for the halo through the rotational curve.

Obiiously dark matter cannot be in the form of main sequence star which
otherwise would have been seen in the solar neighborhood. Objects formed by

heavy elements (comets, rockets) must not be too abundant with respect to

hydrogen, further a halo made of metals implies a very low 1level of




contamination with disk stars, which seems implausible. Star remnants
(white dwarfs, neutron stars, black holes) are probably excluded, when
such objects are formed they would return a large amount of chemically
evolved gas to the interstellar medium, which is not observed.

Another possibility is that dark matter is made of low-mass degenerate
stars ( M =<0.1 M, ) or 'Jupiters', For these objects the central
temperature is not enough to have nuclear burning but they will be infrared
sources since they are still cooling. Observations on the halo surface
brightness for NGC4565 (Boughn et al. 1981) yield a lower limit to the
mass-to-light ?atio for the halo M/L, > 38 PﬂO/Q_OIK in the
K band, in this case the observations exclude the possibility of a halo
made of 'Jupiters', unless the slope of the initial mass function is very
steep (Hegyi 1984).

Althouéh the nature of dark matter is still unknown a naive approach
suggests that it must be of non-dissipative type since it appears to be
much less clustered than baryons. In éuch a case it is also plausible for
dark matter to be collisionless.

In.Tecent years it has bgen proposed that dark matter is non-~baryonic
and made of neutrinos (or other elementary particles of supersymmetric
type) with a non-zero rest mass. i

Although the actual constraint on Q. does not allow the complete

S e




ruling out of a baryonic explanation for dark matter, like Pop. III objects
for example (Rees 1978, Carr 1980), in what follows we shall assume as a
fundamental hypothesis that dark matter is of non—baryonicAnature. Within
this framework even primordial black holes are a possibility (Carr 1977),
but only massive neutrinos or other weakly interacting massive collisionless

quanta will be considered here.

I.2. Massive neutrinos

The experimental detection of non-zero rest mass for the electronic
neutrino (Lyubimo{ et al. 1980), of the order of the tens of eV, has lead
many authors to a revival of the = old idea that dark matter is made of
massive neutrinos (Gershtein and Zel'dovich 1966, Marx and Szalay 1972,
Cowsik and McClelland 1972).

The experiment of Lyubimov as yet to be confirmed but massive neutrinos,
or other weakly interacting massive particles, are equally interesting
candidates for dark matter. These particles are non-baryonic and after
thg}r &ecoupling they behave in a collisionless way. From the preceding

discussion we have seen that both of these properties are likely  to be

satisfied for dark matter.




Let us first examine the cosmological consequences of a non-zero
rest mass for neutrinos. Before their decoupling neutrinos are kept
in thérmal equilibrium by weak interactions, their phase space distribution
was (b= ke c= 4 , the neutrino chemical potential is taken to

be zero)

i 1 4
5)’ ( Fy): .._j_'_B - ~ = - (1.2)
an’ e y/T,,_*_ 1 (Y (‘,’PY/T”‘*'Z‘_
at the onset of their decoupling, which happens at temperature j;l
[}
~3 M)/ , neutrinos were ultrarelativistic and since both pr and
T, scale as R () , where R(t) is the cosmic scale
factor, the distribution (1.2) can be equally applicable at the present
epoch, also if neutrinos are today nonrelativistic.
The neutrino temperature is related to the radiation one by T, =
i/3 . .
(4/41) T, , because after they decouple neutrinos do not share in

the heating caused by et e~ pair annihilation (Weinberg 1972).

Thus their present number density is

oo
Ny = 4mo,. T Sy FGa, o (1.3)
Y[,— —-——2/—“ Y, ———— - 9"’
(Y o ¥4+ 1 .

where g v is the total number of speen degree of freedom for the

L
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neutrino species i (i = ¢ r ) and T = 11K is the
J/// Yo

photon temperature today. With a surming of the various species we have

( CV: N),‘ m., . )
Wttt (1.4)
L,= Lr >~ 540 " h 2.y (ev) .
Ce
For 0, < 0.4 one has that the neutrino contribution to Sy is

domirant for (Schramm and Steigman 1081)

Sm ey = Loa eV . (1.5)

from the lower limits to the age of the Universe t | and the relation
between t , and L (Weinberg 1972) it is possible to cenclude

(zel'dovich and Sunyaev 1980)

(1.6)
S m, (eV) < (30=50)clV
If the.sum of the neutrino masses would exceed this limit massive neutrinos
could still be a solution to the dark matter problem with a non-zero
cosmological constant, which is the hypothesis suggested by Zel'dovich

and Sunyaev (1980). This possibility will not be considered here.

|
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From eq. (1.4) we see that massive neutrinos with rest mass of the order

of tens of eV yield the density parameter (L of order unity, in

the same range of the observed one for dark matter. Thus, at least

as a general order of magnitude argument, dark matter could be made of
massive neutrinos. However any theory on the nature of dark matter

must be linked in a crucial way with the formation of galaxies, since
these objects are observed‘to be embedded in dark haloes and it is likely
that these haloes have played an important role in the formation and
subsequent evolution of galaxies.

Let us consider the impact of the massive neutrinos hypothesis on the
galaxy formation theory. The evolution of neutrino density perturbations
has been widely studied in the literature, both in the linear stages
(Doroshkevich et al.1980, Bond et al. 1980, Wasserman 1981, Peebles 1982,
Bond and Szaley 1983, Bonometto et al. 1984), and in the non linear ones
(Mellot 1983, Centrella and Mellot 1983, Shapiro et al. 1983, Klypin and
Shandarin 1983, Frenck et al. 1983).

Primeval neutrino density perturbations must be adiabatic since,
before‘heutrino decoupling, each source of radiation density fluctuation
dis%ributes in the same way both radiation and neutrinos and after neutrino
decoupling it is unlikely that neutrino density fluctuations‘;ould have

been formed. After the decoupling the neutrinos are collisionless and
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do not have pressure, but they have kinetic energy from their thermal

motions. Substituting (% with < vt » /3 in the expression
) | ' )

for the Jeans mass, where ¢, is the sound velocity and Loy 2

is the neutrino velocity dispersion, a neutrino Jeans mass MJ-V can

be calculated in the same way as for baryons (this is a very crude argument
and must not be taken too seriously; in reality one must resort to a
numerical solution of the relativistic Boltszmann equation for neutrinos,
see appendix A.2 for more details). The condition ™M > Mo, still
means that in the density perturbation S, = ( 5@/(: )y the
gravitational energy dominates and the perturbation collapses. An important
difference of neutrinos with respect to baryons is that for M < My,
neutrino density perturbations are erased owing to Landau damping. This
happens because for M < Mg, the perturbation kinetic energy
overtakes the gravitational one and the neutrino mean free path is large
compared to the perturbation -wavelength, so neutrinos freely escape
from the perturbation and the overdenéity is erased.

For neutrinos there is the important coincidenge that they become
non—reiativistic at a redshift %, =~ 4-10% m, (V) 30 ¢V

MR

which is of the same order of the redshift tyx 10 q Bt

@

at which the Universe becomes matter dominated.

oL - 2
At t>T, it 1is <oy~ and for  ® <
VR MR
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itis (S o=T,  m , then it is found that
i -3
M. (z>z, ) = 910 (ii——i>
Ty - YR
1+t
(1.7)
" 3/7 _ /7
My, (2 <2, Y §1O<_i_i_3l ¢ J
i+ }C(f h_,YCZ

The eq.s (1.7) show that the only neutrino density perturbations which

survive the » - derelativistization are those with Pﬂy ~ M

3
YHax

5
~ My (_‘__E.EWR> = M =~10 M, (Bond et al. 1980,

re
Doroshkevich et al. 1980), i.e. a cluster supercluster scale.
In Fig. 1.1 the Pﬂjy behaviour is shown versus the redshift z,
together with the baryonic Jeans mass MTL and the horizon one.
It is usually assumed that the Fourier power spectrum of the primeval

T h
density contrast is of the form | §. ] = Kk , where k is the

A Kk

and n is called spectral index. Then the r.m.s. neutrino density fluctuations

comoving wave number of the perturbation with mass M= 1 e (‘zT‘RC£).>

on mass scale M will have the following dependence

4 h
T T % >
5, « M M=,
(1.8)
6 = 0 M<M,
at z < z g . A safe assumption is that n > -3 , which means that

NR




LO® { M/M,)

0 -
!
i 1 j | ‘
7 s s | o [E 2 g’
. b 4
- m, rec
LOG (Z)
Fig. 1.1 Neutrino Jeans mass MTY ~and baryonic Jeans mass M?b versus

redshift z. ™ is the horizon mass. Here is £2, ~ =0.03, £, =1. .

H
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the observed clustering decreases with increasing scales.

A n =1 spectrum is theoretically favoured since it implies that
density perturbation of different wavelengths will have the same amplitude
when they come into the horizon, i.e. the primeval spectrum has not
preffered scales (Zel'dovich 1972).

From eq. (1.8) we see that bj% is the first mass scale to
undergo collapse and to reach the non-linear stage in a scenario involving
massive neutrinos. Since the collapse proceeds in a cold environment small
initial anisotropies in the geometry of the perturbation will be amplified
at later stage; and the collapse of the neutrino perturbation will be
strongly flattened along one direction, as in the ordinary Zel'dovich
(1970) pancake theory.

The growth of baryonic perturbations in a neutrino dominated Universe
is strongly amplified after the recombination, with respect to a baryon
dominated Universe, by the presence of neutrino perturbation potential
wells. This implies that mass scales.which are reaching non-linearity

Ind

now ( M= 10" M , corresponding to an angular scale & =~ 10')

@

requir€ smaller baryon perturbations at recombination, i.e. the small

scale radiation fluctuations AT are expected to be smaller than
T «
in the baryonic case in a neutrino.. dominated Universe and below the
-9
observational upper limits 4T < 3-40 on angular scales &6=4'
T

(Partridge 1980).
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See chapter III for more details.,

Furthermore an adiabatic theory for the formation of galaxies where
the f;rst scale to collapse is of the order of 10 P1C> , provides
a natural explanation for the existence of the large scale inhomogeneities
observed in the galaxy distribution (Einasto et al. 1980, Kirshner et al.
1981).

In this scenario gala;ies are formed after the collapse of the neutrino
pancake through the cooling and fragmentation of the baryonic pancake.

A central point is if neutrinos can form the dark haloes of galaxies,
since the neutyino velocity dispersion in the pancake will be of the
order of j~03f<g se:'i , which may be too great to allow neutrinos
to collapse over gélactic scales. A constraint on the neutrino mass from
the scale of the collapsed system can be worked out from phase space
considerations (Tremaine and Gunn 1979, hereafter TG).

At the onset of neutrino decoupling the maximum value of the fine

) 3

grained phase space neutrino distribution was %,//Z b , from
the Liouville theorem this maximum has been conserved, so the coarse
grained phase space density for the collapsed system cannot exceed
thig limit.

Assuming a Maxwellian velocity distribution for the collapsed system

TG found
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1/q 1/
h’TY > 102(100Kmsc;' 1kp¢ @V (1.9)
& F )
[
here o is the velocity dispersion and r, the core radius of the

collapsed system. For & >~200 Kpm secﬁi

and r = 10 KFc
onefﬂﬁsmy > 10V .

If the neutrino mass is of the order of tens of eV eq. (1.9)
becomes an equality for a galactic system, which simply means that
neutrinos which collapse over these scales cannot undergo phase-mixing,
i.e. they must be rather cold. In a one dimensional numerical simulation
Mellott (1983) has shown that about 12% of neutrinos inside the pancake
have a low velocity dispersion ( ~ 106% g™ Sec‘j' ), with a
small amount of phase-mixing, and are able to collapse over galactic
scales. This point requires some care:in a realistic tridimensional
simulation it is likely that neutrinos acquire large transversal velocities
in collapsing onto the system, which would imply strong phase-mixing for
the neutrino distribution itself.

The neutrino scenario provides us a natural explanation for the
observed trend in M/L, which increases with the considered scale, since
more neutrinos will be caught inside deeper potential wells..

However S. Faber (1982) has stressed how the M/M‘%&M ratio is

SN




- 17 -

physically more meaningful, where Mﬂwm is the total baryonic mass for
the considered system. In this case M/MewM is found to be constant

~

over a wide range of scales, M/M€ ~ 40 — 4F , from spiral galaxies
U

up to cluster scales. For large clusters the difference betwee M/M£Wm

and M/LB is due to the different stellar populations in elliptical

galaxies in clusters plus the contribution to M from X-ray emitting

Lum.

gas. If these measurements should be confirmed, a M/Mcm~ constant

over a large range of scalés would favour the hypothesis that galaxies
with their dark haloes have been formed earlier and that clusters have
followed later in a collisionless way by means of gravitational clustering
of the galaxieé themselves. In this case the increase of M/M tun. with
the considered scale will be much less than in a neutrino model for dark
matter.

The neutrino scenario suffers serious problems both on small scales
(below the galactic ones) and on large cluster scales. The recent
experimental evidence for dark matter over dwarf galaxy scales (Faber
and Lin 1983, Aaronson 1983) from eq. (1.9) implies a neutrino mass
my,Q:SOO eV. This does not agree with the wupper limits to m, from eq.
(1.6), unless £, > 2, which seems implausible (Gott et al. 1974).

@
These measurements for dwarf galaxies are not been confirmed (Cohen

1983), but a positive detection of dark matter would definitively rule out
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neutrinos as sole dark matter consStituents.

On large scales numerical experiments (Centrella and Mellott 1083,
Frenk: et al. 1983) indicate that the slope of the two point correlation
function FOM has a time dependent steepness. But only if non-
linear evolution is started in a restricted redshift interval, can an
agreement with observations be possible.

Another point which weakens vy models for dark matter is a
comparison between the large scale (R = 50 Mpc) matter velocities and
the theoretical ones (Kaiser 1983) for these regions the collapse is
still in the linear phase and the observed velocities ( = 100 Kmsec™ % )
imply that large scale structures have reached the non-linear stage at
small redshift, zhg >~ 1, in contrast with the idea that galaxy formations
are subsequent to the pancake ones and associated with the QSO distribution
in z, around z ~ 3-5.

For these reasons in the literature the hypothesis has- been considered

of other weakly interacting massive quanta as possible constituents of

dark matter. Their general properties will be outlined in the next paragraph.

I.3. Other particles

The developments of supersymmetric theories have suggested the

s e e



hypothesis that the Universe is gravitationally dominated by neutral
weakly interacting particles, more massive than neutrinos. These particles
might be super symmetric partners of known particles - photinos (Cabibbo
et al. 1981), gravitinos (Pagel et al.1982); other possibilities are
right-handed neutrinos (0live and Turner 1982) or axions (Preskill et
al.1983). Among these particles the mass of the lightest of them,
probably a photino, might be as low as some KeV (Ellis et al 1984).

For other particles theif mass seems to lie in the GeV range. Axions

are the most considered in the framework of this approach.

In what follows we shall label X the generic particle with mass in
the KeV range, and we shall often refer to it as a photino, while we
shall indicate as A those particles which are much more massive
(rnA z&ey).

X particles interact more weakly then neutrinos and they decouple
earlier. Then they do not share in the heating caused by the annihilation
of the various species after their deéoupling (vt e, pE, et )
and today the X temperature is much less than ‘radiation one. Even if m,
is larée with respect to the neutrino mass ( my, = K¢l ) the X density
parameter Ny echy, 7;3 is still of order unity.

The same argument is applied to A particles, with the dszerence
that A decouple when they are nonrelativistic and a Boltzmaniann factor

e ma [T appears in the calculation of their present number density.
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In such a case m A might well be in the GeV range without there
being problems for the value of 0 ( 2, = 1 ).

An important difference of X particles with respect to neutrinos
is that they become non relativistic before the Universe becomes matter
dominated. The grawtn of X density perturbations which enter the horizon
at a redshift =z " > z ey is suppressed by the radiation which still
dominates the energy density (Bond et al.1982, Blumenthal et al.1982).

A rough calculation suggests that X density perturbations &,

X, 61

z e and M is the critical damping scale for X particles)
. <

with mass range M M < Me7 (M is the horizon mass

at

T/y

will be flattened by a factor M (a numerical treatment for

the time evolution of 3>< shows that this flattening is not very

strong, see chapter II for more details). M,  is found to be (Bond

-1
et al 1982) M, =m > m x40 (m [ ker) M,

Xe re X 7
here  m,, is the Planck mass.
At Tt << * 87 the mass spéctrum for these type of particles
will be
4 h
‘ vz T
5. M ¢ MM,
- —1) /6
6x o« M M <M <M,
: 1 (1.10)
hx = 0 M < I"!x o
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for -3 < n < 1 the spectrum increases with the considered scale, reaches a peak
at M and then falls off. In such a case clusters will collapse
first.ﬁFor n > 1 non-linearity is achieved first on galactic scales,
and large scale structures will form later through non-dissipative
gravitational clustering, as in the White and Rees (1978) theory.

An argument often quoted in favour of an X-dominated Universe is the presence
of dark matter in dwarf galaxies (Faber and Lin 1983, Aaronson 1983).

For these systems TG argument requires m >~ 500 eV. However it must

X
be stressed that the TG argument is a necessary condition for the particle
mass in order to have collapse on a given scale. For dwarf galaxies is

E
M ~ 10°— 107 M , three orders of magnitude below M

Dw o X

X density perturbations over dwarf galaxies scales have been
previoulsy erased by Landau damping, and in this case it is unclear how
dwarf galaxies have gained their dark haloes.

A particles decouple when they are nonrelativistic and their velocity
dispersion is so low that damping proéesses are not of cosmological

interest. In this case all the A density perturbations which enter

the hofizon at z > zCT will be flattened by a factor »11/3
and their final spectrum will be
Lt °
5, M 2 6 M >ch
(1.11)
-(h—1Y /6
8 o« M M<K M

e e
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A minimum mass scale is set be the post recombination baryonic

Jeans mass be ~ 1o ¢ Mo , If M < MjL it follows that pressure
effects prevent the baryonic density contrast 5. from reaching S4 . }

In this scenario the available power is widely distributed below
M oy . A-dominated Universe have received the attention of some authors ‘ ;
( Peebles 1984; Blumenthal et al. 1984 ), and the theoretical situation is not N
full& clarified. Peebles (1984) has suggested that a étrong point in
favour of A-dominated Universe would be a positive detection of dark
matter around globular clusters, since these systems would be the first
to gain their @ark haloes. On this point the experimental situation is
controversial. In ‘any case preliminary numerical simulations (Mellott
et al.1983) have shown that large scale structures are equally formed
both in an X or an A dominated Universe.
With respect to » -dominated models the collapse of large scale
structures is non-dissipative and theé:flattening of the formed pancakes
will be smaller than in the » case.
Dekel (1983) has shown how a non-dissipative scenario for the
superciuster formations is compatible with the observed flattening of %
thé local Super Cluster. The dissipative scenario, in which galaxies

form after SC collapse, yields a galaxy distribution which is too flat

compared with observations. For these models, where the Universe is




gravitationally dominated by X or A particles, the theoretical situation
is still far from being fully clarified.

In the following chapters we shall mainly concentrate either on

X-dominated Universe, or on the possibility that the Universe is

gravitationally dominated both by X and ,  particles.
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IT. EVOLUTION OF ADIABATIC PERTURBATIONS IN A UNIVERSE DOMINATED BY

MASSIVE WEAKLY INTERACTING QUANTA

Fluctuation evolution in a photino dominated Universe

As we have already seen in § I.2 a y -dominated Universe seems

5

to suffer from several difficulties both on large scales (™M > 1 o' P40)

> ). These arguments will not be

and on small scales ( Mo~ 10" M

o
revised here, however none of them excludes the possibility of a neutrino
dominated Universe. An alternative possibility is that dark matter is

‘made of X particles, which are collisionless like neutrinos but much
more massive ( m, ~ KoV ).

In the following paragraphs the results are presented for a numerical
integration for adiabatic perturbations involving a generic X particle
in a ) =1 Friedmann Universe. The integration is from an initial
redshift z P = 1013 , down to z‘5 = 2.103 . The X perturbations
are coupled to the matter radiation fluid through the gravitational
field equations. For the X particles a fully Bolzmannian kinetic
treatment is used, while matfer and radiation are treated in the ideal

fluid approximation. Our notation follows that of Peebles (1982), but

the numerical scheme of integration is different. A comparison of the
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observed clustering with the computed mass variances shows that a
photino dominated Universe with m. =% Kevy and h=0 or ha=1
as a spectral index for the initial X perturbation, might be favoured

over a neutrino dominated Universe where only spectra with nh>?2 would

be allowed (Valdarnini 1984). 3

SERGTTIUNE

IZ.1 Assumptions and notations

For small perturbations the line element in a flat Friedmann Universe

is

ol 5* = ol‘(:.z— Q,I({) [%qs,— "d?] Jx"Jx33 QJ?:i}Z"J (2'1)

where t 1is the cosmic time in time-orthogonal coordinates, att) is the
scale factor for the expanding Universe and hd§ are the metric
perturbations. We choose units so that the speed of the light and the
Bolzmann constant are ¢ = kB:: 1 . Neglecting the baryon contribution,
we take the total density to be C= Cr+ Cx , where er is the
radiation density and Cx is that of the collisionless particles.

2

The cosmological density parameter is defined as

L= G/GL ) (2.2)
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. .
where (.= 3H, ‘ and H,= 1o0h kmeflevgl . The
86

present value of the radiation temperature is

_(—)_ (-{;o) = 130 'K i (2.9)

In the computation S = h= ©= 1 . For the gemeric X particle the

suppression factor dx is defined as

= T/ Tl (2.4)

We assume for the X particles a Fermi-Dirac distribution with zero
chemical potential.

According to Peebles (1982) the radiation energy density is

C*: STYs’ —}14 (2.5)
'1?.LF J

Here . LF is the Planck constant.

The X energy density Cx is given by

4 (2.6)

o0
x = 8§x Py Po
C L; S‘) r ef’/Tx+1

5




here 8x is the sum of spin degree of freedom for the X particle,

Po is the X particle energy ) Faz___ P.l + mlx . With
the définition 3= fo /Tx and p= P / T, the integral
(2.6) becomes ( (11____ Fl + mzx / 'T: () )
_amy T T Jp L _=tme, T (2.7)
CX‘_ ) X i 1 °F = X C,x . ’
he are Ly
) f
From eq.s(2.4), (2.5) and (2.7) the Cx /C" ratio is found
" ¥+ (2.8)
_CL?: Cx Glx J Cx= j—L——s « :

2w ¥

We can assume that X particles are today nonrelativistic, for Tx<<’”x

the ¢ , integral takes the value ¢, (17 1) = 2 Fe y,

i

and the present value of the cosmological density parameter is (L = _Q)( )

9] = Coy — 871G Cr 19 ngo("qh 41 80>

-] ¥

ec 3Ho?' X 2

g /
'TK(7

then the mass of the X particle is

(2.9)
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The present value of the cosmic scale factor o (¢) is given by
(choosing alt) = my [ T (¢) )
! 2 4
o, = 301 10° £, h /S-ly oy s (2.10)
For the time unit 24 we make the choice 17 '= 86 er oLO“
J
3

which will be particularly useful afterwards, then

8 8 1 g2
T= 68810 & s, [(a,h?)" sc / (2.11)

and the length unit £ is

4
«6: 0, C T = 7.0% oy ?x /(ﬂxk?’-) MFC ‘ (2.12)
In these units the equation for a(t) is
1l i/
ﬁ =| Bab oxitl_ B = (1+ ¢ (u);/zq,—i (2.13)
,lt —— CF 1 +_&_ —_— - X Viy -
; 3 or

Finally the X density contrast § is written as

X

L= S

v keoox (2.14)
S5, = S 5y (&) € 4*K
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where A= lmale) k is the comoving wavelength. In the
comoving coordinates mass associated with the density perturbation with

wavelength )  1is
M, = —Z;L £x, N\ (2.15)

the index o refers to the present epoch. From eqs. (2.10), (2.12) (2.14) s

3 12 3

14 6 Z’b
M=310" k7 q ¢ O [, by) M, (2.16)

IT.2. Fundamental equations

- The set of fundamental equations for the time evolution of X density
perturbation, coupled to matter and radiation through the gravitational
field, is described in appendix A. Here we report only the required e
equation in convenient units.

In what follows all the variables of interest will be developed in
Foyrier series, i.e. we consider only plane wave. In the linear

approximation the gravitational interaction between perturbations with

different wavelength can be neglected and each perturbation evolves in
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time independently from the other (see Press and Schechter(1974) and
§ II.4. for a discussion on the validity of the approximation).

ﬁowever we shall apply the linear theory understanding, hereafter,
the Fourier transforms for all the variables of interest.

The wave propagation is chosen along the x3

axis. The angle
between the direction of x3 and F> will be called & and will

only appear in the treatment through wy O =V . Unless necessary

the index of X~ will be dropped hereafter.

The perturbed Boltzmann equation

For X particles we write the distribution function j as

3= for §u (2.17)

here 'go is the imperturbed Fermi-Dirac distribution. Choosing a wave
propagation along the x  axis the Liouville eq. (A2.9) becomes (to #\Z-CB

the first order in fi- )

(2.18)

@

%%L +L1k‘ + ?———% [(1-,1)“ (347—1) by,

where h=h < and 5 is defined by
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el

_e (2.19)
(eft 1)7“

pronmst >

F1=0
We expand g into Legendre polynomials, distinguishing betweeits

real part, composed of even harmonics, and its imaginary part, composed

of odd harmonics,

0o \
= e+ 1 : 4e+3
? J&{o {6{6 2 P?-e +L62—e+1 2 Pzz+1} . (2.20)

Then according to (2.18)

e ta o+ T
(2.21)
2. n
— = L+ 1 _ 2
o, =) — F| ¢ + G b\ 8 S
2 2e+1 "1ze+1J +(h3”_ _“) ‘;,7' , £21

are the propagation equations at fixed 1.

The matter-radiation fliuid and the field equations

We treat matter and radiation as a single ideal fluid; this approximation

is certainly valid before recombination. the equations for the density

contrast 5F and the matter velocity v~ are

e e o
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: K 2 : K
sp=tve L Xh =K & ) (2.22)
3o 3 4 o
here the matter velocity is the real part of LU,

.

In the weak field approximation the equations for } and h '3

are (see eq.s (A1.8)):

{,,—f— EiL: R A A[Toa“ T/'LJ
o,

(2.23)
L%"L = Kk iGﬁG‘f~E3
the eq.s (A2.5),(42.6), and(A2.7) give us
oo
_ . 4 2
A[iaojx-%‘rx S Prdpda g,
p 0
o[ = g TE s g o
F 1
. )
3
AR AR A P
X ’7 o

In what follows it is useful to define the following integrals
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thus eqs. (2.24) become

A _Tao -1 3 +) F
~_J;__;1§.:: e 5 N < . Jf
Cx 5 (eP+ 1)

(2 24

Finallﬁ we can write egs. (2.23) as

ez 2h=temonte iﬂ___i/ﬂr . L
Cr Cr
b h=— kK 1tn6r { T+ T"*’*E

3%

/

(2.25)

(2.26)

R T T D T T D T T T o P B TR e P =1

T A e e PR e
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for the radiation is

then we have

. . -4
S h +2::;’ h =6[5,_+ ey 5%21 &
h..— | = L I c, e |
s h 2kl 3 T Cx Ciy %x ,
where @/ and §x are defined as
¥ I 7 P
-1 (+ 3 2
b, = e g?,g_t‘;1+1mj__f_4f
% I !
,Z ‘lx R 1 ra (GP-}:}_)I
e 4 P
-1 ->
/gx: 1x S [AS - > °lf> 2290
o (ePr1)
With the previous definitions the denéity contrast SX is then
. -1 (+) 3 CP ’
b=, 5 9T Ay L P (2.30)
o (eP+ 1)
5 given by (2.29), which enters
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as a source term in the equations for the gravitational field.

The set of egs. (2.21), (2.22) and (2.28) constitute our system
of fuﬁdamental equations.

In eq. (2.28) the X density perturbations act as source terms
for the gravitational field which enters itself as a source term in
eq. (2.21), the matter-radiation fluid interacts with the collisionless
particles only in eq. (2.28), i.e. through the gravitational field.

The system of preceding equations requires to be numerically
integrated; to do this we need an approximate solution which will give
us the starting values for the numerical integration; this is done in

the next paragraph.

"II.3 Solution of the initial system

For o << 1 itis e, o~ + 4 and eq. (2.13) can
120

be solved analytically, yielding

: N B
' t= —— ) 7= O Ciy - (2.31)
LVVi+s 7
The integration starts at a redshift such that
-1
ANt = 4w a; >> 1 and all the wavelengths of
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interest are larger than the horizon scale. For our purpose it is

convenient to split g , defined in eq. (2.19), into a sum of even

and odd functions

e pabos

y= 9+ ‘¥ /

then eq. (2.18) becomes

ot ' ' ' - :
—%f—z_P_OL)-*—PZ(//)(k%—-b_)_*_ﬁ#_;’_ﬁb’
2t 6 3 ~ o9 ﬁ
- (2.32)
2= Kp oot
2t o ul
With the approximation A /t;h >> 1 we can neglect the g term

in the first of egs. (2.32), the inteération over yields

(+) *

A‘?I — _h-
=
4 \ N (2.33)
J (: - . -
dt Tt 30 - ;




+)
the integration of 431 , d T over momenta gives

dt dt

- 00

. -1 +) .

Sy = ei)( S FB J_EI_ __G_F_ 0\{» ~ 2 h
2 dt (GP-c-'i)-L 3

(2.34)

oo . p ' .
da dix o _ K [ e2hy] S P dp o~ 2 g [hethy]
o[t dt 30 o CePra) 1$

Since at ultrarelativistic epochs 5,(/2 ~ g we can now try to

solve the eq. (2.28) for the gravitational field 4 , making the

fundamental assumption
S, = 5}_: D (%) (2.35)
/

i.e. we are dealing with adiabatic  perturbations.

The first of egs. (2.28) becomes ( S, >~ %k)

(2.36)
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giving the growing solution

<
D(¢t) « T oc a” o h(#) . (2.37)

.

The last expression allows us to find the s values at

ultrarelativistic epochs. The integration of eq.(2.32) gives (we make

4

the hypothesis %33 < t , this will be confirmed later)

L
b
i

+

%:%%— + Pz(/“)(l;sx—'_i_)g't _—_—__._Zq‘_t

(2.38)
N Wkt 1kt % P, (P .L ' ' '
= £ = 9 P 2 3P L,_Hk
? 3aq [ 3o 10 ( + k%)'*—y L(/’)( 4 3 /
and with the aid of eq. (2.20) for the initial values of the 0"5 E
it is found
Lok
6, = = Jc‘,h
G=- X k 2hy 4 L) %
45 O, .
' bt (2.39)
oy = (Lﬂ_ —> -
> g
— 1 )
t:5 _— = ..3__1_ __{_‘_L' (}433 — ___> ®
s L 3
bp=0 £ 24
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We need now the initial values for v and Ass . From eq. (2.22)

the integration of  1is straightforward and yields

o= kDt ) (2.40)

6 o

For Lss we have to solve the second of egs. (2.28). With the aid

of eqs. (2.34), (2.40) we can write

L — L L 6 2 kpt B
33 - -5 + =4 ) (2.41)

then

d o ii ' 1k 3L 141 T - (2.42)
— AT LY 4+ EE 2 kot -
a!t dt 15‘[ Q‘EKL N o + 6'5,] I_ 0 .
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: 1/ 1/ .
Since it is a (¢) = (1) G and h =3 P
Tt
the last equation can be rewritten as
1/
TR T 2 qed ke B e (2.43)
dt Jt I+ o 45(14 &) /
for which the growing solution is
?(.&j: _ _’2__,_ 3y -+ Tts knt . (2.44)
9 194 19s o A

We neglect the homogeneous solution of eq. (2.43) since it gives a
less rapidly growing mode with respect to eq. (2.44). Finally it is

found that for L33 , through eq. (2.41).

3% + 35 D (2.45)
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For the sake of clarity let us summarize all the initial values

for the variables of our system

h= 2 0D
2 t.
17 3‘50“*‘ 55‘ D
3y -
385 4 30 h
U o— thih
6 o
"=t

£ / (2-46)

R ST
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11.4 Numerical integration

The relation between 2z and af(t) is

-1 g 2 4 4
14 2 = a@530010 a,h /4, A

We choose the initial and final values for 2z to be Z,= 105/

+ .= 7 1.5)3 . The integration is made with 60 points
Feh™ '
e = a5, Re, oL, Ny = ey - uniformly placed
in the logarithmic interval between @, and A, . The th

are pre-calculated and a cubic spline is used to calculate a(t) in
the interval th)th+1-

The time interval At is chosen as the smaller of a/100a and
27 a/100 k at each step of integration. The routine which integrates
the set of differential equations is the Merson code of the CERN
library. The required accurancy is fixed to be 10 , at each time
step.

The integration over p is made for a set of Np pointg

chosen in order to perform a Gauss-Laguerre quadrature. We tested

different values of Np but taking Np = 10 seems not to increase
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the accuracy of the final results, owing to other causes of errors.

The system 2.21 is truncated at a suitable Ipzx (chosen to be even)

at the last equation for 6 is therefore
: L
rLz’Ldﬁ_g_i = f—_—«eMM o (2.48)
o9 2L+ 1L

As a convergence criterion for the set of variables we take at

ZF

o /o' < 10 (2.49) ‘

at least for the first six points of the Gauss-Laguerre integration.

-4
The initial amplitude for the 5‘ s are §,_ (1”,):: Sx (”!;gl,,) = 10 .

‘ 3
The following cases have been considered: o{ax_—_ o y = 4 /11, 53)(: 8, =6
(neutrino species); °C)>( = 4 y $x= v ‘f‘x =4 Sy= .
25 so

@
The values of k have been chosen in order to cover the mass

range Mx: ('LO%—— 10°° > M » with 5 values of k for
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each order of magnitude in M,.

II.5 The concept of mass variance

In the discussion of our results we shall see later that a useful
concept is the mass variance one. We dedicate a paragraph to the mass
variance concept, since many of the results that we have got make use
of it.

The mass variance SH/M is defined as the r.m.s. mass fluctuations
in the mass found within a randomly chosen sphere of radius R. With

2
this definition (sH/M)  is given by (LSS, § 26)

<_g_ﬁ)7’= SS [(C(ﬂ,)_ (’5] [()(m - (3] Iy, dx, (2:50)

where V 1is the sphere volume.
In the linear theory two simplifying assumptions are that the Fourier
transform 5, of the primeval density contrast has a power law form
K h . .
IS, 1= A K , A being an arbitrary constant, and each of

the &, components has a randomly assigned phase. There is no

ta priori' justification for these assumptions, but they seem reasonable
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and are not in contradiction with observations. With the random phase

assumption the integral (2.50) can be calculated, yielding

(%_Bf—_- v SM( \Skll W (4R (2.51)
M (o) /
here is
- 7
W ly) = -\/*6 L M A \/“”Y] , (2.52)
so that W(\/<<i>::i and U{/(\/>> i) ~ \/—4'

For —3% <« ph < 1 the integral (2.51) gives ( M o ktz’)

K (M) S1-h
~ consT ¥ 3 \skfl.kzo“( o« M ’ . (2.53)

7

For h= 1 at large Kk  the argument of the integral behaves as k

k and the integral diverges.
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The reason is that increasing n we increase the amplitude of
2 -h/3y
the spectrum at small scales ( | &l o ™ 3 and dM/H
becomes sensible to the fluctuations at the edge of the sphere, which
has a sharp boundary. The difficulty can be avoided introducing a
_‘_1/Rz

gaussian window e in the integral (2.50) (we are
simply smearing the boundaries of the sphere). In such a case the
integral (2.51) is still a good approximation to calculate &M /m
unless h > 4 (Peebles and Groth 1976). For h >4 , when the small
scale matter distribution enters in the non-linear regime, the coupling
between perturbations with different wavelengths becomes important and
the linear theory .cannot be applied (Press and Schechter 1974).

However in this discussion we shall always consider h < 4.

For small fluctuations ( << 1 } in an Einstein-De Sitter

-4
Universe §M will grow as o (4+% ) after recombination.

H

An important property of is that the growth of %? on

T z1g X

mass scale M , which is still in the linear regime ( %;'<< 1 )

is unaffected by non linear clustering
(%g >>1 ) below the mass scale M. The proof of this is complicated
and it involves an appropriate solution of the BBGK Y equation

(Davis and Peebles 1977, LSS § 70). Let us try to give here a rough

justification of it: if we model the matter as a particle distribution
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with mean number density AN , then SM/M is a measure of the number
excess ON/y of galaxies from a uniform distribution within distance
R of a randomly chosen galaxy; clearly the value of $N/N will not
change if several points inside the sphere are strongly clustered on

scales k<< R

I1.6 Results and discussion

In Fig.s 2.1— 2.3 we show the time evolution of the 54 g

for several values of the mass and *1x=r~ _%; . In the case
2
) 4. - . ..
Xy = ey the shape of the curves is similar.
o X

The final amplitudes

1

EFRCEE TR (2.54)

are plotted in Fig.s 2.4—2.6. In the figures the values of n refer

to-the initial amplitudes at a fixed redshift which are supposed to be
2 h

| &% 1'= A k . The final amplitude for m= O

\
yields a sort of transmission factor for any kind of initial S's
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The physical meaning of this factor has already been discussed in
the literature (Bond et al 1982; Blumenthal et al 1982). The main
difference between the photino case and the neutrino one is that
photinos become nonrelativistic earlier than the Universe becomes

dominated (at a redshift Zeq)' The X perturbation which enter the

horizon at a redshift &, > E”ﬂ show a characteristic plateau
between zy and Zeq o while the matter-radiation density is still
sufficiently great to inhibit the growth of  § . Fluctuations

-2
3y 2
will survive only if they involve a mass bﬂ>$4xj: ye my ~ 10 l”x/k?V] Mo

(free-streaming scale), here Moz is the Planck mass. The mass variance

M is obtainable from the approximate relation
H
(M)
T 2 pa
(S_ﬁ ~ Vo k<8, d k (2.55)
M ot /

%

which has a transparent physical meaning. However, in our results, a
more detailed expression of the window function is used (LSS § 26),
as it does not imply technical difficulties. However the quq}ity of the

results is not likely to be much improved by this more accurate approach,

owing to the large number of other uncertain elements involved.
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The final mass variances are shown in Fig.s 2.7 — 2.9, where

s is set to 1 at the low mass end. An interesting difference
M
between photinos and neutrinos is the large mass-range in &4 for

™M

different spectral indices n.
This occurs since, in the photino case, for M >> hﬁxc the
final spectrum Sé depends strongly on n. Assuming that khe distribution
of visible matter is a good trace of the dark, Fig.s 2.7—2.0 give an
indication of the mass scale which first reaches the non—iinear regime.
Observationally $H may be determined through ? (F) , the

™M

two-point correlation function (LSS). According to Peebles (1981):

X
M g3 / 0
% is now ~ 1 over scales R =~ §h* Mpe meaning that
e 16 .
a Mass scale, in baryons and collisionless matter, Pl::(iO - 1o ) Mo

is.now reaching a non-linear collapse. Assuming that galaxies formed

at i+-'k6== S+ 2 , according to the QSO distribution in z,
4
we have M (R =~ ghT M. Y= — at the redshift zg.
M f 1+,

The considered ranges are shown as boxes in Fig.s 2.7—-2.9. The
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position of these boxes seems to indicate that an n = 0 spectrum is
strongly favoured in a photino dominated Universe. The conclusion which

is drawn from Fig.s 2.7 -2.9 is that the case i, = 4 , my=LkeV, n=0
(white noise) is in good agreement with the observed clustering over

scales R < 1oh™" Mpe . Also the n =1 case is marginally
consistent, owing to observational errors. This is in contrast to a
neutrino dominated Universe, where only spectra with n>7, would be
allowed.

We should finally like to make some comparisons with the results
obtained in previous papers by other authors dealing with related problems.
In the neutrino case ( «’,= 4/11 Qv= 6 ) the final amplitude §, can
be compared with that obtained by Peebles (1982). From Fig. 2.4 the

amplitude §, at M = 410'%M_ and n=0 is down from the k =

o
3.8

0 limit by a factor 10 . For this mass it is found that K = 0.%
£

and from curve 5 in Fig. 2 ( &y=.ﬁ% ; $v=4 ) of Peebles

. 3.1
(1982) §, is down by factor 10 . The difference is then limited
to a factor & which can be entirely ascribed to the different values of ?V

considered in the two cases: if {L is fixed, increasing 8 the neutrino mass

is reduced. The damping at small masses is then less severe.
For the photino case a further comparison for the final §_ can

be made with the paper of Bond et al. (1982).

After rescaling the results to those in Fig. 2 of Bond et al, (1982)
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The same as for Fig. 2.1, except for k = 0.2.
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it is found that %g;:f k7S, ( For Hy= 5 Fx= v

and n = 0) is in good agreement with their X case except for the
. 1z

bending of the spectrum at low masses (M < 10 P\@ ),

which is slightly steeper in our case. The difference can be entirely

attributed to the different X masses which in the two cases have

been considered. For vl”x = _ZL? , Ox= U sy=1 this is
my = 880 eV, while in Bond et al, (1982) mx = 1 keV. However

3/
using the full mass variance instead of K “ i | is likely <o

be more significant.

Fluctuation evolution in a two component dark mass model

In the following paragraphs we investigate the evolution of
adiabatic perturbations in a scenario dominated by dark matter made of
two kinds of collisionless quanta of different masses. These masses -
are taken around 10 eV (mass@ve‘?’ ) and in the keV
range (X-particles, tentatively photinos). We considered » -dominated
and X-dominated cases. While the y component moderately alters the
dygamiés of X-dominated models, we find that the presence of X-particles

even as a minor component of  dark mass, can lead to a drasfic

modification of the density fluctuation spectra, at the beginning of




non-linear stages (Valdarnini and Bonometto 1984).

I1.7 Notations

Qur fundamental assumptions are the same which have been used to
investigate the evolution of adiabatic perturbations in a X-dominated

Universe. The total background density

p= Cr+ v+ O (2.57)

isassumed to be critical. Both » and X are assumed to decouple from
radiation before the beginning of our computation. The suppression

factors

o Loy = Ty [ Teoy (2:58)

are therefore constants over all the period of our computation ( ”TY

and ‘TX are background temperatures).
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The ratio of the energy densities C" , C % to the radiation

energy density Gh are given by

e = ¢, ¢, ;o Lx= ooy (2.59)
¢ er J
4
here is Chp = 15 G, x 2 > Sx (9¢)  is the
T F

sum of spin degree of freedom for X(y) particles, and

oo

_ S P, — A (2.60)
o et+ 4

C
Ix,y

i/2 4/,
= (1 T @D = (P e [T O )

In what follows our scale factor will be normalized so that
o ()= M, [/ T (&) (2.61)

then
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/7 S )4’/7. 2.62)
= 37'_*_ (a/a 2.
= ey, pm SR
with
ot hy, %y
v My oy
The masses LV are given by
J
[IVEEN
mx) , = to.9 .Q,()Y% /dx,y $x,v el (2.63)
as usual 1, () is the density parameter for X(v).
With the choice of (2.61) for the scale factor o (¢) its present

value @, , and our time and length units are the same as that given by

eq.s (2.10), (2.11) and (2.12).

The equation for a() is then

1/5

| -1
§£;==(1 + Ox €y, + c,‘ciy> a
t

(2.64)
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The mass associated with a perturbation of wavelength N\= e i)k

is given by

2 4T 3
M= 340K e pn Sl My (2.65)

X

which is the same as eq. (2.16) for an X-dominated Universe (Sy,=1,6 n,=0)
This is not surprising since we have chosen fl=asa,4 2,=1 and
the choice of the X parameters 1, ; $x and dy fully determines

X

our length scale..
The analysis made in § II.2, II.3 can be repeated here for the two
component case. Here we give only the system of equations and the

solution of the initial system. The equations for h and kas are
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5x,3) Smb, } g" and ;Y given by
o0
_ .1 ,t 3 - P
sz‘z_ T ij Sc‘r _% 5;)( [Fl_*' % Q?‘J € -
) 9 (ef+ 1)
1 T 5T ‘\
6 = — (?-— Sol) o T 4L a\ €F
y/‘a 2 1y ) l 7%; % F + T(z:) t . 3
L A (ef 1)
4 1 P
gx:?ei; S CJ;PP(F‘;IX“*Q“*;
° CePt+ 1)
Let () e P
0 (eP+ 1)
fhe Ty . ) S satisfy the set of equations
J
— ko > - ‘1
o =
oxlv Py —C!I—X-y Oixﬂ, + T
L
0:‘ — k L 6~ L4+ 6
2 =) L+14 e~
X,V T L v 2e+ 1 ¥y
b
(L’n— 3 | 2 Lz 1
Finally the X and density contrast read
oo
& = L e*i dp o 6 _._JF_*
X/Y_ 2 iXY rr D]X/Y OX T
y o /Y C€P+ j-)

(2.67)

(2.69)
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Initial condition can be conveniently set at T >> m, when all
components are relativistic and the system made of the above equations
can be analytically integrated. Then dynamical variables relate to

as follows:

U"_—:—-}i——t—-é\-
w ¢

C L s
=2 2

iﬂ 39w 4+ 36 S

& 33w+ 30 =
O—;:___L)__t

3
T . - \

M= B (i h)

— wtt K
e, = — —-—(L\%———-_L'_B
35w
O{:‘_ O /'624,
(2.70)
Here w = (¢, + ex) / Cr at the time t. Provided that the temperature

T3>, at t, (2.70) however hold. .
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I1.8 Numerical integration

We integrated numerically our system from a redshift z;, = 109
down to zpi, = 2 . 103 . at zyn Particles with m 52103 eV are still

ultrarelativistic. At zfin particles with m > 5eV are already nonrelativistic.

The independent variable was t and the integration steps were taken

to be

At:io'zMiw(UL/d,)\) (2.71)

This step length was then reduced up to 100 times more by the MERSON
integration routine of the Cern library. A finite number of 4 and p
were chosen. The p points were fixed in order to allow Gauss-Laguerre
integration over such a variable when performing the integrals in 2.60
and 2.67. We limited the number of ; points to 10, after checking
a number of cases also with 7 and 14 points and finding a difference in
the final values of physical variables never exceeding 5% (and mostly
below it) when passing from 10 to 14 points.

To fix the value 4 max of (£ nax -+ 1 variables ), we set

the constraints that
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(2.72)

\N]
&
x
>
¥
\
9
w
VAN
‘_.L
(@)

even at zfip. This requirement would lead to different £ max according
to M. We can make a zero-th order evaluation of { p,x by considering
the system 2.6&, where thé term which _drives stimulus from small to
great £ is (k/a) (p/q) . This term is large for large K (small M)
while 2 never exceeds the unit.
‘

However it is then clear that for large p (if the regime is
not ultrarelativistic) it may be needed to consider more harmonics. For
this reason our 4 max Wwas variable with p; this allowed to reduce
considerably the integration time.

The precision requested to the integration routine was 10’5 . It
is however known that this precision applies to each step. Then we checked
how the final results varied changing the required precision. In the
cases we considered we found that results varied by less than 3% if
thé precision varied from 3.1074  to 10~0 . Therefore we believe that

our results may be affected by a numerical error which should not exceed

such a percentage.
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I7.9 Results and discussion

(a) z > 2000
We shall report here results concerning the numerical integration

of the following cases:

A) Q=01 , 0, =08 , &, =004
B) f,= 0.2 Q,=08 , d4=007
— — L .
C) 0, = o‘gjﬂy__o‘?,/ A’y = 0.04
)
D) N, =08, &,= 01, Ay = 0.0
In all above cases we took di = 4/11; 2, + 82, =1, ~§X~n= 2, and gy, = 6.

The integration was started at zj, with an equal §, = §,= &,
over all mass scales. This corresponds to assuming an initial spectrum
with n = 0. Of course, in the linear approximation, other initial spectra
are obtained just multiplying the final 5, by K%/2 | We took the
values of k in such a way that at least 5 values of mass were considered
for each decade in M.

For collisionless systems a critical mass scale M, exists under
which density fluctuations are gradually erased. Here M. is defined as

the mass-scale for which the mass-variance § M/M holds 0.95

(at z = 2000) assuming an initial spectrum with n = O (see equation 2.55

and the discussion thereafter). The value of Mc would be even more different
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if other values of n were taken. Such n dependence becomes increasingly
relevant as greater masses of the collisionless component quanta are
considered. In the following table the values of the relevant parameters

for the different cases are shown.

TABLE
case Mo (x)/ Mo Me(v)/M g my (eV) m, (eV)
A 2.1013 1015 176 25.8
B 3.1012 9.1014 352 25.8
c 5,,;911 ‘ 1014 705 6.5
D 1011 1014 1410 6.5

The value of my for the case A hardly fits the photino mass range.

There are however a number of, =’ possibilities for inserting such

a particle in different schemes of fundamental interactions.
In fig. 2.10 - 2.13 the evolution of the density contrasts is shown
(for a number of cases). The principal results can be summarized as follows.
While, for M>M.(,), Sx and SY show a continuous growing (fig% 2.13), for

M < Mc(y),'the v density fluctuation, initially erased at the entry
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in the horizen essentially because of Landau damping, has alater restart.
This effect is to be entirely attributed tothe presence of gravitational
potential wells due to X density fluctuations; they are able to re-capture
y 's as soon as the critical mass for  gravitational instability
has become sufficiently low. As a more severe damping of initial -
fluctuations corresponds to a longer permanence of y —-fluctuations below
such critical mass, this secondary growing of j -perturbations has a
later start for mass scales which were more drastically affected by
free-streaming. For mass scales M < Me(x) both » and ¥ are erased
and no possibility of later growing modes is to be expected. This can
be seen clearly in fig. 2.10 where the slight‘ y —-oscillations are
likely to be ascribed to a response to the gravitational field due to
oscillating §,_.

As a consequence of these effects a component of density
fluctuations in the mass range 10”_ My< M < ’_S_OW M, 1is
present at recombination. How and how much this component depends on
different parameters can be understood from Fig. 2.14-2.17, where the

’

density contrasts are plotted as Z,,, = 2000. For a given ol the

;
growing of &, below Mc(y) is obviously more relevant for, X-dominated

models (cases C and D) rather than for v -dominated ones (cases A

and B). For a given iy , considering smaller dx leads to greater
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my and hence lower MC(X) values. Therefore the growing of 5, below
MC(V)Ais greater in the cases B and D in respect to A and C.

The X-dominated cases (C and D) are quite similar to a pure X case.
The most interesting effects take place in y-dominated cases (A and B).
Here §, keeps the , -dominance behaviour at M > Mc(v)s while, for
M < MC(V) the bending of §, is much softer than in a pure , case,
thanks to the action of residual X fluctuations, as previously
stressed. It should be stressed that in X-dominated cases Mc(y) is smaller
than in the cases A and B in spite of the fact that the smaller m
value would seem to lead to a greater free-streaming mass scale. This
is again entirely due to the presence of 5x‘ , whose gravitational

action keeps ¢, to higher values, in respect to the Sy =0

case, partially inhibiting ) free streaming.

b) z < 2000.

The evolution of § 's at 2z<2000 and until onset of non-linear
stages was calculated analytically, considering the two modes in the
solution of dynamical equations for a set of two media subject to
gravitational coupling in Newtonian approximation (Wasserman, 1981).

As is known it turns out to be

8, (£)

| /3 -1 | x _
= C, (¢/t) 4+ ¢ (ﬁ/f@ + i (Co-% c%(f/t,-hyils] (2.73)

5, () B
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(2.74)

with tjp corresponding to z = 2000. The baryon action was neglected. The
time evolution of 5><,y was followed down to z = 5. In fig. 2.16 and
fig. 2.19 the amplitudes =, §, » Sty 9y and  §= RS+ @6,
are sﬁown, in a number of cases.

In the X-dominated cases the final spectra are mostly like a pure
X case. In the 1 -dominated case we notice a time evolution which gradually
leads to s, and §, to reach a similar behaviour. This common shape is

attained fer z~ 100. From fig. 2.19 we can also see that the final

sl v s i oo s b

R

G R Tk
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spectrum is taken up by §« , below M down to Mg(x). This leads

c(y)»
to a much softer decrease of Sy in the above mass interval than

below Mc(x)-

The total mass variance

KM

% gl
<j!ZL‘> — const % 3 kz,l&k\ K (2.75)

M A

is plotted at z = 5, for C énd B cases, in fig. 2.20 and fig. 2.21.

In the case of X-dominance, §M/M is essentially equal to the one
shown in fig.s 2.8, 2.9. In the ) -dominated case, the mass scale at
which § M/M (obtained from 2.75 , making use of the whole § ) holds
0.95 is shifted towards lower masses. This is clearly due to the powér
present below 1015 _ 1016 M(j which is now clearly greater than
in the pure y -case. This displacemeﬁt depends quite strongly on the
spectral index n. In fact, although & (k), for n = 0, exhibits a
bendiﬁg at Mc(y): the change of slope is not very drastic and can be

compensated by the Kn/2 factor even for quite reasonable n values.

@

In conclusion, while in the X-dominated cases the presence of a »

component is scarcely noticeable, in the y -dominated case final spectra
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are strongly sensible to the presence of a small initial X component
and the minimal mass scale over which perturbations are to be studied
is fixed, in several cases, by MC(X) . Therefore, if the presence of
X particles as a component of dark matter is confirmed, their influence
on the shape ¢f the density fluctuation spectrum, at the beginning of

the non-linear stage, could be sensible, even if their contribution

to dark mass were modest.

II. 10 The pancake mass in a two component dark matter model

In the preceding paragraphs we have seen that the typical mass

scale over which nonlinear collapse will first begin ("pancake" mass)

can be worked out by computing the mass variance SM as a function
M
of the mass scale M. this has been done in ' § II.6 in the single

component case.

A relevant dependence of the "pancake" mass MNL was also found.

The dependence is increased when greater values of m- are _assumed.

However, there exists a definite connection between MNL and m. While

14 015

for neutrinos (my ~ 30eV) MNL:! 100 - 1 M for massive photinos

.OJ

IPNE!
(nakeV) M o 10t =10

My, - In the former caseoMNL . lies

in the super-cluster mass range; in the latter case MﬁL could fit
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individual galaxy mass scales.
If dark matter is made of quanta of different masses, some simple

relations which connect m and MNL may break down. We shall consider,

as an example, the case of two particles of masses a 30eV and a~ 1 KeV
respectively, leading altogether to a density parameter SL=1 but

contributing to S in different percentages. The result is that MNL

can lie in different points of the interval between the values related

to 30eV and 1keV, according to the value of n and to the fraction g

and Q. whose sum yields (7 =1 (Bonometto and Valdarnini 1984).
Here €, = (4/11)1/3 as usual, while we shall take dx = 0.21
in order to have ., = 0.25 and mX = 1lkeV when the numbers of
independent spin states ?V and $x are taken to be 6 and 2
respectively.

Qur fundamental assumptions . and the numerical integration are the
same as those which have been used in § II.7 and II.9 and will not be
reported. We give here only the main results.

In fig. 2.22 we report the time evolution of <, & i, 5,

/

and ‘S = 0,5+ o, 5, from t =2000down to & =5 for h=op,

In these figures & and 6, have been calculated according to

«

egs. (2.73), (2.74).

In fig; 2.23 we plot the n-dependence on MN defined as the

L 2
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The time evolution of the total density contrast &(k) {(continuous line)
and of the density contrasts § (k) (dashed line) and sx(k) (point line},
v
for a primordial spectral index n = 0, is shown from z = 2000 (plot a),

5 (plot c¢). Here Qx = 0.75, 7

through z = 500 (plot b), until z

Q@ =0.25and m = 1 keV,
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Fig. 2.23 The n dependence of the 'pancake' mass is plotted when dark matter is made
of v(m = 30 eV, 6 helicity states; curve a), of X (m = 880 eV, 2 helicity

' 3
nstates; curve b), and both v and X( m = 20 eV, with 6 states; mx = 10 eV,

with 2 states; curve c). The dependence on n is becoming.pore and more rele-

vant when going from a to c.
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mass scale where § = 0.95) for the 'classical' pure » and X

!

cases and for the present, intermediate case. The results for pure X
were ébtained in § II.6 with m. = 880 eV. This is to be taken into
account when explaining why the two-particles result appear to give
a lower value of MNL than a pure X case (for large n).

An indication of the typical value of MNL related to a given
Valuejof m;ninba world model with &£ = 1 , can be obtained from the

relation

] . )
M~ 4__o‘§ M (20eV /M) (2.75)
N 0} J

which yields the mass involved in a fluctuation essentially entering
its own horizon when T = m. Of course  (2.75) does not take into
account the way in which different maés—scales contribute to the
'pancake' mass when n is varied. Fig. 2.23 shows the effects of n
in fiﬁing MNL , which is relevant for low values of m. However,
once n is obtained, either from clustering data or from background
data, a direct relation exists between MNL and . the poiﬁt is that

both m and MV are quantities whose determination is not impossible
i

L
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in the near future.

If a precise fit of MNL and m will turn out to be possible,
a limit on the abundance of 'supersymmetric' particles can be set by
using the method presented here. On the contrary, if this fit will
turn. out to be impossible, the present results could lead to the
prediction of the mass and abundance of further weakly interacting quanta.
In our opinion the possibility that large-scale data can lead to detailed

information on masses of weakly interacting particles is appealing and

may even deserve more detailed inspection.

b

S T




IIT. SMALL SCALE MW BACKGROUND FLUCTUATIONS IN A PHOTINO DOMINATED

UNIVERSE
ITII.1 Origin of MW small scale fluctuations

An adiabatic perturbation will include fluctuations in dark matter,

baryonic matter, and radiation. In order to build the present inhomo-

geneous picture of the Universe,the size of fluctuations in dark and|or
baryonic matter must have become non-linear by a redshift zheggi,~ g
After decoupling the ( baryonic and/or dark ) matter fluctuation spectrum
is expected to héve the following shape:

Fsoo = A"

(3.1)
for K<’KD ( kD fixes the critical damping scale for the fluctuation
spectrum, see below ), which it is expected to drop exponentially at greater

K. This yields a mass variance

M e M

M /

with d= for

ISIIRN
mlj

@

(3.2)
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3
- ko) = T & LI
e -tE ()
and flat for M< M ( K;) . The value of /<D dependgén the

underlying physical theory.

If dark matter does not exist or is so scarse as to bear no dynamical

weigth, kD isicaused~(by the so-called Silk damping (Silk 1968 ), acting

before and during recombination on matter density fluctuations.

If,instead, dark matter dominates the collapse of the material component
of the! Universe, is .connected with the size of the horizon when dark

matter quanta,beqome nonrelativistic ( see Szalay and Marx 1976 ).

The normalization of the initial fluctuation spectrum is therefore to be

such as to allow &M / M to become 1 by‘ %h£ over the mass scale
PﬂD:: M ( KD‘) .This 'sets also the normalization of the MW background
fluctuations.

Before recombination, over each scalé, 5*:: 56*1/6» is related to

S = 66 /eh through the approximate relation
) om :

-

§ = J%. 5% i . (3.4)

A naive extension of such a relation down to after recombination would give
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1
T— 7§ " (3.5)

If we assume this relation to be qualitatively true at # =~ 800,

where we require

oy 2 Ehy (3.6)
. S )
-0
it turns out that
§T r ;3 (3.7)
oy “hy /}D ~ iO . .

T

This rough argument is however to be corrected owing to a number of

different considerations:

i) The normalzation of §,  is operated over a scale corresponding to KD
Clearly AT /T can be originated by different scales k.

ii)Theormalization of § might refer to dark matter rather than to

n
.baryonic matter. Then we have to consider the growing of dark matter
perturbations since dark matter becomes the dominant form energy in
the Universe until %, .

iii)0f course (3.5) is only a very rough approximation, we ought to

determine which was the value of Sk in the last scattering band.

°
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In what follows we shall debate these points in detail. It may be however

worth mentionig soon that:

i) The smallest angular scales over which §7/7T are potentially obser-

g 416
vable, are connected with mass scales ~ 40 - 10 Mo -

ii) In the case of baryonic matter dominance Mp ranges, instead,
around 1OH}W@

iii) In the case of dark matter made of » ( m, o= 30y ), free streaming
causes M, =~ 20 Mo -

iv) If the mass iy of the dark matter quanta is grater, we expect P\p
to be smailer.

Therefore:in the canonical massive V case, there is indeed a direct con-

nection between Sm and 8% ,for both concern a similar scale.

In the other cases, instead, a relevant importance is assumed by%he steep-

nesss of §${(k) . Very steep spectra can allow %h to be large at M, ,

s
while §, is small over 10 Mga . Moreover,when larger values of
h are considered, the value of M, itself becomes strongly dependent
on n.

Besides these general points much care has to be taken to work out the

expression of §T/ T taking into account different wavelength contributions.

In this chapter we report the results of a numerical calculation for small

scale fluctuations in the cosmic background radiation in an Universe dominated
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by weakly massive interacting quanta ( Bonometto,Lucchin and Valdarnini

1984; Valdarnini and Bonometto 1984; see also Vittorio and Silk 1984,

Bond and Eftstathiou 1984 ). For the mass of these particles two possibi-

lities have been considered: either massive neutrinos or low mass photinos

((m, o~ 1 KeV ).

The integration start at the redshift LI ( £ = 3.10‘5 in the photino
case and }mz{gijf in the » case ) and is halted at the

final redshift Eo%z 200 -

In the following section we debate the relation between the observed small

scale Mw backéround anisotropies and the results of our integration.

In §III.3 and III.4 the fundamental assumptions and the numerical integra-

tion of the model are presented. Finally results and discussions are deba-

ted in §III.5 .

I1I.2 Connection with the observed small scale temperature fluctuations

The mdin output of our integration are the transmission factors for

'matter' and radiation, defined as

%}n (k): 6011 (k/ I=1‘oue) ; 'tk Ck///),: SV(K}}U,’.‘=ZDut\ (3.8)
éh(kl t= ‘bin) 8" Ck)/’f tr By, )

®

here 'matter' refers to both ordinary and dark matter; for radiation the
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the transmission factor depends also on Fp=cos e , & being the angle

between the observer and the wave propagation direction.

Our integration has been done with a spectral index n=0 for the primeval

fluctuations,in the-linear approximation other spectra can be sipmly obtai-
Iv

h
ned multiplying the final % 's by K .

The observed small scale radiation fluctuations are the r.m.s. fluctuations

—
A —% A
for a beam switched between the two directions ﬂi==lf"“i ,/ﬁ;: K- hy
— =
i Y IR
here %1 and h, are unit vectors specifying ulie UlI'€CLIUID Ui veoes
vations.

Cne must further take into account that what is observed in a given direction

is a temperature which receives its contribution from the various frequencies

of the spectrum, then $T7/T will be given by

(3.9)

(—?FTSL(@):{E_ <5F(3<",//1)/5P(>7//m)> ,

where the mean is all over the spatial points ¥ ; here SFCQZ/A is

?
pe

the Fourier spectrum of §, (}-:,//) and cos® — hy ,’,',2 .

In order to compare with observations, the radiation fluctuations must be

L

convolved with the antenna response beam, for which a Gaussian form is

assumed
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A A 'L
(Ih,—h, ) ¢)= —L_ ex SL_ T IR -5, } 3.10
§ 1 v, 0 et P T2 ) (3.10)
here & is the half-width antenna beam; then SPCKQ,PX must

be replaced by

)
5}.(k,//) —ﬁvsk(k',}/’o—):js*'(k/f’|)§/(lﬁl-g)}'0—3 J . (3.11)

In the small angle approximation ( @ << 1) the final expression for

eq.(3.9) is ( Doroshkevich,Zel'dovich and Sunyaev 1978 )
o0 +1
2 v Kt 2
l§_T. e = __.1; _j;_ SD&K KZ $ (k e ° "o (i‘f/>
F)Ee =35 dp 1o, :
0
-1

' {i + '%1‘ 3_0 [,z*k e, (»i-//-l'}ﬂl] — -g: To[ke Fo Qi—/jlil/z] ‘% B

J
(3.12)
here J  is a Bessel function, F, o= e/ H, and
\?’— AkPTY (K, 2 (3.13)
1%‘_(k,}/) . s -’)J/‘=-bout> ) °
1
A is the initial perturbation amplitude in the n=0 case. In eq.(3.12)

an useful approximation can be done &z follows: the mass variance SM /M

is ( in the K— o limit)
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. % oo

MY A g RNrY o K :
() = SOTL -
(@]

M-— o0

then eq.(3.12) can be rewritten as

T = h+ 2
§I) (6,0) = = B—Mf go(’lkk FT, (ke o) (3.15)
(T ’ 16 (M 5oo e - J
K k T, (k)

X

- 4 A/
{1 + 173 Ltk e (t-pY) /”‘J - _gk To[k@}—o(i-ﬁ) 1] } . (3.16)
3

If & is the redshift at which &M becomes one, thus eq.(3.15)
M

he

can be put in the following form




- 79 -

IIT.3 Assumptions and fundamental equations
Here we shall continue the discussion within the framework of the model
presented in chapter II: we take (. =h=1 and the metric element in the

standard synchronous gauge ( see eq. (2.1) ). The total background density

reads

C =00+ CrF Cx (3:18)

the X label referring either to photinos or to neutrinos, Cr is the radia-
tion energy density and Ce that of baryons. For baryons we take a den-
sity parameter <, =0.03.

For X pafticles the notations and fundamental eduaffohs are the same of

§II1.1,II.2 and will not be reported here. An important difference arises

here in the numeric treatment of radiation and matter. In chapter II we were

interested in dark matter dynamics aﬂa a single fluid approximation has
been done for matter and radiation. This treatment is clearly inadequate
here since we wish to calculate the small fluctuations in the cosmic back-
ground radiation. To follow the evolution of radiation density fluctuations
through decgupling stages, a numerical solution of the Boltzmann equation

for the radiation brightnessis needed.

Then let us return to the linearized Boltzmann equation (A3.3) for the

.
®
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radiation brightness In our reference frame ( see €I1.1 ) this

L}_, .

equation reads

dir iky [ l2pd L h )| =
E A L“ + 20 ) by Tﬂ"

at)
-1 .
:tc E%P+4ﬂ% — LP:! (3.19)
/
' -1
here v, is the matter velocity , t_ 1is the collision time t. =
he €3 CX(E) . N in ?he tiMie units défiried by eq.(2.11); for the ioni-

zation degree x(z) one has to take into account the presence of massive
weakly interacting particles which clearly affect the expansion rate and
then x(z) ( Bonometto et al. 1983 ).In eq.(3.19) the radiation density

contrast 6F is defined as

0 = SL" Jo (3.20)

Eq.(3.19) must be completed with the continuity and motion equation for

matter. From eq.s (A3.8) we have

do . 4 [3 ] (3.21)
. —m LV - = e N .
e e T F 4%

T e e

S R e e 2
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3 - .
;;— —é%; and é; is

here &  1is the matter density contrast, n=

the radiation momentum
i} = S . f/ d o i (3.22)
4.y

To follow the evolution of radiation density fluctuations through decoupling
stages an useful approach‘is to develop the radiation brightness LP

into spherical harmonics ( Wilson and Silk 1981, Bonometto et al. 1983%)

) 3 2
L, C_k,ﬁ,e)zz 5, Pp (/b) (-¢d (3.23)

£=0

Then eq. (3.19)can be rewritten as
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With the defintion (3.23) one has

5 = § = Cs
1o o —_L_i_ (3.25)
¥ L
and eq.s(3.21) become
b ke
5»,—-1 LULL
LJ_% L I (3.26)
It + > n ; L - M-

Finally the gravitational field equations read

'- -E'—I’T fnd —- 4 m
l‘% ZUL —-6% [S}_—f—.‘ég_%m_}_cxeixg
el—

X)?/

. —‘—— 6 .
haa | h _7}:~ "Zi - £, + ¢ ey, ;X‘J (3.27)

3
o G"'

-«

here Cx/ezx/%x,? "§X have the usual meaning.

The eq.s (3.24),(3.26), and (3.27) are completed by the set of eq.s (2.21)

(2.29) for X particles. The integration starts at an initial redshift

AR L ST it
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such that the single fluid approximation can be made for matter and radia-
tion, then the initial conditions for the system of equations are the same

as have been found in §II.3, with §, =D= 5 = s, s by 0= i §€ =0.
et

IIT.4 Numerical integration
For the X particles the set of eg.s(2.21) has been truncated at a @m

X

( ehjw =120) such that the same stability criterion used in §II.4 is
RS
satisfied ( see eq.2.49) . The integration over p has been made with a set

of pointS“pi , in order to compute a Gauss-Laguerre quadrature: for the X

harmonics o 5; . The number of values P used to perform the inte-
g .

grals is 10; we have checked in a number of cases the effects of taking
a different number of values pi (7 er 14 ).This allows the conclusion
that the accuracy reached taking 10 pi ranges about a few percent. The ma-
ximum number of radiation harmonics has been 30, together with L, ém
and U, out system of 33+10( 2““—% +1) equations has been integrated
by meéns of a MERSON code of the CERN library, this code has been modified

in order to treat more than 100 equations.

The following cases have been considered: y - dominated Universe, with
£v =4/11 ?y =6 m, =32eV and photino-dominated Universe with
3 _ _ —

AX =1/25 9X_2 my =880eV.

JORS—



- 84 -

II1.5 Results and discussion

In Fig.3.1 we show the expected values of AT /T for two possible antenna
beams ( &~ =1'.8 and & =3' ) for the and the X case. We illustrate
five values of n, between -2 and +2. The curves directly yield A4T/T

( on a logarithmic scale ) if =1. For the sake of comparison, we

Z-h.e

indicate the observational limit of Uson and Wilkimson(1984), although it

refers to an antenna beam of 1'.5 .

The difference between the calculated AT for the X and ) cases is
T

due to the different transmission factors, which determine the normaliza-

tion of AT/7; in eq.(3.17) .

Let us stress that the Uson and Wilkinson (1984) observations refer to

temperature fluctuations in the cosmic background radiation over an

angular scale © o~ 4'.5, i.e. the corresponding mass scale is of the

same order of the critical damping mass for neutrinos.

In the neutrino case the main contribution to the integrals in eq.(3.17)

arises from the same mass range. For X particles the transmission factor

1

?& is cut-off at much lower mass scales than for neutrinos ( see also

Qo
Fig.s 2.4-2.6 ), then the main contribution to the integral S Jkk"*zzj;CkB

® 0

comes from mass scales much below those giving the main contribution at
AT [T .

Then, in the X case, a decrease of n implies an increase of AT /T ’
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The expected small scale anisotropies of MW background temperature are plotted

Fig. 3.1
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- -
owing to the kh+ factor in the integral over (=¥ .

The present results can be compared, in the case of vy 's, with those of
Szymaﬁski and Jaroszynski (1983) which were however normalized to the
observed covariance function and calculated assuming an istantaneous hydro-
gen recombination and for the limit 6 =0. Our results seem to indicate a
smaller AT/T , which is not unexpected due to our more accurate treat-
ment of recombination. The present results can be also compared with those
obtained by Vittorio and Silk (1984) for the ) case, with which they
agree within 20%.

After completion of our calculation we received the results of calculations
by Bond and Efstathiou (1984) where AT/T are also computed both for the
neutrino case for the case in which the Universe is dominated by 'cold!
dark matter ( axions, for example ). Although their detailed results refer
to cases different from ours, the values of AT /T they calculate seem

to be smaller than ours by a factor a2 2. The critical aspect of this com-
parison is the different system of normalization they adopted. Here we

have ﬁreferred to normalize to M /v instead of making reference to any
observational data on clustering, for severe dobts exist on whether ligth
is really a good tracer of mass. i

Qur conclusions are therefore that a massive neutrino picture is consistent

with present limits on small-scale anisotropy of MW background radiation
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if N < 2.5, for the case n=1. It is possible to push .Ehc up

to 4.§ if the fluctuation spectrum has n=-2. In the case of 'photino' of

880 eV, instead, the limiting values of Zy . are 5.3,8.2,16,49,140 for

n= -2,-1,0,+1,+2 , respectively. In this latter case and if primeval

fluctuaticons have an n=1 ( Zel'dovich ) spectrum their trace in.the MW-hack-
-6

ground will be potentially observable only if 47T /T o~ 10 can

be experimentally detected.
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IV. FORMATION OF GALAXIES IN THE GRAVITATIONAL INSTABILITY THEORY

IV.1 The adiabatic and isothermal picture

It is now widely accepted that the present structures ( galaxies, clusters)
have been formed through the gravitational instability of primeval density
perturbations which needed to be present in the early phase of the expan-
ding Universe.

These primeval density fluctuations can be classified as adiabatic, where
both the radiéfio; and matter density are perturbeéd but the specific .entropy
is kept constant, or isdthermal modes, where only the matter density is
perturbed.At present the existence of isothermal density perturbations at
early epochs is not favoured by grand unified theories, GUT.

In the GUT's scheme an excess of baryons over antibarvons is generated by
non-conserving barvonic processes whi;h violate CP at the barvosynthesis
epoch ( Te= 10° “‘ﬂ< ., see Weinberg 1982). In these theories the specific

entropé is a constant which depends only on microphysical parameters and

any preexisting isothermal perturbation would have been erased at the baryo-

@

synthesis epoch.

Adiabatic perturbations with a mass smaller than the Silk one ( Silk 1968,




. 88 -

Peebles and Yu 1970, Wilson and Silk 1981, Boncmetto et al. 1983%)

-3/

~ 131070 (aw) Mo

MD ) (4.1)

are erased at the matter-radiation decoupling by radiation diffusion.
At z>> zeq the Jeans mass of the matter-radiation fluid is of the same

3
order as the horizon one i\’[j ~M, = 1016(24' hg;) Mo :
+ =

between the equivalence and the recomination the Jeans mass takes a costant

16

-2
value P?T ~ 10 (iﬁ_Lf') IV?O and after the recombination ( owing to

the drastic drop in the radiation pressure ) Pﬂj falls to Pﬂ T ~
3/7

I3 i/~
10 (ﬂ%“ <§f3$—> M@ ,whearezrg'z,'io3 .
l'

Adiabatic perturbations which have M >»Mj when they cross the horizon

will grow in amplitude until the condition M > M, is satisfied.

Those adiabatic perurbations with My(x=1)> M > My will start
to oscillate with nearly constant amﬁlitude as M < IWS. until the recom-
bination; thereafter they will restart to grow‘as S o (1 + E)~.1 since
for them it is now M > M.). .

Adiabatic perturbations with M < IWD will be erased during the recombina-
tion .

_.‘L/'L
The growth of isothermal modes with M > M o~ 10° (sLh) P1O

is inhibited before the recombination by Thomson scattering ( Peebles 1965 ).
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However a small radiation density perturbation Sr is initially pre-
sent in the isothermal mode ( LSS, §94 ). This S*Is is small as long

as eb.<<;€|_ but becomes comparable to the matter density fluctuations

in the matter dominated era.

For adiabatic perturbations with M > MD the mass of the perturbation

after the recombination is many orders of magnitude greater than the Jeans
mass, so pressure effects are not important: each small deviation from
spherical symmetry ( owing to the tidal forces by neighbouring perturbations )
will be amplified in the non-linear collapse stages ( Barrow and Silk 1981 ),
in this case ;f is likely that the collapse of the perturbations is one-
dimensional and that a thin pancake is formed in the final collapse phase.
Zel'dovich (1970) has been the first to point out this feature for adiaba-
tic perturbations.

In one-dimensional approximation the trajectory of a particle in the direction

normal to the pancake plane is given by ( Zel'dovich 1970 )

2 (g, )= altd)q+ b(e) S (9) ) (4.2)

@

where o (%) is the cosmic scale factor, q is the particle lagrangian
coordinate, b{(t) is a growing function of time which describes the pertur-

bation evolution and S(q) represents the displacement of a particle from

e
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its equilibrium position. The b(t) and S(q) functions are supposed to be
determined by the initial amplitude and velocity of the perturbation.
For a sinusoidal plane wave perturbation it can be shown, in a L =1

Universe ( Zel'dovich 1970, Zel'dovich and Sunyaev 1972 )

7_._(3}{):—_ o (&) I‘o‘ —»w(ﬁ)Bsinkﬂ ( 4.3)

where B is a generic constant and k is the comovirgwavenumber of the

perturbation. Mass conservation yields

pln)=7 L = ¢ 1  (4.4)

1+ 25 _H_@ 14— de(‘ﬁ)Kcoske'
1 a®

From eq. (4.4) it can be seen that an infinite density is achieved at t=t,

in the z=0 plane, with t _ determined by the relation

k Bal(td)=421 . (4.5)

The reaching of an infinite density in the pancake plane at_t=t is
prevented by pressure effects, when densities and velocities become large
a shock wave is created at z=0 which will propagate outward.

As a first approximation the motion of the shock wave will be one-dimensional,

°
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normal to the pancake plane. The velocity at which the material strikes

. 1/
on the shock wave is & =~ _ %% 9 /tc > and the baryon post-shock
temperature will be of the order of
¢ o ’
T o= 10’ (teedq K (4.6)

where zC is the redshift corresponding to tc, g is determined from the

mass fraction of the perturbation which is shocked.

The post- shockeq_temperaturekand density“are_;Bf{3¢iently‘great that a
fraction of>th§ shocked gas cools radiatively at T 104°K. In this scenario

a two-phase medium is expected ( Doroshkevich and Shandarin 1974, Doroshkevich

et al. 1978 ): a thin layer of cooled gas surrounded by a hot gas at

Tz~ 106°K, and the pancake boundaries are determined by the shock wave

front which propagates outwards.

In the central region the physical coﬁditions become favourable to galaxy

formation and owing to gravitational instability the cooled gas will fragment

into protogalactic clouds of mass =~ 1 0" — j.C>a Mo , while in the

outer regions of the pancake the gas will be hotter ( T &< 4‘76°k ) and

thermal ins?ability might be important in forming protogalactic clouds

( Doroshkevich et al. 1978 ).

In the inner regions of the pancake the motion is one-dimensional and the

e




- 92 -

specific angular momentum of the gas will be rather low compared with

the boundary regions, where the gas motion is likely to be turbolent ( the
velocity field of the gas which flows through an obligue shock wave can
gain a whirl component since the gas itself has gained entropy and the
Thomson theorem is violated, clearly the motion of the shock wave cannot
be approximate as one-dimensional, see e.g. Doroshkevich 1973 ).

A simple suggestion of the‘theory is that elliptical galaxies are expected
to be preferentially found in the inner and denser regions of clusters.
whereas spiral galaxies must be found mainly in the outer regions of clusters.
In the case of a neutrino dominated Universe a shock wave cannot arise for
collisionless particles but a neutrino pancake can be formed as well owing
to the high-frequency cut-off in neutrino density perturbations below M?C .
After recombination baryons will be caught inside neutrino perturbation
potential wells and they will dissipate their energy through radiative
processes, while neutrinos do not.

A thig baryonic pancake is expected inside a three times thicker neutrino
paqcaké { Shukurov 1980 ), with neutrinos which are non-dissipative and
oscillate back and forth along trjectories normal to the paqFake plane.
The fraction of gas which cools radiatively at T== 104°K is found to be a
small fraction of the one which has undergone the heating from the shock
wav?, about 10% ( Shapiro et al. 1983, Bond et al. 1984). Numerical expe-

riments in a neutrino dominated Universe with 0, =0.9, £}, =0.1




- 93 -

( Shapiro et al. 1983 ) have shown that at z ~ 1 only 10% of baryons

( i.e. 1% of the closure density ) will partecipate in the galaxy formation
inside the neutrino pancake, which has formed at 23i=: 6, the remainder

of the baryonic gas will remain under the form of hot intergalactic gas.
The baryons which cool at T =~ 104°K are only a small fraction of the total
baryonic content of the pancake; this is essentially due to the Hubble flow
in the pancake plane, which led to a rapid decrease of the gas density and
temperature, thus reducing the ability of baryons to cool by means of ra-
diative processes. A crucial problem in the pancake theory with massive
neutrinos is the persistency of large scale structures.3-D numerical simu-
lations ( Mellott et al. 1983, Frenk et al. 1983, Klypin and Shandarin

1983 , but see Mellott et al. for a detailed discussion ) have shown that
large scale structures cannot survive in a L =1 Universe owing to the
interactions with neighbouring trajectories.

This difficulty can be overcome with 1~ 0.1 or if pancake formation occurs
vVery recently, at & ~ 1. As we have already seen both of these constraints

z

are unlikely to be satisfied in a neutrino dominated Universe.

3
Isothermal density perturbations with M > MShC: 10 M, will begin to
grow in an Einstein-De Sitter Universe after recombination as 55“¢(H&)—

until they reach the non linear stage éb:: 4 , thereafter
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they will separate from the Hubble flow to form bound systems.

At each epoch t. there is a characteristic mass scale 1WC (=)
which reaches the non-linear regime.

The characteristic mass scale with a densify contrast of nearly unity

amplitude is today ™M ~ M (z=0) ~ j_o\sjlhl Mo s

<o c
5p N\ Mo\ o
for a primordial mass spectrum <<'€-\> oc (—\ this
¢ Me
yields { Rees 1978, White 1982 )
4- 1
~-1/a =
LY 1 zd
S M, (2) 2210 (1+2) (stht) Mo
3L/
te=to (Me/m,)
(4.7)
where d = S + h and to is the Universe age.At each epoch between
2 6

the recombination and today perturbations on mass scales P1:£>1WC'(33

will still be in the linear regime, while the ones with M << M, (&)

will have already collapsed and formed virialized systems.

The growth of density perturbations over mass scales M >> M, (%) will
‘proceed in a dissipationless way through the gravitational clustering of
perturbations which have already reached the non linear sta;e.

Since this picture lacks a preferred scale it is often referred to as the

' hierarchical clustering ' picture .
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N-body numerical experiments ( Aarseth, Gott and Turner 1979; Efstathiou
and Eastwood 1981 ) have shown that in a hierarchical clustering scenario
with LU =1 and n=0 the slope of the computed two-point correlation
function ?W:P> does not agree with the observed one at large radii

(R > lh_lMpc ) and it is in fact much steeper.

An important extension of the h.c. scenario has been proposed by White

and Rees (1978). These authors note that the h.c. picture lacks a preferred
scale and that there is no natural explanation for the existence of galactic
size object. There is another point which weakens a pure non-dissipative
clustering : as a perturbation of mass M, reaches the non-linear stages,
perurbations with masses M << M. , which have already collapsed and
formed virialized systems, will be destroyed within few crossing times

tckﬁ t, (M) from the collapse of the perturbation which is just entering in
the non-linear stage.

This effect is:mainly due to tidal disruption, coalescence and dynamical
friction and it has been confirmed by means of N-body numerical simulations
( White 1976 ) .Since many groups and clusters of galaxies have crossing
times much less than the Hubble age, fcp<3< F‘o_ 1 ; & pure non
dissipative scenario does not explain the existence of galaxies in clusters.

The role of dissipation in galaxy formation processes has been remarked

by Rees and Ostiker (1977).
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Let us consider a uniform spherical cloud with density e and temperature

—

4
T > 10 °K . The gravitational free-fall time scale of the cloud is

~ 3 i

torer = (2476 VAN (4.8)

where n is the cloud number density in units of 1 particle cm—g; the cooling

time scale is given by

~ 3 kgl
tcac.& - _z-j B J (4.9)
h AT
where A (T) is the cooling function ( Cox and Tucker 1969 ), tioos
3 -4 —_ 6
~ T 'h for | < 40 °K |, The ratio of the cooling time scale to

6
the free-fall one is ( for T < 10 °k )

tioot ~ ( M3 ) (4.10)
t(a'r&\/ iO’IMO j
' . Pl sk _1le
where *~ M5y =< <_i_ﬁ__f> ] C is the cloud
E:Mr}/

Jeans mass. For f“oa > t%w, a cloud of mass M and radius R will contract

«

guasi-statically at a temperature T ~ GH”F , the cloud will be
. kg R
®&

pressure supported and its temperature will follow a Mz~ Pﬁjefconst

4
(T “:C,/z ) track in in a logT-log n plane.

As soon as f“°£ < t?»mv the cloud will be able to cocl radiatively within
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a collapse time; the gas temperature will fall at | == 1—O4°k' and the

. g My
cloud Jeans mass will drop to M5 ~ 1o ( T/10%°k) n Mo , this
will lead the gas to fragment into small clouds with masses much less than
the total mass and galaxy size objects will form through the clustering
of these clouds.
From eqg. (4.10) only clouds with masses M < ‘1DHMO will be able to fragment.
( Rees and Ostriker 1977 ).
White and Rees (1978) have proposed that baryons which fall inside dark
matter potential wells must dissipate their energy through radiative proces-
ses within a cooling time shorter than the crossing time of the perturba-

tion itself, i.e.

~ kg ln
tcoog - 7 (4.11)
h NMT
where | =~ Q; 6 My is the halo virial temperature ( My and
H o Ry
Rkﬂ ‘are the mass and radius of the halo ) must be shorter than the collapse
time of the perturbation. fv»wv is of the same order of the Hubble age

at the epoch of the halo formation ( which happens at a redghift z, ), then

_3/—[ i/-z_

e (Tw) < 107" (ery)  (h?) yEoo (4.12)
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The latter constraint yields a characteristic baryonic mass of the same
order of the Rees and Ostriker one.

Owing to baryon dissipation galaxies will be strongly concentrated objects
and will survive to the disruption of their dark haloes in clusters of
galaxies. In the White and Rees ( 1978 ) scenar:.c the bulk of the mass
contribution is given by dark matter, while galaxies have formed through

the cooling and collapse of the baryonic component.

IV.2 The angular momentum of a protogalaxy

One of the most important parameters in the galaxy formation theory is the
amount of angular momentum which is possessed by a protogalaxy.

Following an old idea of Hoyle(1949) Peebles ( 1969) has suggested that
protogalaxies can gain their angular momentum through tidal torques by
neighbouring protogalaxies. Peebles ( 1969) calculation yields a dimension-

less spin parameter

/\ ~ 7 ,Eb] G, ™ ~ 0.4 (4.13)

where J is the total angular momentum, Ey is the binding energy and M

the protogalactic mass.

.

mrewe




A more detailed calculation has been done by Efstathiou and Jones ( 1979)

with the aid of a N-body simulation. They found

A, = 006 20072 (4.14)

roughly independent from the protgalaxy mass.

The mean value of A in eq.(4.14) is in agreement with the low rotatio-
nal velocity observed in elliptical galaﬁies ( Illingworth 1984, however
the flattening of elliptical galaxies cannot be explained in purely rotatio-
nal terms, see discussion in §IV.3 ).

The tidal torque theory is well developed only in theA?;erarchical clustering
picture. In the pancake scenario protogalaxies gain their angular momentum
through turbolent flow at the pancake boundaries, and in this case to esti-
mate the mean angular momentum of a protogalaxy is a much harder task.

Gott and Thuan (1976) have suggestea ghat the key parameter in determing

if a Protogalaxy will become an elliptical or a spiral galaxy is the amount
of ene;gy which is dissipated during the protogalaxy collapse ( see also
Sandage et al. 1870 ). .

If the star formation rate per unit volume is approximately proportional

to the square of the gas density e ( Schimdt 1959 ), then the rate of

the star formation time scale Q to the free-fall one T; of the
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-2/ -1/
protogalaxy ( 7, o e ¢ ) behaves as T/t o oo Te .

In th¢ Gott and Thuan picture elliptical galaxies formed from perturbations
which have the largest density fluctuation 3&¢ /C at the recombination.
These density perturbations are expected to complete the star formation
by the time of maximum collapse, then the protgalaxy will collapse in a
non dissipative way.
Spiral galaxies will form from denisty perturbations with smaller amplitude
at the recombination, 7, is larger than for density fluctuations which
have created the elliptical galaxies and the star formation is not completed
by the time of maximum collapse.A substantial amount of gas is still pre-
sent in the protogalaxy at this epoch.The gas is dissipative gnd when hits the
plane dissipates its vertical velocity to form a disk.
The collapse time 7T, of a spherical inhomogeneity is related to the
amplitude 5@/@ of the density perturbation at recombination by ( Gunn
and Gott 1972 )

-3/

T~ L (—s-é’— . (4.15)
¢

Ho SL‘L/’L C L+ ’iy}all

@

For elliptical and spiral galaxies Gott and Thuan ( 1976 ) take

r = 108yrs and t, X~ logyrs, respectively.Then they found
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(ié.> ~ 0.8
6 E‘]ipticq,\s
<_5_g> 006 (4.16)
¢ gyi\-a\s

-1 -1

at Z:Zr’ for HO=50 Kmsec "Mpc and £t =0.1 .

. . . . -3
A point which weakens the model is the assumption T, «< C even

at high redshift ( z22 2 ) for Pop. II stars.

In the Gott and Thuan (1976 ) theory both elliptical and spiral galaxies
have formed from protogalaxies with, roughly, the same angular momentum.
For elliptical galaxies the mean value of A is in agreement with the
observed rotation, but for spiral galaxies there are problems in explaining
the observed rotation.

To become centrifugally supported the disk material must have N\ ~ 1

In a dissipative collapse it is >\ d:l{_ilz , then the gas in the disk
must be collapsed by a large factor, since initially it was AL ~ 0.06.

] -
For M=~ 10 ™M, and a typical disk length scale « %:SKpc it is

found that the initial radius of the protogalaxy needs to be R. 2 1 Mpc,

*

with a collapse time T ~34d0o yrs, larger than the Universe age.
A possible way to avoid this difficulty has been suggested by Fall and
Efstathiou ( 18980): since spiral galaxies are observed to be embedded in

dark haloes, the collapse of the dissipative gas has been amplified by the

dark halo potential well. If the initial gas radius was RI, and RF the




dark
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final one,it is found

- = , (4.17)

where XH is the dark halo spin parameter and F is the gaseous mass/
mass ratio at the galaxy formation epoch.

For ), = 0.07 and F =¥ 1/10 one has Ry/g_~1 0

M , a results which

is in agreement with dynamical arguments of Eggen,Lynden-Bell and Sandage

( 1962 ).

Then, if one takes into account the presence of dark haloes, the observed
angular momentum of spiral galaxies can be well explained within the frame-
work of the tidal torque theory.

However now there are problems with the low rotation observed for elliptical

{galaxies. The mass~to-light ratio for giant elliptical galaxies at the

De Vaucoulers radius is (M/L) = 10h, of the same order as the observed
one fpr spiral galaxies at the Holmberg radius.

Iq thé Wwhite and Rees ( 1978 ) theory in order to explain the mass-to-light
fatio the visible material must have been collapsed by a factor 10 in radius
radius. Then it is difficult to understand why elliptical galaxies are
observed to rotate so slowly, with values of the spin parameter \avo.0

of the same order as the pre-collapse one.

;

i
i
it

:
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Kashlinsky ( 1982 ) has suggested the possibility that elliptical
galaxies are formed in dark haloes with low values of A¥1 , but the
tidal torque theory is mass invariant to the first order.

The argument is still open and object of investigation in the literature.

IV.3 Numerical experiments i

The luminosity profile of elliptical galaxies is well represented by the

1/4

De Vaucoulers law r ( De Vaucoulers 1959; Kormendy 1977 )

. 1)y
Loy T = Loy T, — 3.2 Celved 7 (4.18)

B T T T )5 o R e 5 AN i

where r, is the radius which encloses half the light. King ( 1966 ) has
shown that in elliptical galaxies the observed light distribution is fitted
with a Maxwellian velocity distribution with a tidal cut-off. %
. i
The two-body relaxation time &, for a self gravitating system of N %
i
stars is of the order of ( i.e. is defined as the time scale such %

that the individual star energies change by a fractional amount 0€/e+1 )

o~ Mt (4.19) |
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where fm_g R /v , R and V are the characteristic radius and velocity
of the system. For elliptical galaxies it is A’r'iol' , R i‘iOkFc
and V ~ oo kmsec"i and then ﬁP z:ialoyr , larger than the

Universe age.

Then two-body relaxation cannot be responsible for the relaxed stellar
distribution observed in elliptical galaxies.

Lynden-Bell ( 1967 ) has suggested that in a collapsing system the gravita-
tional potential ¢ undergoes strong fluctuations, so the individual
star energies will undergo strong changes owing to the rapid fluctuations
in the gravitétiqnal potential; this process is called violent relaxation.
Since fck<3<'fK the system can be effectively regarded as collisionless
and the stellar distribution function ;(il?/t } will obey the

Vliasov equation
B2 Ty 2% 0 (4.20)
SU

In eq.(4.20) the stellar mass does not appears, so the final coarse grained

distribution j, will not depend upon stellar masses, i.e. we do not

expect to see mass segregation in the final equilibrium configuration.
It has been shown by Lynden-Bell ( 1967 ) that the most probable final

coarse grained distribution for a collisionless system which undergoes

-
°

?




gravitational collapse is of the type ( in the non degenerate limit )

— —F
4 = A e Y (4.21)

where &= % vty ¢ is the individual star energy per unit mass. This
distribution function corresponds to the isothermal sphere and yields an
infinite total mass for the system.

However during the violent relaxation process several stars will be thrown
into high energy orbits, these stars will not undergo the strong fluctuations
of the gravitational potential in the inner regions and will not reach a
fully relaxed distribution. This incomplete violent relaxation produces

a truncated distribution; such as the King one ( 1966 ).

Many of the numerical simulations which have been done on the gravitational
collapse of a protogalaxy regard non dissipative systems.

Although the evidence for metallicity gradients ( Faber 1977 ) seems to
suggest that dissipation might have played an important role in the formation
of ell&ptical galaxies, at least in the inner regions, in what follows we
shall mainly concentrate on non dissipative models. .

In the numerical simulation for the gravitational collapse of a protogalaxy

a set of N points in a physical tridimensional space is left free to evolve in

time under the action of its own gravitational forces.




- 106 -

The time evolution of the system is followed for several colapse times,
until the system seems to achieve an equilibrium state. Different final
conditions will be achieved according to the different initial conditions
which have been imposed on the system at the onset of the collapse.

Numerical schemes differ mainly in the way of evaluating the gravitational

potential f of the system during its evolution. The summation method
( Aarseth 1972.) ‘ is based on the direct solution
f‘x 2 nims /*;3 for the N particles. At small radii a cut-off is introduced

in the potential ( ﬁ ~ const as r-> 0 ) to avoid strong fluctuations in
the forces between particles which would introduce an unphysical two-body
relaxation, which is not observed in real galaxies. The maximum number of
particles which can be handled with this technique is of the order of

N ~ 2000-4000 . In the other numerical scheme the potential is calculated
over a mesh solving the Poisson equation ( particle-mesh algorithm ) with
the aid of Fourier transform ( Hohl and Hockney 1969; Hohl 1971 ) .

The aévantage of this method is that a much larger particle number can be
tratea ( N~ 20.000 - 50.000 ) , but the potential spatial resolution

is limited by the minimum grid spacing. .

In our numerical experiments ( see chapter V ) we have preferred to use

a large number of particle and to solve the potential the latter technique

has been used.
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Numerical experiments for the gravitational collapse of non dissipative
rotating systems have shown that ( Gott 1973; Ostriker and Peebles 1973;
Hohl and Zang 1979; Miller and Smith 1979 ):

i) In these numerical experiments the radial density profiles are steeper

<4~

than in reality, i.e. G ~ F while for elliptical galaxies is

e~
iv) System for which the rotation kinetic energy-potential energy ratio
is larger than f7==TL*/\W” > 0.14 devélop a bar instability and
the final system is a bar rotating end-over-end. Then rapidly rotating
elliptical galaxies would be expected to be prolate objects.
The problem of the density profile eik) which is steeper than
in reality can be solved with the accretion of background material onto
the protogalaxy ( Gott 1975 }. In this way it is possible to show that the
-2.'%
final (:m behaves as  (>(M o< L ( Gott 1975, but for
a different opinion see Prior and Lecar 1983 ).
it hag 5een suggested ( Miller 1978 ) that elliptical galaxies can be pro-
‘late objects rotating around the minor axis. This hypothesis has been
criticized by Bynney ( 1980 ) ; a comparison between differ?nt models can

be done with, 2 diagram of the peak rotational velocity vp over the central

velocity dispersion & . vb/ & , versus the ellipticity & of the

g
R
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system. Binney ( 1980 ) finds that the prolate model for elliptical galaxies
does.not agree with the observed distribution of points in the vp/cr - &
diagram ( see also Davis et al. 1983 ).

After the discovery that rotation is dynamically unimportant for elliptical
galaxies ( see Ilingworth 1981 for a review on the subject ) a central point is
the explanation of the observed flattening for these systems.

Binney ( 1976 ) has suggested that the flattening of elliptical galaxies,

rather than to rotation, is due to an anisotropic stellar velocity distri-

bution. Aarseth and Binney ( 1978 ) have investigated in detail this hypo-

thesis: in their numerical simulation the protogalaxy begins to collapse
with a disk shaped spatial stellar distribution ( as suggested in the pan-

cake theory of galaxy formation ) .

S T R T

A St S i e e

In the inner regions the violent relaxation is effective in producing an

isotropic velocity distribution , while in the outer regions, owing to

the geometry of the initial configuration, the azimuthal velocity dispersion

e Ao SR e

BRSSPI S A S G s i

is much smaller than the radial one.

In the Aarseth and Binney { 1978 ) experiment the density profiles are in

good agremeent with the Hubble ones, but unfortunately the imprint of the

@

initial conditions is too strong, their minimum flattening corresponds to
an E5 elliptical type, while the large majority of elliptical galaxies is %
of =~ E3 type. the model of Aarseth and Binney ( 1978 ) is triaxial 1

(a>b > ¢ ) and this seems a natural way to explain the observed isophote
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twisting ( Carter 1978; Leach 1981 ) seen in several elliptical galaxies.
The growth of the bar instability for rotating system can be suppressed
with the introduction of a non rotating halo of stars, which reduces the
t="T., /1w ratio.

This has been checked in various numerical simulations, with the halo re-

presented by a fixed external potential ( Hockney and Brownrigg 1974;
Berman et al. 1978; Combers and Sanders 1981 ) or the halo itself was
allowed to follow a dynamical evolution ( Hohl 1978 ). In the latter case
the halo was bulge-like, concentrated at the center of the system.

In these cases it is found that the introduction of a dark halo is effecti-

ve in suppressing the growth of the bar instability.

In the next chapter we shall show a numerical experiment where both the

halo ( extended ) and the spheroidal system collapse and undergo dynamical

evolution..
These conditions ought to be appropriate to mimic in the numerical experiment

the dynamical evolution of an elliptical galaxy embedded in a dark halo.

]
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V. NUMERICAL INTEGRATIONS ON THE COLLAPSE OF NON-DISSIPATIVE ROTATING

STELLAR SYSTEMS IN THE PRESENCE OF A DARK HALO

V.1l Introduction

In this chapter the results obtained are presented in a series of numerical
experiments to simulate the gravitational collapse of a protogalaxy in the
presence of a dark halo. This research program has yet to be fully investiga-
ted and the discussion of the results is only qualitative, so this chapter
is intended to be an exposition of the work done at the moment of writing
the thesis. In these numerical experiments we assume for ‘gimplicity that
both dark matter and baryons behave in a collisionless way.

the numerical treatment of a mixed scheme, where both a gaseous and a
stellar component is present for baryons ( Miller and Smith 1981 ) ,

is much more complicated and will not be tackled here.

The model used here to simulate the gravitational collapse of a galaxy
consiéts on N representative particles which moves inside a tridimensional
Bég active array of cells. Each particle shares its mass density
contribution among the eight nearest grid points, accordiné.to the cloud-

in-cell CIC method ( Birsdall and Fuss 1969 ).

The gravitational potential ¢ is obtained from the density by solving
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the Poisson equation over a 64x64x32 mesh with the aid of Fast-Fourier-
Transforms ( Hohl and Hockney 1969 ).
The potential calculation requires a mesh larger than the 323 active ar-

ray, in order to avoid periodicity effects associated with the Fourier

transforms ( Hockney 1970; Eastwood and Brownrigg 1979 ).

e

The force acting on each particle is calculated by differencing the poten-

o

1

tial at the nearest grid points; forces are weighted with the same CIC

procedures used in the density computation. ;

The velocity and position of a particle are advanced by a timestep DT,

using the time-centered leapfrog method ( Buneman 1967 ).

Then the new density is calculated and the full procedure is repeated

|
until a steady-state is achieved. ?
L
|
|
H

|

The details of the integration are described in §v.2 .
Let us now consider which conditions the protogalactic baryonic gas must
satisfy in order to undergo a collisionless gravitational collapse ( Kashlinsky 1982)
From eq.(4.12) the gas in the halo should cool and fragment for a halo
{hra ™M
mass P]H Y o) . However this condition is not suuficient

to allow gas fragmentation because of halo tidal forces. Thgse forces will

disrupt gas gragments unless the local gas density exceeds the halo one,

C?%r ( FB/B z C) H (Fa/)
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then gas fragments will successfully form at a gas radius F?/ ( making

the rough assumption that both the halo and the gas have nearly uniform

density )
_1/s
Ry < F Ry, =~ Ru (5.1)
v
where F = M? /MH ~d/410 MLX is the gas mass and R, is

the halo radius.

Collisions between fragments will be negligible if the fragment mean

free path £F 'is larger than the gas radius k? when it fragments.

If the condition 'QF > F?/ is satisfied coalescence between fragments
is not important and their collapse is non-dissipative; the criterion fT:éfYy
turns out to depend on the gas angular momentum at the onset of fragmentation.
Let us suppose that at the beginning of non-linear phases the total angular

momentum J per unit mass was the same for the two matter components ( Fall

andEfstathiou 1980 ), i.e.

AL = a . (5.2)

since the halo+gas systems have undergone the same external torques.

From eq.(4.1) the gas and halo spin parameters A and AH ,respectively,

Vs .




- 113 -

are related by

~-4il2

1/ »
O T LTS R

The initial fragment radius hﬁ' is of the order of the gas Jeans length at

!-v

o ; SO
i/2
5 ke Ty R (5.4)
i (R 4 e 5.4
e 3 “( X Cy /
My &
P
we take the fragment mass Mo MT (Ttg,\) , and the gas temperature
—_ 4
I, ~ 10 K
o K.
At the onset of gas fragmentation the fragment spin parameter %5’ is
of the same order of A . We assume that . =~ 1 , where
?/ F hF &
E
hF is the fragment number density and 5% their final geometrical
cross-section. Then the condition
4
_{F ~ 1 . ~ > h%/ , (5.5)
th’r_ hF)\‘% -
where h. £ __;’ — and 6 _ == A F , yields
F " F FTF
™M F
Fooy
$)g 1/8
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here IH ~ GMy e is the halo virial temperature.
Pu ks ¥
Taking M, = 10%Mg Ry~ S5OKpe , and M, o~ 40 M, ,

v

eq.(5.6) gives AF1 £ 0.1, then eq.s(5.1),(5.3) imply that for

A (5.7)

VAN
o
)

collisions between gas fragments are not important and their collapse will
proceed in a collisionless way.

It must be stressed that the hypothesis of a halo of finite extension

is arbitrary, for example in spiral galaxies the rotational curve is

is flat up to the limits of detectability and the total halo extension

is unknown, however we are forced to make this approximation since we
must put the dark halo inside a computational box of finite extension.

As long as we are interested in the dynamics of the visible part of the
galaxies ( i.e. at radii much less than RH ) the assumption of a halo of

finite extension is still reliable.

’

V.2 Numerical integration

Many of the numerical techniques used here are describeed in the
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Hockney and Eastwood bock ( 1981 ), here we describe only the essential
features.

a) Initial particle position

In the literature the initial particle positions are usually assigned by
distributing the particle coordinates at random inside a given geometrical
configuration ( spherical or ellipsoidal ) in order to produce a uniform
mass density. This iprocedure generates Poissonian noise on length scales
below the grid spacing L . To avoid these statistical fluctuations the
initial particle coordinates have been determined in such a way that the
initial mass density of our system is fully uniform. This has been done

in the following way: for a given initial geometrical configuration of el-
lipsoidal type , with semi-axes a > b > ¢, the N particles are distributed
inside the ellipsoid with an interparticle separation D. A separate code

is used to determine D such that the N particles fill the ellipscid volume

\/:ﬂa‘gc °
3
&
b) Initial particle velocities
Each ﬁérticle has an initial velocity which is the sum of a solid-body
3 1/2
rotation with angular velocity O = o, 2, ( 2, = (GM /R , M
and RT are the mass and the initial radius of the system) plus a

peculiar thermal velocity.

The initial peculiar particle velocities have been determined from a
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given velocity distribution specified by a cut-off velocity V :;d;V 6M
R

Two possible kinds of velocity distribution have been considered. In

the uniform case ( U ) the cartesian components for the peculiar velocity
of each particle have been randomly chosen, with egual probability, in the
interval between O and VC , and the maximum allowed velocity modulus was
VC . In the other case the velocity distribution was gaussian ( G ) with
velocity dispersion dr'=VC, and a 3-0~ cut-off has been introduced

to avoid very high‘particle velocities.

Then the initial particle velocity distribution is fully determined by the

two parameters « and of

F V

c) Charge assignments and forces

The mass density G Cx,) at the grid point %7 (

X =
. =

P P

(iL, jL,kL); i,j,k integers with 1  i,j,k € 32; L : grid length )is

given by
N
- AL —_— — (5.8)
e (%, =) W (% =% )
L oi=1
-
here X are the coordinates of the N particles of mass m and

41— IX
( L

)(i— %)(i— %’) gor 2 <[ <X

W(;Z’) — (5.9)

O ouverwise

i
i

z
i
4
i
13
o
]
b
|
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is the CIC charge assignment function.

The potential f at the grid point ;f is given by

3 .
d(x )= 1L ;GF‘F’ e (5.10)

where

,0,0 (5.11)
is the Green function for our isolated system.

The choice GO o o=1 is equivalent to setting the self-potential of a star

9 9
equal to unity, we have introduced this cut-off inthe potential to avoid
two-body relaxation effects in our integration.

The summation in eq.(5.10) can be avoided with convolution methods, eq.(5.10)

can be rewritten as

f G A (
. = . . 5.12
¢o)’31k L4 C",f//\’ )

A
where the symbol ﬁ denotes the discrete Fourier transform
N . -
v C 2T F5m 2

A . 4 AN N \_) +nk+§> ] (5.13)

%» - 4 %Ynh G ? R

)’k/e’ (1N?A)’ 4 /F

m)h/r=o
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here Ng=32 is the number of active grid points and j,k,l1 are harmonics

wave number. In eq.(5.13) the mass density C is taken to be O outside

the active array.

A
A
After ¢ has been found the potential ,¢ can be obtained with the

inverse transform.

The field Ex (?FB is defined by ( i% = (pL,mL,nL))

- . . yg-;-i,m,h - % -4, m, .

B oy = ZL1!’ " ) (5.14)
and similarly for E‘/(;F) , E. C:"‘J .
The force acting on a particle of coordinate ?5 is

F () =ny w(E-9)E (%) (5.19)
P

d) Equation of motions

The velocities and coordinates of a particle are advanced at the time t,

’

according to the standard leapfrog scheme

_;: (h+2/2)

L

— _
— U-i(h /) + DTV

R ———

R R
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—t Y~
here n is the timestep number and D , D !x are determined by

) ot T ™ (-2

DT, — ﬁ__<‘ DT, + DT;
(5.17)

(n L 4

0T, V= M (R >/
VEA% V476 Prnx

where V and C are the maximum velocity and density of the
max max

system at the time t. Two different timesteps have been used for velocities

and coordinates in order to keep as close as possible to second order

(o) (43
accuracy in the integration. Initially DT} = D-TX .

Particles whiéh escape the grid boundaries undergo a Keplerian force, with
all the mass inside the cube concentrated at the center.

When these particles cross the grid boundaries a linear interpoclation pro-
cedure between the Keplerian forces anqéhe grid forces is used to determi-
ne the forces acting onthem, in order to avoid jumps in the velocities.

In all our integrations the number of escaped particles from the cube

has never exceeded 15% of the total particle number.

.

The calculations have been performed in dimensionless units x'=x/L,

) _3
£'=t/t , with t =/ —H— )
u u G @

mn

All the integration have been stopped at the final time t=3tc, with
R%
t = W ES
C GM




e) Diagnostics

The rotational kinetic energy of the system is defined as

N
— T
- _ 1 N
=l Ve
c=1 / (5.18)
= -
here UV, - is the average rotational velocity at ¥, . For the random

Koo

kinetic energy of the system the following definition is used

4 ‘ z —2 2 )
— — m I -+
P Z ( Py T %8 T, (5.19)
ot /
with
_ i _1 2 T . S T F
=l -7 sy =Ye~Ts Ty = ¢ T Vg - (5.20)

In eq.s(5.18),(5.20) the mean velqcities are determined averaging the
particle velocities over a spatial grid of radius 32L and spacing L/2 .
When Tr and TC are calculated the particle velocities are shifted by a
timestep

(h)
— (M — () =2 (M
U S U + PNy : (5.21)

L 4

in order to compare the kinetic energies and the potential energy at the

.
®
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at the same time t.

The potential energy W is defined by
3
4 . .
W=~ Z Cisie Poge (5.22)
Tk

The accuracy of the integration has heen checked using the ratios

GLtW:E(g ) E=T +T +Ww
E(t=0
N
— (5.23)
’K(,)— L (f) ; Ll-: Z \A(\/yl,—\/i V'hf,
L%.(t-—ov (=4

here E(t) and Lz(t) are the energy and angular momentum of the system

at the time t.

The variable e has never been found to change by more than 5% in our
integrations, while 1(t) has achieved né more than a fractional change of
10% in several cases.

For t?is kind of problem and the computer resource we have available,

these numbers indicate a guite good accuracy.

V.3 Results and discussion

In the first series of numerical experiments we have investigated the




collapse of non-dissipative rotating systems with uniform density.

a) N-body simulations for the collapse of collisionless systems

This first series of numerical integrations will be entitled G since it considers
the non-dissipative collapse of a galaxy, without a dark halo.

The initial conditions of the models are shown in Table I.
i/

El
R
Hereafter time is in units of t = 17 L \> .
c GM

The time evolution of several systems under consideration is shown in
Fig.s5.1-5.3 . In these plots 2000 different particles have been randomly
chosen, at th; beginnning of the integration, from the full set of N
particles; their spatial distribution is shown at various time in the x-y,
X-z planes.,
The stellar energy distribution is shown in Fig.s5.4-5.7 at various epochs
for model G2-G5.
We do not show model Gl at all here since it starts to collapse in almost
viria} equilibrium, without rotation, and has not shown particular characte-
ri§tic; during its evolution.
Other quantities of interest are the behaviour of the mass density 63(P\

*

versus radius, the radial and azimuthal velocity dispersions 6~ . 6%

and the average rotational velocity U#, .
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The set of variables gc>(k3,5;ck),5¥ (F)/ JE,CP) } is
calculated at the radius r and at the polar angle € with the azimuthal
averages taken over a ring of thickness A r=1Kpc and angular width

A ® =10°. The guantities { eir, % (P),ij (F3) 0ﬁf (F) }
are shown at the final time t=3 in Fig.s5.8-5.11, for three different values
of the pclar angle ¢ ( & = 90°,60°,45° ). In order to reduce the di-
spersion between the quantities at different & , the full set of N parti-
cles has been used in calculating the averages.
The evolution if the random and rotational kinetic energy to potential energy
ratios is shown in Fig.sl?2 for model G3-G5. The model G3 and G5 have the
same initial conditions as models I and IV of Hohl and Zang ( 1979, here-

after HZ ) and our final { @(*7,5;[r\,<?f (), J@ Cky} for these
models can be compared with the corresponding ones in HZ * .

These plots are in good agremeent with those of HZ, giving us a fiducial
test for our N-body code.

The collapse of non dissipative rotating systems has been already discus-
sed in the literature ( Gott 1973; Miller and Smith 1979; HZ ). Here we
reporfronly the main features.

In models where the rotation is negligible ( G2- G3 ) the collapse clearly

* Model G3 has the same (T /W,Tc/w)t_O aEle but with M=1011MO and R_=
14 Kpc, while in HZ is ~ ~° M=2.10 M _and R =10 Kpc, so the variables
shown in Fig. 5.9 must be rescaled to HZ units. ¢
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proceeds in almost a spherical way (Fig.5.1); the time evolution of the

-T; /l W ratio is shown in Fig. 5.12a for model G3, from this figure

it can been seen that —R./I\M\ becomes nearly constant for t>1, indicating
that model G3 has already achieved a steady-state by t=1. This can also be
seen from Fig.s5.5 where the stellar energy distributions for model G3 are
similar at t=2 and t=3.

Fig. 5.5c shows a separation of the stellar energies into a two-component

e R

core+halo structure. The halo component in the energy distribution arise

from fluctuatiors in the potential % ( see also I, /hw[ in Fig.5.12a %
at t < 1 )thich have thrown into high-energy orbits a fraction of the
stellar populations.

Model G2 has the same initial conditions as model G3 and it is equivalent

to it, expect for the different kinds of initial velocity distributions

o)
|

e
1
!

in the two cases. The energy histograms for this'imodel are shown

L

T

at different epochs in Fig.s 5.4 . The final separation into a core + halo

R

e
g

structure is much less pronounced than in model G3 ( compare also Fig.s
5.8 withttheucorrespondings 5.9 for model G3 ).
The different types of final stellar energy distributions for model G2 and

@

G3 support Henon's idea ( Henon 1964; Gott 1973 ) that the halo population’

4
1
2
1
§
i

T

is formed by those stars which initially have the highest 7}/iw4 ratios

with respect to the mean of the system, wit@butward directed radial velo- §

.
®
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cities. This fraction of stars will fall towards the center when the bulk
of the system has already passed the first collapse phase and is expanding :
with # positive; in this way they will gain energy and a halo will
form. Owing to the different kinds of initial velocity distributions this
fraétion of stars is smaller in model G2 than in G3 ( see Fig. 5.4a and 5.5a ).

Model G5 satisfies the Ostriker and Peebles criterion (1973 ), for this i

model the initial 72,/}&9! ratio is grater than 0.14 and a bar develops %
during the collapse stages.

A comparison between Fig.5.2 ( model G4 ) and Fig.s 5.3 ( model G5 ) shows
that at t=3 model G5 has already developed a bar , while G4 has not.

Model G4 has 7}'/Mb] =0.33 at t=0 but it is rather hot ( T./Iw]| =0.25
at t=0 ) with respect to the initial conditions of Ostriker and Peebles

( 1973 ), which were designed to prevent local Toomre ( 1964 ) instabi-
lities.

A comparison between Fig.s 5.6 and 5.7 ( models G4 and G5 ) for the stellar
energy distribution clearly shows that model G5 has already achieved a

a steady-state by t=2.4 ( see in particular Fig. 5.7c and 5.7d ) while
model G4 is still far from equilibrium ( compare Fig. 5.6c with 5.7d ).

Fig. 5.7d shows that the occurence of a bar mode implies a more uniform

energy distribution,with respect to non- rotating systems.

In Fig. 5.12b,5.12c the time evolution of the (71/Hwh 7}/,w;) ratios
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is shown for model G4 and G5. Fig. 5.12C shows that rotational kinetic
energy is turned into random energy as the system develops a bar, this is
due to the flow of angular momentum towards outer regions ( Hohl 19875 ),
which implies a reduction of rotational energy and by energy conservation
an increase in the energy of random motions.

This tendency is more pronounced for model G5 than for model G4.

The final C)[P) are shown in Fig.s 5.9a,5.10a,5.11a for model G3,G4,G5.
A comparison between Fig. 5.11a and 5.9a shows that the separation between
the core and the halo is less pronounced for model G5 than for the non-
rotating one G3, .as already noted by HZ.

The change in the slope of G (» in models G3,G4,G5 can be identified

at a radius rC= ( 8,4,4 ) Kpc, respectively. For r > r. models G3,G4,G5

have a density profile C>(H < k-4- , in agreement with those found
by Gott . ( 1973 ).

The velocity dispersions 6 . €¥ are shown in Fig.s (5.9b,c),
(5.10@,0),(5.11b,c) for models G3,G4,G5. For these models 6, o 5% at
r.< éc , while the radial fall off in & at r > rc is steeper
than for 5; ,8ince the halo population has been fog?ed from stars

with!the highest radial velocities.
The rotation curves shown in Fig.s 5.10d4,5.11d for models G4 and G5 are

characterized by an inner region of solid-body rotation and a radial fall

°
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Fig. 5.1a Particle plot of gn initially nonrotating stellar system with (7;/NJD

t=0
-0.25 ( model G3 ) in the x-y plane. Time is in units of t.=w(fr/eMm) |
RT is thevinitial radius of the system; here is t=0.175. Hereafter, in

these plots, the box size is 32 Kpc.
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Fig. 5.1b The same as for Fig.5.la, expect for t=2.
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Fig. 5.1c The same as for Fig.5.la, expect for t=3.
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Fig. 5,2a 'Particle plot of an initially
(T /wl, T /M) . o
are the same of Fig. 5.la, here is t=0.8 .

= (0.25,0.33) in the X-¥y,X-2Z planes. Time units
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The same as for Fig.5.2a, expect for t=2.4 .
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Fig. 5.3a

X.‘

Particle plot of an initially rotating spherical system ( model G5 ) with

T T Hwﬁ)tto =( 0.125,0.25) in the x-y,%-2z Dlanes. Time
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5.3b

The same as for Fig.5.3a, expect for t=2.4 .
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5.3c

The same of Fig.5.3a; expect for t=3.
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-1
off Q% < F at r > 10 Kpc.
In the inner regions of collapsed rotating systems the violent relaxation
is effective in producing a Maxwellian distribution with solid~body rotation

( Lynden-Bell 1967; Gott 1973), while the outer regions are composed of

halo stars with approximately the same angular momentum.

b) N-body simulations with limited resolution

Now we will try to numerically simulate the gravitational collapse of a
'dark' system together with a 'baryonic' component. In this simulation the
two matter components will be simulated by two sets of particles, with the
same mass, but with different initial conditions. The number of particles

and the initial radius for the two components are ND,N and R_ ,R

B ID IB
respectively.
R .
From eq. (5.1) we have R, = T A\furthér.constraint on the baryonic
[

component arises from the observed mass-to-light ratios for elliptical

galaxies at the De Vaucoulers radius, we require M&:: Np /(5-10), since

.

in the numerical integration we have set the mass of the particles equal

LY

in order to minimize two-body relaxation effects between the twowmgtter com~

ponents. Owing to storage limitations with' the computer“the maximum.number

- . . 4
of particles which can be used in such a integration is about N« 7.10,

. . . . . 3
for the same reason the maximum dimension of the active array is 32 .

R RS R 05 A o
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Then in such an integration the baryonic component is simulated with a poor :
resolution, spatial and in number of particles, with respect to the integra- ;
tions made for models G.
To increase the accuracy of the integration for these low-resolution models b

the field calculation was changed from eq.(5.14) to ( ?r= {YP*%)L/ Ml;ﬂﬁlj )

—-— ;7
E ( X F‘) = _Prrumn — %f.m,n
* L (5.24)

This localizes the field calculations so we could expect a better resolu-

tion.

To be sure that the results of the numerical integration for the baryonic

component, in the presence of a dark halo, are not masked by the reduced

numerical resolution, we have performed a series of numerical integrations
( R ) as in models G but with a reduced resolution, withouth the dark
component. The final results for models R are then compared with the corre-
sponding ones in models :G.

The initial conditions for the integration of type R are given in Table II.
Thereafter the peculiar particle velocity distribution is Gaussian with

@

a 3-5 cut-off .

In table II the rotation period P of the bar in tc units is also given. :

The period P has been estimated by eye with an average over 5 estimates

L3
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between t=1.5 and t=3. ( in each measure the azimuthal poistions of the

bar ig&he x-y plane are spaced by 180° ). Although this is a rough estimate

of P we do not think that the associated errors would be larger than 20% ,

since the error A(f in estimating the bar's azimuthal position in the

x-y plane cannot be greater than the angular width of the bar itself, i.e.
4)?75 20° ;for a discussion of the validity of this approximation see

also Carnevali ( 1983 ).

Let us discuss now several results of the R integrations.

Fig.s 5.13,5.14 show the particle distribution in the x~y,x-z,y-z planes

for models Rlﬁand,RZ at t=3.The plotted particles have been chosen with the

same criterion used for models G.

Model R1 differs from model Rl only in that it has twice the number of

particles. Model Rl has a bar period which is shorter than that in R1 by

a factor 3/4.

This reduction of P as the number of particles is increased is due to the

importance of the two-body relaxation effects inﬁhe two models.

This e}fect is more important in Rl than R2. This implies that model R1 has

a tendency for keeping more pronounced axial symmetry than fn R2, as a

results the flow of angular momentum towards the outer regions is smaller

in R1 than in R2 and this implies a larger bar period for Rl with respect

to the one found in R2 ( see also Carnevali 1983 for a discussion on two-

A B AT s e
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bgdy relaxation effects in N-body integrations for rotating stellar bars).
This can also be seen from Fig.s 5.15 and 5.16 where the final stellar
energ& distributions are shown at t=3 for the two models.

Model R1 shows a more uniform energy distribution, whereas for R2 a peak
structure is present in the stellar energy distribution.

In numerical integrations of this kind the two-body relaxation time

is connected to the number of particles used in the experiment by

( see § IV.3 and Hockney and Eastwood 1981, §II.3.4 )

oo N
t, 140 ! (5.25)

however eq.(5.25) refers to an average angular deflection of 90° for

the particle, since the averaged squared deflection is proportional to
{R , in the Rl integration A =~ 30° at t=2; while for model R2

A® o 30° at t=4.

Model R2 has the same number of particles as model R6 but with a reduced

spatid} resolution.

The final particle distribution for model R6, together with the stellar

energy distribution, is shown in Fig.s5.18,5.19 . )

Model R6 has a more extended final energy distribution than in R2, in fact it

is similar to the final one in its equivalent model G5.

T TR E A
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Further the bar periocd in R6 is shorter than that in R2 and equals that
found in Gb5.

The explanation of the different behaviours of models R6 and R2 is the fol-
lowing: the numerical integration made in the R2 case is equivalent to the
one in R6 expect for the reduced spatial resolution, i.e. the integration
in R2 equals the one in R6 but with a reduced gravitational interaction,
owing to eq.(5.11).

This 'smoothing' of the gravitational interaction of model R2 implies a
smaller gravitational coupling between particles than in R6, the results

is a bar period which is larger in R2 than in R6.

For the same reason a comparison between the variables {E7/g;l5§/ u@'k

for model R2 ( Fig.5.17) and model R6 ( Fig.5.20,these quantities have been
calculated in the same manner as in models G )shows that the central values
of the velocity dispersions 0175? , are smaller in RZ2.

This is due to the reduced spatial resolution used in model R2, i.e. the
average forces dispersions are larger in R6 than in RZ2.

Thg ag;eement found between Fig.s 5.20 ( C ,GL,ﬁf/ E? } for model R6 and
the corresponding ones for model G5 tell us that we can con§ider the inte-
gration made in R6 to be free of relaxation effects and of limitations

on spatial resolution.

R E
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Models R4 and R5 have shown a similar agremeent with the corresponding

models G and will not be discussed.

It must be noted that model R6 developed a bar with the same period as
the one in model G5, but the final bar position in the x-y plane at t=3

is different in the two cases.

This happens since in model R6 the bar is born at t =~ 2, while in model

G5 is already well developed at t o~ 1.5 . This results is not surprising
since the average number of particles per cell is smaller in R6 ( h =~ 12)
than in G5 (Evz 30); if the birth of the bar in these numerical experiments
is caused by small scale numerical instabilities of the order of L, as
suggested by Miller ( 1978 ),then fluctuationsiin the number of particles
per cell ought to have larger amplitudes in G5 than in R6.

Finally we would like to point out an expected, but unseen, numerical ef-
fect in model R1.

This integration has a very poor spatial resolution,with respect to other
integrations, and therefore a larger number of particles will be found

in the same cell during the integration. Eq.(5.11) implies that forces

between particles in the same cell are smothed with respect the P__z

interaction ( but non-zero owing to eq.(5.15)), so these particles will

travel together in the same cell for sevral integration steps.

In the Rl integration this phenomencn would imply the presence of large
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densities which would give rise to collapse and to the break-up of the ﬁ

system into several pieces.

This is not seen and a bar is even formed in the Rl case. The reason is

¢
|

that in models R ( and also in G5 ) the field calculation has been changed

( see eq.(5.24)).

c) N-body simulations for the collapse of an elliptical galaxy in the

presence of a dark halo

The numerical integration for the collapse of a non-dissipative rotating

system has finally been done in the presence of a dark halo.
The halo was not simulated by a fixed external potential but it has been

~left free to evolve in time under the action of its forces and those of

the visible components.

Unfortunately at the moment of writing the thesis we have been able to
perform only one integration of this kind ( typically such a integration

takes about 15 hrs of CPU time at the I.S.A.S. computer Gould MPX 32 3.2A,

<
|
|
i
&1
7
i
.
i
i
i
i
i
i
&1
i
&)
3
|
2

. : -1 6
which has a computational speed of about 1Mfpsec = 10 floating point

opérations per second ).

e B

sten:

The initial conditions for this integration are shown in Table III ( for |
the sake of clarity we label as 'baryonic' the matter component in our

simulation which is more concentrated and rotating with respect to the ?

'dark' component, however both of them behave in a collisionless  way in
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our simulation).
The initial conditions for the baryonic component are the same as in model R6
( the value of drB is somewhat larger than the upper limit in eq.(5.7),
however the uncertainties in the theory allow us to take such a value ).
The dark component has about the same initial ( T./1Wl , 7}//|vg’])
ratios as model G3 and is 'dinamically' equivalent to it.
Fig.s 5.21,5.22 show the particle distributions in the x-y,x-z,y-z planes
for the baryonic and dark components ( these particles have been chosen
with the same'criterion used in the G models ).
From Fig.5.22b it can be seen that at t=3 ( time is in units of t =

3 2/ ©
7 ( thb / arqﬁ 3 ) the bar mode is absent in the simulation, as
expected owing to the presence of the dark halo; it must be noted that
the halo is not bulge-like as in Hohl (1978) but has a radial extension
of the same order as the rotating component.
In Fig.s5.23 the stellar energy distribution is shown for the 'dark' par-
ticles. Fig.5.23a ( t=2 ) is similar to Fig.5.23b ( t=3 ) showing that
the dark component has achieved a steady-state by t=2. The two component
( éore +halo ) structure is characteristic of a collisonless non rotating
stellar system which has undergone viclent relaxation. )

These figures show also that the 'dark' particles have an energy distribution

with an extended tail toward low energies ( see also Fig.s 5.5 for model

s
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G3 ), this is due to the presence of the baryonic particles at the center

of thé system, which increases the depth of the gravitational potential well

with respect the case where the baryonic component is absent.

In Fig.s 5.24 the stellar energy distribution is shown for the baryonic

particles.

These figures show that: a) at the beginning of the collapse the baryonic

particle quickly settle down to the low-energy staes fixed by the depth

of the dark matter potential wells ( Fig.5.24a,t=0; Fig.5.24b,t=0.2 );

b) the collapse of the dark halo produces an increases of the particle

velocities( Fig.5.24b; Fig.5.24c,t=0.4; see also Fig.5.25,5.26 Y: ¢c)

the baryonic component reaches a steady-state at t=2 ( Fig.5.24c; Fig.

5.24D, t=2; Fig.5.24d, t=3 ).

The time evolution of the %&_,_I; ) ratios is shown in Fig.s 5.25,5.26

57

for the dark and baryonic components.The characteristics of the time evo-

lution for the T+/lw| ratio have already been discussed for model G3.
Let us stress aniinteresting point: from Fig.5.26 there would seem to be

a secﬁlar conversion of rotational into random kinetic energy, this happens

at a very slow rate with respect to model G5 ( Fig.5.12c) but it is

equally present. Of course the initial ratio 7}/;w1 for thg baryonic

component satisfies the Ostriker and Peebles (1973 ) criterion and

the bar mode is absent in our simulation, however Fig.5.26 suggests that

i R L e

A e o
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in the integration there is a flow of angular momentum towards outer re-
gioné on time scales comparable to the Hubble age ( HO—Cf 40 in t wunits ).
The behaviour of the mass density versus radius is shown in Fig.s 5.27a,b
at t=3 for the dark and baryonic components, these figures have been
calculated in the same manner as those of the G models.

From Fig.5.27b it can be seen ( and also from Fig.5.22b ) that the bulk
of the baryonic matter in our simulation has collapsed to an unrealistic
final radius of the order of 4 Kpc ( corresponding in Fig.5.27b to a

change in thg slope of @4 (r) ).

For the dark component the radial fall off is much more softer and is

GDCF) o FT? between r=5 Kpc and r= 14 Kpc.

The behaviour of the velocity dispersions for the two matter components

is not shown here, since the collapse of the baryonic component at so

small radii 'has led to unphysical values for the central velocity dispersions.
These results show that in an integration of this kind a full range of
possible initial conditions ( highest value of the 7}/1W! ratio with
respéct to the one considered here, highly inhomogeneous initial mass
distributions ( Van Albada 1982 ), sheet-like initial configurations

( Aarseth and Binney 1978 )) must be explored before we aré.able to find

those which produce realistic final configurations for the visible galaxy.

However the results of the integration stress a point already pointed out

e
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in §IvV.2: if elliptical galaxies are embedded in dark haloes, then the
obsefved mass-to-light ratio for giant elliptical galaxies at the

De Vaucoulers radius ( Pﬂqﬂ}:z 10h at re:{Sh_lec, see Fig.1l3 of
Kormendy 1982 ) which are of the same order as the ones for spiral galaxies
at the Holmberg radius, imply that elliptical galaxies must have collapsed
by a factor 10 in radius; this does not agree with the observed low

rotation ( Xe:g 0.07 ) which suggests that elliptical galaxies must have
collapsed by almost a factor two in radius.

This problem has to be.explained by any theory of galaxy formation’in the

presence of dark -matter.
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CONCLUSIONS

After presenting the results of my recent work, I would still like to point
out open questions whose countours are better defined also in the light

of the above outputs.

In the first part of the thesis I have studied the evolution of adiabatic
perturbations in a model gravitationally dominated by two species of colli-
sionless particles, photinos and neutrinos in the range of KeV and tens

of eV, respectively.

One important results which has emerged is that the clustering scale is
strongly sensitive to the value of the primordial spectral index n of the
perturbations. The clustering scale should coincide with the first scale
collapsing and reaching the non-linear regime.

A calculation of the MW background distortion in a photino+neutrino domi-
nated model is still in progress; according to preliminary results the
range'of values taken by /\ T/T shows a strong dependence on the spectral

.

spectral index n; MW background observations can therefore be used to set

important limits on the fraction of X and % 1in =zsuch mixture.
L]
Indipendent analysis of the correlation functions and other clustering

data are likely to be produced by non-linear analysis shortly.

On such basis results for A T/T would prove useful tools either in deci-

-
[
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ding the true nature of dark matter or in putting constraints on the abudan-

ce of massive collisionless quanta. !
In chapter III we have seen that the computed small scale MW background
anisotropies are below the present observational limits in a photino-dominated
Universe. This is not the case in neutrino dominated models, unless galaxies
formed in recent epochs (z < 2.5). If such costraint will turn out to be %
too restrictive photino dominated models should to be preferred.

N-body simulations for the collapse of a protogalaxy in the presence of i

a dark halo are still a scarsely explored subject.

The natural outcome of chapter V is that numerical experiments for the

collapse of a profogalaxy which span different ranges of angular momenta

( and/or intial mass distributions ) would clarify the importance of ini-

g
!

i

tial conditions in deciding, e.g., the final morphological type of the

T

e s

galaxy.

The analysis of chapter V for low-resolution models outlines aifurther

e

interesting point.

Although not fully confirmed, dark matter might be present over dwarf gala-
xy-mass scales. This raises the problem of performing numerical simulations
for the collapse of a protogalaxy, in the presence of a darR halo, consi-
dering how dark mass is distributed over internal smaller mass scales.

Actually, none of the techniques used so far in solving the gravitational

[EURU—
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potential ( Fast-Fourier-Transform ) allow a better resolution than the
minimum grid spacing. An improvement of the algorithm, as proposed by

Eastwood et al. ( 1980 ), making use of an N-body code on small scales,
would allow a better resolution. ?
The final outcome would be a direct answer to the possibility of having
dark matter over dwarf galaxy scales as well as over sbales of the size

of internal galactic structures.

iraanis
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APPENDIX A . TIME EVOLUTION OF DENSITY PERTURBATIONS BEFORE RECOMBINATION

The equations for the gravitational field (Al), a collisionless particle
continuum (A2),and the matter-radiation set (A3), will be derived.

The present discussion is mostly taken from LSS; at some points it has
implemented using results taken from Peebles and Yu (1970),Bonometto and
Lucchin (1976).

Al. Gravitational field

Ifi~this epoch ( 2 s>t ;Zz: redshift; <L : present density parameter)

spatial curvafﬁre can be neglected. Let then ( units with c=1 are taken)

dst = dt*— a¥ (&) [SQE—hq?}ondolx9 4$=1,2,3 (A1.1)

be the metric of the model of the Universe.Here a(t) is the scale factor,

~ .
X are orthonormal space coordinates.

The gravitational field equations

Raj- — 8+ G [‘TYI o —Ii} (A1.2)

—

( Rij :Ricci tensor; I/ stress-energy tensor; 72=3L5’T‘7) will be used

L

1}:

to relate Bd with small deviation of

5

A AR SR
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TLTZ(Q’-%F)U“JS—P‘D/L-}. ) <UL

from complete homogeneity. Clearly is

-1/
y=(t-gvh)

in the gauge (Al.1), where U

velocity field. For U,

=0 is I, =

[ >~ C
tropic pressure ) and T.a =0.

From the metric (Al.1) the Christoffel symbols

ro.=0 .F"{—O

(v

Lg=otlfyhag) — % by
e 4 L S0 0/
o?— 2 ei? -+ ﬂ?

rb’

ouj3:—;— (kdb’l‘j’—f_k?b’ﬂ\ — ")dg/b/)

. _ 4
roj—._:?)a,/q, _%h }_(x—)-——-z—l’)d

’

can be derived. Owing to the well-known relation

( energy density), I, =p

/

(A1.3)

(A1.4)

% are the components of the 'local' small

| :Ad"‘ (A1.5)

(A1.6)

(iso-
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the Ricci tensor components will then turn ocut to be ( to the first order

3

P\d?=

NI,_L

h _ _
( prr }Ww "w:w» §

(41.7)

Replacing them in (Al.2) and taking the firs order terms we have

h/d—Ld?,?:ch‘Tod / e

here -65 and Fb are the background values of density and isotropic pres- i
sure; only scalar perturbations ( depending just on X =X and t ) will be i

considered. The evolution of the scale factor is given by - :

z_ &b
3

e af () . (A1.9)




~ 145 -

A.2 Collisionless particles

For a collisionless particle continuum we define a distribution function

g'(;/ F,f:) ; the stress-energy tensor for this continuum will then

be (Lindquist 1966 )

) 41 N
' ZF Sohr § AR SO SN (A2.1)
]
With the definition
P 4 =_’!3 m,[{:)(izd , }31'+F,,1=h’)1 ) )/&jd= 1 (A2.2)

here are direction cosines and ¢ ~ —_ EL FyvY, eq.(A2.1)
w Id 1 Z}?/UYX&/ 9 q

becomes

T (4+ %) 5’;‘0”:4& f‘_;{jﬂ ‘31 [i— % L/W X/’J’Y:! . (A2.3)

Let us suppose that the difference

.

%1% § — jb<< ji *  (A2.4)

( '§L : background distribution ); replacing 1} = ib ﬁ-;i in eq.(A2.3)

i

s

T
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and keeping Oth and lst order terms only, we have
‘70___ & = R L 3 Y
T= Speprdp de B*ﬁb(z -z he vy ﬂ
— o A 1} )57_ Q
[ =— ) prdpda yo 4, : (A2.5)
Therefore if
s= L (pippdng, o o
Co Cb (A2.6)
then is _r°°=3Cg (£ +%) , o 1is the fractional. energy density.
From eqg.(A2.3) it is found that
T — T
Tow(rding  oll=rjriege

The time evolution of §1 is given by the relativistic collisionless

Boltzmann equation, in time orthogonal coordinates this equation reads

IR SR LR A . (42.8)

* Hereafter the symbol A] ] means the difference of a guantity of its

. unperturbed value, i.e. A[§3=§*j's .

7

SR
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To the first order the last term can be neglected, F° is given by the
eodesic equation p, p°= —p* [& _ 2L} * ) th .(A2.8
g a P p7= = p (& = S hay pTrT) . then eq.(az.8)

becomes

Q
o

L& + £ dz; — % #Eri _-%ngﬂ/qzo_ (A2.9)

2¢ Fo @ bl

>

o/
—a
o
-0
o

The last equation completes the set of required equations to describe the
evolution of density perturbations in an expanding Universe for collisionless
particles.

A3, Matter and radiation

The main interaction between matter and radiation before recombination is

given by Thomson scattering of photons by nonrelativistic free electrons.

It can be shown ( Peebles and Yu 1970 ) that the time evolution.. of the

radiation phase space distribution f is given by

p a2 2 @ : @ -
Yo R B (E - Ay, o

ox % )
a X P

1

here t;’"iz:e;lne(b) M (E) ’ 5} is the Thomson scattering cross

section, hE the electron number density,x(z) the plasma iomization degree

and ;§+ the scattered distribution into the beam; second order terms have

been neglected. A convenient variable is the fractional radiation .brighteess Lp}
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cgiefined as ( % = §°+ % )

ér (e,¢) =

S Pisdp (A3.2)

4.1
Cr

here Cr is the background radiation density.

With the assumption that the scattering is isotropic in the local matter

rest frame the integration of eq.{A3.1) over F3JF vields

2 ] Dip | -1 .

o "%LL oyt '—Zc’feh}wy =t Ef t bt c.-] (A3.3)
/

here U * is the matter velocity and §, 1is the radiation density contrast,
; Ky
¢, = §ir 2 . (A3.4)
Multiplying eq.(A3.3) for ]AL and integrating over angles it is found

2t 3 (A3.5)

2 L2 ij_dy_—_tji[i w"‘_.ﬂ
o0 Ax A /

where

%"‘: jir% arm (A3.6)
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s
is the radiation energy flux and
. J
— ¢ o
74 5 VAL S R (A3.7)

The equations for density and velocity matter can be obtained from the con-

tinuity and motion equations, one finds ( LSS,§92 )

- h 4 r?
S, = — — — —
z ooy
-2 ; Q S 4 N
e + Louv Ty T 32=~(i§d—w* (A3.8)
2 o o X ”7 _4_ /

where ém is the matter density contrast, v, the sound velocity of

for neutral hydrogen,17:;_i. {?1 tc and C“ is the background matter
<+ Cr

density.

In the limit t.— O the photon mean free path is much less than the

wavelength of the perturbation, matter and radiation behave
as a viscous fluid . In this regime the solution to eq.(A3.3) is, to the

first'prder in fc ’

. . (03 p a o‘ p ol 8
R L A Y A ——zﬂma)”df + & %:]

@
(o) A

= s
F T 4—&& J (A3.9)

Then the full set of equations for matter and radiation is °

S G e R e e S L R L
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5r==-z-L -3 24i5
3 noogy®
5, = _ 1w
[ oo ax®

<A — 14 4
=t Lo 4 26
? : [5 E%J_sz;;:

- (A3.10)

This set of equations is often referred to as the two-fluid model

( Bonometto and Lucchin 1976 ).

The T, =0 limit gives

0
then eq.s(A3.10) reduces to
d
%P:: ;%-% — :& ;& EE(
3 e axd
J_U'd i ’36,. .
it Lo X?

F } (A3.11)

(A3.12)

In the tC =0 1limit mattetand radiation behave as a single ideal fluid.
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