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Part 1

Dynamical Properties of Fractal Strucutre



T. Introduction

Only in the recent years much interest has been devo-
ted to structures, called fractals, with a dilatation
simmetry (rather than the more usual ones with trasla-

tional dinvariance). Indeed it 4is a common convinction
that many physicallsystems in nature are fractals over
many length scales : the path of a partigle in quantum

mechanics’ , branched and linear polymers™, surfaces of
materials , clusters at the percolation threshold etc

For a fractal one can define at least two dimensions
besides to the dimension, , of the embedding Euclidean
space: the first one is the Hausdorff fractal dimension
d! anddghe second one 1is the spectral or fracton di-
mension(i .

The latter dimension was introduced only a few year
ago in connection with an anomalous temperature depen-
dence experimentally observed for the ESR spin-lattice
relaxation time of iron in some proteins

This result was interpreted in terms of an anomalous
vibrational density of states arising from the fractal
nature of the proteins.

Interesting applications of this new dimension have
been found in pgrcolation problem and anomalous diffu-
sion on fractals . In particular it was conjectured that
for percolation clusters d = 4/3 in all dimension which
seems in good agreement with the numerical estimates at
disposal, even gf some problem on its possible exactness
has been raised .

Here we review the definitions of the fractal and
spectral dimensions, their connection to the anomalous
diffusion on fractal structure and the scaling behaviour
of the probability of returning to the origin of a ran-
dom walk. We give also a simple derivation of the Ein-
stein relation for the electrical resistance exponent
(sec. II).

Sec. III contains a rather detailed analysis of the
scaling behaviour of a random walk on a Sierpinski gas-
ket. Using an exact renormalization group transformation
we verify the scaling relation presented in sec. II and
determine the behaviour of the mean number of visited
sites and the time spent at the origin by a random walk



during a time t. In sec. IV we solve exactly the long
time behaviour of a diffusing particle on a 1-D hierar-
chical structure with an ultrametric +topology. That
model has been proposed recently for idits importance
especially in connection with layered computing arrays.
Non-universal scaling behaviour has been conjectured for
this type of diffusion, termed ultradiffusion, based on
an approximate renormalization group analysis. The exact
analysis turns out to give such a non-universal scaling-
-behaviour described in terms of a line of (non-equi-
valent) fixed points present in our recursion equations.

Sec. V 1is a paper where we suggest possible general
mechanism in order to explain the anomalous behaviour,
in the low frequency limit, of the density of the vibra-
tional states in hemoproteins (see the above mentioned
problems which drive to the introduction of d).

The main result is exemplified din a deterministic
fractal where we consider not only short-range forces,
among monomers forming the protein, but also long range
ones (provided, e.g., by salt bridges). The result,
obtained using an exact renormalization group approach,
is a non-universal scaling behaviour and, assuming a
thermal activation mechanism across energy barriers, a
temperature dependent diffusive exponent.



II. Spectral Dimension

A. Definitions

We shall try now to give a rather formal account of
the current ideas about the other important "dimension"
which characterizes fractals_ besides to the well known
fractal Hausdorff dimension<i1.

For statistical or deterministic fractal (self-simi-
lar structure) we mean an infinite set of points having
a statistical or deterministic dilation symmetry.

This symmetry manifest itself for_ example in the
definition of the fractal dimension, d : the number of
points (mass), M(R), of the fractal structure within a
sphere of radius R goes like

M(R) ~ R’

R o0

If we dimagine to attach a each site of the fractal

pointlike masses, subjected to harmonic forces among

them, then the density of states, §(w), in the low fre-
quency limit (w->0) is assumed to vary like

~
C(w) ~v w ¢! (2.2)
~ W) =» 0
where élgifocalled spectral dimension or fracton dimen-
>0 (phonons on a fractal become fractons!).
When the density of states is a singular function of
frequency then (2.2) should be considered as an expres-
sion which must be used in the statistical averages. For
periodigc d -dimensional Fuclidean space one has simply
d=-d=d but for a not-traslational invariant fractals
in general d;ﬁo{ .

sion

B. Connections between vibrational and diffusion problem

Now we want to derive, 1in a formal way, the link
between classical diffusion in a random lattice and
vibrational problem on the same lattice

Let's denote with 7] (ézd}iﬂualattice sites and with
Kn,m the transition rate per unit time of hopping from
the site n to the site m and it will be assumed that



Km n - Kn,m > (0 are random Varlables distributed accor-

dlng to a given probability fiK Furthermore let @fK}
be such that all averages we get at the end, are trasla-
tional dnvariant. Our classical diffusion problem will
satisfy the following master equation:

d.a_Pn(t 2 Fop Buttr - Kowm (1))
t
7 Ko (P = B(E)) o)

where Fi(t) is the probability to be at site n at time
t.
Defining the matrix operator

)v]'/n’,«m = - K/n, Wi n #‘ m
F4m‘m = 2: *imfm ' (2.4)

m

eq. (2.3) can be rewritten simply as
j’ZEF(H - - H Pt (2.5)

In the associate vibrational problem one imagines a
pointlike particle with unit mass at each lattice site
which can vibrate perpendicularly to the lattice itself.
Masses at sites n and m are subjected to an elastic

force with constant K ,m" The egs. of motion are then

A
2’ H X o
dt
The formal solution of eq. (2.5) is given by

IP(H: e,x,oi-H(HfP(o) (2.7)

which implies that the Laplace transform of P(t) is

Prer [Tdb e Pt (£ +H)' POl o)

+ From this definition it follows that H has a zero
eigenvalue ( Z,, Hm,m=0) while the remaining eigen-
values are positive.



If the initial condition is E;(t:O) = 5m¢) (i.e.
the diffusing particle is at site 0 at time o) then for
a periodic lattice of N (- ) sites:

- -1

%IM<P(5MO)>~ L L & (H-€+40"),,
N'D §(H- e Jf(é , (29

where ¢ (7 jT JKm”nJ { and we have used the
translational invariance after the average while M) is
“the eigenvalue density of states for the diffusion pro-
blem. Since the Fourier transform of eq. (2.6) is the
same as the Laplace transform of eq. (2.5) substituting

¢ with ?* them the density of states Q(w) for the
vibrational problem is

flw) = 1w N(w) . (2.10)

If at low £ we assume the following asymptotic beha-
viour ~

fl(é) s (fz + less singular terms ) (2.11)
then at low frequency W .
d-1
lw) ~ w : (2.12)

The definition of \N?E) implies that the spectral
dimension d 1is an intrinsic parameter of the fractal we
are considering and it doesn't depend on the embedding
space.

Due to the dilation invariance ¢ Eq(t)) should be an
homogeneous function of n and t i.e.

<BH(H> -1t F(}”Mf;'g) : (2.13)

where for n=o we used eq. (2.11) and V¥ is the correla-
tion length exponent. Indeed, from the fact we are wor-

king on a fractal with Hausdorff dimension d , we must

12
+ As in _the case of d- dimensional lattice we expect
that P(f 0) is a finite constant if d) 2 and (2.11)
holds for the singular part of ﬁ(f



have -

Z][(’n):: JJZ ][(]‘71) I (2.14)

" n

where 1 is a rescaling factor. Thus from (2.13) and the
normalization condition Zm EM<H:1 we get

JW = 1 _ %J (2.15)
d

(0> = 2 P ()N o ZLW, (2.16)

where dw is the Hausdorff dimension of a random walk on
the fractal.

Eq. (2.15) was derived in ref. 6 for the first time
and will be of great utility in what follows.

and

C. Einstein relation

Another interesting relation, besides to (2.15), can
be derived which gives the scaling law of the average
electrical resistance, R(r), between two point at di-
stance r on the fractal, in terms of 4 and JW .

We shall suppose there 1is an electrical resistance

menz i/}(mﬁw between sites n and m and that there is
an injected current i at the site r and the same one
going out at the origin o. If V is the potential at
the site n then the Kirchhoff's law states that there is
a net current

\

Ln = ZZM1 k<4mnﬂ ( VﬂM - L4M ) ! (2.17)

at the site n with Imzzi(gam— &WJ‘ Eq. (2.17) can be
rewritten in terms of (2.4) as

I - - }4 \/ . (2.18)

Due to the fact that V is determined apart from an
overall additive constant we can invert (2.18) in the
space perpendicular to the zero mode of H giving (let

ﬁ" be the inverse of H in this space)
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=1 !
R(x) = <\fz_};_,\,/o>:2< Hoo = Hoy > o (2o
However from eq. (2.8) with f; (o) - S@O

2<B - By o2&l - (5+H);i b (2.20)

which in the & N0 is the same as the r.h.s. of eq.
(2.19) because the zero mode of H has space independent
component. Thus we get

Rty = 2 ( Blor)- P(o)) | (aan)

which, using the Laplace transform of (2.13)
i~ dw(1-4d ) 1/d
Pley - [x|™ = f e

) (2.22)

implies

Rie) ~ 1715

with ( éLd: J from the scaling law (2.15) )

; = JW — (I (2.24)

if du > J i.e. J ¢ 1 otherwise ?: 0.

The scaling law (2.24) 4is known as Einstein rela-

8,13)

(2.23)

tion

D. Examples

The simplest examples are provided by _self-interac-
ting walk with correlation exponent V::i/& . If contact
points are not considered as branching po}nts then a

diffusing particle moves at a distance N~ ¢ along the
chain during the time interval t and at a (Euclidean)
distance N . According to eq. (2.16) this means

dvv = 2 é[ (2.25)

~

i.e., using eq. (2.15), d':i as one expects since the



chain is topologically equivalent to a straight line.

Also eqgs. (2.23) and (2.24) are obvious in this case
because the resistance between two points separated by a
distance r will be proportional to the (mean) number of
steps between them (= e )

In the following sections we are going to present
three examples of deterministic fractals for which we
shall _compute explicitly, besides to other quantities,
JW, d and §’ and verify the scaling relations (2.15)
and (2.24). As we have already said in the introduction
the last two examples would pretend to exemplify some
interesting physical situation.
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ITT. Spectral Dimension for a Sierpinski Gasket and Rene-
wal Theory

A, The R.G. transformation

The figure 1 shows a sequence of the construction
of a triangular Sierpinski gasket. At each step its
size increase by a factor 2 while 4its mass increase
by a factor 3 meaning that

Jo A3
2

We are going now to present a real space renormaliza-
tion group, based on a decimation transformation’, for
the (infinite) set of eq. (2.3) with K = K for |Mm-ml=1
and O otherwise. With reference to thenng, 2 the Lapla-
ce transform of eq. (2.3) is

Dedd BG) = (i e v+ GO0+ B0 e L5 0
(A+4) }3;(;\} F(}\) g f ) + )9() +E(,})/ (3.2b)

]
etc.

(3.1)

1

{1

where in eq. (3.2a) we used the initial cqgndition P (t o)
= &%1/ A = f/%’ and we have rewritten Kf%é }(FQ

simply as P(A R F(A) ... . Eliminating the F"S and
g's from the set of egs (3.2) and using that

A

F_oabr (ual(Beh)
(Ae5)(A+2) o

we get

(Veu) B'O) - P'm PR QU s Q)L
(Neg) @, (¥'] = P BN+ /l{'{,)’)} (3.4b)

etc.

with



V= X(A:5) (3.5)

(X}: A+t z,fn(;i) . (3.6)
(A+5)(A+2)

~

mn

B. Critical indices

We see that eqs. (3.4) have the same form of egs.
(3.2) with the substitution A with A" . This implies
that the solution f%(%) of (3.4) satisfies to

P;(X) _ L) , (3.7)

which, together egs (3.5) and (3.6), gives, as A=>0

(¢~>0), N ~
£(53) = __55_Pm () (3.8)

, 1
Thus for A—0 , using standard arguments 4 eq. (3.8)
give rise to the homogeneous function (2.22) with

AW: % el c/N: %%45—3 - (3.9)

it 1is immediate to obtain the resistance exponent
? using the same renormalization strategy as above
for the set of equations (2.17). Now each bond has a
resistance K-i and on a rescaled lattice we get a new
K’ given by

f< = %% f< . (3.10)

If we call f((L,K? the resistance between sites at
distance L we shall have

R(zL, K) = R(L K'), (3.11)

-
but for dimensional reason R(L;K) = K R(L) , which
implies together eq. (3.11) (for L = Lﬂ)fnG”V)

. -1, ¢
R(L,K}: )\/;L A (3.12)
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where A is a suitable constant and

§ - % (3.13)

which satisfies the Einstein relation (2.24).

We strees however that this result is rather obvious
in our framework because eq. (3.8) for A= O could be
seen as the recursion equation for potentials at site
n and 2n implying directly (3.12) and (3.13).

C. Existence of fixed points and approach to the sca-
ling region

We would 1like, now, to discuss a little bit more
carefully the recursion equation (3.8) for generic A .

Let's first remark that due to the recursion equation
(3.5) the equations of motion (2.3) don't remain inva-
riant  in form after one renormalization group iteration
since a second derivative with respect to the time is
created, corresponding to take into account memory ef-
fects. If one wants to have a consistent renormalization
transformation one should start from the beginning with
a generic function f(d/dt), such that [Rﬁ: 0 , instead
of simply J/Jt in the l.h.s. of eq. (2.3).

Thus now the recursion equation (3.5) reads

32 = §N (3 +5) G

where $(A) = F(f)/f( , &= AR an? we have imposed to
to scale as a Wegner variable in such way a non-
-trivial fixed point exists.
Looking at the existence of a fixed point solution
in the form

* —\Oo “» ®
;i(/\): / A Jm J (3.15)
M %I
we find 2‘/“’:5 (i.e. eq. (3.9) ) and

N 3 ¥ }

¥* n.
m = -—5—?’;*-;5—‘ %-/‘nz-[ %//H; }Mg /H/!WZ! } (3.16)

My ¥y Vg~ N

with %f an arbitrary parameter (i.e. %1 is a marginal
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variable, see below). From eq. (3.16) one derives that

19,1¢ ]%/2 ; assuming, by induction, that [%,.] < /&/4"
for wmd{ ¥ one gets immediately %,]< }&/N i.e. the
series (3.15) is absolutely convergent for any 1 (with
13 (a)] ¢ QH%AI&J)—I ). Furthermore we find a line of
fixed points depending on the value of f This comes
from the recursion equation for %} , i.e. %:;3] , indi-
cating that %‘ is a marginal variable. The other eigen-
values of +the linearized recursion equation near the
fixed point for %(A) = Z;i,%MAW%M! are 57" m=142, ...,
i.e. the fixed points (3.16) are stable. In other words
indipendently on the initial conditions 5,%M3m>, we
reach rather quickly (and remain forever in) the scaling
region, characterized by the critical exponents (3.9),
appropriates to the fixed point (3.16) which depends
on the starting %l—value; in that region for any 4
we can write

~

B at™ B ol . G

with fK:QJ, A a suitable constant weakly depending on 1,

b(3) - Qo?fz (%(A)gcifx);(ﬁgmi) ) (3.18)
( bo)= JW(I-«JQ) ) and )>,L where both L and A de-

pend on the initial conditions. Eq. (3.17) implies the
asymptotic behaviour (2.13).

D. Mean number of visited sites and returns to the
origin of a random walk

Let's consider a random walk during a time t and
look at the mean time, I%(H, it spends at the starting
point, M, . It is easy to show that the Laplace trans-
form 'ﬂwﬁ) of t%(H is given by™*

~

j\fn (f): _I_ ﬁh m({) ) (3.19)
4] C. 0

9

+ Indeed the time spent at the site n is given by

t f; m(@}J@ whose Laplace transform is 5"'f;0m({).
2
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where now we write explicitly the dinitial condition
i.e.

P

Mg M

(H = Probability +that the diffusing particle is
found at the site n at the time t if it was
initially at the site %, .

From eq. (3.17) for (=0 ( A-0) it follows

~ ) — - d/2
( z E) o~ .20
Tm\,é) ~ € or /mO( )&_»W t , (3.20)
as far as the site 7o survives decimation (in other

words M, appears very late in the iterativ% construc-
tion of +the Sierpinski gasket). While if d> 2 since

B%mo(ﬁ) is a finite constant+ (see the remark in eq.
(2.11) ), then
2 -1 T
[ (E)~ & 07 /m(t) ~ comst (3.21)
Mo E>eo

Even in the case of the mean number of distinct si-
tes, &%(t}, visited by a random walk, starting at %o ,
in the time dinternal t, it is not difficult to prove

that t
S, (L) = 1+ 2 L ff”om (t)dz (3.22)

’Vl#’ﬂo

}
where PM,M(E)J? is the probability of arriving at n
for the first time between ¢ and CT+d¢ . Since

t oy
Pmom (t) = J PMO”(?)PMM“'UCIZ‘ NEM (3.23)

we get immediately that the Laplace transform of 3m<&)is

g/V\a(f): 64 * (’CVG Z P;":M(g)

MEm

-2, ¢ P (€0 B () . (20

From eq. (3.17) and the property (2.14) it follows
for, finite ¢ , -
“‘d“‘aw

ISVG(@JWCC) s { So(” ) (3.25)

+ In that case eq. (3.17) holds for the singular part
of P (£)
Mg Mg
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as for as A(Z, which implies

& -1-d J/z

%(E)n ¢ 2 or 50(6)/\« t . (3.26)
(o . >

While for J>Z if P (0) has a weak dependence on

n, from the normalization condltlon, Z &%m(f) = &7,

5;(5)“ fﬁz or Sa(ﬁ)/v t (3.27)

-0 t oo

The asymptotic behaviours established in eqs (3.20),
( .26) and the one which follows directly from (3.17),
-d/s +
,Mm< )bﬁm f I/ , were chcck%d by a Monte Carlo simula-
tion on a Sierpinski gasket

E. Conclusions

In conclusion we used an exact renormalization trans-
formation in a Sierpinski gasket which was introduced in
ref. O for calculating dw and, on the basis of the
conjectured scaling relation (2.15), the spectral dimen-
sion d . Here we have shown, taking into account "wave
function renormalization" (3.6), that, in the same frame-
work, all the exponents defined in sec. II can be deter-
mined and are seen to satisfy the predicted scaling
relations. Furthermore the existence of the fixed point
for the recursion equation (3.14) allowed us to esta-
blish the asymptotic behaviours (2.13) for the probabi-
lity distribution, the eq. (3.20) for the "number" of
returns at the origin and eq. (3.26) for the number of
distinct visited sites of a diffusing particle in the
triangular Sierpinski gasket.

+ They were conjecured in ref. 9. Here they have been
proved for the first time.
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IV, "Ultra"-diffusion on a One Dimensional Hierarchical

1
Structure

A, Introduction

Recently diffusion on the 1-D hierarchical structure,
shown din fig. 3, has been studied both by numerical
simulation?8 and by approximate renormalization group
techniques

A particle can hop from a cell to another one on a
line where energy barriers are distributed in a hierar-
chical way. The probability rate to cross the i-th bar-
rier will be denoted ¢, (high barrier means 1ow£‘)+.

Assuming a thermal activation picture, i.e. f(+,/éf
= exp {- constant/T } , it was shown (in the same ap-
proximation) that the probability for a diffusing parti-
cle of returning to the origin after a time t has an
anomalous power law decay with a temperature dependent
exponent .

This feature together the ultrametric property presen-
ted by the hierarchical structure (see below) led the
authors of ref 18 to call ultradiffusion the diffusion
process.

On hierarchical structures, %& generalJ[can be intro-
duced an wultrametric topology defined by a (ultra)
metric d  such that whevever d(ﬂﬂ = J(%?} then J(B?),
degry > d(rz)

For the 1-D structure of fig. 3 an ultrametric can be
introduced if the distance betwee%8two cell is defined
as the highest barrier between them .

The dinterest in ultradiffusion comes mainly from the

possibility to observe it in layered computing ar-

rays . These structure seem to have the interesting

property to be highly free from errors. The ultrametric
distance between two inputs is defined as the number of
layers +that are affected when the dinputs are inter-
changed.

As the authors of ref. 18 noticed the interest in
this type of problems should be of very general charac-

+ Notice that now we have not a fractal set (J: | ).
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ter since physical systems, both natural and artificial,
presenting hierarchical organization are rath common :
molecular diffusjign on complex macromolecules

, macro-
molecule otions part%ﬁﬁ %f types of 1-D superionic
con%gctors , spin glass '’ and evolutionary proces-
ses .

B. Exact renormalization transformation

The master equation for the probability distribution
is (see fig. 3)

db/dt = & (R-R)+ & (R-R),
dRfdy = & (h-A) + & (R-F),
dRfit = G (R-R) + &(P-B) ... G

-~

or using the Laplace transform, ﬁ,(@,ffi) of Eq(t{éj)
with A= w/é , d; = 6/f and writing a(A) instead of

EO P/M(w} igj)
A h -
AR = ;
where we used the initial condition }%(f:OL:&nD. The
renormalization group transformation, we shall get using
a standard decimation, should result in changing the

form of the equations (4.2) since the hierarchical struc-
ture itself should be modified.

To avoid this untractable pro?%enl we perform a new

H

<) SOy SO0
!
~e
AL
LN
O
i

type of decimation transformation where the decimated
cells are indicated by a cross in the f%gure. This means
that we must eliminate, for example, ﬂ and Pz from

egs. (4.2) i.e.
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~

P (sz.)é y oA, f;
Z

¢
()HMJ) - o,
PV’-_" WL;U»HDQ)E, + A Ei
/- < z
(Aer4d, )" - &, (4.3)

P

and rewrite the egs. for f,' 5 Ps s /3«4, etc. After

some simple algebra we get

Y By B - B el (PLu- Blv)) vt

>

etc. (4.4)
with . ;
o2 112 A ¢ 3420 A+ A )
A ) a4, A, (4.5)
o(’m: (QH}Z r2o, (A+1) Lo, (4.6)

I
and, displaying the dependence on 4[5j

)
SN FUD I Focoy (3 18} 4. 7)
(Ari)+ 294, (At1)
where M») (= Z2M+] if n is odd and mM(m)=2# if n is even)
is a simple relabelling of sites in order to make the
new set of equations of the same form as the original
one. This dimplies (compare previous section) that the
solution of (4.4) satisfies to

P (A1) = P (2, 105) )
and from eq. (4.7)
P, (X 14]) = il Pty (1, 15)

(3e1)% 200, (A4)) (4-9)

Near A= 0 the recursion equations (4.5-7) becomes

Ne oz ole2d ) (4.10a)
o |

! . 10b

O<4’1: LJ;é_i—(—) o<4’l"‘l J (4 )

oy
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[ ! o e
Em \A/§X5)- W“;; ama(A/;4j)

(4.10c)

PZMV;(A}JO{'}}S L S P,;fnv; CA; i"(}) J (4.10d)
I +24d,

]
where we have explicited the site dependence of Pj

At the fixed points of (4.10b),
M-

% — o) ( +zd,) (4.11)

eqs. (4.10c-d) give rise to the homogeneous function

(2.22) with
o z(z;aoo ) Mz

it &
Jdo 2 A/ 20+ 24) , (4.13)
~ %ﬁ
which satisfy the relation (J: Zdékf(see sec. IT), where
d= 1 in this case.

The important feature here is the existence of a
whole line of fixed points (4.11) obtained as dﬁ varies
in the real positive axis and the implied dependence
on o« of the critical exponents (4.12) and (4.13).

At the fixed point (4.11) one has %, /dFf = f:“/{;:
= dy0+2df)which is R jin the notation ref. 18 while
for large t P(t) ~ t- df2 with JQ"U fo/&Z)q. Rather
surprisingly this exact result has been obtained also
in the approximate regormalization group approach of
Huberman and Kerszberg and it should explain why their
result (they supposed approximate) compares well with
numerical simulations.

If a thermal activation picture is assumed, R‘m
er} C/Tj then c}/z_., T/(T+Coubf)wh1ch goes to =zero as the
temperature decreases resulting in an anomalous low-fre-
quency noise spectrumj

Let's remark finally that the simple 1-D diffusion
is obtained in the d;= o0 limit (dw=2,d={) i.e. 1-D
structure with energy barrier of equal high o
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C. Conclusions

The fixed point analysis of the recursion equations
(4.5) and (4.6) 1is now more complicated than the one
of sec. TIII. Indeed, here, besides to start with a ma-
ster equation where &Aﬂ; is replaced by a more general
function of cbﬂt we should generalize it in order to
include terms of the type

rt
] d(t-t) Plelde (4.14)

[¢]

due to_ the A -dependence of the renormalized d's in eq.
(4.6) . However the leading behaviour for large t is
dictated by egs. (4.10a-d) and it is described by the
exponents (4.12) and (4.13).
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FIGURE CAPTIONS

Figure 1.

Iterative process involved in the construction of the
triangular Sierpinski gasket.

Figure 2.
(a) Part of a triangular Sierpinski gasket.

(b) The same part of the Sierpinski gasket after dynamic
decimation.

Figure 3.

(a) l-dimensional hierarchical structure where "ultra"-
diffusion occurs.

(b) The same structure as in (a) after dynamical
decimation.



24




25

EEENEEEEREREEES

T6 5 4 3 2 1 0 4 2 3 -4 -5 6 -1 -8

X X X X X X X X

(b)



26

\/. SPECTRAL DIMENSION GF A FRACTAL STRUCTURE WITH LONG-RANGE

INTERACTIONS,

Amos Maritan®** and Atti1lio Stella®x

Dipartimento di ¥Fisica dell’lUniversita di Padova, Italw

and

un

International School for Advanced Studiss, Trieste,

Ttaly

¥ T.NJF.N., Sezione di Padova, Italy

x linita G.N.S. M. del C.N.R. e C.I.S.M., Padova, Ttaly

DFPD 17/85 June 1985

PACS numbers 87.15. By, 63.50+X, 76.30.-V, 05.40.+j.



27

ABSTRACT

An exact renormalization method is applied to a deterministic self-
-similar structure with long range interactions. Non-universal scaling
behaviour is obtained for the spectral properties and an exact result in
renewal theory is derived. The model exemplifies possible general mech-
anisms of explanation of recent experimental findings about the density
of vibrational states in hemoproteins.

A similar mathematical framework also allows to analyze exactly recen

t1ly proposed models for ultradiffusion in hierarchical structures.
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3.

The harmonic analysis of structures with a dilation symmetry, or frac-
tals 1, as well as the related diffusion problems, are of much interest
in connection with several issues, ranging from electrical conduction in
linear polymers ¢ , to anomalous temperature dependence of ESR spin lat-
tice relaxation times of iron in some proteins

As a consequence of self-similarity, in a fractal the density foyi—
brational states, Q/‘( w) , at small frequency, W, scales like wcl“i.
d is the spectral dimensionality, which differs both from d, the dimen-
sion of the embedding Euclidean space, and from.a, the "geometrical frac
tal dimension of the structure u’Sn

A simple relation, EQQa/quonnectsafwith dy, ,the dimension associa-
ted with a random walk on the fractal. Moreover 1t has been conjectured
that a/directly determines the scaling behaviour of various relevant ran
dom walk properties, like the range, or the probability, Po(t), of return
to the original site, after time t. The latter is expected to behave as
/g(t)«u fwd/lfbr fkaaau’B.

Up to now, spectral properties have been studied both on random frac-
tals, like percolation clusters 6,and on deterministic fractals, like
Sierpinski gaskets 5.

In all cases only short-range (harmonic) forces, or hopping probabili
ties, were considered.

Tn this article we present and analyze by an exact renormalization me
thod a fractal model allowing for long-range interactions.

Besides filling an obvious gap in the literature on the field, the
present investigation was directly motivated by a problematic developed
recently in connection with experimental determinationsof the fracton
density of states in hemo and other proteins in solution

To introduce our model, let us consider a triadic Koch curve in the

plane, like the one sketched in fig. 1. Each point on the curve is free
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to vibrate perpendicular to the plarns and is connected by. spring forces
(elastic constant K, continuous bonds) to its nearest neighbours.In ad-
dition to these, there are other elastic forces of longer range (dotted
bonds, constants, K , K

1 2’...
me indicated in the figure.

), acting according to the self-similar sche

Such a structure has clearly azlnu/lnj, since the number of points in
creases by a factor L, whenever the linear size is multiplied by 3.
Putting )::7%0J?k:and oA, = K}/ﬂ( , M being the mass of the points,

we get the following set of equations

AX. = 2 /%{i/‘{}i{- ~ Xy (1)

for the displacemgnts X; » ab the various sites, appropriate to a vibra-
tional mode { X e‘“’ }. The sum over j extends to all sites interacting
directly with site 1, and./gjjs equal to 1, or G(Wn , according to whether
the point j is nearest neighbour of i, or is connected to it by a coupling
Km, respectively. The low frequency scaling properties of the above eigen
modes can be studied by a relatively simple renormalization group procedu
re. With reference to Fig. 1, we eliminate from the system (1) all varia
bles at the vertices of the elementary triangles having the coupling k&
associated with one of their sides. With this dynamical decimation the
system is spatially rescaled by a factor £ =3. The displacements at the
"surviving" points (which form a structure of the same type as the origi
nal one, after a proper rescaling), can be seen to obey a system of the
form (1), with new, effective reduced square frequency, ;\’, and coup-
lings, {cﬁ'}.

To exemplify this, let us explicitly consider the elimination of
X X

X Xg and X7 in egs. (1) (see fig. 1). After some algebra

1’ X25 35 53
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one gets for YZXq an equation of the form:

\ L

with A and B suitable functions of A and o,. Thus, by rescaling the un-
decimated displacements by a factor B, eq. ( 2) becomes of the same form
as the one for x 1 °F x_in (1), if one redefines the frequency and coup
ling, according to ANz = A,/B | d;: oy /B -

By inspection one realizes that similar results hold also for the
other equations satisfied by the undecimated displacements, the general

!
rule for the effective couplings being Ay = o Ml / B

The above relations take on simple form in the (W — 0O (9\~>O;} 1imit

. .

A= 16 1#dy ) (3)
[+2,

L= 4 1+ AL d ey ()
1 +2

and allow us to discuss the scaling of the eigenfrequencies according

to a basic relation 5, which, for our model, becomes

24

A1’y = L Al (5)

in the 1limit of an infinite system. Thus the exporent a, which yields

T Yoo, . . . . . X

d (d= d/a), can be determired by discussing the fixed points [l }

of (). The interesting feature of (4) is that it shows a whole line of
*®

physically acceptable fixed points, characterized by the parameter 0(,1

ranging from 0 to4©0 . Indeed it turns out that

o r ox 7 -
OC,Z = 0(,1{ gﬂ;& ) N = 1)2},.- (6)
: / 3
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is a fixed point of eq. (4). The corresponding a exponent follows from

*
(3), and of course depends on oy . Taking into account that 2=3, we get

LT (7

As c(;varies fraom 0 toyeo, J:<%é'varies from 1 to 4/3.

The case 6{;€:<? , 171,2,3,... d=1, can be seen to attract all ini-
tial (o }’s, for which o ;=0 , for i greater than same io. This means
that all situations in which further neighbour bridges are not extending
to all scales, are finally mapped into the dynamics of a rnearest neilghbour
model, with the consequent result 821, Of course, the cross-over to this
situation will be the slower, the higher is the (finite) range of the
bridges.

One can easily verify that initial interaction patterns § o b, such

that 1im  Awmsr /A 4 = C ’( 1/4 e <yL&)mEeﬂlatmededby

Mn—> e
the fixed point (6) with %j: U*4C}/@[ﬂ2),IMmejdjE,
due to the fractal geometry, are long-range intiiact%jfs with power-law
-
decay at large distance R, i1.e. A (R\)q/ /2 /Y , for R co

Contrary to the short range case, long-range interactions radically chan
ge the spectral properties and lead to non-universal dynamical critical
behaviour. It is interesting to notice that in the present long-range mo
del the inequality a};a,which was expected to hold generally 5’7,15 not
always satisfied.

With reference to the problem of random walk diffusion on our structu-
re, it 1s worth remarking, that the above renormalization approach actual
ly allows a direct check of the scaling of Po(t), the quantity associated
with rerewal theory on the fractal. When dealing E?th diffusion, a system

like (1) is satisfied by the Laplace transforms /?(hl)(replacing Xi) of
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I
the probability that the walker is at site i at time t, after starting
at site 0 at t=0. The only difference is that the equation for §g¢u) has
a 1 added on the right hand side (initial condition). In this case )
stays for «w , and the various d4éemehqmﬂgrme&ﬁmesweramm@
lization procedure outlined above applies in this case, and, if site 0
survives decimation, the following relation

- /. t \
P'\/fzaw }d'j): 2+ 1 [DO{@U f@iffi (8)

Q
~
Y
-
.

is obtained, for W-—> 0 , a being given by eq. (7), with a; in place
of a;*. Therfixed,point analysis above leads to conclude that indeed
E(UJ)W UJdézuf, with d as obtained above. This is in agreement with a
general conjecture by Rammal and Toulouse 5, which was tested by simula-
tion on Sierpinski gaskets 8. We notice that a formula analogous to (8),
and thus a direct analytic test of the scaling behaviour of Py, can be
obtained in the case treated numerically by the authors of Pef. 8.

The model presented here, even if rather simple. ., may bear some
light on the possible mechanisms leading to the relatively high values
of g (&é1.3+1.7> measured in some hemoproteins and ferrodoxin 3. It has
been suggested that such values of d should be explained on the basis
of cross-linking bonds (e.g. H-bridges) among different segments of the
folded chain backbone of the proteinvg. While there is general agreement
on the importance of such bonds, there is considerable controversy about
the specific mechanism by which they could affect a 10,11,12 . In parti
cular recent numerical simulations of diffusion on self-avoiding chains
seem to indicate that aistays equal to 1, the value without cross-linking

1%,14

bridges; if these are assumed to be of short range In the mo-

del presented here, the Koch triadic could very schematically represent
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8.

the backbone of a protein. The elastic couplings Ki could simulate
cross-links among different parts of the backbone. The behaviour discus-
sed above suggests that a definite deviation of d from 1, strictly speak-
ing, can be produced only by bridges of infinite range. Forces of long
range, namely the salt bridges, are not absent in the proteins . Probably,
on the scales actually tested by the experiment, the observed d is just
an indication of some crossover of the same type, as the one taking place
in the model for finite range {al's.

The non universal scaling behaviours found above can also be seen as a
consequence of the infinite hierarchy of time scales present in the model.
Considering diffusion, and assuming a thermal activation mechanism across
energy barriers, we can think of C as a function of temperature, e.g.
¢ v exp (-const/T). The above results thus lead to a temperature dependen
ce of the diffusive exponents.

Rehaviours of the same type have been recently studied with approxima-
te methods by Huberman and Herszberg 15 on a particular (non-fractal)
model of diffusion with a hierarchy of energy barrier scales, and are ex
pected to be relevant for a variety of physical situations, ranging from

. . 16 )
molecular diffusion on complex macromolecules ", to spin glass sys-

17,18

. 1 . .
, or computing structures 7 . It is worth remarking that the

tems
methods of the present article can be properly adapted to solve the model of
ref. 15 providing an exact confirmation of the approximate and numerical
predictions produced thereg-

Concerning the specific model presented above,a problem which will be
interesting to undertake in the future is the explicit construction of the

spectrum and eigenstates, following e.g. recursive methods of the type ap

plied by Domany et al. 2¥ £5 the Schrddinger equation on Sierpinskl gaskets.

ACKNOWLEDGEMENT. We thank professor M.W. Cole for a critical reading of

the manuscript.
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FIGURE CAPTION

Fig. 1 - Sketch of the fractal structure allowing for interactions at

all length scales. The continuous curve represents the backbore.
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PART 2

STATISTICAL MECHANICS OF SELF-AVOIDING SURFACES
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I. Introduction

Self-avoiding surfaces (SAS) are an interesting
problem in lattice statistics both from a theoretical and
experimental point of view 1:2, )

Self - avoiding walk (SAW) properties are known from
long time 23 amnd the 1link with spin systems has been
extensively studied ¢4-5 especially in wview of the
relevance of SAW for polymer physics ©-7:8, SAS’s are an
obvious generalization of SAW’s and they are expected to
play an equally important réle.

In the strong coupling expansions of lattice gauge
theories random surfaces appear in a natural way 9,10
like random walks for standard magnetic systems. However
while BSAW’s or, 1in general, self interacting walks are
obtained as particular limits(number of components of the
spin variable going to =zero) of a class of magnetic
systems %:5:7, 8SA8’s are not obtained from some limit of
the standard lattice gauge theories 11 .We shall show that
a new class of lattice gauge theories, with n-component
fields, in the n~»0 limit give rises to SAS models !2.This
should be the first step toward a field theoretical
approach to self-interacting surfaces.

In the literature a rather restricted subset of SAS'’s
has been already studied in many context. This is known
as solid-on-solid model (S0S) '3, Besides to be a natural
generalization of 508, SAS’s, or self - interacting
surfaces in general, should be considered as more
realistic models for describing surfaces of materials and
interfaces than the S0S does. There is already an
experimental evidence that several materials present
surfaces with irregularities with a high degree of self-
similarity over many scales in the molecular range 14,
This is evidentiated looking at how many molecules, of
fixed cross section, are necessary for getting a
monolayer coverage of a given surface. Varying the cross
section of the adsorbate molecules it was obtained a
rather clear experimental signal for non-trivial fractal
Hausdorff dimensions, ranging from 2 to 3, for most
analyzed materials 1¢. ‘

Like SAW models limear polymer in a good solvent & one
could hope that SAS’s describe equilibrium properties of
a single "sheet" polymer with exclude volume effects 15,
At present, to our knowledge, conformational properties
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of any real sheet polymer have not yvyet been measured;
perhaps good candidates for such experimental study could
be found among PB-sheet, proteins or other organic
macromolecules.

Recently much attention has been devoted in the
literature to models of planar randon surfaces (PRS)

16,17,18,192, The interest in those models, even if
originally rised from particle physics 16,20, is, at
least nowadays, only theoretical (string theories, 2-

dimensional quantum gravity, etc.) 21,
However up to now only a few models of PRS seem to

display a non—trivial critical behaviour 12, The
relevance of PRS models to the before mentioned physics
should become clear as far as the réle of self-

interdctions of a PRS is understood.

A short summary of the contents of this work is as
follow. In sec. II the basic definitions of SAS models
are given together the expected scaling behaviour. It is
presented a lattice gauge model with mn-component field

variables, that in the n-»0 limit gives the statistical
mechanics of SAS.
Sec. I11 contains lattice gauge models which

generalize the ones introduced in the previous section in
order to weight surface with handles and to describe the
diffusion on a SAS.

In Sec. IV SAS models are analyzed in the d-o limit
and a Flory type argument is developed which gives the
correlation length V-exponent below the upper critical
dimension. A possible pattern of hyperscaling violation
is comnsidered which gives the entropic critical index in
terms of the correlation length exponent and of the
euclidean dimensionality.

A real space renormalization group for SAS is proposed
in Sec. V giving approximate recursion equations whose
results are compared with the "Flory" ones.

4 Tirst order €-expansion around the lower critical
dimension is also obtained for the V -exponent.

A nom trivial SAS model on a fractal strucutre is
proposed and exactly solved in Sec. VI.

Sec. VII contains conclusions and some speculations on
the spectral dimension of SAS.
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II.5AS and connection with a system of n—-component spins.
A. Definitions and asvymptotic behaviours.

i

We consider a d-dimensional lattice of N sites X
(¥1,...5Xa), which is periodic in each direction p =

= 1ly...,d, A SAS 1:2, 8§, is collection of |S| elementary
plaquettes, p,; which is connected and such that every

link of the lattice belongs to, at most, two plaquettes.
The boundary 88 of 8§ is formed by the links belonging to
one plaquette of 8. The surfaces we consider may be
orientable or not and to have handles or not.

Instead of working with all surfaces with fixed aresa
{=number of plaquettes) it is convenient to formulate the
problem in a grand-canonical context where a fugacity K
is associated to each plaguette.

Typical correlations functionm of interest are

Gy, )= 2 K72 e

S:aS: MU--.U({Z
where {%j is a set of self-avoiding closed loops.
O0f particular interest will be the correlation

function associated to two given plaquettes Pi1 and P2

G IR) = % Cp (E)/’,}Qﬁ) K o (2.2)

where C, (9p 3f) is the number of closed SAS of L
plaquettes containing P1 and Pz.
By summing eq. (2.2) on all P2%#P: and defining

/
C(oF) = 2. G QR aP)/(l-1) | 2®
P'# P
which 1is the number of closed SAS of L plaquettes
containing P, we get *

JdGOP - v ) GO ) e
dK P'g P

* If p’ and p have a link in common then C%(@i: QFV
means C}(Q(?UPU)
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Let ?p be the position of the center of mass of a
plaquette p and 1let’s assume the following asymptotic
behaviour for <3(9P,BPW as K approach from below some
critical value K¢

L d (g2l
GGkar) = 7[ Crl/E) 0=l (aus
?p ;ZFI}"‘)GO
. . -
where the correlation length g diverges like (K.- )
and & and V are critical exponents. From eq. (2.4) we

get

~ K. - K 9‘j+1ess singular terms, (2.6)
07) (K,

gAY

that, by an inverse Laplace transformation, implies
L -0
C, (P~ K| ) (2.7)
| = co

from which we shall call O the entropy exponent.
The average radius of gyration with respect to the
center of mass of a closed surface S is defined as

- A -
Ri_ L (To-7,) = 2‘ (? ) (2.8)
7S] pes 2]5]% Bie /
where in the last equation we have used the definition
of the center of mass, %2:; Z@es Z;,/fﬁl
The grand-canonical average radius of gyration takes
the following form

) - 5| s
(Riy=2 RKT/Z K"

53529 L S e s (249)
= 2Z 21_ <fZP "'?7) JS* /21 k< .
Pg 5:95=¢ P1€S 2]51% s:as:¢

Now we observe that

2 =2 Ko 2 hGGnK
L

2.10
$:35=¢ ( )

K
VA J G(1P) dK



43

where Nz is the number of plaquettes of the lattice (= N
d(d-1)/2 ) and AN, CL(3P)/] is the total number of

closed surfaces of L plaquettes.

From eqs. (2.9) and (2.10) we derive the following
, 2
equation for ( K5 D

2, X

(Kb J(2<RD) = &0 20 QORI -BT, @

which, together the assumed asymptotic behaviour (2.5)
and (2.7), yields

<R o ;Z , (2.12)

B. SAS and n-0 limit of gauge models.

It is well known the connection between the self avoiding
walk problem and the n-»0 limit of an n-component spin
model 4,5,7,8

Here we want to define a new model of n—component
spins which in the n-»0 limit gives rise to SAS 12,

It was already known that U(n) gauge model with
hamiltonian

}¥ = }<‘ %; A; tﬁ [Jp / (2.13)

[ +
where [/ :7&69Pdg ; Ve = th and Uy, 1is an nxn matrix

associated to the oriented link 1 with the constraints

l&t%f: %»ﬂ , in the n~»0 limit gives rise to oriented SAS
with a fugacity K associated to each plaquette and a
fugacity n to the Euler characteristic, X 11, Thus small
value of n should favour SAS with many handles and the
n+0 limit does not exist.

The model we are looking for is defined by the

halnliltoni.ani2

J— i Q(

e 1 n
where the spin wvariables S% = (’5?,.. - ﬁ% ) are
defined on the limks, 1, of the lattice and can be equal
only to the 2n states 22,

5 = (O/.../O/imjo/..,jO) . (2.15)
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It is easy to see that the following equalities hold

L (5] =m 5.5 =§ («3) y
. 7/ =4 P—Z / o 2
. Zp e
.,> (S EW ﬁls &_} = g}ao +C\5./°/[ .
247 M50 y

Using eqs (2.18) it is 1mmed1ate to verify that im the
n>0 limit the partition functiom becomes

(m) = H/},; / Z\ Y Va e
L }735 ¢ =1+ %(Zi + ﬁ%ﬁ )+ On) 2.
where Z1, was defined in eq. (2.10) as the sum over all
closed orientable and not SAS *. In other words the free
energy per site and spin component is

ﬁw, oo /ﬁmZ{“ i&i)[z CL(Q/’)KLf—_/_\/,Zj,(z.w)
Z L L z

N o M0

In the same way one can show that

,/K)m TSy = G() ) (2.19)

-7
M0 tey
where 3/ is a self-avoiding loop and « is an arbitrary

chosen index. If now we have two self-avoiding 1loops %
and &é with no common 1ink it is clear that

s
(00,10 b, T Lg%, o

where the sum over B is introduced in order to avoid
disconnected contributions of SAS S such that $=8: U 82
with 5,/ 5, =¢ and 45,-= X}/ 2S5, =0, . Analogously one
can get correlation fumctions for many loops as defined
in eqg. (2.1)).

The hamiltonian defined in eq. (2.14) besides to be
globally invariant under permutation group, whose action
on the statistical variables is

2
* The +trivial contribution ﬁéf</? in eq. (2.17) comes
from a not self-avoiding surface formed by two plaquettes
glued together.
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o c OCd)
I 2.21
5@ > 5, ( )

where ¢ is a permutation of n objects, is also invariant
under local gauge transformations of the Zz group i.e.

E> f@ g"j
gy 7 Cx “ten) Cr (2.22)

where (xy) is a link and fxlfy -t

This last local symmetry makes the models (2.13) and
(2.14) rather similar evemn if in the former the
statistical variables are nxn matrices while in the
latter mn-component vectors.

The field variables (2.15), we used in the hamiltonian
(2.14), was chosen for the rather simple rules (2.16)
they satisfy. Anqgher simple choice is to take the n-
component vggﬁor 5g satisfying to only the normalization
constraint 5, = 71
More general models, which give self-interacting surfaces
will be considered elsewhere 12,

ITI.More on SAS and diffusion on them.
A, Weighting handles.

Now we wish to introduce some variants of the model
defined by eq. (2.14) in order to weight also the Euler
characteristic, I/ of a SAS. For a given surface §, J is
defined as

N(5)= M (S)- N(S)+M(5)= Z—ZH“lBJ (3.1)

where Nz, N1 and No are the number of plaquettes, links
and sites respectively belonging to S while H and B are
the number of handles and holes of S.

Let us _ introduce now mxm matrices p ¢ O(m)
(i.e. Uplp= 1 ) an each oriented link, 1, of the lattice
with the constraint (/ :(zg . The only properties of the

group integration we need is ( tﬁu = Jéﬁmdu )
* 0 (3.2)
byt -1, hUsle = L6 8y

* Another way to get the same results is to consider mxm
matrices U% whose element are all zero but only one at
a time takes values 11 and to define iﬁu = L Z%j (cfr.

egs. (2.15,16)). Zm
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Defining the new hamiltonian as

Hoon = M V’ZZ hoUp 20T % (3.3)

d=1 Cepf /

where Up = T@eaptk and the plaquettes p are considered
oriented, one can see readlly that in the n~0 limit every
SAS,S, in weighted by K'°! m s . Indeed, just as
before, due to the properties (2.16), the n~0 limit
selects only SAS, 8, while the remaining trace overﬁf@Up,
due to eq. (3.2),gives rise to a factor 1/m for each link
of 8 and introduces a free index, i, for each site of S,
that means a factor (mK)M(S) j~ M)+ Mo(S) K MG,
an > . In particular

—y (M am1) — S X(S) Z
/ﬁm 7 T K=o +&M}f}(3°4)
Ao =&

gge) N fif’ 2
and for a self-avoiding oriented loop J/

g%(wsﬁwﬂsz; [ Uy = 0 K™ as)
N=>0 bey 663’ 5:95-y
If one wish to work with orientable surfaces it is
suff1c1ent to introduce complex matrices L@ ¢ CKW”} with
(@-U ¢ and use the properties

[ dutt fdv Ujleszo, [d0 Ul e dic (5.6)
V() U(m) V()

together with hamiltonian (3.3) with A@ @ Up instead of
h Up .

The new models we have just defined besides to be
invariant under transformation (2.21) and (2.22) are also
invariant under local gauge transformations

-~/
Ueyy = Iy chy} {/ (3.7)
with &&} k} belonging to the same group of U’'s

B. A model for diffusion on SAS

The last model we shall introduce here is the one for the
diffusion of a random walk on a SAS 12,
The hamiltoniam is
i

o : )
W_KZZ g fff exfizjx "f’j (3.8)
P

o= JIEP
17
X

Ix=yl=1

A fee
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- 1 m wm
where ¢ = (ﬁf,' ",f )ffﬂ? are vector fields defined on
sites of the lattice. It is not difficult to verify that

1o , ' Hw 1,
) RS ' :ﬁmf&m;gz LJ i ls e a0y,

Mo O N M50 M0 ™
F m 1 pl =R -
- b RN SR LIS A S AT BV AN b S A
S0 Sias=g 2R © 7 e ot
wres (3.9)

where the % 1ntegrat10n? for Z#.ﬁ have been already
performed giving 7&¢5 } *>1{ as m»0. Notice that the
partition function is 1 im the 'W/AM >0 limit. The
integral 1n eg. (3.9) gives

m My ($)

-1 ),, et (1,-0.) 2}

ey /@‘J’ . .
= Z ][W/ P{Q/LR[iij) / (ZT{) 7 Mol2) (3.10)

wrawz {xy7b o we s

where ijN,] (ﬂsx (f X, yeS , |x-v|=1 (x=y) and zero
otherwise while @ is a ‘random walk of iW‘ steps on S.
Inserting eq. (3.10) in (3.9) we find finally

‘ AN A
’@/VVI /‘@‘l('w’" _ﬁ-._z__' - $: 95 »? \ W DW‘. z)(yf‘
M=0 Ao e X, €5 wes
The same modifications as in {3.3) should be done in eq.

(3.8) if one wishes to weight also handles of § in. eq.
(3.11).

Certainly the models we presented in this sectiomns are
very difficult to analyze with standard methods of
statistical mechanics but besides to be interesting in
its own they are the first step toward a possible field
theoretical formulation of the SAS models and diffusion
on them.

(3.11)

IV. Mean Field, Flory Approximation and Possible Pattern
of Hyperscaling Violation.
A. Mean field?

For mean fTield approximation of SAS we mean the d-o
limit of that model. As shown in ref. 23 in the large d
limit the dominant graphs contributing to correlation

functions in lattice gauge theories are tube-like
configurations of plaquettes. Here for SAS is just the
gsame 2. For example for high d G(3P) is a sum of trees

of elementary cubes rooted in P making it rather similar
to a branched polymer. Since in the considered limit the
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self-avoiding contraint becomes irrilevant we can write
the following consistency equation for G(3P)

L

e

GGP) = K +20-2).00r)1°

| SO

) (4.1)
where K is the contribution of the graph with only one
plaquette while the remaining contributions comes from
tree graphs rooted in the faces of the 2(d-2) cubes which
share the plagquette p.

Deriving with respect to K egq. (4.1) we determine Kc
as the point where GQ{QP}/EK diverges. This gives

1= i
KC = é_—— [50((}*2)_} ‘ ) (4.2)
and

: %
G(r) ~ (Ke-K)| +’293-}M0,(4.3)

K=KZ

which, using eq. (2.6), means 8=3/2. In order to find how
the correlation length diverges at the critical point one
has to calculate C}(aﬁ, 3%.) in the same approach as
above. Now the dominant graphs are trees of cubes joining
Pi to P2. One can look at these graphs like simple
random walk going from P1 to Pz whose elementary steps
have a fugacity [G(?HJ4 . Thus the Fourier tramnsform of
G(?ﬁ,??z) is given by

(}(‘i A/L B(1- o(d—Z}GQ(DP)} o A A

where A and B are suitable constant which are Tinite as
K-Kc .

From (4.4) it follows that

c_ L VZ@(?) OC&/-/G’(O/Z G(W}
5 = G(‘i) ? l9=0 L (4.5) J

N G Ve /g

K=K !
One expect that the mean field exponents 0@ =3/2 and V

=1/4 are always the same above some critical dimension,
de, while SAS have a non trivial critical behaviours
below dc. This hope rises from previous experience with
linear and branched polymer and from geometrical critical
phenomena in general. Thus the next task is to determine
dec and to give an estimate of O and Y for d<dc.
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B. Flory approximation for sheet polymers. '

As discussed in the introduction we assume that our
surfaces represent sheet polymers in a good solvent. In
the same spirit of the Flory approximation for SAW 8,15
one can think that the free energy of a sheet polymer of

"area” N and radius of gyration R is the sum of two
pieces 1.2

}: = A;F * Fa&mbt ) (4.6)

where &

— / V2

F oo /N 'R

% p (7@/ (4.7)
is the interaction energy due to monomer—-monomer
repulsion which we have evaluated in a "mean-field" view
while Felastic is of entropic origin (Felastic=—TS) and
it tends to favour contract configurations of the sheet

polymer. For a linear polymer Feiastic ©¢ — FYR)~ R%OV
where P(R) is the end-to-end distribution of a Gaussian
chain. For random surfaces we expect that what it is

Gaussian distributed is not the radius of gyration but a
typical area (e.g.the projection of the surface an a
given lattice plane). Since a typical area should be
proportional to R? we guess that

F«?al“c o< /QZ'/N (4.8)

Minimizing eq. (4.6) with respect to R we get that the
minimum occurs for R= ; q,ﬁJ”¥ with

3 2 < < J - 8
vF 4 +d <d <de " (4.9
\)F — éf O/Z (JC

i

J

where dc=8 is determined requiring that for dddc Frep <<
{< Feirastic if Felastic 1is of order 1 8. dc=8 should be
not & surprise !9 because it is well known that de

An indication that this conjecture should be correct
comes from an exact solvable, evem if rather peculiar,
model of random surfaces in d=2 18,
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should be the dimension above which two independent SAS
do not intersect each other with probability 1*,If D (=
=1/y) is the fractal dimension of SAS’s then the fractal
dimension of the intersection of two independent SAS’s is
b= Moy [2D-d,0F 24 which implies dc=2D(dc).

Because it is expected that above dc¢ the mean field

analysis made at the beginning of this section holds one
gets D@ )= vV '(de)= 4 and dc=8.

3
C. Hyperscaling violation.

The next goal is the estimate of the O exponent. Let’s
observe first that (}(QP) » in term of the models defined
in sec. 2 and 3, is the n-»0 limit of an internal energy

(apart from a multiplicative constant) and thus one could
argue that

- o
PP -
GGr) ~ (K <) ) (4.10)
K- K¢
where a is the specific heat exponent, and that an
hyperscaling relation of the usual type holds
J-ol = dV (4.11)

for d{dc¢. However from egs. (2.6) and (4.10) 2-a=0=dv
which does mnot hold at dc=8. Similar disagreement is
found alse in lattice animals and percolation, and
modified hyperscaling relations have been conjectured 25
28 which turn out to be in very good agreement with known
results and exact near the upper critical dimension.

We shall try now to guess in which way hyperscaling
violation for SAS could occurs. The following derivation
is rather similar to the one given in ref. 27 for
isotropic and directed percolation and lattice animals.
In that reference it was used a generalized Ginzburg
criteria 28 plus other additional hypothesis; here the
only difference is in the minor number of assumptions.

The basic idea is to assume that the réle of the free
energy density for SAS is done by eq. (2.10) i.e.

F(K) - 2; }<{S{ (4.12)
Mo S."&S:q‘)

and that for K- K¢ and J<d. F(K)~ 1/ where
@ is a volume over which critical fluctuatioms are
important 28, The hyperscaling relation (4.11) should
follow if Q,vé& . However, givem a typical self-avoiding
surface one expects that fluctuations should occur mainly
* See e.g. A. Stella, R. DeKeyser and A. Maritan same
issue as ref. 32.
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d-2
perpendicularly to it implying that ) ~ ?

and
r 2-d
— 3 + regular term . (4.13)

From eqgs. (2.6), (2.10) and (4.13) the modified
hyperscaling relation is obatined

A
6=V (d-2) d<g , (4.14)
which, at least, at dc¢=8 is exact.

Even if the argument given above to derive (4.14) is
rather intuitive we expect that the result is at least a
good approximation: this hope is based on the fact that
analogous derivations for lattice animals, isotropic and
directed percolation brings to very good agreement with
the existing numerical estimates or to the exact results
if they are at disposal 27,

. . 1,2
V.Real Space Renormalization Group for SAS.
A. R.G. strategy: isotropic rescaling.

In order to have an alternative estimate of the
correlation length exponent for SAS’s we are going to
consider an approximate mapping, K - KJO{) s, fTor the
plaquette fugacity in such a way that near Kc

s(R) - S(K) (5.1)

1 being a suitable length rescaling factor -2, If K'(K)
is regular from eq. (5.1) and the assumed singularity of
?(Yi)m (K. - K’)'% Kc and vV are given by Iy

K,CK(‘): Kc J O)K)/Q}KIKC = /é . (5-2)

It 1is better to illustrate first the construction of an
approximate K’ (K) with 1=2 in the three-dimensional case.
To this purpose we think to the lattice partitionmed in
cubic cell of side 2 (see fig. la). By convention the
plaquettes on the boundary between two adjacent cells are
assumed to belong to the ome with higher values of the
coordinates normal to the plagquette.

With reference to the fig. 1la let’s comsider all
connected SAS’s made of plaquettes, belonging (with the
before mentioned convention) to a given cell, whose
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boundary is contained in the 2 and 3-axis and in the
upper and right faces. All surfaces we obtaim in this way
will be considered as realizing an effective full
covering of the 2x2 face in the (2,3) plane and they are
assumed to contribute to the fugacity K’ of the new
effective plaquette of a rescaled elementary cell (fig.
1(b)). The reason to keep only surface with part of the
border fixed is due to overcounting problem like the one
occurring in the "corner rule" for self avoiding walk 2°9.
There are just fourteen surfaces contributing to the
mapping, giving

Ko Kokt kst e R

(5.3)

Equations (5.2) together eq. (5.3) give only one non-
trivial fixed point Kc=.651 (in reasonable agreement with
the only existing Monte Carlo estimate Kc=.588 3° and
another independent estimate Kc=.623 31) with )V =.37.

B. Anisotropic rescaling and recursion equations inm d-
dimension.

If we want to have a rescaling factor 1=3 we should
have to consider a cell of side 3 and to count surfaces

of the same type as above. However it is easy to
recognize that the number of such surfaces are of order
218, At this level it should be more useful to have

series expansion for <correlation functions rather than
approximate recursion equations! At present it is rather
difficult (at least for the author ) to implement, in an
efficient way, a computer program for counting surfaces.

In order to have recursion equations for higher
values of d and/or 1 we had to use a new type of
approximation !:2, A global rescaling length 1 1is
obtained in successive steps: at each step one single

lattice direction is rescaled using an anisotropic cell
of the type illustrated in fig. 2(a) for gemeric d.

The operation is repeated for all the d lattice
directions, with the same rules used above. In this case
we get two recursion equations: one for the fugacity
associated to plaquettes perpendicular to the rescaled
direction (fig. 2(a) and (b)) and another one for the
remaining plaquettes.

With an obvious writing:

, .4
K, = RQ(K): K K -1 ) (5.4a)

K1




Ky = K . (5.4b)

Successive application of eqs. (5.4 a,b) will give J(d~ib2
new fugacities, one for each coordinate plane: However
one can disregard the anisotropy generated by the above
procedure and take only one of the derived recursion
equations. As confirmed by the results obtained below,
and the ones reported in reference 2 for linear and

branched polymers, this approximation doesn’t seem to
cause more inaccuracy than the one already implied by the
isotropic rescaling. Furthermore the results are almost

independent on which recursion equation is chosen but we
found that the best results are obtained wusing the
recursion QZ

- RO (5.5)

i.e. applying (5.4a) (d-2)-lines and then (5.4b) two
times. For d=2 the model is +trivial and our recursion
(6.5) gives the exact result Kc=1 with )V =1/2. Results
for 3<d<8 and 1=2,3 are reported in Table I together the
"Flory" wvalues of the ) -exponent. The agreement of the
different )/ estimates, even if qualitative, is rather
remarkable in the whole range of dimensionalities where
the model is expected to present a non-trivial scaling
behaviour.

It is appealing to work out eq. (5.5) in the 1-1
limit; the B-function is defined in the usual way as

LK) = cﬁ{%'/ - Z}/& (! (d- ) >)(5.6)

8:&

and Kec is the non-trivial zero of B(k) while I/y = dﬁ(KhﬂK/M
In this way one gets ¢

A*i,/z_
(c.!—l) and V- d-2 (5.7)
2 (d-1) B (d-1
which gives the exact result for d=2 and it is expected
to remain exact im d=2+€ like it happens in the same

approach for self-avoiding walk and percolation 2,29,
In that limit we get

KC = ’*" ‘_Ci ¥ 0(62) (5.8&)
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Table ]

d 3 4 5 6 7 8

K .636 491 412 .360 .323 .295
g=2 °©

v .38 .32 .29 .27 .26 .24

KC .619 477 . 400 .350 315 .288
2=3

v .39 .34 .31 .29 .28 .27

Flory 43 .37 .33 .30 .27 .25

values




and

- ,__L _ é‘ + /“f‘a\

V= 5 7 o) . (5.8b)
32
VI.Exact results for a SAS model on a fractal structure.

A. The model.

It is always interesting and instructive +to have at
disposal some exaltly solvable model of SAS even if the
lattice where it is defined is somewhat unphysical. The
main reason for studying such a model is  that it should
be a good example for testing our renormalization group
ideas and Flory approximation previously presented.

The lattice where we are working now is a 3
dimensional structure for which every section parallel,
let’s say, to the x-y plane is a Sierpinski gasket as
fig. 3a shows 32, We shall call it Toblerone lattice. The
shaded triangles of the figure indicate that the
corresponding areas are lacking and cannot be used for
constructing SAS’s.

We are looking for the mean area of SAS’s whose
boundary contains at least the lines AB and A'B’ shown in
the figure. We assume furthermore that elementary (mot
shaded) triangles and squares have the same area.

All surfaces can be constructed recursively starting
from an initial configuration M, [0} which is the
statistical weight of a surface of the type shown in fig.
3b where we have introduced ¢ wvariables for every
plaquette which is +1 or -1 @according to if the surface
tauches or does not the highest edge.

The recursion equations, we get, are
N

M iof- Mmio}{Z M, is8 M, is T(-sest=5:-5¢) /o

i 5,5'% {=! (6.1a)
for 5gj¢';’1,---,“]f and .
r1pr§-l}: ( 22353 f7w,55}) + P?w,gvlj 22;5%5% ﬁ1w;55.

.MMjs'j I 3 gﬁ’[*’ﬁp Si‘ (6.1b)
(= 4

where VL,%“'} stays for fqu~l,n./ ‘1}
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The initial condition is v

M Jot < wel B [ 274 L 2 (i 5054,

12

[

- (6.1¢)

The only non-trivial fixed point in the physical
region is:

Mm }._!3 = M* ] Mrn {UJ = 0 505 ?E E"[}"'/',f (6.2)
with M*: (E”sz.

B. Recursion equation analysis.
It is not difficult to show that the eigenvalues of
linearized recursion egquations are

- PR it 6.3a
A= 2 M3 M (6.32)
/
" VA ] ‘
A= (-2 3 M . (6.3b)
) Ty
Now let’s concentrate on the value of K Ke, from
which we must start imn order that P7{03*§ f7* . To

M= co

this purpose we define the quantities
. .
M. -th b hy 12103 =6, 5.4)

which satisfy the following inequalities

(Bt b ) # 0[O #2bn ) Ay < (B #by )+ Ou (Bust2b ) . d,
(6.5a,b)

o by (G2 b0 )¢ by < I b (00 v, ) # b

The important thing of this inequalities is that the
recursion equations defined by the left and right hand

sides have the same non—trivial fixed point, i.e. a¥=M*
and E‘: o .
T
For N sufficiently large d, = K and B Qf) .
where « is a suitable constant and ) is the highest
eigenvalue of the matrix

KoK
KS/Z }/\’

5/ |

(6.6)
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(cf eq. (6.1lc)) that is

A= K (1K + W@;{’ /; . (6.7)

v

Let's «call Kc and Ec the values of K for which the
recursion equations defined by the 1l.h.s. and r.h.s.
respectively of egs. (6.5) bring (an, bn) to the fixed
point.

For K<1 ai»0 as ©N-o so that the initial critical
values (&c} &C )y and ( ém , Em } for the two above
mentioned recursion equations must be searched in the a=0
axis. The corresponding b, and EM values are
obviously independently on N. This meams that Kc=K: with

A(RC):j , l.e, Kc=.693. Due to the inequalities (6.5)
the initial critical value for bi must be finite and
independent on N as N-®, This implies that Kc=Kc !

C. Radius of gyration.

In order to determine the V-exponent associated with
the radius of gyration of our surfaces let’s consider an
infinite Toblerone lattice and all surfaces whose
boundaries contain lines of the type AB and A’B’ line in
fig. 3a with N=1, 2,... and A fixed. For each N the
surfaces have a radius of gyration of order 2¥ so that

the average radius of gyration <R> can be defined as
3¢

<R>: Z:/D:: LNZN // e Z/\/ (6.8)

where Ly = /20 f7N§C7f (:&Wbe)with initial condition
(6.1C). If we start with a valqg of K=Kc-8K such that

Z1 (Ke=8K)-Z1 (Ke )™ L (A (ko -5K) )Y - o (A(k )" = déKl’“;M/
dK 1%
(where we used the fact that A(Kc): ! for N-®o) then due
to the recursion equations (6.1)

ZN: M*+§KZNA,NC (6.9)

at least for No<N<N(8K) with 8K(2))¥(8K)=r<<K]l and No a
finite value independent on 8K. For N>N(8K),Zw goes to
zero rapidly so that the main contribution to eq. (6.8)
comes from values of N € (No,N(8K)) giving

) - ¥
< /’2 > = C ((5_;) (6.10)

with

+ 0(§k*)
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V7' Dy - /&ZF"H = 2.2
a2
and C’ is a suitable constant proportional to r-Y so to
make <R> independent on the arbitrary choice for the
value of r.

It is worthwhile to remark that A&A,/4i2 is the
fractal dimension, Dsaw, of a self-avoiding walk on a
Sierpinski gasket 23 whose fractal dimension is 5=1n3/1n2
The fractal dimension of the Toblerone lattice is d+1 and
for SAS’s we have just obtained

Uy

2. } (6.11)

DSAS(JH): L+ Dy, (e (6.12)

It is curious to observe that the same relation holds in
the Flory approximation for D;Z (d) = éJ+4)/3 (d5:8),
established in sec. IV, and for Dé;&(ﬁ): (d+e)/z (&54}8.

Furthermore if this last agproximation is applied to
the Toblerone it gives Dsas (2.58)=2.195...in good
agreement with the result (6.11).

Other interesting quantities to be studied in our
Toblerone lattice are § exponent and string tension
behaviour.

In particular for this last it would be interesting to
know if at Kc it remains finite like in the d-o limit 23
or goes to zero according to (Kc—-K)" where p is a new
exponent

VII. Conclusion and Perspectives.

A. Summary

Here we considered conformational properties of SAS on
a hypercubic d-~dimensional lattice.

Our analysis was based on an approximate real space
renormalization group and on a Flory argument for the
correlation length exponent. Both methods are in
qualitative agreement in the whole range of
dimensionality (2<d<8) where the model is expected to
exhibits a non-trivial scaling behaviour.

Furthermore our anisotropic rescaling recursion method
seems to have an extreme efficiency 2, which compensate
our 1inability to perform exact enumerations when the
problem becomes too complicated. ‘

With regard to the entropic exponent, a conjectural
argument of how hyperscaling wviolation could occur is
given. Unfortunately we cannot find alternative way to
estimate that exponent.
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We believe that in the near future both Monte Carlo
simulations and exact ennumeration work will be able to
show the reliability or not of our results.

The SAS model on the Toblerone lattice, we have solved
exactly as far as regard Kc and IV , should be considered
already a partial confirmation of the approximate
results obtained for more realistic lattices.

A further,certainly important, forward step was to have
found a set of n-component spin models which in the n-0
limit give the statistical mechanics of SAS’s. This
result, apart from representing a generalization of
what was known for SAW’s ¢.5.7:8, could open the way to a
field theoretical approach to the exclude volume problem
in surface models.

B. Spectral dimension of SAS.

Besides to the fractal dimension, D, another
interesting gquantity for surface is +the so called
spectral dimension, ds, which gives how the density of
states of a fractal scales at low frequencies *. 34,35
(see also part.l). Since SAS have not self-intersections
and have the topology of a sphere it is expected that
ds =2 38 in the same way as for SAW ds=1 34,35, However
while the latter result is obvious, because stretching a
SAW we get a straight line, the former is not so trivial.
Indeed one should be able to see that the most
statistically important surfaces can be stretched,
without strain, in a more or less smooth surface.

If this is the case the intersection of a typical SAS
in d-dimension with a (d-1)-hyperplane should result in a
SAW. Then the Hausdorff fractal dimension of SAS’s in d
dimension should be

DS/}S (d)= D (d-1)+ 1 (7.1)

2/ W

* We are imagining point masses on every site of a
surface vibrating perpendicularly to it and connected to
their nearest neighbour masses by harmonic forces.
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(see eq. (6.12).

“)Using the Flory approximation Dggs(d)=(4+d)/3 and
Dsaw(d)=(2+d)/3 one finds that (7.1) holds for d<5! If
this result continues to be wvalid evenm with the exact
values for Dsas and Dsaw then it is rather plausible that
ds=2 for SAS’s at least for d<5. However it is not
excluded that ds can become different from two at some
d<8 (at d=8 eq. (7.1) doesn’t hold)

If the self-avoiding constraint is released our SAS's
become the so called planar random surfaces (PRS)16,17,18
for which there 1is some numerical !7 and analitycal 37
evidence that their scaling behaviour is mean field like
(see sec. IV) for all dz2. Due to the self-intersections
one expects that the spectral dimension of PRS’s is
different from 2, at least in low dimension.

Then the situation for SAS's and PRS’s seems rather
similar to the one occurring for SAW and RW (random walk)
for which we have the following picture

SAW R W

B 3
[ - 2 d> 4
g
34,35 voS d ¢4
Do 0 ey = L

. d >4
Thus of BSAS's it seems rather plausible to have ds=2 for
any dz2 implying that a random walk diffusing on typical
SAS’s (see sec.3), after a time t, moves at a mean square
distance t2/dw with dw=2D/ds=D (see part 1) (this
implies, for example, that the resistence exponent,§ s
given by the Einstein relation_§=dw—D, is zero 40},
Another unclear problem, at least to the author, is
the relevance of handles for SAS’s. What it is surely
known is that if now the self-avoiding constraint is

removed the statistical model defined by eq. (3.5) is ill
defined 18 +,

* Due to this problem we think that the (free) random
surfaces referred in ref. 36 must be comnsidered just the
PRS.
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FIGURE CAPTIONS.

Figure 1 (a). Surface of nine plaquettes contributing to
K’ in eq. (5.3). The fixed part of the border is
contained in the 2 and 3 axis.(b) The corresponding
renormalized plaquette in the (2,3) plane.

Figure 2 (a). Anisotropic cell (3x1x...x1) used in d-
dimension in order to obtain the recursion egs. (5.4a,b).
Tt is drawn a surface of five plagquettes contributing to
K’ . (b) The renormalized plaquette perpendicular to the
rescaled direction.

Figure 3 (a). Toblerone lattice at the fourth iteration.
(b) A typical configuration contributing to Mi1{o} (eq.
(6.1c)).
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