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ABSTRACT

The review part of thesis contains detailed discussions of
five-dimensional Kaluza-Klein theory (KKT), zero-mode ansatz
and six-dimensional model due to Randjbar-Daemi, Salam & Strath-
dee as well as basic information about different compactifica-
tion mechanisms, stability problem, treatment of fermions in KKT
harmonic expansion on homogeneous spaces, chiral anocmalies and
model proposed by Candelas & Weinberg. Original contributions
are devoted to different aspects of KKT. Compactification of
D=10 dimansional SU(3)xU(1) Einstein-Yang-Mills (EYM) theory to
MAXCP(B) is shown to be classically stable. The gauge symmetry
seen in four dimensions is SU(4)xU(1), first being the isometry
of CP(3) and second - an unbroken part of initial gauge group.
The topologically nontrivial background configuration of SU(3)x
U(1) gauge fields makes 1t possible to obtain massless chiral
fermions in four dimensions after compactification. Asymmetry
in left and right handed zero modes agrees with that predicted
by the Atiyah & Singer theorem. A relation between spontaneous
compactification mechanism and chiral anomalies is investiga-
ted. A simple model (SU(3) EYM theory in D=6 dimensions with
M4x52 background geometry) is used to argue that the theory is
free from chiral anomalies in higher dimensions if and only if
the effective theory of zero modes in four dimensions is also
anomaly-free. Correspondence between different types of gauge
and gravitational (and mix) anomalies in D=6 and D=4 dimensions
is displayed. Two possibilities of getting a natural symmetry
breaking mechanism in KKT are investigated. In the framework of
KKT with elementary gauge fields in higher dimensions, it is
shown that one can obtain a solution of classical field equa-
tions with infinitesimally deformed N-sphere as the internal
manifold, if a multiplet of scalar fields is added to the theo-

ry. In the D=6 dimensional model the symmetry breaking pattern



0(3)xU(1) — 0(2) (a subgroup of 0(3)) results. Masses of ini-
tially massless (as deformation vanishes) vector gauge bosons
are calculated. They are of order & /a, where ¢ is a deforma-
tion parameter, and a 1is a Planck's length. The deformed
background configuration can be made classically stable. In the
context of the model due to Candelas & Weinberg, a total effec-
tive potential for a D=7 dimensional case with massless scalar
fields minimally coupled to gravity is calculated. The back-
ground configuration is taken to be M4x53, S3 being a homogene-
ously deformed three-sphere with isometry SU(2)xU(1). The eff-
ective potential as a function of two parameters (scale of 53
and deformation) has a local minimum for a non-zero deformation.
The round S3 corresponds to a local maximum of the potential.
Therefore the dynamics itself (quantum fluctuations of scalar

fields) can determine the actual shape of the internal mani-

fold.
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I INTRODUCTORY REMARKS

This thesis are devoted to different aspects of Kaluza-
Klein theories (KKT). The name is after two physisists who
about 60 years ago made first attempt to unify different types
of interactions by exploring an assumption that space-~-time 1is
more than four-dimensional (Kaluza(1921),Klein(1926)). At their
time the probhlem was to unify gravitation with electromagnetism.
Five-dimensional gravitation in the space-time with topology
M4XSl can do this since, as they showed, it contains usual D=4
dimensional gravity and Maxwell theory. Gauge symmetry arises
as a part of general coordinate transformations in five dimen—
sions (D=5). The theory does not give any predictions about the

size of the "internal space" (in this case circle).

For the next 50 years not many tried to develop the idea of
Kaluza and Klein (Pauli(1933), Einstein & Bergmann (1938), Jor-
dan(1947), De Witt(1965), Rayski(1965), Kerner(1968), Trautman
(1975), Cho(1975)). Probably the most important achievment of
this period was "an 2bservation that with any compact space BN
with an isometry group K in place of Sl it can be shown that
4+N dimensional gravity contains usual D=4 dimensional gravity
and Yang-Mills theory with Gauge group K. Therefore, all the gauge

symmetries seen in D=4 may have a purely geometrical origin.,

A renewal of an interest in KKT started in late 70-th with
a construction of supergravity theories in more than four dimen-
sions. In particular a D=11 supergravity attracted a lot of aten-
sion after Witten made an observation that eleven is simultaeous-—
ly a maximal number of space-time dimensions for a supergravity
theory and a minimal one necessary to obtain SU(3)xSU(2)xU(1)
gauge symmetry as the isometry of an internal space (Witten

(1981a).



Recently string theories are very fashionable. These the-
ories are consistently formulated only in more than four ( ten
or twenty six ) space-time dimensions being in this sense an
example of KKT. String theories could unify all the interactions
together with gravitation (unlike inh Grand Unified Theories)
in one finite, anomaly free theory (Green & Schwarz(1984)). They
differ from standard KKT by the fact that ( at least in ‘a most
promising approach - Candelas et al, (1985)) the four dimensio-
nal gauge group symmetry does not arise as the isometry of an
internal space but rather as an unbroken part of an initial

large gauge group ( 0(32) or E8xE8 ).

KKT can be viewed as theories in which an effect similar to
the spontaneous symmetry breaking occurs. A theory formulated
originally in 4+N dimensions is supposed to have a ground state
with topology M4XB instead of ™ . Its symmetry group is there-

N 4+N

F . . . .
ore P4XGB rather than P4+N ( P4 is a Poincare group, GB is the

isometry group of BN ). Unfortunately, unlike in the usual Higgs
mechanism it is very difficult to compare between different can-
didates for a ground state of the theory)if these candidates
correspond to different topologies. A question whether the
M4XBN state 1s quantum mechanically stable is a very important
one - but to much degree open (Witten{1981b)).

The mechanism of symmetry breaking leading to KKT is some-

times called a spontaneous compactification. Usually it is

assumed that the ground state is a solution of classical equa-
tions of motion. In these theories the size of internal space is
undetermined. This size must be small enough to be invisible at
present energies ( ie, we do not observe massive excitations on
BN ) .Typically there will be a relation between this size and
the value of the gauge theory coupling constant. If we would
like to get the coupling constant not much less than 1, & ty=
pical length of BN would differ at most by few orders of magni-

tude from the Planck length ( 10‘33cm ).



If internal dimensions are so small, quantum effects can
become relevant. This is why "self-consistent" models are dis-
cussed in the literature. In these models one looks for extrema
of an effective action with 1-loop quantum effects included.
1-loop contributions may come from a graviton or some ( scalar
or fermion ) additional fields. Self-consistent models have an
important fearture that the size of the internal space is dyna-

mically determined.

One of the biggest problems in KKT was the difficulty in
obtaining chiral massless fermions after spontaneous compacti-
fication (Palla(1978), Witten{1983)). Several ideas were pro-
posed to solve this problem. The most appealing one was to in-
troduce elementary gauge fields into a 4+N dimensional theory
and assume topologically nontrivial vacuum configuration of
them. This kind of models will be most often discussed in these

thesis.

With chiral fermions in the theory one must deal with a
problem of chiral anomalies. The study of anomalies in multidi-
mensional theories has become a very fruitful idea during last
few years. The understanding of the structure of all the gauge
and gravitational chiral anomalies led to the discovery of ano-

maly free superstring theories.

Superstring theories are very promising. There is a hope
that they can provide a first consistent gquantum theory of gra-
vity. A finitness of multiloop amplitudes is however still far
from being proved and requires a lot of research. The guestion
about physical relevance of multidimensional theories is also
still open. Of course, a range of phenomena which such theories

should explain is nowadays much bigger than 60 years ago.

The plan of my thesis is the following:

In Chapter II & general review of the sub ect is given.



In particular D=5 dimensional model (Section A) and a zero-
mode ansatz (Section C) are discussed. After a brief explana-~
tion of different compactification mechanisms (Section D) the
one with elementary gauge fields is presented in detail (Sec-
tion E). Later, a main idea of a harmonic expansion technique
is shown (Section F). Remarks on the stability problem (Sec-
tion %) are followed by a describtion of a 6-dimensional model
due to Randjbar-Daemi, Salam and Strathdee (1983) (Section H).
Treatment of fermions in KKT (Section I), anomalies (Section J)
and another compactification mechanism - with quantum correc-
tions playing a crutial role (Section K) are remaining topics

discussed in Chapter II.

In next Chapters I present my contributions to the
subject based on papers either already published or Jjust being

prepared for a publication.

In Chapters III and IV a particular D=10 dimensional
model with SU(3)xU(1) elementary gauge fields is discussed.
The main result is that M4XCP(3) compactification is classicaly
stable and that the gauge group in D=4 is SU(4)xU(1), the first
coming as the isometry of CP(3), the other one being an unbroken
part of the initial gauge group. It is also shown that chiral

fermions are available in this compactification.

"In Chapter V I consider a problem of a relation bet-
ween the spontaneous compactification mechanism and a proper-
ty of a theory of being free from chiral anomalies. I discuss a
D=6 theory with SU(3) gauge symmetry with compactification
induced by a magnetic monopole configuration of a Maxwell field
on 525 It turns out that the cancellation of all kinds of ano-
malies in D=6 is strictly related with the cancellation of ano-
malies in D=4 for massless fermions produced in the process of
spontaneous compactification. The anomalies in D=4 vanish if

and only if the anomalies in D=6 also vanish.



“In Chapter VI I propose a mechanism for symmetry break-
ing in D=4 having a geometrical interpretation as the deforma-
tion of an internal space. By introducing a scalar multiplet
into a theory a solution of classical equations of motion is
found with infinitesimally deformed SN. In a D=6 model this so-
lution leads to the symmetry breaking pattern 0(3)xU(1) —»

0(2) (a subgroup of 0(3)). In perturbation theory corrections
to the masses of vector bosons corresponding to the broken part
of the 0(3)xU(1) gauge symmetry are calculated. The solution

with deformed internal space (82) is classically stable.

In Chapters VII and VIIT I present results obtained in
collaboration with Dr. T.C. Shen. In Chapter VII different ana-
lytical continuation schemes useful in self-consistent KKT are
discussed. 1In Chapter VIII the <calculation of an effec-
tive potential for a massless scalar field minimally
coupled to gravity in the M4x53 background is presented. S3
is here a homogeneously deformed 3-sphere. The main result is
the existence of deformed S3 solutions of the quantum-correc-
ted equations of motion. This may be seen as a kind of "dyna-

mical symmetry breaking". It opens an interesting possibility

that in the higher dimensional theories dynamics itself may

determine the shape of the internal space.




I1 REVIEW OF KALUZA-KLEIN THEORIES

Not many review articles on KKT exist. The most interes-
ting are due to Witten (1981b), Van Nieuvenhuizen (1984) (con-
tains almost complete Kaluza-Klein bibliography till 1983),Duff
Nilsson & Pope (1986) (contains a detailed discussion of a D=11
supergravity), Strathdee (1986). There is also a book with a
collection of articles on KKT : Lee (1985).

A. Maxwell theory from 5-dimensional gravity

Al., Basic calculation

It is an old observation that D=5 gravity contains a usual
D=4 grévity and a Maxwell theory. Before giving more precise
definition of what is understood by "containing" I would like
to remind a standard argument.

Let parametrize a D=5 metric after Chodos(1984)

Grmn (D) + B @) A (2) An(D) &) Am )
-4,

Y (B = & @D | (II.1)
(2 An(z) L6

M=(m,5) wm =0,1,2,3 ;we omit an index 5; z 1s a coordinate

of a point in D=5, z=(x,y)

For a moment it is Jjust a change of variables and we do

not loose any generality.

We assume now gMN(z) =g (x,y) (x) so that the

MN - By
metric does not depend on one (circle-shaped) space-like di-

mension. This assumption is usually called a zero-mode ansatz

(see Subsection IIA4).

One should express now the Einstein-Hilbert action in

terms of g n(x), Am(x),<$(x). This calculation is still ra-
m



ther tedious.dﬁ(x) corresponds to the massless scalar ( Brans-
Dicke scalar) present in the theory. In this Section we are not
interested in scalar fields and put ¢>= 1 in the computa-

tions)even if it is inconsistent with equations of motion.In

. K — K K K S K S
the convention R =2 U - T -
, MN L w' onn T Ot ws' NL T ' ns -
we get
Re .= tE*E*
SV Oy = = -
L — £ % (— V1
RS’\/ o 7 %v\‘ ‘—'S ¥ 21‘_ F‘,‘ AB\_\’
ot €, t_ LA Ed
‘\mr n ,;: Arvvn Pn v *?:vam ‘::, 5 o
‘ L + i o+ - iR o = %
LA ES L LEE, - SRR LR
T —~ L + L
~+i~AMAnrfr- -équAmgL F
~ (I1.2)
r R, *

In the above expressions all the indices are raised up and

mn mn m t
lowered b d : = . i Ri
were y g an gmn g gnk K " Rmr n is a Riemann

tensor calculated for g (x): F =2 A -2 A
mn " T mn m n n m

From (ITI.2) we get

NS

- &g + L §" (11.3)
a

Since

dek o, = AR g, (II.4)

we can integrate over y the E-H action in D=5

a4 T e FR
Qe &< - o (0 5 )

a is a radius of an "internal circle'. If we want to intro-
duce a '"physical' Maxiell field Am(x) with dimensionality

+1 we must define it as



.

R

A2, Gauge symmetry

Equation (II.5) suggests that the D=5 gravity contains
electromagnetism. But what about gauge transformation? We
know that the D=5 dimensional E-H action is invariant under

general coordinate transformations (GCT)
P v o P II.7
XJ&MM = 3 OpGmny + T Yen + G Fwr ( )

: P55
If we take a parameter (arbitrary) gp(x,y) =g &g (x)
then we obtain
E%@? = O
| s
39 = & Y (II.8)

s

%”%\«fm = d) ('/a‘*i'\ﬁ;r‘ Avw * @\ig‘\”‘ AW)
so that (look at (II.1))
YA ) = S () (IT.9)

A3,Scalar field couplec¢ To: D=5 dimensional gravity

Consider a complex scalar field kP minimally coupled to™
gravity in D=5 dimensions. Does this mean that P is coupled

to the Xﬁ field (see Eq.(IT.6)) in D=4 dimensions?
S=~§f13¢3(§,05”@Q€%m% + M) (I1.10)
(my metric convention is —++++...+)
%MNQM\Q}G%\{) = %W‘ @MVK'@M‘(D + (A‘L AZ) %3‘\{9}?@3’&(9 -
__AMQ?m4ﬁC%¥>¥C%@ﬁ9WgD (TT1.11)

We assume that the fifth space-time dimension (space-

like) is a circle of a radius a. Therefore



PR

Wy = 2 ¥ M(ﬂ P L%) (II.12)

M=~

If we use (II.12) in (II.10) and integrate over y the action
(II.10) factorizes into parts with different (n) lebels. Terms
with ‘?Uﬁare

S = - ) (el [ 97 (0,0 + i 2 AT (D2 -
- \g A\:\QM> + (M?".%:i::—l> V((j‘)\()(ﬂ)l (1T. 13)

- _
We see that ¥ " is mimimally coupled to A= A|BE Maxwell

W

field and carries a U(1l) charge —=—=—==-. The mass term for %ﬂw
\47“ \‘2' VY-

is modified by a term —
O

Important point to stress is that in the discussed theory

neither a nor the value of the U(1) coupling constant e are

-fixed. They are related to each other: ¢ ~ D

From (II.5) it follows that the relation between » and

the Newton's constant is (after integration out extra dimension)

The. A
3’(,1 /le\re‘q
so that
G
o o~ (I1.14)
&U
2 T )
This is a typical relation between ¢ , @ and the Newtons
constant. |

A4 Computation of the spectrum

In this Subsection I will calculate "a: full spectrum of
the theory. To this aim I compute the part of the action bilinear

in fluctuation around the background (which is M XSl).

4

G = Lo X

] » o (I1.15)

%VM - VZ, T XM‘{L + Be—-\/\\ch\,\

. is introduced for later convenience.

We first get:



Voun = FPM«\) ™ }?i (Ybws + Vo b Ve i)
*Hﬁﬁtw\nm | (I1.16)
V—Mij - FS o X Q‘%(V Mo © Voo e Vv‘/’mb -
._' L (V Ve + 2 hie Vo by (II.17)
Riemann's tensor is: |
Rin'e, = Ruv g 5 vz‘*(w hge* VieVe e + Vi hwg
VV mher = -Y, WWahme + ViV, \’)M@\> (vM\“a 'TVRVMP
T M) (T b 1% -0 bng) - 2 (v he +Ve by -
~‘V‘\wﬁ>(VM'\nQ +\7Q\4M@~\7 Nig) (II1.18)

ﬂThe scalar curvature is then calculated to be:

n (B¢ .
R=R-x RMu\) MN *‘éevl\"hw %VNVM \/\M ¥ QMQ\/)ML \/\QL

M%é 762

, 1. 2 MR
M P - EL T - E e VI )

Since: :
v B AL
{'—‘g W (ﬂ by V\4 “MNV\” ’l P g (>II.20)

we finally get:
AR MK\)

G =15 AN R A TV A
-1 \/lMM v \7 \/\KN + Q ( \4‘\4 . ._Z\L \/’iw\/\MN>

PR (W0 )] - (11.21)

In the above computation:

1/ All the covariant derivatives are calculated with respect to

the background geometry (I1.15).

2/ Tﬂ: fi“\\ refer to the background geometry.
K
M i il t Ricci i R =
3/ My convention for the Ricci tensor is ML RMK L e
Now we use
: ~ < B
[ikqu]MN{’: QMK\‘\WT - Ry h (IT.22)

- 10 -



In the particular case we are interested in (M4x81)

NS P ] »
RMN g = 0. Therefore we obtain:
L Moy w i 0.
(W R>g,‘q_ = Lq by V \4(\, T3 \/'H.\)v %) -
Y wb i [y g
: wi\/“"‘ V\LVL\/‘ +5%MNV \7m\4 ‘l (II.23)

For the purpose of spectrum computation it is very con-
venient to choose a light-cone gauge (Randjbar-Daemi,Salam,
Strathdee (1984b)) so that only physical degrees of freedom re-

main. After some algebra we get:
. i <t ) ) | _\‘ T g I 1 T
Sy = gdbl%d”@ {4 hge (B4V) hge

+ % \’n\\; (’31+VL> \/’0? +% "”Ss’ <‘/D1+vl>\43'8'] (IT.24)

j,k indices gefer to four dimensions. In this simplest possible
2 -

case VY = @\61

Now the assumption that the topology of the D=5 dimensional

world is M4X51 is used and all the fields are expanded in

Fourier series (the simplest harmonic expansion)

i ‘ i == T(."‘) v
\\Aé'_;r (IW& = Zw\qd”‘ (3;) eﬂu?(‘ofﬁ> (IT.25)
) = S LT ) e (28 IT.26)
hye Ced= 2 by (9 exp Ry (
Q:Q . () Cn 3
\/"%'S‘ (I’\OB = 2 Wies C") e (‘gia> (11.27)

[N e

The spectrum is found to be:

1/ Massless helicity 0,1,2 particles.
2, 2
2/ Masssive spin 2 particles with masses n /a ) n< Z (modes

with the same mass and spin 0,1,2 combine into a massive spin 2
particle).

Massless states are those with n = 0O 1ig, not depending on
the internal coordinate what justifies a zero-mode ansatz used

before.



The fact that the D=4 dimensional spectrum contains a mass-—
less scalar particle is rather atypical. This particle is pre-
sent since oscillations of ﬁ) correspond to a change 1in the ra-
dius of the fifth dimension ( the line element in the fifth di-

. . i ’:" . . hond %—“ . »
mension is P 44 ; the radius is Wald' ), The classical Einstein
equations do not determine the value of the radius, therefore

Cb is classically massless (Witten(1981b)).

A5 .Solutions of D=5 dimensional wave equation for a graviton

Massless gpectrum can be also computed using different ar-

gument (Peskin(1985)). We write a wave equation for a graviton

in the D=5 dimensional cylindrical world (M4xSl)
1 —
@ LAYAD RO (xiq) = O
-k
The solution is hMN(x,y) = €uy © . The physical degrees

of freedom can be identified after choosing a gauge

(_"’OM = €NO = O GM = O KNENM = O

If we assume for simplicity that X = (1,0,0))then five zero mo-

des are found:

a) €, = €5
b) Cwrn = Cay
c) €y = E5q
d) Car = €53
e) € = €m o= -3 Eg

Their D=4 dimensional interpretation is: (a) and (b) correspond
to two different polarization states of the graviton; (c) and
(d) correspond to the massless vector particle and (d) to the

scalar.

B. NonAbelian gauge symmetry from extra dimensions

A straightforward generalization of the model discussed 1in

Section II.A leads to the conclusion that D=4+N dimensio-



nal gravity contains the usual D=4 dimensional gravity theory

and a Yang-Mills theory with a nonAbelian gauge group (De Witt

(1965)). To this aim we must assume the space-time topology to

be M4XBN_: BN being a compact space admitting Killing vectors
=

of the isometry group G: Kfc(y))c&:l,...,K (rank G). The form

of the zero-mode ansatz is now:

VAR P oadd P o+ X
%\MV\ * 05 K/& \<v) AW\A“’I \'< VAV)
%MN: (II.28)
\<x Ad -
R Spv
Similar to those presented in Section IIA calculations

give ( see Luciani (1978))
\ ‘ L P oA =pAav
Q{t%'-z J-%q\ I (\Rq PRy + p A E%VFH/M ) (IT.29)

where R4 and RN are scalar curvatures calculated for gmn and

gpu, respectively and
= > > AR AR Y (II.30)
F;w = Q%/%v ’/évAﬁ - § Aﬂ Ay

are the same structure constants as those in the commuta-

tor of Killing vector fields

M
Vel B HBEY Y
[ ] = ¢ W< (II.31)
S . U = o M
h is a tensor obtained from Killing vectors: h = K/4 K .
After integration out extra dimensions we get:
— T
« T R — (I1.32)
<g‘:‘ gd’Lv%4 (\gm% NA N Aol >
where
L M (II.33)
6w G, e
Vi :
Ny 18 2 volume of BN’
A= ey TR, (11.34)

Since



SN - P . N

{
<

Z
|

5 Ay Ve 1
( see Luciani(1978)),

4 N {11.35)
% %W

The determination of an effective Yang-Mills coupling

constant is now more subtle than in was in the Section IIA.

In order to have Yang-Mills fields 'Am with a correct D=4 di-

mensional dimensionality (+1), Ku must carry a dimensionality

u\%
-1 and h

-2. Therefore for the effective coupling constant
'g we have:
O»‘L
(IT.36)
G Gg

Vi

!
’%’L Wt

Az
¢
I
xlz

where a 1s a length scale of the internal manifold. This re-
sult may be compared with (II.14). Detailed analysis was done

by Weinberg (1983).

The discussion of a nonAbelian gauge symmetry arising
from a pure gravitational action in D=4+N dimensions is formal.
This is because the theory should have a ground state (at least
in the senge of a solution of classical equations of motion) of
the geometry M4XBN (if we had discussed guantum corrections,
spectrum analysis would become much more involved). For the

action
% - _ g d4+ldz \‘\t‘% K_\_l (\2+ /\) (11.37)

we write Einstein equations

R
7 B

R = s = e N (11.38)

We want the solution to have mentioned above geometry so that

Run = O Ry = O
(IT.39)

Equation(II.38) splits into two: for 4- and N- dimensional



R+ANA = O (IT.40)

O (II.41)

i

72
i

v ;‘:(/\me%,w

The internal space turns out to be Ricci flat. If we insist that

BN is a compact space, which is reasonable becouse of proper-

ties of differential (elliptic) operators defined on them (ho-
vewer not necessary as advocated by Wetterich(1984)), Moncrief

theorem states that BN cannot support nonAbelian Killing fields.

We can make our assumption weaker and allow M4 to be other
maximally symmetric space ie de Sitter (C<0) or anti de Sitter

(C>0) space
R = C G (1T.42)

R = 4AC + Ry (II.43)

Equations of motion become then ( assuming that the internal

space in an Einstein space)-

C = ?{Q/\+Q3: 2‘“_(/\* 4C + RY) (II.44)

2R, = N( AR (II.45)

We obtain

AN
C=- 5 (I1.46)
N A
S (I1.47)
RN N+ 2

RN denotes a scalar curvature of the internal space.

It A > 0, M4 is a de Sitter space which is doubtful as a can-
didate for a ground state since positive energy theorem cannot
be proved for it.

Ir N < 0, BN has a positive scalar curvature and then no iso-

metries (Duff(1984)),

We conclude that we cannot get a physically interesting model



via the Kaluza-Klein mechanism from the action (IT1.37).

C. Zero—-mode ansatz

In the Kaluza-Klein literature one can find different
forms of a metric of the D=44+N dimensional world. I think it

is useful to make few comments about them.

The most basic one is a metric corresponding to the ground

state of the theory:

2w O .
. (11.48)
Do =

O %/«n/(‘?))

Symmetries of the ground state should be reflected in the
massless modes present in the theory ( in D=4 dimensions).
These symmetries typically contain: Poincaré group and some
local (ie, x-dependent) isometry group of the internal space-
time (with the metric & v (y)). Spectrum will contain graviton
and massless vector particles. This can be seen by analysing

small fluctuations around the background metric (II.48).

Zero-mode ansatz is a form of the metric in which some
specific fluctuations ( corresponding to massless states) are

singled out. Typically one writes:

G () * G E0) K, () AL ) AL ( % ) 5 K )AL (9
G 2 = (11.49)
KD:A () A% () 5 Bmele)

One can ask question: what justifies this form of the zero-
mode ansatz? Is the same ansatz true in theories containing

other matter fields?

The Tact that massless vector states should be associated
with Killing vectors on BN can be seen by using the following

argument. If we calculate the part of the Hilbert-Einstein



action (with cosmological constant A ),bilinear in fluctuations
(in the light-cone gauge))we get among other terms the follo-

wing one:

hoty (R +V + R+ N = Rup) by (IT.50)

J is a D=4 dimensional Lorentz index; <, P are internal
space indices. We can think of ~<7l*gx*f\+§2xﬁ as of a mass
operator. The assumption that the D=4 dimensional part of the
space -time is flat gives on the level of equations of motion

R+/A =0 and the spectrum of vector states is given by the

IR
operator -V ¢ Qw{@ . There is a mathematical theorem (Yano &
Bochner (1953)) saying that zero modes of this operator are
given by Killing fields,provided that the manifold is compact

and orientable*,

In models containing elementary gauge fields in D=4+N di-
mensions the situation is more subtle. Zero-modes turns out to
be linear combinations of two possible vector fluctuations (see
eg. Randjbar-Daemi, Salam & Strathdee (1983)). It is reasonable

to say that the zero-mode ansatz is a model-dependent state-

ment.

The form of the zero-mode ansatz proposed before is most
often used in the literature but not the only possible one. We

can also write it as (Witten(1981b)):

% wan () A% KT : )
= IT.51
%MN (—%5 /_\o‘,(‘ Ko/(% %/4\/ (\a>

* Strictly speaking the theorem states that Kfiis a Kiliing
field if and only if:

1/ (V=R )k, =0

2/ k" =0



. 1_2
This metric also leads to R4 + R + ZF action after integra-
ting over internal coordinates ( in this case one must perform

several integrations by parts ).

The nice feature of the ansatz (II.49) is that it makes
easy to see how gauge symmetry arises as a part of GCT group in

D=4+N dimensions:

C ey Cp I11.52
(_T'QM) \6“> > (‘)C, 3 \6)4 + 2 (0K M(_V()§> ( )
(in anology with (II.8) and (II.9)).
D. Review of compactification mechanisms
The analysis of Section IIB showed that in order to

get phenomenologically interesting higher-dimensional theory
one must add some extra fields to it. Another strong argu-
ment for this is that one would like to be able to obtain chi-
ral fermions in D=4 dimensions and in the framework of purely
gravitational theory it is very difficult if not impossible

(Witten(1983)) (I will return to this point in Section ITI.I)..

An important class of models are provided by theories with
elementary gauge fields in higher dimensions (Cremner, Scherk
(1976,1977), Horvath et al. (1977)). The action for these models

is given by

Q= - gdf”wa ( B oA+ Lgl‘ (I1.53)
p= X’L

By fine tuning the value of N it is possible to find a M4XBN
solution of equations of motion. Typically, Aj is supposed to
have a nonzero expectation value on BN. Its topological proper-—
ties may enable to solve the chirality problem after fermions
are introduced (Palla(1978)). I will discuss these models in

detail in ‘Section II.E.

A compactification mechanism in a very fashionable few
yvears ago D=11 supergravity theory looks very similar. This the-

ory is interesting since it is a unique supergravity theory in



D=11 dimensions}which a maximal one for a supergravity and a mi-
nimal one if SU(3)xSU(2)xU(1) gauge symmetry is to be obtained
as lsometry group of extra dimensions (Witten(198la)). Review

of the subject may be found in Ref Duff et al. (1986).

The theory contains several bosonic and fermionic fields.

One of them is AMNP with completely antisymmetric indices. In
the solution of the equations of motion found by Fround & Rubin
(1980)
< F-_W\V\(’v‘ > ~ G’. MV\P»’
F = 40
where Fypr = 4 BLMANPR] .
The theory obtained (with different internal spaces, S. and

7
Mpqr being the most interesting choices) is very unrealistic -

huge value of the D=4 dimensional cosmological constant (of the
same order of magnitude as the curvature of the internal space);
no hope for obtaining chiral fermions. It was however a useful
laboratory for developing techniques of harmonic expansion,

spectrum analysis etc.

Another interesting possibility is provided by "self-con-
sistent models". A background M4XBN is now a solution of correc-
ted eqations of motion. Corrections are due to quantum effects
(a 14 Casimir effect) for graviton or for some other extra
fields (Appelquist & Chodos(1983)). I will describe this mecha-
nism in detall in cection IT.K. A very interesting feature
of self-consistent models is that the effective D=4 dimensional
coupling constant and the radius of the internal space are no

longer free parameters: their values are determined by dynamics

(Candelas & Weinberg(1983)).

Yet another mechanism was proposed by Orzalesi. It is
based on the assumption that due to quantum effects a fermion
condensate is created. This mechanism requires that one start

from the generalized gravity theory in D=4+N dimensions which



allows non-zero torsion to be present (Einstein-Cartan theory).
A review of this approach can be found in the Ref Destri et al,
(1983). Some particular models were investigated, including

one with S3 as an internal manifold (Camporesi et al. (1986)).
The results are however somehow bizzare: despite a fact that
the background configuration is S0(4) invariant, the massless
spectrum contains only three S0(3) vector bosons. I do not

know the explanation of this phenomenon,since it is reasonable
to expect that each symmetry of the background state leads to

the appearence of one vector zero mode, ie that the symmetry is

unbroken.

Also " -models admit M4XBN solutions of classical field
equations by identification of the space in which scalar fields
take values with compact internal space BN ( Omero & Percacci
(1980)). In this model (as noticed already in the origi-
nal paper) the symmetry of the background configuration is only

global so one cannot expect to obtain massless vector fields

after compactification. This was confirmed in explicit calcula-

tion by Aulakh & Sahdev (1985).

E. Models with elementary gauge fields

Theories with elementary - gauge fields were proposed by
Cremner & Scherk (1976), Horvath et al, (1977) as first models
exhibiting the phenomenon of spontaneous compactification. They
were then systematically studied by Randjbar Daemi, Salam &
Strathdee (1983,1984), Schellekens (1984,1985),Pilch & Schelle-
kens (1985). In my exposition I will mainly follow Refs Salam &
Strathdee (1982) and Percacci & Randjbar Daemi (1982).

The starting point is an Einstein-Yang-Mills theory in

D=4+N dimensions with a gauge group K:

— }
; R = >
, N AN iy ; .54
S:‘-" gd‘i 2 i,% ( = + 4%1 + (IT.54)
J o ) J -0 J Jki k1 =2 _ Fj FjMN .
where FMN = MAN NAN + C AMAN ; F MN ;



J 3 N SR
— - A - - W ’ . 35
FMN FMNt s Ay ANt ; , g, are constants; j is a K
gauge group Iindex. ijl are K-Lie algebra structure constants.
We assume K to be semisimple so that C s can be made antisym-—

metric.

The equations of motion are:

1% }QL ] - P U IL, .
izMl\) T %MN Tz (%MNQ?\ ¥ qL:U;'LB - ;;7'. \—Mdo__‘:—?\l > (11 55)
LM P o
%Lpfwl.FFN = %L (lgLerN - T Fon = Tow Foe +
+ LA FMN]> = O (I1.56)

We would like to find a solution of the equations of mo-
tion such that the space-time factorizes into M4XG/H. For G/H

we assume that it is a symmetric homogeneous space. It means

that for G-Lie algebra structure constants Cgﬁtf &::Ca\&)
o indices correspond to a o€ subalgebra of (3 and X to
the rest, we have:
) ¥ ¥ ¥ IT.
C,c?'ﬁ, = Cdg = Cos\a = O ( 57)

This is true for example for SN = SO(N+1)/SO(N) and
CP(N) = SU(N+1)/SU(N)xU(1) manifolds. A nonsymmetric space solu-—
tions are analysed by Forgacs et al. (1985). We will assume also

G to be semisimple and compact.

The statement which we will prove is that for K> H a stan-

dard G-invariant solution of the equations of motion (II1.55,56)

exists.

First we introduce coset representatives on G/H)which we
think of the space of left cosets gH, ge G. Let UJG/H.

L:U ~—e G such that N (L(y)) =y where 3 is a canonical

projection * . G —= G/H. (1I1.58)

Next we construct

ely) = Lep" ally) = Ga e(y) (11.59)

4> are generators of % Lie algebra. They must be antihermi-

tian if L(y) is a unitary matrix:



1

(Lo = dlm (U = Al L=

d (UL - Ul = - LU'dL (11.50)

{t

~

Qé(ﬂﬁare 1-forms so that < ()= &74(?3dﬁaﬂ

We will show that

, o ", o
%/L«v L‘(r)) = Q/M L"()) e (\83 (I1.61)
and
x | o o
AP ;@ﬁ(@) (11.52)
are solutions of the equations (II.55,56)

From (II.59) we get:

de () = - c-‘): el n ely) (I1.63)

n . 5 ) K
OLQDL - ._’io‘__ L@gd QJ\ A Q (I1.64)

a of dimension -1 was introduced in order to make dimensiona-

lities balanced in (II.63).

In particular:

~ ) - >
' R PN U SR ST GNP
L - L C\%E e e = (,M,: e AL (I1.65)
The torsion free spin connection 1-form is:
o i S E -
& 6 T Cip e (11.66)
X { (%3
(It satisfies de ’Fxgxﬁ re =0 )
The curvature 2-form is
RE = o, + WA BT = L Cr®det .
I M - ¥ > ou ¥ e
4 ok % 5 3 { [ 7? +
i ) o ¥ — _ P X _ R -5 =
+ ’l:?' ({ 5"(; C/?f’ CJK C,?'J( Czﬂg C’D’\(J X
A ¥ v ¢ L o v oo (1T1.57)
-3 Ceploe & 0e = 2 Ropmp & n¢
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In the computation the Jacobi identity was used.

oL t - EI ¥
R R = ;:;_ (.»‘,,:;5 Cj‘{) (I1.68)
. Lo ey oy (II.69)
de o Lﬁ% Cd@ = Qﬁ})“ﬁ
) 5 ) :\g - \ ‘\.“ N
(normalization is (;gg Caz™ = 7 Yap )
N
R = - ;3 (II.70)
a— o
For A = t e° (t is a K generator) B
: =, X L= S
- 1 iy < £ (de™ v = Crzre ae
oL o(an s L [AAT) = £7 (4 B
St o " ) ro- T (II1.71)
— { Z iy B ¥ \
P - £% Cay” e ne (II.72)
so that
—l 1 <
r-ﬁX === Clﬁg (I1.73)
N
= (1T.74)
T X { G
Fog Foug = 2a Jap (I1.75)
The Einstein equations give-
N v Y »
- 1 e T qu = O (I1.76)
O\”‘L '\JdOv
T
R’ \4 = O (I1.77)
Lot %61 Tov
1
1 BN A e 2N L (I1.78)
., = tlA)b'L 2 K,q

Einstein equations turn out to be equivalent to algebraical re-
T .,
lations between o, , % and .

We still must show that the Yang-Mills equation (II1.56) is



satisfied

In the last line the fact that G/H is a symmetric space and Ja-

cobi identities for %; Le algebra were used.

It is important to investigate symmetry properties of the

solution (II.61,62).

The action of the group G on the coset space is defined by

%LQV&S = \_(\6‘3\4 (IT.32)

—

The transformation laws for ea and e may be read from this
< I . \ , . -A -4 g -

S U (gtag) L s b (LYW e an™ (T1.83)

We introduced above a matrix of the adjoint representation of G
% - D" () &g
9 Qpo = ba 3) Ra (1I1.84)

We get
QJQQQ . (%‘4&/05\0( DQ P (U’\’S @\(Q N Q/cx Do( » (\4—4> &@ &

s an) o (I1.85)
e%(4) = e (9) Dt (W) + (3g)” D (L1 (TT.86)
= O\ - [ B A (S WP o + e\ Dl,%;‘ (v
e gy = e DT (W) K_ Y ~lg'ag) Dy E%I.87}
(since DiP (W) =Dz (=0 )

In general g can be x-dependent (we discuss local G transforma-

tions). Then-
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Ly vV

fi\».ﬂ }A /:\v\ -
$uing) ’\ L ax™) (TI.88)

eTg) = ey )y

i

oy & - Ry’ M »
O VTR R MMN’W‘M ‘Li M> (11.89)

24 e
Fi g
nally we get for 814 and EUM

R 5 o
L«OB 3,4 e (g Dp (W) (II.90)

SR A CVIO LR CU I U I B

We see that:

RV
1/ If Dﬁ (V>is an orthogonal matrix, the metric
is G-invariant.

2/ ‘&;1 transforms as a connection 1-form on G/H.

F. Harmonic expansion

In all KKT we are interested in a theory which is effec-

tively seen in D=4 dimensions. In particular we are interested

in the effective theory of massless modes since all the exci-
fations modes have a very big mass due to the small typical

length of the internal space.

Massive excitations although not relevant at present ener-
gies play a very important role in the ultraviolet limit of
the theory. For example,it is believed that some superstring
theories are finite even if effective theories of massless
particles corresponding to them are not so. Some authors, how-
ever discuss consistent truncations in KKT ie selfconsistent
methods of elimination of all the massive modes from the theo-

ry (Duff et al, (1984)).

Zero modes may be analyz=d using purely topological me-
thods (Candelas et al, (1985)). In order to compute a full
spectrum of a theory one must know spectra of several differen-—
tial operators acting on the internal space. One of the motiva-

tions to study homogeneous spaces G/H as internal spaces is



that (with the G-invariant metric) these spectra are calcu-
lable.

The prototype of the analysis 1 am going to discuss was
a Fourier expansion in the D=5 dimensional KKT with Sl as the
internal space (II.27). In this Section I will mainly follow

Refs Salam & Strathdee(1982) and Strathdee(1983).

In the case in which an internal space is a group mani-
fold, &' Peter: & Weil theorem (see Barut & Raczka (1977)) tells
us that a complete set of orthonormal functions on it is given

by all the matrix elements of all the unitary irreducible re-—

presentations of G:

. RS ) -
T g {xf.92
W) s T D W, O D () :
AL (Juv
(})stands for representation index and p,q are matrix indices.
On G/H we will deal with functions transforming in a de-

finite way under the action of H.

Using coset representatives one may represent y as an ele-
-1
ment of G : ¥y ——%kLy € G. The expansion (II.92) applied to the
function on G/H should be restricted in order to satisfy

(€S

g o~ s Wy
D Y G = 2 2 Y, (D D;/) (LY D m(‘x_‘%; (II.93)

A &% I\DOY
TDIJ is a matrix of the representation to which \63 be-
longs.
Let us consider a simple example (we follow a Ref (Ran-
djbar-Daemi et al, (1983))).

Let G/H = SU(2)/U(1)

QR -DQ, ¥
%

{_e%, = e e
(I1.94)
<@
W= e
AY
( 2 s are antihermitian)

Suppose, . carries a U(1l) charge c-



4 Q

Do (Y WS g - e T, () (11.95)

1

L)
Dpv is a matrix of SU(2) representation given by (Edmonds

(1957)
- kk) Vv A

W e e oL @ vy ’ y G5

I O R (11.96)
Finally

W )
. N = (" (I1.97)
Al M ? Z,\P%w &) ey (L) ,
¥
Instead of all the matrix elements of D , only one
! LYy one.

row_ of DpP matrix labells spherical harmonics in this example.

This result can be generalized (Salam & Strathdee (1982)) and

— w o, W ' .
‘\0(‘ (_"M"éx = ? 2 D»ot, (-L'TSB\{)C;O\, ("’(—3 (I1.95)

L oy
In the expression above “?; form a certain H group multiplet.
D D

Coy refers to only those rows in a unitary representation
~of G (index 1)jWhich if we restrict G to H will give a represen-

tation of. H.

Spherical harmonics introduced in (I1.98) are eigenfunc-

tions of Laplace operator on G/H. This can be seen as follows

T W () = €0t . i 2 By Dy (T \(95 =
= QD:AQ/A&(J; - -‘?; e Q/A; Capy D (Zpd Y,  (11.99)
Noﬁice that
Q5 2\_?\—(:%%'}:% | (11.100)
(it is essentially a consequence of (I1.90)). We have

A fa S T - .
V;c?g b'\x‘ﬁ) =€y /3/,‘\@; Qg Q,/,\Vb D“O Qbﬁk) \QA (11.101)

Since
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N y - . e T 5] A Y
.:\_,4‘?\/ () ai.% % D“”r U,T))\r’w) (x) =

5 < O o O —— Y
= o n ! U = ™ S : 9N -
7‘: e TDLU‘, (/)/LLﬁ)\QL% L ) % % m‘_‘;‘ (, L./,) th\a L‘«’\))\?\.\’J!k >

B o NS (0 W
= -2 T T DL (@) Do (L)W (1T.102)
Loy |

¥ v

finally we get:

. , Mmoo ‘e : - : (I1.103)
V0. oug) = -2 & D9, e) = = Dy (8 € i)

Therefore
W i , e W (II.104)
VD (1) = - (G- G () D (LY

where (:1(G), CQAH) are second order Casimir operator

eigenvalues for groups G and H , in the representation labelled

by 1.

G. Stablility

In all conventional field theories one assumes that the
ground state is that of The lowest energy. In theories invol-
ving gravity it 1s not clear what does such statement mean,
since the definition of energy depends on asymptotic behavior
of the space-time. Therefore one cannot compare energy of a
M4XBN topology candidate for the ground state with that of

M,,y topology (Witten (1981,1982)).

An understanding of stability of all the higher-dimensio-
nal theories (including superstrings) is unsatisfactory. The
analysis is usually restricted to the classical stability
Stability against small perturbations). Such calculations were
done in a lot of different models including higher-dimensional

supergravity theories* and models with elementary gauge fields.

* In the D=11 dimensional supergravity there are subtleties

about what does stability mean for anti DeSitter background.



First two such models to be analyzed were D=6 and D=8 dimensio-
nal EYM theories with magnetic monopole and instanton compacti-~
fications to M4X52 and M4xS4.4Both are classically stable (Ran-
djbar-Daemi, Salam & Strathdee (1983,1984)). Important contribu—
tions torthe subject arevdue to Schellekens. He discussed compa-
ctifications to any SN and CP(N) internal space (Schellekens
(1984,1986)). All of them except S8 are stable. A background
configuration used in all these papers is that déscribed in
Section IT.E. A CP(N) results confirmed previous result obtained
for a particular CP(3) ﬁodel (Sobczyk(1985)). Another develop-
ment was a systematic study of pPossible instabilities due
to,enlargemeﬁt,of a gauge group from the ”mihimal” one H (if the
internal space is G/H) to K : K> H (Schellekens (1984)). Recen-
tly a compactification of a theory with additional gravitational
Gauss-Bonnet term to M4x82 was shown to be stable (Mignemi
(1986)). - |

‘Thé actual calculation is greétely simplified with a speci-
fic gauge choice for gauge and gravitational fields, namely
with a light-cone gauge (Randjbar-Daemi, Salam, Strathdee(1984),
- Lee (1986). In the light-cone gauge only physiéal degrees bf
freedom propagate. After expanding all the fields around their
baékground values bne calculates a part of the action bilinear
in fluctuations and then looks for signs of kinetic terms and
mass terms - for possible ghosts and tachyons. The simplest
example of such computation was already discussed 1in Section
IT.A. In BSection ITI.H I will pfesent a more interesting model,
namely a D=6 dimensional Einstein-Maxwell theory with magnetic
monopole compactification to M4x82,

Supergravity theories can have some advantage 1f
ground state admits a supersymmetry trahsformation ie if com-
pactification does not break completely supersymmetry. By a ge-
neral argument a Hamiltonian of supersymmetric theory is al-

ways positive definite)what is equivalent to a statement that

the ground state is perturbatively stable.



A demonstration of the classical stability does not con-
clude the analysis. One should discuss also a stability against
quantum tunneling effect (Coleman (1977), Coleman & Callan (1977)
Frampton (1976)). As I have already mentioned it is a difficult
and almost open problem. From existing results the most interes-
ting is one due to Witten (1982). He demonstrated that D=5 di-
mensional KKT is semiclassically unstable. Witten constructed

explicitely a solution of = . Einstein equations (R, = 0) in

MN
the Ekuclidean space-time, which asymptotically aproaches a

R4XS1 solution. A certain fluctuation of this configuration has
a negative energy which is a sign of instability (Perry (1980)).
Detailed analysis shows that M4x81 solution decays into nothing.

Introduction of fermions to the theory may hovewer make it

stable.

It is difficult to generalize this result to a theory with
MNPR
a FMNPRF term and a Freund & Rubin type background ansatz

for FMNPR field (Young (1983)). Other interesting references to
the problem of semiclassical stability are due to Frieman & Kolb

(1985) and Maeda (1986).

H. Six-dimensional model

In this Section I will discuss a D=6 dimensional Einstein
Maxwell theory with magnetic monopole compactification to
M4x82 (Randjbar-Daemi, Salam & Strathdee (1983)). This theory
illustrates well computational techniques used in KKT. The
spectrum calculation will be performed in the light-cone gauge,
not in the harmonic gauge like in the original paper. In the
original (and may be more physical) approach one couples all
the fields of the theory to external sources and investigates

the effective theory of sources by looking for poles and re-

sidua due to exchange of physical (after elimination all the

gauge degrees of freedom) fields.
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First steps in the discussion are exactly those done in

Section II.E. The model is
L

~ g — R o (I1.105)
S = - g”i%’&”& Vg Use 7oag ™)
) R

FMN = Q}MAN - /BNAN : g7, A, » are constants. A solution of
the equations of motion (II.55,56) ic

/ * LY et Lt a (I1.106)

\%/M/‘ivé’ D\/»O>: A + S B ol.\(/ °

- ' A o5 2 A d\ (I1.107)

Pyl dg? = 2= (eesw £ ) Ay

(IT1.108)

< SN=
<G> o

The A/kconfiguration is of the magnetic monopole type. Plus

and minus signs refer to two coordinate patches necessary in
order to cover 82, n must be an integer (see Eguchi, Gilkey,
Hanson (1980); a is a length scale of S2.

The Eistein equations are satisfied if

i i
= — I1.109
T Zug“o} ( )
™ = ‘
Ve = 2%1&4 (IT.110)

Fluctuations are defined as

G T < Hue > ot RIRRTN

, (IT.111)
AM = <A‘{W> +\/\\4

The part of the action bilinear in the fluctuations is

given by

- S 1 ' _ L
gd&% V-<g> ‘\4‘ \4A,5\7 \”/\6 - %’—L\M\‘/ g T MASVV \"BC
i Ly -4
8y %MAAvavC\q%C + <Q‘/)0'5><“2—, \’l[.\P) \’ICC 2 L‘A’CMBC ¥

' QA,7~>\/A\/P; - li (< RADLP)> < c,><{:\59>> \’WA‘S \ACD
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- = . | \ o Vi v \V4
+ <R < ;ﬂc§’ﬁ\ < Vi Vg 2 Mo o) oz A "

LUV, VoV ¢+ (Ve - 9a) & (SR> b - <Fead bag,)

(I1.112)
- \/‘lu, ~ Prrl> Qv/’r v vf’r}]

where ‘<FAB>> stand for the background configura-

R
< ABCD ’
tion given in (II1.106-108). We introduce orthonormal basis

e o <
Copre D Con®)  Cepedee
(II1.113)

G2 e > =<y

for internal space components of A=(a,=( ); a:O,l,2,3}o<= +,-

In this basis

< R+~V> = - ;:'7; (J.I.ll4)
NZ
w

In the light-cone gauge we put

\/—‘ - '\4A~ - O (II.lJ.6)

(light-cone +- components should not be confused with those
defined in (II1.113)). In turns out that \/; and k'\A%components
do not propagate (their equations of motion are'merely algebra-

ical). Physical degrees of freedom are

h;;’ hdj’ Vj’ Notps Doy = - hjj (IT1.117)
(where h;; = hjk - % nghll) or in +- components for o

h;;' h1j5 VQ y Pas Do Vo VL (IT.117a)
\q$:} V}) hﬂd are real and
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ey = by

Qqﬂff = \__ (II.118)
&>(+>% = Vo

A final expression for the bilinear action is

SibL = gdﬁ% Qﬂ%} x i‘ﬁ@j (%1+$%>\ﬂyj +

-4
4 \45‘_(’51+‘V1+Q+_>\45% + % \/()—(%HVL)\/A N

, : v , Y &
v BV (0, - l) oV (TR, BNV

+

W (fbl* \wAdFo) R,_ —}C‘LU—:_}L - L p\+—-+> M*”r

+ L
T

: }«Z_:L = .
+%\_ g (R + R, + Ry * = (FD >\q35

- Ly VOVE L - L ViV E

s By (e OVC 7 DNV
* é’% Ly, P QVAVEE V,\/Jr)] (IT.119)

where :
Vl=\7+\7_ v V+ (II.120)
By applying a technique of harmonic expansion (Section
IT.F) we can calculate a full spectrum of the theory.
= WO 9 (IT.121)
dlvepd = 2 2 D, o) by, ()
AN B
D)
d”x stands for any field present in (11.117),“>%mqis a ma-
trix element of 21+1 dimensional unitary irreducible represen-
tation of SU(2). "A refers to the effective U(1) charge (82 is

taken to be SU(2)/U(1)). +- basis was chosen is such a way

that
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for W,,,\W__the value of U(1l) charge is * 2

N4 \ + 7

IR b (11100
\_/__ N \q_of - /t

Vg s V1355 Vy ©

Using orthonormal properties of the spherical harmonics

introduced in (ITI.121)

ch\Q Sw cn® D, IR C o) DM, (e -

= TV

x’\-,&mr\l(_) V],\i'VVu < (II.:‘LJS)

) ’
(I use different normalization of D s than authors of the
(@3]
original paper). “)QW‘ are all eigenfunctions of the Laplace

T
operator N with eigenvalues given by (II1.104).

From the form of (II.119) it follows that states with
different spin/helicity decouple.

In the spin/helicity 2 sector there is one field only:

[e—

1
hjk° After being expanded in a harmonic series it gives rise
[€) . (€5
to one massless (D,, ) and to a "tower" of massive ( D )

modes.

In the spin/helicity 1 sector there are three fields: V%
Mgé which mix among themselves. 1=0 harmonic hovewer is pre-

sent in the expansion of Vﬁ ocnly. It is a first vector zero

[

mode. For 1=1 the mass matrices:for three sets of fields

(€} Ly * (€} (&3} ey e 4 LY 5 o)
(Vi ) eje sy Mige 1 (VS0 Mg s )y (Vs Mg Mg ) are

.2 iz _ 5
o ot ooar
T i - T
- \.\Y:Z /a P __‘;’ O (‘[~3124)
(}{ = 4 O

oo

r— + 2
+ 32 O el

D\,L

2 2
The eigenvalues of 2 = M ( the mass operator) are-



There are three zero modes in the theory. Graviton is a
SU(2) scalar (1=0). Vector states are: SU(2) scalar (1=0) and
SU(2) triplet (1=1 ie. adjoint representation of SU(2)). In D=4
dimensions there is SU(2)xU(1) gauge group: All the other sta-
tes have positive M2 of the order of a_2. There are no massless
scalars in the theory since now, unlike in the D=5 dimensional
theory the scale of 82 is constrained by (II.109,%10). We con-

clude that the background solution (II.106-108) is classically

stable,
I.Fermions

In addition to SU(3)xSU(2)xU(1l) gauge fields and gravita-
tion we must also have fermionic matter fields in the effective
D=4 dimensional theory. One may hope to explain a complexity of
fermionic representations of the gauge group and existence of
three families by properties of BN and Yang-Mills fields back-

ground configurations on it.

I begin the discussion irom a D=5 dimensional model (Pes-—

kin (1985)). The §§~matrices are chosen to be

I ‘ e —G—:P\ X'{= ’/ﬁ O\\
\l_< = ¢ \ o Q ko -4

G M o) /
(IT.125)
ol = LA, ) T (AT
D=5 dimensional Dirac eqgution
Qévq%my = O (II.126)
- ~len
in the Kaluza-Klein world M,xS, for V=% e gives-
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N (II.1252)

(n is an integer; a 1s the radius of Sl)' This 1s unitary equi-
valent to the ordinary Dirac equation in D=4 dimensions with

n .
the mass =< since
a

4 Vi
TP Uvg X\z
satisfies.
, o+ NS L1
gt = - gy (11.127)

For n=0 there are two solutions of the equation (II.126a)

Ky A = O e O (II.128)
e
o= APL_> (I1.129)
%o"ggv'/\‘\/p\to
(I1.130)

(ko + T W = O
This very simple model illustrates two important fea-
tures of Dirac fields in KKT:

1/ D-dimensional Dirac equation splits

"5}1 DA‘W = Q’XQDG\ *"?50( Dcx}/q/

and the "internal" Dirac operator plays role of the mass ope-
rator

2/ It is very difficult to obtain zero modes other than in

left-right pairs ie it is difficult to obtain chiral fermions

in D=4 dimensions.

There is also another more general difficulty expressed

by the Lichnerowicz theorem (Lichnerowicz (1963)).

Consider a Dirac equation in a D-dimensional space:
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(IT.131)

where

. = = i . .
Da = Vimn %Kﬂwudw;ub ; Ziaéls a matrix acting in a space

in which VZ is defined.

We calculate

T_\/\ Dm VW DW‘ = T‘V‘ Qv\,‘“ ;/ Lﬁ'mo»b‘\‘tujas Q,.v:‘; (‘L (_@W‘ - % b\)M%?Mx =

i

=D ¢ R e ILTOR
2 R
=L+ = (I1.132)
We have used the following formulas
T v = (IT1.133a)
LD»1\D\.\43 = i Q\Adv](,‘izcdv
- TP Y (II.133b)
Vo - - (IT.133c)
ol o LRIl = 'R
The last identity follows from:
Pﬂkui F;F;r;_ - ZQPQ& V; (I1.1334)
It holds since
Eujow\, RQR\- = - Qo/bc,;;lv ‘\\Lrlrg = 2\:2\-&_(;’\\—(; *
FPRuten TallT = AR TE = Ry Mire I (11.134)



We compute:

—~ = e
Qo&m Lriﬂc,r@'\, T = AR T

(Rorea *Rava) M = 4R
(_(Z’Qbiau)\. + p\a‘(‘"\i’x ﬁarb {_a\. = g Quc rc

and
Racaw Tt T = Rocus (?LQbCYiL“ VLVLT;) =

= ”?—QU_Q r(; - Qo-co\/{; r\i% r—q = \?'Qu&, K\—(, * Qw{;% q\;r:)\rb
(I1.135)

Hence (II1.133d) follows immediately.

We now come back to (II.132). Since D2 is negative defi-
nite (we assume positive Euclidean signature for BN), if
R < O everywhere, the Dirac operator cannot have zero

eigenvalues at all.

In the important paper due to Witten (1983) it is shown
that the existence of a metric with R<0 is related to the
problem whether it is posssible to obtain chiral fermions in
D=4 dimensions. If BN has an isometry group G and if one of "
G invariant metrics has R<0, then for any G-invariant metric
zero modes of the Dirac operator form L-R pairs ( for example
G/H with the canonical G-invariant metric has (in my conven-

tions) R<0).

Morover, a Lawson & Yau theorem states that on any compact
manifold BN with a nonAbelian isometry group G there is a G-in-

variant metric with negative scalar curvature.

One may also have a Rarita-Schwinger field in D=4+N dimen-
sions. Then it was proved (always by Witten))that if BN is a ho-
mogeneous space, no massless chiral fermions in D=4 dimensions

are available.
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One way out of these no-go theorems is to introduce ele-~
mentary gauge fields in D=4+N dimensions (possible as a part
of a supergravity theory). Other possibilities are: to dis-

cuss non—-Riemannian geometry on M4XB as it was proposed by

N
Weinberg (1984), or to investigate noncompact, finite volume

BN as it was suggested by Wetterich (1983).

With elementary gauge fields for topological reasons one
can get chiral fermions in D=4 dimensions (if gauge fields
are assumed to have topologically nontrivial background con-
figuration). A nice example in this context is provided by
a two-dimensional superconductor (Peskin (1985)). Far from
the flux tub B = O but possible A may be different from zero.

In fact one finds-

T x — N (T+
%’¢L A= QN"@' N integer (17.136)
This equation is solved by:
AU (G (11.137)
v o) -
€@ — © §e —
(A ] VoD W

We can now consider a Dirac field coupled to A. We look

for zero modes of the operator:
C ke .
oY (Q/A-LQA/M) (I1.138)
. N
acting on W = Q,? >
L
where bl matrices are chosen to be
A e §f> T < o -1
¥ = (_L © %= 1.0

(I1.138) ie equivalent to two equations

[—@wi«% ¥ g&}’ (\\z}z . ;}ﬂ.«\y&: o (II.139a)
[”Qﬂm“r&l N S@(%ﬁé N :EB]WL=Q (II1.139b)
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Try to find a solution of the form

Ve s 9200 MU s (II.140)
Then
- )
%/\ (;\"\) B Q,"'r'\_\’) (\\‘ &) Av %“\‘ \/ (11-1418_)
. . £
%o ()~ e (O ad (II1.141Db)

We conclude that gg(r) does not belong to the Hilbert space.

Hence we have obtained only one zero mode of a definite chi-
rality {V,)

Similar is the mechanism thanks to which chiral =zero

modes appear in models investigated by Ranjbar-Daemi, Salam &
Strathdee. I will present a typical argument folowing a paper

due to Randjbar-Daemi (1983).

We assume to have a Dirac spinor /W in a D=4+N dimensio-
nal space-~time transforming also according to a certain repre-

sentation of gauge group K.

< - S‘qu% (7T, +h_c.> (II.142)

Levm o
D, = TR ey * wat AR (II.143)

UM\)AA denote Riemannian and Yang-Mills connections on

M4XB . We assume also N to be even and choose Dirac matrices as
V_ = KO- ® -/H Q. = D) )?3

(I1.144)

Yo and Yo are 4 and N dimensional Dirac matrices

?—‘

i

R TR TR Qot

)
L od

[h)

% dehﬁﬁ}
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F - ,r;‘ v i X = ‘ w e (II.145 )

is used to distinguish two inequivalent representations of

SO(1,3+N).

X = ¥s Yar (I1.146)

Irreducible SO(1,3+N) spinor ( ' = +1) branches into two

irreducible pieces with respect to S0(1,3) and SO(N):

(w)) Ky =+ A ' ' x =+
(IT.147)

(%) LA 5=

"y, belong to different SO(N) representations. We ex-
JVYe different

pand both /WL and /WQ in harmonic series on G/H:
- -— oy T
W L) = 2 DL G Wey OO (II.148)

Y, and Niﬂhave different transformation pfopérties with res- ..
pect to H)and some harmonics pY may be missing in the.expansion

fOPfWRTOP ’WL . Then, since the mass operator has a form
v A (I1.149)

a corresponding (to the mentioned DJ) field will be a zero mode

for ’WL or “KQ .

On the other hand Atiyah & Singer theorem gives us immedia-
tely the assymetry in left and right handed zero modes of the
Dirac operator in terms of the background Yang-Mills field con-

figuration (see eg. Eguchi, Gilkey & Hanson (1980)).

no-h, = \ AR A ca (W) (II1.150)
p)i\J
A
A is a A-roof genus on BN

¢ is a Chern character of V, associated fibre bundle of

which AY is a cut.
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J. Anomalies

With fermions in KKT one must face a problem of chiral
anomalies. The simplest manifestation of chiral anomaly
is given by a triangle graph representing an interaction of a
Dirac field with two vector and one axial-vector currents

(such graphs are not present in QED, but they are in the Wein-

é

berg-Salam model).

Prey

BB~

P < Figure 1
Y

The amplitude for such a process is given by

g ‘-')*—4\’< T kA 4“" A L A v'"A',”)'L’_ 2_+_v‘4
Sf,\\//% (\Q\GD = - g @J«‘)C‘ (\’( T wa *kt} (Q‘*’W\)'W\ ”Lt\ QQC\) wAa L‘c;}

A

) yT; K?KACM*Q*%)XV(y“*Q)Kﬁ(w“w;_P> )

+ T ¥ ¥ (W‘Q*Yf;)b’/«(m‘ ) Bv (““‘*AC’ §Y51 (IT.151)

where Sﬂﬁﬁ(q,p) is symmetric under exchange (pnp)ea(q,v),

After some algebra one gets (Rosenberg (1963))
S N P v AL v p?
’AV/\A 0\’(\7} =~ J_\——}_ AA G’A\//,\% O\/ A AZ = ':\\/l/""g \> i

X . 9 . - G 3 - T O
v \—)/"~&:"A\/Tg v A (I'L,o“ r/‘c)) 2% e%krg O v (‘1—7/0 “AD)

. : T3 _ : -8+ { (II.152)
) q““eﬁv7gxP oy I%A P/e“ﬂwgtW PT L b

where Al and A2 are formally divergent integrals and
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¢ L A S
TPy = \a yap BLaDip & (d-spd o p

—

_ . , . 2 = A
x Lot pAp) = ps (A) +2pyexp - ve | gy

We must use some regularization procedure in order to re-

move divergences from S, (contained formally in A_ and A2).

//(A 1

For example we can demand that after regularization both vector

currents to which the Dirac fields is coupled are conserved

M PN

P Savn = 0O
(I1.154)

V4
ot SW/A =0
These conditions fix Al and A2 to be-
[— L - — —
AA = \DC{/ 'LAA + P ( J-AO - 'LL(J) (II 155)

—_— "L — _ —
A= ey L + o Q”LLO l/ro>

Then for the divergence of the axial-vector current we get-

A v ) A g g - B o |
&(? + Om S’A \//Vk = - Eg_ e '\//4<‘S\g \3 ,OV ('2{)()), I/M — (PL’{’ q7_> (J—w” .\’Ao)>
| 6 "o I1.156
o T S T ( )

One cannot regularize S (g,p) in such a way that all

Av //.

three currents are conserved - this is an anomaly (Adler (1969)).

In general one speaks about anomaly i1f guantum effects

spolil a symmetry present in the classical theory.

One can think about the effective action:

T S, + e ; (IT.157)

where r; is not invariant under the symmetry transformation
f 5 _.

© cl

We will concentrate ourselves on chiral anomalies. They

. . . W o " .
. arises since there is a disagreement between chiral symmetry

and all the regularization procedures: no chirality preserving
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regularization exists.

In the theory with chiral fermions it means that gauge

symmetry is broken. One can write-

e ok 4 $ o oy X Cq o X
O = gckqx \D/AO{ _J‘x‘ = go&qi J \/_J = gu\ x J oo
o e (II.158)
=S NS
o = Ve Ik

The correspondence Between the current nonconservation and

JT#£0 is clear. One must remember hovewer that it is
always possible to redefine { by adding a finite counter-
term to it. We conclude that the anomaly is present if and

fr—

only 1f for every counterterm A
il CV’+ AY;> “# O

Which amplitudes are anomalous? First they must contain
a SFKUVMD tensor since they are parity-violating. Suppose
there are N external vector lines. They provide N polariza-

tion vectors and N-1 independent momenta. We get a condition

N« (N-4) 2 D Lo N> 9%4 (IT.159)

For example if D=4, N 2 3.

There exists a theorem stating that all the anomalies with

nonminimal N can be derived from the lowest N one.

We observe also that if D is odd then there is no chiral
anomaly since Pauli & Villars regularization is always possi-

ble.

Anomalies are of true physical importance. In its early
vears they made possible to calculate a A ~—e>2“§ amplitude.
Later they played essential role in solving U(1) problem in

QCD.
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The point is that they are '"good" and '"bad" anomalies.
Good are called U{(1l) or Abelian anomalies and are associated

with transformations.

M= exp (-5 ) We (11.160)

Bad are called nonAbelian anomalies and are related to

transformations
Yg—s  exp (~iat®G) &% %% ) Yoo (11.161)
where tV is a generator of the Lie algebra in the represen-

tation according to which ¥ transforms.

NonAbelian anomaly in the theory with chiral fermions
spoils gauge covariance which is a basic ingredient in the
proof of renormalizability and unitarity of the theory. There-
fore we do not want nonAbelian anomalies to be present. In the
theory with several chiral fermions the only possibility to
achieve this is that contributions from different species of

fermionic matter cancell each other algebraically. This

happens for example in the Weinberg - Salam model within each

family with three colors (Gross & Jackiw (1972)).

Chiral anomalies in multidimensional theories were first
studied by Frampton & Kephart (1983). As D grows one must cal-

culate diagrams with more and more external lines (see II1.159).

In theories containing gravity (as KKT) there is also a
possibility of gravitational (Lorentz) and mixed gauge-gravita-
tional anomalies (Alvarez Gaumé & Witten (1983)). Vanishing of
all kinds of chiral anomalies is a consistency condition for a
theory formulated in a given number of dimensions. It 1s not
clear how relevant is this condition if D> 4., Strictly speaking
we shouldonly require that effective theory obtained after spon-
taneous compactification in D=4 dimensions 1is free from all in-

consistencies.
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The structure of all kinds of chiral anomalies was under-
stood during last few years (Zumino (1984), Alvarez Gaumé, Gins-
parg (1985)). It turned out that nonAbelian anomaly in D dimen-—
sions is related to the index theorem in D+2 dimensions (it may
be surprising that purely quantum phenomenon is understood is

the language of topology).

All these discoveries culminated in the observation that
some superstring theories and field theories obtained from
them are free from chiral anomalies (Green & Schwarz (1984)).
Since then a great interest towards the structure of string

theories started.

K. Quantum Kaluza-~Klein theories

The smallness of extra dimensions in a M4XBN Kaluza-Klein
world makes it difficult to believe that quantum effects are
negligible. One can thus try to construct a consistent Kaluza-
Klein model in the sensSe that the background space-time will
appear to be a solution of quantum corrected equations of mo-

tion. In general-

s S 2 (11.162)

Sy = - — goﬁ”“z 5 (ReAY + Soaider (11.163)

16 TG,

W is a 1l-loop contribution.

We want the space-time to have a structure M4XSN)fr0m
which it follows that:
R - R, - N (o) (1T.154)
O
R4 being a D=4 dimensional curvature scalar.
S may” contain free' scalar or Dirac fields coupled (mi-

matt
nimally, conformally) to gravity. For dimensional reasons we

expect that
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- - : v i, - " 1 P
o = 7 \ uCl e \‘:; o <II 65)

A is a calculable, model dependent constant®*,

By combining together (IT.164) and (IT.165) we get in

D=4 dimensions

d N — \/p - \\J’(\\\J‘/\\/ A \ II 16
where ) A Mz u
Vi = O

is a volume of SN.

We look for solutions of the effective field equations-

Jr
w\\’l\ = O
Q\)’o(5 f Y
G ™ Qo (IT.167)
o e
Tohv -
a o‘j‘w‘v\:vz,""‘\’l
The last one is equivalent to
ARG
/aOL a
The first leads to:
NV ATl A (I1.168)
o v Vi o4
which means a vanishing of . D=4 dimensional cosmological

constant. ( II.167a) gives:

* Usually one computes the one—loop effective potential only
in an odd number of dimensions. The curvature invariant from
which renormalization counterterms can be constructed are all
of even dimensionality. We expect no divergences to be present
in the odd number of dimensions (by a more precise argument

due to Duff & Toms (1983,198%) only” odd-loop amplitudes in

dimensional-regularization .are finite)
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Q\)-A\U\J—l\ WV,

-4 S ot Cr ey © (II.169)

The calculation of the ceefficient A depends on the model.
We will compute a contribution to A coming from a single mass-
less mimimally coupled to gravity scalar field. This cal-

culation was first done by Candelas & Weinberg (1983).

A massless scalar field on M4XS3 background (we will spe-

cialize to S_ from now on) is seen in D=4 dimensions as a '"to-

3
i . . . )
wer of massive scalar particles with massess given by a spec-—

trum cof the Laplace operator on SB' Its eigenvalues are given
by:
o b TT.1°
M, = . @*‘4) a2, (I1.170)

2
with multiplicity n

The effective potential is known to be

T

Vo) = 2w (1%54‘) %OLD\«( bn (W M5 -ee) -

wi= g

L S Mo (TT.171)
- . 2\ 1’8 - @u—‘ )D/?.

(dimensional regularization is understood; D —a» 4)

We must make sense of:

o o (IT1.172)
T_('D/v‘_} ? V\_L (v\l- A) :
=i

for D —= 4, while as it stands (II.172) is well defined only
for D< -3,

We do analytical continuation in D by using the following

formula ( Gradshteyn & Ryzhik (1980)).

= s ik S 1o~y
) Dy o NJT . x )
(e = S ke (%D T ooy, (o) (T1.173)
v
which is wvalid for n> a and D<-1

After doing summation over n we get:
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For D even integer the integrand is an even function of t

It
-D/2-5/2
behaves near t=0 as t / / , S0 for D-3
o > T
TCP) D wt(ataty o=
’ et - -0 T emd/,
Wy, * —_— .
- 0 dh 3 (©X) Ty, ok
=052 My T 5(11.174>
 Imt LC
T+l
JL'\?I\.':')\\’\Q/
N
Figure 2
=i
This expression makes sense also for D=4, a2<:1.
If we use the explicit form of I 7/2(2)
I, ® 27 :{é,[Qﬂﬂ(JT%+?B - ha(®) UY+6#31(IIJ75)
-7, ;
then for D=4 the expression defined in (II.172) is equal to
d\_t O\j 4 ’ \\- Q)Ob
B Men (-8 - weo (S E]-
fg&lb\q{/bf 'S\QQXS Q < k <
C
o ~ S0 o . 9o -
o — - — > L p o
= QT 2 \5""@"]‘?“‘3£ (wey® O/v\)> o cos (A B(
= -
TG G Y o} “l (11.176)
<(Geor " arpr T Gy

The final representation was obtained by closing the con-

tour C in the upper (or lower) half plane and summing over con-—

tributions from residua from poles at 237 pi

p - integer. In
particular for a2:1 we get
— [ < (a 29 ‘KU)] (II.177)
?u ‘ @Ny fb @mf%(g QoY
in the effective potential
A
Vol = 3
we can calculate a numerical value of A
A= 0.7SCS 210 (I1.178)



Looking back to (II1.166), GO/V3 can be identified as
Newton's constant (this is actually true only up to quantum
corrections (Toms (1983))).Then equations (II.168) and (II.169)
fix the value of a in terms of A and the Newton's constant.
This is a very interesting result: values of the coupling

constant and the radius of S3 are fixed by dynamics.

It is in general very difficult to investigate the stabi-
lity of the background configuration in this kind of compacti-
fication. Only stability against some very particular modes
was investigated. Candelas & Weinberg (1983) discussed fluctu-
tions corresponding to D=4 dimensional graviton and O(N+1)
gauge vectors and obtained the result that it is necessary to
introduce some fermions to the the theory in order to stabilize
it. The stability against infinitesimal deformations of SN was
studied by a lot of authors: Page (1983), Lim (1985), Shen

(1985), Okada (1986), Shiraishi (1986).

Some new results obtained recently by Shen & Sobczyk

(1986) will be discussed in Chapter VIII.

An interesting review of gquantum KKT is provided by

Ref Toms (1986).
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ITT.D=10 DIMENSIONAL MODEL WITH CP(3) AS THE INTERNAL SPACE

In this Chapter I will present calculations of a D=10 di-
mensional model of EYM theory with SU(3)xU(1) gauge fiels.
These results were published by the author (1985). The dis-
cussion of CP(3) compactification can also be found in the pa-
per due to Watamura (1983) without hovewer computation of the
Classical stability of the ground state which is the main to-
pic presented here. After these results were published, Schel-
lekens,using different methods managed to prove that all
CP(N) compactifications of analogous models are perturbatively
stable (1985). In this Chapter I discuss only bosonic fields.

Fermions will be considered independently in Chapter IV

I start my exposition from few remarks about CP(3) space.
It is a compact space which can be realized in different ways
as a homogeneous space (action of different groups can be de-

fined on this).

I will look at CP(3) as a SU(4)/U(3) homogeneous space.
The action of the group SU(4) can be defined as a matrix multi-

plication from the right on four-dimensional complex vectors

(21,22,23,24), satisfying condition:
< 2
Z 125" = consk
0:—\ q)
. . o . : 7 o
with identification (21,22,23,24) ~ (21,22,23,24)

‘An: isotropy group of a given point - e.g. (0,0,0,1) con-~
sists from:

1/ SU(3) subgroup of SU(4) chosen as

S O
e

2/ U(1) subgroup of SU(4)



We observe that subgroups defined in 1/ and 2/ have

a common factor Z3, so that the isotropy group is*

SU(P) » Ul e

2
(CP(3) can also be realized as other homogeneous spaces e.g.

S0(5)/50(3)xU(1))

A theory is defined by a following action principle
’ - R

- V\O ————

Se-ala%ig (5«2 s

[

! I ”
2 i L S L
N gt Mld% Ch,;;" ‘rmw = > (III.].)

52

I have introduced a dimensional constant {l so that all the
fields and coupling constants have standard D=4 dimensional

dimensionalities3
Bun = PuBy - DBy (III.2)

: L
e = QMA,\?"@NL\MO +S€OMAW\TAN

Miv

ikl
e,g are U(1l) and SU(3) coupling constants; £J are SU(3)

structure constants; M,N run from O to 3 and from 5 to 10,

they are world indices; ZM = (xm,y*&); m=0,...,3

M= 5,...,10. Later on I will mainly use orthonormal frame
indices A = (a,o ); a=0,...,3 , K =5,...,10 ; my metric
convention is (—++...+).

SU(4) Lie algebra generators are given by Qg

. I AT N .\“\ A — TIT.3
‘ry.&oi)@r,_i = \}({,}5 Q‘(. ') o = /1~J ».,,)/l§ ( )

QQ%% are totally antisymmetric

* T thank Dr. Ludwik Dabrowski for clarifying this point to me



Normalization I choose is:

_(?g{’;’g g?ﬁ'ﬁ = - b/c‘(:; (111.4)

SU(3)xU(1) subalgebra of SU(4) is generated by (Qd

J=1,...,8 and ®A{ ; they are altogether denoted as G{;,
and others as Q_

We have:

Cag, Qs | ~ Q3

1

Qx, Qe 1 ~  Qy (CP(3) is reductive) (III.5)
L N, V@ ]~ G?g (CP(3) is symmetric)

For example, the fundamental representation of SU(4) is given

by ( Qz are antihermitian):

oL o o ¢ o os
- = o~ Ou CJ
Q:—. L v O Oe &g: ey e A
4 4 oo OO i VS OO Ll
66 OO0 00 o ol
(III.5)
"o o o L [0 © O
_ | O + © G
@ = l' ©c o 00 G2\\': T o O N O
9 4|l 00 0o 493G -
L 6 0D O LO O O -3

The action (III.1) leads to following equations of motion-

Q L R =T S L ol
RMN 7 Yun = 7 z Q ‘%I(EM,S\( \:No T A FQL P L>
* i—l (%M\c BN\C - 2{\’ ALY BKL %(LB ._,0\06‘””\'3
(III.7Y
R R P
%quL%MN==%H4(QLBMN"MA1BPN RN 8MP> =0
(III.8)

. : LM ¥ I ._o‘ _ P C)
%LM Vi F&N =9 (QLF&M - Uin Py " Vw Fae

e L
c §OTALFLy ) =0 (111.9)

According to the general discussion presented in Sec-

tion II.E the set of equations (III.7-9) has a standard SU(4)
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symmetric solution which can be expressed in terms of SU(4)

structure constants (in orthonormal basis)

A I r
Ro(?:.)j{'f - ot (\gﬁjﬁ k;\jb’j + ‘g:ig‘( As 5_(\ (III.]_O)
3 N J, (ITT.11)
i = Fie
k3
%f’“(b = : &A\(soc (IIT.12)

a is a length scale of CP(3) (R:—S/az);‘f is a '"magnetic mo-
nopole“number for U(1) field configuration on CP(3) (locally a
solution of Maxwell equation can be multiplied by arbitrary
constant; the requirement that it is a U(1) connection induces
constraints on \g i 1t turns out that ‘? is quantized*; in my

normalization SU(4) branching into SU(3)xU(1) is given by
q = E /\/4 ® 1 -5/4

v 3 .
and f:@?)nez)
In order that (III.10-12) solve equations (IIT.7-9), the

parameters of the theory must satisfy:

3 |
ne 2 s (III.13)
> S (TIT.14)
o 2, X
B e

For later convenience we introduce dimensionfree parameter Y

T ~ N
Lo % ’2_+L._éu> D)
Y —= 0 corresponds to “§%yi>
3
Y — 5 corresponds to Ty <

We assume the background configuration to have topology M4XCP(3)

=0
so that Rabcd

As it was discussed in Section II.E, the requirement

* I thank S.Randjbar-Daemi for help at this point
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that the solution (III.7-9) is SU(4) invariant leads to the de-
finition of the imbedding SU(3)xU(1) < S0(6) (Salam & Strath-
dee (1982)):

= - L. = (III.16)
@g = 7 gxo(r, Zoar,
where ZZ“G is a S0(6) generator.

In the orthonormal basis all the quantities are expressed
as S0(1,3) and SO(6) tensors. We would like to "translate"
S0(6) tensor indices into SU(3)xU(1) ones using relation (III.16)
Explicit calculations give (Sobczyk (1984)):

P, - LD, transforms like 3* with
é{ P, -o by, U(1) charge -1

Dy~ vy
n [ dyeidy transforms like 3 with
\}2 K($“4Ld%l U(1) charge +1

dp\s + (P

We want to compute a part of the action (III.1) bilinear
in fluctuations around the background solution (III.10-12;

IT.61-62):

D :<%Mm>‘L ® by
A = LALS 4 W2 (IT1.17)

%H = <%M> + \/M

Calculations are performed in the light-cone gauge. We get:

. \ h T { 1 13 1
< = gdj"e &‘\qdm (Q’l‘rVLB\AGu - E\’)vs(g tVo- S

<i

_ i (3 I_L > B .

i 1 3 A iy N oy T ..l_.
*'\/"{SV‘L@ + ¥V “'Lo}}\/‘d‘/ G\/)O()(ra +¥ “4\;&1)\4%\,{_



\ AL ot A 1 v
s A L R A G

_ 7 R ! 3
P VL LW (00T s x
~ d

i LT L . 2 { 7z
\/\ip.r("b A ~—4O&BWP‘; +8_OC;W (Q«»V -1—4} 1—5 =

\_\ﬂawvs \/\}0'59 -\40';/ \73 \/\)O‘Y,; +\4‘,SV,; W,&?é - \’\\Fﬁvk \/‘}vs{

R

%

P

%
a

+

T b (TeWs +2ewy) -3 hys (/W5 v W) v

&

i

e\/%rz \-’\\/,(: VS \/\)‘?& + j— \" (vs V \/\}3)

3
, i 5D W\
Ly (o T ] - & *;1% RV

(("
'\ﬂ\f"

1AM | —_

=3 e (D0 v V) s (T5W, -0, W)

a—-‘é by U9 Ve ‘D{v,c)ﬂ (ITT.18)

Indices j,k run 1,2 (they refer to Minkowski space); r,f are

SU(3) indices.

In the action (IIT.18) all the fields belong to a certain
irreducible SU(3)xU(1) representation. Below in Table 1 we

give a list of these representations



TABLE 1

SU(3)xU(1) representation * Fields
4—0 hda> ha% ) Vk
;1)/1 \46\/) '\/v‘) w\/
2% ~\/\d v Y Vi) W
2 - _
1 . 11
{ Vg s Wyt
—
\4\/3
<,
Cx oy
-—_,‘2—
(;;_-4 W g
> .
E/l \/\}t’$
4_3:/1 W st
A Wk
—_ A

A
subscript denotes a value of U(l) charge

Results for W-fields follow from the tensor products 3 ® 8
and §f® 8 , since W transforms as a SU(3) octet being a fluc-

tuation of the gauge group and as a triplet because it can be

also a S0(6) vector.

We are now almost ready to apply harmonic expansion in or-
der to compute a spectrum of the theory. To this aim hovewer
one must first solve a group theoretical problem: given a re-
presentation SU(3)xU(1), find all the representations of SU(4)

containing the particular one.

This problem is most easily solved in the language of Gel-
fand & Zetlin patterns (see Barut & Raczka (1977)). Any irredu-

cible SU(4) Lie algebra representation is given by four inte-

gers (m,6,m_,m ,m4) ©om,m_Sm_ S m .

17273 ) 17 2 37 4

(m ,m ,m ,m ) and (m +k,m +k,m +k,m +k) describe the same repre-
-1 2 3 4 1 2 3 4

sentation. In the case of SU(4) we need three independent in-

tegers to describe a representation.

Similarly, a SU(3) Lie algebra representation is given by

three integers (n_,n_,n

100 3) , two of them being independent.
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A representation space is given by all the possible Gelfand

& Zetlin patterns obtained according to the rule-

Wi W W Wy
W2 V> Wy 2Ny 2 Wy 2 N 2 Mg
V}A gy V"z)
i 2 WK, 2 v, 2 \’*'Lv>/ iz,
wa oo kg
N a2 L2 Wy
1 | (ITI.19)

(n ,n3) give all the SU(3) representations contained in SU(4)

n
17772
under branching SU(4) —s SU(3)xU(1). The dimensionality of

(ml,mg,ms,m4) representation is-

;‘i_ (M,\"\/\/\Z -PA)(VM,I - VV\B'F‘Z_)(_VVI,‘_ V\/\q -"%) (-VMZ —v\/\,s—t- /\> <
x (g =g +2) (M5 -y +4) (III.20)

In the case of SU(3) representation (nl,n ,na) the formula

2
for dimensionality is-

;;—-’(vm‘-vm?_-'k/\){vx,‘-m?’-&—l} L‘ql""')*‘/\> (ITI1.21)

The simplest example is supplied by a (1,0,0) representation.

Gelfand & Zetlin patterns are

A O O 4 O O GECRY
o O A O A O (II1.22)

o o A

o

(1,0,0) describes a triplet representation.

The remaining problem is to define a U(1) charge in the lan-
guage of Gelfand & Zetlin patterns. We normalized a U(1) charge

in such a way that the following decomposition takes place

P - (III.23)
4 = ._%.4;4 © i-%/q
In the fundamental representation of SU(4)
Lo o u\
~ | A C O . . } N
Qs = 2 OL T o = s (A A A SBALY) (II1.24)
[C RG] —7))



In Ref Barut & Raczka (1977) we can find algebraic expressions
defining values of Aj‘ generators of GL(4,R) in action on
3J

Gelfand & Zetlin pattern (III.19)

/MA = L4
Po, = Wty - Ly (ITIT.25)
Aa,q, = M b, N, kg =y

(all Ajj are diagonal).

Thus in the action on the pattern (III.19)
: ) >3 o
@4\, = (V"!*”V‘Z*"mS}" Y (""‘4*"’"‘7"‘""45“‘""‘45 (III.2%)
We are now ready to identify all the series of SU(4) repre-
sentations which are present in the harmonic expansions (II.98).

Example 1

Consider EO representation. A SU(3) representation (0,0,0) is

contained in the following SU(4) representations:
(m,0,0,n) m= 0 n< 0

. . 3
A U(1) charge is given by —Z(m+n) = 0. Thus m=-n.

(O,O,O)O < (n,0,0,-n) (IT11.27)

Example 2

Consider §1 representation. A SU(3) representation (1,0,0)

is contained in the following SU(4) representations:

1/ (m,1,0,n) m>1 ng0

2/ {(m,0,0,n) mz O n<0

3
In the case 1/ a U(1) charge is 1 - Z(m+n+l) so that



m+n+1 = O and m=-n-1

In the case 2/ a U(1l) charge is

m+n = 0 and m=-n

Finally

(1,O,O)l < (n,0,0,-n) + (n,1,0,-n-1).

3
1 - Z(m+n) so that

(ITII.28)

In the Table 2 I give a list of all the SU(4) representa-

tions which lebel harmonics present in the expansions of all

the fields of the theory

TABLE 2
SU(3)xU(1) representation SU(4) harmonics present in the
expansion

- =~ - X ¥
QO)}‘A)E'/I)’%O)@A)/‘—\——A)‘g—4>§‘-4 (n,0,0,-)
8o 2y &, G A5, 45T, Cry 1y 05
8o 3%, 6, ¢S A, 4 Caed, ©) -4y =)
&, 45, (vrd,2,0,-2-n)

X o
&, 87 Cnaed, 0, 2, -0)
X
—

2’-0 g_—/l E./} S 4_1_/, QM)A)"/‘)“"\>
g.—/j (V\*'—L) ’A)-/\) -V\)
Q‘*/l QM)A)A).—l—m)
oy (e, 2,5 2-)
5 (nrsh, 2yt )

In ©+ . Section II.F it was shown that the action of covar-

iant derivative on SU(4) harmonics is equivalent to a certain

algebraical operation:

) W i (€5
: -4 - - 4
\70’\-\D\’>\/ (‘L‘O> o -\DPS

(e D7 (L

(ITI.29)

From a general theory (Barut & Raczka (1977)) we can
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learn how do GL(n,R) generators (from which SU(n) generators

are built) act on Gelfand & Zetlin patterns. lLet

Wy = (ITII.30)

W1, VV\'ZZ

W1 44 o
and Akl be a n xn matrix defined as:
A _ S . (II1.31)
( kl)ij 3kiglj
Then
Le -4
. SN e :
AK)‘»C—A ) = Z S Q] V"‘i_,l
°4 (IIT.32)
: & s e
A\A—M)\L Q\MB = 2&- 10»:—4 \L\M\S w w -4
mi 1 is a pattern in which element mj K1 is replaced by
A . . . ’ .

. -1; . -
mJ,k_.1 mk—l is a pattern in which element mJ’k_1 is re
placed by mj,k—1+1'

n
B < -l 7 ¢
s - GLLLL—Q’AK—A *—AB ‘:_4\[ LLL\L—l'LS"’J
o"«,‘/( \_vm] = |- =
‘.__[. CLLK_ ‘Lgic—A*'A) CL@«’--A —Lb-"’“"b B
- ‘:a 1 le (II1.33)
)Od [ 3 E QL\L%‘(’Q\&—AB D ((‘¢K—L-Q’3'»c-4 -4>
vin =
e L E{ QL'&.\(_% -Lé'W'A> (e’i‘&"\ -e’;)n“% - A>
- L) -
where 1, =wm; -,

Next we find a correspondence between G&Z patterns and
irreducible SU(3) tensors present in (III1.18). By direct ins-

pection we obtain:

o O oo (00
2, b, = | VO @b, = b, = Joo
- \ -0 ° .
o O -A] [ O -4 "o O -]
n’x o -4 C\)L = O -4 ¢7> = o<
2 C‘\)A = y G O



1 _ A O
3 Jﬁé - A
o[ o -4
P o= = A4
AA el
N2 o
' L [0 -1
Py 77 S A A
| o |

We find also that (see Section

! .
‘Z/’” o WL Avq
Ve o~ oA,
¥ o. WL

I1.F)

(5

ehe

(1II1.34)

(ITIT.35)

Eigenvalues of the Laplace operator are given by the diffe-

rence between values of two quadratic Casimir operators in

appropriate representations of SU(4) and SU(3)xU(1). These

values are given in Table 3

TABLE 3

SU(3)xU(1) representation

Casimir operator eigenvalue
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SU(4) representation Casimir operator eigenvalue
1

LV\)O) O) \/\\ - ‘q-\:\L Q\AL{"B\—’\\.

(n, 4y O, -4 -u) - :—L Culrdu42)

, : - L L0

sty T4 -T-n) Joa Lo+ Gar 11)
~ -4 (AN

(\43/\).4)'—\/\»13 <t L ST

. o e i

Caety 2,0, n-2) T (Pl Taei)

Cons #4,) (e

It is now possible to analyze - sector by sector - the
spectrum of the theory. We will see that modes corresponding

to different values of spinlhelicity decouple.

I resign here from giving all the details of calcula-
tions. They can be found elsewhere (Sobczyk (1984)). I am go-
ing t» explain only how do zero modes arise in D=4 dimen-

sions, All of them appear in the sector (n,0,0,-n) for

n =0,1.

T
For n=0 there are two massless modes: hJQ(X) (graviton)
and V;(x) (U(1) vector). Both are SU(4) singlets (representa-
tion (0,0,0,0)).

For n=1 in the spin/helicity 1 sector there are four

fields: th’ hg%j,vj, W§J. They give rise to the following

mass matrix®*:

- ;‘—x (\n1+73‘n> O B -
(o
o SRR RO -
L}{: O

T o, D)
B = SIS 34) ©

- -C 0 P L (Barsa)

where (ITI.36)

* There is a misprint in my original paper.



i e A% pa— .
% — e_;_&_i__‘_}. N

i

= o g (I11.37)
o \ < \f ~\ }_ 41/\14—7)‘«\
C=oa e Nmtew

We calculate
T [ Nt b 1.2 - _ >
Dok M = (- Pud gvxlr%mv)&&ﬁ oo Lo 32 (2 Son Wb o)

> —W> Q"‘l*%‘/b

Z

— (- L (Aenaen)

'L

— Q’?} — \/\1*'7),,\) :—-:‘)\:L (_\/\1-\"))\4‘) (III.BS)

o4

In particular for n=1

Dok W = (2= o) (R A (2T 4n) -

- i e ’ b
~£’31'4‘le5' C_ (. 4L __,‘\ (IIT1.39)

Solutions of the equation:

' T
e ht 2 o (III.40)
@» C{ O\’L D\_q ?_
are given by:
= O (ITII.41)
T i 9 . \\2,4—731Q.4+\/)
oo (2
+ o .

The zero mode is found in the sector (1,0,0,-1) i.e. it trans-
form as the adjoint representation of SU(4). These are trans-
formation properties of SU(4) gauge bosons. Our conjecture
that SU(4))as the symmetry group of the background solution
(IIT1.,10-12) should be seen in D=4 dimensions as the gauge

group is therefore confirmed.
To conclude I will collect main results of this Section:

1/ The spectrum turns out to be perturbatively stable (i.e.
there are no ghosts and tachyons in the spectrum)
2/ SU(4)xU(1) gauge symmetry is seen in D=4 dimensions

3/ An effective SU(4) coupling constant is computed to be
20 G

(Sobczyk (1984)) fZQ—ZTI:%J which can be compared with
a

(I1.14).



IV. CHIRAL FERMIONS IN D=10 DIMENSIONAL EINSTEIN-YANG-MIILS

SU(3)xU(1) THEORY COMPACTIFIED TO CP(3)*

In Chapter III a complete study of the bosonic sector
of D=10 dimensional E-Y-M theory with SU(3)xU(1) gauge fields
was presented. The topological properties of the hackground
configuration of Yang-Mills fields on CP(3) make it possible
to obtain massless chiral fermions after spontaneous compacti-

fication.

A general introdiuction to the subject was given in

Section II.I.

We introduce a Dirac field into the D=10 dimensional ac-—
tion (later we will assume definite D=10 dimensional chirali-

ty of this field):

o o R i N
S--a(a%iHm (S« Se 2™ -
s (s At TH (IV.1)
l 6 i Mind ,\‘z,——\"l “ + "
+ 47%‘2 FMN\’ + 0T VM/\P L.L.>
Notation is the same as in Chapter III.

We choose some realization of D=10 dimensional Dirac

matrices (32 x 32 matrices)

T =x"ea
8 (Iv.2)
A o2

Il ¥ &%

‘5& are 4 x 4 Dirac matrices satisfying E_gq)begz ?vz
o . . S fv ¢ ﬂw,ﬁl_‘zgdﬁ
¥ are 8 x 8 Dirac matrices satisfying 1% % "év

Moreover we define-

* Based on the paper: Sobczyk(1985)



AT v oA

¥ o =+% % 5%

EoiyT g Sy =1 (IV.3)
T o Y - A

The background configuration of the Dirac field is
<N> = 0 (we require Poincaré invariance of the background).
Y has both SU(3)xU(1)

assume that SU(3) transformation properties are (a,b) in
. Gelfand & Zetlin

(U(3)) and S0O(1,9) indices. We

Young tableau notation,and (a+b,b,0) in <
notation. The value of U(1) charge is chosen to be 1.

The background covariant derivative of ﬂk has a form-
(Iv.4)

VW = AW+ S BV AT (e Y

where tJ(a,b) is a SU(3) matrix in the (a,b) representation;
— X
g(_A\?Jj =2 (Iv.5)

= L S[Aaj E‘éA) ?SPJ] = i

-
3, =

13

is a spin connection.

We are interested in terms in the action bilinear in
Since

small fluctuations around the background configuration.
<¥>= 0, the fermionic part (which is bilinear in W) will

contain background values of all the fields to which.“?is

coupled.
the background configuration o the Yang-Mills

I remind
fields and of the spin connection (II1.62,66)"

@,d(@

\g o .&Y(;\a)

1}

AT
(IV.6)

1y

< B>

. s o~
<S> = € Cidﬁ



CE“$> are structure constants of SU(4).

The embedding (see Section II.E) of U(3) in S0(6) gives:

v R gy
~ 5 i | (IV.7)
g = -3 Ciap 2

and the background covariant derivative takes a form:
Ty = a¥ -celly) (Y -
LAy AT (IVv.8)
_\,Q,sﬁkf)XQ.’(% +2\A>A’}/

This expresses the fact that f@’ has some effective transfor-
mation properties with respect to SU(3)xU(1). These must be

found 1in order to use them in harmonic expansion.

We start from a Weyl spinor in D=10 dimensions. To be

definite

Ty o= e (IV.9)

~e Fay

Since [ = Kv® i:\_)aftex‘ branching S80(1,9) ---=S0(1,3)®S0(6)
the positive chirality (in D=4 dimensions) spinor has posi-
tive D=6 dimensional chirality and negative D=4 dimensional
spinor has a negative D=6 dimensional chirality. This is why
/VQ and /WL have different effective transformation proper-

ties with respect to SU(3)xU(1).

Two fundamental SO(6) spinors have (due to embedding)
the following transformation properties with respect to SU(3)x

U(1)

N oA~ o A
A¥+ = Al *,

(IV.10)

>

i . A
Nﬂ~ N £ Aly & J——WL

The effective transformation properties of AK%Lwith

respect to SU(3)xU(1l) are

[‘\V ~ Qq‘ b) Zua @ LU“L‘ ) (°> 20 &

(& 2\—- 1'1—2 <y 2

@ (o-dylbr ) 2y (Iv.11)

=

1
z
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S A e S I EINTE
2z = 2
@7 LLI_—A)LB ?D‘,,\l Q,/ (Q\;/ﬂ){;ﬁAB —%J;‘ *J_ (IV.lZ)
= 2 < z

According to the analysis of

Section II.I we must

find harmonics present only in the expansion for ﬂWm.orfWL

but not in bhoth. These harmonics (in the Gelfand & Zetlin

notation) are given in Table 4.

TABLE 4

Harmonics present in the expan-

sion of /WL only

Harmonic present in the expan-

pansion of “FQ only

B < -6 Lo -b
(—m~1*k:)m+%)£)o>

—
~

U +a

C)\*‘%"’o I D

Qm*t,A)t-A)kfm)o)

%1’\ \/

(_C)\_-FQJ"A) L-A, -1 y emn + 1)

b+ + 6

o.-bL -3

2 lo-b T B

QQ\-‘«'{;Y—/\ S, ke-un-A 3 .Q:,)QB

An interesting observation is that harmonic expansion

exists only if a+2b=3k where k

is an integer (for other va-

lues of U(1) charge,

form).

Dimensionalities of all the

in Table 4 are equal to

1
d

1

N

Consider two examples.

1/ a

68 -

this constraint would have a different

SU(4) representations given

(a+1) (b+l) (a+b+2) (k-n+1) (k-n-b) (k-n-a-b-1)

(IV.13)



n £ -2 (-n-2,0,0,0) harmonic is present in the expan-

sion of Ah_ only

nz 2 (-1,-1,-1,-n+1) harmonic is present in the ex-

pansion of A only

Dimensionalities of both SU(4) representations are

D= £lnl(n®-1). (IV.14)

n =1 (1,0,0,0) ) .
hgggggécgfare 8£?sent in the ex-

n< -3 (-n-1,2,1,0) ) P oty

n = _1 (0,0,0,_l) . .
hgggggécgfare Bg?sent in the ex-

n> 3 (1,0,-1,2-n) \ © Ve ONLY

Dimensionalities of all SU(4) representations present in the

Example 2 are

D = g!nlln2—4| (IV.15)

It is interesting to try to derive above results directly

from the Atiyah & Singer theorem (see 1I.150).
Ng - = g A CarGNHA i (W (IV.15)
[ (_":)

We consider now a topologically nontrivial principal fibre
SU(3)xU(1)

bundle U(3) = — over CP(3). We use a normalized two-
3
form z on CP(3)
g 2> =/ , (IV.17)
eez)
From Eguchi, Gilkey & Hanson (1980)
- 2
A= 1 - -g— (TV.18)

2 3
n 2
For a=b=0 ch(a:O,sz):1+nz+§-z + g z

and
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(n_-n) g(ng—l) (IV.19)

For a = b =1
3

Il

2 2 4
ch(a=1,b=1) = 8 + 8nz + (4n"-4)z" + (§n3—4n)z

and

(Iv.20)

(n-n,) = n(n°-4)
We see that both results are in agreement (also signs are OK).
We did not compute the general expression for nR-nL as the
function of (a,b). It is hovewer not difficult to reproduce

its values for every (a,b) using the fact that ch(v) has simple
properties under tensor multiplication of irreducible SU(3)

representations

Vew = oy T, (IV.21)

: &0
o
where T, are irreducible representations,

ch (V) A ch (W) = ZZQL\(jE) (Iv.22;

as forms on CP(3).

‘Similar study with CP(N) (with arbitrary N) internal space
was afterwards done by Bailin & Love (1985). For N=3 both re-

sults agree.

Before, a particular case (a=b=0) was investigated by Chap-

line & Grossman (1984).
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V. ANOMALTIES AND SPONTANEOUS COMPACTIFICATION*

Studies of anomalies (introduction to anomalies is presen-
ted in Section II.J) in higher-dimensional theories have be-
come a very fruitful idea in the last few years. The require-
ment of algebraic cancellation of all the gauge and gravitatio-
nal (and mix) anomalies appears to be a very strong constraint
restricting the class of reasonable physical models (Alvarez-
Gaumé & Witten (1983), Green & Schwarz (1984). In this context
a natural question arises of whether a spontaneous compactifi-
cation mechanism (which is necessary in going to the four physi-

cal dimensions) is such that no new anomalies are introduced.

There are some results related to this problem in the lite-
rature. Witten (1984) showed that for 0(32) string theory the
topological condition connecting curvature and Yang-Mills two-

forms

ng RaAR = gé— gT\f Fal (Vv.1)
(tr and Tr refer to fundamental and adjoint representations)
leads to the absence of anomalies in D=4 dimensions. Green,
Schwarz & West (1985) discussed compactification of the super-
string theory to six space-time dimensions with K3 taken to be
an internal manifold. They showed (using a similar to Witten's

argument) that again, the absence of anomalies in D=4 dimensions

is guaranteed.

T would like to address this problem in a different way by

considering a particular example which gives some iInsight to the

problem,

I am going to discuss the case of D=6 dimensional E-Y-M

* Based on the paper: Sobczyk (1986)



theory with SU(3) gauge group (generalization to SU(N) gauge
group seems to be straightforward). I assume that spontaneous

compactification to M4XS is induced by a magnetic monopole

2
background configuration on 82 of one of SU(3) gauge fields

(for details see Section II.H).

I assume some chiral fermions exist in D=6 dimensions.
They transform in a definite way under SU(3) transformation.
After compactification in D=4 dimensions we will see SU(2) x
SU(2)xU(1) gauge group, SU(2)° being the isometry of a two-
sphere (viewed as a homogeneous space SU(2)/U(1)) and SU(2)x
U(1) being a remnant of the initial gauge group SU(3) (unbroken

part of this).

Before analysing the structure of all possible anomalies
in the theory, let us recall that we are not worried by the
fact that enlarging the "minimal" gauge group from U(1) to
SU(3) may, and in fact will, make initially stable theory un-
stable (Schellekens (1984)).We are only interested in anomaly
cancellations and up to our knowledge problems of anomalies

and instabilities are completely separated.

In D=6 dimensions there are three types of chiral anoma-
lies appearing in diagrams with four external lines:
(a) purely gauge anomaly with four external SU(3) vectors
(b) mixed gauge and gravitational anomaly with two gravitons
and two SU(3) vector particlas

(¢) purely gravitational anomaly with four external gravitons.

We need not to bother about a purely gravitational anoma-
ly. This is proportional to the difference between the total
number of left and right handed Weyl spinors in D=6 dimensions.
This can be always made zero by adding an appropriate number of
left or right handed SU(3) singlets which after compactifica-
tion will not produce any massless chiral fermions in D=4 dimen-

sions (Frampton & Yamamoto (1984)).



In D=4 dimensions we look for anomalies due to massless

chiral fermions produced while spontaneous compactification is

performed.

In D=4 dimensions there are four types of anomalous dia-

grams with three external lines:

(A) with two gravitons and one U(1) vector
(B) with three U(1) vectors
(C) with two SU(2) vectors and one U(1) vector

(D) with two SU(2)" vectors and one U(1) vector

My argument is the following:

Every representation of SU(3) is described by two numbers
(m,n). Therefore every multiplet of fermion fields of definite
(say positive) chirality transforming according to (m,n) repre-
sentation of SU(3) gives some contribution to anomalies (a)
and (b) which can be algebraically expressed as polynomials in
m and n - say fa(m,n) and fb(m,n) (we do not bother about over-
all normalization here). On the other hand, by a definition of
the embedding of the SU(2)xU(1) subgroup into SU(3) as
3 = 21 + 3_2 the representation (m,n) branches into a series
of SU(2)xU(1) representations corresponding to some massless

chiral fermions in D=4 dimensions and therefore giving some

contributions to (A) --- (D) defined above. We will show that

these contributions are linear combinations of £ and fb. This
is exactly what we need because if we start in D=6 dimensions

from the anomaly free representation (theory) i.e.
a [s)

then it automatically follows that there are no anomalies in

D=4 dimensions. This argument can be also inverted.

I will give now some technical details. The problem of

SU(3) branching into SU(2)xU(1) can be systematically studied



using Gelfand & Zetlin patterns (see Barut & Raczka (1977)).
This technique is explained in Chapter III. A SU(3) repre-
sentation (m,n,0) after branching SU(3) —s SU(2)xU(1) will
give rise to SU(2) representations described by (k,1) where

mzkzny 1> 0 with a U(1) charge equal to (see TIT.26)
Q =20l = 2 (men) (v.3)

In D=6 dimensions the contributions to (a) and (b) are
proportional to Str(ty tp ty ty ) and tr(ts tﬁ>) where t,s are
generators of SU(3) in the (m,n,0) representations and Str de-

notes a symmetrized trace.
Lo(kake) = Tupfy (V.4)

Shv (latptyts) = 3 (TapVyr + VugToy + T DFo  (V.5)

where
| 4 2
S, = 7 (o™t = £3m) Cmn ~ ma” + 2mn « 3 m-n +)
(V.6
g - Cvan bt T B - Lt D)
o <430

<oy =g v 2m) (' + ' - Y\’\h"’}i‘ t3w)  (V.7)

This was calculated using quadratic Casimir operator eigen—

value in the (m,n,0) representation:

(v.8)

- | ,
‘67 = 3 Cm" « w® - wmn +'%Yﬂ>

In order to analyze D=4 dimensional anomalies we must
first discuss rules according to which massless fermions appear
in D=4 dimensions (Randjbar-Daemi, Salam & Starthdee (1983)).
Assume that magnetic monopole number of U(1l) field back-
groud configuration is ‘€“>O (integer). If there is a positive
chirality Weyl spinor in D=6 dimensions having a U(1) charge Q

(Q must be an integer in our normalization), then in D=4 dimen-



sions there will appear a massless chiral multiplet with a
U(1) charge Q, chirality sgn(Q) transforming according to |Q|
dimensional representation of SU(2). Starting from a (m,n,0)
representation of SU(3) several massless chiral multiplets
will appear in D=4 dimensions with the following transforma-
tion properties with respect to the gauge group SU(2) xSU(2)x
u(1)-

, V.9
CL18] , eh+d, &) (v.9)

where Q is given by (V.3). They are labelled by (k,l1) where k

and 1 take values
m 3z k2 un2A (V.10)

These multiplets (with all the possible values of k and 1)
give the following contributions to four types of anomalies in

D=4 dimensions:

@) R Lt DG 5900 § = 2 Q5 (w-leny (V.11)
(B & (el a2 1R e & = % GF Ce-lra) (V.12)
Q) @ 06N E G s ] =

= Tup % & 5 (e Qerten) (eet LR (V.13)
(0) & Loty £.710 (8u80) oy § =

= Vup € Q1 Gl L (0000 -1) (V.14)

where

(G0 DA ‘ )
e (SuSy = \% T (m®-4) (V.15)

S o ,sﬁ are generators of SU(2) Lie algebra in a m-dimensio-
nal representation.

We calculate now-
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i

% (e he) [ D00 - Llmew ) = 2% ¢, (V.16)

(ﬂs
T E

®
o
3

V)

v

S

e

= -

4

3

W
J

—

VNS

g (L) [ 2Ceey -2 (mwﬂq =499 € (V. 17)

<

i

Q. g i E L%OOO 2 (i +w)«\ (=) (L t1) (- L) =

Vo=t =y

= a%e (v.18)

Mxﬂ}

SMS

2 ELE?: L2 - Ztmm)”& (w-k+a) -
Yo

-2

QA

(e =) Blestd -2 Cmend ] :\2{’5_;‘%&
(V.19)

where fa and fb are defined in (V.6-7).

If we start from a negative chirality Weyl spinor in D=6

dimensions the contributions just change sign. We see that if

we have an anomaly free theory in D=6 dimensions (the sipmlest
choice for fermions is: §L C)gR @SQRcC)lL) we obtain also an

anomaly free theory in D=4 dimensions.

Let us 1look also which anomalies in D=6 dimensions and

D=4 dimensions are related to each other (see V.16-19).

= D=6 raviton
b= SU(3) =
VQEﬁ}éraviton L ¢ﬁ§%
\ | |
(1) ) D ]
: P

graviton SU(SLJJ Q@%graviton
U((1) SU(S)..‘”L7 AJQ SU(3)

Uu(1) -

SU(3) SU(3)



SU(2) SU(3) SU(3)

. " e
// \(ff

0(1 )t —

e SU(3)

SU(2) SU(3)

SU(3) L%(é)

sp(z)‘-

e//////ﬂ N
SU(3)’ RiU(B)
ul) =™ \ SUs) FL\j ¢¥gi;viton

'SU(25‘

graviton

Figure 3 sU(3)

Only last relation seems to be nontrivial. This can be
hovewer explained by a fact that physical SU(2) gauge vectors
in this model are linear combinations of nondiagonal excita-

tions in the metric field and vector excitation of the Maxwell

field (see Section II.H).

It is certainly a nonobvious result that the theory re-
mains to be anomaly free after neglecting all the massive

modes produced while performing dimensional reduction.

77 -



VI. SYMMETRY BREAKING IN KALUZA-KLEIN THEORIES*

KKT provide us means of understanding the origin of D=4
dimensional gauge symmetries as isometries of an internal
manifold of a very small and therefore invisible size (see
Chapter II). But what we really need to obtain in D=4 dimen-

sions is not only a gauge group but also a mechanism by which

it can be broken. In the context of Kaluza-Klein theories there

is an interesting possibility to be investigated, namely that

the gauge group is broken due to gmall deformation of the in-

ternal manifold.

I will describe such a mechanism to break the gauge symme-
try and will explain why it is necessary to introduce some
new fields (scalars) in the theory. This mechanism might be

seen as an alternative to the usual Higgs mechanism. I will

then, in the context of a specific model, give a general solu-
tion of field equtions with a deformed N-sphere as the internal
space with the isometry O(N) rather than the round N-sphere
with O(N+1) isometry. The solution will be expressed in terms
of a small parameter % such that in the limit &€ —= 0 we re-
cover the undeformed N-sphere solution with O(N+1) isometry. T
will then specialize to the case of six dimensions (N=2) and
discuss the resulting theory in detail. Examining the spectrum
I will find (in perturbative theory in & ) that two of the
three 0(3) vector bosons acgquire a real non-zero mass. This co-
rresponds to breaking the symmetry of the solution of field
equations from 0(3) to 0(2). I will also discuss the stability
of the scalar sector and show how all the tachyonic modes can
be eliminated. In the particular six-dimensional model that I
work with there is an extra U(1) gauge symmetry present in D=4
dimensions in the limit ¢ —» 0 that does not arise from the

isometry of the internal manifold. I will show that this U(1)
*Based on the paper: Sobczyk (1985)




symmetry 1is broken for the infinitesimally deformed N-sphere.
This breaking is due to "~ the nonzero vacuum expectation
value for the complex scalar field carrying some U(1) charge
which is a necessary part of the model. Thus the overall

symmetry breaking pattern is O0(3)xU(1) —= U(1), the unbroken

U(1) being a subroup of 0(3).

Because I have achieved a mechanism for symmetry breaking
by introduction of a complex scalar field with a tachyonic
mass (it is required by field equations)}as in the usual Higgs
mechanism, there is also another possible ground state in the
theory. It corresponds to the undeformed two-sphere as the in-

ternal space with the scalar field ground state expectation

2 , 2
value minimizing -M"$ D + S (P7D) terms in the action
M
(i:e. <> = ). It turns out that this background breaks
%

completely the local 0(3)xU(1l) symmetry.

~ .A Specification of the model and background solution

Phenomenologically interesting Kaluza-Klein models gene-
rally contain gravitation and elementary gauge fields (see Sec-
tion II.E). In our case we will work with a KKT consisting
of gravity, elementary gauge fields and some scalar fields
coupled to gauge fields and minimally coupled to gravity.
Without scalars in the theory, the internal space would have
necessarly a constant scalar curvature. This result follows

from the argument due to Randjbar-Daemi & Wetterich (1984).

Consider a D=4+N dimensional theory of gravity and Yang-
Mills fields with: nonzero D=4+N dimensional cosmological

constant:

S = - g(f“NZ ST% ( S% x gz; + ’R‘> <MI-¥)

The topology of the background configuration is assumed

to be M xB
o} 4x N



Einstein equations

R
RM\C - Z%M\( -

O,

(-ZF, Flvc v By (VI.2)
of ML e ‘6?’1‘{.& ‘ 5:)13 .

can be rewritten as two equations *

=1
2B A Lo (VE.3)
®»r 4067’
Rem , 1 F E*_po (VI.4)
L ’L«)O"L me N

From these it follows that

D = —?JAyJ' (VI.5)

Let N=2. Every two-dimensional manifold admits a metric With
constant scalar curvature, but if R = const < 0 (as in our
case), 82 and RP2 (real projective space; a nonorientable ma-
nifold) are only possibilities. Since we always have in mind
introduction chiral fermions to the theory, we want internal

space to be orientable. Thus for N=2 there is only one possi-

bility: B2 must be a round two-sphere with 0(3) isometry.

For N3 3 the situation is more complcated. It is well

known that for exampile S3 can be deformed in a homogeneous

way so that it remains a space of a constant scalar curvature
(see e.g. Coquearaux (1984)). It appears hovewer impossible
to satisfy additionally Yang-Mills equations as well as eque-

tions (VI.3-4).

Hence we decide to introduce scalars to the theory. Later
on we will see that equations of motion will not be satisfied

unless the scalar fields have a tachyonic mass.

OQur model is described by the action-
- ) - -~ =1
O S (S« AR

=
<

LY VP - m' D+ QQVCWB (VI.6)

where F is a gauge fileld strength; <$ belongs to a certain

MInT

In Sections VI.B and VI.E latin indices refer to internal

space
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representation of the gauge group generated by tJ (antihermi-

tian).

‘VM¢ = 0y + Aiﬁ£a¢

(VI.7)

We would like to find a solution of field equations with

- background topology M4xSN with O(N) invariance in terms of

infinitesimal parameter € . In the limit & ——» O we want to

recover the O(N+1) invariant solution. The field equations

for the action (VI.6) are-

an

Ad + Mb - 5@ = O (VI.8a)
\ ;‘ m i 3 i A -~
G VeF 2T VYD -y g -0 (VI.8Db)
R L =39 3 & + :
=t R R Y e - o (VI.8c)

@ . .

, 4+ , !
— = - M de) +\4€@.L¢> (VI.8d)
4% »
In the absence of scalars a O(N+1) symmetric solution is
given by

o >;:'§% . 2l (VI.9)
~ vl 4

é \67_ \?S

. T -0,y .
_ wk>t> _ L Tt G P (VI.10)
~— vy o XLX*‘A)
N-AY + (N-4)

A oW r b = N (Vi.11)

b Loty ) ‘oo
where we have used projective coordinates on SN : yk, k=1,..,N;
X = (1+y2); tab is a O(N) generator defined as N x N

th h
matrix with +1 in the a row and bt column, and -1 in the

th th
b row and a column; a is a length scale of SN

i 1 '
Equation ;;_ T Set.z tells us essentially that

if

g ~ 1)then a is of order of Planck's length (see Section II1.B)



In the O(N+1) symmetric case the number of massless vec-

N(N+1
tor fields in D=4 dimensions 1is —igi—l , while in the O(N)
N(N-1
symmetric case - only —£§—~l . If the symmetry is broken

from O(N+1) to O(N), N massless vector fields become massive.
We expect (by counting degrees of freedom) that in order to
achieve the symmetry breaking in this way a multiplet of N
scalars must be introduced. In fact, the following solution
(up to O( € )) is O(N) symmetric. Technical details will be

given in the Section VI.E.

Jue ' ‘ et (VI.12)

D S L Q— s »yc)

: Uy

, o W=D

< de > = e e (VI.13)
oA = L Tt = Jem gt (VI.14)
Se— % - ()\/ \’gLX+A>
Mre A4 A O R O .
M= ot J L T Y J 2 = = N\ (VI.15)

R ‘L{u‘o oL

( d) is assumed to transform as a vector representation of

O(N)).

We note that another solution of field equations (VI.8)

can be found:

S = — (VI.16)
¢> ffg
Co> = 2 - G K (VI.17)
he e

olo \ Tiw Yo = Vo 4L (VI.18)
<A, > = .

via ou \{QKH\)

A (w A‘\Z e (N -4)

L 4 - 4 -
A4 _ - = — (VI.19)
T 1%1—0»1’ J q\% (.\%l o

This solution and the earlier one correspond to different '"va-
cua'". We can see that in the limit ¢ -— 0 they are not the

2
same. For the first solution M is not a free parameter. Re-



12 2
lations between ¥ ,g , a  and  given by (VI.15) and (VI.19)

for two solutions are also different. The solution described
by Egs (VI.16-19) (even if corresponds to the round internal
N—sphere) breaks completely the local O(N+1) symmetry. This is
because <b is an O(N) gauge group multiplet. Hence due to

embedding of the gauge group into the group of tangent space

rotations (also O(ND]the background is not invariant under
adjoint action of an O(N) transformation followed by a tangent

space rotation.

We will see that by arranging the value of the parameter
‘Z (at least in the six dimensional model) the background
configuration described by Egs (VI.12-15) can be made pertur-
batively stable. Even if it corresponds only to a local mini-
mum of energy, so that it can decay through gquantum tunelling
effect to the stable configuration (VI.16—19))it may still

play important role when used in cosmological models.

B. Six-dimensional case.

It is reasonable to expect that for the deformed solution

(VI.12-15) some of the massless vector particles would later

become massive with small mass of order <«* . We will check
this hypothesis in the six-dimensional case (see Section II.H).

The action is

- R [ LN
- _ ¢ {C = o« = 0 Vb -
S = g(i z {i% <\'x? 4 N+ TPy Vo
T T VI.20)
— MG (PR ) ( )
& is a complex scalar field (or 0(2) real doublet) and

VU - Rud wie Apd (vI.21)

The solution of field equations with only 0(2) symmetry

is (in spherical coordinates)
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LYse> = |+ 7sm © (VI.22a)

Cgeyd = mn'© (VI.22b)
<A = /;Qé (1-es®)ay (VI.22¢c)
ey
M . Lt/
) < \\/\\ N [ Z ‘
4> = = <4QLB &XP k -y \“YB S G (VI.224d)
9 il -
MT= T (VI.z2e)

In the limit ¢ —= 0 and in the absence of scalar field. we
recognize the solution given in (II1.106-108). n is a magne-
tic monopole number . In order that <42 be a single-valued

function of \e n must be an even integer and not any integer

as before. We introduce local frames

< (-5im©)
ey ™> = 3z h
(VI.23)
—0p .
(o3 : 1 bl
< e = — (- e 5nw ©
o+ > Ng3 b
: >
< Q\(_> = <‘Q,\p+>
- (Vi.24)
< Qg D= <ECot>
As usual we domand * 7 the background configuration -

to be symmetric under the action of some group up to a local
rotation in the tangent space. The symmetry group of the
background is 0(2) generated by a Killing vector with compo-

Ke = 0 and Kke = 1. It is a symmetry only if e,

nents
%Mﬁ (where M= %59) and ¢> have definite transformation pro-
perties with respect to the tangent space rotation group o(2),
viz. Q%iy\+l 3 €v¢_~—1 , @& ~ n/2. These numbers become im-

portant in the harmonoc expansion on 82 viewed as the homoge -

neous space 0(3)/0(2).

In order to analyze the spectrum of the theory we expand



all the fields around their background values

By = < Puw > v iy
Ay = <AWD =+ Vy (VI.25)

d) = < d> + ¥

It is convenient to work in orthonormal frame coordinates
and to choose a light-cone gauge for hAB and VA fields (see
Section II.H). More technical details will be given in
Section VI.F. Here we only write a part of action bilinear in

fluctuations with fields of spin/helicity 1 and 2 as well as

terms bilinear in the scalar field fluctuations
- _ - ‘ T v 1 rANETEE
Souiz = e Sy 105 [ 3 e (R YL
i s — L by T .
2 g (2T Y T3 V(RN VDY

F L

73 Lo Wy <Rup> - TP Vy V) o+

+ \/O‘< ;—xf;> v{a L}dak] (VI- 26)
See T gdqx g@% [ <> L\ek<ql+v1_\%l>\€

A
~ .
+ %? P> %’—‘Q§C¢>5L - §§'<;(ch<¢5fip 0 V$<¢5>
Z

: - = T |
L (A>T eyt et eI \
(VI.27)

Before expanding h,V,¥Y in series of harmonics on 82 they
should be written in terms of irreducible 0(2) representations

i.e. in +-— basis defined in (VI.23-24).

The background solution gives

, N cos B
| < il il 2 tnl ~ 2
<€§-> = ;:{ (-4 + & S0unm 9 - o3 T = O Lon 0 >



. R LI
PAGEEE (1= g =me)

(6N
L.
(e _ ! = lnl R_V‘W‘\@
<€D = T T

@< <> = O

(m~\m)1 Covd <EDD (VI.28)

SRS ot

o ) |
QV_(, <b>) Vi <$D> = )

QV__ <¢>>x T <d> - E;’ (v + ) oo <D

SR A O»’L
o cinl .. wl '\
<d>')€ﬂ)* > - 40\'1&1 Siw @ e
. £lin) iy ~enf
<bd > = oo s e

Harmonic expansions are (see Section II.H)

)
M o) = 2 Do, () gy OO (VI.29a)
=0
. — O ’Q
Viey (%) = % D g 6 Vjn 9 (VI.29Db)
. ; — ) )
Vi Cagy = 2 D, ) Vi GO (VI.29¢c)
@ Guy) = 2 Dw, M%) v (VI.294d)
Lz\“‘/;_
where y stands for (¥ © ) and [m|L1. T)mﬂw‘ are spherical
harmonics on 82 normalized as follows
e i % (L)
goue So\/@ swe D, (48 7 (\P(@) = (VI.30)
© o
::élc 5\/\41-\»\/\&’0 3\/\/!/1-&—\44)0 (VT..,BO)

~

C Calculation of the spectrum

A full analysis of the theory can be done systematically

as explained in Section II.H. In the 1imit ¢ — O we get the
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following massless states:

(a) for 1=0 a helicity 2 state - graviton ( hj; )

(b) for 1=0 a helicity 1 state - a U(1) vector ( V; )

(c) for 1=1 helicity 1 states - 0(3) triplet

(d) for 1=|n|/2 helicity O states - multiplet of |n|+1 mass-

less complex scalars

For the background with only 0(2) symmetry ( € #0) all
the mass matrices become complicated and computation of their
eigenvalues more involved. We will display some details of
computation in Section VI.G. Here we wish to make few

remarks on the most important points of calculation.

1/ We are interested in corrections to masses only up to

o(e?)

2/ States with different 1 s no longer decouple. Hovewer terms
which mix among themselves are of order %};so that in the de-
terminant of the mass matrix they give rise to corrections of
the order O@:S - which can be ignored.

3/ It is a priori not very clear how to define harmonic expar-—
sion on the internal manifold which we can think of a defor-
med two-sphere or as a two-sphere with infitesimally deformed
metric. Should the harmonics Eﬁ:m$e the same as in a nonde-
formed case? Or should they be redefined as eigenfunctions of
the deformed Laplace operator or by a requirement that they
must satisfy orthonormality condition (the integration measu-
re is changed since d&kﬁ<%>=<nm9(5“'%”*wmbﬂ. Fortunately, up
to O(%} ) all three definitions seems to lead to the same an-
swer. In the actual computation we have used the first possibi-
lity.

4/ In the scalar sector we are interested in the mass matrix
for states with 1=|n|/2. Full analysis is not simple since
there are seven fields involved (h++, h__, v, V_, hjj,\P ,‘PK)

so the mass matrix is a 7 x 7 matrix.



We are interested hovewer only in the lowest order correc-—
tions to massless (in the limit ¢ —= 0) states which we iden-

. taliy \V\\/Z—*
tified as Y. 6 ¥ . The lowest order corrections are gi-
ven by the matrix elements

\V\l/L’x \m\/L )
o
N, Mo, 2

2
so that it is sufficient to calculate corrections to M only

in terms bilinear in ¥, .
Results of computation are following:

1/ In the helicity/spin 2 sector graviton remains massless.
2/ In the helicity/spin 1 sector only one state remains mass-

less. This is a linear combination

(1) % 4y

\ ) €] : - o n
g (Vo v g Gy m b)) (VI.31)

Two other initially (as & — 0) massless states, forming

with the one mentioned before a 0(3) multiplet)acquire masses

1 \ - x . .
ME = X ;:Z_ (Pwl+9) Zinle (VI.32)
/s + A N
R Sy D)
N S ENIT
2 . -1
If we want massess to be of order ~ 10 Gev)then (since a
-19 . -1 < . .
is of order~10 GeV) ) < ~ 10 7. Thus a posteriori

perturbation theory is justified.

3/ U(1) vector boson acquires a mass

T at - =
MU= T R = (VI.33)
\v\\/L
4/ Masses of e scalars are proportional to the integral

Ll tal = Llwa | Yl

Ji ,'2—
ML o~ eh gdu@ Su® (l-wse) S B "Siu ©
o

ot os® L il [\l wSe | LA
(A il St 2 () o (D))
(VI.34)
where v = \g/éL is a dimensionless parameter. We observe

that



) o fnl 2 .-
W+ il cone + %% ﬂz ") wso 20 (VI.a5)

[

for |m| < |nl/2.

v talfy
The only possible source of imaginary mass for “P.. mo-
des is the last term [nl (v -'4) L Ve found that in fact
for 2. =0 there are tachyonic modes unless In] = 2. On the

other hand if W 2 1/4 we can be sure that the background con-

figuration (VI.22) is perturbatively stable.

.D Concluding remarks

The mechanism desribed in this Chapter can be most pro-
bably applied to other internal manifolds, in particular with
some minor modifications to CP(n) manifolds. Furthermore, by
introducing different scalar multiplets one may obtain other
symmetry breaking patterns, the breakdown O(N+1) to O(N) be-

ing the simplest example of this mechanism.

The classical stability of our solution has one more in-
teresting aspect. We notice that by putting € =0 one obtains
an unstable theory in D=4 dimensions because the background
value for the scalar field is then <J&> = {%%? rather than

<é>=0 . Only when € #0 the requirement that <d¢> be 0(2)
invariant forces us to associate with & some definite trans-
formation properties withrespect to the tangent space rotation
group (viz. a charge of |n|/2) from which it follows that in

the harmonic series we must start from 1=|n]|/2. Since

Mllz_

@l + %‘ ) D (1) = C (VI.36)

"\IL 1%}

for Vﬂ' being a "round" Laplace operator on two-sphere. As
¢ —= 0 but <#0 there is a multiplet of scalar massless sta—

tes for 1 = |n|/2 and massive ones for 1> |n]|/2.

Finally I would like to mention that the symmetry break-—
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ing mechanism obtained in the case ©= 0 ( with <&$> S )

seems to be similar to results obtained by Shin (1986). In his
model gravity is coupled to Maxwell field and a nonlinear G -

field (not carrying U(1) charge).

E Appendix A

A N-sphere in N+1 dimensional Euclidean space is descri-

bed by equation

W

————» 2
2 %, = (VI.37)
6=t
We introduce projective coordinates on SN
>y
By = (VI.38)
5 I’Nf(
in the domain in which x £ 0 ( we need N coordinate patches

N+1
to cover a N-sphere in this way).

The induced metric in projective coordinates has a form

_ Jn _ b= .
T T TS Groe (VI.39)

From the isometry group of this metric (which is O(N+1))
we pick an O(N) subgroup. This subgroup is defined in such a

way that an element of o(N) (Lie algebra) generates transfor-

mations
?S\,awt = t‘ﬁw
(VI.40)
Tigu = ~Tgw
T - is an infinitesimal parameter.
N(N-1) .
The — generators of O(N), generate transformations

of SN leaving the solution (VI.12-15) invariant. Killing vec-
n

tors are given by K" = Y, K = Yo, (m<n). One verifies

that Lie derivatives of (VI.12-14) followed by tangent space

rotations (Aab is in the adjoint representation of O(N) and



dD in the vector representation) are zero.

We now turn to verification that the solution given in
(VI.12-14) is in fact the sulution of field equations (VI.8),.

This is fairly straithforward but tedious.

We first obtain (up to O(E} ))

Top [ o et %4
] el - - +
QM\O o \_(N A> K bl ¥ A < i —‘
« Qe [ o Ly £ L T
B [U\"") ( e ng = ( (VI.41)
J | L osA
Fan Fol e Lo - e 5=
+ Inme l et
__VLT\,\_(N,A)%—Q == ] (VI.42)
. e £ (N-A) (VI.43)
®m¢) de{) UVV\(’ qui}"l +\‘aM\OP <\t OL\EClX(:}

From these relations the following equations can be derived

\ 4
I PPN (VI.44)
u T g 2¢t D e

e [ (N-0Y" + (v-a) (A s =5 - e )} (VI.45)

o Y .
T

- 2 N-U oy -4

Pb = e T o (VI.46)
vty + N4

N = T4 o (VI.47)

As far as Eg (VI.8b) is concerned we get

T
N F\:MW = - ;‘: CoeFi =90 dee) (N-4) %;; (VI.48)
(?L¢5+%de>“<iT%f&‘Ukﬁ> = e (YoTan- %&BCKB Eﬁ%g%; (VI.49)
Finally one verifies that
AVATCHEE S:;Cb\,, (VI.50)



¥  Appendix B

A part of the action bilinear in fluctuations defined in
Egq (VI.25) is
(e e Vlag - L, O VA
_\%> 4 an AR 4 AA‘7 hﬁﬁ‘* Z A Mp ¥e M, ¢

+ :lz \AAAV‘,,VCL:% + < Qp(ﬁ> (“7‘_ \/’A\'S\”C.C - z \"AC. L"'S(,B
3R> VaVe - 3 (CRapey > + 5 CRATRE%) biag ey
L

FCELSCRS (X hachin ~ % heobin) + 5 VATV,

s 5 VaVaVeVe + QAR Vp,\/@ (< oo heam<Fe b us}
- Zhee CFa> (TaVe- TV + % haabnc Vad)” <9
2 (P9 CTEY 1) 7Y eV (T >

g STt COE> T TV VaVa <>

+oe Va ((dﬁk vA'\e - Q7A\e§< <<i>'>l)
+ e Va ( VARGV ST <\7Ad>>x\p>

% hiag (LT > T HT, ) T bD +
FleVa (€ Vpad Ty <OPUC 0 >)

© X Laa (€859 0 Ced) (ME- 2 WD) vyt o

_4€ CEe> e —E PO RY - EChe T xe“i‘
(VI.51)
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We have used orthonormal frame indices; A = (a,ol), a runs

0,1,2,3 o runs 5,6.

In order to go to light-cone gauge we use coordinates
a=(+-j) j=1,2 and put V_zhA_zO (see SectionII.H). It turns

out that field equations for + components of VA and hAB are

algebraic equations (they do not describe propagation of phy-

sical degrees of freedom). We obtain

\40{9( + \465 = O
PNV = UxVa + 0V - ce Q¢%\€ N
, . ) (VI.52)
(}_\’L{-d = Qc}\\/]do + /D\x.\/!\«c{)
-3 (@Y @ + 0% Uud)
We decompose now all the internal 0(2) tensors in terms

of irreducible representations of tangent space 0(2) group

and get

Sue = Case T3 | Lugl (oo,
hi- (AT PR D by + 3V (VR ) v
TV (g Vb))

+ Ve (fb’[‘{—vL +<Q+;> 4'}(—1<(:+->l _u?.<¢*¢>> \/+

f 3L (RN 2R < Fo>" - 2<R, ) by



flhy, (T e <D v IR TR v
2 VCTELS - Tx b VAT ESS

SIS PR S R G (TR VAR VAV
VR R QAR AR

T, .. . 2
S (<P - TCED)

+

s gy (2D + @ <OV >

1

{

S C AR SAVERVL SV X D))

T

TS AR R I ¢
st (R (@7 E0e> - <9ED Yo $>)
R S AP <o$°

d oy (T4 B <\7-¢'>>] (v1.53)

and
h T h. - EAE h (VI.54)
jk jk 2 mm
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G  Appendix C

We need explicit form of some spherical harmonics

Sive
A > - (R ¥
DOO :\C;ET LA‘)%@ DD’A = QT < 3\(/\ e
A 4 % Ao x5 "H€S{m
DO4 = - DO-/{ D/\O - v \'g\z’-\_ Q @

“RVAY

¥ ¥
A A A _ A
D_AO - DAO D"A"A - ’D/‘,i
A _ A X
Dogq = Pay
inl Ly -y ('V‘IL“'M) . w
‘D' /2, — C V‘,‘L 3 \—L,OQQB Sou
My mn

N . . . .
( L,wf’ is a irrelevant normalization constant)

\vn\/7 — 11

on S

S
' &% : Ao &}. - Cos®
th% :nga(J4uﬁe> DM ~L\m_ e ( Co >

They are all eigenfunctions of "round'" Laplace operator.

We see that (using spin connection (g

+_
Owi ‘O_G‘ © n
1 A Lot
\7 D Ava ot D/\vv,
\V\\/L
— L walfy, - lat oy “)
O D\q/L'\,\,‘ - ’Z, D\.'L V)’L i

For the deformed S_ the metric is

T L
<O(}'ee> = L +resnm ©

< %‘?‘?> = %(\419

and the spin connection takes a form

=l (s -4))

(VI.56)

(VI.57)
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(oo -4 - & e (VI.58)

. _ Cos e Siu
L”?+- =

.j?/

which of course modifies a \/ operator. We can show that

. i . " A
S DL = L (2eerar gy saTe) Dl
) T \\,\‘\ g it L,O>@ i
\71 Déq B%‘L Q—’Z_ TE S o - tl({-i-\_?: > e 3\&/\ BD“/I
L S
@ + )A = 'L Q’Z_-Lk— S O &7— V\{L:ﬂbw> BAO

\\4[

(O4RY Doy = 5 (26 2 (rwwso-2eest) -

vy

- Lt %l'l/\ @ CWS@ ZQ/O> @3) D::/(

- < -
T2 St e
7 M { B T ! {eal 1l A
F ol o (Ll e (o
fp wa o z A <
“i/
: Cos D b b ~'"e
_i\/\[VVl > - _ ‘—{: )3 \>V'l vin
Q—'\"‘I@ S © Z

(VI.59)
As a typical example of the type of calculations invol-

ved we will demonstrate in detail how one from three 0(2)

massless vactor bosons remains massless.

In the bilinear part of the asction we have
gdg% (_%;V% QQ%%‘?l- 2£}<:¢¥df>>\% +

s (2 VTR Dny,

+ R L—.[-,_'\/ﬂ (~V+\’l_o -V_ \’H‘»A)) (VI.60)
From harmonic expansions for V., and hj we pick out the
1 1 1
V. , h h .* elements which mix among themselves only (up

jo +J o’ 4]
to 0( ¢€®). After integration over ol we obtain

—
i

VT g&& gok/@ swo L1+ % e -
- ©

A

L% 5 Dos (R = (22 s WY Vi D
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Using the relation
v DI‘ = - “\—“ (_l— ?:-L S \V‘le) DA« (VI.62)
- 410 O\_‘ _2' e

we get

S

(i

- dT 4 A A ; .
Cate [ 5E Moo Uy b Y4+ 26 R 20))

+

| o )
o (1928 R 2 )P+ 5 (20 2 GV

* \/]*50 ((4*?3" < %\w\ﬂ,)/a Toor (-2 Y3 (+lade Z ey
2 T A
S22y o (VI.63)
where -
i Wl + 4 Al \ v
guua o anMe = RN ) (VI.64)
Z i k. E v (il s a) VL )
Zn satisfies relation
Lo}
Wl (Zian = 2i) = 221" P (VI.65)

We introduce redefined fields h+j and Vj

e A 3 2
\/, = \/0'0 (_ 4+ ’;;‘ E %\\4[ - g t %IV\[+2’E

(VI.66)

[

A
o 2,
\’H—d = \n+\,)‘o ('4 * \E = %lv\\w,>

In terms of Vj and h+j the action has a form
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T N < o= (" l 2 1
-3¢ ‘%\v\\%”(’})\/d + \/)»+d (fa 4&-{ ('—2'+i ¢t

B
&

(D\:L

W1
* E < %\Vllf?.B]

The mass matrix for V_, h .y N . is
J +J +J
"61“ M/] v MB -u M5
Moo= | "M =M, ©
LM, O Pt~ M,
where
| ) N
M, = g (2t 2" (R 20
My = = (2122, - 2d2
¢ ot = tnive Z,E “”5

- % T (S |
My= G- 2efaig s Sgta )

A determinant of the matrix (VI.68) is
ir N 7 AL : A, 2
det M =[(R7- M) (2% M) - 2,7 (B 1)

and its eigenvaltues are

O

\ -
—_— 5 . % .1 I T S -
Bt (/2— * a = %\V“*Z z%'%\vn> - MZ,

{ A iy 1
;E_Qé\* %:Qf”z\ﬂl + 2{ %fi%\mw{>
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VIT. ANALYTICAL CONTINUATION SCHEMES IN QUANTUM KK THEORTES*

As we already saw in Section II.K, in quantum KKT we
need to make sense of certain expessions through the procedu-
re of analytical continuation in the variable D corresponding
to the number of space-time dimensions (i.e. we consider a li-
mit D —= 4). In this Chapter I am going to explain different

ways of performing analytical continuation.

The basic expression I have in mind 1is
= . olz

F(o, ) = T(EY) T vt Cat-ah) (VII.1)
vt =\

2 2
where A< 1. F(D,A ) represents (up to normalization con-
stant) an effective potential in D=4 dimensions of a free, mi-
nimally coupled to gravity scalar field with a mass m2 in

the background M4x53;

kA T
A= A= w e (VII.2)
O, 1is a length scale of S3 (round three-sphere).

F(D,AE) is well defined only for D<-3. It is possible
hovewer to express F in the integral form and obtain represen-

tations which make sense also for other values of D.

The first method based on the Laplace transformation was

already discussed in . Section II.K. After applying this
-t
transformation the dependence on n is in the factor € .

Therefore the sum over n can be performed easily. Let me re-

mind here the formula (II.176)

w3

FQD) AL) ﬁ)—:; 8‘7‘-?—_ {S(V\ L%TPAB Q'_ i.% + %A > +

pn Wieye ey

‘ CEL N
*CDSL”JP”><QPWNT i @Nm)>1 (VII.3)

Based on the paper: Shen & Sobczyk (19867, Appendix B



and (IT.177)

< - Q%%ﬁﬁ(ﬂ (VII.4)

79 - {
. 250 | () -
oA O Ly (W)
A

F{o,A")

The method we describe now was proposed in Ref Candelas
Weinberg (1984). It cannot be applied when the sum in (VII.1)
starts from n=2 or when D is odd. In the later case it is not

clear how to choose anAappFOpriate integration contour.

The second method is also based on the Laplace transfor-
mation. It was proposed by Critchley & Dowker (1981) and la-
ter by Sarmadi (1986). To employ this method we first calcu-
late F(4,—A2) and then we will make a "Wick rotation'" and ob-

2
tain the expression for F(4,A 7).

We begin with the relation

. Py €4 o Oy

Flo,-a)= (%) = L(‘vﬂ%ﬂ}} - A (ats AY) 1 (VII.5)

We use the formula
= e AeAY ved
(wreny = — SM <" £ (VII.®)
[ CRVA

. <
valid for V < 0. On using the property of theta function
) wo 1

1u0 1 — v LS

ST oo = (I € VII.

o E 2 vz

one can derive the following representation of F-

2 D5
al = Al EYe oo R e R
Floa) = -2 % gcvs@, e [as = +(1r 3395 ]
wvis | o
o < -3 n-5
e ~SA T 2z DN o 2 ]
’-&%\“3“& [As 5 v | (vire)

e}
2
Tt is here that the minus sign at -A 1is necessary in order
to make the integral converge at infinity. One can now rewrite

(VITI.8) by an integral representation of the Bessel function

K, (Gradshteyn & Ryzhik (1980))
o - T
2 “}Q‘E*-\t'—} Y .
K (2 = 5 Se CTTOT L ek (VII.9)

o

- 100 -



and K The result 1is

and explicit forms of K .
p 7/2 5/2

=

AWy 7 ~ —— :i)“ 4 — - A
F:(q)_AL> - .\2_ A V( 7/7_> - Kot 2_ ‘d,lr (*1’\/\\’3A> L&-—‘\T)B N

Pt

-, T v ‘
ap” 29 A . SO0A . 80 1 (VII.10)
+Cyﬁ@4 G (W * Qe |

We now can do the "Wick rotation" (A2 — —AE) on (VII.10) %o
return to our original expression (VII.3). Because of the
A — —-A symmetry in the original expression we need to sym-
metrize the final expression too (we call it a "symmetric

prescription').

One can also start from the expression (II.176} and
2
arrive at (VII.10) by a symmetrized A — —A2 transformation
and performing the integral in (I1.176). The contour C should

N
be closed in the upper-half plane for terms with € factor
—En
and in the lLower-half plane for terms with © . The resi-

due at zero yields the first term on the RHS of (VII.10).

This method can be used when the sum (VII.1) is from
n 5. Moreover even if D is odd in which case method descri-

bed before completely fails, this method can single out the
-D-1
2

divergent part which will be of the form [ ( ), and the

regular part can be evaluated numerically.

The third method of performing analytic continuation in
D is based on the Sommerfeld-Watson integral (Kikkawa et al.

(1985)).The basic equality is

3 ) ~ ‘LD,Z’ . .
g:(Dlp}'} = -“i Y’(—D/L) g&% 28 (Z-A) et (3 2) (VIT.11)
<

where path C and later C> are shown in figure below.
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Figure 4

The equality follows since the integrand on the RHS of
(VII.11) has simple poles at z = 1, 2, 3, ... For D<-3
one can change the integration contour of (VII.11) from C to

C* (see Fig.) and obtain

. -9 : w D
Foa) = M%) s I L gwﬁu)a A Coth () 4
A - ©/y L contribution from the)
. N - _ '1' L ——
N gw (AT -) ot LI 1 en integral at A
© (VII.12)
The first integral on the RHS of (VII.12) is formally di-
vergent as D —= 4., We can use the relation

, 2

to separate out the singular part and proceed to regularize

it. The singular part can be written as

S '5*0/2_

_ Pl A S .
T T 2.
gdggﬂ (9+A) = = ) (VIT.14)
; z

This representation gives regular result in the limit of

D — 4 when it is put into (VII.12). The contribution from
the bubble integral at point A 1s negligible as D —» 4. Af-

ter dropping terms of higher order in (D-4) we have

. ‘; + 2wt . A
F(q P\l> = 2 VO ) +
\ L S(MB T </

i P

+ A7 xok'x_ '7(, C’ l) ot L\JLIA> \—77/0 \-g—(z-) +4§/-\L \ng} +
C - iy’ Ay

co At IO ﬁ.Sdm_x(J Ay uﬁ(waB\ (VIT.15)
Q7)Y -
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which is to be compared with (VII.3). In particular for A=1

we have
<@ S0 < (%)
T s _ o mre— 1 .
Flo, M) = [ A Ll e
A=A
¢ 2 Qo 2t () cot () | (VIT.16)

Making use of the fact that for positive integer n
%»xﬁ (A4-%) Wkl = O (VII.17)

and properties of Bernoulli polynomials Bn(x) (Abramovitz &

Stegun (1965))

(VII.18)

i , - vt 2 (T s 2 S (L)
% 2 . (=) ot () dx = & (LA

one recovers the expression given in (VII.4).

This method still holds if we generalize the lower 1i-
mit of the sum in (VII.1) into n=m and m-1<ALm. If
A <m-1 the residue contribution from poles like m-1 in the
c*contour integral will be finite and the overall F(Z%_)
factor leads to infinity when D is even. When D is odd,this
method can also single out the singular part which is Jjust

(VIT.14).

The last method of analytic regularization I will dis-
cuss, is making use of the infinite Plana sum formula (Linde-

16f (1947))

- warik) - lua-it)
= (QYdT  + ¢ \ ¥ ke e (VII.19)
Z ?Ln} f o * — 4

o

which is valid if
1/ f(z) is regular forf@g(2)><3
2/ dam ©

VLI
< §lo k) = O uniformly for O € T < v
L2 o

3/ L § & RG] -

T o0
-0
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Using (VII.19) for our function (VIL1) we have

= (D, /~\L) = F’(‘D/lb \— ‘-z (l_p\z_;l"' N 8{1 (\{’L_AL)D’& dhk
L ;

f

: ~ z - 2 oy "
‘ i“ (Areky T kT = ATT “ = (A-aS CA-cky - A " ]
+ o {

ewie —4
(VII.20)
One must expand the RHS of (VII.20) in powers of (D-4).

The leading term which 1s potentially problematic becau-

. i
se §22 T(-P/2) = - 5= |, turns out %o be zero. The li-

near term in the bracket combined with gamma factor

gives a finite result. The only formally divergent term

on the RHS of (VII.20) (as D —= 4) is the (1, 9% ) inte-

gral., It can be regularized by using the following repre-

sentation “
A %D ~0D-D DEXS
Tt W T a2 + _A___ mC < ) -
gouc:c(«e A _-Se (- AY) "ok = SPRTA
' ' (VII.21)

which is clearly finite as D -—=» 4,

The advantage of this method is that it singles out
the divergence (essentially the Y_(F%gﬁ) factor)
guickly in the odd D case. It is useful when one is inte-
rested in the renormalization aspect of certain theories.
The evaluation of the finite part seems to be more invol-
ved than in other methods. This method can be also used

when the summation is from n'z 2.

2
For seme values of D and A, F(D,A ) can give a diver-

gent expression. For example if D —= 0O and A —1, then F

diverges as In(1-A) in all four methods. We will encounter
this case in the perturbative representation of the effec-
tive potential calculated in Chapter VIII. Fortunately
that expression will be multiplied by some polynomial in
(1-A) and perturbative expression turns out tc be finite
(at least up to 0(e )). In the minimally coupled case

l—A2 = mzaz, so that A2 —s 1 1limit is a consequence of

the massless 1imit that we will consider. The logarythmic
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divergence can hence be viewed as an 1infrared divergence.
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VIII. SYMMETRY BREAKING IN QUANTUM KALUZA-KILEIN THEQORIES¥*

Few years ago an interesting model of quantum KKT was pro-
posed by Candelas & Weinberg (1984). The idea of this paper is
presented in . Section II.K together with detailed calcula-
tion of a particular D=7 dimensional model. Originally, a solu-
tion of quantum corrected field equations was found with the
background geometry M4XSN, SN being a round N-sphere (one assu-
mes N to be odd since then in dimensional regularization one-
loop effective potential is finite (Duff & Toms (1983,1984))).
The stability of this compactification was discussed by a lot
of authors (some references are given at the end of .. Sec-
tion II.K). The stability against deformations of SN is of par-
ticular importance for reasons explained in = . Chapter VI: in
KKT it is natural to think of symmetry breaking mechanism as of

having a geometrical interpretation in deformations of the in-

ternal space.

In this Chapter by considering a very simple model T will
try to show that this kind of mechanism can be obtained in the
framework proposed by Candelas & Weinberg. I will present the
calculation of the effective potential for a scalar field mini-
mally coupled to gravity in the M4x(homogeneously deformed SB)
background. I will show that the effective potential as a func-

tion of a deformation parameter X has a local minimum for

ol # 0. The oK = 0 solution (round 83) corresponds to a lo-

cal maximum of the potential (see Figurel2 at the end of this

Chapter - p.122).

This result opens an interesting possibility that dynamics
itself (quantum vacuum energy of matter fields) is responsible

for the actual shape of the internal space. This effect can be

* Based on the paper: Shen & Sobczyk.(1986)
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relevant in every higher-dimensional theory including super-

strings.

Al Model

We consider a scalar field in a seven-dimensional space-

time. The classical action of the system has a form

~

S - av, [ CR+AY + 2(T- ) | (VITI.1)

where dV, is a volume element and barred guantities refer
to D=7 dimensional space-time. We assume that this system ad-
mits a M4XS3 geometry as a solution of the quantum corrected
field equations. S3 denotes here a three-sphere with possible

homogenous deformation. The line element on S3 is given by
. > 7.
dom = T (Lus™) (VIII.2)
a =i

where S form a basis one form on 53 satisfying the structure
. o — < . .
equation dc T = %;eokctsbﬂ =3 . l;s are principal curvature

radii of the homogeneous internal space. The case in which all

)
(o9

1! s are equal corresponds to the usual round S3 with isomet-
ry SU(2)xSU(2). The case when two 1., s are equal corresponds

to the Taub space with isometry SU(2)xU(1). This is the case we

shall consider here. Let ll = 12 # 13. Then the background geo-

metry depends on two parameters only: the scale a and deforma-

tion ot defined by

o= Uy (VIII.3)
<= (2 " A (VIII.4)
Ly
The range of ot ig -1 o0 and o{ = 0 corresponds to

the round SB'

The Laplace operator in the background geometry M4xS8 can

be written as a sum of two operators (corresponding to M4 and
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S3 respectively)

SR D (VIII.5)
The scalar field < (x,y) where y denotes internal coordi-
nates can then be expanded by a complete orthonormal set of ei-

i~

genfunctions Y}4(y) of the operator - 1a + m2 with eigen-
values 2’)D«E as

P o) = 2 P V() (VITI.6)
The eigenvalues ‘%an~ are obtained as (K::—j 33
IS RN
'ZJQJH«S 2 5
A= Qgﬂ, AR (VIIT.7)
“4
On meking use of the orthonormality of ‘g , the D=7

dimensional scalar field action can be reduced to a D=4 dimen-

sional one with infinite number of massive scalar fields

ng = - = go‘f‘y_ 2 P, O T s A D, ) (VITI.8)
AT~ < 1

The effective potential for the action (VIIT.8 ) can be
found to be
) LS e
\\‘:—LL\/\ quD [P =

<4~
Sty M
2@yl

00 ‘EOQ% (VIII.9)
™

where D is a complex variable corresponding to the number of
space-time dimensions. We assume effective potential to be an

analytical function of D in order to perform analytic continua-

tion from the domain in which it is well defined to D=4. One

can then define the matter effective potential in the Minkowski

space by Vo= - /3,

It proves convenient to use the following definitions

= L] +4 b&‘-j*\( T = vt ub -4 (VIII.]_O)

- 108 -



The eigenvalues can thus be written as

N = [»{—+<r f o (e ”1W§.],/Qf (VITII.11)

We shall consider only massless scalar field, so that & redu-
ces to -1 and the effective potential follows from (VIII.9 )
and (VIII.10)

[$
L

4’0 o
. ) T (-9) - i Lol
\V4 Lo.)ol., D) = - "Z 5 (@ ~)°/2, L\/\l-/\ +oh {vi-4 -7_0‘13 ‘1
Ch Vi

(VIII.12)

HNE
C
N

e

=1

The effective potential as it stands is well defined only
for Re(D)< -3. We shall continue V as function.of D analytically
to D=4. Since this is a one-loop computation in odd dimensional
space-time we expect that dimensional regularization will lead

to finite result. Details of calculations will be given in

Section VIIT.C. In Section VIII.B we shall first present a per-
turbation evoluation of V(a,s ) following Ref. Shen (1985).

B, Perturbative calculation

If the deformation is small, one can calculate the effec-
tive potential (VIII.12) in power series of the deformation
parameter ©OA . The calculation of mode sums in this way is
much simpler than the exact computation and may hence serve

as a useful test to verify it.

One gets (5= -4+ el ) w" = 0)
'D/Z_

A0 (o) 2
M L L) 2 \' \/\7‘ (V\L '*'GB +

.\/ (O“)O{\ D) = - &0 &4 JT)D/z =

D - Oz o yrA
s (ALLWI+G‘> - (GT+4) wt(nbes) } t

- ; . 1] TP . Dy - A
Lot Q ASY ) nt (e z DL; () G £30) AT (e L
=80 ©

- . D~ ) L, ‘
+ PCOU (05 +23Y) wt (Wa ) ) +<Dbﬁ)1
\ -

(VITII.13)
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To evaluate the effective potential (VIII.13) one can use
the analytical continuation scheme due to Candelas & Weinberg
(1984) (see also Section II.K). It appears quite useful to
keep a non-zero mass throughout the calculation and only at the
very end of them to consider a massless limit m2 — O, Alter-
natively, one can sum from n=2 at the expense that the analytic

continuation method must be changed (see Chapter VII).

Introduce the same expession as in .. Chapter VIT
— 1 — = v T >
Flo,AY) = TP Z n v =AY (VITI.14)
By applying a method described in Section IT.K one gets
[ 22 ¢ - 22%0G) - %
T Y T
/—\194
:(D, ALS D.)Z) \,tb\/\)q ‘(7::\_3‘ \g&? ] (VIII.16)
A4
As we have mentioned at the end of Chapter VII, for
the limit
B/LJL
Livn (-1 Q; AL (b= ARy (VIITI.17)
o= 0 b
A= 4

one obtains a logarithmic divergence in (1-A). When we look at
(VIII.13) we observe hovewer that it is finite in the A — 1

(or m2 -3 0) limit. The final result is

V (oot = {Qm-m) 07568 10 = kF . A 0CST T +o(o[ﬂ
(VIII.18)

C Exact calculation

In order to calculate V(a,« ), we first do the summation
over g using the Plana sum formula. For this purpose one must
investigate analytic properties of the function one applies it

to. In our case the function has a form

* Plana (1820)
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b (o) - [wl-d v ot (- 4-T9) | (VIII.19)

For o > 0, ® (g) has branch points at

g T r s 5“1“4' (VIII.20)
2z ra =

For I 0, dD(q) has branch points at

VA -

v i -
4= 3 T érﬂ (VITI.21)

i
[E=t

We can choose branch cuts as shown in Figures below
i g
®> O | m g, 5
>
:.\y'll"l k. é
AT
) n-
7 Re q
) P I ;
EANN é
3 Figure 5
5
A
tm q
L L O
Re o
PP AP AT ’,\.};‘ (V) ”"’u"'\':
-l o nol w-1 iﬂl;l
%w‘:@\ = = e
Figure 6
The Plana formula states that
s m«a&\la
':M ctn ¥ i i A e 5 {x” ¢
=
Q V\—uL

(VIII.22)
In the proof one calculates contributions from contours:

Ci for the function d’(z)/(exp(Zﬁiz)—l), and Cé for the
function &P (z)/(exp(23iz)-1). Contours Ci and Cé are
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shown below

ImZ
A
C;
VW W VNN AR
NS e 'ﬁ;mm% ReZ
/Cé

Figure 7

In the proof one requires that d)(z) is analytical'inside"

contours Cl and Cé . For this reason the case <> 0 is more
difficult to consider - additional contribution in (VIII.22)
appears - q L;Q
o o (gt-p ‘ \rT? (VIII.23)
- |2 - = e V.‘__ @
- 43\”&.\1\2—: )@d) QQJ\_(_\L—/\)-i»’lA;\—\a __/‘ J P z oA

&

Let us concentrate first on the case o L 0. We must still
be sure that the cut is outside regions surrounded by Ci and Cé

This turns out to be true for

I

<X <O (VIIT.24)

For o4 satisfying this condition we get

4-p ‘
Y S N T
Vi s L)% T (e
O v
‘ I, G(\-@)c’v\a
+ 2 (_i-l—o() g m (VIII.25)
where
Flg) = 2 (wr-atn? (VIII.26)

- = (- , _ o)
Gly) = = ""1LQV\+LP>)L—E1]D’L - T -cmy- E"]’lg (VIII.27)
=2
y Tyt -~ 49«:1(1 s
A= (.'HD(\”}} ¢ 3 3= >/‘+YO< > E = A+l )" * Vhod (VIII.28)

Since n=1 is a zero mode, it is neglected in Egs (VIII.26-27)
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Next we find that the infinite sum in F (y) can be converted

into an integral in the complex plane by a Sommerfeld-Watson

transformation (see Chapter VII)

s 7 1 LDIL 5 o 1\3/2_ -
2 N (wh-A%) =3 go\,E 2zt (25 AY k(T (VIII.29)
=7 ¢
where C 1s the contour on Figure below
fmZ
A
CI
- C
¥ Rv‘vr\“‘ N ‘ oo (\1’: — > 3% =
- ———*—ﬂ;—7a
2 3 ReZ
B
Figure 8

Because oX 1is negative and y e (0,1), we find that
1 £ A £ 2. The regularization consists of two steps. First,
one changes the integration path from C to c' (see Fi-

gure above). Eq. (VIII.29) can now be expressed as
A

e A v
Flg) = sm 22 [P o2y cobomm
o]

2
¢ ol SR I
+ gy}(;&”;\} cokh (\RL}J\’_}L\\ - (A1) cos =
o - (VITI.30)

Because z=1 1s a simple pole on the integration path, the
(0,A) integral has to be defined by a principal value. The last
term of (VIII.30) comes from the residue of the z=1 pole. The
second integral in (VIII.30) is divergent when the value D=4 is
taken. Hence further regularization is called for. Rewriting

coth(@ x) as 1 + 2/(exp(2%x)-1), one has
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> ) Dlz_
g e'e ‘JL—L L’J}-%— F\LB Lot V»Q.—x) =

Q
ol eI ‘.?...‘—_3
WX (e aty 't ATy =) (vrIr.an)

N +

- 2 \ & p .
= < g X S 2 TP
o

Substituing (VIII.31) into (VIII.30) and taking D —= 4 limit,

we find A
r S Tn3 )
e L <t ot : Jx) ch ; —_— "+
- O
\3'2_

qlf_riv)f(ﬂ . Al tﬁi¥i99 } e L Toe R (aloay
« <o Q> 0 ->q <

(VIII.32)
where & = D-4. Note that there is an overall V¥ (- g) factor in

1
(VIII.25) which gives - = in the 1limit of D - 4. We conclude

~

that (VIII.32) gives finite contribution to the effective poten-

tial except for the last term which will be treated separately.

It remains now to evaluate the function G in (VIII.27). Be-

cause the branch cuts are different, we have to separate the

(0,9) integral into (0,u) and (u,*) with u = &(1+o<)/(—4a )1

. 2
From (VIII.28) it is easy to see that when 0 <Ly £u, E > 0.

. 1D/
Branch cuts of functions ”(33 t\%)L“ ELJ ¢ are shown below.
ImZ
h
iB
ANAAANANEAT)
\C’1
o ¢
Cs
ANANANAAAZID)
-iB
Figure 9
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One can do similar Sommerfeld-Watson transformation and G(y)

takes the form

) . . - , oly " ot
LGy = S&Evz wﬁ(ﬂ%}%L(erR}—Ell -L@+be)-eljl§

< (VIII.33)
where C is a contour in Figure above. One can observe that
C can be replaced by contours (C; + Cé) and (Cé + Cé) respecti-
vely for two terms in (VIII.33). This is obviously allowed if
D -3. After manipulations similar to those done before, we
obtain for O0g<yg<u

=
o - C , 2 B (LK) —x Sonha (LA B)
. Pt \ '-2/\) 4 "L, s -
26 L"?)B = L"W‘ ' %, §d-l (8D o By -Los (1w

. Y@ ( T (2 -
TEOXE | (ape gy T2EG |
Q/‘J—().’)
&
=Y _ » -~
+ dox uﬁh(ﬁi)L(x4§L+Ef]u;g
o
~ 2 N Ol — G R 1 )
- iwa % LAsimyY -e*] - [U-im -] % (VIII.34)
Dog
2
In the case y2u, (VIII.28) yields E € 0. The branch cuts
associated with (VIII.27) will be along the imaginary axis (see

Figure below)
Im Z
§(B+C)f
iB §
i(B-C)’

114

O

“Cch
™
K

2 3 ReZ

-i(B-C)3
- iB

—i(B+C): Figure 10

PSIPPP

ASPAAL
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i "

We then replace the contour C of the Figure above by Cl + C8

il

i\
and C2 + C3 for two integrals in (VIII.33) respectively. By

carefully keeping track of the phase changes when the integra-

tion path is along the cut, we find that (VIII.33) leads to
5o~ _ i —_ < l—g’ 2 - _V(S)“i(?) A L F‘(B)‘g(ﬂ]
TGl = g e %, s BEx Q%L (™ +@reD Q)

>0
F- i 2
b} - — .
s [ ermyt s €Y g""“ w [oemy + et
e gd“x’ Q;LVT( - 4 * Q’\AXEL _/{
o
- _ o .
—ln 2 [(Aecedt —EY] T - [ -eny- gV]R (VIII.35)
D= q
2.1/2
where F = (-E ) / and y>u.

Substituting the last terms of (VIII.32), (VIII.34)
and (VIII.35) and performing the y-integration, we find that
altogether they give a finite contribution to the effective

potential after D —» 4 1limit is taken. More explicitly, we

have
- s U+o4\1
" - ‘.._ -D/ \J\D
t;q ‘ z)% S&% S ) S €9 + 4
o

LK4+¢Gf“'EEfQ - [QA’b%SL-EIJML]% b

{ : z_ J ZAN
T S vt b Lo

o}

e d « (VIIT.36)
w2 S R I IR

where tan (®&/2) = 1/(2y) . On using the results of (VIII.32)
to (VIIT. 35 in (VIII.25) we obtain the final expression for

the regularized effective potential
A

(VA {f‘z— gov\a (Araty P

EYRV O\.q

SL cok (<) dx ¢

C’\\/\p
‘J

<
“ - 3
S (g v
AT g e, ot
v}



T a o [Gormy+ €570
. - A - s— Bﬁ:l _ ) p e ARY
T (Are) Sy L)g : AKX S y
e o]
T+ LL ]
- T L~ %3 + & ;
e\ g ; + wy (&) (VIII.37)
e -
0
where
P
. = AL u (dyt- . 2
Wi e) = = {_1; 16 S‘W% y g (Ag™- 1) bm(4ﬂ<+4>
o a4sx@ ot
: dv\.a <+ L s X >
- ) (AGy -24u e ] av 2 e
ZSQ-V‘LI'A ( ) ‘Z)">@_ Q6 ( S <
O
< (2) | { 7&
L8 (ma2tee®) v = (‘4— r T o= Y(VIII.38)
"l/w“
and =
= _— L s V\Lq/""xy xc}\,,\qi’l/w\%)
W- L9) = S ax (E™-xH Losth (UWTR) - cos (W)
o
>
~ — - -
- de wth () L&-») +E° | = (VIII.39)
v
For o > 0O similar computation with an additional term

formula (VIII.23) leads to

given by a Plana

where tan(Gf/E) =

All the integrals
luated numerically. It
analysis 1f we replace
me via the relation
NN

W et

We can then write

SL =

. | A
L SL% Gy Coaargd” (o (abnt cotlraya +Wi(®)

©
)

o

15

.‘h_ll
(a5

Q;JTLM—A) + W\a

1
-1 j

(VIII.40)

W
==
lol 2 M

wvmel

in (VITII.37) and (VIII.40) can be eva-
turns out to be convenient for later

the scale a by the internal space volu-

(VIIT.41)

the effective potential as
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v (=) (VITII.42)

Vo=
The graph of Y(=) is plotted in - Figure below
A
Y (@)
5 [

Figure 11

The dotted line denotes the small & perturbative result
(VIII.18).

It is interesting to note that even if the topology of

the manifold is still S deformations in both prolate (x<0)

37
and oblate (4> 0) directions induce large negative Casimir
energy similar to the well-known case of two parallel plates,
which corresponds to the topology of Sl' The asymptotic beha-
vior of Y(X ) seems to be independent of the coupling constant

of scalar field to gravity.

We have compared the present result with that of a small
ol perturbation. The perturbative calculation agrees with the

exact one within 1% up to |X| = 0.14.
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D. Solutions of field equations

We have calculated the effective potential of a massless
minimally coupled scalar field in a M4 x Taub geometry without
asking how to obtain this background in the first place. In
this Section we shall show that certain configurations of the

background geometry can be sustained by this potential.

The action in general can be written as

S = Scxvxgotvﬁ L RN v (VITT.43)

*?

where V 1s a D=7 dimensional matter effective potential. In
particular, we are seeking a ground state solution with D=4
dimensional Poincaré invariance and a static homogeneous in-

ternal space. The action can hence be reduced to
< = gd?\/x [ '%L (R + A) —\/1 (VIII.44)

There is no kinetic term in the Lagrangian, so the total po-

tential can be read off immediately

L_\QE SR +;€\/1 (VIII.45)

_ |

*x*

\Y

‘ot

We can take (VIII.45) as a potential for a classical system
with two dynamical variables: internal space volume Sl and
deformation parameter S ii is a D=7 dimensional cosmolo-
gical constant which will be determined by the value of JL
and X through (VIII.47). Static solutions must satisfy the

following field equations

AVt EECAC - O (VIII.46)
DA 2L

O(o"‘o'o A, "n"o
Veox =0 (VITI.47)

CLQ :LO
Eqs. (VIII.46) and (VIII.47) are the (ij) and (00) components
of Einstein equations, respectively. (VIII.47) signifies that

cosmological constant in D=4 dimensions is zero. From the ge-
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neral form of the effective potential (VIII.45), we get the

following set of algebraic equations

U, - 2
Pty 2 %+ bl LR \'(
(1 ) > Ao AT LS (VIII.48)
G | A Civate)™ Z ER
IR SR - SR g
Q) o A . = ‘:h -0 (VIIT.49)
E) ; Q+0(o>7/5 "'*\Qo ’
- . =2
LU i, »+ddle AR . \i = O (VIII.50)
- @Y R, (et /> Z 28 '
where
SN (VITI.51)
\(\ -
TdA

olo

From these equations we first determine the solution

through
wle _ Ao (VIIT.52)
‘ AN+t Y (B + Ay
Then)xﬂ,o and N follow accordingly
/ T (ele) (e N
5/ 3 { +
.7 - 7 ° ' (VIII.53)
© 4 (Brdae) (LR
= =Y (oo
O (VIII.54)
PARENY I

From (VIII.45) we see that the D=4 dimensional Newton s con-
2 -~

stant is given by X =% /JL (actually this is true only

up to quantum corrections (Toms (1983)). Numerical calcula-

tion of (VIII.52) gives three solutions
o = O - 005941 , - O0.I86| (VIITI.55)

The total potential V_ is shown in Figure at the end of this

T
Chapter, where A and Jl are evaluated through (VIII.53)

and (VIII.54) with «_ = -0.05941. For two other values of K,
the shape of the potential VT is similar except that the fine
tuning effect of the cosmological constant shifts the value

of VT to zero at <ol =0 and -0.1861 respectively. It may

be interesting to note that at K =0 Y*/Y = O for any
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matter fields in this background. This relation follows direct-

ly from (VIII.52),.

Jl, as it stands in (VIII.53) leads to a scale
G,™~5 x 10_3 lp (Planck length) which is beyond the validity
regime of semi-classical approximation. One way to Jjustify our
result is to consider b scalar fields. The scale O, will in-

1/2 : ‘
crease with b / , hovewer the shape <y 1is preserved.

E. Discussion

It is important to ask whether the ground-state solutions
we find in Section VIII.D are stable. Unfortunately, for va-
cuum energy compactification models it is quite invelved to
calculate the response of the effective potential to an arbi-
trary metric perturbation. It seems that only ol,= -0.05941
solution is a;reasonable cand;@atgthr a stable background
configﬁréﬁioﬁ  iﬁ linéér péftufbéti?e'seﬁsé; bne must be care-
ful,hovewer. If the system is reduced to one with only two
degrees of freedom, coefficients at kinetic terms for &X and

dz, become important, so that quantum (through effective
potential) corrections to them must be taken into account.

The work in this direction is now in progress.

If any of the solutions of (VIII.52) is stable, it is
a candidate for the ground state of the theory. Consider a ge-
neral metric perturbation on this background. The hfwmpart of
the perturbation in the direction of a Killing vector on S3
can be identified as gauge field A.. . The gauge symmetry will
be the same as the isometry of the internal space (see Chap-
ter II), because there are no other fields to break this sym-
metry. For o # O solution gauge symmetry is SU(2)xU(1) and
hence there are four gauge fields only. Using the zero-mode
ansatz it can be shown that masses gained by two other gauge

fields (if o =0) are proportional to the deformation X



d(umy" (VIIT.56)

Of course, to be realistic one should include fermions
and graviton in the discussion. Also more dimensions are requi-
red if one wishes to consider more interesting models. More-
over, internal space should be (most probably) even-dimensio-
nal. This Chapter provides only the simplest possible exam-
ple how a ground state of higher-dimensional theory with a
non-maximally symmetric internallspace geometry can arise

and to investigate possible physical implications of that.

VT(a)

01 o« 02

-2 Figure 12

The total effective potential given by Eq (VIII.45) for the so-
lution o = - 0.05941.
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