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I. INDEX THEOREMS

Index theorems demonstrate the existence of a relationship between
analytical properties of differential operators on fiber bundles and the
topological properties of the fiber bundles themselves. The analytical
properﬁies in question concern the number of solutions of differential
equations related to the differential operators. The topological properties
are expressed by characteristic classes of the fiber bundles involved.

In this chapter we will first review some general mathematical concepts
related to the index of differential operators. We will then discuss some
of the index theorems for the classical elliptic complexes over compact
manifolds without boundary. We will proceed studying the less popular index
theorems for operators over non-compact spaces. We will finally comment
on the connection between the Witten index for supersymmetric theories and
the analytical index of linear operators.

-

I.1 Mathematical preliminaries

In this section we will briefly review the mathematical concepts involved
into the formulation of the index theorems. Our exposition will follow ref.
ﬁ] to which we remand for a more detailed discussion of the subject and
for further references.

Let M be a-smooth manifold without boudary of dimension n. Let E and
F be vector bundles over M and |

D: C® (E) — C®(F)
be a first order differential operator. Using local coordinates {xdon M,we

can write D in the form:



D= a(x) 2+ bix)

where aj and b are matrix valued.

Definition 1. The symbol of D is defined as its Fourier trasform.

Let (x,k) be local coordinates for the cotangent bundle T*(M). We will refer
to k as the Fourier trasform variable.

Definition 2. The leading symbol T of D is the highest order part of its

Fourier trasform:
D(x,K) = 13K

r~
Clearly, D defines a linear map from E to F.

Definition 3. D is said to be an elliptic operator if for E=F and k 70,

n
D(x,k) is invertible.

Definition 4. Let {EP} be a finite sequence of vector bundles over M. Let

DP: (3°°(EP)-—§ C°°(EP”) a sequence of differential operators. The sequences

{'EP} ’{PP} define a complex,denoted by (E,D), iff DP”DP = 0.

Definition 5. Let D;; : C°°(EP+1) — Cm(EP) the dual map of DP .Define

the associated

laplacian as:

AP E D;‘ DP + DP-1 D:...] (1'1)

The complex (E,D) 1is elliptic iffA is an elliptic operator on Cm(E ).
glfliptic p P

Equivalently, (E,D) is an elliptic complex if:



Ker 5P(X)K) :Im% AD/M(X,K)) K#0 (1.2)

The De Rham complex is the most familiar example of elliptic complex.
In this case Ep=/\p(M), the bundle of the p-forms on M. Dp= d, the exterior
derivative acting onpforms. The Tlaplacian AP:dC\%+d*dis clearly elliptic
since its symbol is D(x,k) =|kl2.
The following theorem is the generalization to elliptic complexes of

the Hodge decomposition theorem:

Theorem 1. If f_ & COO(EP), fP can be uniquely decomposed as:

p
PP = D, FP-1+ DT“ Fp-\ + hyp (1.3)

where h, s harmonic,i.e. AP hy = 0.

Note that Ker DP O Img DP-1 since DP Dp_q=0. We may thus define the

cohomology groups for the elliptic complex (E,D) as:

. - Ker(D
HTE,0) = RO/ o )

From the previous theorem it follows that each cohomology class contains

a unique harmonic representative. Therefore:

»
3

HP(E, D) » ker 4, .



Cohomology groups are finite dimensional.

We are now in condition to formulate the following

Definition 6. The index of an elliptic complex (E,D) is defined as:

CVubx (E,D)

il

T (-1)F dime HT(E D)
p

1%

Z("'\)P diwme Ker AF’ (1.6)
P

In the case of the De Rham complex one has

HP(E, D) = Hpe (M) (1)

DR

where H;K are the De Rham cohomology classes (the p-forms on M which are
closed but not exact). The De Rham theorem states that the De Rham cohomology

is actually isomorph to the symplicial cohomology HP(M,R). The number

. p :
bp = dowe HY(M,R) = diwm HP(MI‘R) (1.8)

is defined to be the p-th Betti number of M. The index of the De Rham complex
can therefore be written as:

. P
ndex (AN d) = 70 61" dim H (1,1R)

P

1l

Z(~’\)P bp = )((("\) (1.9)
P
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)((M) is the Euler charcteristic of the manifold M. We see how the De Rham theorem

altows one to relate topological quantities - the Betti numbers defined
in terms of the symplicial cohomologies HP (M,R) - to solutions of differential

equations -the harmonic forms on M.

It is sometimes convenient, given an elliptic complex (E,D), to build

a two-terms elliptic complex with the same index. Define
FO = ®P Ezp ) Fc] = % tzP_;.‘] (I.10)

to be the even and odd bundles respectively. Consider the operators:

L = C‘D( sz+ D:b-‘\) ) L:CW(FO)"’%CO(F&
P .

(I.11)

U= 0000y, LRI CR)
P

The laplacians corresponding to Eo and Fl are:

"
!

Q,=LU'L = ®4,,
P

1y

a,= LU

i}

(i? Zﬁ&!.k+ 1



The index of the complex (F,L) is therefore:

[ clex (F/ L ) lome Ken Do~ctu'm Kee [J, =

1)

Z (-1 )‘:> clim Ker Ap: (1.12)
P
= (‘Mlex (E)D>

We will often refer to the index of the two-components complex (F,L) more
simply as the index of L. Eq.(I.12) shows how every elliptic complex can
be "rolled up" to give an operator L as in eq.(I.11) whose index equals
the index of the original complex.

In the example of the De Rham complex, F

0 and F1 are the bundles of

¥
the even and odd forms respectively. The operator L is given by d +dand
the Euler characteristic is the sum of the even Betti numbers minus the

sum of the odd Betti numbers.

[.2 Index theorems on compact manifolds

Atiyah and Singer gave a general formula for the index of any elliptic

complex on compact manifolds without boundary, in terms of characteristic

classes of fiber.bundles related to the comp]exl}].

Despite its mathematical beauty and compactness, the Atiyah-Singer
index theorem,in its general formulation, is probably much too abstract
and unmanageable for most physicists. Therefore we will prefer to consider

separately the particular complexes which will be of interest to us in the



next chapters and to give explicit formulas for the indices of each of them.

The index of any elliptic complex over odd dimensional compact manifold

without boundary 1is zero. Therefore we will be always considering, in this

section, manifold of even dimension.

1.2.1 The De Rham complex

We already met the De Rham complex in the previous paragraph. One can

roll it up introducing the bundles of the even and odd forms:

F, = @A M) F o= (;)/\“’”(m
P

The differential operator defined in (I.11) will be
¥
L:CJ+C|

As we pointed out, the index of the De Rham complex, by virtue of the De

Rham theorem, equals the Euler characteristic of the manifold:
. »% ¥ -
index (A*, d+d¥) = A(M)

The Gauss-Bonnet index theorem expresses the index of the De Rham complex

in terms of the integral of the Euler characteristic class:

ndex (A%, ded”) = X(M) = | e (M) 1)
M

where e(M) is the Euler form defining the Euler characteristic classesin

the following way. Consider a Riemannian connection on a n=2r dimensional



(oriented) real vector bundle. The corresponding curvature two-form

Rab o R“bﬁv dx® A dxV (I.14)
- 1

(R“kho is the Riemann tensor, a,b,p,V=l,...,n) will take values into the

SO0(n) Lie algebra. Being an anti-symnetric real matrix (whose elements are

two-forms)it can formally be put into the "block-diagonal" form:

~X 0O ()

— - R (I.15)

O O X

"Xr O

The Euler form is defined as the following n-form:

(I.16)

E(IV\) Xl Xr’

(!

One defines e(M) = 0 for odd dimensional manifolds.
A polynomial P(ol ) of a complex nxn matrix ¢l is said to be an invariant

or characteristic polynomial if P(a& ) = P(g™% g), geGL(n,C). From its

definition it 1is evident that the Euler form e(M) 1is a SO(n)-invariant,

real, polynomial in the curvature two-form R“b.
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If P(X) is an invariant polynomial and (L indicates a matrix valued
curvature two-form (e.g. a Riemannian curvature or a gauge field strength),
then one can show the following important properties:

(a) dP(fL) =0, that is P(S1) is closed.
(b) P(LL) has topologically invariant integrals. This means that 1annd£l'
are two different curvatures corresponding to the connectionskand W',

then

P(a)- P(R) = d R (o)

Let us indicate by pj(il) the homogeneous polynomial of degree j in in the
expansion of a characteristic polynomial P(SL). Since P(£) is closed, P;
(SL) are closed too. Thus the P, (L) define 2j-cohomology classes: P (L) e

H¥W (M). The cohomology classes defined by p)( SL) are called characteristic

classes. Because of (b) they do not depend on the particular connection
chosen on the bundle.
Let us concluding this sub-section giving an explicit expression for

the Euler form in terms of components:

| o i e
e(m)= ' L ¢t R A AR (1.17)
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[.2.1i1 The signature complex

The De Rham complex is associated to the decomposition of the exterior
bundle A* M into the bundles of the even and odd forms. /N(M) can be

splitted in a second way which gives rise to the signature complex. One

has to restrict oneself to oriented, n=2r dimensional manifolds. Consider

the operator (W acting on p-forms

Cplp-1)+ 1k
— %
W = (1.18)
where 2 is the Hodge duality trasformation. One has:
*
(I.19)

N ,
let A~ be the + 1 eigenspaces of () . Because of (I.19)
¥ Z (A (A7)
ded* « CT(AN) — C

The complex (/\t ,d +d¥)is called the signature complex. Because of the
Poincaré duality between /\P (M) and /\“.P(M) the contributions to the index
of the signature complex of the harmenic forms with eigenvalues +1 for
cancel except for /\r(M). Also it 1is easy to see that the index 1is zero
unless r is even, that is unless n=4k. Thus one gets for the index of the

signature complex
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ndex (A%, ded®) = dim HID (M)
- v Hiu (M,“Q) '

= 1 (M) (1.20)

il

H(zze\)vucl« g\gv\a'tuva
of M

where Hi"'(M,R)are the harmonicik-forms with eigenvalues +*1 under (> .

The index theorem for the signature complex is known as the Hirzebruch
index theorem and reads Tike:

T(M) = J L(m) (r-21)
M

where L(M) 1is an invariant polynomial

called the Hirzebruch characteristic
L-polynomial. L(M) is defined

in terms of the formal

eigenvaules of the
matrix of the curvature two-form R“'b

L(m) = 1 X

J tunh Xj (1.22)

the Xj are the same as in eq.(I.15).
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[.2.i1i The spin complex

The Dirac operator on an euclidean-signature Riemannian spin manifold
is defined th'rough the covariant derivative with respect to the basis of
orthonormal frames of the cotangent bundle T*(M):

M
D = = e Dx)

. . (1.23)
S ) (e + AT

M . . . be, .
where € ,are the inverse of the "vielbein" ea‘,‘ ,QO‘,AQV“ =g,‘\,,u)'f1s the spin-
connection, U are the Dirac (euclidean) matrices in n dimension. D is
an elliptic operator for metrics with euclidean signature. n being even,

we can split the Dirac spinors \‘/ (x) into the eigenspaces with chirality

+1:

(I.24)

K‘*H is the generalization to n dimensions of the usual four-dimensional

+

Y¢ matrix. The spinors ‘++(x) are sections of the spin ‘bundles A\, . The

spin complex is defined by:

D : ("(A)— C(AD)

(I.25)

D" ("(6.) — C(44)
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The index of the spin complex is:

tnde X (A.» )D ) = bhwm ken D = Cen D%
i - W, -
where n, are the numbers of normalizable zero modes of the Dirac operator
with chirality ¥1.

The index theorem for the spin complex is:

/!

/AUV\) (1.26)

Ny-Nn_

M

A
where A (M) 1is the A-roof genus, a characteristic polynomial defined as

follows:

w/z

Ay =TT 22

= /D(v\"\, K\/l (1.27)

where the X are defined as in eq.(I.15).

Physicists often consider spinors ’\\/A(x) with an additional "gauge"
index A, A=l,...,m, labeling a m-dimensional representation r of some Lie
group G. This corresponds to take the tensor product A_‘@ V of the spin
bundles A+ with the vector bundle V, whose fibers are isomorphic to the

linear spaces of the representation r. On A+ x V one considers the
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Dirac operator DV which includes the gauge connection on V:

Dy = ¥y e (3, + LI dw w1 (T),0)

where ( T")AB » 1=1,...,dimension of G, are the mxm matrices relative to

the representation r of the Lie algebra of G. A; are the usual gauge fields.

The index theorem for the twisted spin complex ([§+x V, Dy ) is:

L'dex(Ai @\/4, Dy) = ,&([\/\)Ack(\/) (I.29)
[

ch(V) is the Chern characteristic polynomial of V. It is defined as:

CL\/(V) = t’(, exp E% (1.30)

where F -—f 5” dx"a dx¥ are the gauge curvature two-forms with value in the

Lie algebra of the gauge group G.



15

I.3 Index theorems on non-compact manifolds

In the context of quantum field theory the Atiyah-Singer index theorem
has found applications to problems admitting a compactified formulation.
For example, 1in the case 'of jstantons, the euclidean space-time
compactification is necessary in order to make the problem well defined
and the Atiyah-Singer index theorem applicable.

On the other hand, there exist classes of operators (which include
the Dirac operator in Minkowski space-time) which have well defined and
non vanishing index when defined on non-compact, odd dimensional manifolds.
The corresponding compactified index problems are obviously non equivalent
since, as we mentioned in section [.2, the index of any elliptic differential
operator on odd dimensional manifolds is zero.

We will see 1in the next chapter how differential operators on non-
compact manifolds naturally arise in the topological non-trivial sectors
of quantum field theories.

When dealing with operators on open spaces one has to resort to index
formulas others than those discussed in section I.2. In the following of
this section we will consider index theorems due to Callias, Bott and Seeley
[3] and to E.Weinberg [4]

A general method to derive an index theorem for a Tlinear operator L

is to evaluate traces of the type:
_plL _plLl
Zs(Q) = t'L(Q P ~ e ° ) (1.31)

where (} is a positive real parameter, or else of the type:
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J(zy)y = tr ( - == ) (1.32)

z + L z¢ LU

where z is a complex variable. (Notice that J(z)/z is just the Llaplace
trasform of Zs( %)).

If L is defined on a compact manifold the traces above are actually
independent on ﬁ and z and equal to the index of L. This is easy to show:
on compact manifolds the spectra of the self-adjoint operators LL* andL*L
are discrete. Thus the traces (I.31) and (I.32) can be written as the sum
over the eigenstates of LL* and L*L. For any given eigenstate \A) of L*L,
with non zero eigenvalue % , there exists a corresponding eigenstate of
LL* with the same eiegenvalue, and vice-versa. In fact

FOLMY - LAy (L
LL(TX")'L _ﬁ__\(ﬁ)

Lo = ¢
'5Y
Hence, the contribution of the LL* and L*L eigenstates with non zero
eigenvalues cancel in the traces (1.31) and (I.32). One is left with the

eigenstates with zero eigenvalue only. So, for operator over compact

manifolds, one has

J(z) = Zs((b) = diw Wen LVL ,C\Jw\kta‘.\_*
- CVLCLL)( (L_ )

(1.33)
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One 1nterestfng feature of the index theorems for operator defined
on open spaces is that the contributions of the L*L and LL* eigenstates
with non zero eiegenvalues to traces like Z( @) and J(z) do not, in general,
cancel. Thus the traces (I.31) and (I.32) do depend, generally, non-trivially
on the parameters P and z. That is due to the fact that, in this case,
the spectra of L*L and LL* has continuous parts. The densities of the
eiegenstates of L*L and LL* with eigenvalues belonging in the continuous
spectrum do not necessarely match.Ove onvewniis "o trace in (I1.32), for example,
as follows:

3(2.):&( z - == ) =

z 4+ *L z + LU

:2(2,1}4-

discrele Z + ’\VI Z*’Xu
Spectnum,
(v 9]
(I1.34)
+— (d n-f(_f\) _ (‘,‘ . ((\) =z Cl>\
d A da Z+ )
Or

= vadex [ 4 j(d“’*(“‘ dn-(1)\ _Z_ d)

A d ) 2+
0

where ‘1&3 , %;: are respectively the densities of eigenstates of L*L and
d A A

LL* with eigenvalue ) .(The 1index of L counts the difference of the

normalizable zero eigenvalue eigenstates of L*L and LL*, which thus belong

in the discrete part of the spectrum.)

If the difference(‘d“+ - dﬂ: )is not too singular as A -3 0, it is
D da



—

¢
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easy to show that the limit z — 0 in the trace J(z) will give the index

of L

wmdex | = Aomn J(2)

<z -0

Analogously, if one considers the trace (I.31):

wdix L= Aiw Zs(()’)

(L - bo

(I.35)

(I.36)

The index theorems that we are going to discuss in the next paragraphs

provide closed expressions not only for the indices of the operators L but

also for the traces J(z) and Zs( G). Therefore they give informations about

the entire spectra of L*L and LL*, in contrast to the Atiyah-Singer theorem.

This fact will be exploited in chapter II to evaluate the quantum corrections

to the masses of solitons and monopoles in supersymmetric field theories.

1.3.1 The Callias-Bott-Seeley theorem (3]

Consider the following linear differential operator on R" (n odd):

LEV‘.XCD(®1IM + "“(1®(-@(X)

(1.37)

L —
where X are the gxq (g=2 %) dimensional Y -matrices in n dimensions;

(x) is a unitary mxm matrix of ()w functions, asymptotically homogeneous
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of order zero as |x|-» D .Such a condition on é@ assures that L. be a
Fredholm operator, that is that zero is an isolated point in the spectra
of L*L and LL*. This makes the index problem for the operator in (I1.37)
well defined and guarantees that egs. (I.35) and (I1.36) hold.

The Callias-Bott-Seeley index theorem states that:

k& Z - < ) - CndeQJ , |
Z+BL Z&Lg (1.38.a)

and

n-t (I.38.b)

(d cb)h-l is the n-1 power of the matrix d(b with the differentials being
multiplied by exterior derivation. S:{:| is the n-1 dimensional sphere at
infinity [x]=0o.
Some comments on the trace formula (I.38) are in order.
It i5 easily seen that the index of L is indeed recovered taking the limit

1im J(z), as expected. Moreover the index formula (I.38.a) gives zero whenever

n is even.
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The index of L, being a surface integral, is a topological invariant,
j.e. it depends only on the behaviour of the "potential" (I) (x) at infinity
|x|.4 % and it remains invariant under "compact" perturbations of C}§ (x).

The trace J(z) depends non trivially on z when the index of L is non
vanishing. This means, according to eq.(I.34), that the densities of the
eiegenstates of L*L and LL* with eigenvalues in the continuous part of the
spectrum are not equal when @ (x) is topologically non trivial at infinity.
It is remarkable that for each fixed value of z the trace J(z) is a
topological invariant. This 1is not obvious but it is has been proven to
be a general phenomenon.

The formula (I.38) allows to evaluate directly the difference L‘jl: -

dX
(:\_\ﬁ:deﬁned in eq.(I1.34):
d
. Ung an. Z d/\
_ D) — (1.34)
J(z) = tndex(L) + X (M df\) 2o
O+

(Recall that the asymptotic conditions on @ (x) imply that dl‘.g)l 0 only

for /\>1.) Eq.(I.38) becomes: a4
oo
J‘ (c\m dn_ zZ_d) =
| d) dA 2+ A
O+

(I.39)

- _“7:_( S S ’i)‘CMth(L)

I
.
N
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which looks Tlike a dispersion relation for ¢Re - M- The function f(z)
a dx

of the complex variable z defined in (I.39) has a cut on the real axis from

-1 to -0, and it is analytic on the rest of the complex plane. Consider

the Cauchy formula for f(z):

__Lé) J?(w) dw = 4)(2) (1.40)

where the integration is taken along the contour C depicted in fig.1.

A
I r
|
s T >
‘ -1 ?O Rca.l axvy
| C
R
I
fig.1

Putting

AP = diw [ Flisic- fa-ie)] )
E—~ot
for the discontinuity of f(z) at the cut, one obtainsi
| (A
| A ( ) C[A

e M-z
- Do

N

F(2)

Comparing with eq.(I.39), one concludes that
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dWT \) - qu Al = — L CSF("A)
.c—l—A—( ) c(/\( ) 1T (1.42)

As expected the difference ‘%?1 - %f% receives a non vanishing contribution
X

only from the eigenstates of L*L and LL* with eiegenvalues A:> 1.{ The

normalization of éﬁ (x) has been chosen such that the continuous spectrum

starts from A =1.)

1.3.71 An_index theorem for the Dirac operator in the monopole background

Operators of the typer considered in section I.3.i arise when one works
with the static Dirac equation in Minkowski space, in presence of a matrix
valued "scalar" field background (b (x). ¢)(x) has to be such that L be
Fredholm, that is that the continuous spectra of L*L and LL* are separated
from the zero by a finite gap. E. Weinberg worked out a generalization of
the Callias trace formula which holds for static Dirac operators with both
scalar and gauge monopole-like backgrounds. Notice that , 1in this case,
the spectra of L*L and LL* will be continuous starting from zero.

The operator L under consideration is:

L_ | = _ e ( [) : + Eja ‘T~Cb
%+ AT T

(I.43)

i

(D

L

G “are the Pauli matrices,l\i=At T%(i=1,2,3) are the spatial components



of the gauge fields. The gauge choice is Ag = 0. ( T“%u?re the generators

of the gauge group SU(2) in the adjoint representation. S* are scalar field
backgrounds trasforming according the adjoint representation of SU(2). The
backgrounds At and S* are taken to assume a (multi)monopole configuration

and to satisfy the Bogomolny equations:

o ®
(D"S) = B = %‘eijl de (1.44)

L

F:} are the gauge field strengths. The behaviour of the backgrounds at
spatial infinity is:
Ao
@ = & X\ 50&
3gr — €
. rt

o( 1)

v 125 v s e Oy
(1.45)

The magnetic charge of the fields configuration fis defined as the

following surface integral:
. o (28
—_ 2
QM = st S BL‘ (1.46)

Q is a topologically invariant and it is quantized
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Qg =brn , nes

Comparing with eq.(I1.45), one sees that C=n.

Weinberg's trace formula is:

”anilf

(tyvit+ z)\/1

i

J(z)

(I.47a)

Once again the index of L is recovered taking the 1imit for z -~ 0:

(ndex (L) = Wwm J(z) = an (1.47b)

2 =0

Notice that, in this case too, the trace J(z) is a topological invariant
for every fixed value of z.

Let us briefly describe the derivation of eq.(I1.47) - as by-products
we will get formulas that will be useful in the next chapter. It is convenient

to introduce a "four-dimensional™ notation:
a

!X; T i

I8

S, p=4

and (1.48)

Y
I
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The trace in (I.47) ca be rewritten as:

5 (I.49)
“(XW>) +Z

as it can be seen using the basis

o 1, .
X":('\\10> D

for which

i
P
a O

“
© A
~—
ol
Wy
1

1, 0 )
B (O "1‘2

5 0 L
P o

Define the non-local "current":

I

(5y) = be e ysye 1y = b Yy 50y

BD +ZY1.

where the symbol tr indicates the trace over the spinor and color indices

only. S (x-y) is the propagator in the monopole background:

1)

(¥ % * Ve Al « 29 S(x-y)

S(xy) (- S;)y 5 ¥, A.) 2
= $lx-y)

Taking the derivatives respect to x, and y: ,one gets:
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(%L.*gg‘y() LTi(vy) = b Xdi@c,x;* %) S(x-%) =

=-br g 2205009 = Er oy (A0 ALY

(I.50)

Consider now the 1imit of the expression above for x — y. In three dimensions
the second term in the Tlast line of (I.50) vanishes instead of giving an

anomaly as it would in four dimensions. Hence:

%{I;(X,X) = _ 22" tx Ys S(x,x) =

= —azhbr x|
¥ D+z"

= 22 b x|y ~EDAZR
~(y-D)Z+Z'

—_ Z

= - 2br ¢ (%)
_(X.D)szZ

Comparing with eq.(I.49), one concludes:

J(z) = jd"‘x 2 Tilx,x) = %&C\%(-L.(xy()

4
2
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To evaluate the surface integral on the right-hand side it will be enough
to expand the current I.(x,x) in powers of 1/ (x\z. Only the terms of order
1/ [xll will give a non-vanishing contribution to the surface integral.

Since

g L i
"(X'D)l+ Z = - D-' 5 - of hw + <

L

it follows that

\ ( l |
= 1 * 11 o-F T
_(Y'D)l—\' Z “D-Stez ~D-5x2 “b-o%Z (1.52)

where the subsequent terms fall off more rapidly than 1/ lx]l' and can be

neglected. Asymptotically the propagators are:

-D-g+z -9+

" (I.53)

Plugging eqgs.(I1.52) and (I.53) into eq.(I.51) and performing the trace over
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the spinor indices, one gets:
A J
- ‘ * ‘ - — X\, é e
j(z> s ‘I&X\,IL # l/\/,\)

k \ t |2
o U ¢ x 0
¢ l D'\ ~DL g%z . Dhet Az

Recalling the asymptotic expressions (I.45) for the backgrounds, one finally
obtains:

J(2) ;_(ﬁ X, 4nv ta(g-T)G<x[( ‘ )\f\’>

| x1? (=3 +gv%2)

S b [ LR Lo e
pu . 'i"';("l"l (,2(]’)3 (k':*%l‘/l*‘z) ((_%V)L-(-Z.. )/'L

[.4 Index theorems and supersymmetry

Witten pointed out the existence of a deep connection between 1index
theorems and supersymmetric theories Iﬁ].

A supersymmetric quantum mechanical system 1is characterized by the
existence of one or more (super)charges Q mapping bosons into fermions and

- Q

LR

vice-versa:

=FKOF

N -

F, and F, are, respectively, the bosonic and the fermionic subspaces of
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the whole Hilbert space &L of the quantum theory. F_ and F are the
eigenspaces with eigenvalues &1 of the operator (—1)F ,with F being the
fermionic number operator.

The (hermitian) supersymmetry charge Q is connected to the Hamiltonian

of the system via an anti-commutation relation:
{Q}Q} = 2H

In a basis for which (-1) is diagonal

- (M0
(—’\) - o -

the hermitian supercharge takes the form

o *
o = L0

L is an operator mapping the bosonic subspace into the fermionic subspace

and L* is its adjoint:

L:F,—F e F =K (1.54)

t )
The Hamiltonian written in terms of L and L* is

CL O

¥ _ ®LL" 1.55
k’\ _ o l_ l_ — L_ (~ L. ( )
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( the direct sum is relative to the decomposition of the total Hilbert space
™ = fo ©®Fy ). It is evident from eqs.(I.54) and (I.55) that X{ = o
C) F1 together with the operator L has the structure of a two-component
complex, the Hamiltonian playing the role of the generalized Taplacian on
F, and F& . If the quantum system has a finite numbers of degrees of freedom,
the quantum states are represented by sections of some finite dimensional
vector bundle and the complex just defined is of the type studied in the
previous sections. Field theories (or any theory with infinite number of
degrees of freedom), on the other hand, give rise to complexes over infinite
dimensional vector bundles: nevertheless many of the concepts we learnt
about elliptic complexes still apply.
The index of the supersymmetrical complex ( M. = Fo QQFH » L)
index (FROF, L)zdmkea 'L -dim kwu*:( )
1.56

n°(bosonic zero energy states) - n°(fermionic zero energy states)

is known as the Witten index [5} of the corresponding supersymmetric theory.

The knowledge of the Witten index gives informations about the underlying
quantum theory: supersymmetry is unbroken whenever the Witten index is
different from zero, since, then, states with zero energy necessarely exist.

For theories with a discrete energy spectrum the Witten index can be

represented as a trace over the whole Hilbert space:

pH
Wolten cudex = {Z'z(-'l)F: tr (-1 )FQ@ (1.57)

pe IRF

as explained 1in section I.2. This formula allows to derive a useful
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representation of the Witten index in terms of functional integrals [‘6]

The fact that supersymmetric theories have, 1in some sense, built in
their own structure the concept of complex has interesting consequences
both from the physical and the mathematical point of view. On one side,
the known mathematical results about indices of Tinear operators - which
have been partially summarized in this chapter - become directly applicable
to physical problems arising in the context of supersymmetric quantum theories
ELO], @11 s [}2} . The rest of the present thesis is devoted to illustrate
some of such applications. On the other hand, methods independently developed
by physicists to evaluate the Witten index [6] ) [7] > [8] > [9] ) [13]
turned out to suggested novel derivations of the classical 1index theorems

[7] ) [14] » as well as other results in different mathematical areas [15]

Let us now see on a particular example how the general relationship
between supersymmetric theories and analytical complexes works. We will
get vresults which will turn out useful in chapter III. Consider the

supersymmetric generalization of the non linear -model in 0+1 dimensions

' [341 :

3 iy @l o i iy DY
sz“f%tdat(?aew*%wb”tw*
| L (1.58)
‘ bAoAl
o Ripele) vy AR

v
where ((? (i=1,...,n) are real scalar fields parametrizing the n-dimensional

compact manifold M. 9;; (¢) is the metric on M and R“i” (((7) is the Riemann
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tensor. 'L‘/“are two-components Majorana spinors and %I is the covariant
- D
derivative acting on them: '
‘ ‘ ) ® P
y X
Dt
The model in (I.58) can be obtained via dimensional reduction from
the supersymmetric N=1 non Tinear O -model 1in 2 dimensions. Because of
their topological invariance, the indices for the one-dimensional and the
two-dimensional models are the same [5], ES] .
. ° ‘0) v
In a basis in which ) = (o-f\ the Majorana spinors \{ will be
of the form
XC
- L=1 ...k
,q/ - X;y ) )

where the Tower component is the hermitian conjugate of the upper one. In

the same basis the supersymmetry algebra is
¥* ¥
H= Q& + Q" Q

Ql - Q" =0 (1.59)

.¥ .
\
The J( and X‘ satisfy upon quantization the anti-commutation relations



33

I

(x' X =0 = X, 0

{X\"Xi} _ 9"]'((9) (1.60)

We will first work in a Fock-type representation in which the quantum
- \¥
operators X‘, X' are regarded as annihilation and creation operators. The

supersymmetry charges are
. = > ¥* _ -~ X*t i
Q =1 Zc X; PC ) ol7 = -« Z . P' (1.61)

where p . 1s the momentum conjugate to and will be represented by the

appropriate covariant derivative:

P". = - Dl();

In the chosen representation, the Hilbert space of the quantum states is
* =¥

\ {
the tensor product of the Fock space relative to the A and A with the
space of the smooth functions on M. States with p fermionic excitations

will correspond to functions f‘.t"'i\’( @) (i, =1,...,n) on M, with p indices

specifying the type of the fermionic creation operators. Because of the

Fermi statistic, fC -((()) will be antisymmetric in the indices i, ,...,i
|"'Lp 1 P

, thus it will be an element of AP (M), the bundle of the p-forms on M.
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The total Hilbert space will be represented by the exterior bundle on M
o= AT(M) =
n
P/
SNORANAY
P:O

(1.62)

It is easy to convince oneself that the supercharges Q and Q* in (I.61)

will be represented by the exterior derivative and its adjoint, respectively:

X ¥
Q = CL awcl Q = d (I.63)

so that the Hamiltonian is given by the laplacian on M
¥ ;
H = dd” 4+ d¥d

Hence, the complex ( % , Q ) relative to the N=1 supersymmetric & -model
is Jjust the De Rham complex. Accordingly, its Witten index 1is the FEuler

characteristic of the manifold M (see eq.(1.13)):
E2 (—~’|)l: = L (M) (1.64)

In section I.2 we Tearnt of a second way to split up the exterior bundle
/\*(M) which gives rise to the signature complex. In the context of the
supersymmetric G  -model this corresponds to consider the quantum operator

Q,)- implementing the following discrete symmetry of the Lagrangian (I1.58):

L \
Q. Vo— %Y (1.65)
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In the representation defined in eqs.(I.62) and (I.63), Q 5 s given by
the hodge star duality operator exchanging p forms with n-p forms. Decomposing
the Hilbert space of the quantum states into eigenspaces of Qg with

eigenvalues £1 produces the signature complex (see section 1.2.ii). Thus

Cy Qg = h (2ero ewevyy states  with Qg:.ﬂ”\)

-0’ (Zero LVLe‘fg(} otajfc.s w th @5--':"“)

= dewe H, (MIR) = dhwe HO(MIR) (166

= T(M)

with 9" (M) being the Hirzebruch signature of M and Hy (M,R) being the spaces
of the harmonic forms on M with eigenvalues +1 under W = Qg, defined
in eq.(I.18).

Let us describe another representation for the quantum system (I.58)
which also will be useful in the‘ next chapters. Instead of working with
the complex fermionic operators Xénd their conjugate ?(;w we will consider

the equivalent set of hermitian fermionic variables /\\,and /\\2_. n being

[ l.
even, one can represent A‘ and )‘1 by the following matrices:

o= oy el L

. ‘ {X‘,X'ﬁ - gJ

Al - XV\\-\ @ X" i (1.69)
a- .
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¥“are the Y-matrices with "curved" indices which are related to the

"flat" YP-matrices ¥ (a=1,...,n) through the "vielbein":

. '.' C ja~ l“
)e eyt 2wl = gl

Xh«\is the chirality matrix in n dimensions. The supercharge Q is represented

by the Dirac operator acting on "double" spinors in n dimensions

Q = 5ol (in + Wr(yrel 105"))

(1.70)
Wh_ * yb ab . . : ¢
X = é;[z ,U_]and hb, is the spin connection on M. The operators (-1) and
Q 5 correspond to the matrices
F
(—ll) = 'XVH'I ® X‘n*'
1l (1.71)
@5 = Xhi'l @
Comparison with formulas (I.64) and (1.66) gives
Yo ® Yoo = A (M)
(1.72)
(1.73)

where the traces are taken over the space of the eigenfunctions of the Dirac

operator (I1.70).
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IT. INDEX THEOREMS IN SUPERSYMMETRIC QUANTUM FIELD THEORIES

One of the most remarkable properties of supersymmetric quantum field
theories is their improved ultra-violet behaviour. Cancellations between
bosons and fermions make supersymmetric Feynman diagrams less divergent.
The simplest example where boson-fermion cancellations occur is the vacuum
energy: since 1975 (ﬁ6] it has been known that the vacuum energy of a
supersymmetric field theory is zero at all orders in perturbation theory
when supersymmetry is unbroken. At tree level the energy of the vacuum is
zero because the zero point energies of the bosonic and of the fermionic
oscillators exactly balance. The vacuum energy remains zero even when
interactions are taken into account because of the vanishing of the sum
of the "bubble" diagrams at any given order in the loop expansion.

The issue of this chapter is the problem of the quantunjcorrections
to the ground state energy in the topologically non trivial sectors of
of supersymmetric field theories.

This question has been analysed for the first time in ref. [17] in
two dimensions and 1in ref. [}8] in four. The authors concluded that the
0(h) correction to the mass of solitons and monopoles in supersymmetric
theories vanishes. This seemed to be the generalization to topologically
non trivial sectors of the result known for the vacuum sector.

The startingv point of the analysis of refs. (Ef] and [iS} is the

following expression for the O(fi) correction to the mass of a soliton:

) ~) )

AU)(V\ - X Z(CJB~DJF

1

(IT.1)

) ) . . . .
where Q)G and LJ; are the ejegenvalues of the differential operators coming
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from the quadratic expansion of the bosonic and fermionic lagrangians about
the classical solution. The classical soliton configuration can be shown
to be invariant under half of the supersymmetry trasformations of the theory.

- -~ . . (1)) o) .
Thus, in ref. L171 and L18] it is argued that every term )y - Wg in
the sum (II.1) vanishes, since for each eigenstate of the differential
operator governing the bosonic fluctuations around the background, with

)

eigenvalue Ue’% 0, there is a corresponding eiegenstate of the differential

()
operator governing the fermionic fluctuations with the same eigenvalue CJF =

")
g

The previous argument is incorrect because the relevant differential
operators, being defined on non-compact manifolds, have continuous spectra.

The 0(h) quantum correction to the mass of solitons should be more properly

written as an integral:

(I1.2)

wheredV\B and Q\_“_\Eare the densities of the eigenfunctions of the differential
operators goveértﬁng the bosonic and the fermionic quantum fluctuations.
We will show in the next paragraphs that the difference ‘:\{l& - dzi('f is non
vanishing on topologically non trivial backgrounds: it bi(: calculable by
means of the index theorems for operators on non compact sbpaces discussed
in section I.3. This method has the advantage respect to others appeared

in the Titerature [19] that it avoids any explicit reference to boundary
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conditions and it clarifies the topological nature of the mass correction.

The fact that the masses of supersymmetric solitons receive, in general,
non zero quantum correction does not imply that supersymmetry is broken
in the corresponding topological sectors. It has been shown [20] that,
in presence of solitons, the supersymmetry algebra includes central charges
which, at the classical level, are proportional to the topological charges.
From the algebra one can derive bounds for the Hamiltonian which are the
quantum mechanical version of the Bogomolny bound for solitons in classical
field theories. It can be shown that unbroken supersymmetry is equivalent
to the saturation of such bounds on the ground state: in the soliton sector’
this means that supersymmetry is preserved if and only if the mass of the
soliton equals the value of the central charge, at quantum level. A non
vanishing quantum correction to the soliton mass does not trigger spontaneous
supersymmetry breaking as long as the central charge receives a corresponding
renormalization. We will show that this is what happens in some supersymmetric

field theories in two and four dimensions.

II.1 An application of the Callias index theorem: quantum corrections to the mass

of solitons in 1+1 dimensional supersymmetric field theories ﬁQ]

We consider the supersymmetric theory in two dimensions
_ o L a LA
S_gqx[_i.bﬁtpa({’+l\[/)\4’

wH(@) - .‘i\/\/“(@)\?\%] (11.3)

4
Zz
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where (¢ is a real scalar field and \k is a Majorana spinor. W(q>)is a

superpotential chosen such that the above theory admits topological solitons,

and the prime denotes a derivative with respect to the argument.

An example is

W' (¢) = m (¢~ N/’\) (11.4)

The classical soliton (antisoliton) (Qs(x) satisfies the Bogomolny

equation:

|
o s () =T, W ((Ps(x7> (11.5)
d x

The classical soliton mass is:

+ W d 2 | L
e [ a8 v
= o
09
- ng dx 0% W (@)
X
- (11.6)

i
f
,L/‘
g:‘Eg
Pas
< =
la
o)
=
SN

(

_ [\x/(cegm)}
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As explained in the introduction, the 0(h) correction to the soliton

mass is given by

OM o dny _dne )wdo
A M = —z—‘h f(—;\—; i (11.7)

apart from renormalization counterterms. The bosonic fluctuations E (x)

satisfy
\
T L2 2
- .EL + -L( W (@g(”)) E(?() = ()‘)% §(X) (I1.8)
d x* %
W (x)
while the fermionic eigenfunctions ll/(x) = ( " (x) satisfy

d X

,.__U.,,c E[l‘_‘_‘- —(-"\X/”((Qg(x))]()\*.: We U

L*Us = [4 cd W ((Qs(x))J W_ = Wgluy (11.9)
| dx

We have used the representation %°= 0

23 'U:"G‘B.
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From eq.(I1.9) one obtains the decoupled equations

L5 W (8) = 0 we (0

L L* u_(x) = LJFZ U- (X) (11.10)

Observe that

d x

FLo-2 4w L (wi)
dx*

(IT.11)

which, using eq.(II.5) for the soliton, becomes

¥ dl | [(\X/‘((F (”))1]:/
L L - - —., + 1 . (I1.12)

so that the bosonic fluctuations equations can be rewritten as
¥ 1
= X
LL §(X) = Wy g() (11.13)

The differential operator L*L and LL*, appearing in eqs.(I11.10) and (II.13)
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are defined on the non compact space R. They have a continuous portion in
the spectrum which 1is separated from zero by a finite gap (and hence are
Fredholm) - because the "potential™ W"(@s) goes to finites constants at
spatial infinity.

The quantities in which we are interested are the bosonic (fermionic)
densities of eigenstates C,‘_Y'.I’( C_\_Y‘f)of the continuous part.
dny (dgj\_. o

Let us define X Jas the densities of the eiegenfunctions of
dw  dw

the operators L*L (LL*). From eq.(II.13) it is clear that

dng _  dhy
‘(R‘J“ - W : (11.14)

o

dw Jw
of eigenstates corresponding to the operator

o LF

Q:<LO

n A .
The relation between dNg and QL,; is more subtle. (A“h is the density
dw

This is exactly half the densities of the eiegenstates of
L o

~1
Q = o LU

because of the existence of the operator
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(o5

—J
1l

2

which anticommutes with Q and hence commutes with Q . Thus to each
(5 (R

eigenvalue W of Q there correspond two eig:rstates &) and PlwW)> , only

one of which is a positive-frequency eigenstate of Q with eigenvalue W’

: : L - dw; . dus
The density of eigenstates of Q is obviously Y4+ Y- 50 that
deo  dw

dvig | dvy CU-’—”)
T = 3 dw dw (I1.15)

The conclusion is that

(II.16)

We can easily evaluate the right-hand side of this equation using the

Callias-Bott-Seeley trace formula (I1.38) applied to this special case (n=1
and L defined in (I1I1.9)):

| 4 e >
- - (I11.17)
2’(\/2,;_&% \/Z+C\1’
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here a 4+ = W"( ({?S(x =t0¢)) and z ¢ €. We can define a function f(z) as in
(I.39):

B C(.+ A - _L
F(z) = A t — T 1 S Z
1z e +2 Val+z

The discontinuity at the cut is

Af(-w) = L H(—wl—&-ie)~ :F(-wl_\'el
e »ot

A4 B (wm_ Q_: ) . A ((,\Jl,a}

s w* ‘,\/ wl-a;’ l/w1~6\f

from which one gets, recalling formula (I.42):

oy dwn . -
dw? dw?®

O(w-a2)

(I1.18)

= [\,—~——q+ 6 (w'-ar) -
ll((ﬂ iy Vou'-o X

Thus the soliton mass correction is

1 dV\(:
A= T (e G e

0o
" (CLYLJV _ dw- ) w dwt
3 dov  dw”
(8]
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which after a change of variable gives the result

0a

W) " Ay G-
A M = ’:ﬁ BO‘& (11.19)

S 1
&2‘4. Q:" kol

. 4
It is readly seen that,for the super A(e -model,
(2 1
- ! L =
\/\/((Q) - \/EA (‘SLF a ((/A) (11.20)

a+ = - a_ =\[§}L »our result agrees with that of ref. [19) which has been
obtained with finite volume techniques.

From the expression (II.19) it is evident that AO)M is a topological
invariant - it depends only on the asymptotic values a and a_ of the
"potential™ IAI"(L?s (x)) and not on its detailed form.

One also sees that the non-vanishing of the mass correction is intimately
linked to the topologically non-triviality of the classical solution - the
same formula evidently gives zero for the correction of the vacuum energy
at 0(h).

Putting together eqgs.(II1.6) and (II.19) on obtains for the unrenormalized
mass of the soliton at 0(f):

i + 0 ”

M= - [wew)| - & e ok,

a4+
—_— 11.21)
o
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To get the renormalized mass, which is expected to be a finite function
of the renormalized parameters of the theory, one has to substitute into
the expression (II.21) the unrenormalized parameters in terms of the
renormalized ones. For simplicity, we will specify the superpotential to

be as in (II.20). Eq.(II.21) becomes

% -
MY- Bo(r- 28T .&)
3 » g /Jﬂ— (11.22)
where I is the divergent integral
oa
Tt
T = —'—J o\
417 (%l+ Q/AL) 2 (11.23)
~ %

is the bare mass of the meson of the theory. The renormalization of/hjis

easily computed to be [i9] :
T I
fo = e (14 M(L’fm))

where}LRis the physical mass of the meson renormalized on-shell. Plugging
this expression for into (II.22) one obtains for the renormalized soliton

mass:

M™M= 27 Vi pe

- -+ R (11.24)

3 Viz T
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I1.2 Monopole mass correction in 3+1 dimensional supersymmetric field theories [lf]

IT.2.1 N=2 super Yang-Mills

In four dimensions the simplest supersymmetric field theory admitting
monopoles 1is the N=2 super Yang-Mills theory. Such a theory can be obtained

by dimensional reduction from the (5+1)-dimensional N=1 theory [32] :

L o= - L ERMT EPAD,\/\

(I1.25)

AB = 0,1)...,5
(1+ 1) 4=0

To perform the reduction we use the following representation for the [ -

matrices:

[, = Y5 @0,

[ (Y@ L=l

(45 - XS‘QD ((Yi

t

(I1.26)

r\? PO'--Pg:'Xsé‘)G—B

il

l * » 3 - . 3
where K are the four dimensional euclidean Dirac matrices for which we
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chese
o oF y ' 5‘(4\0
- ~ 5= "0 i T\ o 1
¥ (010
(11.27)
rv .
' ' oy )
0, = (“ LGy, - 0y ) Y
(Ti are the Pauli matrices. Armed with these conventions, it is easy

to write down the eigenvalue equations for the bosonic and fermionic

fluctuations in the field of a Bogomolny-Prasad-Sommerfield monopole solution

for our theory.

.

We will use in the following the 6-dimensional notation of ref. LISJ

. The 6-vectors parametrizing the monopole solution are chosen to be

=
>
"

(0,0, 0,0,0,1)
o
r\A = ( | ’(7 ,()) O ) C)I )

‘ 0
(O/O)O/O’ .9

—s‘
-4
n

so that the monopole has no electric charge. The symmetry-breaking Higgs
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field is P¥ =z A:' and the monopole field strength tensor FAB is nonvanishing

only when its components are i,j (i,j = 1,...,4). Further, it is self-dual:

Let us consider the fermionic fluctuations. They satisfy
FA DAA: 0 with (H P?)’\:O (I1.28)

It follows from the Weyl condition that, in our representation, the

8-component spinor k may be written

N
O

>
1

O

A
~%

where WPt are two independent complex two component spinors. Writing‘Q4(x,t)

= e““dt;{(i), The Dirac equation (II.28) becomes
by

(I1.29)

where



51

t

— b ~abe €
DI = %o o+ g fF A

B
()
a\s
-~
(\

Define

ab ~ R ab
L‘d{b (.CT} )O(F, [)i

i

Then

: L_ )( + = bJ’ ;ki*

(I1.31)
TN
Uas e &

This is identical in form to eq.(II.9) of the previous section, and we may

repeat the steps performed there.

The equations may be decoupled by iteration to give
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* Ly
/L ’
LT X = w A
Associating the densities of eigenstates d“w‘ s é,"_‘"With the operators L*L,LL*

dew  dw e
respectively, we find that the fermionic density of eigenstates a,j‘
0w

be expressed in terms of these quantities. The solutions of eq.(II.32) above

(I1.32)

¥

may

have the associated density( daﬂ_* + %,Vl‘) since each equation for the complex

is equivalent to two real equations. Just as in paragraph II.1 the density

for the solutions of eq.(Il.31) is half that for eq.(II.32), thus

dn_
(’,\i\f - (M.f + - (I1.33)
dw dw dw

We now turn to the bosonic fluctuations. In the monopole back ground field
gauge, the gauge field quadratic fluctuation equation is, in the 6-dimensional

notation,
(I1.34)

For A = 0 and 5, Fa

A&vamshes and we get

( Do‘ DL IY](,( ) = - (Vlvi (I1.35)



where we have written v“ (A =1,2) for E? . With L as in eq.(II.30) it
!

is easy to check that
N 50 ;
(L L )0((5 - - (Dc C) “f (11.36)

( One uses the fact that Gijs 37(6}6:~qw§5) é'f-l{ﬁ;?ﬁiaﬁfpre self dual
: ,

= d
- "" Iy e
oA }

and anti self-dual respectively).

Thus 47 satisfies

LU “{ = wlq/l (11.37)

and its associated density is d'qt
w

The components‘gi » 1=1,...,4 require more work. Let us define a new
~

set of matrices 2:; which forms a real 4x4 representation of the G of

eq.(I1.27)

>

L

{1
T~
I

NJI

with, for example,

D
ZI :6|®6_7- ,21;"6‘3@61 443“6;.®l\\



Having put ~ o oy
SV = | ST - > 2
X = = [ 404 7 4 )

it is straightforward to prove that

L (ZQ,\M )Jk EXW\ - —‘S‘J

A
X

for self-dual F . Eq.(II.34) for A,B = i,j can be written

b

(DC DC Ej)“+ | (Z!Lu)jk Eﬁfn Fabc gk = - g:

c\.lo_ ¢

Defining the operator MJ-K ( Z

v

). -D?b, it follows that

T
t “ 1 > &
(MM = o E
L v

But since Z is just a 4x4 representation of the Pauli matrices, there
v

exists a unitary trasformation

—_— Z_I: Cft@/H

L



so that

DA

and M becomes

)

Writing

we finally get
UL«
b3
LLb

So the densities of the eigenstates

fluctuations satisfy

55

1!

w" b

(I1.38)

for A‘,...,A

4 15 2dny.Finally the ghost

dw
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where C% is a complex ghost field. Writing

dy =

where C = CI + 1'C2 ,it follows that

Cy

Ca

L L¥ Cl = (*)L (’( (11.39)

and hence the density of the ghost fluctuations is dn- . Collecting the

W

results from eq.(I11.33),(11.37),(I1.38) and (II.39), and counting the ghosts

as fermions, we get

dng ) (:(_YE _odn
dw dw ~ dw
dw
dns

PN

dw

I

g dns
dw

—

dn- _ Cﬂ‘; (11.40)
dw ) dw

dn-
dw
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We may now calculate

W) dn d e d
AN = B (G- ) e

(I1.41)

The quantity

dng _ dn-
To  dw

is obtained from the trace theorem (I1.47) of E.Weinberg, discussed in section

[.3.41:

Zgvn
’m( - 5]
(1.47)

FlL+z LAz (g Pez )72

with L =8‘£ -D-(. . g is the gauge coupling, v the value taken by the modulus
of the Higgs field P at spatial infinity and h is the topological winding

number of the monopole classical configuration, which for our case equals

1. Rewriting formula (I.47) as

o
- dw4 _ M- Y et = ﬂy—v—l—— -2
Z +W" ( dw™ qwm) 71 “

, (((gvi+ )
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and following the steps performed in section I.3.7 (eqgs.(I.41) and (I1.42)),

one gets

dng dn- - _ 29V D (w'(gv)')

dw® dwot le(wl—(%\/)l)y'l

Inserting this in eq.(II.41) and renaming gv=m (the meson mass), we have

finally

AOM = e [t

gis ) \/&1+m1 (I1.42)

This is divergent and non-vanishing contrary to the claim of ref. [}Q] .
- LAk . : .

A regularization e = is intended for the divergent integral, which we

can re express, for further purposes, as an integral over four dimensional

momentum, as follows:

A"M= (emitiwm L (11.43)

with

«T~ = Llwa C‘qu ,__L~,__ éiid‘k
= o 4 12 (11.44)
20 Lw
0(/4, -0 ( ) (& )



To obtain the renormalized monopole mass one has to express the bare

coupling constant 9 and the bare mass mg in terms of the renormalized

gR and mo

- ' = 2Z m
Je ~ Z%%R ) e m R (11.45)

It is a general belief that, once the fundamental parameters of a field
theory are renormalized, derived quantities, such as soliton masses, are
finite functions of these renormalized parameters. We will see that in our
example this holds true.

At classical level the mass of the monopole is

(II.46)

{\/\Ll — 4 T

ass(cql - n
J

At O(fi) one has to take into account the correction (II.43) we just computed:

(I11.47)

M(l): Q'ﬂmg(( + 4ﬁ£’\7\811>

Jo

Recalling eq.(II.45), one obtains for the renormalize monopole mass at 0(h)

MY = ‘m:\g ( Z.MZ(;L «ouighT) o
Ja
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An explicit computation gives
Lo =1 (11.49)

which is one of the non-renormalization theorems due to supersymmetry, and

Z%: | + ngzh(i*;c> (11.50)

where C is a finite constant and the divergent integral I is defined in
(I1.44) Putting eqs.(II.49) and (II.50) into (I1.48) one verfies that the

mass of the monopole is a finite function of the renormalized parameters:

o) 1
M = [mm"‘(lJr zakC) (11.51)

9

Unfortunately determining the finite constant C is technically arduous.
C depends not only on the renormalization prescription - since the theory
is massive it is natural to renormalize on-shell - but also on the gauge
fixing term, contrary to the infinite part of Z,? » responsible for the gauge
invariant {5(9) function. The O(R) correction has been computed in the
monopole-background-field gauge, which was necessary to make the index theorem
applicable. Therefore to determine uniquely C one should perform the 1-
loop renormalization of g in the same gauge, that is one should evaluate

1-loop diagrams with explicitly space-dependent propagators: 1in practice
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this would be very hard. There are arguments, based on the saturation of
the Bogomolny bound (see section II.3) and on the assumption of the Dirac

quantization condition, which imply that the constant C is actually zero

1] .

II1.2.71 N=4 super Yang-Mills

The N=4 super Yang-Mills theory in 3+1 dimensions is obtained by

dimensional reduction of the 9+1-dimensional N=1 theory [32]

C*;\T—_-) (H—lﬂ)A:O (I1.52)

The dimensionally reduced theory has the BPS monopole just as in the N=2
case - in fact the very same solution is simply embedded in the larger theory.
The only change is the number of fluctuation equations. Instead of deriving
them in detail we will use the knowledge gained in the previous section
to obtain the answer.
In section II.2.i we found that:
(a) The densities of the eigenstates for the fermions is C“)é.(95%3<+
Q}J where €% §s the number of 1independent complex two component spinors in
dw‘che theory.

(b) The densities for A o and the scalars others than the Higgs field
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. . : o Dy ) .
taking part of the monopole configuration, is C A"~ , where C is the

dw
number of real fields of this type.

(c) The density for the gauge fields A4ﬁw5 and for the Higgs field A

4
is 2 dws.

Juw ,

(d) The density for the ghosts is an-

) (2) qw
For the N=2 theory we had C =2 and C =2 and hence

iy
PR

d g dvg _ dw. + 2 dny (d"++cm“) clv_
dw dw ~ dw dw

dw dw (Jw

(this is eq.(II.40)). The N=4 theory, on the other hand, has twice as many

. . . . . ),
fermions, hence C(U = 4, while the number of fields contributing to C(1s

6. Thus

(R PR
-

dw dw dw dw

-0 !

dv

dng  dng 2 dn_ dnsy dhny O_\l’:) _ oV
) w2 oo dw dw

(11.52)

We conclude that for the N=4 super Yang-Mills theory, the unrenormalized
mass correction Am["] = {-Z(M)B‘wp]is actually vanishing. It appears to
be the unique theory for which this is true.

The result (I1.52) 1is consistent with the expected fact the mass of
the monopole be a finite function of the renormalized gauge coupling constant

and meson mass. In fact formula (II.53) reads in this case:
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O G -2
M f___"}_;z_& (Zg) + O)

and

Z

1

P d{Vevgem%

for the N=4 theory.

[1.3 The quantum Bogomolny bound

—

It has been shown [ZO] that the supersymmetry algebra corresponding
to the two-dimensional action (I1.3) 1is

P

1,8, =2 o)

(II1.53)

where X%:XOX: d:@ = 1,2. Q

@
central charge which turns out to be a surface integral:

are the Majorana supercharges and T is a
4+ O

1

= dx 4

d ¥ (2 \X/((P(X)))
— &

(I1.54)

T is different from zero only in topologically non trivial sectors of the



theory.
Central charges analogously appear 1in the supersymmetry algebra for

the four-dimensional model (I1.25):

{Q; | Q\i } - 6"i J::P PN Liell (éﬂff’zl+;(z{5“)«/lzz>

(I1.55)

The indices 1i,j = 1,2 label the number of supercharges, egjis the
antisymmetric two-index symbol ( 6‘1== +1), Q; are the Majorana spinorial
generators. Z,,, are the central charges:

7 Sdax 3 (S B e PR

. -

v “ A%\ (I1.56)
ZZ: d*x 9 (%S 6‘3“ FJ - FO&)

( S* and P“ are the scalar and pseudoscalar fields belonging in the N=2
super Yang-Mills multiplet).

From the superalgebras (II.53) and (II1.55) one can derive bounds for
~the Hamiltonians which are the quantum generalizations of the Bogomolny

bounds satisfied from the classical soliton configurations. In the rest

64
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frame RM = (H, 0 ), the superalgebra (II.53) becomes:

[QF,Q,} =- 215, + iUt T

(I1.57)

(Q = Q*¥% ). Since the left-hand side is positive definite, it follows

that

2H > | T

(I1.58)

which is intended in the sense of matrix elements.
If the bound 1is saturated on a given soliton state |s> , eq.(1I1.57)

implies:

45( _[ Q:,Q(sB | s) = -2 5| T\5> E(p,

(I1.59)

where the matrix P = ( | . 'Lﬁb is a projector :
%6 2 <

: 2
pf= p ,  P=b
- )
Let v be a two-vector Tiving in the subspace "orthogonal" to P, i.e. such

that P v = 0. Then, the linear combination of supercharges
~

Q= ue,

annihilates [s>. In fact, from eq.(II.59) one has

1l
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It is easy to show that the reverse is also true: if a state [s> is
annihilated by the supercharge 6 = y*% Q'< then the quantum Bogomolny bound
(I1.58) is saturated on |s>. Thus , saturation of the bound (II.58) on a
given state is equivalent to the invariance of that state under supersymmetry.
Only half of the supersymmetries of the theory leave the state invariant
if the central charge is different from zero (this corresponds to the fact
that half of thé eiegenvectors of P have zero eiegenvalue).

Quantum bounds analogous to (II.58) can be derived also in the four-

dimensional theory (II.25). The superalgebra in the rest frame is
_\_ . . .
{ Qo() Q(b}: &((&&;J’ H + 1 éld ((b/o >d@Z|+(lz{0KS )O(FZ1>(11.60)

The positivity of the left-hand side implies that on any given state

Hl 7 le+ Z; - (1nen)
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As before, the equality sign holds in (II.61) if and only if the considered
quantum state is left invariant by some supersymmetry generator. If the
central charges are different from zero, a state for which the bound (II.61)
is saturated 1is invariant under half of the supersymmetry charges of the

theory. In fact, let [s> be annihilated by the supercharge Q‘U) =42 vi Q;

: Lo
.Evaluating (II.60) on [s> and multiplying by v‘é ,one gets: ’

SlLHIDV = [ -1 ®Y, &1Z/1s> +

€ BNYs <s\zz\s>]

where v is a vector with components \/; » € is the matrix with elements &;

and the Dirac matrices act on the « , ﬁ indices. The matrix on the right-

\

hand side has eigenvalues

Tz Tz

since its square is

U (ZOP <27+ M@ { %, X)) (20440
= («z stz o)

Thus the bound is saturated on |s>. The reverse statement is proved in a

similar fashion.

At classical level the bounds (II.58) and (II.61) are saturated on



the soliton and monopoles configurations (

see eqs.(1I.6), (II,54) and
eqs.(I11.46), (I1.56)):
4 0
= |dx d 2 W(e o) = \\ $cal
<T>c|w.-cd dx 2 W) clastre (11.62)
— D

and

Z ZZ >(,|0\SS:' CU..\

[
O

A/ e 2y LT M
S dot = (11.63)
L2, > PBie

ck¢9\ca\

9

- ch\a;aca\

One can also verify that the classical

solutions are invariant under half
of the supersymmetries of the theories

In d=2 the supersymmetry trasformation
laws are
8({? = g\f/
l
5\}/ (\‘ g - \/\/((Q)>€: (11.64)

1

€,

61}5 a two-component Majorana spinor. It is easy to check that
the configuration

where € =(
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“}’: Y @ = @s(x) (11.65)

. 0
is Teft invariant under the trasformations (I1.64) with & = (61,

of the Bogomolny eq.(II.25). The supersymmetry trasformations of the N=2

)by virtue

SAS = i[Eyx - Xveel
§PY = TyeX - Xis€ ; 05= EX-A€)
b= [ ES - (0,60« DRI (1rag

\)

._.‘8 PQL}C PbSCXg €

where € is a Dirac spinor. On the monopole background the variations of

the bosonic fields are trivially zero, while for the fermions one has

U

(Ul‘j {::cJ' - D6 )€

c,(a§§~ ca

{

¥R Pe

-—

where BE‘ is the magnetic field of the monopole, the matrix P is a projector,



and we made use of the Bogomolny equation (I.44). Thus, < 6€X“$ = 0 for
a supersymmetry trasformation with parameter € orthogonal to the projector
P, i.e. such that P& = 0.

In sections 1II.1 aﬁd II.2 we have shown that the Hamiltonian on the
soliton and on the monopole states does receive, in general, a non vanishing
quantum correction. Nevertheless the bounds (II.58) and (II.61) could still
hold at quantum level 1if also the central charges renormalize in the
corresponding way. In what follows we will discuss in detail this question
for the two-dimensional theory. The analysis in four dimensions is
conceptually similar but technically more complicated and will be only briefly

sketched.

I1.3.17 d=2

let us start from the lagrangian obtained expanding the lagragian in

(II.3) around the soliton background:

L = —\/\/'((Pg)iﬂ—‘i-(arq?)l*’%@%«{/Jr

—

[W'(ceavz)l— w'(€) - ZW‘(@s)W”(‘-"J)ﬂ

(I1.67)

L
L

_ 4L \A/“(((’(“’l) (A
)

where 07 is the quantum bosonic field and (€s (x) 1is the classical

70
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background. The central charge density 1 ( 1~ =\yﬁv dx) is , in the same

expansion

L [ wle) + [ i) - Wﬂ}

A
2

In O(f) the correction to <iT> is

A()é T> - [c\x d ( 5‘: \/\/“(QS)<MQ(”>)

+ ¢
(the term in T linear in the quantum field [. q@) 7 :}van1shes because
W'(¢) = 0at x=400). |

To this order the propagator for “7 is

L t 8“) (

(1

0 )

l %
S0- (W)
and hence
(0 i R
= __L \/\/ (eg +DO) {MM:X
A < > { 9\ ( ( ) ’D—- .‘.[Wl(((s(*ba));}
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t ~ i & (x-
”{,LLEJHJ(J& u+__q-€(%)

Qe k-at K ol

Performining the integration over ko we obtain finally

o

_ E_J«ﬂz Ax L 8s )
A(%T> = = I (MI T (11.69)

Comparing with eq.(II.19) one gets

(W) - (+T) =0

(I1.69)

to 0(h). Observe that the equality of <H> and <-i1> up to 0(fi) is an equality
between unrenormalized quantities, but renormalization amounts to express
the bare mass in terms of the renormalized mass so that the equality (I1.69)
is also true after renormalization(f1).

One can ask if the result (II.69) stays true at higher orders in the

semiclassical expansion or even non-perturbatively.

In the vacuum sector the analogous question is if the vacuum energy
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remains zero after the interactions are switched on. It has indeed been

proven [16] that, thanks to supersymmetry Ward identities, perturbative

radiative corrections do not break supersymmetry if it 1is unbroken at the
tree Tlevel. At non-perturbative level, general theorems are not available.
In certain classes of theories the non-vanishing of the Witten index excludes
the possibility of dynamical, non-perturbative breaking of supersymmetry
[5] -

In the following we will show that, the soliton sector action (II.67)
is not invariant under supersymmetry trasformations because of the presence
of surface terms which are non-zero in a topologically non-trivial background.
Therefore, it is not even possible to write down for the lagrangian (II1.67)
supersymmetric Ward identities which would prove (at least formally) the
cancellation of the "vacuum" diagrams. This is not much of a surprise since
we Jjust proved that the Hamiltonian li/does get renormalized. At the same
time we will see that the combination £ = f -;—’r is truly supersymmetric,
due to a cancellation of the relevant surface terms. The question of the
saturation of the Bogomolny bound on the soliton state may be studied in
terms of the spontaneous supersymmetry breaking in thel lagrangian f
By analogy with what happens in the vacuum sector one wbu]d conclude that
radiative corrections do not break the supersymmetry ofof (>as we have already
proved at O(fi). See also ref. [33]). On the other hand non-perturbative
breaking cannot be excluded. Topologically arguments a la Witten do not
give any insight into the problem as discussed if ref. [20]. In general
representations of the supersymmetry algebra which saturate the Bogomolny

bound are smaller than those which do not. Witten and 0live used this to
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argue the non-perturbative saturation of the Bogomolny bound in four
dimensions. Unfortunately the same arguments 1is not available 1in two
dimensions, since in this case all representations are two dimensional (for
non-vanishing central charge).

The previous considerations are better discussed in terms of superfields.

The lagrangian in (II.3) may be written as

£ L [ro[3 58 0E W]

1
2

where

d)(x)()) E'((R(X)—F @W#x)+ 6o F(x)

(I1.71)

is @ real superfield whose components are a real scalar (P (x), a Majorana
spinor ﬂkk(x) and an auxiliary field F(x).

The supercovariant derivative is

D, = a_@: ()0,

and the supersymmetry generator is



TR
C;?d — 2;;5; + (5' o )d E¢J

The soliton in superspace is

CES(X,G) = G (x) - 3‘_—_@‘9 W (@)

and it satisfies the super-Bogomolny equation

D, $(x,6) =0 = QF(x0)

Decompose the superfield

@?(X,@): CES(XIQ)ﬁ- (Eq(xue)

where é@ is the quantum fluctuation. The Lagrangian becomes

24

£ = L [#0[L DEDE+2VE,E,)

where
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Vb, o) = W(d, +dy) - W(e)-W (91,

(we have dropped the zero order term.)

The supersymmetry variation of the quantum superfield is defined by

wq: cQd = (-1 6Q,+ 160,) Py

Performing the supersymmetry trasformation on the interaction term

V
bV (&, dy) = f—(—‘; £Q &,

4

it is seen thatQZ is no longer a symmetry of the theory since

Q. P, #0

while the Q (variation produce the total derivative
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\/'(CPSI qu ) = €, @ | ( V (<i>5’Cﬁ7 ))

Of the derivatives contained in Q‘ » the €9 -derivative vanishes on
integration with respect to d? 6 swhile the time derivative also vanishes
on integration because the soliton is static. We are left with the spatial

derijvative

S =~ e, |40 @\f;\/(cbs,c‘bq)

(I1.72)

This in fact gives rise to a non-vanishing surface term in the variation
of the action, since the soliton is not periodic in x.
The central charge density expanded about the soliton can be written

in superfield notation as

T :.f.ngee Lw4¢+¢q

1
W(hs) - W) b ] = L|d0BOL V()

(We have dropped the zero order term which is identical to that in g? s



and also the linear term as it vanishes by itself.)

Under Q 1 ~trasformation

Ler = L (4000d(ie,QV
Lor = QLS\Q QC\X(eQ,,)

The only term which contributes in

= - d -—"E’\'
Q,\-—“j;‘—-@ -+ @1-&% O'l d x

1

is the @-dem’vative, as the other two are annihilated by the factor 0 0. Thus

Lot = - [d0 0,0, %{(g}ev)

(I1.73)

= ~€:L341991 j—l—;(\/(%fs){);l)

exactly equal to 566_ eq.(11.72).
We conclude that although OE and T° are not individually invariant

under Ql—supersymmetry, the combination

~/

L = L- 77

is exactly invariant, as stated above.
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IT1.3.11 d=4
Let us recall the expression for the central charges in the N=2 super

Yang-Mills theory:

o

Z, = [&Px 5" FL 4 P pel)

o o — &
3 “ . - ,
2 z:jdei(S ’!ie'-jKij P Pou)
At the classical Tlevel, on the monopole

Lt _ :
<Z1> - _.._é-z- = I\/\c\asswa\

L,y =0

Expanding around the classical configuration, one finds that the 0(h)

correction to the right-hand sides of eq.(II.74) comes from

A(‘)< Z‘>:Jd3x 30( ?)u_fie(jk< F?k>)
| (11.75)
F-u = BJ§:~}k§F+gF“C35§i

JK

( S’L,i=1,2,3 are the fluctuations of the vector field space components.)
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% abc oo
The only non-vanishing term in < F}K > 1is 9 F < E} §k>. Moreover,

since the integral of a divergence can be trasformed into a surface integral

over the sphere at infinity, only the asymptotic propagator is needed:

N L= erme dodd 3+

~ o b c
.(.‘z_gécjk F“‘a(, p (Ei §k>) (11.76)

From the lagrangian, one gets

C . - e — 4 )
(B W)= F(B5 g F) [ ion

P |8 en

Asymptotically (see eq.(I.53))

a
X|—> 0 | ab A (11.78)
(L)1 Lewe Lt
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The only term in the expansion equation (II.77) which contributes to
({D)
1ﬁ;< L,> is the second one. The first term is symnetric in jk while the higher

order terms fall off too fast at infinity to contribute. The relevant term

may be written asymptotically

¢ I T T.o pdes @y
€ < E'}(” ) = L t( D) 24 €5 B 570 (% 7)1

- ~-ahd de
UPWG“ Mt Usz ﬁi F\e
4

ab

Inserting ( f) from (I1I.78) and Py Xin eq.(II.76) onefinally gets

m
?

Y-

| )

) sl ihm biwm 16 (x-%)
A <Z|> ( l X— Yy (D+m2)

(I1.79)

——

-~ G ohwm L

where I is the logarithmic divergent integral defined in (II.44). Comparing

with eq.(II.43) we find that, to 0(h)

AM = Z_\m L)) (I1.80)

and the quantum Bogomolny bound is saturated at this level.
We mentioned before that there exist topological arguments due to
Witten and Olive Eﬂﬂ according to which the bound should be saturated

by the monopole for the full quantum theory. Now it 1is beljeved [5], (b]



82

»that such reasonings may run into problems if the associated Hamiltonian
has a continuous spectrum going down to zero, which is just the case for
the N=2 theory. The calculation above reveals that,nevertheless, the argument

holds at 0(h).
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III. FERMION CHIRALITY IN SUPERSTRING THEORIES

Superstring theories [21] , [221 -are naturally formulated in ten-
dimensional space-time. The attempts to make them realistic are based on
the assumption that six of the space-like dimensions "cur] up" to describe
a compact internal space small enough to be not directly observable.

The compactification mechanism being, at present, largely unknown,
it is reasonable to address problems whose resolution does not depend
critically on the details of the dynamics. A problem of this kind is to
determine the quantum numbers of the light fermions coming out of the
compactification. The spectrum of the observed "Tight" fermions (that is
the fermions which are massless as far as one forgets about the SU(2)xU(1)
breaking) 1is known to be chiral: quarks and leptons Tlive into complex
representations of the standard gauge group. One of the major difficulties
of most of the Kaluza-Klein theories investigated 1in the past is their
inhability to produce chiral fermions in four dimensions [23] . In this
respect, the recent 1y formulated heterotic string theory [24] seems to
be in a better shape since it can naturally give rise to chiral fermion
families.

The question of the chirality content of the compactified heterotic
superstring has been first discussed by Candelas et.al. [?9] . The analysis
of ref. [29] will be reviewed in the next section. Its starting point
is the so-called "zero slope" 1imit of the heterotic string theory. In
this Timit, one first computes the spectrum of the free string in flat ten-

dimensional space. The massive excitations -which have masses of the order
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of the inverse of the string size which can be argued to be comparable to
the Planck length -are disregarded. To reproduce the low-energy string physics
one introduces an effective ten-dimensional field theoretical lagrangian
whose field content is just given by the supergravity multiplet of the zero
mass string states. This supergravity lagrangian 1is given as an infinite
expansion in powers of o(l (the dimensional parameter of the string), terms
of higher order in o('conbai.m'ng higher number of derivatives of the fields.
For energies much lower than (o(')—‘/‘one can forget about the higher derivative
terms and one is left with the usual ten-dimensional supergravity lagrangian.
At this point one makes the Kaluza-Klein ansatz [26] :the ground state
configuration of the gravitational field. -1$ assumed to describe a space
time of the type M#xC® where M4 is the flat four dimensional Minkowski space
while C® is an internal compact six dimensional space. In this approach,
the spectrum of the chiral four dimensional fermions is obtained Tooking
at the zero modes of the Dirac operator on the six dimensional internal
manifold, as explained in the next section.

A more "stringy" way to attack the same problem will be illustrated
in section III.2 [12] . There we will Took directly at the spectrum of
the first quantized string action in given gravitational and gauge
backgrounds. Since, as we will discuss in detail, world-sheet fermion number
and spacetime chirality are closely related, the number of chiral fermionic
states is determined by the Witten index of a related two-dimensional N=1
supersymmetric non-linear @' -model. In general, it is not obviuous that
this  method is equivalent to the Kaluza-Klein field theoretic

one:nevertheless, for the chirality problem, we will show that one indeed



obtains the same result because of the topological invariance of the Witten

index of the two-dimensional supersymmetric & -model.

III.1 The field theoretical approach

The Tow energy effective ten-dimensional supergravity obtained from
the zero-slope limit of the heterotic string contains as only chiral field
a left-handed Majorana-Weyl spinor Xin the adjoint representation of the
gauge group G. Consistency of the string theory restricts G to be either
0(32) or EgxEg. As mentioned, one assumes the vacuum geometry to be of the

type MAxC® where €0 is some small six dimensional space and M4 1s the

Minkowski space-time. One also allows the gauge fields to take non-trivial
vacuum expectation values on C6. Let F be the subgroup of G in which the

background gauge fields live, and H the maximal subgroup of G such that

(J D H x - (111.1)

One can perform an harmonic expansion on CO0 of the ten-dimensional spinor

field ) (x,y)

(V‘)

/\(X,y) _ Z 'Hl/((:))(" ((s)(Y) (II1.2)

where the coordinates x parametrize the Minkowski space M} and y the internal
)
space (b. \{*(”(x) are four-dimensional spinor fields in the ' representation
n
of H while X:M(y) are a complete set of spinor fields on C® in the

representation p of F. o and p are such that the adjoint of G decomposes

——
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under the embedding (III.1) into the ( & , 5 ) representation of HxF.

Q1
As complete set of functions )ﬂp,(y) on CO it is convenient to take the

(orthonormal) eigenfunctions of the Dirac operator on C6
h)
- m
‘D X((s) " X(F’)

(II1.3)

WU

"

. < (n)
(w)
(X" X )EJCUX X" 0
)
¢
C
where the Dirac operator De includes the spin connection on C® and the

background gauge connection acting on spinors in the representation > of

F. Plugging the decomposition (III.2) into the ten-dimensional Dirac equation

for A(x,)

P Ax,y) =0 -

ongobtains the following set of equations:

T LB ) X0+ W P, s

n

To derive (III.5) we have chosen the following representation for the -

X—-matrices in ten dimensions:
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11
C
-
N

YT . - 2{/* ® 1\ e PRI

Ys @ ¥ “

-
g
't

» " . . .
X and 'X are respectively the Y -matrices in 4 and 6 dimensions and

'{5 is the chirality matrix in four dimensions. Multiplying eq.(III.5)
(%)

by (y), integrating over C® and taking into account the orthonormality
)
of the -~ (¥), one obtains an infinite set of decoupled Dirac equations

for the four-dimensional spinors:

)

'\/@4 \\/Z‘;))(X) + Y M q%(ou (x) =0 (111.6)

It follows that the massless fermions in four dimensions are Just given
by the zero modes of the Dirac operator Dg on the internal space. The number
of chiral fermion in the representation 4 ,i.e. the number of Tleft-handed
spinors in the vrepresentation ol minus the number of right-handed spinors

in the same representation, is the index of the operator Dg:

N

)

tit

Ny («) - ha(=) =

(I11.7)

}]

hz ((5) - V\C({s) tndex DG

{
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(Note that N@)is what is usually called the number of families only in the
case when ¢ s irreducible. If & is reducible there will be a number

N., of chiral generations in each of the complex representations of the

)

unbroken H which appear 1in the decomposition of o into irreducible

reprpesentations.)
The 1index of the Dirac operator Dg can be evaluated by means of the

general AtiyahSinger theorem discussed in section I.1.iii:

inde x DG = S /A(R) A c\rx( F) (111.7)
cé

~
The relevant terms in the expansion of the A - genus and of the Chern

character are:

A(R) =1+ = ¢, (R) -5‘1 CE(R) + -

- ) _ (I11.9)

Y
_1 E
tn, E Lo, £ 4
* PGy b Gmy
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where c1 2(R)are the Chern characteristic classes defined by the expansion

of the total Chern form

CRY) = deb (e BY 2 14 R+ G(RY+ -

r

Substituting these expressions into (II11.8) one gets:

)
. tr F |
N = (ndexD = = J AL .___cl(R) (111.10)

@) 4 3' n 3 12
¢ (2n) g

The formula can be reduced if one takes into account that consistency of

the string theory requires that (?5] :

¢, (R) = ‘3"6 ¢ (F) (111.11)

The gauge second Chern class is

\ F2
Cl(F ) = - EL (1)_}-‘)7‘ t‘ILCLdJofnt ( )
of G

so that fzf] :
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_ 3 tv .. Frzg}
N, = (-'T‘tf)s {Z.LJ h{s 2 24 305“‘@‘” 4 (111.12)

So far we did allow for non vanishing torsion on the internal six-dimensional
manifold. In other words the connection in the Riemann tensor is not
necessarely the Christoffel connection. Actually , which connection one -
uses in the index formula (III.8) is irrelevant since, as pointed out in
section 1.1, characteristic classes are independent on the particular
connection chosen. The vanishing of the background torsion can be shown
to be equivalent to the vanishing of the vacuum expectation value of the
antisymmetric field appearing in the ten-dimensional supergravity. There
are phenomenological requirements suggesting that the background antisymmetric
field is zero [?51 . In that case, the absence of chiral anomalies in the
two-dimensional field theory describing the compactifiéd string requires
the equality of the spin connection with the gauge field [?5] (see also

next section)

wl* = AF, (I11.13)

This ansatz satisfies the consistency constraint (III.11) for the gauge

groups 0(32) and EgxEg and 0(32). When (JP = A,. » H will be a subgroup

of 0(6), the holonomy group of a six-dimensional Riemannian manifold. It
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is easily seen that if G=0(32), one never gets chiral fermions. For G=EgxEg

(and H=0(6) or SU(3)) one has

N = (ndex Dc(hh/\) = X/z (I11.14)

)

where ;(’ is the Euler characteristic of CP. Eq.(III.14) can be proven either
by direct evaluation of the formula (II1.8) or noticing that the

six-dimensional Dirac operator Dg becomes, after the identification (I11.13):
. a.b Q-b ) a\o
L .
D :X®P+-(3¢+wc(x el +18Y ) (I11.15)
A

where
P, = 1t s
i

is the projector into the right-handed spinor space. In fact, for F=0(6)

the representation p in eq.(II1.2) is the spinorial 4 of 0(6). The index

of the operator in eq.(III.15) can be formally written as

index D, = te(y,@F)

where the trace is taken over all the eigenstates of the operator

Q = )(t.@’[l»( D( +w?b(2{ab@1l + '"@ef“b)) (111.16)



92

In section 1.3 we saw that the operator@Qin (III.16)

gives a
representation of the supercharge of the supersymmetric N=1 6=model -in
0+1 dimensions. We learnt that (see egs.(I1.72),(I.73))

F S 6
t’t(—-") = t't X;@X;——X(C)
(I11.17)

i

b Qp = bey @1 T(C)

(Remember that the Hirzebruch signature of a 4k+2 dimensional manifold is
zero.) From (III.17) it follows that

3
.

cnde x D‘ = Cz 1 @ Rf -

—

1

Liey, @1 + & te %30 =
= L+ X(C)

in agreement with eq.(III.13).

II1.2 World-sheet Witten indices and fermion chirality for the compactified
heterotic string ﬁZ]

In this section we show how to derive

the chiral content of the
compactified heterotic string without making any reference to the low-energy

effective field theory coming from the zero-slope limit.

A first-quantized superstring propagating in a given gravitational

and gauge background is described by a two-dimensional

supersymmetric G-
model on a curved manifold, coupled to external gauge fields. The background
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fields themselves originate as vacuum expectation values of the operators which,
in the second-quantized string theory, create string states corresponding
to gravitons and gauge bosons [28] s [29] , [30] , [311

Considering open string 1in this formalism is technically problematic
since the coupling to the background gauge fields should be introduced by
adding to the 6 -model action 1line integrals along the string boundary.
Therefore we are going to stick to closed strings with the gauge fields
introduced via the heterotic string mechanism - 1in any case open string
theory are believed not to be too interesting for phenomenology.

Of the various formulations of the heterotic string theory the one
which will best suit us is the fermionized version. A1l fermionic variables
( gauge as well Lorentz) will be treated & la Neveu-Schwarz-Ramond.

The @ -model action corresponding to the heterotic string, in the

Tight-cone gauge and in the fermionized version, is [30_]

S = 4w Sdcdfr[g QXX+ L‘{/ ll *

(IT11.18)

LC (D )'IZS 3, N F:\,(TW) \}’HVC‘ICJJ

2 I3

G and 1 are the coordinates parametrizing the world-sheet of the string.
X, T, M= 1,...,8 are the commuting string variables, while "%a(ﬁ'

, T )?.e“,. '\l”* ( e“,h are the "vielbein": eo;, €ov = 9 v ) are the

anticommuting variables. Both X" and ‘{'M carry a vector 1index of the

I
transverse Lorentz group 0(8). The C » I =1,...,32 are 32 anticommuting
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variables whose group properties depend on the specific choice, Spin (32)/75

or Egxkg, for the gauge group G.
Ua
3}“)()() and AP()() are, respectively, the gravitational and gauge
- A

inn
backgrounds., F:\, is the field strength corresponding to A» and ’ij are

the generators of the gauge group G in the representation according to which

the C.I trasform.

The covariant derivatives are defined as follows:

b

DI Y" = A 4w AN

(I11.19)

(D )IJ C,J 3 CI + A:" ( TW‘)IJD_ x/‘* CJ

i

where

Bt = 91':{:5‘5'

The trasformation laws of the two-dimensional N=l supersymmetry are:
3 xm ' M Sy = - o x"e
"= e} ) - )

T 3
BCL = 1€ A:A (TM)Ijﬁ ‘f“ (111.20)
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Under these trasformations, the action varies in general by a surface
term, which vanishes only for periodic boundary conditions on ?’M.

When G = Spin (32)/Zp, the Cx are taken to transformin the vector
representation of G. For G = EgxEg, only the subgroup O(l6)x0(16) is linearly
realized on the fields. The cfl'split into two sets of variables, (LA and
» A =1,...,16, trasforming according to the (16,1) and (1,16) of 0(16)x0(16).

For the sake of clarity, we briefly review the less familiar Neveu-
Schwarz-Ramond formulation of the heterotic string [24] . To define a theory
which is supersymmetric in ten dimensions, one must consider both periodic
and anti-periodic boundary conditions (PBC and APBC) on the Grassman variables
and (,1 . These define different sectors of the theory, within each one
must perform a suitable projection to obtain the correct physical spectrum.

For vanishing background, the model splits into a left-handed
(X"(Y+W)ﬁ?0w6) and right-handed (XW?—S),CRﬂ35» sector. In the right-handed
sector, PBC gives rise to fermionic (Ramond) states with respect to the
ten-dimensional Lorentz group. They transform according to both spinorial
(left-chiral) and (antispinorial (right-chiral) representations of the
trnsverse Lorentz group 0(8). To obtain the desidered spectrum, the anti-
spinors are eliminated by a projection. APBC lead to bosonic (Neveu-Schwarz)
states belonging to representations in the vector and singlet conjugacy
classes of 0(8). In this case the singlet-type representation are removed.

In the left-handed sector, when G= Spin (32)/Z5, one imposes either
PBC or APBC on all the' CI' - The choice of the factor group Zp is such
that the Ramond (PBC) sector has spinor-l1ike representations (and no

antispinors), while the Neveu-Schwarz (APBC) sector has representations
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in the singlet conjugacy class and none in the vector class. For G = EgxEg,
we have four sectors corresponding to each of the two possible boundary
conditions on each set of 16 CA, ZA. One now picks out spinorial and
singlettype representations separately for each factor group.

Concentrating now on the Ramond-type sectors, we show that, in terms
of the two-dimensional supersymmetry of the Lagrangian, the spinorial and
antispinorial representations correspond to the eigenvalues * 1 of the

operator (-l)F, where F is the two-dimensional fermion number.

In terms of operators:

M (e

2 d, d,
(__’\)F = Y ® -1)" (111.21)

The operator on the right was introduced in the pioneering article
of Gliozzi, Olive and Scherk (21} to distinguish the two classes within
the Ramond model. The supersymmetry generator of this two-dimensional model,

model, in terms of the usual transverse oscillators, is

4. 00

M M
Q = 4L Py «+ Z dy L, (I11.22)
2 N= - 00
hfo

The fermion number operator F may be defined through:
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T

{("1)F; Q} = 0 ) ((“1)F) = (111.23)

It is evident that the definition in eq.(III.21) satisfies these properties.

Thus removing states of the Ramond sectors which are in anti-spinorial
representations is equivalent to projecting the theory onto the even world
sheet fermion number subspace. A similar result holds for the Neveu-Schwarz
sectors, altough there is no supersymmetry which transforms these subspaces
into each other.

Such a characterization of the projections required to make the spectrum
space time supersymmetric is essential when the backgrounds in the action
(I11.18) are non-trivial. In that case, the fields are not decomposable
in terms of free oscillators; nevertheless, the operator (-—1)F is we]]-v
defined and the physical spectrum is defined as the projection onto the
subspace (-1)F=1. This procedure must be carried out separately for all
the sectors: those pertaining to the V»” » which carry a Lorentz index,
as well as those pertaining to the (LI » which have a gauge index.

For a string theory which compactifies down from ten to four dimensions,
the spin connection Ldkin the internal six dimensions in general takes values
in the Lie algebra of 0(6). It has been shown [251 that, in order to avoid

chiral anomalies, the gauge field and the spin connection must be equated:

ab ab wb

b
Aa T = w,» O (111.24)

'A
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L

b
where G are the generators of the 0(6) internal Lorentz group, while | are
the generators which span an 0(6) subgroup of the gauge group G. G is broken

to the maximal subgroup H such that:

G D O(G) x H (1I1.25)

P

. : A
Under this decomposition, a subset <" (p = 1,...,6) of the C" transforms

as the (6,1), while the remaining set, CK (A = 1,...,10) and CA (A
= 1,...,16) are inert under 0(6). Since the metric 1is flat in two directions
we can also split x’*:(X’T‘, X*) where M= 1,2 and i=1,...,6 and \{f’“:(’{'a;?{"
with & =1,2 and p = 1,...,6. Finally we define the real two-component

P
spinor )\Pz (‘ﬁp)and the action (III.18) becomes:

f) e 5__ + S_{_ + S
§ = L jaadfr((deﬁa“x"')_“q’”*'w)

- 4’

3

S¢ = _‘_Sdo—dr((a“x"a‘x*‘)ﬁ;c‘*\9+gf*+;g”*a+tf*)
ot 4 (I11.26)

NG CAP X b
83 = L Sdgd,r(%‘j X x4 C AP (M)

4"

——P r A4S
+ Z}qursx)‘A/\)
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S_ and S4 are free theories which describe, respectively, the decoupled
roght-handed and left-handed varijables. S3 is an N=1 supersymmetric o -
model on the compact six-dimensional internal manifold. The Hilbert space
of the theory is the tensor product of the Hilbert spaces corresponding
to the three decoupled actions.

To study the spacetime fermionic states of the string, one restricts
oneself to periodic boundary conditions on the ‘% FL Q’L . For the
(LIvariab]es, the relevant boundary conditions depend on the choice of the
gauge group, as mentioned earlier.

Consider first the more interesting case G = ngngth\ineaﬂy'rgﬂ;Lgd SN

breaks to 0(16)x0(16), with respect to which the A and C:A transform
in the (10,1) and (1,16) representations, respectively. Chiral fermion
generations come from zero mass states in complex representations of the
unbroken group. The only possibility is the spinorial of 0(10), the (16,1),

which belongs in the sector:

A A 1A

C = C | ... C " Ramond (PBC)
€A = (,n c31:Neveu—Schwarz (APBC)

It is easy to see that the other three sectors give either real
representations or massive states.
The result of all this is that we need to consider the three actions

S_» S¢, S3 with the following boundary conditions:
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S_,S3 : PBC on all fields
Sy : PBC on 10 chs

APBC on 16 Ch's
It is important to note that, with these boundary conditions, S3 is truly
invariant under N=1 supersymmetry, without producing surface terms. Thus
its spectrum is positive definite. For the remaining (free) modes, one can
verify that the ground state energy is zero. So the ground states of S are
massless if the N=1 supersymmetry is unbroken.

Now it is easy to derive the chiral fermion content. The ground states
of S_ are a Teft-handed and a right-handed spinor, |L> and |R>, with respect
to the four-dimensional Lorentz group, with eigenvalues +1 of (-1)Fq/: Fq,
being the fermion number relative to the "Lorentz" Grassman variables \ki:and

W;Q The ground states Sy form a (16,1) and (16,1) repr esentation of
0(10)x0(16), with (-1)F¢c = %1 respectively: F. being the fermion number
for the first 16 "gauge" variables cl,...,cl6. The action S3 is a non-trivial
field theory, and its spectrum cannot be computed exactly. Let n“@ ( « > 3

= %1) be the tot .al number of ground states of this action with eigenvalues

(—l)F? =&, (-1)Fk = P . The Lorentz and gauge properties of the ground

states are summarized in Table 1.

The number of chiral fermion generations is
n(le) -n(leL )= ey -n, . (I11.27)

We now exploit the topological pfoperties of the N=1 supersymmetric

0 -model S3 [5] we learnt in section I.3. Let us recall egs.(I.72),(I1.73):
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| F F
Wittew index = te 1) Y@ 1) ¢
= n{,_*_ -(-V)___ “h_,_(_, —V\+_

= X ) The CGouler characteristic

(III.28)
of the six«d{mev\smna(meu;?old

FC
tr 1)

W

= Hivzebruvch gigna’(?ure of
The mani Fold

(111.29)
0 For 4% +2 dimensional me i Folde

t

the last equation implies

n(16L) v+n (6 ) = n(leg) + V‘(ER) (111.30)

which states the CPT invariance of the spectrum. Combining eqs.(III.28)

and (II1.29) one finally obtains:

n(lec) - n(ley) = X/ (111.31)

If the holonomy group of the internal six-dimensional manifold is a

proper subgroup of 0(6), such as SU(3), the unbroken gauge group may be
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bigger. For example, one may have Eg > SU(3) «x Eg, for which the previous
formula holds, with the 16 of the 0(10) replaced by the 27 of Eg. Our result
(IIT.31) is equally applicable to holonomy groups others than 0(6) and SU(3),
providéd that the complex representations of the unbroken gauge group H
do not arise from the adjoint representation of the Spin (32)/22 or
0(16)x0(16).

Thus we have obtained, in the quantum string theory, the result which
in ref. [25] »was derived from field theory considerations, disregarding
the'excited states of the string.

The reason why these two results coincide is precisely the topologically

invariance of the Witten indices (III.28) and (II1.29) 1in two dimensional

supersymmetric field theories, which permits one to take the limit in which

the Tength of the string vanishes.

For G = Spin (32)/Zp, fermions in complex representations could appear
only 1in the sector with periodic boundary conditions on all 32 cd 's.
Unfortunately, in this sector, all states are massive, Qnd there are no
chiral fermions. |

At first sight, it may seem that the same mechanism just described
would also produce massive chiral fermions in four dimensions. Fortunately
this is not so. The crucial observation is that the constraint of vanishing
momentum in the o-direction 24 implies that the massive states correspond
to excited states of either S3 or S (or both). Since (—l)ﬁ'=1 and (—1)F+
= (-1)Fy @(-1)”, , it follows that

S, 5

-
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Fl{; n
Yo = 1) ® (-1) (II1.32)

But the supersymmetries of S3 and S gquarantee that tr(—l)F¢{ =0 and
Z:dﬂ d}: - 53
tr (-1) ek

0 on all excited leves, there are no "massive chiral
fermions".

Let us end with the following remark: sectors of the model in which
Neveu-Schwarz (antiperiodic) boundary conditions are imposed on any of the
variables appearing in S3 are not N=1 supersymmetric, and our topological
considerations do not seem to apply directly. If indeed there is no
appropriate topological invariance, one would suspect that field theory

considerations for these sectors are not in general valid.
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Footnotes

fl The saturation of (II.58) at the quantum level has been studied with

finite-volume techniques in a number of papers 33 . Unfortunately, because

of the ambiguities related to the choice of the boundary conditions,
contradictory results have been obtained: in finite volume the question
does not seem to be definetly settled. In this respect our infinite-volume

calculation has the advantage of providing a unique answer.
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S_ s, S, S

L 16 n,, n++1€L
R 16 n,_ n,_16g
L 16 n_, n_,16;
R 16 n__ n___16R

Table I: Quantum numbers of the ground states



